ABSTRACT

This doctoral thesis investigates biogenic emissions of selected Very Short-lived Species (VSLS) bromocarbons like bromoform (CHBr₃), dibromomethane (CH₂Br₂), dibromochloromethane (CHBr₂Cl) and selected chlorocarbons like chloroform (CHCl₃) and tetrechloroethylene (C₂Cl₄) from different environments through ground and a shipborne field campaign. Brominated halocarbon is an atmospheric trace gas and a major source of atmospheric bromine. Recent estimates of brominated halocarbon sources and sinks indicate anthropogenic sources to be negligible. The major source of atmospheric brominated compounds is believed to be from marine especially coastal area. The production pathways of brominated compounds in the ocean are, however, poorly understood. Measurements were made using a μ -Dirac, which is a self-built instrument, consisting of a continuously operating gas chromatograph (GC), equipped with electron capture detector (ECD). This system was used for 3 ground field long term measurement in the coastal and tropical area to measure the air concentrations and the atmospheric dry gas mole fractions of the selected VSLS bromocarbons. The correlations plot of the mixing ratios between well correlated bromocarbons VSLS suggests that the bromocarbons species were emitted from biogenic or anthropogenic sources for both long term and short term measurement.

Laboratory experiments were also conducted to test the hypothesis that bromocarbons produced in the ocean's surface water are by marine plant like seaweeds, instead of direct biological production by phytoplankton or bacteria. The experiments were conducted on 7 types of seaweeds differentiated by its groups red, brown and green. A commercial purge and trap connected to a commercial GC-ECD was used to measure the VSLS halocarbons in seawater. The lab production studies showed diurnal cycle in the water samples. The concentration increased with increasing light intensity and sea surface temperature (SST) showing the highest concentration level at mid-day. The production of bromocarbons VSLS observed in all experiments kept in the sunlight was five times higher than the production from incubations kept in the dark. This strongly indicates photochemical production with no direct influence by biota. The mean photochemical production rate of the bromocarbons VSLS from each experiment was 1 to 137 pmol per g⁻¹ FW⁻¹ h⁻¹, where, the red seaweeds was the highest producer followed by brown and green. The bromoperoxidase (BPO) enzyme was also extracted from all types of seaweeds, and result shows high BPO activity in red followed with brown and green seaweeds. From these results, it can be concluded that the photochemical production of bromocarbons VSLS plays an important role that may be dominant, in contributing to the tropospheric and stratospheric ozone depletion over the tropical region.

ABSTRAK

Tesis doctoral ini menyelidik pembebasan biogenic Spesies dengan Hayat Amat Pendek (VSLS) bromokarbon terpilih seperti bromoform (CHBr₃), dibromometana (CH₂Br₂), dibromoklorometana (CHBr₂Cl) dan klorokarbon terpilih seperti kloroform $(CHCl_3)$ dan tetrakloroetilena (C_2Cl_4) daripada persekitaran yang berbeza melalui pensampelan di daratan dan lautan. Halokarbon berbromin merupakan suatu gas surih di atmosfera dan sumber utama bromine atmosfera. Anggaran terkini bagi sumber dan sinki halocarbon berbromin menunjukkan bahawa sumber antropogenik boleh diabaikan. Sumber utama sebatian-sebatian berbromin di atmosfera adalah dipercayai datangnya daripada lautan, terutama kawasan persisiran pantai. Walau bagaimanapun, laluan bagi penghasilan sebatian berbromin dalam lautan masih belum difahami sepenuhnya. Pengukuran dibuat dengan menggunakan µ-Dirac, iaitu suatu peralatan yang dibina sendiri, yang terdiri daripada kromatograf gas (GC) yang beroperasi secara berterusan dan dilengkapkan dengan pengesan penangkap electron (ECD). Sistem ini digunakan untuk 3 pengukuran jangka panjang daratan di kawasan persisiran pantai tropika, iaitu untuk mengukur kepekatan udara dan pecahan mol gas kering atmosfera VSLS bromokarbon terpilih. Plot korelasi nisbah percampuran yang memberikan korelasi yang baik di antara bromokarbon VSLS menyimpulkan bahawa spesies bromokarbon dibebaskan daripada sumber biogenic atau antropogenik bagi kedua-dua pengukuran jangka pendek atau jangka panjang.

