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ABSTRACT 

The aim of this study was to develop an optimal freezing protocol for African catfish 

(Clarias gariepinus) sperm with special reference to type of extender and cryoprotectant, 

molarity, equilibration duration, vapour temperature and vapour exposure duration. Using 

Tris-Citric Acid Yolk Extender (TCAYE), a 3x3x3x3 factorial experiment was carried out 

consisting of 3 molarities of glycerol (0.5, 1.0 and 2.0 M), 3 equilibration durations (120, 

140 and 160 minutes), 3 vapour temperatures (-80, -90 and -100oC) and 3 vapour exposure 

durations (5, 10 and 15 minutes). In addition, using Fish-Ringer Extender (FRE), a 3x3x3 

factorial experiment was also conducted involving 3 equilibration durations (120, 140 and 

160 minutes), 3 vapour temperatures (-80, -90 and -100oC) and 3 vapour exposure 

durations (5, 10 and 15 minutes). The molarity of cryoprotectant in FRE extender was 

fixed at 10% DMSO. Briefly, the straws containing the sperm were placed in refrigerator at 

4oC with the fixed equilibration duration after which exposed to liquid nitrogen vapour at 

the fixed vapour temperature with the fixed vapour exposure duration. Subsequently, the 

straws were directly plunged into liquid nitrogen. The frozen sperm were thawed at 30oC 

for 30 seconds to evaluate the sperm motility characteristics using the automated semen 

analyzer (IVOS; Hamilton Thorne, USA). The effects of factors and parameters measured 

were analysed using Analysis of Variance (ANOVA) followed by Duncan Multiple Range 

Test (DMRT). In Experiment 1, large body weight (BW) of African catfish gave the 

highest fresh sperm total motility (82.40±4.59%) followed by medium BW (51.64±9.82%) 

and small BW (40.40±12.16%), whereby small BW fish were significantly different in 

total motility compared with the other two groups studied. In Experiment 2, glycerol with 

molarity of 0.5 M showed significantly the highest value of frozen-thawed sperm total 

motility (32.27±2.05%) as compared to 1.0 M (24.50±1.81%) and 2.0 M (2.63±0.29%). At 

140 minutes equilibration duration, the value of total motility (31.69±2.19%) was 
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significantly higher as compared to 120 minutes (25.26±1.76%). There were no significant 

differences (P>0.05) in value of total motility for -80, -90 and -100oC which were ranged 

from 25.95±2.34% to 29.41±1.69%. The value of total motility did not show any 

significant differences (P>0.05) among the three vapour exposure durations (5, 10 and 15 

minutes), which were ranged from 27.63±2.02% to 28.45±2.14%. In Experiment 3, there 

were no significant differences (P>0.05) in values of total motility at 120 minutes 

(76.65±2.27%) and 160 minutes equilibrations (76.01±2.04%), but these durations gave 

comparatively higher values of total motility than 140 minutes (66.90±2.60%). The values 

of total motility for vapour temperatures of -90oC (74.07±2.02%) and -100oC 

(74.95±1.88%) did not show any significant differences (P>0.05), but they were 

significantly different with -80oC, which gave comparatively lower values (64.59±5.08%). 

There were no significant differences (P>0.05) in values of total motility for 5, 10 and 15 

minutes which were ranged from 72.67±2.27% to 73.99±2.34%. In Experiment 4, there 

were no significant differences (P>0.05) for values of total motility between 1.0 M 

(24.50±1.81%) and 2.0 M of glycerol in TCAYE (26.74±2.14%), but they were 

comparatively lower than 0.5 M of glycerol that showed higher significant value 

(32.27±2.05%). On the other hand, combination of DMSO (10%) in FRE extender showed 

the highest significant value of total motility (73.52±1.35%) as compared to the three 

molarities of glycerol in TCAYE extender. In summary, the best combination to obtain the 

highest frozen-thawed sperm motility characteristics for TCAYE extender was 0.5 M of 

glycerol, 140 minutes equilibration duration, -90oC vapour temperature and 5 to 15 

minutes vapour exposure duration, whereas for FRE extender was 120 minutes 

equilibration duration, -100oC vapour temperature and 5 to 15 minutes vapour exposure 

duration. In conclusion, results obtained in this study showed that 10% DMSO with FRE 

extender produced higher frozen-thawed sperm total motility than TCAYE extender. 
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Future studies are needed through refinement in factors involved during freezing process 

that influence sperm survival before it can be used routinely in the reproduction of African 

catfish (Clarias gariepinus). 
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ABSTRAK 

Matlamat kajian ini adalah untuk membangunkan protokol penyejukbekuan sperma yang 

optimum bagi keli Afrika (Clarias gariepinus) dengan merujuk khusus kepada jenis 

ekstender dan krioprotektan, molariti, tempoh pengimbangan, suhu pengewapan serta 

tempoh pendedahan kepada wap nitrogen cecair. Dengan menggunakan ekstender 

TCAYE, eksperimen berbentuk faktorial 3x3x3x3 dijalankan yang terdiri daripada 3 

molariti gliserol (0.5, 1.0 dan 2.0 M), 3 tempoh pengimbangan (120, 140 dan 160 minit), 3 

suhu pengewapan nitrogen (-80, -90 dan -100oC)  dan 3 tempoh pendedahan kepada wap 

nitrogen cecair (5, 10 dan 15 minit). Di samping itu, eksperimen berbentuk faktorial juga 

dijalankan ke atas ekstender FRE yang melibatkan 3x3x3, terdiri daripada  3 tempoh 

pengimbangan (120, 140 dan 160 minit), 3 suhu pengewapan nitrogen (-80, -90 dan -

100oC)  dan 3 tempoh pendedahan kepada wap nitrogen cecair (5, 10 dan 15 minit). 

Molariti krioprotektan dalam ekstender FRE ditetapkan pada 10% DMSO. Secara ringkas, 

straw yang mengandungi sperma diletakkan ke dalam peti sejuk pada suhu 4oC dalam 

tempoh pengimbangan yang telah ditetapkan dan seterusnya didedahkan kepada wap 

nitrogen cecair pada suhu pengewapan dan tempoh pendedahan yang telah ditetapkan. 

Berikutnya, straw dijunamkan secara langsung ke dalam nitrogen cecair. Sperma yang 

telah mengalami proses penyejukbekuan dinyahsejukbekukan pada suhu 30oC  selama 30 

saat untuk menganalisis ciri-ciri motiliti sperma menggunakan penganalisis semen 

automatik (IVOS; Hamilton Thorne, USA). Kesan faktor-faktor dan parameter-parameter 

yang diukur dianalisis dengan menggunakan Analisis Varians (ANOVA), diikuti dengan 

“Duncan Multiple Range Test” (DMRT). Dalam Eksperimen 1, didapati bahawa berat 

badan ikan keli Afrika yang besar menunjukkan peratusan kadar motiliti sperma segar 

yang paling tinggi (82.40±4.59%), ini diikuti oleh ikan yang memiliki berat badan yang 

sederhana (51.64±9.82%) dan berat badan ikan yang kecil (40.40±12.16%), yang mana 
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ikan berberat badan yang kecil menunjukkan perbezaan yang signifikan dalam peratusan 

kadar motiliti berbanding kedua-dua kumpulan yang dikaji. Dalam Eksperimen 2, gliserol 

dengan molariti 0.5 M menunjukkan peratusan kadar motiliti sperma sejukbeku-

nyahsejukbeku signifikan yang paling tinggi (32.27±2.05%) berbanding 1.0 M 

(24.50±1.81%) dan 2.0 M (2.63±0.29%). Dalam tempoh 140 minit pengimbangan, 

peratusan kadar motiliti menunjukkan nilai signifikan yang tinggi (31.69±2.19%) 

berbanding 120 minit (25.26±1.76%). Tiada perbezaan yang signifikan (P>0.05) didapati 

bagi peratusan kadar motiliti pada suhu -80, -90, -100oC yang berjulat daripada 

25.95±2.34% sehingga 29.41±1.69%. Peratusan kadar motiliti bagi masa pendedahan 

kepada wap nitrogen cecair (5, 10 dan 15 minit) juga tidak memberikan perbezaan yang 

signifikan (P>0.05) yang berjulat daripada 27.63±2.02% sehingga 28.45±2.14%. Dalam 

Eksperimen 3, tiada perbezaan yang signifikan (P>0.05) bagi peratusan kadar motiliti pada 

120 minit (76.65±2.27%) dan 160 minit (76.01±2.04%) tempoh pengimbangan, akan tetapi 

kedua-duanya menunjukkan peratusan kadar motiliti yang tinggi berbanding 140 minit 

(66.90±2.60%). Peratusan motiliti sperma bagi suhu pengewapan -90oC (74.07±2.02%) 

dan -100oC (74.95±1.88%) tidak menunjukkan perbezaan yang signifikan (P>0.05), akan 

tetapi kedua-duanya adalah berbeza dengan signifikan pada suhu -80oC, yang 

menunjukkan nilai yang paling rendah (64.59±5.08%). Tiada perbezaan yang signifikan 

(P>0.05) bagi peratusan kadar motiliti sperma dalam masa 5, 10 dan 15 minit pendedahan 

ke atas wap nitrogen cecair yang berjulat 72.67±2.27% sehingga 73.99±2.34%. Dalam 

Eksperimen 4, tiada perbezaan yang siginifikan (P>0.05) antara 1.0 M (24.50±1.81%) 

dengan 2.0 M  gliserol (26.74±2.14%) yang terkandung di dalam ekstender TCAYE, akan 

tetapi kedua-duanya menunjukkan peratusan kadar motiliti sperma yang rendah berbanding 

0.5 M gliserol yang mencatatkan peratusan yang tinggi (32.27±2.05%). Selain itu, 

kombinasi 10% DMSO bersama ekstender FRE memberikan peratusan kadar motiliti yang 
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paling tinggi (73.52±1.35%) berbanding ketiga-tiga molariti gliserol di dalam ekstender 

TCAYE. Secara rumusannya, kombinasi yang terbaik bagi menghasilkan ciri-ciri motiliti 

sperma yang paling tinggi untuk ekstender TCAYE adalah 0.5 M of gliserol, 140 minit 

tempoh pengimbangan, -90oC suhu pengewapan dan selama 5 hingga 15 minit tempoh 

pendedahan ke atas wap nitrogen cecair, manakala bagi ekstender FRE adalah 120 minit 

tempoh pengimbangan, -100oC suhu pengewapan dan tempoh 5 hingga 15 minit tempoh 

pendedahan ke atas wap nitrogen cecair. Kesimpulannya, keputusan yang diperoleh dalam 

kajian ini menunjukkan bahawa 10% DMSO bersama ekstender FRE pada amnya 

mengekalkan ciri-ciri sperma sejukbeku-nyahsejukbeku yang normal berbanding ekstender 

TCAYE. Kajian selanjutnya perlu diteruskan pada masa akan datang melalui penelitian 

yang lebih mendalam dalam faktor-faktor yang terlibat semasa proses penyejukbekuan 

yang mempengaruhi keterushidupan sperma sebelum ianya dapat digunakan secara rutin 

dalam pembiakan keli Afrika (Clarias gariepinus). 
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Chapter 1 

1.0 INTRODUCTION 

The genus of Clarias is present in both Asian and African continents (Teugels, 1996). 

Among the Asian continents that are native to this species are India, Sri Lanka, Pakistan, 

Myanmar, Malaysia, Singapore, Philippines, Borneo, Java and Thailand (Talwar and 

Jhingran, 1991). Clarias gariepinus (locally called African catfish) is widely considered as 

an excellent food fish in Asian countries, and interest in farming of this catfish is growing. 

Owing to its taste and low fat content, the fish is very popular as a heart-patients’ dish and 

fetches a high price in the market. The fish are found in all types of freshwater but more 

abundant in swampy waters. It can live out of water for some time as it has an accessory 

respiratory organ. Due to the fast growth rate, hardiness, efficient feed utilisation and 

ability to survive in poorly oxygenated waters; these features make this fish as potential 

candidate for aquaculture. 

A variety of species of the genus Clarias and their hybrids are cultured, for reasons 

of their high growth rate, disease resistance and amenability to high density culture, related 

to their air-breathing habits (Huisman and Richter, 1987; Haylor, 1993). Among the 

species studied are Clarias macrocephalus (Areerat, 1987), Clarias batrachus (Zheng et 

al., 1988; Singh and Singh, 1992), Clarias fuscus (Zheng et al., 1988; Anderson and Fast, 

1991) and Clarias isheriensis (Fagbenro and Sydenham, 1990), the African species 

(Clarias gariepinus) has been subject to particularly intensive research in notably South 

Africa (Hecht et al., 1988) and the Netherlands (Huisman and Richter, 1987). 

Clarias gariepinus presents a definite interest for aquaculture because its 

gametogenesis is continuous once sexual maturity is reached. Therefore, this ensures the 

availability of gametes throughout the year and constant supply of fish. To collect the 

semen, the males have to be killed and the testes dissected out as the semen cannot easily 
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be obtained by stripping. Unlike the female, hand stripping is impractical for the male. 

Several reports have indicated that the stripping of semen from catfishes is difficult 

because the testes are located deep within the body cavity and are covered by other organs, 

for examples, gut and stomach. Therefore, during stripping, most of the pressure applied to 

the abdomen is on the other organs. In addition, the ripe milt gathers along the convex 

lobular edge of the testes rather than passing through the sperm ducts. This condition has 

been described for two African catfish species, namely Clarias gariepinus (Hogendoorn, 

1979) and Heterobranchus longifilis (Oteme et al., 1996), Channel catfish, Ictalurus 

punctatus (Legendre, 1986) and Asian green catfish, Mystus nemurus (Christianus et al., 

1998). Moreover, thick interstitial tissue surrounds the spermatogenic-cell area in parts of 

the testis and seminal vesicle (also called glandular testis), possibly blocking sperm flow 

during abdominal massage (Tan-Fermin et al., 1999). Furthermore, the sperm ducts are 

surrounded by up to 50 finger-like seminal vesicle extensions (Fishelson et al., 1994) that 

may prevent sperm flow when pressure is applied to the abdomen (Richter, 1976). 

One key constraint to the culture of Clarias gariepinus is the limited quality 

fingerlings as seed material. The collection of stocking material from the wild is not 

sustainable. Induced spawning may be a dependable alternative for obtaining high quality 

seed material. Application of sperm cryopreservation has become an indispensable 

alternative in fish selection and synchronisation of gamete availability of this species. 

Many advantages can be obtained with the use of cryopreserved sperm, these include: (a) 

synchronisation of gamete availability of both sexes: ovulation is only noticed when sperm 

production declines in cross fertilisation of different strains and autumn spawning herring 

(Clupea harengus L.; Blaxter, 1953), (b) use of the total volume of available semen : this is 

useful for sperm economy in species where semen is difficult to obtain, Japanese eel, 

(Anguilla japonica; Ohta and Izawa, 1996), but also in species where only low volume of 
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semen can be stripped in captivity yellowtail flounder, (Pleuronectes ferrugines L.; 

Clearwater and Crim, 1995) or turbot, (Psetta maxima L.; Suquet et al., 1994), (c) 

simplifying broodstock maintenance: off-season spawning can be induced in most 

cultured-fish species, by the manipulation of photoperiod and temperature cycles 

(Bromage, 1995), (d) transport of gamete: useful when male and female gametes are 

collected in different locations; this enables also the introduction of genes from the wild 

into hatchery stocks, (e) avoiding aging sperm: the senescence of sperm during the course 

of the spawning season has been reported for many fish species and results in decrease of 

milt quality (Rana, 1995). Cryopreservation allows the collection of sperm when it has the 

highest quality and (f) conserving genetic variability in domesticated populations: the use 

of a limited breeders leads to a reduction of heterozygosity. Gene banks of cryopreserved 

semen can also be used to maintain genetic diversity of fish populations that are 

endangered and protected against inbreeding.  

Development of sperm cryopreservation protocols for African catfish is challenging 

due to the seminal composition of this fish which consists of lipid. In relation to this, the 

choice of extender is important to ensure easy solubilisation and absorption into the sperm 

cells. In the present research, two extenders were used Tris-Citric Acid Yolk Extender 

(TCAYE) and Fish-Ringer Extender (FRE). TCAYE has been used for goat sperm 

cryopreservation at the ISB Mini (Livestock) Farm, the University of Malaya. Later, the 

same extender was first introduced in the sperm cryopreservation in red tilapia but with 

some modification. Using TCAYE extender for tilapia fish sperm cryopreservation, it has 

been shown that post-thawed motility was higher at equilibration duration of 45 minutes 

(58.80 ± 6.48%), 1 M molarity of glycerol in extender (56.33 ± 3.48%), and -85oC (37.50 

± 8.30%) of vapour temperature in sperm cryopreservation (Fung, 2006; Lim, 2006; Ting, 
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2006). Freshwater FRE extender is another type of diluents used in this study and it has 

frequently being used in sperm cryopreservation of freshwater fish (Kurokura et al., 1984). 

Another challenge in the development of sperm cryopreservation in African catfish 

is limited volume of semen and rapid decline in sperm motility as well as defects of sperm 

in the cryopreservation process after collection. Even though the occurrence of limited 

sperm volume is rare, this problem can be solved through the identification of maturity age 

of catfish. As the age of catfish achieved its maturity, the fish produces high amount of 

semen to fertilise eggs during spawning. Apart from that, induction of gonadotrophin-

releasing hormone (GnRH) can be used to increase spermatogenesis in catfish as an 

alternative.   

Reproductive hormones have been used throughout this research to assist the milt 

collection by stimulating reproductive processes and inducing ovulation/spermiation. 

Among various reproductive hormones that are commonly used for inducing or 

maintaining spermatogenesis in many fish species are pituitary gland (PG), human 

chorionic gonadotrophin (hCG) and GnRHa (Munafi et al., 2006). PG and hCG have been 

used to induce spermiation in mullet (Mugil cephalus; Shehadeh et al., 1973), Japanese eel 

(Anguilla japonica; Miura et al., 1991) and bream (Abramis brama; Kucharczyk et al., 

1997). Carp-PG treatment induced increasing volume and sperm cells in Mystus nemurus 

(Christianus et al., 1996). A single hCG injection induced a 13-fold increase in stripped 

sperm volume in Pangasius bocourti (Cacot et al., 2003). Both PG and hCG treatments 

induced testis hydration and facilitated semen collection from testis of African catfish 

(Hecht et al., 1982). Treatment with GnRHa has also proven effective in enhancing milt 

production in fish (reviewed by Zohar and Mylonas, 2001).      

 The suitability of extenders and cryoprotectants are important factors in 

cryopreservation because it differs among fish species. Cryoprotectants are playing 
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important role in long-term cryopreservation. Cryoprotectants are needed to protect the 

sperm cell from a cold or heat-shock treatments and prevent cell dehydration (Chao et al., 

2001; Muchlisin, 2005). The cryoprotectants act through providing a cryoprotection to the 

labile enzyme, for examples, catalase and stabilizing protein in unfrozen and aqueous 

solution. They can also prevent ice formation during pre-freezing but the same levels can 

be lethal to unfrozen cell (Chao, 1991). Examples of cryoprotectants used in sperm 

cryopreservation in fish are dimethyl acetamide (DMA) has been used for Rainbow trout 

sperm (Mc Niven et al., 1993) and Dimethyl sulphoxide (DMSO) was found to be suitable 

for muskellunge sperm (Ciereszko et al., 1999), rainbow trout (Ciereszko et al., 1996a), 

penaeid shrimp (Alfaro et al., 2001) and Arctic charr (Richardson et al., 2000). In addition, 

methanol was reported suitable for Japanese bitterling (Ohta et al., 2001), African catfish 

(Viveiros et al., 2000), European catfish testicular sperm  (Ogier de Baulny et al., 1999) 

and salmonid sperm (Lahnsteiner et al., 1997) with glycerol effective for ejaculated sperm 

of European catfish (Ogier de Baulny et al., 1999).  

Exposure to cryoprotectant prior to freezing is another important parameter in 

cryopreservation of sperm from many species. Its effect will vary depending on the 

cryoprotectant, duration of exposure and concentration (Morris et al., 1981). Increased 

exposure to cryoprotectants can improve the cryoprotective effect, but can also result in 

increased toxicity to the sperm cells (Jamieson et al., 1991; Christensen et al., 1996). 

Besides advantages, cryoprotectants have disadvantage as it can induce protein 

denaturation at higher temperature and cause cellular toxicity at cellular systems. It has 

long been recognised that exposure to cryoprotectants can cause damage to the cells and 

tissues during equilibration prior to freezing due to their toxicity (Fahy, 1986). The 

apparent toxicity of cryoprotectants is dependent on type and concentration of 

cryoprotectants, the equilibration duration and the temperature during loading (Chao, 
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2001). Several cryoprotectants have been reported to be toxic on sperm and embryos of the 

fish. For instance, sodium citrate is known to be harmful to the structural and integrity of 

some fish sperm (Gwo and Arnold, 1992), while propylene glycol and ethylene glycol are 

reported to be more toxic than DMSO in oyster embryos (Chao et al., 1994). However, 

high levels of DMSO can be toxic to fish sperm compared with other commonly used 

cryoprotectants such as methanol, ethanol and glycerol (Simione, 1998).   

Cooling rate can affect the rate of osmosis, diffusion and formation of ice crystals 

within a cell (Morris et al., 1981). Thawing temperature and duration are also critical 

factors in the survival of cryopreserved sperm cells (Morris et al., 1981). 

This research was conducted to answer a few of the following questions such as: a) 

How body weight affects the quality of fresh semen (pre-freezing)?, b) Could TCAYE 

extender or FRE extender maintain good sperm quality after freezing?, c) What is the 

optimum molarity of glycerol?, d) How equilibration duration effects the post-thawed 

cryopreserved sperm?, e) Do the vapour temperature and exposure duration play a role in 

sperm freezability? and f) What is the best combination of factors to obtain optimum 

sperm survivability after cryopreservation? 

The first successful attempt to cryopreserve African catfish sperm, Clarias 

garipienus was achieved by Steyn et al. (1985). The techniques used were improved later 

by Steyn and Van Vuren (1987), who studied the optimal cryo-diluents and freezing rates 

to be used. Cryopreservation was then used as support for genetic studies on Clarias 

garipienus (Van der Bank and Steyn, 1992; Van der Walt et al., 1993).  

 

 

 

 

6 



 

 

 

36 
 

 

The objectives of the present study were: 

a) To develop suitable technique for sperm freezing in African catfish (Clarias 

gariepinus). 

 b) To determine sperm motility characteristics in fresh semen based on 

individual fish body weight. 

 c) To evaluate the effectiveness of different molarities of glycerol in TCAYE 

extender on sperm survival after freezing. 

                        d)     To obtain the optimal freezing rate with special focus on equilibration 

temperature and duration, vapour temperature and exposure vapour duration 

on the sperm viability in African catfish (Clarias gariepinus).  

 e)  To evaluate the effectiveness of using FRE extender on sperm motility 

characteristics in cryopreservation of African catfish (Clarias gariepinus). 

 f) To compare the effects of different types of extender and cryoprotectant on 

sperm motility characteristics after freezing. 

 g) To correlate among sperm motility characteristics according to different 

levels of factors involved during sperm freezing process.    
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Chapter 2 

2.0 REVIEW OF LITERATURE 

2.1 THE TESTES 

2.1.1 Morphology 

The testes of teleost fishes show greater morphological variation than in other vertebrates 

(Lofts, 1968; Dodd, 1972; de Vlaming, 1974; Callard et al., 1978). In most cases, testes of 

teleost fishes are a pair of elongated structures composed of branching seminiferous 

tubules embedded in the stroma. The testis consists of thin-walled tubules or lobules that 

contain germ cells (the spermatogonia) which are endodermal in origin. Germ cells divide 

in clusters enclosed by a cyst. Primary spermatogonia (the stem cells) which are present 

throughout the year, divide mitotically to give rise to secondary spermatogonia which get 

transformed into primary spermatocytes. They divide by meiosis and give rise to 

spermatids from which sperm are formed. The seminiferous tubules are packed with sperm 

in the pre-spawning and spawning periods.  

Billard et al. (1982) defined the testes of clariid African catfish as the lobular type. 

In adult males of African catfish, Heteronbronchus longifilis, the testes appear as two 

elongated lobes (Figure 2.1), the size and weight vary greatly from one fish to another 

independent of the weight of the individual considered. They lie dorsally and to the rear of 

the abdominal cavity along with their associated seminal vesicles which are more or less 

developed and branched (Oteme et al., 1996). 
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Figure 2.1: Reproductive organs of a male African catfish, Clarias gariepinus at 14 months  

                   after hatching (Viveiros et al., 2001). 

 

2.1.2 Cellular Source of Steroid Hormone 

Lofts et al. (1972) and Guraya (1976, 1979) have summarised the literature on cellular 

sources of testicular steroids in teleost fishes. Leydig cells or interstitial cells, the large 

polygonal cells usually located within the interlobular spaces, produce androgen (Guraya, 

1976; Hoar and Nagahama, 1978). Van den Hurk et al. (1978), who have made an 

ultrastructural and enzyme cytochemical study of the testis in rainbow trout, reported that 

the Leydig cells are the main source of steroids and the steroidogenic activity is at a peak 

when the testes are mature and new spermatogonia are being formed. Sertoli cells also 

have enzymes involved in steroidogenesis when males are in spermiation. Further, stromal 

 

Two-elongated lobes 
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cells around the vas deferens epithelium are also steroidogenic when sperm are stored in 

the lumen of vas deferens (Guraya, 1976).  

2.1.3 Sex Accessory Glands 

Seminal vesicles, the sex accessory glandular structures, attached to the testes have been 

reported in various species of catfishes and gobiid fishes (Sundararaj, 1958; Dodd, 1960), 

teleosts belonging to Gobiidae, Siluridae and Blennidae (Van Tienhoven, 1983; Van den 

Hurk et al., 1987; Patzner, 1991; Singh and Joy, 1999).They show seasonal variations in 

secretory activity correlated with those of the testes (Nayyar and Sundararaj, 1970).  

A synergism among androgen, prolactin and growth hormone has been 

demonstrated in the regulation of secretory activity in the seminal vesicles of catfish, 

Heteropneustes fossills (Sundararaj and Nayyar, 1969; Nayyar and Sundararaj, 1969, 

1970) and the gobiid fish, Gillichthys mirabilis (de Vlaming and Sundararaj, 1972). The 

secretion contains mucoproteins and mucopolysaccharides acid. The presence of secretory 

seminal vesicles enhances the fertilising capacity of males (Sundararaj and Nayyar, 1969; 

Nayyar and Sundararaj, 1970). 

In catfish, the reproductive system consists of one to many pairs of seminal vesicle 

lobes, which arise posterior to the testes laterally on the sperm duct. In parallel with the 

maturity of testis, the seminal vesicle epithelial cells secrete a mucopolysaccharide-

protein-lipid-rich fluid (Seminal Vesicle fluid, SVF), whose content increases gradually 

and reaches the peak level in the spawning phase (Nayyar and Sundaraj, 1970; Van den 

Hurk et al., 1987; Singh and Joy, 1999).  

Different functions have been reported for the SV/SVF such as production of 

sialomucins which help to attach eggs to the sea grass, concentrate sperm and promote 
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fertilisation as in grass goby (Lahnsteiner et al., 1992), secretion of nutrients, steroids, 

enzymes, and ions, enhancing sperm quality and fertilisation of eggs and pheromonal 

functions as in gobies and catfish (Van den Hurk et al., 1987; Van den Hurk and Resink, 

1992; Lahnsteiner et al., 1992; Singh and Joy, 1998, 1999). 

  

2.1.4 Gonad Development and Maturation Scale. 

Sexual activity of African catfish is cyclic in natural conditions (Clay, 1979). Female fish 

has a sexual resting time which lasts for 4 to 6 months. The period when running ripe fish 

remains dominant is approximately one month. Similarly, all matured male fish have a 

well-developed testis and can produce viable sperm in the main season. Later ratio of male 

capable to produce sperm goes down and in off season all the testes are in inactive stage. 

Size of inactive testis is small and looks brown-reddish or translucent (Figure 2.2). It is 

impossible to distinguish between active and inactive males by external (visual) 

examination. As a result, selection of males available for reproduction in out of season 

period is difficult. 
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Figure 2.2: Testis of African catfish in inactive (1) and active period (2) (Janssen, 1987) 

 

2.1.5 Seminal Vesicle and Testis Secretions  

Analysis of testicular fluid (produced by Sertoli cells and epithelial cells of testicular main 

ducts) and seminal fluid (produced by the spermatic duct epithelium) of teleosts 

demonstrates considerable intra- and inter-species variability in the physical and chemical 

composition (Stoss, 1983; Kruger et al., 1984; Linhart et al., 1991; Suquet et al., 1993; 

Lahnsteiner et al., 1995, 1996; Billard et al., 1996; Wang and Crim, 1997). 

 Knowledge of seminal vesicle fluid (SVF) biochemical composition and function 

in catfish can introduce methods that enhance milt quality and fertilisation efficiency in 

artificial breeding. Table 2.1 is a compilation of data of physical and chemical 

characteristics of the plasma. Chowdhury et al. (2001) reported that on a visual 

comparison, the colour of the fluids varied from colourless (Seminal Vesicle Plasma, SVP) 

to yellowish white (Testicular Plasma, TP). SVP is more viscous than TP. Specific gravity 
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and osmolality are significantly higher for SVP than TP. The pH of SVP is near the neutral 

range, but TP is slightly acidic. 

 SVP has higher concentrations of Na+, Ca2+, Mg2+ and Cu2+, proteins and 

hexosamines than TP, while the concentrations of K+, Zn2+, glucose, fructose, lipids and 

glycosidases are not significantly different from TP.  

 

Table 2.1: Physical and chemical composition of seminal vesicles plasma (SVP) and  

                 testis plasma (TP) of Heteropneustes fossilis in early spawning phase (July)  

                 (Chowdhury et al., 2001). 

Component Seminal vesicles plasma (SVP) Testis plasma (TP) 

Specific gravity 1.06 1.02 

Viscosity (centipoise) 4.61 1.90 

pH 6.99 6.46 

Osmolarity (mOsmol kg-1) 277.40 151.80 

Cations (mmol l-1) 

Na+ 

K+ 

Ca2+ 

Mg2+ 

Cu2+ 

Zn2+ 

 

135.00 

15.30 

19.80 

1.81 

0.18 

0.10 

 

80.90 

17.70 

10.71 

0.51 

0.04 

0.06 

Proteins (g l-1) 11.50 4.90 

Hexosamines (mg l-1) 694.68 273.17 

Monosaccharides (mg l-1) 

Glucose 

Fructose 

 

76.18 

333.33 

 

85.70 

283.36 

Lipids (mg l-1) 

PL 

FC 

 

112.84 

109.99 

 

201.72 

126.00 
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EC 170.72 174.96 

Glycosidases 

(µ mol mg-1 protein hr-1) 

β-glucuronidase 

β-glucosaminidase 

 

 

7.20 

83.00 

 

 

7.56 

85.39 

 

2.2 CHARACTERISTICS OF SPERM QUALITY IN FISH 

2.2.1 General Characteristics of Fish Sperm 

Sperm are stored in seminal plasma fluid in the genital tract and in contrast with mammals; 

most externally fertilising teleosts have sperm that are immotile on ejaculation. Sperm only 

become motile and metabolically active after released into the water. 

 

2.2.2 Sperm Motility Characteristics 

Fish sperm show species differences in the initiation (Morisawa, 1985; Cosson et al., 

1995), duration (Billard, 1978; Billard and Cosson, 1992) and pattern of motility (Boitano 

and Omoto, 1992; Ravinder et al., 1997). The difference in K+ ion concentration (in 

salmonids) or osmotic pressure (in cyprinids, clariids and other families) between the 

seminal plasma and water, trigger the initiation of movement (Morisawa et al., 1983; 

Billard, 1986).  

