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ABSTRACT 

This thesis presents three different liquid valving methods for the centrifugal 

microfluidic platform, namely vacuum/compression wax valve, passive liquid valve 

(PLV), and check valve. The mechanism of the proposed valves is simply based on 

sequencing the liquid flow by controlling air-flow inside the microfluidic network. 

Specifically, the wax valve and passive liquid valve utilize a volume of trapped air in 

the source chamber or the destination chamber to control the burst frequency of the 

liquid. In contrast, the check valve controls the direction of the air to control the flow 

direction of the pumped liquid. Compared with the previously proposed valves, this 

mechanism prevents any direct contact between the valving materials and the 

sample/reagents. This will reduce the chance of sample/reagents contamination, and 

allow the use of wider range of valving materials. As a proof of concept, liquid 

metering, liquid switching, and liquid swapping are conducted using the proposed 

valving methods. Furthermore, Bradford assay for protein concentration detection, and 

enzyme linked-immunosorbent assays (ELISAs) for dengue are demonstrated to show 

the capability of the developed valves to perform biomedical applications.   

The results illustrate that the valves reduce the required spinning frequency to 

perform the microfluidic processes on the centrifugal platforms. In addition, the 

presence of physical barriers improves the ability of the developed valves to reduce 

vapour and contamination effect. Furthermore, the proposed valves show additional 

advantages such as the simplicity of fabrication and implementation, reversibility and 

multi-actuation, and compatibility with biomedical applications. Finally, the 

demonstration of the ELISA and the Bradford assays illustrate the ability of the 

presented valves to be integrated in any multistep biomedical and chemical application 

on the centrifugal microfluidic platform.  
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ABSTRAK 

Dalam tesis ini, tiga kaedah cecair injap yang berbeza dibangunkan untuk 

platform microfluidic empar. Tiga injap adalah: injap lilin vakum/mampatan, injap 

cecair pasif (PLV), dan injap periksa. Mekanisme ketiga-tiga injap untuk penjujukan 

aliran cecair adalah dengan mengawal aliran udara di dalam rangkaian microfluidic. 

Secara khusus, injap lilin dan PLV menggunakan isipadu udara terperangkap di dalam 

kebuk sumber/destinasi untuk mengawal frekuensi pecah cecair. Sebaliknya, injap 

sehala mengawal arah udara untuk mengawal arah aliran cecair yang dipamkan. 

Berbanding dengan injap yang dicadangkan sebelum ini, mekanisme ini menghalang 

sebarang hubungan langsung antara bahan injap dan sampel/reagen. Ini mengurangkan 

peluang pencemaran sampel/reagen dan membolehkan pengunaan pelbagai bahan injap. 

Sebagai bukti konsep, pemeteran, pensuisan, dan penukaran cecair telah dijalankan 

menggunakan injap yang dicadangkan. Tambahan pula, untuk menunjukkan sesesuaian 

injap untuk melaksanakan aplikasi bioperubatan, asai imunoserapan berkaitan enzim 

(ELISA) untuk mengesan denggi, dan asai Bradford telah ditunjukkan. 

 Keputusan yang diperolehi menunjukkan bahawa injap yang 

dibangunkan mengurangkan frekuensi putaran yang diperlukan untuk melaksanakan 

proses microfluidic pada platform empar. Di samping itu, kehadiran halangan fizikal 

meningkatkan keupayaan injap untuk mengurangkan kesan wap dan pencemaran. Injap 

yang dibangunkan juga menunjukkan kelebihan seperti kemudahan process fabrikasi 

dan pelaksanaan, kebolehbalikan, kebolehulangan, dan kesesuaian untuk aplikasi 

bioperubatan. Akhirnya, demonstrasi asai ELISA dan asai Bradford membuktikan 

keupayaan injap yang dibangunkan untuk diintegrasikan dalam apa-apa applikasi 

bioperubatan dan kimia kepelbagaian langkah pada platform microfluidic empar. 
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1  CHAPTER 1: INTRODUCTION 

1.1 Background 

Since the invention of the miniaturized total analysis system by Manz et al. 

(1990), the miniaturization of commercial conventional diagnostic system has become 

the focus of researchers in this field. As a result, several biomedical and chemical 

processes were successfully demonstrated on two main types of microfluidic platforms: 

Lab-on-Chip (LOC) and centrifugal microfluidic platforms (Haeberle et al., 2012; 

Madou et al., 2006; Manz et al., 1990). Although both platforms aim to reduce the 

amount of liquid and time consumption, LOC is a stationary platform that mostly 

dependent on external forces for liquid pumping. In contrast, centrifugal microfluidic 

platforms rely on the centrifugal force (which is derived from spinning the platform) to 

pump liquid on the platform. In addition, the centrifugal microfluidic platforms can also 

utilize capillary pressure as passive valves for fluid flow sequencing (Madou et al., 

2006). The final goal of researchers working in the centrifugal microfluidic field is to 

miniaturize the platform so that it can be tested on conventional computer CD ROM 

drive for quick analysis and better portability.  

Several successful biomedical process were reported on the centrifugal 

microfluidic platforms and some examples include: ELISA (Lai et al., 2004; Yusoff et 

al., 2009), plasma and particles separation (Burger et al., 2012; Imaad et al., 2011; 

Morijiri et al., 2010), and real time polymerase chain reaction (PCR) (Amasia et al., 

2012; Focke et al., 2010; Strohmeier et al., 2014). However, liquid flow control in 

complex multistep processes (processes with more than three microfluidic steps) still 

presents a serious challenge for the researchers in this field. During the last few decades, 

the field of microvalves has been heavily investigated and various types of valves have 

been reported in various literatures. Most of the proposed valving methods can be 

classified under two main categories: active valves or passive valves (Madou et al., 
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2006; Oh & Ahn, 2006). An active valve can be defined as a valve that requires an 

external force to be actuated (open or close). In contrast, a passive valve utilizes 

centrifugal and capillary forces to control liquid flow without the need for external force 

for actuation. Although, the use of external force or trigger to operate an active valve is 

considered as its main disadvantage, it makes flow control more accurate and robust.   

In general, the main criteria of a practical microvalve that can be successfully 

commercialized for biomedical applications include simplicity, prevention of 

evaporation or sample leakage, reduction of the dead volume, short actuation time, and 

reduced power consumption (Oh et al., 2006). Failure to adhere to most of these 

requirements will reduce the chances of implementation in real biomedical applications. 

Despite this fact, most of the proposed microvalves for the centrifugal microfluidic 

platforms are either complex and require lengthy fabrication process, or lack of physical 

barriers that reduce sample evaporation and contamination. Therefore, the aim of this 

study is to develop an easy-to-implement liquid sequencing valves that can be utilized 

to perform biomedical applications on centrifugal microfluidic platforms. Three active 

and passive valves are designed and developed in this study. The three valves are: 

vacuum/compression wax valve, passive liquid valve (PLV), and check valve. The 

development valves have three main advantages; (first) it is easy to fabricate and 

implement; (second) it contains physical barriers to reduce vapor effect and isolate 

sample from surrounding environment; (third) it has better compatibility with 

biomedical applications as there is no direct contact between the sample and valving 

material.  

Vacuum/compression wax valve presents a novel valving technique for the 

centrifugal microfluidic platform where the liquid burst frequency is controlled by 

controlling the air flow of the source and destination chambers. This liquid sequencing 

mechanism prevents any direct contact between the sample and the valving material (the 
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paraffin wax). The second valving technique (i.e., PLV) is an improvement of the 

vacuum/compression wax valve where the wax plug is replaced by liquid venting 

chamber. The venting chamber is introduced to control the air flow of the source and 

destination chambers via two different configurations (i.e., passive liquid valve for the 

source chamber (S-PLV) and passive liquid valve for the destination chamber (D-

PLV)). This improvement eliminates the need for external convection heating source to 

activate the wax valve (convert an active valve to a passive valve). The third valving 

method (i.e., check valve) presents an easy-to-fabricate and implement passive check 

valves that control the flow direction of liquid and air on the centrifugal microfluidic 

platforms. Two types of check valves are developed in this stage which are: terminal 

check valve (TCV) and bridge check valve (BCV).  The check valves is utilized to 

improve the ability of thermo-pneumatic pumping (TPP) in controlling the pumping 

direction of liquid on the centrifugal microfluidic platform.  

Three basic microfluidic processes, liquid switching, liquid metering, and liquid 

swapping, are performed utilizing the developed valves. Moreover, to demonstrate the 

ability of the developed valves to perform biomedical applications, Bradford assay to 

detect protein concentration, and ELISA assay for dengue detection are demonstrated 

using the PLV and check valve, respectively.   

1.2 Research Objectives 

The main objective of this study is to develop active and passive liquid 

sequencing methods for centrifugal microfluidic platform by controlling the air-flow on 

the centrifugal microfluidic platforms. In order to meet the main objective, the 

following specific sub objectives should be achieved: 
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 Development of active wax vacuum/compression valving method to control liquid 

burst frequency.  

 Development of passive liquid valving mechanism by introducing venting chamber 

to control the air flow of the source and/or destination chambers. 

 Development of passive check valve technique to control liquid and air flow 

direction. 

 Performance of Bradford assay for protein concentration detection utilizing the 

developed liquid valve. 

 Demonstration of the ELISA assay for dengue detection utilizing the developed 

check valving method. 

1.3 Scope of Work 

This research focuses on the development of passive and active microvalves for 

the centrifugal microfluidic platform that can be implemented in biomedical 

applications. Therefore, this thesis will extensively cover liquid sequencing methods of 

the centrifugal microfluidic platforms, while briefly presents other aspects of the 

platform such as pumping methods. The conducted Bradford assay and ELISA assay do 

not comprise the use of real human biological samples (e.g., blood or serum) during 

experimental tests.  Instead, bovine serum albumin (BSA) is utilized in the Bradford 

assay and colored deionised water is implemented in the ELISA experiment.  

1.4 Thesis Outlines 

This thesis is structured as follows:  

Chapter 1 presents a brief introduction about the background of this research and 

the motivation for the defined objectives is given.  

Chapter 2 presents a literature review on lab on chip and centrifugal microfluidic 

platform. A brief introduction to the structure of centrifugal microfluidic platform and 
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its pumping and valving mechanisms is give. This is followed by a short discussion of 

their biomedical applications.   

Chapter 3 explains the research methodology and procedures to execute the 

defined objectives in three sections. The first section deals with the methodology of the 

vacuum/compress paraffin wax valves. This is followed by the methodology of the 

developed passive liquid valve in the second section. The last section deals with the 

check valve introduced for the centrifugal microfluidic platforms.  

Chapter 4 discusses the experimental results of each of the developed valve. In 

addition, the results of two biomedical applications demonstrated utilizing the 

developed valving methods are also presented in a separate subsection.  

In Chapter 5, the work is summarized and a conclusion is drawn. A number of 

suggestions for possible future work are also offered.  
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2 CHAPTER 2: LITERATURE REIVEW 
 

2.1 Introduction 

Over the last few decades, microfluidic-based platforms have become the focus 

of research as an attempt to solve various problems related to conventional diagnostic 

methods such as the high consumption of sample and expensive reagents, long 

processing time, complex and expensive setup. Moreover, the overwhelming desire to 

decentralize healthcare process from hospitals and clinics has motivated researchers in 

academia and industry to invent point-of-care (POC) diagnostic methods. Therefore, 

microfluidic platforms attract the attention as POC, low requirements, and disposable 

solution for the benchtop diagnostic procedures. As mentioned earlier in the 

Introduction chapter, most of the reported microfluidic platforms can be classified under 

two main categories: LOC and centrifugal microfluidic platform (Madou et al., 2006; 

Oh et al., 2006).   

2.2 Centrifugal Microfluidic Platform VS. Lab-on-a-chip (LOC) 

The LOC or as it might known as micro total analysis systems (µTAS) is a 

research field that aims to invent micro-scale, fast, disposable, and portable diagnostic 

platform to perform biochemical applications (Auroux et al., 2002; Reyes et al., 2002). 

In general, LOC is a platform that contains micro-scale chambers and channels where 

external pumping force is used to pump liquid. Different pumping techniques are 

employed for various LOC platforms such as pressure pumping, acoustic pumping, and 

electrokinetic pumping. Pressure pumping is the standard pumping method most widely 

used but difficult to miniaturize and multiplex (due to the fact that it requires external 

air/liquid pump and physical connections) (Abi-Samra, 2012).  

LOC platform has been utilized for many applications especially for clinical 

diagnostic. LOC for clinical applications is targeted to be sample-to-answer, where the 
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process starts with a droplet of patient sample (e.g., blood, urine), and rapidly end with 

important information about the sample. This is due to its ability to rapidly perform 

biomedical test procedure with fraction of reagents and sample volume. It is also 

portable, consume low power, and has high reproducibility (Abi-Samra, 2012). 

Moreover, these devices can be operated without the need for trained individuals and 

can be performed at any place. Glucose strips and pregnancy home tests are two 

examples of commercially available LOC device. However, there is no commercially 

available LOC platform that can replicate a multistep biomedical assay.  

On the other hand, centrifugal microfluidic platform (also known microfluidic 

CD) is more recent field-of-research where its first basic design was reported by N. G 

Anderson in 1969 (Anderson, 1969; Burtis et al., 1972). In term of pumping 

mechanism, centrifugal microfluidic platforms obviate the need for external pumps by 

utilizing centrifugal force to move liquids outward to the outer edge of the platform 

(Madou et al., 2006). This configuration eliminates the need for tubing and external air-

connections with the platform (better portability). In term of pumping strength, both 

LOC and centrifugal platforms can generate a wide range of fluid flows from few 

nanoliter per second up to microliter or even liter per second (Madou et al., 2006; 

Soroori, 2013). Moreover, centrifugal platform can passively perform different micro-

processes such as liquid mixing, liquid metering, and liquid switching (Madou et al., 

2006).  This makes the centrifugal microfluidic platform an attractive field for 

researchers looking for inexpensive, portable, and integrated diagnostic tool. Various 

chemical and biomedical applications have been developed on the centrifugal 

microfluidic platform and they will be briefly discussed in subsection “2.4 Biomedical 

Applications on the Centrifugal Microfluidic Platforms”.    

From a fabrication perspective, different materials and methods are utilized to 

build both the LOC and the centrifugal microfluidic platforms. The most common 
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fabrication  materials are poly(dimethylsiloxame) (PDMS), polycarbonate (PC), and 

poly(methylmethacrylate) (PMMA) due to their transparency, ease to fabricate, low 

cost, surface stability, and high impermeability to gas  (Abi-Samra et al., 2011; Burger 

et al., 2012; Focke et al., 2010; Garcia-Cordero et al., 2010; Kim et al., 2007; Kirby et 

al., 2012; Lee et al., 2009; Soroori, 2013). While PDMS is widely used to fabricate 

microfluidic platforms, using rigid plastic like PC and PMMA is more practical for 

mass production as it is cheaper and easy to be inject molded (Abi-Samra, 2012). To 

fabricate the microfluidic platform out of PDMS, photolithography is usually utilized 

where micro-features are introduced by processing a photoresist (usually SU-8) on a 

silicon wafer that will be the plastic mold. In contrast, computer numerical control 

(CNC) machine is a popular and easy way to introduce the microfeatures in the PC and 

PMMA materials.   

Some examples of commercially available centrifugal microfluidic platform for 

biomedical applications are: Piccolo ® by Abaxis, Inc (USA), and Bioaffy ® by Gryos 

AB (Sweden). Piccolo ® was developed in 1995 as a blood analyzer tool to detect 

electrolyte level, urea nitrogen, and alanin aminotransferase activity. On the other hand, 

Bioaffy ® produced in 2000 to automate and miniaturize immunoassay with a fraction 

of patient sample (nano-liter range). 

The key feature differences between the centrifugal microfluidic platform and 

the LOC are shown in Table ‎2.1 published by Madou et al. (2006). It can be seen that 

the centrifugal microfluidic platform is inexpensive, easily utilized for mixing, 

compatible with most samples including cells, and better for diagnostic applications. 

Moreover, the centrifugal microfluidic platform has a range of valving methods that can 

handle both liquid and vapor.  
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Table ‎2.1: Comparison between the centrifugal microfluidic platform and the LOC 

The table is adopted from Madou et al. (2006) 

Fluid propulsion mechanism 

Comparison Centrifuge Pressure Acoustic Electrokinetic 

Valving solved? 

 

 

Yes for liquids, and for 

vapor 

Yes for liquids, and for 

vapor 

No solution shown yet 

for liquid or vapor 

Yes for liquids, no for 

vapor 

Maturity 

  

Products available Products available Research Products available 

Propulsion force 

influenced by 

 

Density  Generic Generic pH, ionic strength 

Power source 

 

Rotary motor Pump, mechanical roller 5 to 40 V (AC) 10 KV (DC) 

Scaling of forces 

 

L
3
 L

3
 L

2
 L

2
 

Flow rate 

 

 

From less than 1 nl s
-1 

to 

greater than 100 µl s
-1

 

Very wide range (less 

than nl s
-1 

to liter s
-1

) 

20 µl s
-1

 0.001 – 1 µl s
-1

 

General remarks Inexpensive CD drive, 

mixing is easy, most 

samples possible 

(including cells). Better 

for diagnostics 

Standard techniques. 

Difficult to miniaturize 

and multiplex 

Least mature of the four 

techniques. Might be too 

expensive. Better for 

smallest samples 

Mixing difficult. High 

voltage source is 

dangerous and m 

parameters influence 

propulsion, better for 

smallest samples (HTS) 

9
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2.3 Centrifugal Microfluidic Platform Fundamentals   

In this subsection, the fundamental elements of the centrifugal microfluidic 

platform are discussed (i.e., micro pumping and micro valving). For each element, the 

previously developed methods are presented with highlights on their pros and cons. 