Eksperimen di makmal juga dijalankan bagi menguji hipotesis bahawa bromokarbon yang dihasilkan dalam air permukaan laut adalah daripada tumbuhan marin seperti rumpai laut, dan tidak melalui penghasilan biologi terus oleh fitoplankton atau bacteria. Eksperimen telah dilakukan ke atas 7 jenis rumpai laut yang dibezakan oleh kumpulan, iaitu merah, coklat dan hijau. Suatu peralatan singkir dan perangkap komersial yang disambungkan kepada suatu GC-ECD komersial digunakan untuk mengukur halocarbon VSLS yang terdapat dalam air laut. Kajian penghasilan dalam makmal menunjukkan kitar diurnal dalam sampel air. Kepekatan meningkat bersama peningkatan keamatan cahaya dan suhu permukaan laut (SST) dengan menunjukkan aras kepekatan tertinggi pada tengah hari. Penghasilan VSLS bromokarbon yang diperhatikan dalam semua eksperimen yang didedahkan kepada cahaya matahari adalah lima kali lebih tinggi daripada penghasilan daripada eskperimen yang disimpan dalam gelap. Ini dengan jelas menunjukkan penghasilan fotokimia tanpa pengaruh langsung daripada biota. Min bagi kadar penghasilan fotokimia VSLS bromokarbon daripada setiap eksperimen adalah di antara 1 kepada 137 pmol per g⁻¹ FW⁻¹ h⁻¹, di mana rumpai laut merah merupakan pengeluar tertinggi, diukuti oleh rumpai laut coklat dan hijau. Enzim bromoperoksidase (BPO) juga telah diekstrak daripada semua jenis rumpai laut, dan keputusan menunjukkan keaktifan BPO yang tinggi bagi rumpai laut jenis merah, diikuti oleh coklat dan hijau. Daripada hasil kajian ini dapat disimpulkan bahawa penghasilan fotokimia VSLS bromokarbon memainkan peranan penting yang mungkin juga dominan dalam menyumbang terhadap penipisan ozon troposfera dan stratosfera di kawasan tropika.

ACKNOWLEDGEMENT

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to finished this thesis successfully. I am deeply indepted to my supervisor Professor Dr. Mhd. Radzi bin Abas and Professor Dr. Noorsaadah Abd. Rahman, whose accepted me as their PhD student and encouraged, advised, support and guidance me throughout this thesis period. And not least, my internal advisors Prof Dr. Amru Nasrulhaq Boyce and Prof Dr. Phang Siew Moi for guided and advised me on biochemistry work and the used of their laboratory facilities. I am also grateful to University of Malaya for the scholarship and research grant which enable me to carry out this PhD program,

I also want to express my deep thanks to the members of the advisor committee from the department of chemistry, atmospheric chemistry group University of Cambridge; Professor Dr. John Pyle, Dr. Neil Harris, Dr. Andrew Robinson and Mr. Bryan Gostlow and from the school of environmental sciences University of East Anglia; Professor Dr. William Sturges, Dr. David Oram, Dr. Graham Mills and Ms. Emma Leedham for their excellent advises and detailed review during the preparation of this thesis.

Special thanks to my lab mates especially; Dr. Tay, Aaina, Aalia, Dr. Yean Kee, Norashikin, Dr. Chee, Fiona, Jebry and Syed and at University of Cambridge; Matt and Iq for brilliant ideas and suggestion in atmospheric chemistry work. Last but not least, my deepest appreciation to my wife Sakinah Mohd Alauddin, children and family members for their patience and supporting me the many hours I spent preparing this thesis and my field works.

CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENT	vi
CONTENTS	vii
LIST OF FIGURES	xiv
LIST OF TABLES	xxi
LIST OF ABBREVIATIONS	xxiii
LIST OF MOLECULAR FORMULAE	XXV
LIST OF SYMBOLS	xxvii
LIST OF UNITS	xxviii
1 General Introduction	
1.1 General introduction	2
1.2 Ozone production and destruction	5
1.2.1 Ozone in the stratosphere	5
1.2.2 Ozone in troposphere	8
1.3 Halocarbons	11
1.3.1 Basic chemistry of halocarbons	12
1.3.2 Ozone depletion mechanism due to halogens	13
1.4 Lifetimes of halocarbons in the atmosphere	15

1.4.1	Long-lived and Short-lived halocarbons	16
1.4.2	Very short-lived halocarbon in the atmosphere	23
1.5 D	istributions of VSLS in the troposphere and stratosphere	24
1.6 So	ources and sinks of VSLS	31
1.6.1	Halocarbons sources and transport	31
1.6.2	Transport to the troposphere and stratosphere	34
1.6.3	VSLS transport from surface to Tropical tropopose layer (TTL)	35
1.6.4	VSLS transport from TTL to stratosphere	37
1.7 S	ources of VSLS	38
1.7.1	Anthropogenic	40
1.7.2	Biogenic	41
1.8 G	oal of the study	43
1.9 R	eferences	44
2 A	nalytical methodology	
2.1	Introduction	60
2.2 Meth	nod for halocarbons measurement	61
2.2.1 I	Liquid-liquid extraction	62
2.2.2	Head space	63
2.2.3 P	urge and Trap	64
2.3 Ins	strumentation setup	67
2.3.1	VSLS halocarbons measurement	67
2.3.1.1	Micro-Dirac Gas chromatography (µ-Dirac GC)	67
2.3.1.1.	1 Instrument description	68
2.3.1.1.1	.1 Inlet manifold	70

2.3.1.1	3.1.1.1.2 Sample adsorption and desorption system	
2.3.1.	2.3.1.1.1.3 Temperature programmed column	
2.3.1	1.1.1.4 Helium pressure controller	74
2.3.1.	1.1.5 Detection system	74
2.3.1.	1.1.6 Nitrogen pressure controller	75
2.3.1.	1.1.7 Back pressure controller	76
2.4	μ-Dirac performance	76
2.4	4.1 Calibration	76
2.4	Accuracy and precision	77
2.5	Flasks sampling	78
2.5	5.1 Cruise sampling and measurements	80
2.6	Production rate analysis	80
2.6	5.1 Seaweeds collection	80
2.6	5.2 Analytical instrumentation	80
	2.6.2.1 Purge and trap system	81
	2.6.2.2 Standard	83
	2.6.2.3 Calibration	84
2.6.3	Accuracy and precision	89
2.6.4	Blank	91
2.6.5	Purge and Trap programs	91
2.6.6	Chromatographic conditions	92
2.7	Hatchery conditions	92
2.8	Parameters and samples analysis	93
2.9	Extraction of BPO enzyme from seaweeds	94

	2.9.1 Enzyme crude extraction	95
	2.9.2 Enzymatic assay	95
	2.9.3 Protein test	96
2.10	References	100
3	Permanent site measurements	
3.1	Introduction	110
3.2	Study sites	111
3.3	Long-term air measurement sites	113
	3.3.1 Tawau	113
	3.3.2 Danum Valley	115
3.4	Result	117
	3.4.1 Overview meteorological condition	118
	3.4.2 Observations from the long-term measurement	125
	3.4.2.1 Tawau site	125
	3.4.2.2Regression Analysis	130
	3.4.2.3 Emission ratio	138
3.5	NAME model used for source emission prediction	149
3.6	Analyses and discussion	151
3.9	References	158
4	Cruise and campaign measurements	
4.1	Introduction	163
4.2	Ship-borne air measurement	167