In most freshwater species, sperm usually moves for less than 2 minutes and in 

many cases is only highly active for less than 30 seconds (Morisawa and Suzuki, 1980; 

Perchec et al., 1993; Billard et al., 1995; Kime et al., 2001). Some fish species such as the 

spotted wolffish (Anarhichas minor) and the 3- and the 15-spined sticklebacks 

(Gasterrosteus aculeatus, Spinachia spinachia), which are characterised by release of eggs 

in a sticky gelatinous mass, have sperm which remains motile for a far longer period after 

release (Elofsson et al., 2003; Kime and Tveiten, 2002). In these species, the sperm has 
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characteristics which differ markedly from that of the majority of other teleost species, the 

sperm is motile on stripping, remains so for 1 to 2 days and becomes immotile in contact 

with seawater. Similar characteristics have also been found in some marine sculpins (Koya 

et al., 1993), and the ocean pout, Macrozoarces americanus, a species which has internal 

fertilisation (Yao and Crim, 1995). The sperm of the ocean pout remain motile in seminal 

fluid or in specially designed milt diluent for up to 5 days at 4oC without losing much 

activity (Yao et al., 1999).  

Osmotic pressure seems to be the major controlling factor in cyprinids (Morisawa et 

al., 1983; Billard et al., 1995; Redondo-Mu¨ ller et al., 1991) and partly controls the 

motility in paddlefish (Polyodon spathula) sperm (Linhart et al., 1995). The circular 

trajectories of trout sperm, which become tighter with time elapsed after activation, is 

induced by the influx of Ca2 + ions (Cosson et al., 1989). The very short window of sperm 

motility (Kime et al., 2001) found most teleost fish (e.g. < 30 seconds in salmonids) has a 

critical influence on successful fertilisation, since the sperm must find and enter the 

micropyle during this limited period. For large eggs with diameters around 5 mm such as 

those of salmonids, the time of motility (< 30 seconds) allows sperm to swim less than 

halfway (3 to 4.9 mm) round the egg (Perchec et al., 1993).  

 

2.3 SPERM MOTILITY ANALYSIS IN FISH 

2.3.1 Sperm Trackers 

Computer-assisted sperm trackers comprise essentially a microscope coupled to a CCD 

camera which conveys a signal to a monitor, VCR recorder and computer (Boyer et al., 

1989). Sperm movement is usually recorded onto videotape which is later analysed by the 

computer software. Various parameters can be measured using CASA as described in 

Table 2.2.  
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From studies using such sperm tracking systems conducted on African catfish, 

carp, goldfish, roach, Eurasian perch, trout, lake sturgeon, the most useful parameters of 

velocity are the curvilinear velocity (VCL, the actual velocity along the trajectory) and the 

straight line velocity (VSL, the straight line distance between the start and end points of 

the track divided by the time of the track) (Ciereszko et al., 1996a; Kime et al., 2001; 

Rurangwa et al., 2001, 2002; Jobling et al., 2002).  

If the trajectory is a straight line, then VCL and VSL are identical. The angular path 

velocity (VAP, the velocity along a derived smoothed path) is generally of little use in 

most fish since, unlike mammalian sperm, the tracks are general smooth curves, so that 

VAP and VCL are identical.  

 

Table 2.2: Sperm motility characteristics calculated by the computer-assisted sperm  

                 trackers (Wilson-Leedy et al., 2007). 

Parameter Description 

Percent motility Percent of tracked sperm identified by the plugin as 

exhibiting motility during the 1 second period of analysis.  

Velocity curvilinear (VCL) The total point to point distance traveled by the sperm 

over the time period analyzed averaged to a per second 

value. 

Velocity average path 

(VAP) 

Velocity over an average path, generated by a roaming 

average of sperm position from one-sixth of the video’s 

frame rate, such that each point is generated by averaging 

the coordinates of a set number of locations on the VCL 

path. 

Velocity straight line (VSL) The maximum distance moved on the VAP path by the 

sperm from the first VAP point during the video segment 

analyzed, calculated to a per second value based on the 

number of frames for which VAP points were calculated. 
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Linearity (LIN) A measure of path curvature determined by dividing VSL 

by VAP. 

Straightness (STR) A measure of path curvature determined by dividing VAP 

by VCL.  

 

2.4 FACTORS AFFECTING SPERM QUALITY IN FISH 

A considerable amount of literature has been published on factors affecting sperm quality 

in fish. The most critical factors are rearing photoperiod and temperature, nutrition, water 

and food contamination, stress, age of broodstock and breeding season, diseases of 

broodstock and hormonal induction and spermiation which are reviewed in the following 

section. The summary of main factors that can influence gamete quality in fish and main 

parameters that can be recorded fully characterised gamete quality (Bobe and Labbe, 2009) 

are shown in Figure 2.3. 

 

2.4.1 Rearing Photoperiod and Temperature 

Photoperiod manipulation is employed in aquaculture to accelerate or delay gonadal 

recrudescence so that fish spawn at a convenient time of the year for the aquaculturist 

(Nash, 1999).  

In sunshine bass (Morone chrysops X M. saxatilis) exposed to shifted photothermal 

cycles (6 to 12 months), sperm concentration, duration of motility and seminal fluid pH 

differed among males on the different cycles, but these differences produced no changes in 

fertilities (Tate and Helfrich, 1998).  

In wolffish (A. minor), however, there was no difference in volume of ejaculate or 

sperm concentration between males kept under two different light cycles (18D/6L and 

6D/18L) (Pavlov et al., 1997) and in goldfish, photoperiod manipulation did not affect 
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sperm production (Iigo and Aida, 1995). Labbe´ and Maisse (1996) found that the ability 

of rainbow trout (Onchorhynchus mykiss) sperm to withstand cryopreservation was 

improved by rearing at high temperature during gametogenesis followed by transfer to 

colder water. 

 

2.4.2 Nutrition 

Broodstock nutrition is an important factor susceptible to affect only fecundity and 

gametogenesis but also gamete quality, and existing work has been extensively reviewed 

(Kjorsvik et al., 1990; Brooks et al., 1997; Izquierdo et al., 2001). Improvement in 

broodstock nutrition and feeding greatly improves gamete quality and seed production 

(Izquierdo et al., 2001).  

Polyunsaturated fatty acid (PUFAs)-enrichment of commercial diets enhances 

reproductive performance of male sea bass (Dicentrarchus labrax) (Astuarino et al., 2001). 

Sea bass fed commercial pelleted diet enriched with fish oil had a longer spermiation 

period, higher milt volumes and sperm concentration and higher survival of embryos and 

larvae after fertilisation when compared to those fed a non-enriched wet diet. In rainbow 

trout, dietary lipids alter the composition but not the fluidity of the sperm plasma 

membrane and increase their fertilisation capacity (Labbe´ et al., 1995).  

The importance of dietary ascorbic acid (Vitamin C) on male fish fertility has been 

demonstrated in rainbow trout (Ciereszko et al., 1996b). The antioxidant function of 

vitamin C provides a protection for the sperm cells by reducing the risk of lipid 

peroxidation and ascorbic acid deficiency reduces both sperm concentration and motility 

and consequently the fertility (Ciereszko and Dabrowski, 1995).  

Feeding rainbow trout with gossypol (a naturally occurring compound in cotton 

seeds) did not affect sperm motility and fertilising ability although testosterone (T) and 11-
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ketotestosterone (11-KT) levels were elevated in some experimental groups (Dabrowski et 

al., 2000, 2001). However, in male lamprey (Petromyzon marinus) injected with gossypol 

acetic acid, sperm motility was reduced (Rinchard et al., 2000) and in vitro sperm assays 

confirmed its toxicity to perch sperm (Ciereszko and Dabrowski, 2000). More importantly, 

gossypol was recently found to be transferred to the eggs in trout which may lead to 

reduced reproductive performance in female rainbow trout although it had no effect on fish 

growth and mortality (Blom et al., 2001). 

 

2.4.3 Water and Food Contamination 

Exposure to environmental toxicants or hormones can affect reproduction in general, 

leading to decreased sperm quality. For instance, juvenile black porgy (Acanthopagrus 

schlegeli) fed a diet containing 4 mg / kg oestradiol-17β had suppressed spermiation after 7 

months of exposure (Chang et al., 1995).  

Oestrogenic substances such as 17a-ethynyloestradiol and genistein are sufficiently 

potent to produce sex-reversed male fish and masculinisation (Kwon et al., 2000). In 

genistein-fed rainbow trout, sperm motility and concentration were decreased in a dose-

dependent manner at spawning (Bennetau-Pelissero et al., 2001).  

 

2.4.4 Stress 

The quality of fish gametes depends on the appropriate hormonal environment during 

development but this may be disturbed by stress (Kime and Nash, 1999).  

During the breeding season, male sockeye salmon (Oncorhynchus nerka) respond 

to confinement stress with elevated levels of cortisol and glucose and decreased levels of 

reproductive steroids (testosterone and 11-ketotestosterone) (Kubokawa et al., 1999).  
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Stress may also act by inducing changes in plasma osmolarity which in turn can 

affect sperm quality in fish. As an example, white bass M. chrysops transported for 5 hours 

in freshwater had reduced seminal fluid osmolalities and motility at activation (10 to 25% 

motile cells in 38% of sperm samples) (Allyn et al., 2001). In striped and white bass, male 

brood stock captured from the wild during the spawning season and moved to captivity 

produce milt with non-motile sperm (Berlinsky et al., 1997). 

 In rainbow trout, repeated acute stress during reproductive development prior to 

spawning significantly delayed ovulation and reduced egg size, and significantly decreased 

sperm counts and most importantly significantly decreased survival rates for progeny from 

stressed fish compared to that from unstressed controls (Campbell et al., 1992). Since 

many of the handling and transportation procedures used in aquaculture can be potentially 

stressful, quantitative evaluation of the effects of such procedures on sperm quality could 

facilitate changes in the conditions employed so that stress is minimised and sperm quality 

is not affected. 

 

2.4.5 Age of Broodstock and Breeding Season 

The age of broodstock has a significant influence on the sperm quality and may affect the 

success of storing sperm (Vuthiphandchai and Zohar, 1999).  

In captive-reared striped bass (Morone saxatilis), 3-year-old fish had higher sperm 

quality than the 1- or 12-month-old fish, based on higher sperm production and increased 

sperm longevity during short-term storage. However, the fertilising capacity of virgin and 

repeat spawners was comparable in Atlantic cod, G. morhua (Trippel and Neilson, 1992).  

In fish species with an annual reproductive cycle, the quality of sperm varies across 

the spawning season and the mating frequency. In the three-spined stickleback, G. 

aculeatus, the amount of sperm in the testes and the size of the ejaculate were reduced in 
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males that had mated several times (Zbinden et al., 2001). In the common carp (Cyprinus 

carpio), computer-assisted semen analyzer (CASA) has shown that sperm production and 

quality can be lower at the beginning and end of the breeding season (Christ et al., 1996). 

Similar decreases in sperm quality were also observed in turbot, P. maxima (Suquet et al., 

1998).  

 

2.4.6 Diseases of Broodstock 

Diseases can affect the sperm quality in many fish. For instance, the cestode, Ligula 

intestinalis (L.), a common parasite of cyprinid fishes, may affect fish gamete production 

by preventing gonad development. Infectious Pancreatic Necrosis (IPN) virus has been 

reported to attach to sperm cells of farmed rainbow trout (Rodriguez et al., 1993) which 

could affect sperm quality, although no confirmatory or experimental data is available yet. 

 

2.4.7 Hormonal Induction of Spermiation  

Many farmed fish species do not spawn readily in captivity and hormonal treatments are 

necessary to either induce ovulation /spermiation or to synchronise gamete release of the 

two sexes at a time convenient for the fish farm (Zohar and Mylonas, 2001).  

However, this practice is known to increase the fluidity of the milt (low 

concentration of sperm) in plaice, Pleuronectes platessa (Vermeirssen et al., 1998), winter 

flounder, P. americanus (Shangguan and Crim, 1999) and Atlantic halibut, H. 

hippoglossus (Vermeirssen et al., 2000 ).  

Artificial induction of spermiation can also affect the responsiveness of male fish. 

In European catfish (Silurus glanis), the total number of sperm collected was significantly 

higher when carp pituitary extract was injected than when GnRH analogue implants were 

used to artificially induce spermiation (Linhart and Billard, 1994). In common carp (C. 
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carpio), oral and intraperitoneal administration of salmon gonadotrophin hormone-

releasing hormone analogue (sGnRH-a) and Pimozide (Pim) induced gonadotrophin II 

(GtH II) release and milt production significantly (Roelants et al., 2000).  

Sperm production, milt volume, sperm motility and seminal plasma pH were 

increased by GnRHa treatment in yellowtail flounder, P. ferrugineus (Clearwater and 

Crim, 1998). In captive white bass (M. chrysops) treated with GnRHa during the 

spermiation period, GtH II levels and milt production increased (Mylonas et al., 1997). 

Increased milt volume and prolonged spermiation were also observed in sea bass (D. 

labrax) administered GnRHa (Sorbera et al., 1996). GnRHa-microspheres increased 

significantly sperm production in Atlantic salmon, S. salar and stripped bass, M. saxatilis 

(Mylonas et al., 1995). 

 In male goldfish, the oocyte maturation-inducing steroid 17,20h-dihydroxy-4-

pregnen- 3-one (17,20hP) also functions by release into the water as a pheromone that 

increases male serum GtH-II concentration, milt volume, duration of sperm motility, 

proportion of motile sperm and sexual activity and paternity in multi-male spawnings 

(Zheng et al., 1997). Mature male goldfish placed with either a receptive female or 

stimulus pairs of spawning goldfish had sperm volumes greater than those of males kept in 

all-male groups (Kyle et al., 1985).  

Similar stimulation of spermiation in males by ovulating females was noticed in 

carp in earthen ponds (Billard et al., 1989). The increase in milt production in pair-

spawners may be due to both neurally and hormonally mediated events that ensure milt 

availability for imminent spawning activity. In natural populations of a coral reef fish, the 

bluehead wrasse (Thalassoma bifasciatum), males with the higher spawning frequency 

produced fewer sperm per mating indicating a trade off between spawning frequency and 

sperm volume, and an ability to vary the amount of sperm produced (Warner et al., 1995).  
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In carp, the osmolality of seminal plasma and the capacity of sperm to move are 

highly variable after hormonal injection (Redondo-Mu¨ ller et al., 1991). The time lapse 

between hypophysation and the moment at which the initial quality of sperm begins to 

decline may vary according to species. As an example, in Siberian sturgeon, A. baeri, a 

delay of 36 hours after stimulation before milt collection clearly provided the most motile 

sperm as compared with shorter (24 hours) or longer (48, 60 hours) delays (Williot et al., 

2000). Time schedules for hormonal injection should therefore take this into account. 

Assessment of sperm quality could therefore be used to optimise the hormonal dosage, and 

its timing, or the proportions of males in the holding tanks. 
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Figure 2.3: Summary of main factors that can influence gamete quality in fish and main   

                  parameters that can be recorded fully characterised gamete quality (Bobe and   

                  Labbe, 2009). 
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2.5 DEVELOPMENT OF SPERM CRYOPRESERVATION PROTOCOLS 

Investigation of the extender, the cryoprotectant as well as the cooling and thawing 

conditions are critical factors in order to establish a cryopreservation protocol as all 

parameters may interact with each other. 

 

2.5.1 Extender 

Extender is a cryopreservation diluent, which purpose is to supply the sperm cells with 

sources of energy, protect the cells from temperature-related damage, and maintain a 

suitable environment for the sperm to survive while cryopreserved. The extender used for 

cryopreservation of semen contains cryoprotectants agents (such as glycerol and egg yolk), 

substances to maintain the osmolarity, energy source (such as glucose and fructose), and 

enzymes as well as antibiotics that are essential for maintaining the viability of the sperm 

during cooling, freezing and thawing (Holt, 2000; Vishwanath and Shannon, 2000).  

An ideal sperm cryopreservation medium consists of a non-penetrating 

cryoprotectant (for example milk and egg yolk), a penetrating cryoprotectant (for examples 

glycerol, ethylene glycol or dimethyl sulfoxide), a buffer (for example, Tris or Test), one 

or more sugars (for examples, glucose, lactose or sucrose), salts (for examples, sodium 

citrate or citric acid) and antibiotics (for examples, Penicillin or Streptomycin) (Evans and 

Maxwell, 1987). The compositions of the most successful extenders used in marine and 

freshwater fish are reported in Table 2.4 and Table 2.5.  

 Nutrients and buffer are the two ingredients that an ideal extender should have as 

nutrients acts as an energy source and buffer prevents harmful changes of pH by 

maintaining a physical osmotic pressure and concentration of electrolytes which can inhibit 

bacterial growth and protects the cells from cold shock during the freezing and thawing 

processes (Concannon and Battista, 1989).  
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Aberrations of the normal sperm morphology have been observed due to 

cryopreservation. The plasma membrane is one of the main structures affected by 

cryopreservation.  Damage to plasma membranes has been observed when sperm were 

exposed to cryoprotectants before freezing (Lahnsteiner et al., 1992; Tadei et al., 2001) 

with a greater percentage of sperm losing their integrity and normal function of their 

plasma membranes during the freezing or thawing processes.  

Another important factor to be considered in cryopreservation is dilution ratios of 

sperm in extender. It ranges from 1:1 to 1:20 (volume of semen: volume of diluent). Lower 

survival of frozen-thawed sperm was recorded for dilution ratios larger than 1:20 in 

Atlantic croaker (Gwo et al., 1991) and larger than 1:50 in seabream (Chambeyron and 

Zohar, 1990). The motility duration of black grouper sperm decreased from 40 to 2 

minutes when increasing the semen dilution ratio from 1:10 to 1:100 (Gwo, 1993). 

Increasing the dilution rate from 1:1 up to 1:9 did not modify the percentage of motile 

frozen-thawed turbot sperm (Dreanno et al., 1997). It is suggested that seminal plasma 

proteins protect sperm viability and higher dilution ratios than 1:10 may reduce this effect. 

This was observed in freshwater fish species (Billard, 1983) and in turbot (Chauvaud et al., 

1995). 

 

 

 

 

 

 

 

 

26 



 

 

 

57 
 

 

Table 2.3: Composition of the extenders successfully used for freezing sperm of marine  

                 fish species. 

Species Extender composition References 

Plaice NaCl Pullin (1972) 

Grey mullet Ringer solution for marine fish Chao et al. (1975) 

Cod Sucrose, reduced glutathione, 

KHCO3 

Mounib (1978) 

Grouper NaCl, NaHCO3, fructose, 

lecithin,mannitol 

Withler and Lim (1982) 

Atlantic halibut NaCl-Glycine-NaHCO3 Bolla et al. (1987) 

Baramundi Ringer solution for freshwater fish Leung (1987) 

Atlantic croaker NaCl, Glucose or sucrose Gwo et al. (1991) 

Black grouper NaCl Gwo (1993) 

Mullet Ringer for marine fish Joseph and Rao (1993) 

Puffer Glucose Gwo et al. (1993) 

Pacific herring Ringer for marine fish Pillai et al. (1994) 

Ocean pout Medium mimicking seminal fluid Yao et al. (1995) 

Sea bream NaCl Barbato et al. (1996) 

Hirame Ringer for freshwater fish Tabata and Mizuta (1997) 

Turbot Sucrose, reduced glutathione, 

KHCO3 

Dreanno et al. (1997) 

Sea bass Sucrose, reduced glutathione, 

KHCO3 

Fauvel et al. (1998) 
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Table 2.4: Composition of extenders successfully used for freezing sperm in freshwater  

                 fish species. 

Species Extender composition References 

R.quelen V2e (NaCl, NaHCO3, KCl, 

glucose, egg yolk) 

Fogli da Silveira et al. (1985) 

Sharptooth catfish 

(Clarias gariepinus) 

Ginzburg fish ringer Viveiros et al. (2000) 

L.macrocephalus Glucose + Egg yolk Ribeiro and Godinho (2003) 

P.corruscans Glucose + milk powder Carolsfeld et al. (2003)  

B.insignis Glucose + Egg yolk  Shimoda (2004) 

Tropical bagrid catfish 

(Mystus nemurus) 

Ringer Muchlisin et al. (2004) 

European catfish 

(Silurus glanis) 

Immobilising solution  

(NaCl, Tris-HCl) 

Linhart et al. (2005) 

Piracanjuba 

(Brycon orbignyanus) 

Beltsville Thawing Solution 

(BTSTM) and Merck III (MIIITM) 

Maria et al. (2006a) 

B.orthotaemia Glucose + Egg yolk Melo and Godinho (2006) 

B.natterreri BTSTM or 0.9% NaCl Oliveira et al. (2007) 

Yellow catfish 

(Pelteobagrus 

fulvidraco) 

Ringer extender Pan  et al. (2008) 
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2.5.2 Cryoprotectant 

The multiple roles of cryoprotectant during the cooling process were viewed by (Jamieson, 

1991). Cryoprotectants are classified as permeating and non-permeating, according to their 

ability to pass through the cell membrane.  

Permeating cryoprotectants such as ethylene, propylene glycol, glycerol, DMSO 

and methanol were tested for cryopreservation of sperm of marine fish. The effects of 

cryoprotectants and cryopreservation procedures on the cellular structure of sperm have 

been intensively studied. DMSO generally gave the best results and its success can be 

explained by the fast penetration into sperm and by its interaction with the phospholipids 

of the sperm membrane (Ogier de Baulny et al., 1996). Flow cytometric analysis revealed 

a high percentage of turbot sperm presenting no cryo-injuries of the plasma membrane and 

mitochondria in the presence of DMSO (Ogier de Baulny, 1997). However, DMSO is toxic 

at high concentrations, for instance the motility duration of frozen-thawed barramundi 

(Lates calcarifer, Bloch) sperm was reduced when DMSO concentration was higher than 

5% (Leung, 1987) and also in the black grouper; sperm motility was decreased at a 

concentration of 30% (Gwo, 1993). 

Further studies found methanol to be the best among five tested cryoprotectants for 

channel catfish sperm, and reported the first use of thawed sperm for production of channel 

catfish by artificial fertilisation (Tiersch et al., 1994). Increased exposure to 

cryoprotectants can improve cryoprotective effect, but can also result in increased toxicity 

to the sperm cells (Jamieson, 1991; Christensen and Tiersch, 1997). 

In freshwater fish, non-penetrating cryoprotectants such as proteins (BSA) or 

lipoproteins (egg yolk) have been commonly used to prevent damages to the plasma 

membrane (Scott and Baynes, 1980). Cabrita et al., (1998) suggested that they increase the 

membrane resistance to osmotic stress and the motility rate of frozen-thawed rainbow trout 
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sperm. Egg yolk has been identified as having beneficial effects on the cooling and 

freezing of the male gamete (Bwanga, 1991). Many studies have considered the effect of 

egg yolk or the addition of given lipid moieties on sperm during cryopreservation. Table 

2.6 demonstrates literature review on semen cryopreservation of African catfish and related 

species. 
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Table 2.5: Literature review on semen cryopreservation of African catfish and related species. 

Catfish  
species 

 
Extender 

 
Cryoprotectant 

 
Container 

Freezing 
rates 

Hatching 
Rates (%) 

 
References 

 
Glucose (5 %) 

 
Glycerol (5 %) 

 
Straw or bio-

freeze vial 

 
-7oC / min to -65oC; 

LN2 

 
Not measured 

 
Steyn et al. (1985) 

 
Glucose (5%) 

 
Glycerol (11 %) 

 
1 ml cryo tube  
 

 
-11oC / min to -70oC; 

LN2 

 
Frozen : 51% 
Control : 51%  

 
Steyn et al. (1987) 

 
Glucose (4%) 

 
Glycerol (9%) 

 
1 ml cryo tube  

 

 
-5 and -11oC / min to 

-70oC; LN2 

 
Not measured 

 
Steyn (1993) 

 
 

 
Glucose (4%) 

 
Glycerol (9%) 

 
1 ml cryo tube  

 

 
5 oC / min to -70oC; 

LN2 

 
Not measured 

 
Van der Walt et al. (1993) 

 

 
Clarias gariepinus 

 
Fructose (333 

mmol L-1) 

 
DMSO (10%) 

 
250 µL straw 

 
-11oC / min to -80oC; 

LN2 

 
Not measured 

 
Urbanyi et al. (1999) 

 
Clarias batrachus 

 
NaCl (0.6%) 

 
Glycerol (10%) 

 
1.5 ml tube 

 
Directly to 

 -70oC; stored at -
70oC 

 
75% of control 

 
Padhi et al. (1995) 

 
Heterobranchus 

longifilis 

 
Mounib 
solution 

 
DMSO (5%) + 
glycerol (5%) + 
egg yolk (10%) 

 

 
5 ml straw 

 
20 min at 3 cm 

above LN2 level; 
LN2 

 
Frozen : 79% 
Control : 81%  

 
Oteme et al. (1996) 
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2.5.3 Equilibration Duration 

Equilibration duration is a duration for the sperm and extender to mix and to allow 

reduction of temperature slowly (slow cooling) in order to prepare for the freezing 

processes. Cold shock during freezing can be avoided by having equilibration duration.  

Because sperm are small, the penetration of cryoprotectants is rapid (Jamieson, 

1991), and no equilibration period is required. Therefore, the toxic effect of DMSO can be 

minimised. Increasing the equilibration period from 5 to 60 minutes and the DMSO 

concentration from 10 to 30% lowered the post-thaw motility of yellowfin seabream sperm 

(Gwo, 1994). In seabream, the fertilising ability of frozen-thawed sperm decreased in 

DMSO extender when the equilibration period exceeded 2 minutes (Billard, 1978). A 

similar effect was observed after one hour in grey mullet (Chao et al., 1975).  

Equilibration duration of 10 to 60 minutes had no effect on the fertility of frozen-

thawed sperm of hirame (Tabata and Mizuta, 1997). In rainbow trout, Ogier de Baulny 

(1997) observed that DMSO needed 10 minutes to penetrate into sperm although the 

fertilistion capacity of frozen-thawed sperm was the same with or without equilibration 

period. This observation suggests that the protective role of DMSO does not depend on its 

penetration into sperm.  

With glycerol as a cryoprotectant, the motility rate of frozen-thawed sperm of 

bluefin tuna (Thunnus thynnus L.) was increased at long equilibration periods (30 minutes) 

compared to short ones (10 minutes), but the opposite was recorded for DMSO (Doi et al., 

1982). Since penetration of glycerol is slow, equilibration duration may be necessary. 

 

2.5.4 Cooling Rate 

Cooling rate is the rate of gradually decreasing a temperature during the cryopreservation 

process. Cooling rate is an important variable in cryopreservation, and single-stage and 
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multiple-stage procedures have been developed (Leung and Jamieson, 1991; Rall, 1993). 

The cooling rate is determined by the height of the tray or the depth at which canisters are 

placed. 

Cooling rate is varied among species. For fish sperm, optimal rates reported vary 

from 5 to 45oC / min for cooling from 5 to 80oC, but some species show high post-thawed 

motility with a combination of different cooling rates (Rana and Gilmour, 1996; Sansone 

et al., 2002). 

Best cryopreservation of sperm in African sharptooth catfish, Clarias gariepinus, 

were obtained using a two-step cooling regime, including a cooling rate of 5oC / min 

(Steyn, 1993), whereas, in channel catfish, a cooling rate of 45oC / min yielded higher 

post-thaw motility than did 3oC / min (Christensen and Tiersch, 2005). A cooling rate from 

5 to 11oC / min was specified as optimal in cryopreservation of European catfish 

(Silurus glanis) (Linhart et al., 2005). The final temperature and its duration just before 

plunging the frozen sperm into liquid nitrogen were very important. 

A critical temperature zone (between -15 and -30oC) is responsible for exerting 

most of the damage to sperm and if cooling rates were not optimal, all the cells might be 

damaged by -80oC (Polge, 1957). Besides that, cooling rate also can affect the rate of 

osmosis, diffusion, and formation of ice crystals within a cell (Morris, 1981). 

 

2.5.5 Thawing Rate 

Rapid thawing is necessary to avoid recrystallisation. Thawing rates used in marine fish 

are shown in Table 2.7 and are lower than those reported for freshwater fish (30 to 80oC: 

Rana, 1995), as examples in Brazilian freshwater fish in Table 2.8. In channel catfish, a 

thawing temperature of 50oC within durations of 5 or 10 seconds or a temperature of 40oC 

with duration of 10 seconds performed the best (Christensen and Tiersch, 2005). 
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Thawed sperm must be rapidly used within 60 minutes after thawing, the 

percentage of motile turbot sperm stored on crushed ice decreased for 35% (Dreanno et al., 

1997). This indicates that cryopreservation induced damages in sperm. Diluting frozen-

thawed sperm of this species in a medium mimicking the seminal fluid improved their 

short term storage capacity. Also, in halibut, short term storage ability of thawed sperm 

was lower than for fresh sperm (Billard, Cosson and Crim, 1993). 

 

Table 2.6: Thawing rates used in marine fish species. 

Species Thawing rate (oC min-1) References 

Cod 38 Mounib (1978) 

Bluefin tuna 40 Doi et al. (1982) 

Grouper 25 Withler and Lim (1982) 

Atlantic halibut 10-40 Bolla et al. (1987) 

Barramundi 30 Leung (1987) 

Yellowfin bream 20 Thorogood and Blackshaw (1992) 

Puffer 25 Gwo et al. (1993) 

Ocean pout 1 Yao et al. (1995) 

Yellowtail flounder 30 Richardson et al. (1995) 

Sea bream 26 Barbato et al. (1996) 

Hirame 20 Tabata and Mizuta (1997) 

Turbot 30 Dreanno et al. (1997) 

Sea bass 35 Fauvel et al. (1998) 
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Table 2.7: Thawing rates used in Brazilian freshwater fish species (Viveiros and Godinho,  

                  2009) 

Species Container Freezing Thawing  References 

B.orbignyanus 0.5 ml straw 
0.5 ml straw 

 
0.5 ml straw 

 
0.5 ml straw 

 

Dry-shipper 
Dry-shipper 

 
Dry-shipper 

 
Dry-shipper 

37-50oC for 10 s 
60oC for 5 s 

 
50oC for 5 s 

 
60oC for 8 s 

Bedore (1999) 
Murgas et al. 

(2001) 
 

Murgas et al. 
(2003) 

 
Maria et al. (2006a, 
b); Viveiros et al. 

(2007) 
 

L.macrocephalus 0.5 ml straw Dry-shipper 30oC for 6 s 
 

Ribeiro and 
Godinho (2003) 

 
B.insignis 0.5 ml straw Dry-shipper 30oC for 7 s Shimoda (2004) 

 
B.orthotaemia 0.5 ml straw Dry-shipper 35oC for 7-10 s Melo and Godinho 

(2006) 
 

B.amazonicus 0.5 ml straw 
 

0.5 or 4 ml 
straw 

 
0.5, 1.8, 2.5 ml 

straw 
4 ml straw 

1 cm above LN2 
surface 

1 cm above LN2 
surface 

Dry-shipper 
 

Dry-shipper 

35oC for 60 s 
 

36oC for 10-30 s 
 

35oC 
 

36oC for 10 s 
 

Cruz-Casallas et al. 
(2006) 

Ninhaus-Silveira et 
al. (2006b) 

Velasco-Santamaria 
et al. (2006) 

B.nattereri 0.25 or 0.5 ml 
straw 

Dry-shipper 60oC or 50oC for 
8 s 

Oliveira et al. 
(2007) 

 
L.obtusidens 0.5 ml straw 

 
 

0.5 ml straw 
0.5 ml straw 

 

Dry-shipper 
 
 

Dry-shipper 
Dry-shipper 

60oC for 8 s 
 
 

33oC for 14 s 
35-37oC for 10 s 

Viveiros et al. 
(2007) ; Koch et al. 