Note that for the reviewed micro valving methods, some LOC valving techniques will 

be presented as well since they are related to the scope of this work and can be 

implemented on the centrifugal microfluidic platforms.    

2.3.1 Micro Pumping 

Pumping the liquid on the centrifugal microfluidic platform is the main key 

factor to perform multi-step applications. Different methods are utilized to perform 

liquid pumping. These methods can be classified under two main categories: passive 

pumping (no external force is utilized) and active pumping (external force is utilized). 

2.3.1.1 Passive Micropumps 

As mentioned earlier, passive pumping can be defined as propelling the liquid 

through the microfluidic network without the need for external force or trigger. On the 

centrifugal microfluidic platform, the centrifugal force (Pcentrifugal) which is generated 

from the spinning process is widely utilized to passively pump the liquid towards the 

outer edge of the platform. This force can be calculated by the following equation 

(Madou et al., 2006; Thio et al., 2013): 

  

rrP lcentrifuga  2
 

(2.1) 

 

where ρ is the liquid density, ω is the centrifugal platform spin speed in radians per 

second (rad/s), Δr is the difference between the top and bottom liquid levels at rest with 

respect to the rotation center, and r is the average distance of the liquid from the 

rotation center (see Figure ‎2.1). It is clear from equation (2.1) that the Pcentrifugal 
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(pumping force) depends on the density of the pumped liquid, spinning speed, and the 

position of the pumped liquid in respect to the center of rotation. However, this is not 

the only parameters that should be considered when calculating the Pcentrifugal because, 

when the liquid flowing in a capillary channel reaches a sudden expansion (such as an 

opening into a destination chamber), the capillary pressure (Pcap) holds the fluid in the 

channel and prevents it from bursting into the destination chamber. This pressure is 

calculated by the flowing equation (Madou et al., 2006; Thio et al., 2013): 

 

h

lac
cap

D
P

cos4


 

(2.2)

 

  

where θc is the liquid contact angle, γla is the liquid-air surface energy and Dh is the 

channel hydraulic diameter. When the spinning speed increases, the liquid will burst 

into the destination chamber as the centrifugal pressure overcomes the capillary 

pressure. The spinning speed when the liquid enters the destination chamber is referred 

to as the “burst frequency”, and it can be calculated by equating the centrifugal pressure 

to the capillary pressure (Thio et al., 2013): 

 
















3030

rr

P
rpm

lcentrifuga

 
(2.3)

 

 

The centrifugal pressure is widely employed to passively pump liquid on the 

centrifugal microfluidic platform (Kazemzadeh et al., 2014; Lai et al., 2004; Madou et 

al., 2001; Mark et al., 2011; Thio et al., 2013). However, the unidirectional pumping of 

the centrifugal force (always towards the outer edge of the platform) limits the available 

microfluidic space to area between the center of rotation and the outer edge of the 

platform (a distance equal to the radius of the platform). Therefore, the development of 
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an alternative multidirectional passive pumping on the centrifugal platform has became 

the focal point of research in this field. 

 

 

Figure ‎2.1: Centrifugal microfluidic platform main parameters 

top of the liquid distance from platform center (r
1
), bottom of the liquid distance 

from the platform center (r
2
), difference between the top and bottom of the liquid 

levels (Δr), average of r
1
 and r

2 
( r ) and the position of passive valve from the 

source chamber 

 

Gorkin et al. (2010) proposed a passive pneumatic pumping towards the center 

of the centrifugal platform by employing a combination of the centrifugal force and 

pneumatic air compression (see Figure ‎2.2). As shown in Figure ‎2.2, a compression 

compartment is introduced to trap and compress air at high spinning speed (store 

energy), then pump the liquid back towards the spinning center when the spinning speed 

reduces. As a proof of concept, Gorkin et al. employed this concept to actuate liquid 

siphoning process in a design shown in Figure ‎2.2(b1 – b6).   

Using the same concept, Aeinehvand et al. (2013) proposed an improvement of 

Gorkin pumping method by introducing a circular latex layer on top of the compression 

compartment. This integration improves the ability and the flexibility of the air 
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compartment to store more energy. This innovation reduces the required spinning speed 

to perform liquid pumping, and increases the amount of liquid that can be pumped. In a 

relevant mechanism, Zehnle et al. (2012) proposed a passive pumping method to propel 

liquid towards the center of the platform. The proposed method is based on trapping and 

compressing air in a cavity and then release the stored pneumatic energy be reducing the 

spinning speed. Liquid pumping direction is controlled by have inlet channel with high 

hydraulic resistance and outlet channel with low hydraulic resistance. Therefore, the 

dominant amount of liquid will be pushed through the outlet channel towards the 

collection chamber. The author reported more than 75% pump efficiency per pumping 

cycle for water, ethanol, and whole blood.  

 

Figure ‎2.2 Pneumatic pumping towards the center of the centrifugal platform 

(a1) liquids loaded in the source chamber (initial state in low spinning speed) (a2) 

liquid bursts to fill in the compression compartment (a3) liquid traps air in the 

compression compartment (a4) increase the spinning speed to compress the 

trapped air (a5) decrease the spinning speed to relax the compressed air and pump 

the liquid back (b1) implementing the developed pneumatic pumping to activate 

liquid siphoning, in this stage, liquid injected in the source chamber (b2) liquid 

bursts towards compression compartment (b3) liquid traps air (b4) air 

compression (b5) and (b6) air relaxation and siphon activation (Gorkin et al., 

2010) 
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Kong et al. (2011) and Soroori et al. (2013) developed two passive pumping 

methods based on the same idea of pumping liquid with the effect of another liquid 

flowing on the platform. However, Kong et al. utilized a push-like state (compression) 

to pump the liquid while Soroori et al. utilizes pull-like state (vacuum) for liquid 

pumping. In Kong et al. work, two designs (i.e., immiscible and arbitrary) were 

developed to pump the liquid radially inward.  The author reported 55% and 60% 

pumping effectiveness for immiscible and arbitrary, respectively, with a low spinning 

speed (less than 700 rpm).  

In Soroori’s work, a simple passive pumping method (namely micro-pulleys 

pump) is developed for the centrifugal microfluidic platform. The micro-pulleys 

mechanism is based on pumping a sample liquid that is injected in ventless microfluidic 

network towards the spinning center by a column of working liquid. As the working 

fluid bursts towards the outer edge of the platform, the sample liquid is pulled up in an 

analogy similar to the work of mechanical pulley. Note that both liquids (sample liquid 

and working liquid) are connected by the trapped air inside the ventless network. This 

work presents a simple-to-implement passive pumping on the microfluidic platform. 

However, the air that acts as a rope connecting the two liquid can withstand only 

specific amount of pressure on both sides. When the pressure exceeds the defined limits, 

the air connection breaks and the pumping method will not function properly.  

Passive pumping methods increase the ability of the centrifugal microfluidic 

platform to pump liquid passively towards the spinning center. However, the limited 

liquid volume that can be pumped, and the dependence on the spinning speed, motivate 

researchers in this field to look for a more powerful and rotational-independent active 

pumping for the centrifugal microfluidic platform. 
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2.3.1.2 Active Micropumps 

Active pumping can be defined as the utilization of external force to pump liquid 

towards the rotational center with less dependency on the centrifugal force. In (2007), 

Haeberle et al. developed an active pumping method on the centrifugal microfluidic 

platform by employing an external permanent magnet. As can be seen in Figure ‎2.3, a 

layer of PDMS membrane with two embedded steel plates is covering two chambers: 

pump chamber and valve chamber. Each steel plate is vertically positioned on top of 

one of the two chambers. To actuate the pumping process, a stationary magnet is 

positioned under the centrifugal platform on the radial track of the two steel plates. 

When the platform starts rotating, the two steel plates start fluctuating up and down by 

the effect of the magnetic field and according to a specific sequence (see Figure ‎2.3 (a – 

d)). This movement actuates the active pumping and valving processes to drive the 

liquid through the microfluidic network.   

 

 

Figure ‎2.3 Magnet pumping and valving on the centrifugal microfluidic platform 

(a) Valve chamber passes on top of the stationary magnet causing the inlet to be 

closed (b) the steel plate of the pump chamber dragged down cause the air to flow 

from the outlet hole (c) the valve steel plate released (d) the pump steel plate 

release causing the air to be pulled in from the inlet hole (Haeberle et al., 2007) 
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It is clear that Haeberle et al. developed a robust pumping method that can pump 

any volume of liquid in any direction. However, it still mainly depends on the spinning 

speed to control the pumping flow rate. Moreover, this method requires high-end 

fabrication techniques to accurately build the micropump.  

Abi-Samra et al. (2011) proposed a relatively easier and simple-to-fabricate 

active pumping technique for the centrifugal microfluidic platform called thermo-

pneumatic pump (TPP). Figure ‎2.4 shows the basic design of the TPP mechanism which 

consists of a ventless main microfluidic reservoir where the liquid initially injected, and 

a collection reservoir as a destination chamber where the liquid will be pumped for. 

Moreover, a ventless air chamber is connected to the main microfluidic reservoir as a 

pumping chamber. The system also requires external infrared (IR) source to actuate the 

pump. Simply, when the centrifugal platform is loaded and the platform is spun, the IR 

light heats the air chamber. This heating process causes the air in the chamber to expand 

thereby increasing the air pressure. The air pressure exerts pumping effect on the liquid 

in the microfluidic reservoir, forcing it to flow towards the collection reservoir (see 

Figure ‎2.4). This method can be considered as a simple solution to reverse the flow of 

liquid on a centrifugal microfluidic platform.  

Along the same line with Abi-samra, Thio et al. (2013) proposed a two 

directional TPP pumping as an improvement to the pumping method developed by Abi-

Samra et al. (2011). The idea is based on introducing a U-bent channel (like a siphon) to 

the connecting channel between the liquid reservoir and the collection chamber. This 

configuration allows for pushing the liquid from the microfluidic reservoir to the 

collection reservoir in the heating process; then pulls it back to the microfluidic 

reservoir during the cooling process of the air chamber. Thio et al. employed this idea to 

demonstrate two microfluidic processes which are switch pumping and serial washing. 

In spite of the many advantages TPP brings to the table, the volume of liquid to be 
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pumped is significantly limited by the volume of the implemented air chamber. 

Moreover, the use of external actuator (heating source) can partially eliminates the 

portability of the developed platform. 

 

 

Figure ‎2.4 TPP pneumatic pumping method on the centrifugal microfluidic 

platform 

(a) liquid injected in the microfluidicreservoir and all venting holes are sealed (b) 

heating the air chamber by IR lamp causing the air to expand and the liquid to 

flow towards the collection chamber (Abi-Samra et al., 2011) 

 

 From the same research group of Abi-samra, Noroozi et al. (2011) utilized 

electrolysis method to generate pressure for liquid pumping instead of an external 

heating source. The design is similar to the one in Figure ‎2.4, but the air chamber is 

replaced with an electrolysis chamber.  Still, electrolysis pumping method requires 

complex physical electrical connections to provide DC current to the electrolysis 

chamber while the platform is spinning.  
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To simplify the active pumping process and develop contactless pumping 

technique, M C R Kong and E Salin (2011) proposed the use of an external beam of 

compressed air to pump the liquid on the centrifugal microfluidic platform. The external 

air flow is focused into the venting holes of the chambers where the liquid to be pumped 

is located. The liquid pumping rate is controlled by the spinning speed of the platform 

and the air flow from the external valve. Although the method is easy to utilize, it can 

causes enormous amount of contamination for the samples and reagents inside the 

platform if it implemented outside clean rooms. Moreover, the use of external 

compressed air source can reduce the portability of the developed platform. 

2.3.2 Micro Valving 

During the last few decades, the micro valving field has been intensely 

investigated and various types of microvalves have been reported. A valve can be 

defined as a component that stops fluid flow (normally-open valve), starts fluid flow 

(normally-closed valve) or controls fluid flow (proportional valve) through a specialized 

passage or channel (Madou et al., 2006). As mentioned earlier, most of the developed 

microfluidic valves fall under one of the main two categories: passive valve (dependent 

on centrifugal forces) and active valve (independent of centrifugal forces). Two kinds of 

valving methods are classified under each category and they are mechanical, and non-

mechanical valves. In the following two subsections, the previous developed active and 

passive valving methods are discussed and some examples of applications preformed 

using the two methods are presented. 

2.3.2.1 Passive Microvalves 

In general, passive valve can be defined as the valving method that does not 

require external force or trigger to be actuated. Various mechanical and non-mechanical 

passive valves have been reported for the LOC and the centrifugal microfluidic 

platforms. The mechanical passive valves are actuated by moving mechanical parts to 
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control fluid flow. In contrast, non-mechanical passive valves do not contain any 

moving mechanical parts. 

For LOC, passive check valve is the most popular valving method adopted. Two 

main categories of check valves are widely reported which are: flap valve (Feng & Kim, 

2004; Nguyen & Truong, 2004; Ni et al., 2010; Voigt et al., 1998; Voldman et al., 

2000), and spherical ball valve (Accoto et al., 2000).  Figure ‎2.5 (a) and (b) present a 

simple valving configuration of the flap valve where the liquid flow is controlled by 

bendable gate at the connecting point between the upper and lower channel. The flap 

valve is actuated (opened) when the liquid pressure is high enough to bend the valving 

gate (see Figure ‎2.5(a)). At the same time, the flap valve does not allow for the liquid to 

flow back as the valving gate can only be bended in one direction. Figure ‎2.5(c) and (d) 

demonstrate the spherical ball valving mechanism. It is clear that the spherical ball 

valves let the liquid to flow in one direction while stop the flow when the it is reversed 

backwards. In many literature, the flap and spherical ball valves are integrated with 

active or passive pumping methods to build a microscale pump (Accoto et al., 2000; 

Carrozza et al., 1995; B Li et al., 2005; Ni et al., 2010; Pan et al., 2005; Yamahata et 

al., 2005). Flap and spherical valves present an easy way to control liquid flow 

direction. However, the efficiency of these valves to prevent reverse flow is relatively 

poor as it depends on input pressure and that can cause leakage in low pressure.  

On the other hand, a number of passive valving methods were proposed for the 

centrifugal microfluidic platform. Examples include hydrophobic and capillary valves 

(Ducr´ee et al., 2007; Madou et al., 2001), pneumatic valve (Mark et al., 2009; Mark et 

al., 2011; Strohmeier et al., 2014), siphon valves (Kitsara et al., 2012; Siegrist et al., 

2010), flap valves (Thio et al., 2011) and dissolvable films valve (Gorkin et al., 2012). 

Figure ‎2.5(e), (f), (g), (h), (i), and (j) show an illustration of hydrophobic, capillary, 

pneumatic, and siphon valve, respectively. 
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 Hydrophobic and capillary valves control the flow of the liquid by integrating 

hydrophobic region (for hydrophobic valve), or by introducing sudden expansion (for 

capillary valve) on the way of liquid flow (see Figure ‎2.5(e) and (f)). For these two 

valves, hydrophobic and capillary forces are utilized to stop liquid flow until the liquid 

has enough pressure to overcome these forces. These two valving method is considered 

the easiest way to control liquid flow passively on the centrifugal microfluidic platform. 

However, the lack of physical barrier could cause for liquid evaporation in long term 

storage. Moreover, these valves can be actuated once as wetting their structure can 

reduce their ability to control liquid flow. 

Figure ‎2.5(g) and (h) present the passive pneumatic valving method proposed by 

Mark et al. (2009). Mark and his team proposed a ventless destination chamber where 

the air is trapped and compressed to stop the liquid at the source chamber. This liquid 

stoppage continues until the pressure of the source chamber liquid overcomes the 

pressure of the trapped air in the destination chamber. To illustrate the capability of the 

proposed valve, Mark et al. integrated the developed valve in the centrifugal platform to 

perform liquid metering process (Mark et al., 2011). In spite of the simplicity of the 

proposed valve to control liquid flow, the user required to adjust the destination 

chamber volume in order to adjust the burst frequency of the liquid. Moreover, 

proposed valve limits the implementable microfluidic process to two steps only.  

  Figure ‎2.5(i) and (j) present a popular valving technique in the centrifugal 

microfluidic field where a siphon shaped channel is utilized to control the fluid flow 

(Kitsara et al., 2012; Siegrist et al., 2010). This configuration is usually utilized to 

empty/flush out a specific chamber (usually the detection chamber) at a specific 

rotational speed. The siphon valve is actuated by increasing the spinning speed to a 

level where the liquid reaches the crust of the siphon channel and then burst. Passive 

siphon valve has been utilized in many researches to control liquid flow; however, it 
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requires a special hydrophobicity surface treatment in prior to implement the valve in 

any process.  Moreover, the lack of physical barrier can cause vapor problem when this 

valve is implemented.  

 

Figure ‎2.5: Examples of passive valving methods for the microfluidic platforms 

(a) and (b) flap valve mechanism, (c) and (d) spherical ball valve, (e) hydrophobic 

valve, (f) capillary valve, (g) and (h) pneumatic valve, (i) and (j) siphon valve 

  

 

To solve the vapor seal limitation in the previous presented passive valves and to 

present a solution for long term storate, Gorkin et al. (2012) proposed a passive 

dissolvable film (DF) valve to control liquid flow on the centrifugal microfluidic 

platform. As can be seen from Figure ‎2.6, the DF valve is installed in the channel 
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connecting between two chambers (loading chamber, and waste chamber). When the 

load chamber is filled with liquid, there will be trapped air between the loading chamber 

liquid and the DF valve. In a high rotational speed, the trapped air will be 

overcompressed and the loading chamber liquid will wet the DF valve. When the valve 

is wetted, the DF will breakdown and the liquid will burst towards the waste chamber. 

