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a b s t r a c t

To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia
pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environ-
mental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease,
phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the
culture filtrates of all the 15 isolates at different time points of growth 4–24 h. Over time, activity of each
enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of
source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be
increased in 60–100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice
demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and
mortality rate ranged from few days to several weeks.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Burkholderia pseudomallei, a gram-negative, motile bacillus is
the causative agent of melioidosis. Melioidosis is a fatal disease that
can manifest as an acute, subacute or chronic infection. Despite
adequate treatment, mortality rate in patients with septic shock
caused by melioidosis are approximately 80–95% [1]. The severe
course of infection, aerosol infectivity and worldwide availability of
B. pseudomallei has raised concerns that it may be used as a bio-
terror agent [2]. Additionally the organism may remain latent or
dormant in the host for prolonged periods of time giving rise to
relapse and recurrence especially in immunocompromised patients
[3]. US Centres for Disease Control and Prevention included
B. pseudomallei in the category B list of critical agents because it was
considered to have potential in germ warfare and regarded as
a potential bioterrorist weapon [4].

The factors involved in the mechanisms and pathogenicity of
B. pseudomallei are not thoroughly understood. The organism is
known to produce several virulence factors, including endotoxin,
exotoxin, and protease, and others such as lecithinase, catalase,
peroxidase, superoxide dismutase, cytotoxic exolipid, lipase,
hemolysin, and water-soluble siderophore for iron acquisition from

the host, which contributes to its survival and maintenance [4–6].
Flagella, type II and type III protein secretion system are also known
virulence determinants with potential virulence factors including
polysaccharides, exoproteins, fimbriae, pili and putative adhesions
[7–11]. Apart from that, B. pseudomallei is also known to be
a facultative bacterial intracellular pathogen. It can invade both
phagocytic and nonphagocytic cells followed by intracellular
multiplication and intercellular spread [12–14].

Many workers have reported the possible role of housekeeping
extracellular enzymes such as proteases [15], acid phosphatase and
lecithinase [16,17] in the virulence and pathogenesis of bacterial
diseases. Anti-oxidant enzymes such as catalase, peroxidase and
superoxide dismutase have also been reported to play important
role in virulence [18]. Although many studies have suggested the
possible role of extracellular enzymes in virulence, little attention
has been paid to examine the effect of varying levels secreted and
the difference in virulence exhibited by different isolates of the
same species.

The objectives of this study were to investigate the serial
production of certain key enzymes and also to study the modifi-
cation in the production of these enzymes after a single passage in
mice and if time taken to kill coincided with high, low and medium
producers.

2. Results

All 16 isolates used in this study demonstrated similar growth
profiles irrespective of source of isolate. Following the initial lag
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phase of approximately four hours the cell density increased
rapidly during the log phase and reached stationary phase in 16 h
(Fig. 1). There was also good correlation (>95%) observed between
the optical density value of the bacterial culture and the viable
count of the 24-h culture.

Enzymatic activities were studied every two hours and it was
found that the first detection of any activity was only detected in
the culture medium at the four-h sampling (log phase) of the
growth cycle. The secretion of protease, phosphatase and phos-
pholipase C activities increased with bacterial growth rate and
there was no further increase during the stationary phase.
However, levels of anti-oxidant enzymes, such as, catalase, perox-
idase and SOD were low at the log phase but increased substantially
following eight hours of growth. Overall the amount was signifi-
cantly lower as compared to other enzymes. Quantitative analysis
of the amount of enzymes produced by each of the strains included
in the study demonstrated wide variation amongst the different
isolates. There was no correlation of amount of enzyme produced to
source of isolate, that is clinical or environmental, except for one
isolate from pus, Bp51674, which was phenotypically mucoid and
exhibited very low levels of all enzymes (Fig. 2(a)).

All the isolates were found to secrete all six enzymes and
phospholipase C was found to be the most abundant of the enzymes
secreted (4.3–29.0 U ml�1) followed by catalase (1.2–12.2 U ml�1).
Phospholipase C activity was high among the clinical isolates, of
which 60% of the isolates were from blood. In contrast all pus isolates
demonstrated lower activity of this enzyme. B. pseudomallei strain
23343 (ATCC) and all environmental isolates also exhibited high
phospholipase C activity. Phosphatase (4.5–15.9 U ml�1) and protease
(3.5–11.0 U ml�1) were released at similar amounts at intermediary
levels and peroxidase (0.6–4.0 U ml�1) and superoxide dismutase
(0.3–5.2 U ml�1) were detected at lower levels. Inter-isolate varia-
tions in the level of enzymes released were also observed. The largest
variations were observed in the amount of catalase (1.2–12.5 U ml�1),
and phospholipase C activities (4.3–29 U ml�1), whereas smaller
variations were observed with phosphatase (5–16 U ml�1) and
protease activities (3.5–11 U ml�1).