(2007) 
Carvalho (2007) 

Taitso et al. (2007) 
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2.6 SIGNIFICANT MILESTONES OF FISH SPERM CRYOPRESERVATION  

Table 2.9: Timelines for significant findings in fish sperm cryopreservation 
 

Year Author Significant finding 
1995 Monkonpunya et al. Cryopreservation of Mekong giant catfish sperm 

(Pangasius gigas) – Best results were obtained when 
sperm were cryopreserved in 9% DMSO in either 
extender [bicarbonate buffer (BCB) or calcium-free 
Hanks’ balanced salt solution (C-F HBSS)] in 5 ml 
cryotubes and frozen at -12oC/ min. The percentage 
of fertilisation was 65 to 66% (actual) and 73 to 74% 
(control). 
 

1999 Ogier de Baulny et al. Best protection condition for sperm cryopreservation 
in European catfish, Silurus glanis was 
dimethylacetamide (10 and 15%) in sucrose 
solution. The percentage of cells with an intact 
membrane (90%), and the protection of the activity 
of the mitochondria was (47%). Addition of 
dimethylacetamide (DMA) increased ATP content of 
the sperm. 
 

Lahnsteiner et al. Cryopreservation of sperm in cyprinid fishes –The 
optimal sperm equilibration period in extender was ≤ 
5 min. The frozen-thawed sperm obtained 35 to 65% 
and 5 to 25% locally motile sperm depending on the 
quality of the fresh semen. 
 

2000 

Viveiros et al. Sperm cryopreservation of African catfish, Clarias 
gariepinus – 5 to 25% DMSO and methanol tested 
as cryoprotectants, by diluting in Ginzburg fish 
ringer. Highest hatching rates obtained by sperm 
frozen in 10% methanol and post-thaw diluted to 
1:200. 

Babiak et al. Multifactorial effect of extender constituents on 
sperm resistance in rainbow trout against injuries.  

 

2001 

Rurangwa et al. Mounib’s extender provided the best cryoprotection 
to the sperm for all post-thawed sperm quality 
measurements and at all freezing durations in 
African catfish (Clarias gariepinus).  
 

36 



 

  

 

67 
 
 

Taddei et al. Cryopreserved sperm of Diplodus puntazzo –
subdivides the cryopreservation procedure into three 
phases, fresh, prefreezing (samples equilibrated in 
cryosolutions) and post-thawed stages, and examines 

the ultrastructural anomalies and motility profiles of 
sperm in each stage with different cryodiluents. In 
 Cryosolution A (0.17 M NaCl + 15% DMSO), 
during the prefreezing phase, the plasmalemma of 
61% of the cells was absent or damaged as compared 
with 24% in the fresh sample. In cryosolution B (0.1 
M sodium citrate + 10% DMSO), the number of cells 
lacking the head plasmatic membrane increased from 
the prefreezing to the post-thawed stages (32 to 
52%).  
 

Viveiros et al. Tested two step freezing protocols for the African 
catfish sperm (Clarias gariepinus) with difference 
cooling rates (-2, -5 and -10oC/min) and different 
temperatures at plunging into LN2. Slow cooling 
rates of -2 to -5oC/min, hatching rates can be 
maximized by plunging as soon as Tsemen reaches       
-38oC. A simple and efficient protocol can be 
obtained by cooling at a rate of -5 to -10oC/min 
combined with a 5 min holding period in the freezer 
at -40oC. 
 

Basavaraja et al. First report on the successful production of viable 
fry of Decan mahseer (Tor khudree) from 
cryopreserved sperm. T.khudree can be successfully 
cryopreserved using fish Ringer and 5 to 15% 
DMSO at an equilibration time of 10 to 90 min.  
 

2002 

Lahnsteiner et al. The cryopreservation of sperm of the burbot, Lota 
lota (Gadidae, Teleostei) – The highest motility rate 
(46.6±8.0%, fresh semen control 86.5±8.2%) and 
fertility (78.1±2.7% embryo survival in hatching 
stage, fresh semen control 82.2±2.9%) when 10% 
methanol, 1.5% glucose and 7% hen egg were used 
as cryoprotectants. 
 

2003 Lahnsteiner et al. Investigate various fertilisation techniques and 
media, straw volumes as well as optimal semen 
volume for cryopreservation of cyprinid – The 
highest fertilisation rates obtained with sperm to egg 
ratios of (1.3 to 2.5) x 106 : 1 and were 77 to 92% of 
fresh semen control. 
 

37 



 

  

 

68 
 
 

Huang et al. (a) First evidence of conservation genetic resources in 
live-bearing fishes (Xiphophorus helleri). 
Osmolality of HBSS without cryoprotectant in 
which the highest motility (67%) was 320±3 
mOsm/kg. When cryopreserved with 10% DMSO, 
the highest motilities within 10 min after thawing 
were 240 to 300 mOsm/kg. Sperm suspended in 
 HBSS at 320 mOsm/kg with a dilution factor 100 
maintained motility for 24 hours at room 
temperature and persisted for 10 days when stored at 
4oC. 
 

2004 

Huang et al. (b) Sperm cryopreservation of a live-bearing fish, the 
platyfish (Xiphophorus couchianus) – The highest 
average sperm motility (78±3%) at 10 minutes after 
thawing was obtained in HBSS at 300 mOsm/kg 
with 14% glycerol, diluted at a ratio of sperm to 
HBSS-glycerol (1:20), equilibrated for 10 minutes, 
cooled at 25oC/minutes from 5 to -80oC before 
plunging into LN2, and thawed at 40oC in waterbath 
for 7 seconds. 

 
 

Cabrita et al. In rainbow trout, the averages of fragmented DNA 
and olive tail moment after cryopreservation (11.19 
to 30.29% tail DNA and 13.4 to 53.48% Olive tail 
moment in fresh and cryopreserved sperm, 
respectively). In gilthead sea there was no significant 
differences in the percentage of tail DNA between 
the control samples and sperm diluted 1:6 and 
cryopreserved (28.23 and 31.3% DNA, 
respectively). 
 
 

2005 

Christensen et al. Cryopreservation of channel catfish (Ictalurus 
punctatus) – A cooling rate of 45oC/minutes resulted 
in lower motility reduction (33±9%) than a rate of 
3oC/minutes (83±13%). A thawing temperature of 
50oC resulted in lower motility reduction (25±14%) 
than 30oC (51±21%) or 40oC (59±11%). A thawing 
duration of 10 seconds resulted in lower motility 
reduction (38±12%) than a duration of 5 seconds 
(52±12%). A 5% methanol resulted in lower motility 
reduction (43±17%) than 10% methanol (67±14%). 
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Gwo et al. Development of cryopreservation procedures for 
semen of Pacific bluefin tuna, Thunnus orientalis –
sperm suspended in glycerol showed a gradual 
increase in motility during the first 20 seconds after 
thawing and motility was reduced later after 480 
seconds.  
 

 
Horvath et al. Cryopreservation of two North-American sturgeon 

species (Acipenser brevirostrum and Scaphyrinchus 
albus) – the highest post-thaw motility was found 
using 5% DMSO (26±13%) while the use of 5% 
methanol resulted in the highest rates for fertilisation 
at the 4-cell stage (40±15%), neurulation (38±13%) 
and hatching (32±12%). 
 

Miskolczi et al. Examination of larval malformations in African 
catfish, (Clarias gariepinus), following fertilisation 
with cryopreserved sperm – Some of the malformed 
larvae hatched from eggs fertilised with 
cryopreserved sperm were haploids. Haploids 
occurred only when 0.25 or 0.5 ml straws were used 
for freezing. 
 
 

Thirumala et al. The optimal rate of cooling for X. helleri sperm cells 
in the presence of CPAs ranged from 20 to 
35oC/minutes. 
 
 

Dong et al. Cryopreservation of the green swordtail 
(Xiphophorus helleri) – No adverse effects on sperm 
motility of fresh and cryopreserved samples with 
centrifugation at 1000xg for 10 minutes at 4oC the 
presence of glucose in HBSS yielded higher and 
longer motility for fresh and thawed samples. 
Addition of 20% FBS prior to freezing increased the 
post-thawed motility. 
 

2006 

 

Maria et al. (a) Piracanjuba (Brycon orbignyanus) semen diluted 
(1:10 total volume) in NaCl 200 mM or in Saad 
solution (NaCl 200 mM, Tris 30 mM) maintained 
motility above 35% for as long as 7 days, at 4oC. 
Motility of only 7% was observed on undiluted 
semen after 3 days at 4oC. Methylglycol was the 
most effective cryoprotector compared to DMSO 
and methanol.  
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Melo et al. Successful developed protocol of sperm 
cryopreservation of matrinxa (Brycon orthotaenia). 
Obtained the highest post-thaw motility rate and 
duration of sperm motility (70.5±11.4% and 
62.2±8.5 seconds, respectively) using DMSO and 
thawed sperm were activated with 119 mM 
NaHCO3. 

 
Routray et al. Cryopreservation of dead fish sperm of Indian major 

carp (Labeo rohita) – The best stored condition was 
shown by sperm collected 8 hours of fish death and 
maintained at 0oC which gave 30% larval survival. 

 
Yang et al. Sperm was not motile when the osmolality was 

lower than 116 or higher than 425 mOsmol/ kg. 
High motility (~55%) was obtained in sperm after 
thawing when cryopreserved with 10 to 15% 
glycerol, and dilution of thawed sperm in fresh 
HBSS (1:4; v:v) was found to be decreased the 
motility significantly. 
  

Dong et al. Sperm agglutination in oysters – standardise sperm 
concentration through research of sperm 
agglutination in pacific oysters (Crassostrea gigas). 
First detailed report addressing the sperm 
agglutination phenomenon of thawed samples from 
any aquatic organism. 

 
Horvath et al. Cryopreservation of common carp (Cyprinus carpio) 

sperm – test the suitability of using 1.2 and 5 ml 
straws and investigate the ploidy of malformed 
larvae among the hatched progeny. The highest 
hatch rate for 1.2 ml straws was (69±16%) at 
freezing time of 4 minutes, and (39±27%) for 5 ml 
straws at 5 minutes.  

 

2007 

Yang et al. Sperm cryopreservation in zebrafish (Danio rerio) – 
The highest motility (35±23%) and fertility (13±8%) 
in thawed sperm obtained with the combination of 
8% methanol and cooling rate of 10oC/minutes. 

 
2008 Daly et al. Cryopreservation of sperm from Murray cod 

(Maccullochella peelii peelii) - First successful 
cryopreservation of sperm from Murray cod. A 
cryopreservation diluent composed of 300 mOsm 
kg-1 D-sorbitol (DS) solution  with 10% methanol 
produced the best post-thawed motility (51.4±3.4%), 
followed by Tris-Sucrose-Potassium (TSK) solution 
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with 10% methanol and Modified Kurokuras 
medium with 10% methanol (27.5±4.8%). 
Fertilisation trials using sperm frozen in DS solution 
with 10% methanol produced a hatching rate of 
11.0% (63.1±18.23% of a control of fresh sperm 
hatching rate) and 6.4% (58.5±32.50% of fresh 
sperm hatching rate) using sperm frozen with TSK 
with 10% methanol.  

 
Francois et al.  The presence of antifreeze proteins in the seminal 

fluid of the Atlantic wolfish (Anarhichas lupus), 
facilitate the process of cryoconservation in 
association with increased post-thawed motility and 
fertilisation rates. 

 
Pan et al. Development of cryopreservation for maintaining 

yellow catfish, Pelteobagrus fulvidraco, sperm -
Ringer extender and 10% methanol was the best 
combination maintained the highest post-thaw 
motility (65.00±5.00%), fertilisation (90.47±3.67%) 
and hatching rate (88±4%).The fertilisation and 
hatching rate was similar to those of fresh sperm 
(97.55±2.74% and 92±5%). 
 

Shuyan et al. First report on Mandarin fish (Siniperca chuatsi) 
sperm can be successfully fertilised eggs after long-
term cryopreservation. 
 

Tian et al. Cryopreservation of spotted halibut (Verasper 
variegatus) sperm –cryopreserved spotted halibut 
semen with extender TS-2 and 13.3% DMSO or 
13.3% PG produced fertilisation rate 
(34.52±10.92%) and hatching rate (25.53 ±11.80%).  
 

Viveiros et al. Cryopreservation of curimba (Prochilodus lineatus) 
semen - successful cryopreserved in a simple 
glucose solution combined with methylglycol as 
cryoprotectant, in 0.5 ml straws, yielding motility 
rates between 86% and 95% and fertilisation rates 
between 47% and 83%. 
 

Xiao et al. At concentration of 15% propylene glycol (PG) and 
30 minutes exposure, the hatching rate of the 
embryos was (93.3±7.0%). However, in DMSO, EG, 
glycerol and methanol, the hatching rate was 
82.7±10.4, 22.0±5.7, 0.0±0.0, and 0.0±0.0%, 
respectively. 
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Jing et al. In zebrafish sperm, higher percent motility is 
obtained when collected through dissecting without 
crushing (89±3%) or abdominal massage (90±4%) 
than dissecting with crushing (65±13%).The total 
number of motile sperm was higher for dissecting 
without crushing (147.0±102.3x105/male) than 
abdominal massage (7.1±11.93x105/male). 
 

Martinez-Paramo et al. Cryobanking as tool for conservation of 
biodiversity- No reduction in sperm viability after 
freezing (87.0±3.32% to 77.9±3.59% and 
77.6±6.53% to 11.5±2.50% in the Esla and Duerna 
basins, respectively. 
 

Matteo et al. Cropreservation of the Mediterranean mussel 
(Mytilus galloprovincialis) sperm – study on the 
effects of cryoprotectants, cooling rate and freezing. 
Thawing results showed M. galloprovincialis sperm 
are very sensitive to rapid pre-freezing and freezing 
protocols and only a slow procedure assured good 
motility and fertilisation. 
 

Muchlisin et al. Cropreservation of baung sperm (Mystus nemurus)-
study on the effect of cryoprotectants on abnormality 
and motility of baung using transmission and 
scanning electron microscopy. The effects of 
cryoprotectants on the sperm abnormality were 
significant. 
 

2009 

Vuthiphandchai et al. 
 
 
 
 

Cryopreservation of red snapper (Lutjanus 
argentimaculatus) sperm – first reported attempt for 
sperm cryopreservation of L. argentimaculatus 
sperm, equilibrated in 10% DMSO and cooled at a 
rate of 10oC/ minutes to final temperature of -80oC 
had the highest motility (91.1±2.2%) and viability 
after thawing (92.7±2.3%). 
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Chapter 3 

3.0 MATERIALS AND METHODS 

3.1 INTRODUCTION 

The present work was carried out in July 2008 to July 2009 at the Institute of Biological 

Sciences Mini (Livestock) Farm, the University of Malaya, Kuala Lumpur with the aim to 

develop suitable technique for sperm cryopreservation in African catfish (Clarias 

gariepinus). Effects of extender, cryoprotectant, molarity of cryoprotectant, equilibration 

duration, vapour temperature and vapour exposure duration on frozen-thawed sperm 

characteristics of African catfish (Clarias gariepinus) were determined using the 

automated semen analyzer (IVOS; Hamilton-Thorne, USA). 

 

3.2 EXPERIMENTAL FISH AND MAINTENANCE 

Eighty-two adult male African catfish, Clarias gariepinus, broodstocks established for this 

research were bought from a local fish farm in Rembau, Negeri Sembilan. The broodstocks 

that were healthy and sexually mature aged from 1 to 2 years old with body weight in a 

range of 1 to 2 kg were chosen for the experimental purposes. Upon arrival, the 

broodstocks were acclimatised in a fibreglass tank in the fish house at the Institute of 

Biological Sciences Mini (Livestock) Farm, the University of Malaya (Figure 3.1). Routine 

management of fish was scheduled accordingly to avoid stress during experimental period. 

This includes periodical exchange the water with fresh clean water to ensure easy 

absorption of oxygen and disease-preventive measure. The tap water was dechlorinated 

before being supplied to the fish. The net was used to cover on top of the tanks to ensure 

the fish did not jump out from the tanks. The broodstocks were hand-fed with “commercial 

finisher layer mash” twice a day, ad libitum and daily monitored. 
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Figure 3.1: Acclimatisation of African catfish broodstocks in a fibreglass tanks at the   

                  Institute of Biological Sciences Mini (Livestock) Farm, the University of   

                  Malaya. 

 

3.3   INDUCTION OF SPERMATOGENESIS  

Body weight of selected catfish was weighed to quantify the dosage of hormone per body 

weight for each individual fish. Subsequently, Ovaprim (0.5 ml/kg body weight; Syndel, 

Vancouver, Canada) was injected intramuscularly into the dorsal muscle of catfish (Figure 

3.2). Prior to this procedure, the head of the catfish was covered by a wet towel in order to 

keep it quiet and calm during injection. Most of the fish kept still if their eyes were 

covered. After receiving the hormone treatment, these males were isolated for overnight in 

a separate tank to avoid aggressive interaction with other males and to maximise care 

during the experimental period (Figure 3.3).  

Fibreglass tank 

Net 

44 



 

  

 

76 
 
 

 

     Figure 3.2: Hormonal injection into the dorsal muscle of catfish. 

 

 

 

 

 

 

 

 

 

 

     
 
          Figure 3.3: Two-injected African catfish were separated from other fish. 
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3.4 COLLECTION OF MILT 

According to the literature, the males of the African catfish cannot be stripped and 

consequently the sperm can only be obtained by sacrificing a male. Each time, two males 

were sacrificed and the body surface thoroughly dried after which the testis was dissected 

out (Figure 3.4). Then, the milt was rapidly perforated out from the testis using a needle.  

The whitish-like semen was extruded out from the holes and the semen was collected using 

Eppendorf tube. This procedure has to be done carefully because the testis of catfish 

comprises of many capillaries, if the sperm and blood mix together leading to sperm dying 

consequently reduced the sperm motility.  

 

            Figure 3.4:  Structures of abdominal organs after incision of the male African  

                                catfish. 
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 Figure 3.5: The testis (located deep in the abdomen) was taken out from  

                    the body cavity after removal of intestine and fats. 
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Figure 3.6: Finger-like testis. 
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            Figure 3.7: Semen was collected into propylene tube. 

 

3.5 SEMEN DILUTION AND LOADING 

3.5.1 Sperm Dilution 

After collection, the semen was diluted with diluents in a ratio of semen to extender 1:10. 

Then, the mixture of semen and extender was homogenously mixed.  

 

3.5.2 Sperm Enveloping 

The diluted semen was filled into a 0.5 ml or 0.25 ml French straw; some air space was left 

in between. Each end of the straw was sealed with an electric sealer. Then, these straws 

were arranged on the special rack for freezing procedure. 

 

 

 

 

Collected semen 
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3.6 FREEZING AND THAWING  

3.6.1 Equilibration 

The straw filled with semen-diluent was placed on the rack and being put into the low 

temperature incubator (Model: L15, Shel lab, Cornelius, Oregon) at 4oC for three 

equilibration durations (120, 140 or 160 minutes) (Figure 3.8). 

 

              Figure 3.8: Equilibration of straws on a rack in the low temperature incubator at   

                                4oC. 

 

3.6.2 Rapid Freezing 

This process comprises of two-stages: a) exposure to liquid nitrogen vapour at different 

durations (5, 10 or 15 minutes) and temperatures (-80, -90 or -100oC) (Figure 3.9).            

b) complete submerge of straw into the liquid nitrogen (-196oC) for 10 minutes. The straws 

were kept in the liquid nitrogen tank for long-term sperm storage (Figure 3.10) until 

analysis. 

Special freezing rack 

Straws 
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              Figure 3.9: Exposure of straws to liquid nitrogen vapour. 

 

 

 

 

 

      Figure 3.10: Long-term sperm storage in the liquid nitrogen tank. 
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3.6.3 Thawing 

The straws were put into the water bath at 30oC for 30 seconds. After that, the straws were 

wiped dry with tissue paper and both sealed ends were cut to extract the sperm. 

 

3.7 ANALYSIS OF SPERM 

Fresh and post-thawed cryopreserved sperm were analysed using the automated semen 

analyzer (IVOS; Hamilton-Thorne, USA) (Figure 3.11) to evaluate total motility, 

progressive motility, velocity distributions and motion characteristics of the sperm. 

 

 

               Figure 3.11: Automated semen analyzer (IVOS; Hamilton-Thorne, USA). 
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3.7.1 Automated Semen Analyzer (IVOS; Hamilton-Thorne, USA) 

Figure 3.12 shows the schematic representation of some of the motility patterns measured 

by the CASA system. The most useful parameters which were automatically assessed 

were:  

a) Total motility: the number of motile sperm within the analysis field divided by    

       the sum of the motile plus immotile sperm within the analysis field. 

b) Progressive motility: total progressive motility of sperm cells. 

c) Velocity distributions: total percentage of  

i) Rapid. 

ii) Medium. 

iii) Slow.  

iv) Static. 

d) Sperm motion characteristics 

       i)   VAP {Velocity average path (µm s-1)}: Velocity over an average path. 

        ii)  VSL {straight line velocity (µm s-1)}: the straight line distance between the  

              start and end points of the track divided by time taken for the sperm to  

              cover the track. 

        iii) VCL {curvilinear velocity (µm s-1)}: the sum of the incremental distances  

              moved in each frame along the sampled path divided by time taken for the  

              sperm to cover the track. 

                 iv)  ALH (microns): amplitude of lateral head displacement. 

v)  BCF (hertz): beat cross frequency. 

 vi)  STR (%): straightness (ratio of VSL / VAP). 
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Figure 3.12: Schematic representation of some of the motility patterns measured by the  

                     CASA system (Boyer et al., 1989). Black circles represent successive  

                     images of the head of a motile sperm and are joined by straight path lines.  

                     Curved line indicates a smoothed path fitted through sperm track. Analysis  

                     includes {MAD: angular displacement, BCF: beating cross frequency,  

                     VAP: average path velocity, ALH: amplitude of lateral head displacement,  

                     VCL: curvilinear velocity, VSL: straight line velocity}. 

 

vii)  LIN {the linearity (%)}: the straight line distance between the start and end   

       points of the track divided by the sum of the incremental distances along the   

       actual path (VSL / VCL x 100). 

 

3.7.2 Technique of Sperm Analysis Using IVOS 

To ensure simultaneous activation, 10 µl fresh sperm was dropped onto the markler, 

followed by addition of 10 µl distilled water which induces the sperm motility. As for 

frozen-sperm, 10 µl of post-thawed cryopreserved sperm that contained extender as diluent 

was dropped onto the markler; sperm remains immotile, followed by addition of distilled 
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water, which induced motility (activation). The dilution with 10 µl water and transfer of 

diluted activated sperm to the markler were carried out very rapidly (<10 seconds). (Since 

motility of fish sperm decreases very rapidly after mixing with water, it is essential to get 

fully stabilised image as quickly as possible ideally approximately 5 seconds after 

induction of motility). 

 

3.8 EXTENDER 

There are two types of extender used in this experiment: a) Tris-Citric Acid Yolk Extender 

(TCAYE) as described by Asmad et al. (2005) and b) Fish-Ringer Extender (FRE) as 

described by Basavaraja et al. (2004). 

 

3.8.1 Tris-Citric Acid Yolk Extender (TCAYE) 

3.8.1.1 Tris stabilizer preparation 

This preparation comprises of Tris and citric acid. Tris and citric acid were weighed and 

diluted in milli-Q water. This was followed by the addition of Streptomycin and Penicillin. 

Then, the pH was adjusted to 6.75 with 10% citric acid. 

 

3.8.1.2 Egg yolk preparation 

Fresh chicken egg was used (within 25 hours after laying). The egg shell was cleaned with 

water and then wiped with cotton soaked in alcohol, and left to dry. Then the shell was 

broken and the yolk separated from the albumin. The yolk and residues of albumin was 

rolled on a piece of filter paper to separate the entire remaining albumin. The membrane of 

the yolk was pierced to enable the liquid interior to be put into a clean beaker. Precaution 

should be taken to ensure that the yellow liquid is not contaminated with yolk membrane 

or albumin. 
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3.8.1.3 Liquid substance preparation 

The yolk was mixed thoroughly with Tris-stabilizer with the ratio of (1:4), and the mixture 

was centrifuged at 2000 rpm for 15 minutes to separate the sediment. The supernatant was 

separated and mixed with either 2.27, 4.53 or 6.80% glycerol, followed by addition of 1% 

fructose. After thorough mixing, the liquefied substance was placed in a water bath at 37oC 

before it could be utilised. 

 

3.8.2 Fish-Ringer Extender (FRE) 

Table 3.1: The composition of Fish-Ringer Extender (Basavaraja et al., 2004) 

 
Chemical Amount (g/100 ml) 

NaCl 
KCl 

CaCl2 
MgSO4 

NaH2PO4 
Glucose 

0.75 
0.10 
0.016 
0.023 
0.041 
0.10 

 

All the chemicals in Table 3.1 were weighed accurately. To prepare 100 ml FRE extender, 

first each of the chemicals was added into 90 ml distilled water and was gently stirred. 

Then, the remaining of 10 ml distilled water was topped up until reached 100 ml. To 

ensure all the chemicals added were homogenously mixed; the mixture was stirred on the 

stirrer with magnetic stirrer was placed inside. Then, the pH was adjusted until reached 

7.50. 
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3.9 EXPERIMENTAL DESIGN 

The primary objective of this study was to develop a sperm freezing protocol in African 

catfish (Clarias gariepinus) using two different extenders (TCAYE and FRE extenders). 

This study was divided into 4 experiments which have been illustrated as a flow chart in 

Figure 3.13. Each experiment has been described in the following sections. 

 

3.9.1 Effects of Individual Fish Body Weight on Fresh Sperm Motility Characteristics 

in African Catfish (Clarias gariepinus) (Experiment 1) 

The aim of this experiment was to evaluate sperm motility characteristics before freezing 

according to individual fish and body weight in order to form the standard baseline 

information before sperm freezing procedures proper were carried out. Each session of 

semen collection, 2 male African catfish were sacrificed to collect the milt. First, the 

individual fish was weighed to get an actual body weight. The actual body weight was 

used to categorise 3 respective sizes, namely small (<1.0 kg), medium (1.0 -1.5 kg) and 

large (>1.5 kg). The testis of the sacrificed male African catfish was dissected out from the 

body cavity and the testis was cleaned with tap water to rinse the blood. Then, the testis 

was gently perforated with needle to collect the milt. Precaution during perforated of testis 

has to take into account to avoid the needle pierce into the capillary. The milt collected was 

diluted with diluents in a ratio of 1:10 to facilitate analysis of sperm motility 

characteristics. Without dilution, the analysis of sperm using IVOS was difficult because 

the sperm was too concentrated. Sperm movement characteristics and velocity distributions 

of pre-freezing semen was evaluated using an automated semen analyzer (IVOS; 

Hamilton-Thorne, USA).  
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3.9.2  Optimisation of Molarity of Glycerol in TCAYE Extender, Equilibration 

Duration, Vapour Temperature and Vapour Exposure Duration on Frozen-thawed 

Sperm Motility Characteristics of African Catfish (Clarias gariepinus) (Experiment 2) 

The preliminary trial was conducted with the aim to familiarise the protocol of 

cryopreservation in red tilapia using TCAYE before being applied to African catfish. 

Subsequently, after familiarising with the freezing technique, an experiment with the aim 

to determine the effect of equilibration duration, vapour temperature and vapour exposure 

duration on post-thawed cryopreserved sperm motility characteristics in African catfish 

were carried out. Briefly, semen was collected from testis of the sacrificed African catfish, 

diluted in a ratio of 1:10 semen to diluents using TCAYE in 0.5 ml or 0.25 ml French 

straws and the straws containing the diluted semen were subjected to freezing process. 

This research involved a 3 x 3 x 3 x 3 factorial experiment consisting of 3 molarities of 

glycerol (0.5, 1.0 or 2.0 M), 3 equilibration durations (120, 140 or 160 minutes), 3 vapour 

temperatures (-80, -90 or -100oC) and 3 vapour exposure durations (5, 10 or 15 minutes). 

Each of the combination treatments were replicated 3 times with 5 observations per 

replicate. Sperm motility characteristics after frozen-thawed were evaluated using an 

automated semen analyzer (IVOS; Hamilton-Thorne, USA). 

 

3.9.3 Optimisation of Equilibration Duration, Vapour Temperature and Vapour 

Exposure Duration on Frozen-thawed Sperm Motility Characteristics of African 

Catfish (Clarias gariepinus) Using Fish-Ringer Extender (Experiment 3)   

The goal of this experiment was to determine the effect of equilibration duration, vapour 

temperature and vapour exposure duration on post-thawed cryopreserved sperm motility 

characteristics in African catfish using Fish-Ringer extender. The protocol of semen 

collection was similar to Experiment 2. Semen was collected from testis of sacrificed 
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catfish, diluted in a ratio of 1:10 in 0.5 ml or 0.25 ml French straws and the straws 

containing the diluted semen were subjected to freezing process. This research involved a 3 

x 3 x 3 factorial experiment consisting of 3 equilibration durations (120, 140 or 160 

minutes), 3 vapour temperatures (-80, -90 or -100oC) and 3 vapour exposure durations (5, 

10 or 15 minutes). The molarity of cryoprotectant was fixed at 10% DMSO as described 

by Basavaraja et al. (2004). Each of the combination treatments was replicated 3 times 

with 5 observations per replicate. Sperm motility characteristics after freezing were 

evaluated using an automated semen analyzer (IVOS; Hamilton-Thorne, USA).  

 

3.9.4  Comparison of Effects of Different Types of Extender and Cryoprotectant on 

Frozen-thawed Sperm Motility Characteristics of African Catfish (Clarias gariepinus) 

(Experiment 4) 

The aim of this experiment was to compare the effects of different types of extender and 

cryoprotectant on frozen-thawed sperm of African catfish. TCAYE extender was used with 

combination of three molarities of glycerol (0.5, 1.0 and 2.0 M). In addition, FRE extender 

was also studied with a fixed concentration of cryoprotectant at 10% DMSO. Each of the 

combination treatments was replicated 3 times with 5 observations per replicate. Sperm 

motility characteristics after freezing were evaluated using an automated semen analyzer 

(IVOS; Hamilton-Thorne, USA).  
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Collection of milt by incising and squeezing of testes from sacrificed African catfish  

TCAYE extender  
(0.5, 1.0 or 2.0 M Glycerol). 

Diluted semen was loaded into 0.5 ml or 0.25 ml French straws 

Equilibration at 4oC within three intervals of duration  
(120, 140 or 160 minutes) 

Vapourisation (exposure to LN2 vapour) at three vapour temperatures  
(-80, -90 or -100oC) and three durations of exposure (5, 10 or 15 

minutes) 

Stored at -196oC in liquid nitrogen tank  

Thawing at 30oC for 30 seconds 

Semen evaluation using IVOS 

Male of African catfish was anaesthetised by salt immersion (euthanasia) 

FRE extender  
(fixed at 10% DMSO)  

FROZEN SEMEN 

Semen evaluation  
using automated 
semen analyzer 

(IVOS)  

Injection of Gonadotrophin (Ovaprim, Aqualife, Syndel Int. Inc., Canada) into the dorsal muscle of 
catfish 24 hours before freezing experiment 

Figure 3.13: Flow chart of experimental design. 