As a proof of concept, Gorkin et al. proposed a microfluidic design with multi DF valve 

to perform advance biomedical process starting from a whole blood sample. This valve 

has solved the lack of physical barrier in most of the passive valving method. However, 

complex procedures need be followed in order to fabricate and install the valve to 

eliminate any possible air/liquid leakage.  

 

 

Figure ‎2.6: Passive dissolvable valve for the centrifugal microfluidic platform 

(a) DF valve plug installation, (b) DF valving actuation steps, and (c) pictures from 

the various step of DF valving process (Gorkin et al., 2012) 

To improve the commercialization potentials of centrifugal microfluidic 

platforms, van Oordt et al. (2013) proposed the use of stick-packaging method to store 

and release dry and wet reagents with a volume range of 80-500 µl. The author 

integrated frangible seal that allow for controlling the burst frequency of the reagents in 
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a range from 20 to 140 kPa. Van Oordt et al. reported 99% successful recovery rate with 

less than 0.5% of reagent loss in long term storage (two simulated years). 

For the most of the reviewed passive valving techniques, the lack of physical 

barrier to prevent evaporation of liquids during test storage and operation is considered 

the main disadvantage (Thio et al., 2011). This drawback presents an obstacle in the 

way of the integration of these valving methods in microfluidic platforms that need to 

be stored for a long time.  Furthermore, there are serious challenges involved in making 

passive valves repeatable (multi-time usage) and manufacturable (easy to be fabricated) 

(Madou et al., 2006). Finally, each proposed passive valve needs to be biocompatible 

(material-wise) for easer integration in biological and biomedical processes (Gorkin et 

al., 2010). In conclusion, even though passive valve is considered easy method to 

control fluid flow without the need for external power, many parameters needs to be 

considered for successful integration of these valving methods in multi-step complex 

application.    

2.3.2.2 Active Microvalves  

Active microvalves can be defined as the valving method that requires external 

force to be actuated. According to the valve structure and the operation mechanism, 

active valves can be classified under two main categories: mechanical and non-

mechanical valves (Au et al., 2011; Oh et al., 2006; Zhang C., 2007). Various 

microvalves that fall under these two categories were developed for the LOC platforms. 

These valve are classified according to their actuation methods to: magnetic actuation 

(Bae et al., 2002; Fu et al., 2003; Meckes et al., 1999; Terry et al., 1979), electric 

actuation (Teymoori & Abbaspour-Sani, 2005; van der Wijngaart et al., 2002; Yobas et 

al., 2003; Yobas et al., 2001), piezoelectric actuation (H Li et al., 2004; Shao et al., 

2004; E-H Yang et al., 2004), thermal actuation (Rich & Wise, 2003; Takao et al., 

2005), electrochemical actuation (Neagu et al., 1997; Suzuki & Yoneyama, 2003), 
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phase change actuation (Liu et al., 2004; B Yang & Lin, 2007; Yoo et al., 2007), and 

pneumatic actuation (Pandolfi & Ortiz, 2007; Studer et al., 2004). 

For the centrifugal microfluidic platforms, few active valves were reported and 

some example include; magnetic valve (Haeberle et al., 2007), pneumatic valve (Kong 

& Salin, 2011), ice valves (Amasia et al., 2012), and wax valves (Abi-Samra et al., 

2011).  

Haeberle et al. (2007) proposed an externally actuated magnetic valve with a 

piece of steel plate is installed on a PDMS layer covering the valving chamber (see 

Figure ‎2.3). A permanent magnet is positioned in a specific place under the rotating 

platform so that while the platform rotates, the valve starts switches OFF and ON 

according to a predefined sequence. The developed method is well integrated with 

magnetically-actuated pumping mechanism to actively pump the liquid on the 

centrifugal microfluidic platform. However, magnetic actuation can affect the platform 

rotation stability due to the strong steel attraction to the magnetic field.  

External compressed air-flow was utilized as an active valve to liquid flow in 

centrifugal microfluidic platform by Kong and Salin (2011). A beam of compressed air 

is positioned ON and OFF the venting holes of the destination chambers to control the 

liquid flow to those chambers. To demonstrate the capability of the valving method, the 

author performed flow switching process on the centrifugal microfluidic platform. 

Although the valve is simple to implement, the use of external air source is considered 

an obstacle on the way of platform miniaturization and a source of contamination of the 

samples inside the platform.   

Amasia et al. (2012) utilized ice valve as a vapor sealed active valve to perform 

PCR on the centrifugal microfluidic platform as shown in Figure ‎2.7. The presented 

design contains two detection chambers with two sample inlets (A and B). When both 

samples are injected, the two chambers and channels are positioned on top of 
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thermocycling TE and ice valve TE (direct contact between the platform surface and the 

thermocycling should be established). The thermocycling TE is utilized to heat up the 

sample chambers, while ice-valve TE is utilized to freeze the liquid in the inlet channels 

to prevent any liquid evaporation.  

 

 

Figure ‎2.7: Centrifugal microfluidic platform design for PCR using ice valving 

PCR microfluidic design which contains two main reaction chambers for main 

and negative samples. The thermocycling TE  is located under the two chambers 

while the two ice-valve TEs (square modules) placed under the inlet and outlet 

channels. The PCR samples are injected into the two chamber from the inlet holes 

(T0) and (T1). When the two chambers are fully filled (T2), the ice-valve 

thermoelectrics are actuated to seal off the microchannels by freezing the liquid 

there (T3a). When the PCR process is over (chambers are heated then cooled 

down), the ice-valve thermoelectric are deactivated and the sample liquid is 

released for further analysis. (T3b) (Amasia et al., 2012) 

 

The proposed ice valving method is a good way to prevent liquid from 

evaporating during any process that requires heating process. However, the process 

requires complex set up that contains thermocycling terminals and an accurate control 
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system. Moreover, the centrifugal platform needs to be stopped in order to establish a 

surface contact between the thermocycling and the platform.   

Recently, paraffin wax was utilized as an active valve on the centrifugal 

microfluidic platform proposed by Abi-Samra et al. (2011) and Kong et al. (2014). 

Figure ‎2.8 illustrates the microfluidic design where the process starts with blocking the 

micro-channels with two wax plugs with two different melting temperatures. To release 

the first liquid, the centrifugal microfluidic platform is heated with an IR source to reach 

the melting temperature of the first wax plug (see Figure ‎2.8(a)). Then, the temperature 

is increased to melting temperature of the second wax plug to release the second liquid 

(see Figure ‎2.8(c)). Kong et al. proposed a method encapsulating the liquid sample with 

two layers of paraffin wax (on top and bottom of the sample). This method combines a 

liquid valving method (same as Abi-Samra et al. valve), and a vapor-tight sealing 

mechanism for long term storage.  

Among the proposed active valves, wax valves are the simplest, cheapest to 

introduce, and it also eliminates liquid evaporation. Moreover, by implementing wax 

with different melting temperature, different valves can be actuated at different 

instances in the same process. However, two obvious disadvantages associated with 

wax valve are the unnecessary heating of sample and reagents that are in close 

proximity to the valve, and the mixing between the sample/reagent and the wax  after 

valve actuation that can affect the biomedical reactions and output signal (such as 

colorimetric reading in ELISA assay).  

Table ‎2.2 summarizes the characteristics of various valving methods discussed 

in this chapter. It summarizes each valve in term of valve category, valving method, the 

presence of physical barrier, compatibility with biomedical applications, isolation, 

actuation time, reusability, and fabrication complexity. This table gives the reader a 

better understanding for the strength and weakness points for each valve, and where it 
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can be suitable to implement. For example, for applications that require long term 

storage, the developer should avoid the valves that do not contain physical barrier, and 

valves that are poor in term of isolation. Therefore, more vapor tight valve, such as ice 

valve and wax valve, are suitable for this kind of applications. However, Ice valve and 

wax valve suffer from average to slow actuation response, and both valves require 

complex system setup. 

 

 

Figure ‎2.8: Wax-valve for the centrifugal microfluidic platform 

(A) two different melting temperature wax installed in the micro-channels, (A) 

heat the centrifugal microfluidic platform to reach the melting temperature of the 

low melt wax, (C) increase the temperature to melt the high melting temperature 

wax (Abi-Samra et al., 2011) 

 

2.4 Biomedical Applications on the Centrifugal Microfluidic Platfrom 

Recently centrifugal microfluidic platforms have been featured in a wide variety 

of applications. ELISA has been performed successfully on the centrifugal microfluidic 

platform (Ibrahim et al., 2010; Ishizawa et al., 2012; Lai et al., 2004; Madou et al., 

2001; Noroozi et al., 2011; Park et al., 2012; Yusoff et al., 2009).  Lai et al. (2004) 

performed rat Immunoglobulin type G (IgG) antigen detection on the centrifugal 

platform starting from a hybridoma cell culture. Yusoff et al. (2009) and Ibrahim et al. 

(2010) proposed simple designs of centrifugal microfluidic platforms for Dengue fever 
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detection constructing a centrifugal microfluidic platform by CNC machining features 

into a PMMA layer and sealing this machined layer with Adhesive Sealing Film (ASF).   

Amasia et al. (2012) and Focke et al. (2010) proposed LOD platforms for real-

time polymerase chain reaction (PCR) amplification. These authors reported that PCR 

amplification of B. anthracis/cereus was successfully completed in 57 minutes with high 

specificity and efficiency. In 2014,(Strohmeier et al.)developed a real time PCR 

detection for 6 different food pathogens on the centrifugal microfluidic platform. The 

author proved that his presented “LabDisk” platform can be used in both qualitative and 

quantitative modes depends on the reagent prestorage scheme. 

Particles capturing, distribution, and perform multiplexed assays on the 

centrifugal microfluidic platform were reported by Burger et al. (2012). The detection 

chamber in this case is designed with V-cup barriers to trap particles using a stopped-

flow sedimentation method. The authors reported nearly 100% capturing efficiency and 

presented bead-based immunoassays for IgG detection. Other ideas such as cell 

counting were successfully performed by Imaad et al. (2011). Imaad and his team were 

able to modify a commercial CD drive to count the blood cells in preloaded centrifugal 

microfluidic platform. Moreover, cell or micro-particles separation performed on 

centrifugal microfluidic platform by Morijiri et al. (2010) and Kirby et al. (2012). Other 

applications were reported on the centrifugal microfluidic platform such as cell 

cultivation (Kim et al., 2007), DNA purification (Strohmeier et al., 2013), and water 

quality analysis (Czugala et al., 2012). 
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Table ‎2.2: Microfluidic valving methods. 

Microfluidic valving methods characteristics in term of valving mechanism, containing physical barriers, sample isolation from surrounding 

environment, actuation response, the ability to reuse the valve, and fabrication complexity and system setup 

Valve Category Mechanism Physical 

barrier  

Compatible with 

biomedical 

applications/ 

contamination 

Isolation / 

vapor 

Actuation time  Multi-

actuation 

Fabrication 

complexity / 

system setup 

Flap valve Passive Implementing 

flappable gate to 

control liquid flow 

between two 

channels 

YES Depends on the flap 

valve material 

Average
(1) Fast YES Average 

Spherical 

ball valve 

Passive Implementing 

spherical ball as a 

check valve to 

control liquid flow 

direction 

YES Depends on the 

spherical material  

Average
(1) Fast YES Average 

Hydrophobic 

valve 

Passive Integration a 

hydrophobic region 

inside liquid channel 

to control liquid flow 

NO Good Poor Fast NO
(2) Average 

Capillary 

valve 

 

 

 

 

 

 

Passive Implementing 

sudden expansion or 

contraction in the 

liquid channel to 

control liquid flow 

NO Good Poor Fast NO
(2) Easy 

   (1) Not tight seal. 

   (2) Not multi-actuatable as the valve loses its ability to control liquid flow when it wet. 

 

2
9
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Table 2.2: ‘Continued’ 

Valve Category Mechanism Physical 

barrier  

Compatible with 

biomedical 

applications/ 

contamination 

Isolation / 

vapor 

Actuation time  Multi-

actuation? 

Fabrication 

complexity / 

system setup 

Passive 

pneumatic 

valve 

Passive Implementing 

ventless destination 

chamber and trapped 

air to control liquid 

flow 

NO Good Poor Average NO Easy 

Dissolvable 

film valve 

Passive Implementing 

dissolvable layer to 

control liquid flow 

between two 

chambers 

YES Good Good Average NO Average 

Siphon valve Passive Implementing siphon 

shaped channel to 

control liquid flow 

NO Good Poor Fast YES Average 

Active 

pneumatic 

valve 

Active Implementing 

external air flow 

pressure to control 

liquid flow direction 

NO Good Poor Fast YES Average 

Ice valve Active Freezing ice plugs in 

the micro-channel to 

control liquid flow  

YES Good Good Average YES Hard 

Wax valve Active Injecting paraffin 

wax in the micro-

channel to control 

liquid flow 

YES Good Good Slow NO Average 

3
0
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2.5 Summary  

In this chapter, literatures related to the field of this study were reviewed. A brief 

comparison between the two main microfluidic platforms (LOC and centrifugal 

microfluidic platform) was presented. Then, the fundamental components of the 

centrifugal microfluidic platform were discussed (i.e., micro pumping and micro 

valving).  

The literature reported different passive pumping method for the centrifugal 

microfluidic platform such as centrifugal pumping, pneumatic pumping, and micro-

pulleys pumping. In contrast, several active pumping where developed such as magnetic 

pumping, TPP pumping, electrolysis pumping, and active pneumatic pumping. Similar 

to the pumping methods, different passive and active valving method were reported. 

Check valve, hydrophobic/hydrophilic valve, pneumatic valve, and DF valve are 

examples of the reported passive valving methods for the centrifugal microfluidic 

platform. In contrast, many active valving methods were proposed such as magnetic 

valves, pneumatic valves, ice valves and wax valves.  

In spite of the big amount of research that explored the valving field of the 

centrifugal platform, the current available valving mechanism still need further 

improvement to be: reliable mechanism with physical barrier, vapor-tight for long term 

storage, reduce contact between sample and valving material, re-actuatable in multistep 

assay, and easy to fabricate and implement. Without the fulfilment of all or most of 

these conditions, the valve will not be practical to perform biomedical applications. 

Therefore, the centrifugal microfluidic platform field still need continues research to 

deliver more complete passive and active valving methods. 

In this work, three different liquid valving mechanisms are presented in this 

work to solve some of the current valving drawbacks mentioned above. The three valves 

are: vacuum/compression wax valve, passive liquid valve (PLV), and check valve. The 
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three valves combine the implementation of physical barriers to control liquid flow with 

the simplicity of fabrication and implementation. To improve the compatibility of the 

developed valves with biomedical applications, the three valves control the liquid flow 

in a contactless fashion (control the air flow to control liquid flow). As a proof of 

concepts, the PLV and check valve were integrated on the centrifugal microfluidic 

platform to demonstrate the Bradford assay for protein concentration detection, and 

ELISA assay for dengue detection.   
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3 CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The methods followed to achieve the objectives of this work are reported in this 

chapter. Together with the resources and equipment needed, a complete description of 

the fabrication procedures is presented. Three main sections are introduced in this 

chapter. Section 1 deals with the methodology of the vacuum/compression paraffin wax 

valves while section 2 describes the methodology of the developed passive liquid valve 

(PLV). The last section presents the methodology of the introduced check valve for the 

centrifugal microfluidic platforms. In addition, biomedical applications conducted 

utilizing the developed valving methods will be presented in a separate subsection. 

Figure ‎3.1 shows the methodology flow chart of this study.   

3.2 Materials and Fabrication Methods 

Different centrifugal microfluidic platforms were developed for this work. 

However, the basic fabrication materials and procedures are the same for all. Therefore, 

in this section, the general fabrication materials and methods of the centrifugal 

microfluidic platform for the three developed valve are discussed.  

For all the developed valves, the fabricated microfluidic platforms for the 

experimental tests are either three layers, or five layers platform. For the three layers 

platform, the top and bottom layers are made of Polymethyl methacrylate (PMMA) 

plastic ( by Asia Ply Industrial Sdn. Bhd., Selangor, Malaysia), while the middle layer is 

a pressure-sensitive adhesive (PSA) material (by FLEXcon, Spencer, MA USA). On the 

other hand, some implementations require the fabrication of five layers platform. Five 

layers platforms contain three PMMA layers (top, middle, and bottom layers), and two 

PSA layers (in between each two PMMA layers). The thickness of the PMMA layers is 

either 2 mm or 4 mm thick according to the platform designed features. Figure ‎3.2 

illustrates the different layers of the three and five layers platforms. 
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 Figure ‎3.1: Flowchart of the research methodology 
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Figure ‎3.2: Three layers and five layers centrifugal microfluidic platforms 

The three layer centrifugal platforms are consist of two PMMA layers (top and 

bottom) and one PSA layer (middle layer), Fiver layers platforms consist of three 

PMMA layers (top, middle, and bottom) and two PSA layers (between each two 

PMMA layers) 

 

The fabrication process starts with designing the microfluidic platform using one 

of the computer-aided design (CAD) software. Then, the micro-scale features (channels, 

chambers, and venting/alignment holes) of the platform are micro-machined in the 

PMMA layers using a computer numerical control (CNC) machine (model VISION 

2525, by Vision Engraving and Routing Systems, Phoenix, AZ USA). Meanwhile, the 

PSA layers are cut using a cutter plotter machine (model PUMA II, by GCC, New 

Taipei, Taiwan). Channels and chambers, corresponding to the design of the bottom 

PMMA layer, are cut out from the PSA layers to avoid having the liquid come in 

contact with the adhesive material of the PSA layer. This ensures a more consistent 

solid-liquid interface between the liquid and the channel / chamber walls.   