х

4.3	June-August Malay	sia halocarbons and Semporna campaign	170
4.4	Results and Discuss	sion	173
	4.4.1.1 Perdana cri	uise (PESC09) observation	173
	4.4.1.1.1 Halo	carbon measurements	173
	4.4.1.2 Regi	onal analysis	177
	4.4.1.2.1 Strait	s of Malacca (Stations 1-3)	177
	4.4.1.2.2 Sou	th China Sea (Stations 5 to 14)	177
	4.4.1.2.3 Regio	onal differences: Sulawesi and Sulu	178
	Seas	(Stations 15-27)	
	4.4.1.3 Drivers of v	ariability	179
	4.4.1.3.1 Mete	eorological variability	180
	4.4.1.3.2 Biol	ogical activity	182
	4.4.1.4 Emission ra	tios	186
	4.4.1.5 Total bromi	ne	190
	4.4.2 VSLS haloc	arbons campaign	191
	4.4.2.1 Mete	eorological condition during Campaign	191
	4.4.2.2 VSL	S halocarbons measurements	194
	4.4.2.2.1	Port Dickson (June 29 th to July 1 st , 2010)	194
	4.4.2.2.2	Langkawi and Johor (August 5 th to 20 th , 2010)	200
	4.4.2.2.3	Semporna seaweeds farm	201
	4.4.2.2.4	Regression Analyses	204

4.4.3	Estimation of source emission	207
4.5	Conclusion	211
5	Determination of halocarbons in seawater and the the occurrence of BPO in marine seaweeds	
5.1	Introduction	225
5.2	Oceanic distribution of VSLS halocarbons	225
5.3	Seaweeds as a source of halocarbons?	227
	5.3.1 Halocarbons production from marine algae	229
	5.3.2 Previous studies on halocarbons productions	230
5.4	Mechanisms behind the productions	231
	5.4.1 Natural occurring of halogenated compounds	231
	5.4.2 The occurrence of haloperoxidase enzymatic activity	233
	in marine algae	
	5.4.2.1 Vanadium haloperoxidase	233
	5.4.3 Purposed mechanisms of halocarbons from marine algae	
5.5	Seaweeds distributions at Malaysia	238
5.6	Objective of studies	243
5.7	Result and discussion	245
	5.7.1 Seaweeds natural production experiment	245
	5.7.1.1 The effect of seaweeds upon VSLS bromocarbons	245
	in seawater	
	5.7.2 Production rates of brominated compounds	251

xii

	5.7.3	Correlations of VSLS bromocarbons emissions and	255
	their in	plications	
	5.7.4	Influenced parameters on production rate	259
	5	5.7.4.1 Surface seawater <i>Chl-a</i> and light intensity	259
	5.7.3	The occurrence of BPO activity	264
5.8	Conc	lusion	267
5.9	Refe	rences	268
6	Gene	ral conclusions	
6.1	Gene	ral conclusion	283
6.2	Futu	re work	284
6.3	Refe	ences	286

Appendices

LIST OF FIGURES

Figure 1.1	Ozone concentrations in the stratosphere and troposphere	4
Figure 1.2	Common ozone abundances measurement techniques	5
Figure 1.2.1	Chapman theory reaction of ozone production and loss reaction	6
Figure 1.2.2	Catalytic ozone reactions in the stratosphere	7
Figure 1.2.3	Mechanism of ozone production in troposphere	9
Figure 1.2.4	Tropospheric ozone loss reactions	10
Figure 1.3	Radiative forcing of greenhouse gases contribution cause by	12
	anthropogenic activities in the atmosphere from 1975 to 2005	
Figure 1.3.1	Ozone depletion or 'Ozone hole" at the Antarctic due	14
	to halogen monoxide	
Figure 1.3.2	Tropospheric ozone loss reactions	15
Figure 1.4	Evaluation of selected ozone-depleting substances	18
	(ODSs) and substitute gases	
Figure 1.4.1	The atmospheric abundances of individual ODSs at earth	22
	surface past and future prediction	
Figure 1.5	Example of oceanic halocarbon production into the atmosphere	32
Figure 1.6	Halogen Source Gases Entering the Stratosphere in 2008	33
Figure 1.6.1	The dynamical pathways in the tropics transporting	35
	VSL source gases (SGs) and product gases (PGs)	
	into the stratosphere	
Figure 1.7	Summary activities in this study	45