Experiment 1 
Effects of individual fish body weight on 
fresh sperm motility characteristics in 

African catfish (Clarias gariepinus) 

 Experiment 2 
Optimisation of molarity of glycerol 
in TCAYE extender, equilibration 
duration, vapour temperature and 

vapour exposure duration on frozen-
thawed sperm motility 

characteristics in African catfish 
(Clarias gariepinus) 

Experiment 3 
Optimisation of equilibration 
duration, vapour temperature 
and vapour exposure duration 
using FRE extender on frozen-

thawed sperm motility 
characteristics in African catfish 

(Clarias gariepinus) 

Plunging directly into LN2 at -196oC 

Dilution of semen with diluents 
in a ratio of (1:10) 

Experiment 4 
Comparison of effects of 

different types of extender 
and cryoprotectant on 
frozen-thawed sperm 

motility characteristics in 
African catfish (Clarias 

gariepinus) 
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3.10 STATISTICAL ANALYSIS 

All data were subjected to analysis of variance (ANOVA), followed by comparison of 

means using Duncan’s multiple range test (DMRT). All statistical analysis was performed 

using SPSS (Statistical Package for Social Sciences) for windows, version 12.0. The data 

was presented as (mean±SEM). To determine correlations among the parameters 

measured, Pearson correlation was used which was significant at (P<0.01). The factors 

involved and parameters measured were categorised into dependent and independent 

variables. 

 

The independent variables involved were: 

a) Molarity of glycerol –molarity of glycerol in TCAYE extender. 

b) Types of extender – TCAYE and FRE extenders. 

c) Equilibration duration – duration for semen and extender to equilibrate. 

d) Vapour temperature –vapourisation temperature for freezing process before 

submerged into liquid nitrogen. 

e) Vapour exposure duration – duration for exposure the sperm onto liquid nitrogen 

vapour. 

 

The dependent variables were: 

a) Total motility – total motility of sperm cells. 

b) Progressive motility– total progressive motility of sperm cells. 

c) Sperm velocity distributions, i.e. total rapid, medium, slow and static sperm cells 

were estimated. 

d) Sperm motion characteristics, i.e. VAP, VCL, VSL, ALH, BCF, STR and LIN. 
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Chapter 4 

4.0 RESULTS 

4.1 EFFECT OF INDIVIDUAL BODY WEIGHT ON FRESH SPERM MOTILITY 

CHARACTERISTICS IN AFRICAN CATFISH (Clarias gariepinus) (EXPERIMENT 

1) 

The fresh sperm motility characteristics analysed by the IVOS (Hamilton-Thorne, USA) 

were grouped according to body weight of African catfish, namely called body size: small 

(<1.0 kg), medium (1.0-1.5 kg) and large (>1.5 kg). Table 4.1 shows the total motility and 

progressive motility of fresh sperm obtained from 24 randomly selected fish which were 

grouped into small (5), medium (14) and large (5) body weight groups (BW). Large BW of 

African catfish gave the highest total motility (82.40±4.59%) followed by medium BW 

(51.64±9.82%) and small BW (40.40±12.16%), whereby small BW fish were significantly 

different in total motility compared with the other two groups. The values for progressive 

motility for small, medium and large BW of fish were 8.20±3.65%, 14.00±4.29% and 

17.40±3.36%, respectively (P>0.05). 

 Table 4.2 shows velocity distributions for fresh sperm of African catfish according 

to body weight group of fish. The values of sperm with rapid and slow velocities for the 

three body weight groups did not show any significant differences (P>0.05). However, 

sperm for large BW group with medium velocity showed the highest significant value 

(15.40±2.82%) as compared to medium BW group (6.21±1.86%) and small BW group 

(5.60±2.32%). In static velocity, there were no significant differences among the different 

BW groups studied (P>0.05). The values for rapid, medium, slow and static velocity 

distributions for fresh sperm were ranged from 14.00±6.63% to 25.80±4.97%, 5.60±2.32% 

to 15.40±2.82%, 20.80±6.49% to 41.20±5.18% and 17.60±4.59% to 59.60±12.16%, 

respectively. Interestingly, large BW group of fish gave significantly higher medium 
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velocity compared to the other groups. Conversely, small and medium BW groups were 

significantly higher in static velocity compared to large BW group.   

Analysis of sperm motion characteristics for fresh sperm of African catfish are 

shown in Table 4.3. There were no significant differences for values of ALH (range: 

5.36±0.60-6.20±0.49 µm), BCF (range: 10.78±2.82-16.10±2.66 Hz), STR (range: 

83.33±1.45-88.36±1.53%) and LIN (range: 62.00±1.97-66.80±7.88%) among the three 

BW groups (P>0.05). However, the respective VAP (83.34±9.31 µm/s), VSL (73.44±11.60 

µm/s) and VCL (108.12±5.51 µm/s) values for small BW groups were significantly higher 

(P<0.05) than those of the large BW group (49.70±6.42, 41.90±4.94 and 74.60±9.47 

µm/s). 

Tables 4.4, 4.5 and 4.6 show correlations of fresh sperm motility characteristics in 

African catfish for small, medium and large BW groups. For small BW group, positive 

correlations (P<0.05) were shown between medium and slow; VAP and VSL; VAP and 

LIN; VSL and STR; VSL and LIN and STR and LIN. In contrast, total motility and static; 

rapid and ALH; VAP and BCF; VSL and BCF and BCF and LIN showed high negative 

correlations (P<0.05). In medium BW group, total motility and progressive motility; total 

motility and rapid; total motility and medium; progressive motility and rapid; progressive 

motility and medium; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL 

and VCL; VSL and ALH; VSL and LIN as well as ALH and LIN were high positively 

correlated (P<0.05). On the other hand, high negative correlations were shown between 

total motility and static; progressive motility and static; progressive motility and VAP; 

progressive motility and VCL; rapid and static; rapid and VAP; rapid and VCL; medium 

and static; slow and static; VAP and LIN; VSL and LIN; VCL and STR; VCL and LIN and 

BCF and STR (P<0.05). In large BW group, positive correlations (P<0.05) were shown 

between progressive motility and rapid; progressive motility and LIN; rapid and STR; 
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rapid and LIN; VAP and VSL; VAP and VCL; VAP and ALH; VSL and VCL and VSL 

and ALH. In contrast, negative correlations (P<0.05) were shown between total motility 

and static; progressive motility and VAP; progressive motility and VSL; progressive 

motility and VCL; progressive motility and ALH; rapid and VAP; rapid and VSL; rapid 

and VCL; rapid and ALH; VAP and LIN; VSL and STR; VSL and LIN; VCL and LIN and 

ALH and LIN. 

Table 4.7 shows correlations among fresh sperm motility characteristics of African 

catfish for overall body weight groups. There were positive correlations (P<0.05) between 

total motility and progressive motility; total motility and rapid; total motility and medium; 

total motility and slow; progressive motility and rapid; progressive motility and medium; 

rapid and medium; medium and slow; slow and BCF; static and VSL; VAP and VSL; VAP 

and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; 

VCL and ALH and STR and LIN. In contrast, negative correlations (P<0.05) were shown 

between medium and static; slow and static and BCF and STR. 
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Table 4.1: Total motility and progressive motility (mean ± SEM) for fresh sperm of  
     African catfish according to body weight group of fish 

 

 Body size (BW, kg) N* 
 Total motility  

(%) 
 Progressive motility 

 (%) 
Small (< 1.0) 

Medium (1.0-1.5) 
Large (>1.5) 

5 
14 
5 

40.40±12.16a 
51.64±9.82ab 
82.40±4.59b 

8.20±3.65a 
14.00±4.29a 
17.40±3.36a 

   
N*= Number of individual fish. 
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
 
 Table 4.2: Velocity distributions (mean ± SEM) for fresh sperm of African catfish  
                  according to body weight group of fish 
 

Body size  
(BW, kg)  N* 

       
      Rapid 

 (%) 

 
Medium 

(%) 

 
Slow  
(%) 

  
Static  
(%) 

5 
14 

14.00±6.63a 
18.79±6.13a 

59.60±12.16b 
48.36±9.82ab 

Small (<1.0) 
Medium (1.0-1.5) 

Large (>1.5) 5 25.80±4.97a 

5.60±2.32a 
6.21±1.86a 

15.40±2.82b 

20.80±6.49a 
26.50±5.25a 
41.20±5.18a 17.60±4.59a 

     
N*= Number of individual fish. 
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
 
Table 4.3: Sperm motion characteristics (mean ± SEM) for fresh sperm of African catfish  
                 according to body weight group of fish 
 

Body size 
 (BW, kg)  

 
 

N* 

 
VAP 

(µm/s) 

 
VSL 

(µm/s) 

 
VCL 

(µm/s) 

 
ALH 
(µm) 

 
BCF 
(Hz) 

 
STR 
(%) 

 
LIN 
(%) 

5 
 

Small  
(<1.0) 

Medium 
(1.0-1.5) 14 

Large 
(>1.5) 5 

83.34 
±9.31b 
58.82 

±6.22ab 
49.70 
±6.42a 

73.44 
±11.60b 
52.55 

±5.61ab 
41.90 
±4.94a 

108.12 
±5.51b 
80.45 

±6.87ab 
74.60 
±9.47a 

6.20 
±0.49a 
5.36 

±0.60a 
5.53 

±1.47a 

10.78 
±2.82a 
11.21 
±1.64a 
16.10 
±2.66a 

86.00 
±3.81a 
88.36 
±1.53a 
83.33 
±1.45a 

66.80 
±7.88a 
62.00 
±1.97a 
62.67 
±2.32a 

   
N*= Number of individual fish. 
abMeans with different superscripts within a column were significantly different (P<0.05).
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Table 4.4: Correlations among fresh sperm motility characteristics for small BW group of African catfish 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .768 
 

.632 
 

.857 
 

.845 
 

-.959** 
 

-.324 
 

-.364 
 

-.014 
 

-.375 
 

.362 
 

-.439 
 

-.406 
 

Progressive motility 
 

 1 .795 
 

.369 
 

.310 
 

-.669 
 

-.213 
 

-.356 
 

.378 
 

-.471 
 

.240 
 

-.636 
 

-.465 
 

Rapid   1 .202 
 

.245 
 

-.714 
 

-.193 
 

-.325 
 

.313 
 

-.909* 
 

.402 -.569 -.420 

Medium    1 .970** 
 

-.818 -.430 -.374 -.406 -.018 .391 -.250 -.346 

Slow     1 -.852 
 

-.263 -.203 -.303 -.117 .284 -.087 -.176 

Static      1 .328 
 

.357 .069 .561 -.445 .404 .389 

VAP       1 .983** 
 

.786 .140 -.948* .837 .950* 

VSL        1 .661 
 

.237 -.945* .923* .991** 

VCL         1 -.198 
 

-.715 .321 .554 

ALH          1 -.425 
 

.403 .302 

BCF           1 -.827 
 

-.922* 

STR            1 
 

.966** 

LIN             1 
 

      No. of fish = 5. 
** Pearson correlations were significant (P<0.01).  
  * Pearson correlations were significant (P<0.05).  
 

 

65 



 

  

 

98 
 
 

Table 4.5: Correlations among fresh sperm motility characteristics for medium BW group of African catfish 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .813** 
 

.776** .783** .692** -1.000** -.335 -.353 -.360 .090 .325 -.167 -.181 

Progressive motility  1 .993** 
 

.611* .149 -.813** -.289 -.299 -.296 -.001 .098 -.162 -.255 

Rapid   1 .519 
 

.103 -.776** -.269 -.279 -.274 -.006 .060 -.153 -.250 

Medium    1   .509 
 

-.783** -.207 -.227 -.234 .211 .354 -.172  -.078 

Slow     1 -.692** 
 

-.262 -.282 -.298 .136 .513 -.090 -.003 

Static      1 .335 
 

.353 .360 -.090 -.325 .167 .181 

VAP       1 .979** 
 

.963** .561* .007 -.370 .577* 

VSL        1 .896** 
 

.597* -.139 -.200 .705** 

VCL         1 .435 
 

.116 -.508 .366 

ALH          1 .033 
 

-.099 .659* 

BCF           1 -.742** 
 

-.392 

STR            1 
 

.384 

LIN             1 
 
      No. of fish = 14. 
** Pearson correlations were significant (P<0.01).  
  * Pearson correlations were significant (P<0.05).  
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Table 4.6: Correlations among fresh sperm motility characteristics for large BW group of African catfish 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .462 
 

.400 
 

.225 
 

.407 
 

-1.000** 
 

.062 -.056 .025 -.032 .116 .296 .092 

Progressive motility  1 .993** 
 

-.004 -.507 -.462 -.984* -.995** -.979* -.998** .019 .941 .998** 

Rapid   1 -.084 
 

-.531 -.400 -.986* -.999** -.989* -.994** .109 .963* .989* 

Medium    1 -.251 
 

-.225 .170 .138 .233 .067 -.892 -.212 .018 

Slow     1 -.407 
 

.847 .822 .797 .869 .452 -.635 -.883 

Static      1 -.062 
 

.056 -.025 .032 -.116 -.296 -.092 

VAP       1 .993** 
 

.996** .993** -.086 -.916 -.978* 

VSL        1 .994** 
 

.996** -.109 -.953* -.988* 

VCL         1 .986* 
 

-.171 -.941 -.968* 

ALH          1 -.022 
 

-.928 -.996** 

BCF           1 .307 
 

-.039 

STR            1 
 

.923 

LIN             1 
 
     No. of fish = 5. 
**Pearson correlations were significant (P<0.01). 
  *Pearson correlations were significant (P<0.05). 
 
 

67 



 

  

 

100 
 
 

Table 4.7: Correlations among fresh sperm motility characteristics of African catfish (Clarias gariepinus) for overall pooled BW groups 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .776** 
 

.739** .778** .745** -.995** -.407 -.428* -.375 .027 .419 -.295 -.234 

Progressive motility  1 .971** 
 

.509* .184 -.767** -.357 -.364 -.346 -.144 .132 -.170 -.155 

Rapid   1 .439* 
 

.145 -.748** -.321 -.336 -.300 -.179 .152 -.195 -.146 

Medium    1 .566** 
 

-.774** -.297 -.318 -.262 .155 .362 -.298 -.152 

Slow     1 -.746** 
 

-.294 -.307 -.277 .184 .543** -.217 -.218 

Static      1 .407 
 

.427* .380 -.011 -.433* .287 .230 

VAP       1 .976** 
 

.940** .511* -.266 -.015 .518* 

VSL        1 .849** 
 

.507* -.403 .182 .650** 

VCL         1 .454* 
 

-.087 -.288 .247 

ALH          1 -.011 
 

-.099 .200 

BCF           1 -.736** 
 

-.494* 

STR            1 .602** 
 

LIN             1 
 
     No. of fish = 24. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05).
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4.2  FAMILIARISING THE PROTOCOL OF SPERM CRYOPRESERVATION 

USING RED TILAPIA (Oreochromis niloticus) AS A MODEL (EXPERIMENT 2) 

4.2.1 Fresh Sperm 

Table 4.8 shows total motility and progressive motility of fresh sperm for Red tilapia. The 

mean values for total motility and progressive motility obtained from the three individual 

fish were 63.67±12.33% and 30.00±7.02%, respectively. 

 The velocity distributions of fresh sperm for red tilapia are shown in Table 4.9. The 

mean values of rapid, medium, slow and static velocities obtained were 37.00±8.62%, 

6.67±1.20%, 20.00±4.93% and 36.33±12.33%, respectively.  

 Analysis of sperm motion characteristics of fresh sperm for Red tilapia are shown 

in Table 4.10. The mean values for VAP, VSL, VCL, ALH, BCF, STR and LIN obtained 

were 44.27±2.89 µm/s, 37.23±4.51 µm/s, 60.00±4.36 µm/s, 2.77±0.33 µm, 18.13±0.26 Hz, 

87.33±1.33% and 63.33±3.18%, respectively. 

Table 4.8: Total motility and progressive motility (mean ± SEM) for fresh sperm of  
                  Red tilapia (Oreochromis niloticus) 

Individual  
Fish 

Total Motility  
(%) 

Progressive motility 
(%) 

1 76.00 36.00 
2 76.00 38.00 
3 39.00 16.00 

Mean±SEM 63.67±12.33 30.00±7.02 
Total number of fish, N = 3.  
 
 
Table 4.9: Velocity distributions (mean ± SEM) for fresh sperm of Red tilapia  
                 (Oreochromis niloticus) 
 

Individual  
Fish 

Rapid  
(%) 

Medium  
(%) 

Slow  
(%) 

Static  
(%) 

1 43.00 5.00 29.00 24.00 
2 48.00 6.00 19.00 24.00 
3 20.00 9.00 12.00 61.00 

Mean±SEM 37.00±8.62 6.67±1.20 20.00±4.93 36.33±12.33 
Total number of fish, N = 3.  
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Table 4.10: Sperm motion characteristics (mean ± SEM) for fresh sperm of Red tilapia  
                   (Oreochromis niloticus) 

 
Individual 

Fish 
VAP 

(µm/s) 
VSL 

(µm/s) 
VCL 

(µm/s) 
ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

1 49.20 44.40 65.90 3.40 18.60 90.00 69.00 
2 44.40 38.40 62.60 2.60 18.10 86.00 63.00 
3 39.20 28.90 51.50 2.30 17.70 86.00 58.00 

Mean 
±SEM 

44.27 
±2.89 

37.23 
±4.51 

60.00 
±4.36 

2.77 
±0.33 

18.13 
±0.26 

87.33 
±1.33 

63.33 
±3.18 

Total number of fish, N = 3. 
 
 
4.2.2 Post-thawed Cryopreserved Sperm 

Table 4.11 shows total motility and progressive motility of post-thawed cryopreserved 

sperm of Red tilapia using 0.5 M glycerol in TCAYE extender for combinations of 

equilibration duration, vapour temperature and vapour exposure duration. The mean values 

for total motility and progressive motility obtained from post-thawed cryopreserved sperm 

were 51.00±7.79% and 22.33±4.06%, respectively. 

 Table 4.12 shows velocity distributions of post-thawed cryopreserved sperm of Red 

tilapia using 0.5 M glycerol in TCAYE extender for combinations of equilibration 

duration, vapour temperature and vapour exposure duration. The mean values for rapid, 

medium, slow and static velocities obtained from post-thawed cryopreserved sperm were 

25.17±4.52%, 3.50±0.92%, 22.17±7.38% and 49.00±7.79%, respectively. 

 Table 4.13 shows sperm motion characteristics of post-thawed cryopreserved 

sperm of Red tilapia using 0.5 M glycerol in TCAYE extender for combinations of 

equilibration duration, vapour temperature and vapour exposure duration. The mean values 

for VAP, VSL, VCL, ALH, BCF, STR and LIN obtained from post-thawed cryopreserved 

sperm were 44.50±1.48 µm/s, 40.52±1.66 µm/s, 58.82±1.45 µm/s, 2.88±0.29 µm, 

15.63±1.39 Hz, 90.83±0.70% and 69.50±1.15%, respectively. 
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Table 4.11: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of Red tilapia (Oreochromis niloticus) using 0.5 M of  
                   glycerol in TCAYE extender for combinations of equilibration duration,  
                   vapour temperature and vapour exposure duration 

Equilibration 
duration 

(min) 

Vapour  
temperature 

(oC) 

Exposure  
duration 

(min) 

Total motility 
(%) 

Progressive 
motility  

(%) 
30 -90 7 48.00 30.00 
45 -90 5 64.00 29.00 
45 
60 
60 

-90 
-80 
-90 

10 
10 
5 

49.00 
35.00 
29.00 

5.00 
29.00 
16.00 

                                          Mean±SEM 51.00±7.79 22.33±4.06 
N*= Each of combination was done once to familiarise the sperm freezing technique. 
 
Table 4.12: Velocity distributions (mean ± SEM) of post-thawed cryopreserved sperm of  
                    Red tilapia (Oreochromis niloticus) using 0.5 M of glycerol in TCAYE  
                    extender for combinations of equilibration duration, vapour   
                    temperature and vapour exposure duration  
Equilibration 

duration 
(min) 

Vapour  
temperature 

(oC) 

Vapour 
exposure 
duration 

(min) 

Rapid 
(%) 

 
 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

30 -90 7 34.00  7.00 8.00 52.00 
45 -90 5 34.00  4.00 25.00 36.00 
45 
60 
60 

-90 
-80 
-90 

10 
10 
5 

6.00 
29.00 
18.00 

 
 
 

51.00 
65.00 
71.00 

                                                        Mean 
                                                       ±SEM 

 25.17 
 ±4.52 

3.00 
0.00 
4.00 
3.50 

±0.92 

40.00 
6.00 
7.00 

22.17 
±7.38 

   49.00 
   ±7.79 

N* = Each of combination was done once to familiarise the sperm freezing technique. 
 
 
Table 4.13: Sperm motion characteristics (mean ± SEM) for post-thawed cryopreserved  
                    sperm of Red tilapia (Oreochromis niloticus) using 0.5 M of glycerol in  
                    TCAYE extender for combinations of equilibration duration, vapour  
                    temperature and vapour exposure duration   

Equilibration 
duration 

(min) 

Vapour  
temperature 

(oC) 

Vapour 
exposure 
duration 

(min) 

VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

30 -90 7 41.40 37.80 56.60 2.60 15.80 90.00 67.00 
45 -90 5 44.20 39.00 61.00 2.50 17.40 89.00 67.00 
45 
60 
60 

-90 
-80 
-90 

10 
10 
5 

                                             
                                              Mean±SEM 

40.20 
49.90 
43.90 
44.50 
±1.48 

37.50 
47.30 
37.80 

40.52±
1.66 

54.80 
64.20 
56.20 
58.82 
±1.45 

4.20 
2.80 
2.20 
2.88 

±0.29 

16.40 
19.50 
9.40 

15.63 
±1.39 

91.00 
94.00 
90.00 
90.83 
±0.70 

67.00 
73.00 
71.00 
69.50 
±1.15 

N* = Each of combination was done once to familiarise the sperm freezing technique. 
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4.3 EFFECT OF MOLARITY OF GLYCEROL IN TCAYE EXTENDER ON 

FROZEN-THAWED SPERM MOTILITY OF AFRICAN CATFISH (Clarias 

gariepinus) (EXPERIMENT 2) 

Table 4.14 shows total motility and progressive motility of post-thawed cryopreserved 

sperm of African catfish for 0.5, 1.0 and 2.0 M of glycerol in TCAYE extender. Glycerol 

with molarity of 0.5 M showed significant highest values of total motility (32.27±2.05%) 

and progressive motility (3.75±0.41%) as compared to the total motility and progressive 

motility values of 1.0 M (24.50±1.81% and 2.63±0.29%, respectively). Meanwhile, there 

were no significant differences (P>0.05) in values of total motility (24.50±1.81% and 

26.74±2.14%, respectively) and progressive motility (2.63±0.29% and 2.45±0.37%, 

respectively) between 1.0 and 2.0 M of glycerol. 

 Table 4.15 shows velocity distributions of post-thawed cryopreserved sperm of 

African catfish using TCAYE extender for different molarities of glycerol. There was a 

significant difference in value of rapid velocity between 0.5 M of glycerol, which gave 

comparatively the highest value (5.19±0.60%) than 1.0 M (3.46±0.37%) and 2.0 M 

(3.37±0.51%) of glycerol. For medium and slow velocities, 0.5 M of glycerol gave the 

significant highest values (1.70±0.14% and 25.39±1.62%, respectively) as compared to 1.0 

M of glycerol (1.27±0.13% and 19.76±1.47%, respectively). Conversely, 0.5 M of glycerol 

gave comparatively the lowest value of static velocity (67.74±2.05%) in comparison with 

2.0 M (73.27±2.14%) and 1.0 M of glycerol (75.50±1.81%). 

 Results for sperm motion characteristics are shown in Table 4.16. The values of 

VAP and VSL showed significant differences in 2.0 M of glycerol, which were 

comparatively the lowest (45.84±2.00 µm/s and 40.77±1.85 µm/s, respectively) as 

compared to 1.0 M (52.80±1.89 µm/s and 47.94±1.81 µm/s, respectively) and 0.5 M of 

glycerol (56.91±2.27 µm/s and 49.89±2.09 µm/s, respectively). Meanwhile, both 0.5 and 
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1.0 M did not show any significant differences (P>0.05) in values of VAP (52.80±1.89 and 

56.91±2.27 µm/s, respectively) and VSL (47.94±1.81 and 49.89±2.09 µm/s, respectively). 

There were no significant differences (P>0.05) among the three molarities of glycerol (0.5, 

1.0 and 2.0 M) in values of ALH (range: 4.60±0.31-5.34±0.24 µm), BCF (range: 

13.61±0.94-14.99±0.89 Hz) and LIN (range: 63.02±1.16-65.18±1.55%). In term of VCL, 

the three molarities of glycerol showed significant differences, in which 0.5 M of glycerol 

gave higher value (82.87±3.08 µm/s) as compared to 2.0 M of glycerol (65.43±2.45 µm/s). 

For value of STR, 0.5 M of glycerol gave the significant lowest value (86.36±0.64%) as 

compared to 1.0 M (88.78±0.60%) and 2.0 M of glycerol (88.79±0.73%), whereby 1.0 and 

2.0 M of glycerol did not show any significant differences in STR values (P>0.05). 

 Tables 4.17, 4.18 and 4.19 show correlations of sperm motility characteristics of 

post-thawed cryopreserved sperm of African catfish for  0.5, 1.0 and 2.0 M of glycerol. For 

0.5 M of glycerol, total motility and progressive motility; total motility and rapid; total 

motility and medium; total motility and slow; total motility and VAP; total motility and 

VSL; total motility and VCL; progressive motility and rapid; progressive motility and 

medium; progressive motility and slow; progressive motility and VAP; progressive 

motility and VSL; progressive motility and VCL; rapid and medium; rapid and slow; rapid 

and VAP; rapid and VSL; rapid and VCL; medium and slow; slow and VAP; slow and 

VSL; slow and VCL; VAP and VSL; VAP and VCL; VAP and ALH; VSL and VCL; VSL 

and ALH; VSL and LIN; VCL and ALH; STR and LIN were positively correlated 

(P<0.05). In contrast, negative correlations (P<0.05) were shown between total motility 

and static; progressive motility and static; rapid and static; medium and static; slow and 

static; static and VAP; static and VSL; static and VCL; VCL and STR; VCL and LIN; 

BCF and STR and BCF and LIN. For 1.0 M of glycerol, positive correlations (P<0.05) 

were shown among total motility and progressive motility; total motility and rapid; total 
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motility and medium; total motility and slow; progressive motility and rapid; progressive 

motility and medium; progressive motility and slow; rapid and medium; rapid and slow; 

medium and slow; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL 

and VCL; VSL and ALH; VSL and STR; VSL and LIN; VCL and ALH; ALH and BCF; 

ALH and LIN and STR and LIN. There were negative correlations (P<0.05) in 1.0 M 

glycerol among total motility and static; progressive motility and static; rapid and static; 

medium and static; slow and static; slow and BCF; VCL and STR; ALH and STR; BCF 

and STR and BCF and LIN. In 2.0 M of glycerol, positive correlations (P<0.05) were 

shown among total motility and progressive motility; total motility and rapid; total motility 

and medium; total motility and slow; progressive motility and rapid; progressive motility 

and medium; progressive motility and slow; rapid and medium; rapid and slow; medium 

and slow; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; 

VSL and ALH; VSL and LIN; VCL and ALH; VCL and BCF; ALH and BCF and STR 

and LIN. In contrast, total motility and static; progressive motility and static; rapid and 

static; medium and static; slow and static; VCL and STR; VCL and LIN; ALH and STR; 

BCF and STR and BCF and LIN were negatively correlated (P<0.05). 