Afterwards, the machined PMMA layers pass through different steps of 

cleaning, washing, sterilization, and drying before the bonding process starts. Finally, 

the different PMMA layers are aligned and bonded together using the prepared PSA 

layers. This process is conducted in a clean room with the utilization of custom made 

alignment jig and press roller machine. After the bonding step, the centrifugal 

microfluidic platform is ready to be experimentally tested. All the experiments are 
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conducted using a custom made spin test system that consists of computerized step 

motor, high speed camera, laser RPM meter, convection heating source (hot-air gun), 

and computer system as a controlling unit (see Figure ‎3.3). The hot-air gun is equipped 

with nozzle of 1 cm diameter to focus the forced convection heat only on the required 

area. It is proved by Thio et al. (2013) that utilizing hot-air gun for heating purpose on 

the centrifugal platform provides better results than implementing infra-red (IR) or 

laser. This is because the hot-air gun effect is limited to the upper layer of the platform 

with less effect on the lower layers. This prevents the unnecessary heating of the other 

features on the centrifugal platform.  

  

 

Figure ‎3.3: Spin test system setup 

Custom made spin test system configuration and it consists of computerized step 

motor, high speed camera, laser RPM meter, heat convection source, controlling 

computer, and IR thermometer 

 

3.3 Vacuum/Compression Wax Valve 

In this part of the study, a novel vacuum/compression valves (VCVs) utilizing 

paraffin wax is developed. A VCV is implemented by sealing the venting channel/hole 

with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open 
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valve), and is activated by localized heating on the platform surface. Compared with the 

wax valve presented by Abi-Samra et al. (2011), we demonstrate that the VCV provides 

the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic 

process, allowing for vacuum sealing of the centrifugal microfluidic platform, and clear 

separation of the paraffin wax from the sample/reagents in the microfluidic process. As 

a proof of concept, the microfluidic processes of liquid flow switching and liquid 

metering is demonstrated with the VCV. 

3.3.1 VCV Design and Principles of Operation 

Figure ‎3.4(a) shows the basic design and implementation of the developed VCV 

for a simple one step microfluidic process. The design basically consists of two liquid 

chambers (chamber A and B), each 8 mm diameter and 1 mm height. The two chambers 

are connected by 0.7 mm width 0.5 mm height liquid channel. In addition, each liquid 

chamber has one 0.7 mm width 0.5 mm height venting channel (channel A and B). This 

design is fabricated on three layers platform (two PMMA layers and one PSA layer). 

All the features in Figure ‎3.4 are micromilled in the bottom 4 mm PMMA layer. The top 

2 mm PMMA layer only contains the venting and alignment holes.  

To implement vacuum wax valve, the sample is injected in chamber A then the 

venting hole A is sealed with wax plug (see Figure ‎3.4(b)). The sealing process is 

performed by injecting melted wax in the venting channel of chamber A. This 

configuration generates trapped air in the area on top the liquid in chamber A and in the 

venting channel A. During the spinning process, this trapped air creates vacuum state 

that prevents the liquid in the chamber A from bursting until venting hole A is released.  

In contrast, the compression wax valve is implemented by sealing venting 

channel B with wax plug. This setup traps the air in the destination chamber and creates 

compression state to prevent the liquid in the chamber A from bursting. Again, the 

liquid will not burst until venting hole B is released. In other words, the proposed VCV 
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regulates the liquid flow by controlling the air flow of the source chamber (vacuum 

valve) or the destination chamber (compression valve). 

For better understanding of the developed valve behaviour, two fundamental 

studies are conducted. The first study is conducted to test the heating profile of the 

platform during the heating process (during valve actuation). The second study is 

conducted to investigate the effectiveness of the developed valve (to define the 

operational limits).  

 

 

Figure ‎3.4: VCVs platform design 

(a) platform basic design consist of two chambers (A and B) with two venting holes 

(A and B) (b) vacuum valving experimental setup, (c) compression valving 

experimental setup 

 

3.3.2 Microfluidic Platform Heating Profile  

This study is conducted to investigate the heating profile for the centrifugal 

microfluidic platform for better understanding of its thermal behaviour. This 

understanding helps during the process of the VCV actuation (wax melting). The same 

platform design in Figure ‎3.4 is utilized to perform this study.  Forced convection 
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heating at 130°C is applied to the top surface of the centrifugal platform. The 

centrifugal platform is spun at different speeds of 0 to 350 rpm (the optimum range to 

actuate the wax valve), and the platform surface temperature is measured using the 

digital IR thermometer.  This experiment allows for the determination of the surface 

temperature required to actuate (melt) the wax valves at different rotational speeds. 

3.3.3 VCV Effectiveness 

As mentioned earlier in “3.3.1 VCV Design and Principles of Operation” 

subsection, the proposed VCV controls the liquid flow on the centrifugal microfluidic 

platform by controlling the air flow of the source or destination chambers. And because 

the air is slightly elastic, it can only withstand a limited amount of vacuum (stretching) 

and compression. In the case of vacuum wax valve, overstretching that air in a high 

spinning speed can cause the air to break and the liquid to leak or fully burst (Soroori et 

al., 2013). On the other hand, overcompressing the air in the compression wax valve can 

creates turbulence (Rayleigh–Taylor instability) in the contact point between the 

compressed air and the liquid which can cause air-escaping through the liquid in terms 

of bubbles (Mark et al., 2009).   

Therefore, this study is conducted to test the effectiveness (operational range) of 

the proposed VCV in the two developed configurations: vacuum valve and compression 

valve. For this study, the same microfluidic platform design shown in Figure ‎3.4 is 

employed. To test the effectiveness of the vacuum state, a sample liquid is injected in 

chamber A, then the venting hole A is sealed with wax. In contrast, by sealing the 

venting hole B with wax, the effectiveness of the compression state valve can be tested. 

After the loading and sealing process are performed, the centrifugal platform is spun at 

a range of spinning speeds to find the resulting burst frequencies. The results of the two 

experiments will be compared with a control set (set without VCV), and theoretical 

calculation obtained using equations (2.1) (2.2) and (2.3).  
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3.3.4 Applications of VCV 

Many potential microfluidic processes can be performed using the proposed 

VCV. In this study, liquid flow switching and liquid metering are implemented by 

integrating the VCV on the centrifugal microfluidic platform.   

Figure ‎3.5(a) shows the design of the centrifugal microfluidic platform 

fabricated to perform a liquid flow switching process. The design consists of two source 

chambers (A and B), two destination chambers (A and B), and the corresponding 

venting holes with compression wax plugs (venting hole A and B, see Figure ‎3.5(a)). 

Two different colored DI water aliquots (red and green) are used to allow for a clearer 

observation of the switching process. A 40 µl volume of the two colored DI water is 

injected in each one of the source chambers which are designed to have different burst 

frequencies. In this process, a VCV incorporating both a normally-closed and a 

normally-open compression valve (see Figure ‎3.5(b)) is used to switch the liquid flow 

direction to the intended destination chamber. Figure ‎3.5(b, c, d, and e) illustrates how 

the switching design is expected to work. It can be observed from Figure ‎3.5(b), that air 

compression in chamber B (created by the sealing of venting hole B) prevents liquid 

from flowing into destination chamber B, and forces the liquid to burst into destination 

chamber A. Afterward, the wax plug is melted and the centrifugal force pushes it 

towards the U bent junction, effectively blocking the venting channel leading to venting 

hole A. Air compression now occurs in destination chamber A, and the next bursting of 

liquid will be forced into destination chamber B. The main advantage of this design is 

that a single wax plug is used to block the two venting holes in two different steps.  

Another microfluidic process implemented in this study using the proposed 

VCV is liquid metering. The microfluidic centrifugal platform designed to perform this 

process is presented in Figure ‎3.6(a). The design consists of three metering chambers 

that are respectively connected to three destination chambers via 0.4 µm width 
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channels. The venting holes of the three destination chambers are controlled with the 

proposed VCV (air compression valve). Figure ‎3.6(b, c, d, and e) presents the expected 

sequence of liquid metering process which starts with the pumping of the colored DI 

water from the source chamber towards the liquid metering chambers. The pumping 

process is performed by thermo-pneumatic pumping (TPP) method developed by Abi-

Samra et al. (2011) and Thio et al. (2013). The liquid flows and fills the metering 

chambers, but does not enter the destination chambers because of the air-compression 

created by the VCV. After the liquid settles and levels in the metering chambers, the 

venting holes are released by melting the wax plugs and the liquid then flows into the 

destination chambers. 

 

  

 

Figure ‎3.5: Centrifugal microfluidic platform design for liquid switching 

 (a) position of chambers and wax plug, (b) sealed venting B forces liquid to go to 

chamber A, (c) melting of wax-plug releases venting hole B and blocks venting hole 

A, (d) liquid goes to chamber B, (e) final liquid status 
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Figure ‎3.6: Centrifugal microfluidic platform design for liquid metering 

(a) position of chambers and wax plugs, (b) liquid fills the first metering chamber, 

(c) liquid fills the second metering chamber, (d) liquid filled all metering chambers 

and extra liquid flows to the waste chamber, (e) melting of wax-plug allows liquid 

to move to the destination chambers 

 

3.4 Passive Liquid Valve (PLV) 

In the previous subsection “3.3 Vacuum/Compression Wax Valve”, the 

development of an active valving method that utilizes paraffin wax to control liquid 

burst frequency was presented. A conventional heating source (hot-air gun) was utilized 

to actuate the wax valves. Even though the wax valve constitutes an accurate method to 

control liquid flow, the using of wax and an extra heat source might for some 

applications be considered a disadvantage. 

Therefore, in this part of the work, an easy-to-implement passive liquid valving 

(PLV) is developed. The PLV employs the same mechanism of the VCV, but instead of 

using paraffin wax to control the venting holes of the source and destination chambers, 

the venting holes are controlled by a venting chamber acting as a liquid valve. The PLV 

mechanism is based on equalizing the main forces acting on the centrifugal microfluidic 

platform (i.e., the centrifugal and capillary forces) to control the burst frequency of the 

source chamber liquid. For a better understanding of the physics behind the proposed 
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PLV, an analytical model is described. Moreover, three parameters that control the 

effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting 

chamber position with respect to the rotational center, are tested experimentally. To 

demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and 

liquid metering are performed.  

In the following subsections, the microfluidic design and the operational mechanism 

of the developed PLV is discussed in detail. First, the PLV design and the centrifugal 

microfluidic platform fabrication method are explored. Then, the operation mechanism 

is discussed based on the controlled chamber: a passive liquid valve to control the 

source chamber (S-PLV) and a passive liquid valve to control the destination chamber 

(D-PLV). An analytical model is described to explain the physical forces involved in the 

operation of the developed valve. For a better understanding of the different 

microfluidic designs and the fabricated platform layers, please refer to APPENDIX A. 

3.4.1 PLV Design and Fabrication 

In this study, two microfluidic designs were fabricated to experimentally test the 

developed PLV. Figure ‎3.7 shows the designs of an S-PLV (Figure ‎3.7(a)) and a D-PLV 

(Figure ‎3.7(b)). Both designs consist of three chambers: a source chamber (1 mm deep), 

a destination chamber (1 mm deep), and a venting chamber (2.5 mm deep). The three 

chambers are connected together by liquid and venting channels that are 0.7 mm wide 

and 0.5 mm high. For the S-PLV design (see Figure ‎3.7(a)), the venting chamber is 

connected to a ventless source chamber via venting channel A. With this design and the 

trapped air, the flow of the liquid in the source chamber is controlled by the liquid in the 

venting chamber. In contrast, in the D-PLV design (see Figure ‎3.7(b)), the venting 

chamber is connected to a ventless destination chamber. Therefore, the air flow of the 

ventless destination chamber is controlled by the liquid in the venting chamber. The 

proposed valves depend on trapped air, and air compresses and expands easily; thus, the 
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used of straight channels to connect the source and destination chambers generates 

fluctuations in the valving performance. This fluctuation is caused by the momentum of 

the liquid as it bursts from the source chamber, and this momentum can lead to 

overstretching of the air (in the case of S-PLV) or overcompression of the air (in the 

case of D-PLV) that prevents proper operation of the valve. To overcome this 

limitation, a U-shaped bent is introduced in the micro-channel that connects the source 

and destination chambers to reduce the liquid flow speed and the associated turbulence 

caused by the liquid momentum (see Figure ‎3.6(a) and (b)). This U-shaped channel 

reduces the liquid flow speed and thus, the trapped air produces a more gradual negative 

pressure (in the case of S-PLV) or gradual positive pressure (in the case of D-PLV). 

 

 

Figure ‎3.7: Microfluidic design for the developed PLV 

 (a) S-PLV design where the venting chamber is connected to the source chamber 

through the venting channel. (b) D-PLV design where the venting chamber is 

connected to the ventless destination chamber through the venting channel 

 



45 

 

The centrifugal microfluidic platform fabricated for this study consists of three 

layers: two PMMA layers and one PSA layer. The bottom 4 mm thick PMMA layer 

contains all the microfluidic chambers and channels. The top 2 mm thick PMMA layer 

contains the venting holes which also serve as liquid loading holes and as alignment 

holes. The adhesive PSA layer bonds the two PMMA layers to each other. 

3.4.2 PLV Operation Mechanism 

Before we start discussing the operation mechanism of the developed PLV, the 

reader needs to recall the fundamental forces acting in any centrifugal platform which is 

described in subsection “2.3.1.1 Passive Micropumps”. It is very important to remember 

the Pcentrifugal and Pcap because it will play a key role in the following discussion. 

Now, the PLV mechanism can be broken into three main operational stages: air 

trapping, valve actuation, and liquid bursting. Figure ‎3.8(a, b, c) shows the liquid in the 

three different stages for the S-PLV, and Figure ‎3.8(d, e, f) shows the operational stages 

for the D-PLV. During the three operational stages, the various pressures involved are 

the centrifugal pressure acting on the liquid in the source chamber, Ps, the centrifugal 

pressure acting on the liquid in the venting chamber, Pv, and the capillary pressure 

against the liquid in the source chamber, Pcap. The Ps pressure constantly pushes the 

source chamber liquid towards the outer edge of the platform, while Pv and Pcap both act 

against liquid flow. Note that Ps and Pv are the result of centrifugal pressure on the 

centrifugal microfluidic platform. These pressures are calculated using the fundamental 

centrifugal pressure equation (equation (2.1)). As mentioned before, this is true for any 

liquid loaded onto the centrifugal microfluidic platform. However, the calculation needs 

to be made with respect to the parameters related to the source chamber and the venting 

chamber such as the liquid density and the distance from the center of rotation.  

Air trapping stage: the testing of the S-PLV starts with an injection of 40 µl of 

the colored DI water into the source chamber. Afterward, the required amount of liquid 
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(for testing the effect of the liquid height on the burst frequency) or the required type of 

liquid (for testing the effect density on the burst frequency) is injected into the venting 

chamber. Then, the preloaded platform is mounted on the spin test system, and the spin 

speed is gradually increased. Initially, the pressures in the system are at equilibrium, and 

some air is trapped between the source and venting chambers (see Figure ‎3.8(a)). The 

critical point just prior to liquid bursting from the source chamber is achieved when the 

pressures in the system are balanced as follows: 

 

capvs PPP 
 

(3.1)
 

 

To determine whether the valve holds liquid back in a source chamber or 

whether the liquid bursts from the source chamber, a balance pressure, Pbalance, which is 

the difference between the pressures is determined as follows: 

 

)( capvSbalance PPPP   (3.2) 

 

A positive Pbalance indicates that liquid will burst from the source chamber, 

whereas a negative Pbalance means that the PLV will hold the liquid back in the source 

chamber. Figure ‎3.9 shows the range of Pbalance for different liquid heights in the venting 

chamber. The result in Figure ‎3.9 is valid for both S-PLV and D-PLV as both have the 

same fundamental principle of operation (based on the centrifugal force VS. capillary 

pressure and venting chamber pressure). At low frequencies, all venting chamber 

heights produce a negative balance pressure, indicating that the PLV does hold the 

liquid back. When the spinning speed is increased, the Ps pressure starts to increase and 

overcomes the sum of Pv and Pcap (giving positive Pbalance values). However, when the 

liquid height in the venting chamber is higher than a critical value (such as 3.015 mm 
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and 3.35 mm) where the combination of the liquid height in the venting chamber and 

the position in respect the center of the rotation produce Pv value that always higher than 

Ps, Pbalance will always be negative. In other words, the valve will hold the liquid in the 

source chamber indefinitely. Table ‎3.1 presents all the parameters implemented in the 

analytical calculations of Pbalance.  

Valve actuation stage: when the spinning speed increases, some liquid from the 

source chamber starts flowing into the microchannel towards the destination chamber 

(see Figure ‎3.8(b)). The resulting decrease in liquid level in the source chamber will 

momentarily expand the volume of trapped air on top of the source and venting 

chambers. This air expansion creates a state with an instantaneous negative pressure 

lower than the atmospheric pressure outside the system. This pressure change acts as an 

actuator that allows the liquid in the venting chamber to flow in the direction of the 

liquid flow of the source chamber. This negative air pressure tries to suck air through 

the liquid in the venting chamber. At the same time, the centrifugal pressure acting on 

the liquid in the venting chamber acts against this air-pulling process. Thus, the valve is 

actuated, and the burst frequency of the source chamber liquid will increase as long as 

the venting chamber liquid prevents air from flowing into the system through venting 

chamber B. Note that the air expansion occurs in this stage is not included in the 

developed model as it describes the instances of liquid bursting. At the instance of 

liquid bursting, air expansion and compression is instantaneous, low, and negligible. 