Figure 2.1	Common volatile compounds extraction techniques used	61
	in environmental analysis	
Figure 2.2	Simple setup for static headspace technique	64
Figure 2.2.1	Schematic diagram of the Purge and Trap system	66
Figure 2.3	The schematic diagram of µ-Dirac GC	71
Figure 2.3.1	The various stages of the GC method for a typical	73
	µDirac chromatogram	
Figure 2.4	Stratum Tekmar Purge and Trap system diagram	83
	during purge and desorb steps.	
Figure 2.5	Calibration linear regression curve for	87
	CHBr ₃	
Figure 2.5.1	Ion chromatogram for working standard of	90
	THM (4.94ngl ⁻¹) in the seawater with purging time	
	of 12 minutes	
Figure 2.6	Incubation tub at Rimba Ilmu hatchery	94
Figure 2.7	Standard curve for protein determination using Lowry test	98
Figure 3.1	Ground based site at Kampung Batu Payung,	112
	Tawau	
Figure 3.2	Kampung Batu Payung (KBP) observation lab at	114
	Tawau contained μ-Dirac	
Figure 3.3(a)	The µ-Dirac GC located at KBP site	115
Figure 3.3(b)	Malaysian Meteorological Department (MMD) Global	117
	Atmospheric Watch (GAW) station in Danum Valley.	

Figure 3.4	Schematic wind flow during South West Monsoon	119
Figure 3.4.1	Average <i>chl-a</i> concentration at measurement sites	121
	from October 2008 to April 2011	
Figure 3.4.2 (a)	The 10 days backtrajectories for 23 rd , 28 th	123
	November 2008 and 16 th December 2008 at KBP, Tawau	
Figure 3.4.2 (b)	The 10 days backtrajectories for 5 th February 2009	124
	and 10 th November 2009at KBP, Tawau	
Figure 3.4.2.1(a)	Box plot for CHBr3 concentration from 2008 to	127
	2011 (Tawau) and 2008 to 2009 (Danum).	
Figure 3.4.2.1(b)	Box plot for CHBr3 concentration from 2008 to	128
	2011 (Tawau) and 2008 to 2009 (Danum).	
Figure 3.4.2.2	Linear plot CH ₂ Br ₂ against CHBr ₃ at KBP, Tawau	135
	for (a) whole months, coloured by month and b) to	
	e) individual months.	
Figure 3.4.2.3	CH ₂ Br ₂ /CHBr ₃ plotted against CHBr ₃ for a) all months,	140
	coloured by months and b) individual months.	
Figure 3.5	Time series of VSLS bromocarbons mixing ratios	142
	during high event on selected days in a) November 2008,	
	December 2008 and b) February 2009	
Figure 3.6	Ratio of [CHBr ₃]/[CH ₂ Br ₂] versus the ratios of	145
	[CHBr ₂ Cl]/[CH ₂ Br ₂] for the selected months.	
Figure 3.7.1	Selected days in December 2008 NAME air masses	154
	10 days' backward trajectories at KBP, Tawau	
Figure 3.7.2	Selected days in February 2009 NAME air masses	155
	10 days' backward trajectories at KBP, Tawau.	