 Table 4.20 shows correlations among sperm motility characteristics of post-thawed 

cryopreserved sperm of African catfish for overall pooled molarities of glycerol using 

TCAYE extender. There were positive correlations (P<0.05) among total motility and 

progressive motility; total motility and rapid; total motility and medium; total motility and 

slow; total motility and VAP; total motility and VSL; total motility and VCL; progressive 

motility  and rapid; progressive motility and medium; progressive motility and slow; 

progressive motility and VAP; progressive motility and VSL; progressive motility and 

VCL; rapid and medium; rapid and slow; rapid and VAP; rapid and VSL; rapid and VCL; 

medium and slow; slow and VAP; slow and VSL; slow and VCL; VAP and VSL; VAP 
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and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN 

VCL and ALH; VCL and BCF; ALH and BCF and STR and LIN but negative correlations 

(P<0.05) were shown among total motility and static; progressive motility and static; rapid 

and static; medium and static; slow and static; static and VAP; static and VSL; static and 

VCL; slow and static; VCL and STR; VCL and LIN; ALH and STR; BCF and STR and 

BCF and LIN.  
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Table 4.14: Total motility and progressive motility (mean ± SEM) of post-thawed  
                    cryopreserved sperm of African (Clarias gariepinus) catfish using TCAYE  
                    extender for different molarities of glycerol 
 

Molarity of glycerol 
(M) 

N* Total motility 
(%) 

Progressive motility 
(%) 

0.5 135 32.27±2.05b 3.75±0.41b 
1.0 147 24.50±1.81a 2.63±0.29a 
2.0 128  26.74±2.14ab 2.45±0.37a 

 

 
N* = Total number of observations (straws).  
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.15: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using TCAYE extender for different  
                   molarities of glycerol 
 

Molarity of 
glycerol (M) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

0.5 135 5.19±0.60b   1.70±0.14b 25.39±1.62b 67.74±2.05a 
1.0 147 3.46±0.37a 1.27±0.13a 19.76±1.47a 75.50±1.81b 
2.0 128 3.37±0.51a  1.43±0.16ab 21.89±1.70ab 73.27±2.14ab 

 

 
N* = Total number of observations (straws).  
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.16: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using TCAYE extender for  
                   different molarities of glycerol 
 

Molarity of 
glycerol(M) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

0.5 127 56.91 
±2.27b 

49.89 
±2.09b 

82.87 
±3.08c 

5.34 
±0.24a 

14.99 
±0.89a 

86.36 
±0.64a 

63.02 
±1.16a 

1.0 135 52.80 
±1.89b 

47.94 
±1.81b 

73.80 
±2.22b 

4.92 
±0.24a 

13.61 
±0.94a 

88.78 
±0.60b 

64.79 
±1.22a 

2.0 115 45.84 
±2.00a 

40.77 
±1.85a 

65.43 
±2.45a 

4.60 
±0.31a 

14.55 
±1.21a 

88.79 
±0.73b 

65.18 
±1.55a 

 
N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05).
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Table 4.17: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish using glycerol (0.5 M)  
                   in TCAYE  

 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
 
 

 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .667** 
(135) 

.638** 
(135) 

.685** 
(135) 

.879** 
(135) 

-.927** 
(135) 

.267** 
(127) 

.266** 
(126) 

.253** 
(127) 

.145 
(127) 

.012 
(127) 

-.027 
(127) 

.025 
(127) 

Progressive motility  1 .959** 
(135) 

.702** 
(135) 

.378** 
(135) 

-.627** 
(135) 

.318** 
(127) 

.327** 
(126) 

.266** 
(127) 

.149 
(127) 

-.076 
(127) 

.066 
(127) 

.104 
(127) 

Rapid   1 .738** 
(135) 

.429** 
(135) 

-.679** 
(135) 

.288** 
(127) 

.286** 
(126) 

.257** 
(127) 

.114 
(127) 

-.057 
(127) 

.045 
(127) 

.067 
(127) 

Medium    1 .591** 
(135) 

-.746** 
(135) 

.099 
(127) 

.118 
(126) 

.072 
(127) 

.067 
(127) 

-.069 
(127) 

.072 
(127) 

.037 
(127) 

Slow     1 -.953** 
(135) 

.217* 
(127) 

.217* 
(126) 

.208* 
(127) 

.131 
(127) 

.033 
(127) 

-.045 
(127) 

.014 
(127) 

Static      1 -.265** 
(127) 

-.265** 
(126) 

-.245** 
(127) 

-.143 
(127) 

-.002 
(127) 

.017 
(127) 

-.036 
(127) 

VAP       1 .965** 
(126) 

.870** 
(127) 

.499** 
(127) 

-.067 
(127) 

-.119 
(127) 

.117 
(127) 

VSL        1 .753** 
(126) 

.547** 
(126) 

-.136 
(126) 

.057 
(126) 

.257** 
(126) 

VCL         1 .375** 
(127) 

.103 
(127) 

-.385** 
(127) 

-.278** 
(127) 

ALH          1 .158 
(127) 

-.141 
(127) 

.141 
(127) 

BCF           1 -.524** 
(127) 

-.337** 
(127) 

STR            1 .680** 
(127) 

LIN             1 
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Table 4.18: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish using glycerol (1.0 M)  
                   in TCAYE  
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.744** 
(147) 

.701** 
(147) 

.576** 
(147) 

.752** 
(147) 

-.794** 
(147) 

.035 
(135) 

.032 
(135) 

.011 
(135) 

.044 
(135) 

-.129 
(135) 

.019 
(135) 

.001 
(135) 

Progressive motility 
 

 1 
 

.940** 
(147) 

.622** 
(147) 

.539** 
(147) 

-.675** 
(147) 

-.016 
(135) 

-.014 
(135) 

-.016 
(135) 

.050 
(135) 

-.038 
(135) 

.056 
(135) 

-.058 
(135) 

Rapid   1 
 

.664** 
(147) 

.633** 
(147) 

-.767** 
(147) 

.011 
(135) 

.012 
(135) 

.003 
(135) 

.055 
(135) 

-.054 
(135) 

.058 
(135) 

-.039 
(135) 

Medium    1 
 

.579** 
(147) 

-.677** 
(147) 

.094 
(135) 

.091 
(135) 

.047 
(135) 

.118 
(135) 

-.123 
(135) 

-.009 
(135) 

-.006 
(135) 

Slow     1 
 

-.979** 
(147) 

.081 
(135) 

.082 
(135) 

.049 
(135) 

.033 
(135) 

-.179* 
(135) 

.038 
(135) 

.025 
(135) 

Static      1 
 

-.070 
(135) 

-.071 
(135) 

-.040 
(135) 

-.041 
(135) 

.155 
(135) 

-.043 
(135) 

-.010 
(135) 

VAP       1 
 

.982** 
(135) 

.872** 
(135) 

.507** 
(135) 

-.078 
(135) 

.070 
(135) 

.483** 
(135) 

VSL        1 
 

.792** 
(135) 

.480** 
(135) 

-.145 
(135) 

.223** 
(135) 

.579** 
(135) 

VCL         1 
 

.475** 
(135) 

.099 
(135) 

-.185* 
(135) 

.083 
(135) 

ALH          1 
 

.192* 
(135) 

-.190* 
(135) 

.204* 
(135) 

BCF           1 
 

-.417** 
(135) 

-.267** 
(135) 

STR            1 
 

.572** 
(135) 

LIN             1 
 
( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.19: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish using glycerol (2.0 M)  
                   in TCAYE  
 

 Total motility Progressive 
motility  

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .719** 
(128) 

.703** 
(128) 

.674** 
(128) 

.862** 
(128) 

-.903** 
(128) 

.078 
(115) 

.065 
(115) 

.117 
(115) 

.077 
(115) 

.145 
(115) 

-.048 
(115) 

-.147 
(115) 

Progressive motility  1 .976** 
(128) 

.772** 
(128) 

.522** 
(128) 

-.706** 
(128) 

-.082 
(115) 

-.097 
(115) 

-.015 
(115) 

-.064 
(115) 

.142 
(115) 

-.060 
(115) 

-.160 
(115) 

Rapid   1 .776** 
(128) 

.550** 
(128) 

-.735** 
(128) 

-.062 
(115) 

-.081 
(115) 

.012 
(115) 

-.072 
(115) 

.139 
(115) 

-.082 
(115) 

-.177 
(115) 

Medium    1 .583** 
(128) 

-.720** 
(128) 

-.071 
(115) 

-.084 
(115) 

.008 
(115) 

-.041 
(115) 

.085 
(115) 

-.079 
(115) 

-.182 
(115) 

Slow     1 -.969** 
(128) 

.088 
(115) 

.085 
(115) 

.109 
(115) 

.091 
(115) 

.112 
(115) 

-.020 
(115) 

-.116 
(115) 

Static      1 -.049 
(115) 

-.042 
(115) 

-.090 
(115) 

-.054 
(115) 

-.129 
(115) 

.041 
(115) 

.148 
(115) 

VAP       1 .982** 
(115) 

.893** 
(115) 

.613** 
(115) 

.058 
(115) 

-.176 
(115) 

.215* 
(115) 

VSL        1 .827** 
(115) 

.582** 
(115) 

-.029 
(115) 

-.016 
(115) 

.312** 
(115) 

VCL         1 .666** 
(115) 

.257** 
(115) 

-.423** 
(115) 

-.191* 
(115) 

ALH          1 .393** 
(115) 

-.324** 
(115) 

-.112 
(115) 

BCF           1 -.512** 
(115) 

-.446** 
(115) 

STR            1 .587** 
(115) 

LIN             1 
 

( )  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.20: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm in African catfish (Clarias gariepinus)  
                   for overall pooled molarities of glycerol using TCAYE extender 

 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
 
 
 

 Total motility Progressive 
motility  

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .707** 
(410) 

.675** 
(410) 

.650** 
(410) 

.835** 
(410) 

-.879** 
(410) 

.145** 
(377) 

.133** 
(376) 

.156** 
(377) 

.097 
(377) 

.024 
(377) 

-.041 
(377) 

-.053 
(377) 

Progressive motility  1 .960** 
(410) 

.698** 
(410) 

.476** 
(410) 

-.668** 
(410) 

.122* 
(377) 

.116* 
(376) 

.133** 
(377) 

.054 
(377) 

.018 
(377) 

.002 
(377) 

-.046 
(377) 

Rapid   1 .721** 
(410) 

.524** 
(410) 

-.718** 
(410) 

.129* 
(377) 

.116* 
(376) 

.147** 
(377) 

.042 
(377) 

.019 
(377) 

-.014 
(377) 

-.056 
(377) 

Medium    1 .589** 
(410) 

-.717** 
(410) 

.053 
(377) 

.051 
(376) 

.058 
(377) 

.050 
(377) 

-.024 
(377) 

-.022 
(377) 

-.065 
(377) 

Slow     1 -.967** 
(410) 

.141** 
(377) 

.134** 
(376) 

.143** 
(377) 

.092 
(377) 

.003 
(377) 

-.030 
(377) 

-.038 
(377) 

Static      1 -.147** 
(377) 

-.138** 
(376) 

-.154** 
(377) 

-.087 
(377) 

-.007 
(377) 

.028 
(377) 

.048 
(377) 

VAP       1 .975** 
(376) 

.879** 
(377) 

.538** 
(377) 

-.027 
(377) 

-.095 
(377) 

.251** 
(377) 

VSL        1 .786** 
(376) 

.535** 
(376) 

-.101 
(376) 

.070 
(376) 

.365** 
(376) 

VCL         1 .496** 
(377) 

.148** 
(377) 

-.350** 
(377) 

-.144** 
(377) 

ALH          1 .263** 
(377) 

-.235** 
(377) 

.055 
(377) 

BCF           1 -.483** 
(377) 

-.358** 
(377) 

STR            1 .610** 
(377) 

LIN             1 
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4.4 EFFECT OF EQUILIBRATION DURATION ON FROZEN-THAWED 

SPERM MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING TCAYE 

EXTENDER (EXPERIMENT 2) 

Table 4.21 shows total motility and progressive motility of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different equilibration durations. At 

140 minutes equilibration duration, the value of total motility (31.69±2.19%) was 

significantly higher as compared to 120 minutes which gave the significant lower value 

(25.26±1.76%). Furthermore, the values of total motility were not significantly different 

(P>0.05) at 140 minutes (31.69±2.19%) and 160 minutes (28.17±2.11%). Meanwhile, the 

value of progressive motility did not show a significant difference (P>0.05) for the three 

respective equilibration durations (120, 140 and 160 minutes) ranging from 2.60±0.32 to 

3.50±0.41%. 

 Table 4.22 shows analysis of velocity distributions of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different equilibration durations. 

There were no significant differences for values of rapid and medium velocities at the three 

equilibration durations (P>0.05) which were ranged from 3.67±0.46 to 4.62±0.53% and 

1.35±0.12 to 1.76±0.17%, respectively. Equilibration duration at 140 minute showed that 

slow velocity had higher significant value (25.37±1.77%) as compared to 120 minutes 

which gave the lower value (19.92±1.35%). Furthermore, the value of static velocity 

showed higher value at 120 minutes (74.76±1.76%) as compared to 140 minutes 

(68.31±2.19%).   

 Table 4.23 represents analysis of sperm motion characteristics of post-thawed 

cryopreserved sperm of African catfish using TCAYE extender for different equilibration 

durations. There were no significant differences (P>0.05) in values of VAP (range: 

49.64±1.64 to 53.76±2.44 µm/s), VSL (range: 44.21±1.50 to 48.37±2.37 µm/s), VCL 
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(range: 71.37±2.19 to 77.74±3.09 µm/s), STR (range: 87.47±0.66 to 88.23±0.61%) and 

LIN (range: 62.64±1.32 to 65.13±1.24%) for the three equilibration intervals (120, 140 and 

160 minutes). The values of ALH were not significantly different at 140 minutes 

(5.40±0.28 µm) and 160 minutes (5.35±0.29 µm) equilibration intervals, but both intervals 

gave significantly higher values as compared to 120 minutes (4.47±0.22%).  

 Tables 4.24, 4.25 and 4.26 show correlations among sperm motility characteristics 

of post-thawed cryopreserved sperm of African catfish at 120, 140 and 160 minutes 

equilibration durations. At 120 minutes equilibration, positive correlations (P<0.05) were 

shown between total motility and progressive motility; total motility and rapid; total 

motility and medium; total motility and slow; total motility and VAP; progressive motility 

and rapid; progressive motility and medium; progressive motility and slow; progressive 

motility and ALH; rapid and medium; rapid and slow; medium and slow; static and STR; 

VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and 

ALH; VSL and LIN; VCL and ALH; VCL and BCF; ALH and BCF and STR and LIN, but 

negative correlations (P<0.05) were shown among total motility and static; total motility 

and STR; progressive motility and static; rapid and static; medium and static; medium and 

STR; slow and static; slow and STR; VCL and STR; VCL and LIN; ALH and STR; BCF 

and STR and ALH and LIN. At 140 minutes, positive correlations (P<0.05) were shown 

among total motility and progressive motility; total motility and rapid; total motility and 

medium; total motility and slow; progressive motility and rapid; progressive motility and 

medium; progressive motility and slow; rapid and medium; rapid and slow; medium and 

slow; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL 

and ALH; VSL and LIN; VCL and ALH; ALH and BCF; ALH and LIN and STR and LIN. 

In contrast, negative correlations (P<0.05) were shown among total motility and static; 

total motility and STR; progressive motility and static; rapid and static; medium and static; 

82 



 

  

 

115 
 
 

slow and static; VCL and STR; BCF and STR and BCF and LIN. Equilibration duration of 

160 minutes gave positive correlations (P<0.05) among total motility and progressive 

motility; total motility and rapid; total motility and medium; total motility and slow; 

progressive motility and rapid; progressive motility and medium; progressive motility and 

slow; progressive motility and BCF; rapid and medium; rapid and slow; medium and slow; 

VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and 

ALH; VSL and LIN; VCL and ALH; ALH and BCF and STR and LIN. In contrast, total 

motility and static; total motility and STR; progressive motility and static; rapid and static; 

rapid and ALH; medium and static; slow and static; VAP and BCF; VSL and BCF; VCL 

and STR; ALH and STR; BCF and STR and BCF and LIN were negatively correlated 

(P<0.05). 

 Table 4.27 demonstrates correlations among sperm motility characteristics of post-

thawed cryopreserved sperm of African catfish for overall pooled equilibration durations 

using TCAYE extender. Positive correlations (P<0.05) were shown between total motility 

and progressive motility; total motility and rapid; total motility and medium; total motility 

and slow; total motility and VAP; total motility and VSL; total motility and VCL; 

progressive motility and rapid; progressive motility and medium; progressive motility and 

slow; rapid and medium; rapid and slow; rapid and VCL; medium and slow; slow and 

VAP; slow and VSL; slow and VCL; slow and ALH; static and STR; VAP and VSL; VAP 

and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; 

VCL and ALH; VCL and BCF; ALH and BCF and STR and LIN. In contrast, negative 

correlations (P<0.05) were shown among total motility and static; total motility and STR; 

progressive motility and static; progressive motility and STR; rapid and static; rapid and 

STR; medium and static; medium and STR; slow and static; slow and STR; static and 
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VAP; static and VSL; static and VCL; VCL and STR; VCL and LIN; ALH and STR; BCF 

and STR and BCF and LIN. 

 
 
Table 4.21: Total motility and progressive motility (mean ± SEM) of post-thawed  
                    cryopreserved sperm of African catfish (Clarias gariepinus) using TCAYE  
                    extender for different equilibration durations 
 
Equilibration duration 

(min) 
N* Total motility 

(%) 
Progressive motility 

(%) 
120 184 25.26±1.76a 2.87±0.34a 
140 125 31.69±2.19b 3.50±0.41a 
160 107 28.17±2.11ab 2.60±0.32a 

 
N* = Total number of observations (straws).  
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.22: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using TCAYE extender for different  
                   equilibration durations 
 

Equilibration 
duration (min) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

120 184 3.94±0.49a 1.35±0.12a 19.92±1.35a 74.76±1.76b 
140 125 4.62±0.53a 1.76±0.17a 25.37±1.77b 68.31±2.19a 
160 107 3.67±0.46a 1.40±0.15a 23.07±1.74ab 71.83±2.11ab 

 
N* = Total number of observations (straws).  
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.23: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using TCAYE extender for  
                   different equilibration durations 
 
Equilibration 

duration 
(min) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

120 173 49.64 
±1.64a 

44.21 
±1.50a 

71.37 
±2.19a 

4.47 
±0.22a 

14.47 
±0.91ab 

88.23 
±0.61a 

65.13 
±1.24a 

140 113 53.76 
±2.44a 

48.37 
±2.37a 

75.66 
±2.86a 

5.40 
±0.28b 

12.75 
±0.86a 

87.77 
±0.68a 

64.12 
±1.26a 

160 100 53.73 
±2.32a 

47.33 
±2.07a 

77.74 
±3.09a 

5.35 
±0.29b 

16.27 
±1.21b 

87.47 
±0.66a 

62.64 
±1.32a 

 
N* = Total number of observations (straws).   
abMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.24: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 120 min equilibration duration using TCAYE extender 
 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .752** 
(184) 

.735** 
(184) 

.731** 
(184) 

.892** 
(184) 

-.936** 
(184) 

.151* 
(173) 

.124 
(173) 

.138 
(173) 

.138 
(173) 

.063 
(173) 

-.168* 
(173) 

-.041 
(173) 

Progressive motility  1 .981** 
(184) 

.750** 
(184) 

.532** 
(184) 

-.730** 
(184) 

.131 
(173) 

.120 
(173) 

.123 
(173) 

.152* 
(173) 

.100 
(173) 

-.105 
(173) 

-.051 
(173) 

Rapid   1 .769** 
(184) 

.554** 
(184) 

-.753** 
(184) 

.147 
(173) 

.133 
(173) 

.141 
(173) 

.138 
(173) 

.070 
(173) 

-.113 
(173) 

-.040 
(173) 

Medium    1 .678** 
(184) 

-.795** 
(184) 

.126 
(173) 

.103 
(173) 

.109 
(173) 

.130 
(173) 

.091 
(173) 

-.172* 
(173) 

-.003 
(173) 

Slow     1 -.964** 
(184) 

.148 
(173) 

.121 
(173) 

.123 
(173) 

.132 
(173) 

.022 
(173) 

-.155* 
(173) 

.000 
(173) 

Static      1 -.164* 
(173) 

-.139 
(173) 

-.141 
(173) 

-.148 
(173) 

-.040 
(173) 

.159* 
(173) 

.009 
(173) 

VAP       1 .973** 
(173) 

.850** 
(173) 

.544** 
(173) 

.076 
(173) 

-.125 
(173) 

.208** 
(173) 

VSL        1 .741** 
(173) 

.529** 
(173) 

-.029 
(173) 

.072 
(173) 

.351** 
(173) 

VCL         1 .557** 
(173) 

.276** 
(173) 

-.469** 
(173) 

-.240** 
(173) 

ALH          1 .327** 
(173) 

-.241** 
(173) 

-.069 
(173) 

BCF           1 -.505** 
(173) 

-.403** 
(173) 

STR            1 .730** 
(173) 

LIN             1 
 

 ( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.25: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 140 min equilibration duration using TCAYE extender 
 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .675** 
(125) 

.689** 
(125) 

.656** 
(125) 

.954** 
(125) 

-.991** 
(125) 

.068 
(113) 

.077 
(113) 

.061 
(113) 

-.038 
(113) 

-.030 
(113) 

-.036 
(113) 

-.076 
(113) 

Progressive motility  1 .974** 
(125) 

.720** 
(125) 

.465** 
(125) 

-.672** 
(125) 

-.003 
(113) 

-.006 
(113) 

.040 
(113) 

-.103 
(113) 

-.025 
(113) 

-.083 
(113) 

-.119 
(113) 

Rapid   1 .743** 
(125) 

.483** 
(125) 

-.693** 
(125) 

.028 
(113) 

.025 
(113) 

.067 
(113) 

-.100 
(113) 

-.021 
(113) 

-.081 
(113) 

-.102 
(113) 

Medium    1 .509** 
(125) 

-.674** 
(125) 

-.012 
(113) 

-.005 
(113) 

-.017 
(113) 

-.113 
(113) 

.021 
(113) 

-.003 
(113) 

-.053 
(113) 

Slow     1 -.963** 
(125) 

.080 
(113) 

.096 
(113) 

.052 
(113) 

.002 
(113) 

-.027 
(113) 

.000 
(113) 

-.037 
(113) 

Static      1 -.073 
(113) 

-.085 
(113) 

-.061 
(113) 

.030 
(113) 

.025 
(113) 

.019 
(113) 

.059 
(113) 

VAP       1 .988** 
(113) 

.927** 
(113) 

.665** 
(113) 

.003 
(113) 

-.066 
(113) 

.308** 
(113) 

VSL        1 .888** 
(113) 

.644** 
(113) 

-.057 
(113) 

.061 
(113) 

.367** 
(113) 

VCL         1 .642** 
(113) 

.113 
(113) 

-.220* 
(113) 

.020 
(113) 

ALH          1 .200* 
(113) 

-.152 
(113) 

.228* 
(113) 

BCF           1 -.404** 
(113) 

-.187* 
(113) 

STR            1 .507** 
(113) 

LIN             1 
 
 ( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.26: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 160 min equilibration duration using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .673** 
(107) 

.525** 
(107) 

.502** 
(107) 

.550** 
(107) 

-.598** 
(107) 

.115 
(100) 

.088 
(100) 

.170 
(100) 

.057 
(100) 

.146 
(100) 

-.262** 
(100) 

-.017 
(100) 

Progressive motility  1 .877** 
(107) 

.573** 
(107) 

.374** 
(107) 

-.533** 
(107) 

.000 
(100) 

-.020 
(100) 

.118 
(100) 

-.137 
(100) 

.210* 
(100) 

-.138 
(100) 

-.034 
(100) 

Rapid   1 .628** 
(107) 

.539** 
(107) 

-.700** 
(107) 

-.027 
(100) 

-.057 
(100) 

.117 
(100) 

-.199* 
(100) 

.136 
(100) 

-.100 
(100) 

-.109 
(100) 

Medium    1 .565** 
(107) 

-.662** 
(107) 

.066 
(100) 

.052 
(100) 

.149 
(100) 

-.024 
(100) 

.182 
(100) 

-.136 
(100) 

-.089 
(100) 

Slow     1 -.978** 
(107) 

.102 
(100) 

.072 
(100) 

.165 
(100) 

.156 
(100) 

.179 
(100) 

-.180 
(100) 

-.097 
(100) 

Static      1 -.082 
(100) 

-.051 
(100) 

-.169 
(100) 

-.082 
(100) 

-.185 
(100) 

.176 
(100) 

.106 
(100) 

VAP       1 .962** 
(100) 

.861** 
(100) 

.309** 
(100) 

-.213* 
(100) 

-.043 
(100) 

.299** 
(100) 

VSL        1 .723** 
(100) 

.339** 
(100) 

-.260** 
(100) 

.120 
(100) 

.439** 
(100) 

VCL         1 .202* 
(100) 

-.003 
(100) 

-.276** 
(100) 

-.143 
(100) 

ALH          1 .308** 
(100) 

-.346** 
(100) 

.069 
(100) 

BCF           1 -.537** 
(100) 

-.430** 
(100) 

STR            1 .480** 
(100) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.27: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for overall pooled equilibration durations using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .709** 
(416) 

.677** 
(416) 

.656** 
(416) 

.836** 
(416) 

-.881** 
(416) 

.122* 
(386) 

.108* 
(386) 

.129* 
(386) 

.080 
(386) 

.053 
(386) 

-.152** 
(386) 

-.048 
(386) 

Progressive motility  1 .961** 
(416) 

.703** 
(416) 

.477** 
(416) 

-.672** 
(416) 

.059 
(386) 

.051 
(386) 

.094 
(386) 

.016 
(386) 

.078 
(386) 

-.103* 
(386) 

-.065 
(386) 

Rapid   1 .726** 
(416) 

.524** 
(416) 

-.720** 
(416) 

.073 
(386) 

.060 
(386) 

.112* 
(386) 

.000 
(386) 

.054 
(386) 

-.101* 
(386) 

-.068 
(386) 

Medium    1 .594** 
(416) 

-.723** 
(416) 

.065 
(386) 

.056 
(386) 

.077 
(386) 

.021 
(386) 

.078 
(386) 

-.108* 
(386) 

-.036 
(386) 

Slow     1 -.967** 
(416) 

.123* 
(386) 

.110* 
(386) 

.120* 
(386) 

.115* 
(386) 

.046 
(386) 

-.118* 
(386) 

-.037 
(386) 

Static      1 -.122* 
(386) 

-.108* 
(386) 

-.130* 
(386) 

-.092 
(386) 

-.053 
(386) 

.124* 
(386) 

.047 
(386) 

VAP       1 .975** 
(386) 

.877** 
(386) 

.529** 
(386) 

-.024 
(386) 

-.089 
(386) 

.249** 
(386) 

VSL        1 .785** 
(386) 

.525** 
(386) 

-.098 
(386) 

.075 
(386) 

.362** 
(386) 

VCL         1 .493** 
(386) 

.155** 
(386) 

-.350** 
(386) 

-.149** 
(386) 

ALH          1 .281** 
(386) 

-.241** 
(386) 

.036 
(386) 

BCF           1 -.484** 
(386) 

-.362** 
(386) 

STR            1 .621** 
(386) 

LIN             1 
 

 ( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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4.6 EFFECT OF VAPOUR TEMPERATURE ON FROZEN-THAWED SPERM 

MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING TCAYE 

EXTENDER (EXPERIMENT 2) 

Table 4.28 shows total motility and progressive motility of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different vapour temperatures. There 

were no significant differences (P>0.05) in values of total motility and progressive motility 

for -80, -90 and -100oC which were ranged from 25.95±2.34 to 29.41±1.69% and 

2.73±0.39 to 3.25±0.32%, respectively.  

 Table 4.29 shows sperm velocity distributions of post-thawed cryopreserved sperm 

of African catfish using TCAYE extender for different vapour temperatures. Post-thawed 

sperm that were cryopreserved under the three respective vapour temperatures (-80, -90 

and -100oC) did not show any significant differences (P>0.05) in values of rapid (range: 

3.67±0.55-4.39±0.43%), medium (range: 1.32±0.14-1.60±0.13%), slow (range: 

20.43±1.94-23.43±1.30%) and static velocities (range: 70.59±1.69-74.06±2.34%).    

 Table 4.30 shows sperm motion characteristics of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different vapour temperatures. The 

values of VAP, VSL, ALH and BCF were not significantly different (P>0.05) for -80, -90 

and -100oC which were ranged from 50.13±2.20 to 55.66±2.57 µm/s, 45.62±2.12 to 

48.67±2.22 µm/s, 4.81±0.22 to 5.40±0.30 µm and 14.03±0.78 to 15.62±1.13 Hz, 

respectively. Furthermore, under -80 and -90oC, the respective values of VCL (81.50±4.20 

and 75.13±2.08 µm/s), STR (86.23±0.89 and 87.21±0.56%) and LIN (62.16±1.68 and 

62.80±1.07%) were not significantly different (P>0.05). For VCL and LIN values, -80oC 

(81.50±4.20 µm/s and 62.16±1.68%, respectively) and -90oC (75.13±2.08 µm/s and 

62.80±1.07%, respectively) were higher values as compared to -100oC (69.60±2.44 µm/s 

and 67.14±1.30%, respectively). In contrast, the value of STR was significantly the highest 
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under -100oC (89.77±0.60%) as compared to -80oC (86.23±0.89%) and -90oC 

(87.21±0.56%). 

 Tables 4.31, 4.32 and 4.33 show correlations among sperm motility characteristics 

of post-thawed cryopreserved sperm of African catfish using TCAYE extender for -80, -90 

and -100oC vapour temperatures. For -80oC, positive correlations were (P<0.05) indicated 

by total motility and progressive motility; rapid and medium; rapid and slow; medium and 

slow; slow and BCF; VAP and VSL; VAP and VCL; VAP and ALH; VSL and VCL; VSL 

and ALH; VSL and LIN; VCL and ALH; ALH and BCF and STR and LIN. Conversely, 

negative correlations were shown by progressive motility and VCL; rapid and static; rapid 

and STR; medium and static; slow and static; VCL and STR; VCL and LIN; BCF and STR 

and BCF and LIN. Vapour temperature of -90oC shows positive correlations among total 

motility and progressive motility; total motility and slow; rapid and medium; rapid and 

slow; rapid and ALH; medium and slow; VAP and VSL; VAP and VCL; VAP and ALH; 

VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH; VCL and 

BCF; ALH and BCF and STR and LIN. In contrast, negative correlations (P<0.05) were 

shown by total motility and static; rapid and static; medium and static; slow and static; 

static and ALH; VCL and STR; ALH and STR; BCF and STR and BCF and LIN. For -

100oC, positive correlations (P<0.05) were shown by total motility and progressive 

motility; total motility and rapid; total motility and medium; progressive motility and 

rapid; progressive motility and medium; progressive motility and VCL; rapid and medium; 

rapid and slow; rapid and VCL; medium and slow; medium and VCL; static and STR; 

VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and 

ALH; VSL and LIN; VCL and ALH; ALH and BCF and STR and LIN. In contrast, total 

motility and static; total motility and STR; total motility and LIN; progressive motility and 

static; progressive motility and STR; rapid and static; rapid and STR; medium and static; 
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medium and STR; slow and static; slow and STR; static and VCL; static and STR; VSL 

and BCF; VCL and STR; ALH and STR; BCF and STR and BCF and LIN were negatively 

correlated (P<0.05).  

 Table 4.34 demonstrates correlations among sperm motility characteristics of post-

thawed cryopreserved sperm of African catfish for overall pooled vapour temperatures 

using TCAYE extender. Positive correlations (P<0.05) were shown by total motility and 

progressive motility; total motility and rapid; total motility and slow; progressive motility 

and rapid; progressive motility and medium; progressive motility and slow; rapid and 

medium; rapid and slow; rapid and VCL; medium and slow; medium and ALH; static and 

STR; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL 

and ALH; VSL and LIN; VCL and ALH; VCL and BCF; ALH and BCF and STR and 

LIN. In contrast, total motility and static; total motility and STR; total motility and LIN; 

progressive motility and static; rapid and static; rapid and STR; rapid and LIN; medium 

and static; medium and STR; slow and static; static and ALH; VSL and BCF; VCL and 

STR; VCL and LIN; ALH and STR; BCF and STR and BCF and LIN show negative 

correlation (P<0.05).  
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Table 4.28: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African catfish (Clarias gariepinus) using TCAYE  
                   extender for different vapour temperatures 
 

Vapour temperature 
(oC) 

N* Total motility 
(%) 

Progressive motility 
(%) 

-80 77 25.95±2.34a 2.82±0.31a 
-90 193 29.41±1.69a 3.25±0.32a 

-100 146 27.04±1.16a 2.73±0.39a 
 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.29: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using TCAYE extender for different  
                   vapour temperatures 
 

Vapour 
temperature (oC) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

-80 77 4.04±0.50a 1.53±0.14a 20.43±1.94a 74.06±2.34a 
-90 193 4.39±0.43a 1.60±0.13a 23.43±1.30a 70.59±1.69a 

-100 146 3.67±0.55a 1.32±0.14a 21.98±1.69a 72.97±2.09a 
 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.30: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using TCAYE extender for  
                   different vapour temperatures 
 

Vapour 
temperature 

(oC) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

-80 75 55.66 
±2.57a 

48.67 
±2.22a 

81.50 
±4.20b 

5.40 
±0.30a 

15.62 
±1.13a 

86.23 
±0.89a 

62.16 
±1.68a 

-90 177 51.96 
±1.68a 

45.94 
±1.56a 

75.13 
±2.08ab 

4.81 
±0.22a 

14.03 
±0.78a 

87.21 
±0.56a 

62.80 
±1.07a 

-100 131 50.13 
±2.20a 

45.62 
±2.12a 

69.60 
±2.44a 

4.99 
±0.27a 

14.46 
±1.15a 

89.77 
±0.60b 

67.14 
±1.30b 

 
N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.31: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) at -80oC vapour temperature using TCAYE extender 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total  motility 1 .705** 
(77) 

.047 
(77) 

.011 
(77) 

-.087 
(77) 

.066 
(77) 

-.128 
(75) 

-.115 
(75) 

-.154 
(75) 

-.049 
(75) 

-.041 
(75) 

.030 
(75) 

-.001 
(75) 

Progressive motility  1 .047 
(77) 

.006 
(77) 

-.035 
(77) 

.022 
(77) 

-.212 
(75) 

-.186 
(75) 

-.231* 
(75) 

-.117 
(75) 

-.053 
(75) 

.038 
(75) 

.038 
(75) 

Rapid   1 
 

.552** 
(77) 

.578** 
(77) 

-.721** 
(77) 

.147 
(75) 

.138 
(75) 

.110 
(75) 

.134 
(75) 

.093 
(75) 

-.267* 
(75) 

-.127 
(75) 

Medium    1 
 

.567** 
(77) 

-.639** 
(77) 

.061 
(75) 

.106 
(75) 

-.059 
(75) 

.126 
(75) 

.057 
(75) 

-.016 
(75) 

.047 
(75) 

Slow     1 -.981** 
(77) 

.083 
(75) 

.084 
(75) 

.060 
(75) 

.125 
(75) 

.242* 
(75) 

-.159 
(75) 

-.083 
(75) 

Static      1 -.100 
(75) 

-.101 
(75) 

-.068 
(75) 

-.135 
(75) 

-.225 
(75) 

.191 
(75) 

.092 
(75) 

VAP       1 .944** 
(75) 

.848** 
(75) 

.399** 
(75) 

-.084 
(75) 

.013 
(75) 

.091 
(75) 

VSL        1 .669** 
(75) 

.501** 
(75) 

-.123 
(75) 

.226 
(75) 

.310** 
(75) 

VCL         1 .279* 
(75) 

.078 
(75) 

-.303** 
(75) 

-.330** 
(75) 

ALH          1 .350** 
(75) 

.052 
(75) 

.108 
(75) 

BCF           1 -.308** 
(75) 

-.295* 
(75) 

STR            1 .807** 
(75) 

LIN             1 
 
( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.32: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) at -90oC vapour temperature using TCAYE extender 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .762** 
(193) 

.037 
(193) 

.008 
(193) 

.196** 
(193) 

-.159* 
(193) 

-.035 
(177) 

-.058 
(177) 

.027 
(177) 