Liquid bursting stage: as shown in Figure ‎3.8(b), as the spinning speed further 

increases, the increased centrifugal pressure on the source chamber liquid (Ps) tries to 

suck air through the liquid in the venting chamber by first emptying venting channel B. 

Further increasing the spinning speed then causes the liquid in the source chamber to 

approach the top of the U-shaped bent and  the pressure acting on the source chamber 

liquid, Ps, eventually overcomes the combination of the venting chamber pressure (Pv) 
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and the channel capillary pressure (Pcap). At this point, air is forced to enter the system 

through the venting chamber (bubbles are observed in the venting chamber liquid), and 

the source chamber liquid is fully transferred to the destination chamber (see Figure 

‎3.8(c)).  

The principle of operation of the D-PLV is similar to that of the S-PLV; 

however, instead of using trapped air on top of the source chamber, the D-PLV works 

by compressing the air in the destination chamber (see Figure ‎3.8(d)). Figure ‎3.8(d) & 

(e) & (f) show the air-trapping stage, valve actuation stage and liquid bursting stages, 

respectively, for the D-PLV valve.  

In this study, we are also interested in calculating the burst frequency (Bfreq
PLV

) 

of the liquid in the source chamber when any of the relevant parameters (i.e., venting 

chamber liquid height, liquid density, and venting chamber position) are changed. Using 

equation (2.1) to expand Ps and Pv in equation (3.1), we obtain the following 

expression: 

capVVVsss Prrrr  22 
 

(3.3) 

 

Further rearranging equation (3.3) then yields:  
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Using equation (3.4), the effect of various parameters that control the 

effectiveness of the proposed valve can be studied theoretically. In this study, three 

different parameters, (i) the liquid height of the venting chamber, (ii) the density of the 

liquid in the venting chamber, and (iii) the venting chamber distance from the platform 

center, are evaluated experimentally. 
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Figure ‎3.8: PLV Liquid valving stages 

(a) S-PLV at low frequency. (b) high spinning speed where the source chamber 

liquid starts to flow inside the micro-channel, creating a lower pressure effect in 

the venting chamber. (c) high frequency, the source chamber liquid bursts into the 

destination chamber. (d) D-PLV at low frequency. (e) high speed, the source 

chamber liquid starts flowing into the microchannel, creating compression state in 

the destination chamber. (f) high frequency, the source chamber liquid bursts into 

the destination chamber 

 

 

Table ‎3.1: Values of the parameters implemented in the analytical calculations 

Parameters Values  Parameters Values  Parameters Values  

Ɵc 68˚ rs1 32.3 mm rv2 60 mm 

γla 71.97 mN/m 

 

rs2 37.5 mm ρ 1.000 

g/cm
3
 

Dh 3.83e10
-4

 meter rv1 58.66, 

58.32, 58, 

57.65, 

56.98, and 

56.65 mm 
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Figure ‎3.9: Theoretical pressure balance at different venting chamber liquid 

heights for a range of spinning speeds 

 

 

3.4.3 Applications of PLV 

Various microfluidic processes can be performed utilizing the proposed PLV 

valves. In this work, microfluidic liquid switching and liquid metering are conducted 

using the D-PLV valving method. Figure ‎3.10(a) and (c) shows the centrifugal 

microfluidic platform designs of the liquid switching and metering processes, 

respectively. 

The liquid switching design consists of two main layers: the switching layer and 

the venting layer. The switching layer contains two source chambers (A and B) 

connected to two destination chambers (A and B). The source chambers are placed at 

different distances from the platform center and thus burst at different rotational speeds 

(see Figure ‎3.10(a)). Furthermore, the venting layer consists of two venting chamber (A 

and B) that are connected to two venting channels (A and B). For liquid switching, the 

venting channels of the two destination chambers are controlled using two venting 
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chambers (A and B). For a more practical use of the platform space, the design features 

are engraved on two different layers that appear to overlap when viewed from the top 

(3D platform design). This design is fabricated using a five layer platform (please refer 

to APPENDIX A). To clearly observe the switching process, two solutions of colored 

DI water (red and green) are utilized in this process. 

The liquid switching experiment starts with the injection of 20 µl of green DI 

water into source chamber A with the injection of the same volume of the red DI water 

into source chamber B. The second step is the injection of 60 µl of red DI water into 

venting chamber B. This process will create a normally opened valve for destination 

chamber A and a normally closed valve for destination chamber B. Afterwards, the 

platform is mounted on the spinning test system, and the spinning process starts. The 

switching process can be divided into three main steps. In Step 1, the liquid of source 

chamber A bursts and is forced to flow towards destination chamber A as the venting 

channel of destination chamber B is closed by venting chamber B. In Step 2, the liquid 

in venting chamber B bursts into venting chamber A; this burst opens the venting hole 

of destination chamber B while sealing venting channel A. In Step 3, liquid bursting 

from source chamber B will then flow towards destination chamber B without entering 

destination chamber A.  

Figure ‎3.10(c) shows the design for the liquid metering. The design consists of a 

main source chamber that contains the liquid that will be metered. The source chamber 

is connected to four metering chambers (90 µl volume each) and one waste chamber; 

the excess liquid will overflow into the waste chamber. Finally, the four metering 

chambers are connected to ventless destination chambers, which are controlled by four 

separate venting chambers. The metering process starts with the injection of 550 µl of 

the red DI liquid into the source chamber. Then, 50 µl of the same DI water is injected 

into each venting chamber. Afterward, the centrifugal microfluidic platform is mounted 
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on the spin test system, and the centrifugal platform is spun. With this simple design, 

the 550 µl of DI water can be automatically metered (90 µl) and then transferred into 

the four destination chambers for use in the next stage in a multistep centrifugal 

platform. 

 

 

Figure ‎3.10: Centrifugal Microfluidic platform design for liquid switching and 

liquid metering 

(a) layer-by-layer design of the liquid switching process (b) liquid switching layers 

(c) design of the liquid metering process 
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3.5 Check Valve 

In this part of the study, simple and easy to fabricate check valves that are 

modular and easy to implement in any process on a centrifugal microfluidic platform, are 

developed. The proposed check valves have the ability to restrict liquid and air flow in 

only one direction. Two types of check valves are developed: a terminal check valve 

(TCV) and a bridge check valve (BCV). To understand the characteristic of the 

proposed valves, theoretical and experimental studies are conducted. Moreover, to test 

the effectiveness of these valves, liquid swapping is demonstrated by integrating TCV 

and BCV chips with TPP on a centrifugal microfluidic platform.  

3.5.1 TCV and BCV 

The principle of operation of the TCV and BCV are illustrated in Figure ‎3.11. 

Both valves consist of a latex film sandwiched between rigid top and bottom covers. 

One crucial element of the valves is the air exchange hole: for the TCV chip the hole is 

cut through the latex film, while for the BCV the hole is cut through the top cover (see 

Figure ‎3.11(a1, b1, and c1)). The air exchange hole allows the check valve to operate in 

one of two modes: flow and blocking mode.   

Figure ‎3.11(a1-a3) illustrates the operation of the TCV. When positive air 

pressure is applied to the inlet of the TCV, the latex is deflected upwards towards the 

open space between the top and bottom covers. Air can then travel through the space 

created by the deflection, and then via the air exchange hole to escape through the outlet 

(see Figure ‎3.11(a2)). However, when a negative pressure is applied on the inlet of the 

TCV valve, the latex film is pulled slightly into the inlet, thus forming an air tight seal, 

and air flow through the valve is restricted (see Figure ‎3.11(a3)). In this configuration, 

the TCV chip can be installed on the centrifugal microfluidic platform with the inlet 

facing the platform surface (over a channel opening) to allow only one way air flow 

from within the platform to the surrounding environment. By flipping the TCV chip 
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over, and having the top cover placed on the platform surface, it will then allow only 

one way air flow from the surrounding environment into the platform (see Figure 

‎3.11(b1-b3)).   

 

 

Figure ‎3.11: Check valve operation principle 

(a1, b1, and c1) TCV and BCV valve at rest, (a2) TCV valve activated by applying 

positive pressure on the inlet, (b2) TCV valve activated by implementing negative 

pressure on inlet, (c2) BCV valve activated by applying positive pressure on inlet, 

(a3) TCV valve blocking air-flow due to the negative pressure on inlet, (b3) TCV 

valve blocking air-flow by implementing positive pressure on inlet, (c3) BCV valve 

blocking air/liquid flow as negative pressure is applied on inlet 

 

 

Figure ‎3.11(c1-c3) demonstrates the principle of operation for the bridge valve. 

As both the inlet and outlets are in the bottom cover in this case, it is the bottom cover 

that must be placed on the platform surface. Similar to the TCV chip, when the 

centrifugal microfluidic platform is at rest, the latex film is flat against the bottom cover 

(see Figure ‎3.11(c1)). When a positive pressure is applied on the inlet of the BCV valve, 

the latex film is deflected upwards, and air / liquid is allowed to flow through the space 

under the latex to the outlet (see Figure ‎3.11(c2)). However, when a negative pressure is 
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applied on the inlet of the BCV valve, the latex forms a tight seal over the inlet, 

preventing any backward flow of air / liquid (see Figure ‎3.11(c3)). Note that for the 

BCV valve, the inlet and outlet positions are interchangeable, and the valve only allows 

liquid to flow if there is positive pressure on either the inlet or outlet, but blocks fluid 

flow if there is negative pressure applied instead (i.e., you can push fluid through the 

valve, but not pull liquid through it).  

By implementing this directional flow control on TPP, the capability of this 

pumping method can be significantly improved. Figure ‎3.12 presents a microfluidic 

centrifugal platform design where a detection chamber is connected to a TPP chamber. 

TPP is a well-established pumping method in the centrifugal microfluidic platform field 

that employs heat to pump liquid towards the platform center. However, when the 

detection chamber is connected to two terminals (see Figure ‎3.12(a)), liquid can only be 

pumped concurrently from both terminals End 1 and End 2 (or pumped concurrently to 

both End 1 and End 2). This is an impractical process as there is no way to control the 

liquid volume pumped, and the flow of liquid to only a particular terminal. By installing 

a TCV valve on terminal End 1, and a BCV valve on terminal End 2, the direction of 

liquid/air flow is restricted to be on way: from terminal End 1 towards the detection 

chamber, and subsequently towards terminal End 2 (see Figure ‎3.12(b)). This 

enhancement greatly extends the ability to perform multi-stepped complex process on 

the centrifugal microfluidic platform. 
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Figure ‎3.12: Thermo-pneumatic pumping with and without the check valve 

(a) without check valve where the direction of air/liquid from End 1 and End 2 is 

incontrollable  (b) with the proposed TCV check valve and BCV check valve 

installed on End 1 and End 2 respectively 

 

3.5.2 Check Valve Design and Fabrication 

In this part of the work, the presented check valves are simple to fabricate. Each 

valve consists of three layers (2 PMMA layers, and one latex layer). The fabrication 

process for the top and bottom covers of the TCV and the BCV are described separately 

in the following two subsections. The final subsection discusses how the latex film is 

prepared and how the check valves are assembled.  

3.5.2.1 Terminal Check Valve (TCV) 

The TCV chip is in the form of a flat cylindrical chip that is approximately 7mm 

in diameter, and 5mm in height dimensions. Figure ‎3.13 shows the detailed 

specification of the top and bottom covers of the chip, while Figure ‎3.14 shows the 3D 
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model of the chip. The two covers are made of rigid PMMA plastics, and when 

precisely machined, the fit is tight.  

 

 

Figure ‎3.13: Terminal check valve (TCV) design 

Full design dimensions from top and side view (all mesurements are in millimeter) 

 

The bottom cover is fabricated from a 2mm PMMA, with an outer track of width 

1 mm near the edge of the chip engraved down to 1 mm in thickness with the CNC 

machine (see Figure ‎3.13 & Figure ‎3.14). This leaves only a circle area of radius 5 mm 

in the middle of the chip with 2 mm thickness. A through hole of 1 mm in diameter is 

then drilled in the center of the chip for air flow. Similarly, the top cover is fabricated 

from a 4 mm PMMA plastic, but with the inner area of diameter 5 mm engraved down 

to 2.5 mm in thickness using the CNC machine. This engraved inner area leaves a 1.5 

mm spacer area that limits the latex material from over extension when the valve is in 

operation. A through hole is then drilled in the center of the chip for air flow. Once cut, 

the top and bottom covers then can be snapped together with the latex film in between 

without the need for any adhesive material. 
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Figure ‎3.14: Terminal Check Valve (TCV) 3D layers arrangement 

(a) TCV final fabricated chip, (b) TCV layers arrangement, (c) TCV full layers 

and air-exchange hole position   

 

The core of the TCV is the middle layer which is made of a thin commercially 

available latex sheet. When placed between the top and bottom covers, the deflection of 

the latex is limited by the height of the spacer area (1.5 mm). The latex material is 

chosen for its high transparency (>89.9%) (Pekcan & Arda, 1999), vapor 

impermeability (Arda & Pekcan, 2001), and hydrophilicity properties (Ho & Khew, 

2000). More importantly is the latex’s elastic characteristic that allows it to form an air 

tight seal when the valve is blocking air flow (see Figure ‎3.11(a3, b3)) (Zheng et al., 

2013). More details of the latex preparation will be discussed in subsection “3.5.2.3 

Latex Fabrication, Valve Assembly and Installation”. 

3.5.2.2 Bridge Check Valve (BCV) 

The BCV chip is a variation of the TCV chip which can be used to connect two 

points on the centrifugal microfluidic platform to control the liquid and air flow 

direction between the two points. The BCV chip is fabricated in the form of a flat 
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capsule with a set of inlet and outlet holes at the bottom of the chip, and an air exchange 

hole on the top. Figure ‎3.15 and Figure ‎3.16 respectively show the detailed 

specification, and the 3D model of the chip. The chip has dimensions of 14 mm x 7 mm 

x 5 mm (Length x Width x Height). Similar to the TCV chip, the BCV chip is fabricated 

with a top cover and a bottom cover that snaps together sandwiching the latex film in 

between. To achieve this, the bottom cover has an outer track of width 1 mm engraved 

along the edge of the chip, while the top cover has an engraved inner area. The inlet and 

outlet holes are then drilled through the bottom cover, and the air exchange hole is 

drilled through the top cover. The hole on the top cover ensures that there is no air 

compression in the spacer area when the latex deflects upward during operation. 

   

 

Figure ‎3.15: Bridge check valve (BCV) design 

Full  design details from top and side view (all mesurements are in millimeter) 
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Figure ‎3.16: Bridge check valve (BCV) 

 (a) final fabricated chip, (b) BCV layers arrangement and the position of the inlet, 

outlet, and air-exchange hole, (c) side view for BCV layers 

 

3.5.2.3 Latex Fabrication, Valve Assembly and Installation  

For consistent preparation of the latex layer in the fabrication of the check 

valves, a latex fabrication base was prepared. Figure ‎3.17(a) shows the top and bottom 

frames of the latex fabrication base, and Figure ‎3.17(b) illustrates how the frames are 

snapped together with the latex in between. The latex is stretched ten percent in both the 

length and width dimensions to make it taut. The size of the frame provides enough 

stretched latex to fabricate nice check valve chips simultaneously. This method ensures 

that the check valves fabricated have latex layers that are consistent in terms of 

elasticity. Once the latex is stretched on the base, holes are manually introduced in the 

latex by a small needle (one hole for each TCV valve to be fabricated). The holes are 

measured to be approximately 0.5 mm in diameter. Finally, the top and bottom covers 

of the check valves are snapped together from the top and bottom of the latex layer. The 

fabricated check valves are then cut out one by one from the latex sheet. The final 
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produced check valves are then installed as needed onto the surface of the centrifugal 

platform using adhesive material. 

3.5.3 Applications of Check Valve 

To evaluate the effectiveness of the TCV and BCV chips on a centrifugal 

microfluidic platform, a design that performs liquid swapping was fabricated and tested. 

In Figure ‎3.18(a) we show a centrifugal microfluidic platform design consisting of three 

chambers (chamber A, chamber B and the waste chamber), and with connecting micro 

channels with widths and depths given by 0.7 mm and 0.5 mm respectively. A TCV 

chip was installed in conjunction with chamber B, and a BCV chip was installed in the 

channel between chamber A and the waste chamber. The TCV chip is configured to 

only allow air flow from the outside of the platform into chamber B (and not from 

chamber B to the outside), while the BCV chip only allows the liquid to flow from 

chamber A to the waste chamber. For controlled one-way liquid pumping, a TPP 

chamber is placed near the centrifugal platform center and connected directly to 

chamber A to allow for push/pull pumping. For TPP chamber heating, a customized 

industrial hot-air gun is fixed 1 cm on top of radial track of the TPP chamber. A 1 cm 

diameter focusing nozzle is installed on the hot-air gun focuses the heat and prevents 

heating other parts of the centrifugal microfluidic platform. The platform surface 

temperature during spinning is measured using a digital infrared (IR) thermometer. Push 

pumping creates positive pressure in chamber A during heating of the TPP chamber, 

while pull pumping creates negative pressure in the chamber during cooling of the TPP 

chamber. Further details of push/pull pumping can be found in Thio et al. (2013).  