The effect on production of the extracellular enzymes following
a single passage in mice demonstrated that among the eight clinical
isolates, increased activity was observed for phospholipase C (87.5%
isolates), catalase (75% isolates), phosphatase (62.5% isolates),
peroxidase (50% isolates), superoxide dismutase (50% isolates) and
protease (25% isolates) (Fig. 2). Among the six environmental
isolates, increased activity was similarly observed for phospholipase

C, phosphatase and peroxidase (66.7% isolates), superoxide dis-
mutase and protease (50% isolates) and catalase (33.3% isolates)
(Fig. 3). The B. pseudomallei strain 23343 (ATCC) showed an increase
in all the enzyme activities except for phospholipase C and protease
(Fig. 2).

Mice mortality rate of each of the isolates was investigated using
three mice per group with an infective dose of 106 organisms,
subcutaneously. Comparison between the clinical and environ-
mental isolates demonstrated that 37.5% clinical isolates induced
early mortality (up to 2 days), as opposed to only 16.6% of the
environmental isolates (2 days); intermediate mortality was
induced by 12.5% clinical isolates (8 days) and similarly by 16.6%
environmental isolates (10 days); and late mortality was induced
by 50% of the clinical isolates (15–23 days) whereas amongst
environmental isolates 66.6% (15–28 days) demonstrated late
mortality. B. pseudomallei strain 23343 (ATCC) induced early
mortality (3 days) (Table 1).

Overall, 100% of the isolates that induced early mortality were
found to have an increase in catalase activity following a single
passage in mice as compared to only 37.5% isolates that induced late
mortality. Increased phosphatase activity was also observed in 80%
of the isolates that induced early mortality as compared to 62.5%
isolates that induce late mortality. However increased phospholi-
pase C activity was observed in 75% isolates that induced late
mortality as opposed to 60% of the isolates that induced early
mortality. Increased activity of protease, peroxidase and superoxide
dismutase was observed in similar number of isolates that induced
early and late mortality.

Amongst mice infected with B. pseudomallei strain 23343
(ATCC), it was found that 100% mice developed bacteraemia and
25% developed splenic abscesses (Table 1). None of the mice
developed external abscesses. Amongst the eight clinical isolates,
bacteraemia occurred in all mice for five of the isolates, 75% of the
mice for one isolate from blood and 50% of the mice in two isolates
from blood as well. Splenic abscesses were present in all mice due
to four isolates (Bp69425, Bp03611, Bp29564, and Bp12237) and in
75% of the mice due to two isolates (Bp57325, Bp51674). However,
two of the clinical isolates did not cause any splenic abscesses.
Bacteraemia was also present in all mice infected by the six envi-
ronmental isolates. Isolate E79/76 caused bacteraemia in 75% of the
mice and isolates E77/96 and B7-13 in 50% of the mice. All mice
infected with three of the environmental isolates, E958, E79/76 and
B7-15 developed splenic abscesses. Amongst the remaining isolates
75% of mice infected with E77/96 and 50% of the mice infected with
B7-13 demonstrated splenic abscesses. However there was one
isolate that did not cause any splenic abscess formation.

In general external abscesses were only visible in the mice that
demonstrated late mortality.

3. Discussion

Various studies have demonstrated the presence of secreted
proteins and their potential role in virulence of B. pseudomallei
[26–28]. Concentration and effect of different secreted proteins and
extent of disease exhibited by B. pseudomallei isolates from
different sources have not yet been reported.

Six housekeeping enzymes, which included phospholipase C,
catalase, phosphatase, protease, superoxide dismutase and perox-
idase were selected for assay to determine the concentration of
enzyme secreted and the time-point in the growth phase for their
secretion in order to determine if isolates from different sources
had different patterns of secretion, thus differences in virulence.
These six enzymes were chosen due to their potential role in
virulence of B. pseudomallei [29]. Proteases have been found to
digest biologically important proteins involved in invasion such as