-.033 
(177) 

.087 
(177) 

-.104 
(177) 

-.073 
(177) 

Progressive motility  1 .046 
(193) 

.001 
(193) 

.168* 
(193) 

-.138 
(193) 

-.047 
(177) 

-.057 
(177) 

-.001 
(177) 

-.095 
(177) 

.117 
(177) 

-.033 
(177) 

-.097 
(177) 

Rapid   1 .779** 
(193) 

.604** 
(193) 

-.781** 
(193) 

.024 
(177) 

.018 
(177) 

.032 
(177) 

.166* 
(177) 

.097 
(177) 

-.096 
(177) 

-.066 
(177) 

Medium    1 .602** 
(193) 

-.738** 
(193) 

-.044 
(177) 

-.029 
(177) 

-.040 
(177) 

.139 
(177) 

.029 
(177) 

-.051 
(177) 

-.094 
(177) 

Slow     1 -.967** 
(193) 

.009 
(177) 

.027 
(177) 

-.007 
(177) 

.142 
(177) 

.005 
(177) 

.026 
(177) 

-.034 
(177) 

Static      1 -.005 
(177) 

-.018 
(177) 

.005 
(177) 

-.158* 
(177) 

-.029 
(177) 

.003 
(177) 

.047 
(177) 

VAP       1 .976** 
(177) 

.891** 
(177) 

.526** 
(177) 

.087 
(177) 

-.104 
(177) 

.294** 
(177) 

VSL        1 .812** 
(177) 

.510** 
(177) 

-.024 
(177) 

.074 
(177) 

.395** 
(177) 

VCL         1 .558** 
(177) 

.285** 
(177) 

-.351** 
(177) 

-.092 
(177) 

ALH          1 .337** 
(177) 

-.256** 
(177) 

-.018 
(177) 

BCF           1 -.610** 
(177) 

-.401** 
(177) 

STR            1 .575** 
(177) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.33: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                  gariepinus) at -100oC vapour temperature using TCAYE extender 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .655** 
(146) 

.294** 
(146) 

.216** 
(146) 

.125 
(146) 

-.191* 
(146) 

-.020 
(131) 

-.071 
(131) 

.066 
(131) 

.150 
(131) 

.086 
(131) 

-.316** 
(131) 

-.191* 
(131) 

Progressive motility  1 .704** 
(146) 

.432** 
(146) 

.135 
(146) 

-.323** 
(146) 

.130 
(131) 

.083 
(131) 

.210* 
(131) 

.105 
(131) 

-.034 
(131) 

-.220* 
(131) 

-.144 
(131) 

Rapid   1 .707** 
(146) 

.428** 
(146) 

-.657** 
(146) 

.109 
(131) 

.053 
(131) 

.221* 
(131) 

.016 
(131) 

.085 
(131) 

-.291** 
(131) 

-.148 
(131) 

Medium    1 .604** 
(146) 

-.738** 
(146) 

.130 
(131) 

.087 
(131) 

.202* 
(131) 

.116 
(131) 

.047 
(131) 

-.232** 
(131) 

-.074 
(131) 

Slow     1 -.961** 
(146) 

.081 
(131) 

.055 
(131) 

.145 
(131) 

.162 
(131) 

-.005 
(131) 

-.206* 
(131) 

-.102 
(131) 

Static      1 -.103 
(131) 

-.064 
(131) 

-.190* 
(131) 

-.142 
(131) 

-.020 
(131) 

.258** 
(131) 

.128 
(131) 

VAP       1 .990** 
(131) 

.907** 
(131) 

.573** 
(131) 

-.135 
(131) 

-.098 
(131) 

.324** 
(131) 

VSL        1 .862** 
(131) 

.538** 
(131) 

-.184* 
(131) 

.022 
(131) 

.389** 
(131) 

VCL         1 .556** 
(131) 

.044 
(131) 

-.342** 
(131) 

-.035 
(131) 

ALH          1 .174* 
(131) 

-.398** 
(131) 

.075 
(131) 

BCF           1 -.475** 
(131) 

-.379** 
(131) 

STR            1 .524** 
(131) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.34: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) for overall pooled vapour temperatures using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .709** 
(416) 

.148** 
(416) 

.090 
(416) 

.129** 
(416) 

-.144** 
(416) 

-.045 
(383) 

-.074 
(382) 

.001 
(383) 

.033 
(383) 

.065 
(383) 

-.151** 
(383) 

-.106* 
(383) 

Progressive motility  1 
 

.330** 
(416) 

.172** 
(416) 

.134** 
(416) 

-.199** 
(416) 

.006 
(383) 

-.012 
(382) 

.040 
(383) 

-.019 
(383) 

.029 
(383) 

-.092 
(383) 

-.100 
(383) 

Rapid   1 
 

.726** 
(416) 

.524** 
(416) 

-.720** 
(416) 

.079 
(383) 

.049 
(382) 

.118* 
(383) 

.095 
(383) 

.090 
(383) 

-.196** 
(383) 

-.111* 
(383) 

Medium    1 
 

.594** 
(416) 

-.723** 
(416) 

.043 
(383) 

.037 
(382) 

.048 
(383) 

.127* 
(383) 

.040 
(383) 

-.117* 
(383) 

-.074 
(383) 

Slow     1 
 

-.967** 
(416) 

.048 
(383) 

.046 
(382) 

.058 
(383) 

.143** 
(383) 

.034 
(383) 

-.088 
(383) 

-.068 
(383) 

Static      1 
 

-.058 
(383) 

-.048 
(382) 

-.076 
(383) 

-.144** 
(383) 

-.051 
(383) 

.124* 
(383) 

.086 
(383) 

VAP       1 
 

.975** 
(382) 

.877** 
(383) 

.525** 
(383) 

-.033 
(383) 

-.091 
(383) 

.254** 
(383) 

VSL        1 
 

.784** 
(382) 

.521** 
(382) 

-.107* 
(382) 

.074 
(382) 

.368** 
(382) 

VCL         1 .489** .148** -.351** -.146** 
 

ALH 
         (383) 

1 
 

(383) 
.271** 

(383) 

(383) 
-.246** 

(383) 

(383) 
.037 
(383) 

BCF           1 -.490** 
(383) 

-.368** 
(383) 

STR            1 .615** 
(383) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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4.6 EFFECT OF VAPOUR EXPOSURE DURATION ON FROZEN-THAWED 

SPERM MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING TCAYE 

EXTENDER (EXPERIMENT 2)  

Table 4.35 shows total motility and progressive motility of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different vapour exposure durations. 

The values of total motility and progressive motility did not show any significant 

differences (P>0.05) among the three vapour exposure durations (5, 10 and 15 minutes), 

which were ranged from 27.63±2.02 to 28.45±2.14% and 2.79±0.29 to 3.18±0.35%, 

respectively. 

 Table 4.36 shows velocity distributions of post-thawed cryopreserved sperm of 

African catfish using TCAYE extender for different vapour exposure durations. There 

were no significant differences (P>0.05) in values of rapid, medium, slow and static at 5, 

10 and 15 minutes exposure which were ranged from 3.72±0.38 to 4.47±0.64%, 1.34±0.12 

to 1.62±0.16%, 21.78±1.5 to 22.70±1.53% and 71.80±2.20 to 72.26±1.88%, respectively.  

 Table 4.37 shows sperm motion characteristics of post-thawed cryopreserved 

sperm of African catfish using TCAYE extender for different vapour exposure durations. 

The values of VAP, VSL, VCL, ALH, BCF and STR did not show any significant 

differences (P>0.05) among 5, 10 and 15 minutes, which were ranged from 50.46±1.94 to 

53.80±2.55 µm/s, 44.51±1.79 to 48.37±2.38 µm/s, 73.28±2.42 to 75.10±3.31 µm/s, 

4.84±0.26 to 5.15±0.23 µm, 13.06±0.95 to 15.74±1.07 Hz and 86.87±0.65 to 

88.65±0.70%. However, the value of LIN gave higher significant value at 15 minutes 

vapour exposure (65.97±1.50%) as compared to 10 minutes vapour exposure duration, 

which attained lower value (61.93±1.23%). 

 Tables 4.38, 4.39 and 4.40 show correlations among sperm motility characteristics 

of post-thawed cryopreserved sperm of African catfish for 5, 10 and 15 minutes vapour 
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exposure durations. At 5 minutes vapour exposure duration, positive correlations (P<0.05) 

were shown among total motility and progressive motility; total motility and rapid; total 

motility and medium; total motility and slow; rapid and medium; rapid and slow; medium 

and slow; medium and BCF; slow and BCF; VAP and VSL; VAP and VCL; VAP and 

ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH; VCL 

and BCF and STR and LIN. In contrast, negative correlations (P<0.05) were shown among 

total motility and static; rapid and static; medium and static; slow and static; static and 

BCF; VCL and STR; VCL and LIN; ALH and STR; BCF and STR and BCF and LIN. At 

10 minutes vapour exposure duration, total motility and progressive motility; total motility 

and rapid; total motility and medium; total motility and slow; progressive motility and 

rapid; progressive motility and medium; rapid and medium; rapid and slow; rapid and 

VAP; rapid and VSL; rapid and VCL; medium and slow; slow and VAP; slow and VSL; 

VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and 

ALH; VSL and LIN; VCL and ALH; ALH and BCF and STR and LIN were positively 

correlated (P<0.05). Conversely, negative correlations (P<0.05) were shown among total 

motility and static; progressive motility and static; rapid and static; medium and static; 

slow and static; static and VAP; static and VSL; static and VCL; VCL and STR; BCF and 

STR and STR and LIN. Vapour exposure duration of 15 minutes showed positive 

correlations (P<0.05) among total motility and progressive motility; progressive motility 

and rapid; progressive motility and BCF; rapid and medium; rapid and slow; medium and 

slow; slow and VSL; slow and LIN; VAP and VSL; VAP and VCL; VAP and ALH; VSL 

and VCL; VSL and ALH; VSL and LIN; VCL and ALH; ALH and BCF and STR and 

LIN. In contrast, negative correlations (P<0.05) were shown among rapid and static; 

medium and static; slow and static; VCL and STR; VCL and LIN; ALH and STR; BCF 

and STR and BCF and LIN.     
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 Table 4.41 shows correlations among sperm motility characteristics of post-thawed 

cryopreserved sperm of African catfish for overall pooled vapour exposure durations using 

TCAYE extender. Positive correlations (P<0.05) were shown among total motility and 

progressive motility; total motility and rapid; total motility and medium; total motility and 

slow; progressive motility and rapid; progressive motility and medium; progressive 

motility and slow; rapid and medium; rapid and slow; rapid and VAP; rapid and VSL; 

rapid and VCL; medium and slow; medium and BCF; slow and static; slow and VAP; slow 

and VSL; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; 

VSL and ALH; VSL and LIN; VCL and ALH; VCL and BCF; ALH and BCF and STR 

and LIN. Conversely, total motility and static; progressive motility and static; rapid and 

static; medium and static; slow and static; static and VAP; static and VSL; VSL and BCF; 

VCL and STR; VCL and LIN; ALH and STR; BCF and STR and BCF and LIN showed 

negative correlations (P<0.05). 
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Table 4.35: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African (Clarias gariepinus) catfish using TCAYE  
                   extender for different vapour exposure durations 
 

Vapour exposure 
duration (min) 

N* Total motility 
(%) 

Progressive motility 
(%) 

5 148 27.74±1.88a 2.79±0.29a 
10 131 27.63±2.02a 3.02±0.46a 
15 137 28.45±2.14a 3.18±0.35a 

 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.36: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using TCAYE extender for different  
                   vapour exposure durations 
 

Vapour  
exposure 

duration (min) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

5 148 3.72±0.38a 1.34±0.12a 22.70±1.53a 72.26±1.88a 
10 136 4.47±0.64a 1.62±0.16a 21.78±1.51a 72.12±1.97a 
15 132 4.06±0.48a 1.52±0.15a 22.59±1.75a 71.80±2.20a 

 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.37: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using TCAYE extender for  
                   different vapour exposure durations 
 

Vapour 
exposure 
duration 

(min) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

5 137 51.97 
±1.71a 

46.26 
±1.59a 

75.04 
±2.20a 

5.15 
±0.23a 

14.62 
±0.98a 

88.15 
±0.62a 

64.57 
±1.15ab 

10 124 50.46 
±1.94a 

44.51 
±1.79a 

73.28 
±2.42a 

4.84 
±0.26a 

15.74 
±1.07a 

86.87 
±0.65a 

61.93 
±1.23a 

15 122 53.80 
±2.55a 

48.37 
±2.38a 

75.10 
±3.31a 

4.95 
±0.29a 

13.06 
±0.95a 

88.65 
±0.70a 

65.97 
±1.50b 

 
N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.38: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at  
                   5 min vapour exposure duration using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total  motility 1 
 

.717** 
(148) 

.191* 
(148) 

.204* 
(148) 

.184* 
(148) 

-.195* 
(148) 

.115 
(137) 

.104 
(137) 

.142 
(137) 

.064 
(137) 

.024 
(137) 

-.056 
(137) 

.011 
(137) 

Progressive motility  1 
 

.090 
(148) 

.110 
(148) 

.138 
(148) 

-.127 
(148) 

.095 
(137) 

.079 
(137) 

.141 
(137) 

.125 
(137) 

-.002 
(137) 

-.109 
(137) 

-.086 
(137) 

Rapid   1 
 

.655** 
(148) 

.615** 
(148) 

-.747** 
(148) 

.050 
(137) 

.043 
(137) 

.042 
(137) 

-.034 
(137) 

.011 
(137) 

-.023 
(137) 

.043 
(137) 

Medium    1 
 

.696** 
(148) 

-.762** 
(148) 

-.023 
(137) 

-.041 
(137) 

-.018 
(137) 

-.045 
(137) 

.205* 
(137) 

-.069 
(137) 

-.034 
(137) 

Slow     1 
 

-.981** 
(148) 

-.013 
(137) 

-.032 
(137) 

-.008 
(137) 

-.010 
(137) 

.223** 
(137) 

-.085 
(137) 

-.049 
(137) 

Static      1 
 

.006 
(137) 

.024 
(137) 

.002 
(137) 

.024 
(137) 

-.193* 
(137) 

.076 
(137) 

.034 
(137) 

VAP       1 
 

.975** 
(137) 

.846** 
(137) 

.652** 
(137) 

-.034 
(137) 

-.143 
(137) 

.267** 
(137) 

VSL        1 
 

.757** 
(137) 

.623** 
(137) 

-.120 
(137) 

.045 
(137) 

.379** 
(137) 

VCL         1 
 

.585** 
(137) 

.196* 
(137) 

-.453** 
(137) 

-.182* 
(137) 

ALH          1 
 

.105 
(137) 

-.244** 
(137) 

.112 
(137) 

BCF           1 
 

-.472** 
(137) 

-.335** 
(137) 

STR            1 
 

.626** 
(137) 

LIN             1 
 
( )   Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.39: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at   
                   10 min vapour exposure duration using TCAYE extender 
 
 Total motility Progressive 

motility 
Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.679** 
(131) 

.353** 
(131) 

.243** 
(131) 

.197* 
(131) 

-.289** 
(131) 

.050 
(124) 

.036 
(123) 

.096 
(124) 

-.053 
(124) 

-.051 
(124) 

-.135 
(124) 

-.074 
(124) 

Progressive motility  1 
 

.563** 
(131) 

.321** 
(131) 

.138 
(131) 

-.317** 
(131) 

.076 
(124) 

.067 
(123) 

.110 
(124) 

.009 
(124) 

-.020 
(124) 

-.055 
(124) 

-.065 
(124) 

Rapid   1 
 

.737** 
(131) 

.394** 
(131) 

-.685** 
(131) 

.226* 
(124) 

.198* 
(123) 

.237** 
(124) 

.138 
(124) 

.011 
(124) 

-.119 
(124) 

.023 
(124) 

Medium    1 
 

.579** 
(131) 

-.759** 
(131) 

.087 
(124) 

.083 
(123) 

.079 
(124) 

.129 
(124) 

.031 
(124) 

-.100 
(124) 

-.009 
(124) 

Slow     1 
 

-.938** 
(131) 

.209* 
(124) 

.228* 
(123) 

.164 
(124) 

.158 
(124) 

-.068 
(124) 

.025 
(124) 

.098 
(124) 

Static      1 
 

-.240** 
(124) 

-.245** 
(123) 

-.208* 
(124) 

-.173 
(124) 

.046 
(124) 

.028 
(124) 

-.083 
(124) 

VAP       1 
 

.975** 
(123) 

.875** 
(124) 

.445** 
(124) 

-.040 
(124) 

-.091 
(124) 

.388** 
(124) 

VSL        1 
 

.792** 
(123) 

.463** 
(123) 

-.135 
(123) 

.091 
(123) 

.499** 
(123) 

VCL         1 
 

.422** 
(124) 

.138 
(124) 

-.294** 
(124) 

-.007 
(124) 

ALH          1 
 

.287** 
(124) 

-.118 
(124) 

.142 
(124) 

BCF           1 
 

-.475** 
(124) 

-.368** 
(124) 

STR            1 
 

.495** 
(124) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.40: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at  
                   15 min vapour exposure duration using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.767** 
(137) 

.123 
(132) 

.055 
(132) 

.091 
(132) 

-.102 
(132) 

-.132 
(122) 

-.104 
(122) 

-.176 
(122) 

-.048 
(122) 

.091 
(122) 

.174 
(122) 

.135 
(122) 

Progressive motility  1 
 

.185* 
(137) 

.076 
(132) 

.145 
(132) 

-.160 
(132) 

-.134 
(122) 

-.130 
(122) 

-.153 
(122) 

.091 
(122) 

.222* 
(122) 

.026 
(122) 

.047 
(122) 

Rapid   1 
 

.786** 
(132) 

.655** 
(132) 

-.795** 
(132) 

.090 
(122) 

.080 
(122) 

.096 
(122) 

.124 
(122) 

.148 
(122) 

-.125 
(122) 

-.032 
(122) 

Medium    1 
 

.532** 
(132) 

-.664** 
(132) 

.128 
(122) 

.115 
(122) 

.121 
(122) 

.040 
(122) 

.072 
(122) 

-.080 
(122) 

.006 
(122) 

Slow     1 
 

-.978** 
(132) 

.156 
(122) 

.182* 
(122) 

.074 
(122) 

.102 
(122) 

-.013 
(122) 

.078 
(122) 

.205* 
(122) 

Static      1 
 

-.153 
(122) 

-.171 
(122) 

-.088 
(122) 

-.112 
(122) 

-.027 
(122) 

-.030 
(122) 

-.159 
(122) 

VAP       1 
 

.975** 
(122) 

.896** 
(122) 

.504** 
(122) 

-.012 
(122) 

-.068 
(122) 

.150 
(122) 

VSL        1 
 

.796** 
(122) 

.502** 
(122) 

-.062 
(122) 

.071 
(122) 

.268** 
(122) 

VCL         1 
 

.478** 
(122) 

.133 
(122) 

-.332** 
(122) 

-.217* 
(122) 

ALH          1 
 

.435** 
(122) 

-.370** 
(122) 

-.105 
(122) 

BCF           1 
 

-.517** 
(122) 

-.393** 
(122) 

STR            1 
 

.693** 
(122) 

LIN             1 
 

( )  Represents  no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
 
 

103 



 

  

 

136 
 
 

Table 4.41: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for overall pooled vapour exposure durations using TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.709** 
(416) 

.228** 
(411) 

.164** 
(411) 

.153** 
(411) 

-.189** 
(411) 

-.005 
(383) 

-.001 
(382) 

-.003 
(383) 

-.015 
(383) 

.019 
(383) 

.002 
(383) 

.035 
(383) 

Progressive motility  1 
 

.349** 
(411) 

.189** 
(411) 

.137** 
(411) 

-.207** 
(411) 

.002 
(383) 

-.003 
(382) 

.016 
(383) 

.065 
(383) 

.052 
(383) 

-.043 
(383) 

-.029 
(383) 

Rapid   1 
 

.726** 
(411) 

.524** 
(411) 

-.720** 
(411) 

.127* 
(383) 

.110* 
(382) 

.130* 
(383) 

.085 
(383) 

.050 
(383) 

-.096 
(383) 

.005 
(383) 

Medium    1 
 

.594** 
(411) 

-.723** 
(411) 

.071 
(383) 

.059 
(382) 

.066 
(383) 

.044 
(383) 

.100* 
(383) 

-.086 
(383) 

-.015 
(383) 

Slow     1 
 

-.967** 
(411) 

.120* 
(383) 

.130* 
(382) 

.073 
(383) 

.083 
(383) 

.051 
(383) 

.010 
(383) 

.097 
(383) 

Static      1 
 

-.131* 
(383) 

-.135** 
(382) 

-.094 
(383) 

-.088 
(383) 

-.059 
(383) 

.021 
(383) 

-.078 
(383) 

VAP       1 
 

.975** 
(382) 

.877** 
(383) 

.525** 
(383) 

-.033 
(383) 

-.091 
(383) 

.254** 
(383) 

VSL        1 
 

.784** 
(382) 

.521** 
(382) 

-.107* 
(382) 

.074 
(382) 

.368** 
(382) 

VCL         1 
 

.489** 
(383) 

.148** 
(383) 

-.351** 
(383) 

-.146** 
(383) 

ALH          1 
 

.271** 
(383) 

-.246** 
(383) 

.037 
(383) 

BCF           1 
 

-.490** 
(383) 

-.368** 
(383) 

STR            1 
 

.615** 
(383) 

LIN             1 
 
( )  Represents  no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05).
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4.7 EFFECT OF EQUILIBRATION DURATION ON FROZEN-THAWED SPERM 

MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING FRE EXTENDER 

(EXPERIMENT 3) 

Table 4.42 demonstrates total motility and progressive motility of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different equilibration 

durations. There were no significant differences (P>0.05) in values of total motility at 120 

minutes (76.65±2.27%) and 160 minutes equilibrations (76.01±2.04%), but these durations 

gave comparatively higher values of total motility than 140 minutes (66.90±2.60%). For 

progressive motility, 140 minutes (15.85±1.06%) and 160 minutes (16.97±0.89%) did not 

show any significant differences (P>0.05), but were significantly lower values as compared 

to 120 minutes (21.60±1.09%). 

 Results for velocity distributions of post-thawed cryopreserved sperm of African 

catfish using FRE extender for different equilibration durations are shown in Table 4.43. 

At 120 minutes equilibration duration of sperm with extender showed to have significantly 

better rapid and medium velocity distributions of post-thawed cryopreserved sperm. 

However, at 140 and 160 minutes equilibrations, there were no significant differences 

(P>0.05) in values of rapid velocity which gave 20.56±1.35% and 22.05±1.15%, 

respectively. The values of medium and static velocities did not show any significant 

differences (P>0.05) at 120 minutes (10.02±0.51% and 23.01±2.26%, respectively) and 

160 minutes equilibrations (9.64±0.42% and 23.92±2.07%, respectively). At 140 minutes 

equilibration, the value of medium velocity was significantly the lowest (7.98±0.48%) as 

compared to 160 minutes (9.64±0.42%) and 120 minutes (10.02±0.51%). Conversely, the 

value of static velocity was significantly the highest at 140 minutes (33.14±2.55%) as 

compared to 120 minutes (23.01±2.26%) and 160 minutes (23.92±2.07%). For slow 

velocity, equilibration duration of 160 minute was significantly the highest value 
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(44.44±1.11%) as compared to 120 minutes (38.25±1.17%) and 140 minutes 

(38.32±1.50%), which both values of slow velocities at 120 and 140 minutes were not 

significantly different (P>0.05).  

 Table 4.44 demonstrates sperm motion characteristics of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different equilibration 

durations. There were no significant differences (P>0.05) for values of VAP, VSL, VCL, 

ALH, STR and LIN at 120, 140 and 160 minutes, which were ranged from 54.68±1.58 to 

58.58±1.28 µm/s, 47.91±1.43 to 51.17±1.09 µm/s, 75.88±2.01 to 80.59±1.56 µm/s, 

4.97±0.20 to 5.42±0.20 µm, 87.28±0.39 to 87.54±0.45% and 63.44±0.64 to 64.36±0.66%, 

respectively. At 160 minute equilibration duration, the value of BCF was significantly the 

highest (13.73±0.51 Hz) as compared to 120 minutes (12.59±0.42 Hz) and 140 minutes 

(12.11±0.47 Hz). 

 Tables 4.45, 4.46 and 4.47 show correlations among sperm motility characteristics 

of post-thawed cryopreserved sperm of African catfish at 120, 140 and 160 minutes 

equilibration durations. Equilibration duration of 120 minutes showed positive correlations 

(P<0.05) among total motility and progressive motility; total motility and rapid; total 

motility and medium; total motility and slow; total motility and VAP; total motility and 

VCL; progressive motility and rapid; progressive motility and medium; progressive 

motility and slow; rapid and medium; rapid and VCL; medium and slow; medium and 

VAP; medium and ALH; static and STR; VAP and VSL; VAP and VCL; VAP and ALH; 

VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH; ALH and 

BCF and STR and LIN. Conversely, negative correlations (P<0.05) were shown among 

total motility and static; total motility and STR; progressive motility and static; progressive 

motility and STR; rapid and static; rapid and STR; medium and static; slow and static; 

static and VAP; static and VSL; static and VCL; VAP and STR; VSL and STR; VCL and 
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STR; ALH and STR; BCF and STR and BCF and LIN. Equilibration duration of 140 

minutes showed positive correlations (P<0.05) among total motility and progressive 

motility; total motility and rapid; total motility and medium; total motility and slow; 

progressive motility and rapid; progressive motility and VAP; progressive motility and 

VSL; progressive motility and VCL; rapid and medium; rapid and slow; rapid and VCL; 

medium and slow; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL 

and VCL; VSL and ALH; VSL and LIN; VCL and ALH and STR and LIN. In contrast, 

total motility and static; progressive motility and static; rapid and static; medium and 

static; slow and static; VAP and STR; VCL and STR; ALH and STR; BCF and STR and 

BCF and LIN were negatively correlated (P<0.05). Equilibration duration of 160 minutes 

showed a positive correlations (P<0.05) among total motility and progressive motility; 

total motility and rapid; total motility and medium; total motility and slow; progressive 

motility and rapid; progressive motility and medium; progressive motility and slow; rapid 

and medium; rapid and slow; rapid and VCL; medium and slow; static and STR; static and 

LIN; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL 

and ALH; VSL and LIN; VCL and ALH and STR and LIN. Conversely, negative 

correlations (P<0.05) were shown among total motility and static; total motility and STR; 

total motility and LIN; progressive motility and static; rapid and static; medium and static; 

medium and VSL; medium and LIN; slow and LIN; VCL and STR and ALH and STR. 

 Table 4.48 demonstrates correlations among sperm motility characteristics of post-

thawed cryopreserved sperm of African catfish for overall pooled equilibration durations 

using FRE extender. Positive correlations (P<0.05) were shown among total motility and 

progressive motility; total motility and rapid;  total motility and medium; total motility and 

slow; total motility and VCL; total motility and ALH; progressive motility and rapid; 

progressive motility and medium; progressive motility and VAP; progressive motility and 
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VSL; progressive motility and VCL; rapid and medium; rapid and slow; rapid and VAP; 

rapid and VSL; rapid and VCL; medium and slow; static and STR; VAP and VSL; VAP 

and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; 

VCL and ALH and STR and LIN. In contrast, negative correlations (P<0.05) were shown 

among total motility and static; total motility and STR; progressive motility and static; 

progressive motility and STR; rapid and static; rapid and STR; medium and static; medium 

and STR; slow and static; slow and STR; static and VAP; static and VCL; VAP and STR; 

VCL and STR; ALH and STR; BCF and STR and BCF and LIN. 
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Table 4.42: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African catfish (Clarias gariepinus) using FRE  
                   extender for different equilibration durations 
 
 

Equilibration duration 
(min) 

N* Total motility 
(%) 

Progressive motility 
(%) 

120 115 76.65±2.27b 21.60±1.09b 
140 92 66.90±2.60a 15.85±1.06a 
160 100 76.01±2.04b 16.97±0.89a 

 

N* = Total number of observations (straws). 
abcMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.43: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using FRE extender for different  
                   equilibration durations 
 
 

Equilibration 
duration (min) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

120 114 28.72±1.42b 10.02±0.51b 38.25±1.17a 23.01±2.26a 
140 94 20.56±1.35a 7.98±0.48a 38.32±1.50a 33.14±2.55b 
160 97 22.05±1.15a 9.64±0.42b 44.44±1.11b 23.92±2.07a 

 

N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.44: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using FRE extender for different  
                   equilibration durations  
 
 

Equilibration 
duration 

(min) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

120 112 58.58 
±1.28a 

51.17 
±1.09a 

80.59 
±1.56a 

5.00 
±0.16a 

12.59 
±0.42ab 

87.48 
±0.36a 

64.36 
±0.66a 

140 91 54.68 
±1.58a 

47.91 
±1.43a 

76.30 
±1.93a 

4.97 
±0.20a 

12.11 
±0.47a 

87.54 
±0.45a 

63.65 
±0.89a 

160 97 55.63 
±1.40a 

48.66 
±1.24a 

75.88 
±2.01a 

5.42 
±0.20a 

13.73 
±0.51b 

87.28 
±0.39a 

63.44 
±0.64a 

 

N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.45: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 120 min equilibration duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.784** 
(115) 

.761** 
(114) 

.628** 
(114) 

.696** 
(114) 

-.978** 
(114) 

.205* 
(112) 

.178 
(112) 

.187* 
(112) 

.151 
(112) 

.048 
(112) 

-.252** 
(112) 

-.022 
(112) 

Progressive motility 
 

 1 
 

.892** 
(114) 

.373** 
(114) 

.215* 
(114) 

-.753** 
(114) 

.164 
(112) 

.144 
(112) 

.170 
(112) 

.091 
(112) 

.125 
(112) 

-.212* 
(112) 

-.073 
(112) 

Rapid   1 
 

.368** 
(114) 

.169 
(114) 

-.797** 
(114) 

.169 
(112) 

.152 
(112) 

.186* 
(112) 

.099 
(112) 

.132 
(112) 

-.207* 
(112) 

-.102 
(112) 

Medium    1 
 

.327** 
(114) 

-.623** 
(114) 

.192* 
(112) 

.173 
(112) 

.147 
(112) 

.204* 
(112) 

-.083 
(112) 

-.179 
(112) 

.026 
(112) 

Slow     1 
 

-.697** 
(114) 

.132 
(112) 

.106 
(112) 

.101 
(112) 

.073 
(112) 

-.014 
(112) 

-.180 
(112) 

.069 
(112) 

Static      1 
 

-.219* 
(112) 

-.192* 
(112) 

-.203* 
(112) 

-.146 
(112) 

-.055 
(112) 

.258** 
(112) 

.019 
(112) 

VAP       1 
 

.978** 
(112) 

.947** 
(112) 

.439** 
(112) 

.039 
(112) 

-.406** 
(112) 

.247** 
(112) 

VSL        1 
 

.891** 
(112) 

.410** 
(112) 

-.002 
(112) 

-.238* 
(112) 

.335** 
(112) 

VCL         1 
 

.410** 
(112) 

.158 
(112) 

-.512** 
(112) 

-.039 
(112) 

ALH          1 
 

.236* 
(112) 

-.428** 
(112) 

.007 
(112) 

BCF           1 
 

-.416** 
(112) 

-.365** 
(112) 

STR            1 
 

.359** 
(112) 

LIN             1 
 

( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.46: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 140 min equilibration duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.763** 
(92) 

.257* 
(92) 

.283** 
(92) 

.233* 
(92) 

-.328** 
(92) 

.170 
(91) 

.165 
(91) 

.176 
(91) 

.143 
(91) 

.003 
(91) 

-.017 
(91) 

-.018 
(91) 

Progressive motility  1 
 

.443** 
(92) 