Figure 3.7.3	Selected days in August 2009 NAME air masses	156
	10 days' backward trajectories at KBP, Tawau	
Figure 3.7.4	Selected days in December 2009 NAME air masses	157
	10 days' backward trajectories at KBP, Tawau.	
Figure 4.1	Sampling locations overlay with SeaWiFS chl-a during	169
	PESC 2009	
Figure 4.2	VSLS halocarbons campaign measurements at	172
	Peninsular Malaysia (upper panel) and Semporna seaweeds	
	farm, Sabah Borneo Malaysia (lower panel)	
Figure 4.3	Bromocarbons and C ₂ Cl ₄ mixing ratios for each station	174
	during PESC 2009.	
Figure 4.4	10 days air distribution backward trajectories calculated	182
	from the NOAA HYSPLIT model for each selected stations	
Figure 4.4.1	Chl-a at the sampling stations from the CTD measurements	184
	against <i>chl-a</i> from satellite remote sensing	
Figure 4.4.2	Halocarbon mixing ratios as a function of in situ	185
	measurements of <i>chl-a</i> in the water column	
Figure 4.4.3	Correlations plot of CH ₂ Br ₂ and CHBr ₂ Cl versus CHBr ₃	187
	mixing ratios	
Figure 4.4.4(a)	Plot CH ₂ Br ₂ /CHBr ₃ and CHBr ₂ Cl/CHBr ₃ against CHBr ₃	189
Figure 4.44(b)	Log-log plots of CHBr ₃ /CH ₂ Br ₂ against CHBr ₂ Cl/CH ₂ Br ₂	189
	for all stations during Perdana Cruise	
Figure 4.5(a)	Sea Tides during campaign measurements at PD	193
Figure 4.5(b)	Sea Tides during campaign measurements at TB	193

Figure 4.5.1	Time series of VSLS bromocarbons at Ilham Resort,	196
	Cape Rachado PD	
Figure 4.5.2	VSLS bromocarbons measured on 13 th January 2011	198
	over seaweeds bed at Ilham resort, PD	
Figure 4.5.3	Time series of VSLS chlorocarbons at Ilham Resort,	199
	Cape Rachado PD	
Figure 4.5.4	Time series of VSLS halocarbons measurement during	201
	July-August 10	
Figure 4.5.5	VSLS bromocarbons mixing ratios at different locations	203
	over Kappaphycus cultivation at Semporna seaweeds farm	
Figure 4.6	Correlations between CH ₂ Br ₂ and CHBr ₂ Cl versus CHBr ₃	205
	at Cape Rachado, PD	
Figure 4.6.1	Correlations between CH ₂ Br ₂ and CHBr ₂ Cl versus CHBr ₃	206
	at Tanjung Balau, Johor	
Figure 4.6.2	Correlation between CH ₂ Br ₂ and CHBr ₂ Cl versus CHBr ₃	206
	at Chenang Beach, Langkawi	
Figure 4.6.3	Selected days in August 2010 NAME air masses	209
	10 days' backward trajectories Chenang Beach, Langkawi	
Figure 4.6.4	Selected days in August 2010 NAME air masses	210
	10 days' backward trajectories Tanjung Balau, Johor	
Figure 4.6.5	SeaWiFS chl-a concentration data during the campaign	211
	measurement	
Figure 4.7.1(a)	Plot of CH ₂ Br ₂ /CHBr ₃ and CHBr ₂ Cl/CHBr ₃ against CHBr ₃	213

Figure 4.7.1b)	Log-log plots of CHBr ₃ /CH ₂ Br ₂ against CHBr ₂ Cl/CH ₂ Br ₂	213
	for all stations during Perdana Cruise	
Figure 4.7.2	Plot of CH ₂ Br ₂ /CHBr ₃ against CHBr ₃ during PESC 09	214
	and campaign	
Figure 5.1	Natural halogenated compounds found in marine algae	233
Figure 5.2	The oxidation of halide by H_2O_2 which accomplish by BPO	
Figure 5.3	Scheme pathway of CHBr ₃ production from green algae,	237
	Penicillus capitatus proposed by Beissner et al. (1981)	
Figure 5.4	Scheme pathway of CHBr ₃ production from green algae,	238
	Penicillus capitatus proposed by Morrison and Boyd (1992)	
Figure 5.5	Sampling area for seaweeds collection at Cape Rachado,	240
	Port Dickson	
Figure 5.5.1	Sampling area for seaweeds collection at Tanjung Balau,	240
	Desaru Johor	
Figure 5.5.2	0.3mx0.3m quadrate used for estimation of seaweeds biomass	241
Figure 5.6	Ion chromatogram of samples (green seaweed) and blank	247
	(seawater).	
Figure 5.6.1	Concentrations of VSLS bromocarbons released in seawater	248
	from red seaweed	
Figure 5.6.2	Concentrations of VSLS bromocarbons released in seawater	249
	from brown seaweeds	
Figure 5.6.3	Concentrations of VSLS bromocarbons released in seawater	250
	from green seaweeds	