Although the purpose of the platform design shown in Figure ‎3.18 is to demonstrate the 

effectiveness of the check valves, the design can be easily modified to incorporate check 

valves in a wide variety of complex biomedical diagnostic assays. 
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Figure ‎3.17: Latex fabrication bases 

(a) fabrication base layers arrangement, (b) fabrication base after stretch and fix 

the latex 

 

The experiment starts with the filling of chamber A with 45 µl of red colored 

deionized (DI) water, and the filling of chamber B with the same amount of blue 

colored DI water (see Figure ‎3.18(a)). Two different colored DI water are implemented 

in this test to make the liquid swapping process more visible. First, the loaded 

centrifugal microfluidic platform is spun up to 300 rpm, and the heat source is powered 

on to activate push pumping. The positive pressure created this way pushes on the liquid 

in chamber A, and the liquid flows through the BCV chip towards the waste chamber 

(see Figure ‎3.18(b)). The heat source is then turned off, and pull pumping is activated. 

The negative pressure generated pulls the liquid from chamber B into chamber A 

(Figure ‎3.18(c) and (d)). The heat source is then turned on again to repeat pushing the 

liquid from chamber A to the waste chamber (Figure ‎3.18(e) and (f)). 
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3.6 Biomedical Applications  

Different biomedical and chemical applications can be performed using the 

proposed three valves. In this work, Bradford assay and ELISA assay are demonstrated 

as potential biomedical applications using the PLV and the check valve, respectively. 

Both assays were selected as example of well known benchtop procedures that widely 

utilized in healthcare centers to detect various diseases and/or reflect medical 

information from patients’ biological samples. Moreover, Bradford assay is selected as 

an example for simple assays and ELISA is selected as an example of multistep 

complex assays. Therefore, the ability of the developed valves to perform different 

application with different complexity will be highlighted.  

3.6.1 Bradford Assay for Measuring Protein Concentrations 

The Bradford procedure is a well-known colorimetric assay that utilizes the 

color shift of the utilized reagent (Coomassie Brilliant Blue G-250) to calculate the 

protein concentration in a specific sample (Bradford, 1976). When the Bradford reagent, 

which is originally brown, is mixed with a specific sample, the mixture will become 

blue. The intensity of the blue corresponds to the protein concentration in that specific 

sample.    

To perform the Bradford assay, the liquid metering design using the developed 

PLV is utilized to test various samples in parallel (see Figure ‎3.10(b)). A bovine serum 

albumin (BSA) sample with a known protein concentration of 10 mg/ml is used in this 

assay. The BSA is serially diluted five times to obtain samples with protein 

concentrations of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml.  

The experiment starts with the injection of 550 µl of the Bradford reagent into 

the source chamber and the injection of 10 µl of each prepared concentration into the 

destination chambers. Then, the inlet and venting holes of the preloaded destination 

chambers are tightly sealed using a PSA product. Afterward, 50 µl of red DI water is 
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injected into each venting chamber. Next, the centrifugal microfluidic platform is 

mounted on the spin test system, and the rotation process is started. When the spinning 

reaches specific speed, the Bradford reagent will burst and fill the metering chambers 

while the rest will overflow to the waste chamber. Then, the spinning speed further 

increased for the metered Bradford reagent to burst into the destination chambers and 

mix with the BSA samples. Finally, the mixture will be transferred to 96 microplate and 

the final results will be read using micro-plate colorimetric reader.   

 

Figure ‎3.18: Liquid swapping sequence 

 (a) liquid status before start the process, (b) heating the TPP chamber where the 

TCV valve is blocked while the BCV chip is activated, (c) cooling the TPP 

chamber actuates pull pumping where the TCV valve is activated and the BCV 

chip is blocking reverse airflow from the waste chamber, (d) liquid position after 

the cooling process stops, (e) heating the TPP chamber pushes the liquid from 

chamber A towards the waste chamber, (f) final liquid status  



65 

 

3.6.2 ELISA Assay for Dengue Detection 

To demonstrate the ability of the proposed check valves to perform multistep 

processes, a sandwich ELISA assay is performed by integrating the BCV and TCV with 

TPP method. ELISA is a biochemistry assay utilized to detect the antigen and/or 

antibody of specific infectious diseases in patient serum. Figure ‎3.19 shows the 

microfluidic design developed for the ELISA assay. In this design, we utilize one 

continuous spiral micro-channel to store the reagents (such as conjugate antigen, TMB, 

and stopping solution) and washing buffer in a sequence following the steps of the 

ELISA process. Essentially, this ELISA design is similar to the liquid swapping process 

discussed previously (see Figure ‎3.18) but we replaced chamber B with the continuous 

spiral micro-channel, and let chamber A as the ELISA detection chamber that is coated 

with a specific antigen such as Dengue antigen. For clearer process observation, the 

ELISA assay is demonstrated with colored DI water representing each liquid involved 

in the process (most of the liquid involve in the ELISA process are clear transparent 

fluids). As can be seen from Figure ‎3.19, A TCV valve is installed at the end of the 

spiralled channel to ensure one-way flow of the reagents and washing solutions towards 

the detection chamber and not the other way. On the other hand, a BCV valve is 

positioned between the detection chamber and the waste chamber to control the flow in 

a similar manner for the design in the “Liquid Swapping process”. In this design, the 

reagent and washing solutions are injected in the spiral channel though the inlet holes 

separated by a specific predefined volume of “air-plug” to ensure that no mixing 

happens between two consecutive liquids. Similar to the “liquid swapping process”, 

repeated TPP (activated through sequential heating and cooling) pulls the different 

reagents and washing solution in to the detection chamber, then subsequently flushes 

out the liquid into the waste chamber. 
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Figure ‎3.19: Centrifugal microfluidic platform design for ELISA assay 

Centrifugal microfluidic platform design to perform ELISA assay by integrating 

the developed TCV and BCV check valves with TPP 
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4 CHAPTER 4: RESULTS AND DISCUSSION 
4.1 Introduction 

In this chapter, the experimental results of the three developed valves are 

presented and discussed. The results are divided into three main subsections following 

the developed micro-valves: wax vacuum/compression valve, liquid passive valve 

(PLV), and check valve. Then, the results of the demonstrated biomedical applications 

(i.e., Bradford assay, and ELISA assay) are illustrated.  

4.2 Vacuum/Compression Wax Valve Results 

In this section, the experimental results of the developed VCV valve are 

presented. This section is divided into three parts according to the conducted 

experiments: microfluidic platform heat profile, VCV effectiveness, and applications of 

VCV.  

4.2.1 Microfluidic Platform Heat Profile 

Figure ‎4.1 shows the heating profile for the centrifugal microfluidic platform 

during the heating process. The x-axis represents the experiment time and the platform 

spinning speed, while the y-axis represents the temperature of the platform surface. The 

forced convection heating is fixed at 130°C for this experiment. 

The graph can be divided up into two main parts: the first part represents the 

heating profile of the centrifugal platform (heater is ON), while the second part 

represents the cooling profile of the centrifugal platform (heater is OFF). The platform 

surface temperature increases dramatically in the first 2 minutes from  room temperature 

at 27°C to approximately 48°C, then continues to rise somewhat slower to the minimum 

wax melting temperature of 57.2°C (135°F), and peaks out around 60°C at around the 

8th minute mark. The temperature is observed to remain around 60°C for the next 4 

minutes. The forced convection heating is then shut off, and the centrifugal platform 
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spinning is also stopped temporarily before the start of the cooling process. Next, the 

centrifugal platform is left to cool at increasing rpm speeds and the temperature reaches 

room temperature in 12 minutes. The result provides an understanding of how the 

centrifugal platform surface responds to forced convection heating.  It is clear that with 

the forced convection heating set at 130°C, the platform would require 8 minutes to 

melt the wax to operate the VCV.   

 

 

Figure ‎4.1: Heating profile for the centrifugal microfluidic platform and wax 

melting points 
 

4.2.2 VCV Effectiveness 

The second part of this study focuses on testing the effectiveness of the proposed 

valve and its response towards increasing pressure produced by an incremental spinning 

speed. Figure ‎4.2 presents the liquid behaviour at three different points of the 

experimental test for the air-vacuum state (venting hole A is sealed). Figure ‎4.2(a) 

shows the initial status of the liquid before and during the early stages of spinning, 

Figure ‎4.2(b) illustrates liquid spilling into the micro-channel due to the high spinning 

speed (more than 900 rpm) that leads to air compression inside the destination chamber. 

Figure ‎4.2(c) shows the final result at 1500 rpm where a minor leakage of one droplet 
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occurs when the liquid/compressed-air interface destabilizes and some air escapes in the 

form of bubbles up the micro-channel. This result shows that the proposed VCV is able 

to prevent liquid from bursting into the destination chamber up to speeds of 1000 rpm. 

However, at spinning speeds above 1000 rpm, although the fluid still does not flow into 

Chamber B, some leakage is observed.  

 

 

Figure ‎4.2: Liquid state during the testing of VCV valving effectiveness 

(a) initial liquid postion during low spinning speed, (b) liquid goes into the channel 

at spinning frequency > 900 rpm, (c) final position of liquid at 1500 rpm 

 

Experimental data for compression and vacuum valving is presented separately 

in Figure ‎4.3. Moreover, the experimental results are compared to the control 

(experimental results without valving) and theoretical results calculated using equations 

(2.1) and (2.2). From our results it is clear that vacuum valving (source chamber venting 

hole sealed) is more dynamic than compression valving (destination chamber venting 

hole sealed). There are two reasons for this; the first is the smaller volume of air in 

vacuum valving (air that is trapped in the source chamber on top of the liquid and inside 

the venting channel), is hard to expand. The second is the effect of the lower centrifugal 

force experienced by the liquid in the source chamber with a vacuum valve. In 

comparison to the liquid in the micro-channel in the configuration with a compression 

valve, the liquid in a configuration with a vacuum valve is closer to the center of the 

centrifugal platform.  
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Figure ‎4.3: Liquid burst frequency using the VCV 

 Burst frequency for liquid using the proposed Vacuum/Compression valaving, 

and burst frequency for Control & Theoretical calculation 

 

In comparison to the wax valving proposed by Abi-Samra et al. (2011), the 

proposed VCV prevents any mixing between the sealing material and the test samples. 

This design improvement gives way to the possibility of different types of material for 

valving which may be more easily managed. Moreover, the layout of the VCV on the 

centrifugal microfluidic platform can be easily relocated to be further away from the test 

samples. This is an advantage when compared to the valving method by Abi-Samra et 

al. (2011) where the heating source is directly focused on the micro-channels, 

concurrently heating the wax and the liquid in the channel.  

4.2.3 Applications of VCV 

In Figure ‎4.4 and Figure ‎4.5 we show photos from two types of applications at 

various stages during the tests.  Figure ‎4.4(b) shows the liquid bursting out of source 

chamber A at 360 rpm. The liquid is forced towards destination chamber A due to the 

air compression created in destination chamber B (see Figure ‎4.4(b)). When the liquid 

from source chamber A completely enters destination chamber A, the forced convection 
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heating is turned ON to melt the wax plug and to release venting hole A (see Figure 

‎4.4(c)). The centrifugal force pushes the molten wax towards venting hole B and seals 

it. The heating source is then turned OFF and the spinning speed is increased gradually. 

At 650 rpm, the liquid from source chamber B bursts and flows toward destination 

chamber B, and does not enter destination chamber A due to the air-compression in 

destination chamber A (see Figure 4.4(d)).  

The result shows that switching with a VCV can be controlled accurately, 

cleanly, and at low spinning speed. This is advantageous when compared to switching 

processes applying external air pressure by M C R Kong and E D Salin (2011), and 

Coriolis force by Kim et al. (2008). Moreover, by applying more VCVs, liquid flow 

switching into more than two destination chambers can be accomplished. 

Figure ‎4.5 presents the experimental sequence for the microfluidic metering 

process. As shown, the liquid is pumped from the source chamber to the metering 

chambers (see Figure ‎4.5(b)). Then, liquid starts to flow and fill the three metering 

chambers without entering the destination chamber because of the compressed air (see 

Figure ‎4.5(b and c)). After all metering chambers are filled; the extra liquid flows into 

the waste chamber (see Figure ‎4.5(d)). The heating source is turned ON to heat the 

platform surface to 60°C (which is the melting temperature for the wax plugs). Once the 

wax-plug has been melted away, the venting hole is opened and the liquid bursts from 

the metering chambers into the destination chambers (see Figure ‎4.5(e)). 

The presented microfluidic metering process has many advantages in 

comparison to published metering method introduced by Mark (Mark et al., 2009; Mark 

et al., 2011). Mark et al. (2009) method requires high spinning frequency to generate 

the turbulence at the air-liquid contact point for the liquid to burst into the destination 

chambers. In contrast, our proposed metering process can be performed at low spinning 

speeds (less than 400 rpm). Furthermore, the destination chamber for our proposed 
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method can be connected to other microfluidic networks on the centrifugal microfluidic 

platform (where other processes can be performed) by implementing the VCV at 

appropriate points.  

 

Figure ‎4.4: Experiment sequence for liquid switching using VCV valving method 

 (a) green colored liquid flows out from source chamber A, (b) green liquid 

switched to chamber A due to the compressed air in chamber B, (c) venting hole B 

released by melting wax plug, and wax moves to block venting hole A, (d) red 

liquid switched to chamber B due to the air compression in chamber A 

 

 

Figure ‎4.5: Experiment sequence for liquid metering using VCV valving method 

 (a) liquid pumped from source chamber to the metering chambers, (b) liquid 

filling the first metering chamber, (c) liquid filled the second metering chamber 

and moving to the third, (d) liquid filled all metering chambers and overflowed to 

the waste chamber, (e) wax-plug melted and liquid moved to the destination 

chambers 

4.3 Passive Liquid Valve (PLV) Results 

In this section, the experimental results of the proposed PLV are presented. 

Moreover, the experimental results are compared with the theoretical calculations to 
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assess the analytical model we described earlier. For both the S-PLV and D-PLV 

designs, the control burst frequency (when there is no liquid in the venting chamber) 

was tested to be 275 RPM. The U-shaped bent channel increases the burst frequency by 

10 RPM because the control burst frequency in the case of a straight microchannel was 

tested to be 265 RPM. This 10 RPM difference results from the short distance of the 

reverse flow in the second leg of the U-shaped bent. Each experiment in this section was 

repeated 10 times for validation of the results. 

4.3.1 Effect of the Liquid Height on the Burst Frequency   

To test the effect of the venting chamber liquid height on the burst frequency, a 

range of liquid heights from 1.34 to 3.35 mm of deionized colored water (corresponding 

to 20 to 50 µl) was loaded into a venting chamber. Figure ‎4.6(a) shows the experimental 

results demonstrating the effect of liquid height on the burst frequency for both the S-

PLV and D-PLV valves. Moreover, the theoretical result using equation (3.4) is 

included in the figure for comparison purposes.  

From equation (2.1), it is obvious that the height of the liquid in the venting 

chamber will affect the centrifugal pressure acting on the liquid in the venting chamber, 

and this effect in turn will affect the burst pressure (frequency). From the design of the 

venting chamber in this study, each additional 1 µl of liquid is equivalent to a 0.067 mm 

increase in the liquid height in the venting chamber. As an example, 50 µl of liquid in 

the venting chamber produces an effective liquid height of approximately 3.35 mm. 

The theoretical result in Figure ‎4.6(a) shows that initially the burst frequency 

gradually increases as the venting chamber liquid height increases. Then, a sudden steep 

increase in the burst frequency for liquid heights greater than 2.68 mm is followed by a 

rapid drop in the burst frequency (after 3.015 mm). The experimental results show good 

agreement with the theoretical result for chamber liquid heights in the range between 

1.34 mm to 2.68 mm. For both S-PLV and D-PLV, it is clear that the burst frequency is 
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almost doubled from 275 RPM (for the control without liquid in the venting chamber) 

to 405 RPM by an increase of only 1.34 mm in the liquid height in the venting chamber.   

For a chamber liquid height of 3.015 mm (exceeding 2.68 mm), the liquid height 

in the venting chamber starts to be close or equal to the liquid height in the source 

chamber. Therefore, the theoretical result curve peaks at the highest burst frequency and 

then drops to zero (no bursting) when the liquid pressure of the venting chamber is 

always higher than the pressure of the source chamber (see Figure ‎4.6(a)). However, the 

experimental result does not follow the theoretical result because air, which is slightly 

elastic, can only withstand a limited amount of stretching/compression. If a high 

pressure is suddenly applied on the trapped air (such as when venting chamber liquid 

height is more than 3.015), it will be overstretched/overcompressed and the valve will 

not work or will not follow the theoretical calculations. This air effect and elasticity 

limitation is well described by Soroori et al. (2013). Therefore, in Figure ‎4.6, when the 

spinning speed exceeds the specific threshold, the source chamber will burst although 

the theoretical calculation says otherwise. 

4.3.2 Effect of Liquid Density on the Burst Frequency 

In this experiment, the effect of the density of the liquid in the venting chamber 

on the burst frequency is investigated. The experimental and theoretical results for five 

different liquids with five different densities are presented in Figure ‎4.6(b). The 

following five liquids were used: distilled water (1.000 g/cm
3
), soy milk (1.103 g/cm

3
), 

glycerol (1.290 g/cm
3
), purified juice (1.335 g/cm

3
), and honey (1.415 g/cm

3
). The 

liquid densities were measured using an Anton Paar DMA 4100 Density Meter (U-

Tube). In each experiment, 30 µl of each liquid was injected into the venting chamber 

while the source chamber was loaded with 40 µl of distilled water.      