.165 
(92) 

-.089 
(92) 

-.212* 
(92) 

.255* 
(91) 

.238* 
(91) 

.249* 
(91) 

.157 
(91) 

.000 
(91) 

-.043 
(91) 

.078 
(91) 

Rapid   1 
 

.526** 
(94) 

.226* 
(94) 

-.763** 
(94) 

.190 
(91) 

.150 
(91) 

.224* 
(91) 

.047 
(91) 

.104 
(91) 

-.151 
(91) 

.019 
(91) 

Medium    1 
 

.375** 
(94) 

-.693** 
(94) 

.051 
(91) 

.027 
(91) 

.096 
(91) 

-.007 
(91) 

-.016 
(91) 

-.098 
(91) 

-.058 
(91) 

Slow     1 
 

-.783** 
(94) 

.034 
(91) 

.043 
(91) 

.028 
(91) 

.059 
(91) 

-.068 
(91) 

.010 
(91) 

.066 
(91) 

Static      1 
 

-.124 
(91) 

-.104 
(91) 

-.148 
(91) 

-.055 
(91) 

-.011 
(91) 

.092 
(91) 

-.038 
(91) 

VAP       1 
 

.979** 
(91) 

.926** 
(91) 

.457** 
(91) 

-.079 
(91) 

-.236* 
(91) 

.206* 
(91) 

VSL        1 
 

.871** 
(91) 

.415** 
(91) 

-.128 
(91) 

-.098 
(91) 

.273** 
(91) 

VCL         1 
 

.530** 
(91) 

.100 
(91) 

-.439** 
(91) 

-.097 
(91) 

ALH          1 
 

.139 
(91) 

-.523** 
(91) 

-.189 
(91) 

BCF           1 
 

-.447** 
(91) 

-.591** 
(91) 

STR            1 
 

.662** 
(91) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.47: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for 160 min equilibration duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.776** 
(100) 

.810** 
(97) 

.712** 
(97) 

.725** 
(97) 

-.980** 
(97) 

-.019 
(97) 

-.086 
(97) 

.129 
(97) 

.033 
(97) 

-.072 
(97) 

-.216* 
(97) 

-.228* 
(97) 

Progressive motility  1 
 

.971** 
(97) 

.565** 
(97) 

.214* 
(97) 

-.765** 
(97) 

.133 
(97) 

.094 
(97) 

.192 
(97) 

.045 
(97) 

-.149 
(97) 

-.116 
(97) 

-.033 
(97) 

Rapid   1 
 

.621** .251* 
(97) 

-.813** 
(97) 

.139 
(97) 

.088 
(97) 

.225* 
(97) 

.080 
(97) 

-.107 
(97) 

-.195 
(97) 

-.108 
(97) 

Medium    1 
 

.376** 
(97) 

-.741** 
(97) 

-.181 
(97) 

-.222* 
(97) 

-.031 
(97) 

-.088 
(97) 

-.092 
(97) 

-.097 
(97) 

-.225* 
(97) 

Slow     1 
 

-.750** 
(97) 

-.089 
(97) 

-.148 
(97) 

.056 
(97) 

.037 
(97) 

.035 
(97) 

-.189 
(97) 

-.256* 
(97) 

Static      1 
 

.005 
(97) 

.073 
(97) 

-.152 
(97) 

-.048 
(97) 

.053 
(97) 

.229* 
(97) 

.241* 
(97) 

VAP       1 
 

.977** 
(97) 

.874** 
(97) 

.599** 
(97) 

-.172 
(97) 

-.164 
(97) 

.243* 
(97) 

VSL        1 
 

.817** 
(97) 

.587** 
(97) 

-.185 
(97) 

.011 
(97) 

.365** 
(97) 

VCL         1 
 

.580** 
(97) 

-.169 
(97) 

-.325** 
(97) 

.032 
(97) 

ALH          1 
 

-.107 
(97) 

-.235* 
(97) 

.013 
(97) 

BCF           1 
 

-.100 
(97) 

-.184 
(97) 

STR            1 
 

.681** 
(97) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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   Table 4.48: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                      gariepinus) for overall pooled equilibration durations using FRE extender 

 
  ( ) Represents no. of samples. 
 ** Pearson correlations were significant (P< 0.01). 
   * Pearson correlations were significant (P< 0.05). 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.769** 
(307) 

.614** 
(303) 

.553** 
(303) 

.522** 
(303) 

-.762** 
(303) 

.143* 
(300) 

.112 
(300) 

.171** 
(300) 

.119* 
(300) 

.013 
(299) 

-.160** 
(300) 

-.066 
(300) 

Progressive motility  1 
 

.793** 
(303) 

.375** 
(303) 

.082 
(303) 

-.588** 
(303) 

.204** 
(300) 

.181** 
(300) 

.218** 
(300) 

.085 
(300) 

.002 
(299) 

-.125* 
(300) 

.002 
(300) 

Rapid   1 
 

.485** 
(305) 

.171** 
(305) 

-.781** 
(305) 

.190** 
(300) 

.156** 
(300) 

.227** 
(300) 

.065 
(300) 

.047 
(299) 

-.177** 
(300) 

-.045 
(300) 

Medium    1 
 

.349** 
(305) 

-.683** 
(305) 

.062 
(300) 

.033 
(300) 

.087 
(300) 

.060 
(300) 

-.048 
(299) 

-.130* 
(300) 

-.057 
(300) 

Slow     1 
 

-.724** 
(305) 

.026 
(300) 

.004 
(300) 

.043 
(300) 

.080 
(300) 

.013 
(299) 

-.114* 
(300) 

-.018 
(300) 

Static      1 
 

-.137* 
(300) 

-.100 
(300) 

-.174** 
(300) 

-.094 
(300) 

-.026 
(299) 

.191** 
(300) 

.047 
(300) 

VAP       1 
 

.978** 
(300) 

.913** 
(300) 

.488** 
(300) 

-.070 
(299) 

-.269** 
(300) 

.234** 
(300) 

VSL        1 
 

.857** 
(300) 

.460** 
(300) 

-.105 
(299) 

-.110 
(300) 

.322** 
(300) 

VCL         1 
 

.496** 
(300) 

.011 
(299) 

-.418** 
(300) 

-.031 
(300) 

ALH          1 
 

.096 
(299) 

-.397** 
(300) 

-.066 
(300) 

BCF           1 
 

-.318** 
(299) 

-.382** 
(299) 

STR            1 
 

.561** 
(300) 

LIN             1 
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4.8 EFFECT OF VAPOUR TEMPERATURE ON FROZEN-THAWED SPERM 

MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING FRE EXTENDER 

(EXPERIMENT 3) 

Table 4.49 demonstrates total motility and progressive motility of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different vapour 

temperatures. The values of total motility and progressive motility for vapour temperatures 

of -90oC (74.07±2.02% and 16.99±0.85%, respectively) and -100oC (74.95±1.88% and 

20.55±0.93%, respectively) did not show any significant differences (P>0.05), but they 

were significantly better than -80oC vapour temperature, which gave comparatively lower 

values (64.59±5.08% and 13.19±1.54%, respectively). 

 Table 4.50 demonstrates velocity distributions of post-thawed cryopreserved sperm 

of African catfish using FRE extender for different vapour temperatures. There were no 

significant differences (P>0.05) in values of medium and slow velocities for the three 

respective vapour temperatures (-80, -90 and -100oC) which were ranged from 8.28±1.11% 

to 9.49±0.43% and 38.97±2.80% to 41.65±1.25%, respectively. In rapid velocity, vapour 

temperature of -80oC gave the lowest value (17.38±2.09%) as compared to -90oC 

(22.79±1.10%) and -100oC (26.60±1.22%), which in both temperatures were not 

significantly different (P>0.05). In static velocity, there were no significant differences 

(P>0.05) between -90 and -100oC, but both showed significant differences with -80oC 

which gave comparatively the highest value (35.41±5.08%).  

 Table 4.51 demonstrates sperm motion characteristics of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different vapour 

temperatures. The respective values of VCL, ALH, BCF and LIN did not show any 

significant differences (P>0.05) for -80, -90 and -100oC, which were ranged from 

73.03±3.64 to 79.59±1.64 µm/s, 4.98±0.34 to 5.31±0.16 µm, 12.33±0.82 to 12.94±0.42 Hz 
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and 63.24±0.52 to 64.38±0.59%. The vapour temperature of -100oC gave the highest 

significant values of VAP and VSL (58.40±1.19 µm/s and 51.28±1.05 µm/s, respectively) 

as compared to -80oC (51.21±3.26 µm/s and 44.95±2.96 µm/s, respectively) and -90oC 

(55.34±1.11 µm/s and 48.12±0.96 µm/s, respectively). In contrast, the value of STR gave 

the highest value at -80oC (89.13±0.84%) as compared to -90oC (86.85±0.32%) and -100oC 

(87.56±0.33%).  

 Tables 4.52, 4.53 and 4.54 show correlations among sperm motility characteristics 

of post-thawed cryopreserved sperm of African catfish for -80, -90 and -100oC vapour 

temperatures. Vapour temperature of -80oC gave positive correlations (P<0.05) among 

total motility and progressive motility; total motility and rapid; total motility and medium; 

total motility and slow; total motility and VAP; total motility and VSL; total motility and 

VCL; progressive motility and rapid; progressive motility and medium; progressive 

motility and slow; progressive motility and VAP; progressive motility and VSL; rapid and 

medium; rapid and slow; rapid and VAP; rapid and VSL; medium and slow; medium and 

VAP; medium and VSL; medium and VCL; slow and VAP; slow and VSL; VAP and 

VSL; VAP and VCL; VAP and ALH; VSL and VCL; VSL and ALH; VCL and ALH and 

ALH and BCF. Conversely, negative correlations (P<0.05) were shown among total 

motility and static; progressive motility and static; rapid and static; medium and static; 

slow and static; static and VAP; static and VSL; static and VCL; VAP and STR; VSL and 

STR; VCL and STR; ALH and STR and BCF and STR. At -90oC vapour temperature, 

there were positive correlations (P<0.05) among total motility and progressive motility; 

total motility and rapid; total motility and medium; total motility and slow; total motility 

and VCL; total motility and BCF; progressive motility and rapid; progressive motility and 

medium; progressive motility and VAP; progressive motility and VSL; progressive 

motility and VCL; rapid and medium; rapid and VAP; rapid and VSL; rapid and VCL; 
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medium and slow; medium and BCF; static and STR; VAP and VSL; VAP and VCL; VAP 

and ALH; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH and STR and 

LIN. In contrast, negative correlations (P<0.05) were indicated among total motility and 

static; total motility and STR; progressive motility and static; rapid and static; medium and 

static; medium and STR; medium and LIN; slow and static; static and VCL; static and 

BCF; VAP and STR; VCL and STR; ALH and STR; BCF and STR and BCF and LIN. 

Vapour temperature of -100oC gave positive correlations (P<0.05) among  total motility 

and progressive motility; total motility and rapid; total motility and medium; total motility 

and slow; progressive motility and rapid; progressive motility and medium; progressive 

motility and VAP; progressive motility and VCL; rapid and medium; rapid and VAP; rapid 

and VSL; rapid and VCL; medium and slow; VAP and VSL; VAP and VCL; VAP and 

ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH and 

STR and LIN. Conversely, negative correlations (P<0.05) were shown among total 

motility and static; progressive motility and static; rapid and static; medium and static; 

slow and static; static and VAP; static and VCL; VAP and STR; VCL and STR; ALH and 

STR; ALH and LIN; BCF and STR and BCF and LIN. 

 Table 4.55 demonstrates correlations among sperm motility characteristics of post-

thawed cryopreserved sperm of African catfish for overall pooled vapour temperatures 

using FRE extender. Positive correlations (P<0.05) were shown among total motility and 

progressive motility; total motility and rapid; total motility and medium; total motility and 

slow; total motility and VAP; total motility and VCL; progressive motility and rapid; 

progressive motility and medium; progressive motility and slow; progressive motility and 

VAP; progressive motility and VSL; progressive motility and VCL; rapid and medium; 

rapid and slow; rapid and VAP; rapid and VSL; rapid and VCL; medium and slow; static 

and STR; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; 
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VSL and ALH; VSL and LIN; VCL and ALH and STR and LIN.  In contrast, negative 

correlations (P<0.05) were shown among total motility and static; total motility and STR; 

progressive motility and static; rapid and static; rapid and STR; medium and static; 

medium and STR; slow and static; static and VAP; static and VSL; static and VCL; VAP 

and STR; VCL and STR; ALH and STR; BCF and STR and BCF and LIN. 
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Table 4.49: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African catfish (Clarias gariepinus) using FRE  
                   extender for different vapour temperatures 
 
 

Vapour temperature 
(oC) 

N* Total motility 
(%) 

Progressive motility 
(%) 

-80 32 64.59±5.08a 13.19±1.54a 
-90 122 74.07±2.02b 16.99±0.85b 

-100 153 74.95±1.88b 20.55±0.93b 
 

N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.50: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using FRE extender for different vapour  
                   temperatures 
 
 

Vapour 
temperature (oC) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

-80 32 17.38±2.09a 8.28±1.11a 38.97±2.80a 35.41±5.08b 
-90 124 22.79±1.10b 9.49±0.43a 41.65±1.25a 26.08±1.99a 

-100 149 26.60±1.22b 9.30±0.38a 39.34±0.94a 24.77±1.90a 
 

N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
 
 
Table 4.51: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using FRE extender for different  
                   vapour temperatures 
 
 

Vapour 
temperature 

(oC) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

-80 30 51.21 
±3.26a 

44.95 
±2.96a 

73.03 
±3.64a 

4.98 
±0.34a 

12.33 
±0.82a 

89.13 
±0.84b 

63.63 
±2.17a 

-90 121 55.34 
±1.11ab 

48.12 
±0.96ab 

76.70 
±1.37a 

5.31 
±0.16a 

12.77 
±0.39a 

86.85 
±0.32a 

63.24 
0.52a 

-100 149 58.40 
±1.19b 

51.28 
±1.05b 

79.59 
±1.64a 

5.01 
±0.15a 

12.94 
±0.42a 

87.56 
±0.33a 

64.38 
±0.59a 

 

N* = Total number of observations (straws). 
abMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.52: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at   
                   -80oC vapour temperature using FRE extender 
 

 Total motility Progressive 
motility  

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .850** 
(32) 

.833** 
(32) 

.697** 
(32) 

.917** 
(32) 

-1.000** 
(32) 

.500** 
(30) 

.467** 
(30) 

.408* 
(30) 

.342 
(30) 

-.216 
(30) 

-.244 
(30) 

.202 
(30) 

Progressive motility 
 

 1 .987** 
(32) 

.435* 
(32) 

.635** 
(32) 

-.850** 
(32) 

.405* 
(30) 

.395* 
(30) 

.297 
(30) 

.229 
(30) 

-.251 
(30) 

-.012 
(30) 

.233 
(30) 

Rapid   1 .429* 
(32) 

.596** 
(32) 

-.833** 
(32) 

.376* 
(30) 

.364* 
(30) 

.300 
(30) 

.204 
(30) 

-.265 
(30) 

-.011 
(30) 

.156 
(30) 

Medium    1 .552** 
(32) 

-.697** 
(32) 

.449* 
(30) 

.393* 
(30) 

.431* 
(30) 

.326 
(30) 

-.089 
(30) 

-.331 
(30) 

.090 
(30) 

Slow     1 -.917** 
(32) 

.448* 
(30) 

.417* 
(30) 

.342 
(30) 

.349 
(30) 

-.152 
(30) 

-.312 
(30) 

.227 
(30) 

Static      1 -.500** 
(30) 

-.467** 
(30) 

-.408* 
(30) 

-.342 
(30) 

.216 
(30) 

.244 
(30) 

-.202 
(30) 

VAP       1 .984** 
(30) 

.923** 
(30) 

.592** 
(30) 

.094 
(30) 

-.521** 
(30) 

.324 
(30) 

VSL        1 .901** 
(30) 

.601** 
(30) 

.114 
(30) 

-.433* 
(30) 

.310 
(30) 

VCL         1 .574** 
(30) 

.157 
(30) 

-.621** 
(30) 

-.031 
(30) 

ALH          1 .499** 
(30) 

-.529** 
(30) 

.111 
(30) 

BCF           1 -.515** 
(30) 

-.221 
(30) 

STR            1 .240 
(30) 

LIN             1 
 
()  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.53: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at   
                   -90oC vapour temperature using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.708** 
(122) 

.640** 
(122) 

.539** 
(122) 

.691** 
(122) 

-.906** 
(122) 

.143 
(119) 

.076 
(119) 

.218* 
(119) 

.008 
(119) 

.216* 
(119) 

-.293** 
(119) 

-.147 
(119) 

Progressive motility 
 

 1 
 

.865** 
(122) 

.350** 
(122) 

.119 
(122) 

-.626** 
(122) 

.240** 
(119) 

.196* 
(119) 

.266** 
(119) 

-.104 
(119) 

.074 
(119) 

-.139 
(119) 

.081 
(119) 

Rapid   1 
 

.462** 
(124) 

.135 
(124) 

-.736** 
(124) 

.258** 
(121) 

.199* 
(121) 

.314** 
(121) 

-.047 
(121) 

.107 
(121) 

-.174 
(121) 

.038 
(121) 

Medium    1 
 

.183* 
(124) 

-.587** 
(124) 

-.045 
(121) 

-.090 
(121) 

.018 
(121) 

-.002 
(121) 

.230* 
(121) 

-.194* 
(121) 

-.265** 
(121) 

Slow     1 
 

-.743** 
(124) 

.071 
(121) 

.043 
(121) 

.132 
(121) 

.109 
(121) 

.174 
(121) 

-.160 
(121) 

-.128 
(121) 

Static      1 
 

-.172 
(121) 

-.113 
(121) 

-.254** 
(121) 

-.040 
(121) 

-.215* 
(121) 

.233** 
(121) 

.116 
(121) 

VAP       1 
 

.973** 
(121) 

.959** 
(121) 

.541** 
(121) 

-.093 
(121) 

-.326** 
(121) 

.168 
(121) 

VSL        1 
 

.897** 
(121) 

.518** 
(121) 

-.155 
(121) 

-.141 
(121) 

.279** 
(121) 

VCL         1 
 

.510** 
(121) 

.053 
(121) 

-.465** 
(121) 

-.057 
(121) 

ALH          1 
 

-.076 
(121) 

-.378** 
(121) 

.038 
(121) 

BCF           1 
 

-.338** 
(121) 

-.538** 
(121) 

STR            1 
 

.586** 
(121) 

LIN             1 
 
()  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.54: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at   
                   -100oC vapour temperature using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.812** 
(153) 

.509** 
(148) 

.361** 
(148) 

.222** 
(148) 

-.511** 
(148) 

.033 
(148) 

-.012 
(148) 

.037 
(148) 

-.097 
(148) 

-.098 
(147) 

-.067 
(148) 

-.040 
(148) 

Progressive motility  1 
 

.581** .314** 
(148) 

.057 
(148) 

-.466** 
(148) 

.193* 
(148) 

.151 
(148) 

.190* 
(148) 

-.046 
(148) 

-.052 
(147) 

-.051 
(148) 

.023 
(148) 

Rapid   1 
 

.535** 
(149) 

.133 
(149) 

-.813** 
(149) 

.347** 
(148) 

.298** 
(148) 

.370** 
(148) 

-.104 
(148) 

-.073 
(147) 

-.106 
(148) 

.078 
(148) 

Medium    1 
 

.440** 
(149) 

-.756** 
(149) 

-.081 
(148) 

-.107 
(148) 

-.022 
(148) 

-.150 
(148) 

-.010 
(147) 

.012 
(148) 

-.100 
(148) 

Slow     1 
 

-.666** 
(149) 

-.064 
(148) 

-.092 
(148) 

.004 
(148) 

-.014 
(148) 

.051 
(147) 

.016 
(148) 

-.151 
(148) 

Static      1 
 

-.176* 
(148) 

-.126 
(148) 

-.237** 
(148) 

.103 
(148) 

.019 
(147) 

.060 
(148) 

.046 
(148) 

VAP       1 
 

.979** 
(149) 

.891** 
(149) 

.458** 
(149) 

-.105 
(148) 

-.163* 
(149) 

.227** 
(149) 

VSL        1 
 

.829** 
(149) 

.423** 
(149) 

-.140 
(148) 

.008 
(149) 

.344** 
(149) 

VCL         1 
 

.494** 
(149) 

-.044 
(149) 

-.353** 
(149) 

-.031 
(149) 

ALH          1 
 

.141 
(149) 

-.375** 
(149) 

-.181* 
(149) 

BCF           1 
 

-.271** 
(148) 

-.369** 
(148) 

STR            1 
 

.689** 
(149) 

LIN             1 
 
()  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.55: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) for overall pooled vapour temperatures using FRE extender  
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.769** 
(307) 

.590** 
(302) 

.485** 
(302) 

.517** 
(302) 

-.734** 
(302) 

.158** 
(297) 

.110 
(297) 

.158** 
(297) 

-.001 
(297) 

.004 
(296) 

-.184** 
(297) 

-.020 
(297) 

Progressive motility 
 

 1 
 

.718** .333** 
(302) 

.129* 
(302) 

-.562** 
(302) 

.257** 
(297) 

.221** 
(297) 

.245** 
(297) 

-.048 
(297) 

-.018 
(296) 

-.086 
(297) 

.078 
(297) 

Rapid   1 
 

.485** 
(305) 

.171** 
(305) 

-.781** 
(305) 

.342** 
(299) 

.297** 
(299) 

.361** 
(299) 

-.059 
(299) 

-.021 
(298) 

-.129* 
(299) 

.083 
(299) 

Medium    1 
 

.349** 
(305) 

-.683** 
(305) 

.024 
(299) 

-.011 
(299) 

.061 
(299) 

-.025 
(299) 

.068 
(298) 

-.125* 
(299) 

-.111 
(299) 

Slow     1 
 

-.724** 
(305) 

.063 
(299) 

.036 
(299) 

.094 
(299) 

.088 
(299) 

.075 
(298) 

-.111 
(299) 

-.070 
(299) 

Static      1 
 

-.239** 
(299) 

-.191** 
(299) 

-.276** 
(299) 

-.008 
(299) 

-.046 
(298) 

.162** 
(299) 

.014 
(299) 

VAP       1 
 

.978** 
(300) 

.913** 
(300) 

.488** 
(300) 

-.070 
(299) 

-.269** 
(300) 

.234** 
(300) 

VSL        1 
 

.857** 
(300) 

.460** 
(300) 

-.105 
(299) 

-.110 
(300) 

.322** 
(300) 

VCL         1 
 

.496** 
(300) 

.011 
(299) 

-.418** 
(300) 

-.031 
(300) 

ALH          1 
 

.096 
(299) 

-.397** 
(300) 

-.066 
(300) 

BCF           1 
 

-.318** 
(299) 

-.382** 
(299) 

STR            1 
 

.561** 
(300) 

LIN             1 
 
()  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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4.9 EFFECT OF VAPOUR EXPOSURE DURATION ON FROZEN-THAWED  

SPERM MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING FRE 

EXTENDER (EXPERIMENT 3) 

Table 4.56 demonstrates the total motility and progressive motility of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different vapour exposure 

durations. There were no significant differences (P>0.05) in values of total motility and 

progressive motility for 5, 10 and 15 minutes which were ranged from 72.67±2.27% to 

73.99±2.34% and 18.11±1.07% to 18.61±1.04%, respectively.  

 Table 4.57 demonstrates the velocity distributions of post-thawed cryopreserved 

sperm of African catfish using FRE extender for different vapour exposure durations. The 

values of rapid, medium, slow and static velocities did not show any significant differences 

(P>0.05) at 5, 10 and 15 minutes vapour exposure durations, which were ranged from 

23.62±1.35% to 24.34±1.36%, 8.75±0.48% to 9.92±0.52%, 39.70±1.28% to 40.66±1.18% 

and 26.06±2.41% to 26.94±2.26%, respectively.  

 Table 4.58 demonstrates the sperm motion characteristics of post-thawed 

cryopreserved sperm of African catfish using FRE extender for different vapour exposure 

durations. There were no significant differences (P>0.05) for values of VAP, VSL, VCL, 

ALH, BCF, STR and LIN at 5, 10 and 15 minutes, which were ranged from 55.64±1.43 to 

57.95±1.44 µm/s, 48.48±1.27 to 50.70±1.29 µm/s, 76.43±1.95 to 80.34±1.71 µm/s, 

4.92±0.19 to 5.29±0.18 µm, 12.52±0.48 to 13.04±0.45 Hz, 87.08±0.43 to 87.68±0.37% 

and 63.31±0.66 to 64.77±0.74%, respectively. 

 Tables 4.59, 4.60 and 4.61 show correlations among post-thawed cryopreserved 

sperm of African catfish at 5, 10 and 15 minutes vapour exposure durations using FRE 

extender. At 5 minutes vapour exposure duration, positive correlations (P<0.05) were 

shown among total motility and progressive motility;  total motility and rapid; total 
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motility and medium; total motility and slow; progressive motility and rapid; progressive 

motility and medium; progressive motility and slow; progressive motility and VAP; 

progressive motility and VCL; rapid and medium; rapid and slow; rapid and VAP; rapid 

and VCL; medium and slow; static and STR; VAP and VSL; VAP and VCL; VAP and 

ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH and 

STR and LIN. Conversely, negative correlations (P<0.05) were shown among total 

motility and static; total motility and STR; progressive motility and static; rapid and static; 

rapid and STR; medium and static; medium and VAP; medium and VSL; medium and 

VCL; slow and static; slow and STR; slow and LIN; VCL and STR; ALH and STR; BCF 

and STR and BCF and LIN. Vapour exposure duration of 10 minutes gave positive 

correlations (P<0.05) among total motility and progressive motility; total motility and 

rapid; total motility and medium; total motility and slow; total motility and VAP; total 

motility and VSL; total motility and VCL; progressive motility and rapid; progressive 

motility and medium; rapid and medium; rapid and slow; medium and slow; medium and 

VAP; medium and VCL; static and STR; VAP and VSL; VAP and VCL; VAP and ALH; 

VSL and VCL; VSL and ALH; VCL and ALH; ALH and BCF and STR and LIN. In 

contrast, negative correlations (P<0.05) were shown among total motility and static; total 

motility and STR; progressive motility and STR; rapid and static; medium and static; 

medium and STR; slow and static; slow and STR; static and VAP; static and VCL; VAP 

and STR; VCL and STR; ALH and STR; BCF and STR and STR and LIN. At 15 minutes 

vapour exposure duration, positive correlations (P<0.05) were shown among total motility 

and progressive motility; total motility and rapid; total motility and medium; total motility 

and slow; total motility and VAP; total motility and VSL; total motility and VCL; total 

motility and BCF; progressive motility and rapid; progressive motility and medium; 

progressive motility and VAP; progressive motility and VSL; progressive motility and 
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VCL; progressive motility and BCF; rapid and medium; rapid and VAP; rapid and VSL; 

rapid and VCL; medium and slow; medium and BCF; slow and BCF; static and STR; VAP 

and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; 

VSL and LIN; VCL and ALH and STR and LIN. Conversely, negative correlations 

(P<0.05) were shown among total motility and static; total motility and STR; progressive 

motility and static; progressive motility and STR; rapid and static; rapid and STR; medium 

and static; medium and STR; medium and LIN; slow and static; slow and VSL; static and 

VCL; static and BCF; VAP and STR; VSL and STR; VCL and STR; ALH and STR; BCF 

and STR and BCF and LIN. 