Figure 5.6.4	Correlations of $CH_2Br_2/CHBr_3$ (upper panel) and 2	
	CHBr ₂ Cl/CHBr ₃ (lower panel) measured in surface seawater	
	contains 7 different types of seaweeds	
Figure 5.6.5	Insitu 24 hours average light intensity and <i>chl-a</i> during	262
	hatchery experiment	

LIST OF TABLES

Table 1.1	Atmospheric lifetimes, global emissions, ozone depletion	17
	potential and global warming potentials of some halogen	
	source and HFC substitute gases	
Table 1.2	Lifetimes for very short-lived halogenated source gases	23
Table 1.3	Fluxes of bromine from bromoform (CHBr ₃)	26
	and dibromomethane (CH_2Br_2) in Gg Br/yr, and	
	iodine from methyl iodide (CH ₃ I) in Gg I/yr	
Table 1.4	Summary of available observations of VSLS source	28
	gases from the marine boundary layer (MBL) to the tropical	
	tropopause layer (TTL)	
Table 2.1	µ-Dirac target compounds and measurement during Cape	69
	Verde ground-based and air craft campaign	
Table 2.2	Limit of detection for THMs mixture in seawater	86
Table 2.3	Percentage mean recovery and relative standard	90
	deviation of each compound in seawater	
Table 2.4	Preparation scheme using Lowry test	97
Table 3.1	Minimum, maximum and mean mixing ratios of	129
	CHBr ₃ and CH ₂ Br ₂ throughout the years at KBP,	
	Tawau	
Table 3.2	Linear regression correlation with respect to the	136
	CHBr ₃ for KBP, Tawau data set calculated for other	
	VSLS bromocarbons, with slope m and correlation r^2	
Table 4.1	Summary of measured VSLS halocarbons during	175
	PESC09	

Table 4.2	Minimum, Maximum, Average and standard	197
	deviation of measured VSLS halocarbons at all sites	
Table 5.1	List of seaweed species observed from December	241
	2009 to March 2011 from Cape Rachado, Port Dickson	
Table 5.2	Frequency and dominance (%) of seaweed species at Cape	242
	Rachado, Port Dickson from December 2009 to June 2010	
Table 5.3	List of seaweed species for production rate experiment	243
Table 5.4	Minimum and maximum halocarbons concentrations	
	in tub contain seawater for different types of seaweeds	251
	during 24 hours period.	
Table 5.5	Production rate of naturally produced brominated	254
	compounds in 1000ml incubation bottles for different	
	types of seaweeds.	
Table 5.6	Total of Bromine release measured for seaweeds	254
	collected at the coastal of Port Dickson and Tanjung	
	Balau.	
Table 5.7	Correlations of well correlated compounds observed	258
	during hatchery tub experiment.	
Table 5.8	Average VSLS bromocarbons ratios from	258
	hatchery tub experiment.	
Table 5.6	Correlations between parameters influenced on the	263
	VSLS bromocarbons emission during hatchery experiment.	
Table 5.7	Distribution of BPO activity in red, brown and green	267
	seaweeds from halocarbons production experiment.	