Figure ‎4.6(b) shows that an increase in the liquid density in the venting chamber 

from 1.000 g/cm
3 

to 1.450 g/cm
3 

increases the burst frequency from approximately 500 
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RPM to 1200 RPM. In this range, the experimental result shows good agreement with 

the theoretical calculation. In a manner similar to the effect of the chamber liquid 

height, when the venting chamber density exceeded 1.450 g/cm
3
, the theoretical result 

shows a sharp increase where the burst frequency exceeds 2100 RPM. Then, the burst 

frequency dropped to zero, which corresponds to the valve holding the liquid in the 

source chamber indefinitely. 

4.3.3 Effect of the Venting Chamber Position on the Burst Frequency 

In this part of the study, the effect of changing the position of the venting 

chamber relative to the centrifugal platform center is investigated. The position of the 

venting chamber was varied from 40 mm to 60 mm from the platform center in steps of 

5 mm. In each experiment, the venting chamber was loaded with 30 µl of distilled water 

while the source chamber was loaded with 40 µl.  

Figure ‎4.6(c) shows the experimental and theoretical results of this study. 

Increasing the relative distance between the venting chamber and the platform center 

steadily increases the burst frequency of the source chamber liquid. When the distance 

from the platform center is increased from 40 mm to 60 mm, the burst frequency 

increases by approximately 100 RPM (from 520 to 620 RPM). Although the S-PLV 

valve yielded experimental results that were closer to the theoretical calculations, the D-

PLV valve was more effective in increasing burst frequency. 
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Figure ‎4.6: Theoretical and experimental results of the PLV 

 (a) the effect of different venting chamber liquid heights on burst frequency, (b) 

the effect of different venting chamber liquid densities on burst frequency, and (c) 

effect of different venting chamber positions on burst frequency (theoretical result 

calculated using equation (3.4)) 
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4.3.4 Liquid Switching and Liquid Metering Results 

Photos of the microfluidic liquid switching and liquid metering processes at 

various stages of the experiment are presented in Figure ‎4.7 and Figure ‎4.8, 

respectively. Figure ‎4.7(a) shows the centrifugal microfluidic platform at the 

preliminary stage with a spinning speed lower than 250 RPM where all liquids are in 

their original positions. When the platform spinning speed is increased to 260 RPM, the 

green liquid in source chamber A bursts (see Figure ‎4.7(b)). The liquid flow is forced 

towards destination chamber A by the effect of the PLV valve on venting chamber B. 

Then, the spinning speed is increased to 300 RPM, and the liquid in venting chamber B 

to burst towards venting chamber A (see Figure ‎4.7(c)). This step will release the 

venting channel of destination chamber B while sealing the venting channel of 

destination chamber A. Therefore, when the liquid in source chamber B bursts at 370 

RPM, the flow is forced towards destination chamber B (see Figure ‎4.7(d)).  

Two observations were made during our experiments: (1) Some residual liquid 

can stay in venting channel B after the liquid burst from venting chamber B (see Figure 

‎4.7(c)). This liquid will not affect the switching process because the liquid volume is 

very low (low pressure), and this liquid will be pushed back as soon as the liquid in the 

source chamber B bursts towards destination chamber B. (2) Often, a drop of the liquid 

in source chamber B will flow towards destination chamber A due to the high speed 

bursting, which overcompresses the trapped air in destination chamber A.  

Compared with the switching process that were proposed previously by 

Kazemzadeh et al. (2014), the present liquid switching process shows two main 

advantages: first, the process can be performed at a lower spinning speed (less than 400 

RPM), and this speed is adjustable depending on the utilized venting chamber 

specifications. Moreover, compared to the earlier performed switching process using the 

wax valve, the PLV valve can be easily and passively perform liquid switching without 
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any need for an external force or trigger. Finally, the valve state of the proposed PLV 

can be reversed from normally opened to normally closed and vice versa. This 

capability is a very important feature for some applications where the valve must be 

switched ON and OFF at different stages of the process. 

Figure ‎4.8(a) shows the metering process at a low spinning speed. When the 

spinning speed is increased to 370 RPM, the source chamber liquid bursts and fills the 

metering chambers (90 µl each), whereas the extra liquid overflows to the waste 

chamber (see Figure ‎4.8(b) and (c)). Finally, the spinning speed increased steadily to 

500 RPM, when the liquid in the metering chambers starts to burst to the destination 

chambers. However, the spinning speed must be steadily increased to 2000 RPM for all 

the liquid to be transferred to the destination chambers. The reason for the speed 

increase is as follows: as liquid flows away from the metering chamber, the decreasing 

liquid height results in a reduction in liquid pressure. Therefore, the spinning speed is 

increased to increase the pressure on the metering chamber liquid to maintain the 

bursting of liquid.   

This experiment shows that the proposed PLV valve is capable of controlling 

liquid that flows at a high speed. In addition, multistep process can be performed on the 

centrifugal microfluidic platform utilizing the developed valve. Compared with the 

pneumatic metering process proposed by Mark et al. (2009), the process that is 

controlled using PLV liquid is more controllable/adjustable because the spinning speed 

can be increased or decreased depending on user requirements. Finally, compared to the 

metering process performed earlier using the wax valve, this valve is easier to 

implement and will extend the flexibility of centrifugal microfluidic platforms by 

allowing for passive control of fluid flow without the need for active valving. 
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Figure ‎4.7: Photos of the microfluidic switching process at various stages 

(a) spinning speed less than 250 RPM where all liquids at its original positions, (b) 

source chamber A liquid bursts towards destination chamber A at 260 RPM, (c) 

venting chamber B liquid bursts towards venting chamber A at 300 RPM, and (d) 

source chamber B liquid bursts towards destination chamber B at 370 RPM 

 

 

Figure ‎4.8: Photos of liquid metering at various stages of the process 

(a) spinning speed less that 370 RPM, (b) & (c) the metering chambers are filled 

whereas the extra liquid overflowed to the waste chamber at 370 RPM, and (d) 

liquid transferred from the metering chamber towards the destination chambers 

(500 RPM to 2000 RPM) 
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4.4 Check Valve Results  

This section is split into two subsections, an analysis section that theoretically 

evaluates the check valve, and an experimental results section that discusses the 

implementation of the liquid swapping process.  

 

4.4.1 Analytical Model and Results  

In this section, the operation of the developed TCV and BCV chips are evaluated 

both theoretically and experimentally. The theoretical study is conducted to confirm that 

very little pressure is needed to actuate the chips (to allow air/liquid flow) and that this 

required pressure is negligible, and does not affect the burst frequencies of liquids on 

the centrifugal microfluidic platform. Subsequently, experimental work is conducted to 

investigate the actuation points of the two check valves, and the flow rate of air/liquid 

under different pressure. 

To evaluate the operation of valves on the centrifugal microfluidic platform, the 

centrifugal pressure resulting from the spinning of the platform must first be evaluated. 

The centrifugal pressure acting on a volume of liquid, Pcentrifugal can be calculated using 

equation (2.1). The pressure on a spinning centrifugal platform varies in the range of 

kilo- to mega-pascals depending on the spinning speed, liquid density and the relative 

position of the liquid from the platform center. To experimentally determine both the 

activation pressure, and achievable flow rate, channels of dimensions 150 mm length by 

1 mm width and 1mm depth are fabricated in a vertically standing PMMA plastic 

(please refer to APPENDIX B). The TCV or BCV valve is installed at the bottom end of 

the channel, and the channel is then loaded with liquid of different heights (to achieve a 

range of pressure) to test the operation of the valve. By positioning the channels 

vertically, the resulting pressure can be calculated as follows: 
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ghP lcentrifuga   (4.1) 

 

where ρ is the liquid density, g is the acceleration of gravity, and h is liquid height. In 

our experiment, the height of the liquid in the channel was varied from 24 mm to 58 mm 

(with an incremental step of 2 mm) to give a range of pressure from 220 Pa to 580 Pa 

(for more information about the developed flow rate test platform, please refer to 

APPENDIX B). Figure ‎4.9 shows the experimental flow results for the TCV and BCV 

valve under different pressures. It is observed that both valves are actuated under the 

same pressure which is 220 Pa. However, it can be seen that the flow rate of TCV valve 

is much higher compared to the BCV valve especially under high pressure. This is 

because the longer pathway between within the BCV (from the inlet to the outlet of the 

valve) which is constantly constricted by the deflected latex film (i.e., this decreases the 

flow rate). It is also observed that at the actuation pressure, liquid flow rate is 

intermittent as the latex deflection fluctuates.  

On a typical centrifugal microfluidic platform with a liquid column of 5 mm 

height, the check valve actuation pressure of 220 Pa can be achieved with a spin speed 

as low as 270 rpm to 480 rpm for relative liquid distance of 17 mm to 67 mm from the 

platform center (refer to equation (2.1)). Centrifugal microfluidic platforms are typically 

designed to operate at frequencies of 300 rpm and above, (up to thousands of rpm). This 

range of operation allows for the easy integration and actuation of the check valves in 

microfluidic processes on the platform. In other words, the developed valves can be 

implemented for controlling fluid flow direction during both passive pumping of liquid 

(which depends only on the centrifugal pressure), and active pumping of liquid (for 

example using TPP). 
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Once the actuation pressure is experimentally determined above (as 220 Pa), the 

deflection of the latex film in the TCV chip can be calculated using the following 

equation (Brask et al., 2006): 

 

 2
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4
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pa
u   (4.2) 

 

where u is the deflection of the latex layer, p is the pressure applied across the latex 

layer, a is the radius of the TCV chip, v is Poisson’s ratio (0.5 for latex), E is Young’s 

modulus (0.1 Gpa for latex), and t is the thickness of the latex layer (220 µm). The same 

equation can be applied to approximate the deflection for the BCV chip as the 

maximum deflection is limited by the smallest dimension of the chip (where the 

smallest dimension of the BCV chip is identical to the TCV chip). However, there is 

some variation in the amount of deflection between the TCV and BCV chips due to the 

difference in path length and the air / fluid flow direction within the two chips. 

Using equation (4.2), the effect of the pressure on the deflection of the latex 

layer is shown in Figure ‎4.10, while the effect of the chip size on the deflection of the 

latex is shown in Figure ‎4.11. 

 

Figure ‎4.9: TCV and BCV flow rate at different pressure 
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The result in Figure ‎4.10 shows that the deflection of the latex film increases 

linearly with the increase of the pressure applied on the chip. Also, the results indicate 

that latex film deflection is approximately 100 µm at the valve activation pressure (for 

air and liquid to flow at a minimum pressure of 220 Pa). On the other hand, the result in 

Figure ‎4.11 shows that at the actuation pressure of 220 Pa, the maximum latex film 

deflection theoretically increases exponentially with increasing chip diameter. It can be 

seen that increasing the chip diameter by 2 mm approximately increases the deflection 

threefold. This indicates that a larger chip is easier to operate under low pressure. 

However, the exponential increase in latex deflection is true as long it does not exceed 

the elasticity limit of the latex film. To protect the latex film from overstretching, the 

spacer area is limited to a height of 1.5 mm in our chips. 

 

 

 

Figure ‎4.10: Latex deflection for different pressure during valve activation 
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Figure ‎4.11: Latex deflection for different valve diameter 

 

4.4.2 Liquid Swapping Results 

The steps of the experimental demonstration mentioned in the methodology 

section are shown in Figure ‎4.12 while actual images recorded are shown in Figure 

‎4.13. The process starts with the loading of both chambers A and B each with 45 µl of 

differently colored DI water (see Figure ‎4.13(a)). After loading the chambers, the 

venting holes on both chambers are sealed with a special thermal transparent tape. The 

holes are sealed to trap the air inside the microfluidic system to allow the TPP to work 

(Thio et al., 2013). At the same time, the TCV and BCV chips are installed in 

designated positions on the bottom surface of the centrifugal microfluidic platform 

using PSA material. Then, the microfluidic platform is mounted on the spin test system 

to start the spinning process. The experimental step for the microfluidic process can be 

broken into three steps (see Figure ‎4.12): step 1: first heating process (push the liquid 

from chamber A to waste chamber), step 2: cooling process (sucks the liquid from 

chamber B into chamber A), step 3: second heating process (to push the liquid from 

chamber A into the waste chamber). The three steps are discussed in details afterwards. 
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Step 1 First Heating Process:  

This step starts with the spin up of the centrifugal microfluidic platform to 300 

rpm (pretested spinning speed for optimum push/pull pumping performance (Thio et al., 

2013)) and the focusing of the heat source on the TPP air chamber. Next, the heat 

source is set to 150˚C and turned ON (see Figure ‎4.12). The heating process gradually 

raises the temperature in the TPP air chamber from room temperature (25˚C) to reach a 

temperature sufficient for the air to start expanding significantly. This air expansion 

exerts pressure on the liquid in chamber A and B. However, the blue liquid from 

chamber B cannot be pushed from the adjoining channel because of the TCV chip 

preventing any air from escaping from chamber B. Therefore, the pressure generated by 

the TPP air expansion will only force the red liquid in chamber A to move towards the 

waste chamber through the BCV chip. It is observed that the red liquid from chamber A 

is completely transferred to the waste chamber in 85 seconds when the temperature 

reaches 64˚C (Figure ‎4.13(b) and (c)). After the red liquid is fully transferred, the 

heating process is stopped and the cooling process then starts. 

 

 

Figure ‎4.12: Check valve experimental steps 

 (Step1) heating source is turned ON, BCV valve is activated, and TCV valve is in 

blocking mode: liquid is pumped from chamber A to the waste chamber, (Step2) 

heating source is turned OFF, BCV valve is in blocking mode, and TCV valve is 

activated: liquid pulled from chamber B into chamber A, (Step3) heating source is 

turned ON, BCV valve is activated, TCV valve is in blocking mode: liquid pumped 

from chamber A to the waste chamber. The experiment performed at 300 RPM 
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Step 2 Cooling Process:  

After step 1 is completed, the cooling process starts. During this process, the 

centrifugal microfluidic platform is kept spinning at 300 rpm to cool the platform. The 

cooling process causes the trapped air volume in the TPP air chamber to contract. As the 

platform temperature drops towards room temperature, the air volume shrinking process 

creates a vacuum-like state in chambers connected to the TPP chamber. As the BCV 

chip does not operate under negative pressure conditions, this vacuum-like state closes 

the BCV chip and prevents any transfer of air from the waste chamber (see Figure ‎4.12). 

At the same time, the vacuum-like state in the TPP chamber sucks the blue liquid from 

chamber B into chamber A (see Figure ‎4.13(d)). From the experimental test, it is 

observed that the suction process takes 210 seconds to fully transfer the liquid from 

chamber B to chamber A. This is longer compared to the transfer of liquid from 

chamber A to the waster chamber in Step 1. The reason for this is that in this design the 

suction of liquid from chamber B to chamber A is working against the centrifugal force, 

while the pushing of liquid from chamber A to the waste chamber is amplifying the 

centrifugal force. Another factor is that the cooling process is passive, relying only on 

the spinning process to air cool the centrifugal microfluidic platform. 

 

Step 3 Second Heating Process:  

This step is similar to Step 1, but now the blue liquid that was transferred from 

chamber B to chamber A in Step 2 is pushed into the waste chamber. As in step 1, the 

heat source is set at 150˚C to heat the TPP chamber, and the heating process causes the 

trapped air in the TPP chamber to expand. The expanding air then pushes the blue liquid 

in chamber A into the waste chamber through the BCV chip (see Figure ‎4.13(e) and (f)). 

The check valve experiments demonstrate the effective application and the usefulness of 

these simple structures on microfluidic platforms. The process demonstrates the ability 
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of check valve chips to control the flow direction of fluid in biological processes under 

pneumatic and centrifugal pumping. 

 

 

Figure ‎4.13: Liquid swapping experimental results 

(a) liquid status before the start of the heating process, (b) heating the TPP 

chamber pushes the red DI liquid towards the waste chamber, (c) the heating 

process is stopped, (d) cooling the TPP chamber pulls the blue DI liquid from 

chamber B into chamber A, (e) heating the TPP chamber pushes the blue liquid 

from chamber A into the waste chamber, (f) final liquid status after completion of 

the experiment 

 

4.5 Biomedical Applications Results 

4.5.1 Bradford Assay Results 

As mention before in subsection “3.6 Bradford Assay”, the experiments starts 

with serially diluted the BSA sample five times to obtain samples with protein 

concentrations of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml. 

Then, 550 µl of the Bradford reagent is injected into the source chamber and inject 10 
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µl of each prepared concentration into the destination chambers (see Figure ‎4.14). 

Afterwards, the inlet and venting holes of the preloaded destination chambers are tightly 

sealed using a PSA product. To implement the PLV, 50 µl of red DI water is injected 

into each venting chamber. Next, the preloaded centrifugal microfluidic platform is 

mounted on the spin test system, and the rotation process is started. Via the same steps 

as those described for the previous metering experiment, the source chamber liquid 

(with Bradford reagent) is burst at 370 rpm to fill each of the metering chambers with 

90 µl of Bradford reagent (see Figure ‎4.14(b)). Then, at increasing speeds of 500 to 

2000 rpm, the metered Bradford reagent bursts to the destination chambers to be mixed 

with the preloaded BSA samples. To ensure good mixing between the reagent and the 

BSA, a multistep process comprising a batch mode (stop flow) mixing method and 

manual pipette mixing is performed (Grumann et al., 2005). Figure ‎4.14(c) shows that 

the resulting mixture has different intensities in the blue color region depending on the 

protein concentration in the sample. Finally, after the mixtures are incubated for 5 

minutes at room temperature, the mixtures are pipetted into a 96 micro-well plate and 

read at 450 nm. To evaluate the present method, the centrifugal microfluidic platform 

result is compared with the result of a Bradford assay that was performed traditionally 

using microwell plate and the same samples.  