Fig. 1. Serial production of protease (a), phosphatase (b), phospholipase C (c), catalase
(d), peroxidase (e) and superoixde dismutase (f) by a representative isolate of
B. pseudomallei (Bp84881) at different phases of growth. Assays for enzymes were
performed in triplicate and the mean value was used. Unit enzyme activity was
calculated for each enzyme as described in Materials and methods.
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collagen and elastin [30] and modulate immune response by
digesting the cell surface markers, receptors, complements and
immunoglobulins [31]. Acid phosphatases are a ubiquitous class of
enzymes that catalyze the hydrolysis of phosphomonoesters at an
acidic pH. In addition to mobilization of phosphate, some members
of this class of enzymes perform many essential biological functions
including regulation of metabolism, energy conversion, and signal
transduction [32]. Phospholipase C is known to cleave the phos-
phodiester bond of phospholipids to yield diglycerol and water-
soluble phosphate ester [33]. This can facilitate host cell lysis
because phospholipids such as phosphatidylcholine are primarily
found in eukaryotic cell membranes and lung surfactans [34]. This
enzyme was also found to play a role in escape of the pathogen
from the phagosome membrane and invasion of adjacent cells [35].
Catalase, peroxidase and superoxide dismutase are known to be
putative candidates that resist toxic oxygen intermediates such as
superoxide anions (O2

�), hydrogen peroxide (H2O2) and hydroxyl
radicals (OH) produced by host phagocytes [18]. Catalase negative
mutants of Mycobacterium tuberculosis have also been found to
exhibit lower virulence in guinea pigs [36].

In this study, all the six enzymes assayed in vitro were found to
be present in the culture supernatant of all the isolates. No
correlation was observed between the amount of these enzymes in
the culture supernatant and the source of isolate, that is clinical or
environmental. Phospholipase C, catalase, and phosphatase

activities contributed to the major enzymes present in the culture
filtrate of the isolates whereas protease, superoxide dismutase and
peroxidase activities were detected at lower concentrations among
the different isolates. All enzymatic activities were detected in the
culture medium of the isolates after the first four hours of growth
indicating that the enzymes were secreted while the cells are
actively growing in the exponential phase. Therefore, the enzymes
detected in the culture supernatant were those that were released
from intact viable cells and not as a result of release due to cell
death and lysis.

Catalase and superoxide dismutase were found to be released at
lower levels during the log phase but increased during the early
stationary phase. This might be important in vivo as these enzymes
have been reported to provide a higher protection to Burkholderia
cepacia to establish a chronic infection where the bacteria will be
facing a physiological situation similar to the stationary phase of
growth. Other conditions of stress such as tissue inflammation may
also stimulate a bacterial response similar to that of stationary
phase and induce activity of these enzymes [37].

B. pseudomallei isolates used in this study were also subjected to
a single passage in mice in order to evaluate the modification in the
production of the six enzymes. Increased activity of all the enzymes
was observed in 46–73% of the isolates. Nevertheless, this data has
to be treated with caution because we do not know if the same
condition is observed in the in vivo situation.
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Fig. 2. Enzyme activity of clinical isolates of B. pseudomallei before (a) and after (b) a single passage in mice. Assays for enzymes were performed in triplicate and the mean value
was used. Unit enzyme activity was calculated for each enzyme as described in Materials and methods.

K.M. Vellasamy et al. / Microbial Pathogenesis 47 (2009) 111–117 113



Author's personal copy

Infection studies in ICR mice also demonstrated varying degree
of virulence induced by the clinical as well as environmental
isolates. These findings are consistent with those of Ulett et al. [38],
who demonstrated that there was no association between viru-
lence and isolate origin (i.e. clinical vs environmental). Amongst the
isolates that induced early mortality, 100% showed an increase in
catalase activity and 80% showed an increase in phosphatase
activity. Once inside the mice, the bacteria may be exposed to
a variety of host killing mechanisms, including superoxide anions
(O2
�), hydrogen peroxide (H2O2) and hydroxyl radicals (OH)

generated by the respiratory burst as the bacterium remains bound
within an endosome [39]. Hydrogen peroxide has bacteriocidal
activity. In addition, interaction of H2O2 with myeloperoxidase,
reduced iron, or products of nitric oxide synthase may lead to
formation of more toxic intermediates [40]. It has been postulated
that bacterial factors that inactivate H2O2, such as catalase, may
interrupt production of these toxic species and aid persistence and
survival within host cells and tissues [41]. Acid phosphatases have
been also predicted to play a role in virulence, most often in
intracellular pathogens, by the inhibition of respiratory burst
[42,32]. Therefore, these enzymes could be important in persist-
ance of a pathogen. This could also be one of the mechanisms used
by B. pseudomallei to interrupt or modify pathways involved in

disease process. Other workers have also reported the correlation
between virulence and increased activity of catalase in Neisseria
meningitides [43], Legionella pneumophila [44], M. tuberculosis [45]
and phosphatases in M. tuberculosis [46], Yersinia pseudotubercu-
losis [47] and Salmonella typhimurium [48].