LIST OF ABBREVIATIONS

BAS	British Antarctic Survey
BPO	bromoperoxidase
CFC	chlorofluorocarbon
CFC-115	chloropentafluoroethane (C_2ClF_5)
Chl-a	chlorophyll a
HCFCs	hydrochlorofluorocarbons
CBL	convective boundary layer
CFC-114	dichlorotetrafluoroethane (ClF ₂ CCF ₂ Cl)
DOAS	differential optical absorption
	spectroscopy
ECD	electron captor detector
e.g.	for example
GC	gas chromatograph
GWPs	global warming potentials
Z	height above sea surface [m]
LOD	Limit of detection
MBL	marine boundary layer
MS	mass spectroscopy
NOAA	National Oceanic and Atmospheric
	Administration (United States)
NEM	north east monsoon
Ν	north
NH	northern hemispheric
ODPs	Ozone depletion potentials
ODSs	Ozone depletion substances

OP3	oxidant and particle photochemical
	processes above a south-east Asian
	tropical rain forest project
PBL	planetary boundary layer
PGs	product gases
SST	sea surface temperature [°C]
sd	standard deviation
SGs	source gases
S	south
SWM	south west monsoon
SH	southern hemispheric
TBL	tropical boundary layer
VSLS	very short lived substances
VOCs	volatile organic compounds
W	west

LIST OF MOLECULAR FORMULAE

Br	bromine atom
BrO	bromine monoxide
CH ₂ BrCl	bromochloromethane
CHBr ₃	bromoform
CO_2	carbon dioxide
CCl ₄	carbon tetrachloride
Cl	chlorine atom
CIO	chlorine monoxide
CF ₂ Cl	chlorodifluoromethane radical
CHCl ₃	chloroform
CHBr ₂ Cl	dibromochloromethane
CHBrCl ₂	dichlorobromomethane
CH ₂ Br ₂	dibromomethane
CF_2Cl_2	dichlorodifluoromethane
HO_2	hydrogen dioxide
H_2O_2	hydrogen peroxidase
ОН	hydroxyl radical
CH ₃ Cl	methyl chloride
NO ₂	nitrogen dioxide
NO	nitrogen oxide
O ₂	oxygen
O ₃	ozone
HOx	term for HO or HO ₂
NOx	term for NO or NO ₂
C_2Cl_4	Tetrachloroethelyne

CFC-11	trichloroflouromethane (CCl ₃ F)
CFC-113	trichlorotrifluoroethane (CCl ₂ FCClF ₂)

LIST OF SYMBOLS

atm	atmosphere (as pressure unit)
τ	atmospheric lifetimes
$O^{1}(D)$	atom yield from photolysis of ozone
р	barometric pressure [mbar or hPa]
د	minute (unit for positions)
%	percent
Р	production rate per unit volume
t	time
uv	ultraviolet radiation

LIST OF UNITS

cm	centimetre (10^{-2} metres)
cm ³	centimetre cube
d	day (as time unit)
°C	degree Celsius
Gg	gigagram (10 ⁹ grams)
Gmol	gigamole (10 ⁹ moles)
hPa	hecto pascal (10 ² pascal)
hr	hour (as time unit)
"	inch
K	kelvin
Km	Kilometre
Кра	kilopascal (10 ⁻³ pascal)
L	litre
Mmol	megamole (10^6 moles)
m	metre
μg	microgram (10 ⁻⁶ grams)
mbar	millibar (10^{-3} bars)
mg	milligram (10 ⁻³ grams)
ml	millilitre (10 ⁻³ litres)
mm	millimetre (10 ⁻³ metres)
mmol	millimole (10 ⁻³ moles)
m	minute (as time unit)
Mol	mole
ng	nanogram (10 ⁻⁹ grams)
nm	nanometre (10^{-9} metres)

nmol	nanomole (10 ⁻⁹ moles)
pmol	picomole (10 ⁻¹² moles)
Pa	pascal (pressure unit)
ррЬ	part per billion
ppm	part per million
ppt	part per trillion
patm	picoatmospheres (10 ⁻¹² atmospheres,
	or 1.01325 x 10 ⁻⁷ Pa)
pmol	picomole (10 ⁻¹² moles)
S	second (as time unit)
kelvin	temperature [K]
yr	year (as time unit)