Figure ‎4.14(d) presents the micro-plate reader results for the Bradford assay on 

the microplate and the centrifugal microfluidic platform. The results show that the 

intensity at the wavelength corresponding to the blue color increases when the protein 

concentration increases. The results also prove that the assay can be performed on the 

microfluidic platform with an accuracy very close to that of the traditional method. 

Therefore, multiple samples can be processed together in parallel by designing a multi-

metering centrifugal platform (up to 30 samples per platform). Moreover, using the 

resulting curve as a standard reference for the assay on the platform and a simple first 
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order equation, the centrifugal platform can be used to test the protein concentration of 

any unknown sample via the same procedure. Therefore, the centrifugal microfluidic 

platform can be utilized as a platform for detecting different diseases; for example, a 

liver functionality test can be performed by measuring the albumin concentration in the 

urine. This capability can be important for handling samples from patients with 

infectious diseases, such as HIV. Finally, the experiment shows that the proposed valve 

provides control of the burst frequency when a liquid other than water (different in 

terms of biochemical properties) is injected into the source chamber. 

 

 

Figure ‎4.14: Experimental result of a Bradford assay 

(a) spinning speed less than 370 RPM, with the Bradford reagent in the source 

chamber and the samples in the destination chambers, (b) The Bradford reagent 

bursts and fill the metering chambers at 370 RPM, (c) the Bradford reagent bursts 

from the metering chamber to the destination chambers to mix with the BSA 

samples (500 RPM to 2000 RPM), and (d) results for different BSA samples with 

different concentrations using the centrifugal microfluidic platform and the 

micro-well plate as assay platform 
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4.5.2 ELISA Assay Results 

Figure ‎4.15 presents various pictures of the experimental test at different stages 

of the process. The preparation process starts with injecting 100 µl of the positive or 

negative control sample in the detection chamber. Afterwards, 100 µl of the following 

fluids are respectively injected in the spiral channel in sequence: washing buffer, 

Dengue conjugated antigen, washing buffer, TMB and stopping solution. Then, the 

venting holes of the detection chamber and spiral channel are sealed. 

 

 

Table ‎4.1: Step-by-step the ELISA on the centrifugal platform 

 

  

ELISA Steps on 

centrifugal microfluidic 

platform  

Starting time 

(seconds)  

Starting 

temperature  

(˚C) 

Ending 

time 

(seconds) 

Ending 

temperature 

(˚C) 

Step 1  Flush out the serum  0 24 38 47 

Step 2  Pull in the washing buffer  39 47 200 24 

Step 3  Flush out the washing 

buffer  

201 24 241 46 

Step 4  Pull in the Dengue antigen  242 46 447 24 

Step 5  Flush out the Dengue 

antigen  

448 24 485 45 

Step 6  Pull in the washing buffer  486 45 696 24 

Step 7  Flush out the washing 

buffer  

697 24 733 48 

Step 8  Pull in the TMB buffer  734 48 954 25 

Step 9  Balance the temperature  955 25 1555 29-31 

Step 10  Pull in the stopping 

solution  

1556 31 1916 24 

  Total time  ≈ 32min  

  Total time for ELISA with 2 

hours of incubation  

2 hour 32min  



91 

 

 

As shown in Table ‎4.1, the experiment can be divided into 10 main steps: step 1: 

incubating the preloaded centrifugal microfluidic platform for 60 minutes at 37˚C to 

allow the Dengue IgM antibodies from the positive sample in the detection chamber to 

bind with the antigen coating (see Figure ‎4.15(a)). Step 2: heating the TPP chamber to 

flush out the unbinded positive sample from the detection chamber (see Figure ‎4.15(b)). 

Step 3: cooling the TPP chamber to pull the washing buffer into the detection chamber 

(see Figure ‎4.15(c)). Step 4: heating the TPP chamber to flush out the washing buffer 

from the detection chamber to the waste chamber (see Figure ‎4.15(d)). Step 5: cooling 

the TPP chamber to pull in the Dengue conjugated antigen into the detection chamber 

(see Figure ‎4.15(e)). In this step, the centrifugal platform is incubated for 60 minutes at 

37˚C for the antigen to conjugate with the Dengue IgM antibody bound to the antigen 

coating (sandwich ELISA). Step 6: heating the TPP chamber to flush out the detection 

chamber (see Figure ‎4.15(f)). Step 7: cooling the TPP chamber to pull the washing 

buffer into the detection chamber (see Figure ‎4.15(g)). Step 8: heating the TPP chamber 

to flush out the washing buffer from the detection chamber (see Figure ‎4.15(h)). Step 9: 

cooling the TPP chamber to pull in the TMB into the detection chamber. Then, the 

platform is incubated for 10 minutes at room temperature for the TMB to react and 

release blue color. Step 10: cooling the detection chamber to pull the stopping solution 

in the detection chamber to be mixed with the TMB solution and release the yellow 

color. The final resulted liquid should then transferred to a 96 mico-well plate to be read 

by a BIO RAD microplate reader. For better understanding of the process different 

stages, please refer to the illustration video in Al-Faqheri et al. (2015).  

The result shows the ability to perform the ELISA assay with reliable result and 

fully automated fashion. Moreover, two of the main advantages behind this design are: 

(1) the simplicity in design and implementation where all the reagents are injected in 
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one continuous micro-channel, and (2) the ability to utilize this method to inject and 

store the platform as all venting holes are covered with check valves to reduce liquid 

contamination and evaporation over time. The full design and process details will be 

presented in a future paper. 

 

 

Figure ‎4.15: ELISA assay experimental results 

 (a) incubate the serum in the detection chamber for 60 minutes in 37˚C (b) flush 

out the detection chamber (c) inject the washing buffer in the detection chamber 

(d) flush out the detection chamber (e) inject the conjugated Dengue antigen in the 

detection chamber and incubate for 60 minutes in 37˚C (f) flush out the detection 

chamber (g) inject the washing buffer in the detection chamber (h) flush out the 

detection chamber (i) inject the TMB in the detection chamber and incubate for 10 

minutes in room temperature (j) inject the stopping solution in the detection 

chamber 
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4.6 Summary  

In this chapter, the experimental results of the developed microvalves are 

presented and evaluated. In general, the results show the ability of the developed valves 

to accurately control the burst frequency of the liquid on the centrifugal microfluidic 

platform. Moreover, the results illustrate that presented valves can be implemented in 

biomedical applications where the compatibility of valves are required.  

The results of the wax vacuum/compression valve show the ability to accurately 

control the burst frequency of the source chamber. Moreover, the presented valving 

method prevents any direct contact (contamination) between the sample and the valving 

material (wax). On the other hand, the proposed PLV valve can be controlled by 

different parameters (i.e., liquid height in the venting chamber, liquid density, and the 

position of the venting chamber in respect with platform center). Finally, the result of 

the Bradford assay shows the ability of integrating the PLV valve to perform biomedical 

applications on the centrifugal microfluidic platform. For the proposed check valve, the 

experimental results shows the ability of this valving method to control flow direction 

of the fluid (air/liquid) on the centrifugal microfluidic platform. The results indicate that 

the valve chip requires very low pressure to be actuated. The developed valving 

methods can widen the range of the biomedical process that can be performed on the 

centrifugal microfluidic platform such as ELISA assay. 

Table 4.2 shows a summary of the developed valves characteristics in different 

aspects (i.e., valve category, valving mechanism, physical barrier, compatibility, 

isolation, actuation time, reusability, and fabrication complexity). As can be seen, all the 

developed valves have good compatibility with biomedical application, good vapour 

isolation, reusability, and easy fabrication.  
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Table 4.2: Characteristic summery of the developed valves 

Valve Category Mechanism Physical 

barrier  

Compatible with 

biomedical 

applications/ 

contamination 

Isolation / 

vapor 

Actuation time  Multi-

actuation 

Fabrication 

complexity / 

system setup 

Wax 

valve 

Active Implementing wax 

plug to control the 

burst frequency of 

the source and 

destination chambers 

YES YES Good Slow YES* Easy 

PLV Passive Implementing 

venting chamber to 

control the burst 

frequency of the 

source and 

destination chambers 

YES YES Depend on 

the valving 

liquid** 

Fast YES Easy 

Check 

valve 

Passive Implementing latex 

material to control 

the flow direction of 

air and liquid 

YES YES Good Fast YES Easy 

 

   * Can be used multitimes in the same process as shown in the switching process using the wax valve.  

** The PLV valve can be good vapor isolator when high dense non-evaporating materials are applied in the venting chamber such as silicone oil.  

 

9
4
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5 CHAPTER 5: CONCLUSION AND RECONMMENDATION 

5.1 Conclusion  

In this work, three liquid sequencing micro-valves are developed for the 

centrifugal microfluidic platform. The three valves are: vacuum/compression wax valve 

(VCV), passive liquid valve (PLV), and passive check valve. Different microfluidic 

processes were conducted using the proposed valves such as liquid flow switching, 

liquid metering, and liquid swapping. Moreover, to show the capability of the proposed 

valves, Bradford assay and ELISA assay were demonstrated on the centrifugal 

microfluidic platform.  

The VCV is developed on the centrifugal microfluidic platform by implementing 

paraffin wax to seal venting chambers/holes. The results indicate high flexibility and 

accuracy in controlling the liquid burst frequency. It is noticed that a vacuum valve on 

the source chamber is more resilient against bursting at high spinning frequencies 

compared to compression valves. Furthermore, the presented VCV method can reduce 

the direct heating of samples and reagents in the microfluidic process. Two microfluidic 

processes (i.e., liquid flow switching and liquid metering) have been implemented with 

by utilizing the VCV. The experimental results show that by using the VCV valving, the 

required spinning frequency to perform the process is reduced greatly, and the VCV 

valving allows for multiple path switching. Furthermore, the demonstration showed a 

novel way of implementing two valves using a single VCV wax plug. This is done by 

positioning the valves such that melted wax from a normally-closed valve (which 

releases it when the wax is melted) is later transferred to a normally-opened valve (which 

seals it when the wax solidifies) by centrifugal force (reversibility). 

In the second part of the study, an easy-to-implement passive liquid valve (PLV) 

for the centrifugal microfluidic platform is presented. The main advantage of the 

proposed valve is that the valve can be actuated without an external force or trigger. 
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Compared with the VCV, the PLV can easily be introduced into any microfluidic 

process by simply injecting liquid into the venting chamber. Moreover, the lack of 

contact between the sample and valving material allows for the use of a variety of 

valving liquids without affecting the microfluidic process. Different parameters, such as 

the liquid height, liquid density, and venting chamber distance from the platform center, 

can be adjusted to control the effectiveness of the PLV valve. In addition, the ability to 

reverse the valve status from normally opened to normally closed and vice versa is a 

very important feature for the use of the PLV valve in multistep processes. The 

experimental and theoretical results show that the developed valve can be utilized to 

control the liquid burst frequency within a specific range of spinning speeds and liquid 

volumes. This range is defined by the ability of the utilized trapped air to withstand a 

specific amount of compression or expansion. Within this range, the burst frequency can 

be easily controlled by adjusting the height and/or density of the liquid in the venting 

chamber and by adjusting the position of the venting chamber with respect to the 

rotational center. The results show that using the proposed valve, the burst frequency of 

the source chamber liquid can be increased from 275 rpm to 1000 rpm. As a proof of 

concept, the presented new valve is successfully utilized to demonstrate two 

microfluidic processes: liquid switching and liquid metering.  

In the last part of the study, two easy to fabricate check valve chips (i.e., TCV 

and BCV) for the centrifugal microfluidic platform are developed. The two check 

valves can control air/liquid flow within the platform, and also between the platform 

and the surrounding environment. To determine the effect of the check valve chips on 

liquid burst frequency on the centrifugal microfluidic platform, fundamental 

experimental work has been carried out. The findings indicate that the valve chips can 

be consistently activated at a low pressure of 220 Pa, which is achievable on a typical 

microfluidic process on the centrifugal platform. In this study, we also conclude that 
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under constant pressure, increasing the chip diameter increases the amount of deflection 

in the latex layer. This allows adjustment of the required pressure to operate the check 

valves by changing the chip size.  As a demonstration of the effectiveness of the 

developed valve chips, the TCV and BCV chips are utilized in a liquid swapping 

microfluidic process. The designed liquid swapping process is developed to demonstrate 

the ability of the chips in expanding the usability of TPP on the centrifugal microfluidic 

platform. The results show that the developed TCV and BCV chips are able to 

accurately control the direction of the air/liquid flow. 

Various biomedical applications can be performed on the centrifugal 

microfluidic platform by utilizing the developed valving mechanisms. As a proof of 

concept, Bradford assay and ELISA assay were demonstrated using the developed PLV 

and check valve, respectively. The results show that the developed valves can be 

successfully integrated to perform biomedical applications on the centrifugal 

microfluidic platform. The results also show that the centrifugal microfluidic platform 

can be utilized as a platform for detecting different diseases; for example, a liver 

functionality test can be performed by measuring the albumin concentration in the urine. 

This capability can be important for handling samples from patients with infectious 

diseases, such as HIV.  It is also demonstrated that with the developed valves, multistep 

assays, such as ELISA, can be performed in fully automatic fashion and that will reduce 

the need for tedious labour work and procedures.  

In conclusion, the developed valves proof to be reliable mechanism with 

physical barrier, vapor-tight for long term storage (VCV and check valve), reduce 

contact between sample and valving material, reactuatable in multistep assay, and easy 

to fabricate and implement. These specifications make the developed valves integratable 

in most biomedical and chemical applications on the centrifugal platform.  
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5.2 Recommendation 

Some recommendations for future work are listed below based on the output of 

this work:  

 Extend the study on the developed VCV valve, and in particular miniaturizing 

the actuation heating source to improve the portability of the whole system.  

 Improve the injection process of the wax plug for easier valve implementation.  

 Extend the study of the developed PLV valve in 3D configuration to 

miniaturize the centrifugal platform. 

 Develop mass production method for the proposed TCV and BCV check 

valves for more fabrication accuracy, and easier implementation.  

 Continue the study to utilize the developed check valves to perform different 

chemical and biomedical assays.     
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8 APPENDIX A 
 

 

 

Figure A 1: S-PLV and D-PLV designs dimensions 

(a) and (b) respectively shows the designs specification of S-PLV and D-PLV. As 

mentioned in the main manuscript, both designs are consists of three main 

chambers: source chamber, destination chamber and venting chamber. The three 

chambers are connected together with liquid channels and venting channels. 

 Source chamber is 5mm height, 11mm width and 1mm depth.  

Destination chamber is 5mm height, 16.5mm width, and 1mm depth.   

Venting chamber is 9.5mm height, 5mm width and 2.5mm depth. 

Venting and liquid channels are all 0.7mm width and 0.5mm depth. 
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Figure A 2: PLV liquid switching design dimensions  

(a) switching layer: source chambers and destination chambers are 6.5mm 

diameter and 1mm depth. Source chamber A liquid channel is 1mm width and 

0.5mm depth. Source chamber B liquid channel is 0.4mm width by 0.5mm 

depth. All the other channels are 0.7mm width by 0.5mm depth.  

(b) Venting layer: Venting chamber A and B are 6.5mm diameter and 1mm depth. 

All the liquid and venting channels are 0.7mm width and 0.5mm depth. 
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Figure A 3: Microfluidic platform layers for Liquid switching 

Top layer: 2mm PMMA with only venting holes cut-through (cover layer). 

Second layer: 0.1 PSA with the venting layer design cut-through. 

Third layer: 4mm PMMA where the venting design in Figure A 3(b) engraved-in 

(venting layer). 

Fourth layer: 0.1 PSA adhesive layer with the switching design cut-through. 

Fifth layer: 4mm PMMA layer where the switching design in Figure A 3(a) 

engraved-in. 
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Figure A 4: Microfluidic design of liquid metering 

Chambers: 

Metering chambers: 3.8mm width, 6.5mm length, and 4mm depth.  

Destination chambers: 3.8mm width, 11.5mm length, and 4mm depth.  

Venting chambers: 3.8mm width, 9.5mm length, and 2.5mm depth. 

 

Channels:  

Source chamber liquid channel: 1mm width and 0.5mm depth.  

Metering chambers channel to the destination chambers: 0.4mm width and 0.5mm 

depth. 

Venting channels: 0.7mm width and 0.5mm depth. 
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Figure A 5: Microfluidic platform layer for liquid metering 

Top layer: 2mm PMMA with only venting holes cut-through (cover layer). 

Second layer: 0.1 PSA with the metering design cut-through. 

Third layer: 4mm PMMA where the venting design in Figure A5 engraved-in 

(venting layer). 

Fourth layer: 0.1 PSA adhesive layer with the metering design cut-through. 

Fifth layer: 2mm PMMA layer (bottom cover layer). 
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9 APPENDIX B 
 

Test Platform Dimensions: 

Channel length=15cm, Channel width=1mm 

Channel depth=1mm 

Experimental steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1- Install the check valve. 

2- Inject a specific height of the testing 

liquid from the inlet hole.  

3- Reposition the platform standing 

vertically such that the inlet hole is on 

top and the check valve is at the 

bottom. 

4- The minimum pressure (based on the 

liquid height) where the liquid starts 

flowing is considered the actuation 

point of the check valve. 

5- The time it takes for the liquid to travel 

between two different points in the 

channel is recorded to calculate the 

flow rate at that specific pressure.  

Figure A 6: Actuation pressure 

and flow rate test platform 