Phospholipase C activity was found to be produced in the
highest amount in 87% of the isolates before and post-passage in
mice. Furthermore, 75% of the isolates that induced late mortality
also showed an increase in the activity of this enzyme. External
abscesses were visible in these mice. Phospholipase C is known to
contribute to cytotoxicity [49]. Disruption of the host cell
membrane can take place and facilitate entry of the bacteria into
the bloodstream resulting in systemic spread. Macrophage lysis
might also increase inflammation and the release of enzymes
contributing to local tissue destruction. Previous studies have also
implicated phospholipase C as virulence factor involved in infection
of pathogenic bacteria including B. pseudomallei [50], Listeria
Monocytogenes [35], M. tuberculosis [51] and Pseudomonas aerugi-
nosa [52].

The six enzymes assayed may not necessarily be the only
enzymes responsible for bacterial virulence. Presence or absence of
other extracellular enzymes such as alanine dehydrogenase, gluta-
mine synthetase, nicotinamidase, alcohol dehydrogenase have also
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Fig. 3. Enzyme activity of environmental isolates of B. pseudomallei before (a) and after (b) a single passage in mice. Assays for enzymes were performed in triplicate and the mean
value was used. Unit enzyme activity was calculated for each enzyme as described in Materials and methods.
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been reported to be correlated with the virulence [53]. Further
studies using microarray and proteomics approach to map the
extracellular proteome of B. pseudomallei in order to understand
other extracellular proteins that might be involved in pathogenesis
and virulence could be carried out to complement the present study.

4. Materials and methods

4.1. Bacterial isolates and culture conditions

Nine clinical and six environmental isolates of B. pseudomallei
were used in this study. The clinical isolates were from haemo-
culture or pus of patients with either septicemic or localised
melioidosis from the University of Malaya Medical Center and the
environmental isolates were kindly provided by Dr. E.H. Yap,
Defense, Medical & Environmental Research Institute, DSO National
Laboratories, Republic of Singapore. These isolates were confirmed
biochemically using the API 20NE system (Biomerieux, France) and
characterised as arabinose-negative (ara�) biotypes. In addition all
15 isolates were also examined for siderophore production in
a previous study using the Chrome azurol S (CAS) method
described by Schwyn & Neilands [19] and were found to be positive
for siderophore production.

4.2. Viable count

A single colony of bacterial culture on nutrient agar was inoc-
ulated into 500 ml LB broth in a 2-l conical flask and incubated at
37 �C for 24 h with constant agitation at 180 rpm. Samples were
taken out at 4, 8, 12, 16, 20 and 24 h and bacterial density was read
at 660 nm. Viable count was also determined by plating serial
dilutions of culture onto nutrient agar plates.

4.3. Secretory enzyme assays

A single colony of each culture on nutrient agar was inoculated
into 500 ml LB broth and incubated at 37 �C for 24 h with constant
agitation at 180 rpm after which the bacterial density was read at
660 nm. The culture was then centrifuged at 20,000 g and the
supernatant collected and concentrated 50-fold by ultrafiltration
employing 10 kDa ultra-free centrifugal filters (Millipore, USA). The
final volume was adjusted according to the bacterial count (OD at

660 nm) of the culture. In order to investigate the level of extra-
cellular enzymes produced over time the isolates were also grown
in 50 ml LB broth for 4, 8, 12, 16, 20 and 24 h and tested. All enzy-
matic activities were expressed as unit activity per milliliter of
culture filtrate supernatant.

4.3.1. Protease assay
The protease assay in aqueous solution was performed as

described by [20] with minor modifications. Briefly, varying
concentrations of extracellular secretory products were incubated
with 0.5 ml of 0.05 M phosphate buffer (pH, 7.5) containing
5 mg ml�1 azocoll, overnight at 37 �C. The microcentrifuge tubes
were then spun at 200 g for 5 min, and the absorbance of the
supernatant measured at 540 nm. One unit of activity was calcu-
lated as the amount of protease needed to increase the absorbance
per hour from 0.05 to 0.1.

4.3.2. Acid phosphatase assay
Detection of acid phosphatase activity was assayed by

measuring the release of p-nitrophenol (p-NP) from p-nitrophenyl
phosphate (p-NPP) at a wavelength of 405 nm [21]. One ml of
100 mM sodium acetate buffer (pH 5.0) and 0.1 ml of 250 mM
p-NPP were added to 0.1 ml of the extracellular secretory products
to initiate the reaction. The reaction was terminated by the addition
of 2 ml of 0.4 N NaOH. One unit of phosphatase activity was defined
as the amount needed to release 1 mmol of p-nitrophenol per min.

4.3.3. Catalase assay
Catalase activity was determined by the decrease in the A240 of

H202 [22]. The catalase activity of the extracellular secretory
products was assayed by adding 0.05–0.7 ml of freshly prepared
13.2 mM H2O2 in 0.05 M potassium phosphate buffer (pH 7.0). The
solution was mixed, and a loss of absorbance was determined at
230 nm for 1–3 min. One unit of catalase activity was defined as
1 mmol of decomposed H2O2 per min.

4.3.4. Peroxidase assay
Peroxidase activity was determined by using o-dianisidine [23].

Briefly, 0.05 ml of the extracellular secretory product was added to
0.75 ml of 0.01 M phosphate buffer (pH 6.0) containing o-dia-
nisidine (10 mg ml�1), then 0.05 ml of 0.3% freshly prepared H2O2

in distilled water was added to the reaction mixture and the change

Table 1
Pathology induced by different isolates in ICR mice.

Isolate (Source) Early mortalitya Intermediate mortalitya Late mortalitya Bacteraemia (%)b Splenic abscess (%)b External abscess (%)b

ATCC
AT23343 (Blood) 3.25 100 25 0

Clinical isolates
Bp84881 (Blood) 1.75 100 0 0
Bp01859 (Blood) 2.00 100 0 0
Bp69425 (Blood) 2.50 50 100 0
Bp57325 (Blood) 8.50 100 75 0
Bp51674 (Blood) 23.00 75 75 50
Bp03611 (Blood) 15.00 100 100 25
Bp29564 (Pus) 19.25 100 100 75
Bp12237 (Pus) 20.50 50 100 50

Environmental isolates
E960 (Soil) 2.29 100 0 0
E958 (Soil) 10.00 100 100 0
E79/76 (Soil) 19.25 75 100 75
E77/96 (Soil) 24.00 50 75 25
B7-13 (Soil) 28.25 50 50 25
B7-15 (Soil) 15.50 100 100 0

a Mean number of day survival. The mice were monitored for 30 days and the surviving animals were sacrificed on day 30.
b Percentage was calculated from the total number of animals demonstrated bacteraemia/abscess.
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of absorbance recorded at 460 nm for 3–5 min. One unit of activity
was defined as 1 mmol of decomposed H2O2 per min.

4.3.5. Superoxide dismutase assay (SOD)
The SOD activity was assayed by monitoring the inhibition of

pyrogallol auto-oxidation at pH 8.0 [24]. The change in optical
density during the SOD mediated inhibition of oxygen free radicals
was measured at 420 nm. One unit of activity was defined as the
amount of SOD needed to reduce the absorbance per minute from
0.02 to 0.01.

4.3.6. Phospholipase C assay
Phospholipase C activity was assayed using p-nitrophenyl

phosphorylcholine (p-NPPC) as the substrate [25]. In brief, a 20 mM
solution of p-NPPC was prepared in 0.25 M Tris–HCl buffer pH 7.0
containing 60% glycerol (v/v) and 1 mM ZnCl2. The reaction was
started by the addition of 50 ml of the extracellular secretory
products into a total of 1 ml reaction mixture and incubated at
37 �C after which the absorbance was read periodically at 405 nm.
One unit of enzyme activity was calculated as the amount required
for the release of 1 mmol p-nitrophenol per min.

4.4. Animal passage studies

Two-month-old female ICR mice were inoculated subcutane-
ously with 1�103 CFU (in 0.01 M PBS, pH 7.2) of each isolate of
B. pseudomallei. Four days later, the mice were sacrificed and the
spleens macerated using a syringe piston after which 10 ml of the
suspension were transferred to 5 ml LB broth. Following incubation
at 37 �C for 2 h, with agitation at 180 rpm, 10 ml was added to
freshly prepared 500 ml LB broth, incubated at 37 �C for 24 h and
the extracellular products were processed as described above.

4.5. Infection studies

Two-month-old female ICR mice were inoculated subcutane-
ously with 1�106 organisms (in 0.01 M PBS, pH 7.2), in groups of
four mice per isolate, and the mortality was monitored for up to 30
days post-inoculation. On day 30 or on mortality, the mice were
dissected and examined for the presence of splenic abscesses as
confirmation of infection. Further bacteriological confirmation was
based on culture and identification for the bacteria isolated from
the spleen. Mortality rates were classified as early mortality (<4
days), intermediate mortality (4–14 days) and late mortality (15
days or more).
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