 Table 4.62 demonstrates correlations among sperm motility characteristics of post-

thawed cryopreserved sperm of African catfish for overall pooled vapour exposure 

durations using FRE extender. Positive correlations (P<0.05) were shown among total 

motility and progressive motility; total motility and rapid; total motility and medium; total 

motility and slow; total motility and VAP; total motility and VSL; total motility and VCL; 

total motility and BCF; progressive motility and rapid; progressive motility and medium; 

progressive motility and VAP; progressive motility and VSL; progressive motility and 

VCL; rapid and medium; rapid and slow; rapid and VAP; rapid and VSL; rapid and VCL; 

medium and slow; medium and BCF; static and STR; VAP and VSL; VAP and VCL; VAP 

and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH 

and STR and LIN. In contrast, negative correlations (P<0.05) were shown among total 

motility and static; total motility and STR; total motility and LIN; progressive motility and 

static; progressive motility and STR; rapid and static; rapid and STR; medium and static; 

medium and STR; medium and LIN; slow and static; slow and STR; slow and LIN; static 

and VAP; static and VCL; static and BCF; VAP and STR; VCL and STR; ALH and STR; 

BCF and STR and BCF and LIN.  
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Table 4.56: Total motility and progressive motility (mean ± SEM) of post-thawed  
                    cryopreserved sperm of African (Clarias gariepinus) catfish using FRE  
                    extender for different vapour exposure durations 
 

Vapour exposure 
duration (min) 

N* Total motility 
(%) 

Progressive motility 
(%) 

5 102 73.94±2.41a 18.39±1.06a 
10 105 72.67±2.27a 18.11±1.07a 
15 307 73.99±2.34a 18.61±1.04a 

 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.57: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using FRE extender for different exposure  
                   vapour durations 
 
Vapour exposure 

duration (min) 
N* Rapid 

(%) 
Medium 

(%) 
Slow 
(%) 

Static 
(%) 

5 102 24.34±1.36a 9.92±0.52a 39.70±1.28a 26.06±2.41a 
10 104 23.62±1.35a 8.75±0.48a 40.66±1.18a 26.94±2.26a 
15 99 24.31±1.41a 9.14±0.43a 40.35±1.41a 26.24±2.36a 

 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
 
 
Table 4.58: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using FRE extender for different  
                   vapour exposure durations 
 

Vapour 
exposure 
duration 

(min) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

5 100 57.95 
±1.44a 

50.70 
±1.29a 

80.34 
±1.71a 

5.29 
±0.18a 

13.04 
±0.45a 

87.08 
±0.43a 

63.44 
±0.76a 

10 101 55.64 
±1.43a 

48.48 
±1.27a 

76.53 
±1.80a 

4.92 
±0.19a 

12.52 
±0.48a 

87.68 
±0.37a 

64.77 
±0.74a 

15 99 55.74 
±1.37a 

48.93 
±1.17a 

76.43 
±1.95a 

5.18 
±0.18a 

12.88 
±0.48a 

87.54 
±0.38a 

63.31 
±0.66a 

 
N* = Total number of observations (straws). 
aMeans with same superscript within a column were not significantly different (P>0.05). 
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Table 4.59: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at  
              5 min vapour exposure duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .787** 
(102) 

.777** 
(102) 

.682** 
(102) 

.743** 
(102) 

-.981** 
(102) 

.057 
(100) 

-.029 
(100) 

.094 
(100) 

-.043 
(100) 

-.040 
(99) 

-.297** 
(100) 

-.139 
(100) 

Progressive motility  1 .928** 
(102) 

.481** 
(102) 

.255** 
(102) 

-.761** 
(102) 

.247* 
(100) 

.192 
(100) 

.233* 
(100) 

-.173 
(100) 

-.114 
(99) 

-.103 
(100) 

.133 
(100) 

Rapid   1 .526** 
(102) 

.242* 
(102) 

-.805** 
(102) 

.226* 
(100) 

.146 
(100) 

.240* 
(100) 

-.134 
(100) 

-.047 
(99) 

-.207* 
(100) 

.067 
(100) 

Medium    1 .347** 
(102) 

-.696** 
(102) 

-.284** 
(100) 

-.293** 
(100) 

-.277** 
(100) 

-.170 
(100) 

-.043 
(99) 

-.021 
(100) 

-.188 
(100) 

Slow     1 -.744** 
(102) 

-.019 
(100) 

-.089 
(100) 

.024 
(100) 

.136 
(100) 

-.005 
(99) 

-.315** 
(100) 

-.238* 
(100) 

Static      1 -.055 
(100) 

.030 
(100) 

-.089 
(100) 

.039 
(100) 

.031 
(99) 

.293** 
(100) 

.134 
(100) 

VAP       1 .972** 
(100) 

.923** 
(100) 

.499** 
(100) 

-.088 
(99) 

-.103 
(100) 

.331** 
(100) 

VSL        1 .835** 
(100) 

.454** 
(100) 

-.123 
(100) 

.094 
(100) 

.461** 
(100) 

VCL         1 .566** 
(100) 

-.036 
(99) 

-.357** 
(100) 

.006 
(100) 

ALH          1 .116 
(99) 

-.357** 
(100) 

-.083 
(100) 

BCF           1 -.235* 
(99) 

-.236* 
(99) 

STR            1 .657** 
(100) 

LIN             1 
 

( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.60: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  gariepinus)   
                   at 10 min vapour exposure duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.787** 
(105) 

.453** 
(104) 

.306** 
(104) 

.227* 
(104) 

-.454** 
(104) 

.246* 
(101) 

.220* 
(101) 

.254* 
(101) 

.064 
(101) 

.039 
(101) 

-.197* 
(101) 

-.101 
(101) 

Progressive motility  1 
 

.648** 
(104) 

.226* 
(104) 

.009 
(104) 

-.440** 
(104) 

.103 
(101) 

.095 
(101) 

.105 
(101) 

.000 
(101) 

.102 
(101) 

-.106 
(101) 

-.060 
(101) 

Rapid   1 
 

.465** 
(104) 

.201* 
(104) 

-.800** 
(104) 

.154 
(101) 

.117 
(101) 

.171 
(101) 

.125 
(101) 

.053 
(101) 

-.133 
(101) 

.018 
(101) 

Medium    1 
 

.374** 
(104) 

-.685** 
(104) 

.237* 
(101) 

.179 
(101) 

.251* 
(101) 

.122 
(101) 

-.015 
(101) 

-.250* 
(101) 

-.015 
(101) 

Slow     1 
 

-.721** 
(104) 

.159 
(101) 

.104 
(101) 

.167 
(101) 

.080 
(101) 

-.124 
(101) 

-.199* 
(101) 

.010 
(101) 

Static      1 
 

-.229* 
(101) 

-.166 
(101) 

-.245* 
(101) 

-.143 
(101) 

.037 
(101) 

.235* 
(101) 

-.015 
(101) 

VAP       1 
 

.981** 
(101) 

.965** 
(101) 

.550** 
(101) 

-.072 
(101) 

-.314** 
(101) 

.101 
(101) 

VSL        1 
 

.927** 
(101) 

.543** 
(101) 

-.103 
(101) 

-.189 
(101) 

.155 
(101) 

VCL         1 
 

.562** 
(101) 

.059 
(101) 

-.448** 
(101) 

-.113 
(101) 

ALH          1 
 

.211* 
(101) 

-.425** 
(101) 

-.170 
(101) 

BCF           1 
 

-.415** 
(101) 

-.521** 
(101) 

STR            1 
 

.692** 
(101) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
 

128 



 

  

 

161 
 
 

Table 4.61: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) at  
                   15 min vapour exposure duration using FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.731** 
(100) 

.591** 
(99) 

.604** 
(99) 

.420** 
(99) 

-.718** 
(99) 

.328** 
(99) 

.259** 
(99) 

.462** 
(99) 

.058 
(99) 

.507** 
(99) 

-.448** 
(99) 

-.185 
(99) 

Progressive 
motility 

 1 
 

.809** 
(99) 

.415** 
(99) 

.024 
(99) 

-.577** 
(99) 

.521** 
(99) 

.475** 
(99) 

.558** 
(99) 

-.049 
(99) 

.212* 
(99) 

-.328** 
(99) 

.056 
(99) 

Rapid   1 
 

.466** 
(99) 

.082 
(99) 

-.738** 
(99) 

.377** 
(99) 

.314** 
(99) 

.411** 
(99) 

-.035 
(99) 

.184 
(99) 

-.399** 
(99) 

-.002 
(99) 

Medium    1 
 

.350** 
(99) 

-.677** -.100 
(99) 

-.157 
(99) 

.063 
(99) 

.028 
(99) 

.515** 
(99) 

-.264** 
(99) 

-.289** 
(99) 

Slow     1 
 

-.715** -.178 
(99) 

-.209* 
(99) 

-.070 
(99) 

.051 
(99) 

.370** 
(99) 

-.188 
(99) 

-.197 
(99) 

Static      1 
 

-.099 
(99) 

-.032 
(99) 

-.216* 
(99) 

-.014 
(99) 

-.427** 
(99) 

.402** 
(99) 

.175 
(99) 

VAP       1 
 

.983** 
(99) 

.858** 
(99) 

.401** 
(99) 

-.059 
(99) 

-.412** 
(99) 

.292** 
(99) 

VSL        1 
 

.817** 
(99) 

.365** 
(99) 

-.100 
(99) 

-.265** 
(99) 

.375** 
(99) 

VCL         1 
 

.367** 
(99) 

-.008 
(99) 

-.448** 
(99) 

.032 
(99) 

ALH          1 
 

-.055 
(99) 

-.409** 
(99) 

.098 
(99) 

BCF           1 
 

-.306** 
(99) 

-.377** 
(99) 

STR            1 
 

.285** 
(99) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05).
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Table 4.62: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)  
                   for overall pooled vapour exposure durations using FRE extender 
 

 Total motility 
Progressive 

motility Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 
Total motility 1 

 
.769** 

(307) 
.609** 

(305) 
.529** 

(305) 
.469** 

(305) 
-.725** 

(305) 
.206** 

(300) 
.144* 
(300) 

.274** 
(300) 

.028 
(300) 

.170** 
(299) 

-.312** 
(300) 

-.141* 
(300) 

Progressive motility 
  1 

 
.791** 

(305) 
.369** 

(305) 
.095 
(305) 

-.593** 
(305) 

.280** 
(300) 

.242** 
(300) 

.297** 
(300) 

-.071 
(300) 

.071 
(299) 

-.172** 
(300) 

.040 
(300) 

Rapid   1 
 

.485** 
(305) 

.171** 
(305) 

-.781** 
(305) 

.249** 
(300) 

.188** 
(300) 

.276** 
(300) 

-.010 
(300) 

.067 
(299) 

-.244** 
(300) 

.027 
(300) 

Medium    1 
 

.349** 
(305) 

-.683** 
(305) 

-.043 
(300) 

-.082 
(300) 

.020 
(300) 

-.002 
(300) 

.138* 
(299) 

-.169** 
(300) 

-.159** 
(300) 

Slow     1 
 

-.724** 
(305) 

-.019 
(300) 

-.069 
(300) 

.029 
(300) 

.085 
(300) 

.091 
(299) 

-.234** 
(300) 

-.141* 
(300) 

Static      1 
 

-.127* 
(300) 

-.055 
(300) 

-.183** 
(300) 

-.040 
(300) 

-.120* 
(299) 

.308** 
(300) 

.097 
(300) 

VAP       1 
 

.978** 
(300) 

.913** 
(300) 

.488** 
(300) 

-.070 
(299) 

-.269** 
(300) 

.234** 
(300) 

VSL        1 
 

.857** 
(300) 

.460** 
(300) 

-.105 
(299) 

-.110 
(300) 

.322** 
(300) 

VCL         1 
 

.496** 
(300) 

.011 
(299) 

-.418** 
(300) 

-.031 
(300) 

ALH          1 
 

.096 
(299) 

-.397** 
(300) 

-.066 
(300) 

BCF           1 
 

-.318** 
(299) 

-.382** 
(299) 

STR            1 
 

.561** 
(300) 

LIN             1 
 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05).
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4.10 EFFECTS OF COMBINATION FACTORS OF EQUILIBRATION 

DURATION, VAPOUR TEMPERATURE AND VAPOUR EXPOSURE DURATION 

ON FROZEN-THAWED SPERM MOTILITY CHARACTERISTICS OF AFRICAN 

CATFISH (Clarias gariepinus) USING FRE EXTENDER 

Table 4.63 showed total motility and progressive motility of post-thawed cryopreserved 

sperm of African catfish using 10% DMSO in FRE extender for combination factors of 

equilibration duration, vapour temperature and vapour exposure duration. It is apparent 

from table 4.63 that the highest values of total motility and progressive motility obtained 

were combination factors of 120 minutes equilibration duration, -100oC vapour 

temperature and 15 minutes vapour exposure duration (87.44±2.07% and 28.22±2.16%, 

respectively). Combinations of 140 minutes, -100oC and 10 minutes showed the lowest 

values of total motility (59.27±8.00%), but the lowest value of progressive motility was 

gained by combination of 160 minutes, -90oC and 10 minutes (12.20±2.24%).  

 Table 4.64 showed velocity distributions of post-thawed cryopreserved sperm of 

African catfish using 10% DMSO in FRE extender for combination factors of equilibration 

duration, vapour temperature and vapour exposure duration. As table 4.64 shows, 

combination of 120 minutes, -100oC and 15 minutes gave the highest value of rapid 

velocity (38.56±3.10%), while combination of 120 minutes, -80oC and 10 minutes gave the 

lowest value (16.33±3.21%).  For medium, slow and static velocities, the highest value 

were attained by combination of 120 minutes, -100oC and 5 minutes (11.75±1.29%), 160 

minutes, -80oC and 10 minutes (44.92±3.34%) and 140 minutes, -100oC and 10 minutes 

(40.73±8.00%), respectively. Both the lowest values of medium and slow velocities were 

shown by combination of 140 minutes, -80oC and 10 minutes (5.67±0.92% and 

29.83±4.58%, respectively). For static velocity, the highest value of static velocity was 
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gained by combination of 140 minutes, -100oC and 10 minutes (40.73±8.00%), whereas 

the lowest value was combination of 120 minutes, -100oC and 15 minutes (12.56±2.07%). 

 Table 4.65 shows the sperm motion characteristics of post-thawed cryopreserved 

sperm of African catfish using 10% DMSO in FRE extender for combination of 

equilibration duration, vapour temperature and vapour exposure duration.The highest 

values of VAP, VSL and VCL were attained by combination of 120 minutes, -80oC and 15 

minutes which resulted 68.76±6.42%, 60.49±6.01% and 94.71±6.27%, respectively. 

Whereas, the lowest values of VAP, VSL, VCL and ALH were shown by combination of 

140 minutes, -100oC and 15 minutes with respective values, 47.95±5.49%, 43.06±4.88%, 

67.52±7.36% and 3.76±0.70%. In contrast, the combination of 160 minutes, -80oC and 15 

minutes gave the highest value of ALH. For value of BCF, combination of 120 minutes, -

80oC and 10 minutes was the highest (15.26±4.17%), while 120 minutes, -80oC and 5 

minutes obtained the lowest (10.18±1.50%). The velocity of STR and LIN demonstrated 

the highest value in combination of 140 minutes, -100oC and 15 minutes (90.20±0.97%) 

and 160 minutes, -100oC and 5 minutes (66.98±1.91%), respectively. On the other hand, 

the combination of 140 minutes, -90oC and 5 minutes, and 160 minutes, -90oC and 15 

minutes gave the lowest value of STR (85.47±0.57%) and LIN (61.11±1.67%), 

respectively. 
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Table 4.63: Total motility and progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African (Clarias gariepinus) catfish using 10% DMSO  
                   in FRE extender for combination of equilibration duration, vapour temperature  
                   and vapour exposure duration 
 
Equilibration 

duration 
(min) 

Vapour 
temperature 

(oC) 

Vapour 
exposure 
duration 

(min) 

N* Total motility 
(%) 

Progressive 
motility 

(%) 

-80 
 
 

5 
10 
15 

15 
15 
13 

74.00±4.69abc 
62.73±6.95ab 
59.92±9.11a 

20.00±2.59abc 
12.80±2.49a 
15.77±3.63a 

-90 
 
 

5 
10 
15 

13 
15 
15 

71.38±9.76abc 
80.80±4.54abc 
72.60±7.45abc 

15.62±2.54a 
19.93±2.73abc 
19.93±2.71abc 

120 

-100 5 
10 
15 

20 
20 
18 

84.00±2.86bc 
80.95±3.71abc 
87.44±2.07c 

25.95±2.36bc 
25.95±2.74bc 
28.22±2.16c 

-80 
 
 

5 
10 
15 

7 
6 
7 

62.86±7.74ab 
59.67±13.56a 
78.29±7.51abc 

14.00±3.51a 
16.00±6.54a 

19.57±3.72abc 
-90 

 
 

5 
10 
15 

15 
15 
18 

73.73±5.17abc 
68.00±5.89abc 
76.33±4.59abc 

18.73±2.83ab 
16.13±2.35a 

20.00±2.18abc 

140 

-100 5 
10 
15 

11 
15 
10 

61.27±8.10a 
59.27±8.00a 
60.80±9.43a 

13.27±3.21a 
13.53±2.87a 
13.80±3.21a 

-80 
 
 

5 
10 
15 

14 
12 
12 

76.07±5.57abc 
78.75±6.04abc 
73.75±4.76abc 

15.64±2.67a 
20.08±2.74abc 
16.08±2.82a 

160 

-90 5 
10 
15 

13 
15 
19 

74.15±6.40abc 
60.20±7.12a 

73.21±4.50abc 

16.08±1.95a 
12.20±2.24a 
14.05±2.23a 

 -100 5 
10 
15 

20 
19                           
20 

71.45±6.69abc 
80.00±3.65abc 
73.75±4.86abc 

18.60±2.66ab 
20.16±2.04abc 
17.80±2.00ab 

 
N* = Total number of observations (straws). 
abcMeans with different superscripts within a column were significantly different (P<0.05). 
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Table 4.64: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus)       
                    using 10% DMSO in FRE extender for combination of equilibration duration, vapour temperature and vapour  
                    exposure duration 

Equilibration 
duration 

(min) 

Vapour 
temperature 

(oC) 

Vapour 
exposure 

duration (min) 

N* Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

120 -80 5 15 25.13±3.18abc 6.87±0.90abcd 41.87±3.64abc 26.00±4.69abcd 
  10 15 16.33±3.21a 6.47±1.84abc 39.93±3.90abc 37.27±6.95bcd 

 15 13 21.54±5.08ab 5.92±1.24ab 32.54±3.79ab 40.08±9.11d 
-90 

 
 

5 
10 
15 

13 
15 
15 

21.31±3.71ab 
26.73±3.28abc 
25.60±3.53abc 

11.23±1.74de 
10.73±1.34cde 
10.47±1.53bcde 

38.85±5.49abc 

43.40±2.67bc 
36.60±3.77abc 

28.62±9.76abcd 
19.20±4.54abcd 
27.40±7.45abcd 

 

-100 5 
10 
15 

20 
19 
18 

33.65±2.78bcd 
34.21±3.53cd 
38.56±3.10d 

11.75±1.29e 
9.21±0.82abcde 

10.22±0.53abcde 

38.70±1.81abc 

39.68±1.80abc 

38.56±1.75abc 

16.00±2.86ab 
16.79±3.10abc 
12.56±2.07a 

-80 
 

 

5 
10 
15 

7 
6 
7 

19.00±5.18a 
24.00±9.94abc 
26.71±5.57abc 

9.00±2.49abcde 
5.67±0.92a 

9.86±1.79abcde 

34.71±2.74abc 

29.83±4.58a 
42.00±4.55abc 

37.14±7.74bcd 
40.33±13.56d 
21.71±7.51abcd 

-90 
 
 

5 
10 
15 

15 
15 
20 

25.80±3.92abc 
20.27±2.71a 

25.55±2.60abc 

8.80±0.94abcde 
6.27±0.91abc 

10.20±0.89abcde 

39.07±3.35abc 

41.60±3.89abc 

39.30±3.17abc 

26.27±5.17abcd 
32.00±5.89abcd 
24.80±4.23abcd 

140 

-100 5 
10 
15 

11 
15 
10 

17.91±4.14a 
17.13±3.54a 
16.40±3.84a 

7.36±1.65abcde 
7.20±1.43abcde 
6.70±1.49abcd 

36.09±4.10abc 

34.80±4.19abc 

37.90±5.80abc 

38.73±8.10cd 
40.73±8.00d 
39.20±9.43d 

-80 
 
 

5 
10 
15 

14 
12 
12 

21.29±3.81ab 
25.08±2.93abc 
21.00±3.91ab 

10.50±1.10bcde 
8.67±1.39abcde 
8.58±1.20abcde 

44.36±4.63bc 
44.92±3.34bc 
44.33±4.03bc 

24.00±5.56abcd 
21.25±4.76abcd 
26.25±6.04abcd 

-90 
 
 

5 
10 
15 

13 
15 
19 

22.38±2.80abc 
16.80±3.08a 
19.95±3.27a 

10.46±1.44bcde 
8.87±2.13abcde 
6.74±0.67abcd 

41.08±3.48abc 

34.80±4.25abc 

46.53±3.14c 

25.85±6.40abcd 
39.80±7.12d 

26.79±4.50abcd 

160 

-100 5 
10 
15 

20 
19 
17 

23.20±3.33abc 
26.21±2.48abc 
21.59±2.74ab 

9.10±1.02abcde 
10.21±0.85abcde 
9.35±1.07abcde 

39.20±3.26abc 

43.79±1.37bc 
42.71±2.56bc 

28.55±6.69abcd 
19.68±3.47abcd 
26.59±5.47abcd 

N* = Total number of observations (straws). 
abcdeMeans with different superscripts within a column were significantly different (P<0.05).
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Table 4.65: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved sperm of African catfish (Clarias gariepinus) using  
                    10% DMSO in FRE extender for combination of equilibration duration, vapour temperature and vapour exposure duration 
 

Equilibration 
duration 

(min) 

Vapour 
Temperature 

(oC) 

Vapour 
exposure 
duration 

(min) 

N* VAP 
(µm/s) 

VSL 
(µm/s) 

VCL 
(µm/s) 

ALH 
(µm) 

BCF 
(Hz) 

STR 
(%) 

LIN 
(%) 

120 -80 
 
 

5 
10 
15 

15 
13 
12 

66.92±5.13def 
58.99±5.95abcdef 

68.76±6.42f 

54.30±3.76abc 
51.65±4.93abc 
60.49±6.01c 

91.67±7.10de 
81.42±7.40abcde 

94.71±6.27e 

5.03±0.40abc 
4.92±0.41abc 
5.33±0.60abc 

10.18±1.50a 
15.26±4.17a 
10.64±1.59a 

86.33±2.70ab 
87.69±1.88ab 
88.00±1.64ab 

63.93±2.24ab 
64.38±2.73ab 
62.67±3.44ab 

-90 5 
10 
15 

13 
15 
15 

52.37±3.10abcd 
58.58±3.06abcdef 
55.65±3.81abcdef 

47.11±2.97ab 
50.54±2.89abc 
48.21±3.22abc 

72.58±3.78abc 
79.93±3.91abcde 
75.75±4.76abcd 

4.76±0.66abc 
4.98±0.38abc 
5.72±0.65bc 

12.52±1.27a 
11.94±0.71a 
12.06±1.64a 

88.92±1.54ab 
87.00±0.78ab 
86.73±0.66ab 

63.46±2.25ab 
64.80±1.35ab 
64.93±2.13ab 

 

-100 5 
10 
15 

20 
19 
18 

60.57±2.59abcdef 
61.02±2.10abcdef 
64.50±2.79bcdef 

52.94±2.19abc 
53.22±1.71abc 
55.72±2.25abc 

82.77±3.32abcde 
83.33±3.12abcde 
89.50±3.45bcde 

4.84±0.27abc 
5.08±0.40abc 
5.08±0.20abc 

12.50±0.81a 
13.27±1.23a 
13.68±0.70a 

87.35±0.63ab 
87.53±0.77ab 
85.78±0.70a 

64.95±0.90ab 
65.42±1.67ab 
62.72±0.78ab 

140 -80 5 
10 
15 

7 
6 
7 

50.14±4.97ab 
57.98±10.62abcdef 

67.19±6.98ef 

44.11±4.63a 
47.20±9.49ab 
58.99±5.94bc 

74.70±4.64abcd 
80.03±15.64abcde 

92.17±6.35de 

5.11±0.61abc 
6.47±1.60c 

5.54±0.29abc 

13.31±1.58a 
11.83±2.70a 
11.20±1.46a 

86.86±1.10ab 
86.67±3.30ab 
87.00±1.15ab 

58.57±4.15a 
66.83±6.18b 
63.00±2.50ab 

-90 
 
 

5 
10 
15 

15 
14 
18 

61.57±2.45abcdef 
51.77±4.04ab 

57.97±2.16abcdef 

52.93±2.23abc 
45.36±3.29a 

50.68±1.79abc 

85.21±3.08abcde 
71.36±4.64ab 

79.58±2.84abcde 

5.61±0.23bc 
4.61±0.43ab 
5.13±0.28abc 

12.53±0.63a 
12.86±1.01a 
13.04±0.98a 

85.47±0.57a 
88.50±0.89ab 
87.11±0.79ab 

62.40±0.88ab 
64.57±1.32ab 
64.11±0.96ab 

 

-100 5 
10 
15 

11 
15 
10 

58.30±4.22abcdef 
53.55±4.86abcde 

47.95±5.49a 

50.45±4.41abc 
47.96±4.52abc 
43.06±4.88a 

84.67±4.83abcde 
72.70±5.34abc 
67.52±7.36a 

5.91±0.69bc 
4.75±0.66abc 
3.76±0.70a 

11.13±1.58a 
11.91±1.46a 
10.31±1.62a 

84.64±2.10a 
88.20±0.93ab 
90.20±0.97b 

61.36±4.12ab 
63.73±2.49ab 
65.90±1.67ab 
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-80 5 

10 
15 

14 
12 
11 

53.34±4.49abcde 
66.71±4.67cdef 

59.29±2.68abcdef 

47.30±4.00ab 
58.89±4.03bc 
51.94±2.64abc 

75.36±4.67abcd 
90.73±4.81cde 

82.18±3.69abcde 

5.39±0.51abc 
6.22±0.47bc 
6.03±0.26bc 

12.61±1.13a 
12.48±1.33a 
12.66±1.64a 

88.64±1.37ab 
87.92±1.12ab 
86.27±0.75ab 

61.86±2.70ab 
64.17±1.01ab 

61.55±1.12ab 

-90 5 
10 
15 

13 
15 
19 

52.45±2.85abcd 
52.21±4.48abc 

54.67±3.40abcdef 

45.11±2.34a 
44.77±3.88a 
47.17±2.91ab 

74.88±3.78abcd 
72.57±5.32abc 

77.35±4.21abcde 

5.40±0.54abc 
4.96±0.62abc 
5.29±0.44abc 

12.90±1.39a 
14.24±2.25a 
13.77±1.24a 

86.00±0.60ab 
86.67±1.26ab 
85.74±0.79a 

61.92±1.63ab 
62.93±2.54ab 
61.11±1.67ab 

160 

-100 
 
 

5 
10 
15 

18 
19 
19 

62.52±5.17abcdef 
57.36±2.54abcdef 
54.25±2.31abcde 

55.44±4.54abc 
49.84±2.16abc 
48.32±2.02abc 

82.39±6.21abcde 
79.38±3.48abcde 

69.51±5.98a 

5.28±0.58abc 
4.78±0.41abc 
5.33±0.40abc 

14.34±1.60a 
13.25±1.42a 
14.11±0.79a 

88.67±0.98ab 
87.47±0.79ab 
88.37±1.05ab 

66.89±1.91b 
65.11±1.34ab 
62.68±1.35ab 

 
N* = Total number of observations (straws). 
abcMeans with different superscripts within a column were significantly different (P<0.05). 
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4.11 EFFECTS OF DIFFERENT EXTENDERS AND CRYOPROTECTANTS ON 

FROZEN-THAWED SPERM MOTILITY CHARACTERISTICS OF AFRICAN 

CATFISH (Clarias gariepinus) (EXPERIMENT 4) 

Table 4.66 demonstrates total motility and progressive motility of post-thawed 

cryopreserved sperm of African catfish using different types of extender and 

cryoprotectant. There were no significant differences (P>0.05) for values of total motility 

between 1.0 M (24.50±1.81%) and 2.0 M of glycerol in TCAYE (26.74±2.14%), but they 

were comparatively lower than 0.5 M of glycerol that showed higher significant value 

(32.27±2.05%). On the other hand, combination of DMSO (10%) in FRE extender showed 

the highest significant values of total motility and progressive motility (73.52±1.35% and 

18.37±0.61%, respectively) as compared to the three molarities of glycerol (0.5, 1.0 and 

2.0 M) in TCAYE extender. There were no significant differences (P>0.05) in values of 

progressive motility for the three respective molarities (0.5, 1.0 and 2.0 M glycerol), which 

gave 3.75±0.41%, 2.63±0.29% and 2.45±0.37%. 

 Table 4.67 demonstrates the velocity distributions of post-thawed cryopreserved 

sperm of African catfish using different types of extender and cryoprotectant. There were 

no significant differences (P>0.05) in values of rapid and medium velocities for 0.5, 1.0 

and 2.0 M glycerol in TCAYE extender, which were ranged from 3.37±0.51 to 

5.19±0.60% and 1.27±0.13 to 1.70±0.14%, respectively. Furthermore, 0.5, 1.0 and 2.0 M 

glycerol showed  significant differences with DMSO (10%) in FRE, which gave 

comparatively the highest value of rapid and medium velocities (24.09±0.79% and 

9.27±0.28%, respectively). As for the values of slow and static velocities, there were no 

significant differences (P>0.05) among 1.0 M (19.76±1.47% and 75.50±1.81%, 

respectively) and 2.0 M glycerol (21.89±1.70% and 73.27±2.14%, respectively), but these 

were significant with 0.5 M of glycerol in TCAYE extender (25.39±1.62% and 
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67.74±2.05%, respectively) and DMSO (10%) in FRE extender (40.24±0.74% and 

26.42±1.35%, respectively). 

 Table 4.68 demonstrates sperm motion characteristics of post-thawed cryopreserved 

sperm of African catfish using different types of extender and cryoprotectant. There were 

no significant differences (P>0.05) in values of BCF and LIN for 0.5 M (14.99±0.89% and 

63.02±1.16%, respectively), 1.0 M (13.61±0.94% and 64.79±1.22%, respectively) and 2.0 

M (14.55±1.21% and 65.18±1.55%, respectively) glycerol in TCAYE extender and DMSO 

(10%) in FRE extender (12.81±0.27% and 63.85±0.42%, respectively). There were 

significant differences for values of VAP and VSL between 2.0 M glycerol (45.84±2.00% 

and 40.77±1.85%, respectively) and 0.5 M (56.91±2.27% and 49.89±2.09%, respectively) 

as well as 1.0 M glycerol (52.80±1.89% and 47.94±1.81%, respectively) in TCAYE 

extender and DMSO (10%) in FRE extender (56.44±0.82% and 49.37±0.72%, 

respectively). However, the values of VAP and VSL for 0.5 and 1.0 M glycerol in TCAYE 

extender as well as 10% DMSO in FRE extender did not show significant differences 

(P>0.05). 

 Tables 4.69, 4.70, 4.71 and 4.72 show correlations among sperm motility 

characteristics of post-thawed cryopreserved sperm of African catfish using 0.5, 1.0 and 

2.0 M glycerol in TCAYE extender as well as 10% DMSO in FRE extender. For 0.5 M 

glycerol, positive correlations (P<0.05) were shown among total motility and progressive 

motility; total motility and rapid; total motility and medium; total motility and slow; total 

motility and VAP; total motility and VSL; total motility and VCL; progressive motility and 

rapid; progressive motility and medium; progressive motility and slow; progressive 

motility and VAP; progressive motility and VSL; progressive motility and VCL; rapid and 

medium; rapid and slow; rapid and VAP; rapid and VSL; rapid and VCL; medium and 

slow; slow and VAP; slow and VSL; slow and VCL; VAP and VSL; VAP and VCL; VAP 
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and ALH; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH and STR and 

LIN. In contrast, negative correlations (P<0.05) were shown among total motility and 

static; progressive motility and static; rapid and static; medium and static; slow and static; 

static and VAP; static and VSL; static and VCL; VCL and STR; VCL and LIN; BCF and 

STR and BCF and LIN. In 1.0 M glycerol, there were positive correlations (P<0.05) 

among total motility and progressive motility; total motility and rapid; total motility and 

medium; total motility and slow; progressive motility and rapid; progressive motility and 

medium; progressive motility and slow; rapid and medium; rapid and slow; medium and 

slow; VAP and VSL; VAP and VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL 

and ALH; VSL and STR; VSL and LIN; VCL and ALH; ALH and BCF; ALH and LIN 

and STR and LIN. In contrast, there were negative correlations (P<0.05) among total 

motility and static; progressive motility and static; rapid and static; medium and static; 

slow and static; VCL and STR; ALH and STR; BCF and STR and STR and LIN. In 2.0 M 

glycerol, positive correlations (P<0.05) were shown among total motility and progressive 

motility; total motility and rapid; total motility and medium; total motility and slow; 

progressive motility and rapid; progressive motility and medium; progressive motility and 

slow; rapid and medium; rapid and slow; medium and slow; VAP and VSL; VAP and 

VCL; VAP and ALH; VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL 

and ALH; VCL and BCF; ALH and BCF and STR and LIN. Conversely, negative 

correlations (P<0.05) were shown among total motility and static; progressive motility and 

static; rapid and static; medium and static; slow and static; VCL and STR; VCL and LIN; 

ALH and STR; BCF and STR and BCF and LIN. In 10% DMSO in FRE extender, there 

were positive correlations (P<0.05) among total motility and progressive motility; total 

motility and rapid; total motility and medium; total motility and slow; total motility and 

VAP; total motility and VCL; progressive motility and rapid; progressive motility and 
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medium; progressive motility and slow; rapid and medium; rapid and slow; medium and 

slow; medium and ALH; static and STR; VAP and VSL; VAP and VCL; VAP and ALH; 

VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH and STR and 

LIN. Conversely, negative correlations (P<0.05) were shown among total motility and 

static; total motility and STR; progressive motility and static; progressive motility and 

STR; rapid and static; rapid and STR; medium and static; medium and STR; slow and 

static; slow and STR; static and VAP; VAP and STR; VCL and STR; ALH and STR; BCF 

and STR and BCF and LIN. 
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Table 4.66: Total motility and Progressive motility (mean ± SEM) of post-thawed  
                   cryopreserved sperm of African catfish (Clarias gariepinus) using different  
                   types of extender and cryoprotectant  
 

Types of extender N* Total motility 
(%) 

Progressive motility 
(%) 

Glycerol (0.5 M) in TCAYE 135 32.27±2.05b 3.75±0.41a 
Glycerol (1.0 M) in TCAYE 147 24.50±1.81a 2.63±0.29a 
Glycerol (2.0 M) in TCAYE 128 26.74±2.14a 2.45±0.37a 

DMSO (10%) in FRE 307 73.52±1.35c 18.37±0.61b 
 
N* =Total number of observations (straws).  
abcMeans with different superscripts within a column were significantly different (P<0.05). 
 
Table 4.67: Velocity distributions (mean±SEM) of post-thawed cryopreserved sperm of  
                   African catfish (Clarias gariepinus) using different types of extender and  
                   cryoprotectant 
 

Types of Extender *N Rapid 
(%) 

Medium 
(%) 

Slow 
(%) 

Static 
(%) 

Glycerol (0.5 M) in 
TCAYE 

135 5.19±0.60a 1.70±0.14a 25.39±1.62b 67.74±2.05b 

Glycerol (1.0 M) in 
TCAYE 

147 3.46±0.37a 1.27±0.13a 19.76±1.47a 75.50±1.81c 

Glycerol (2.0 M) in 
TCAYE 

128 3.37±0.51a 1.43±0.16a 21.89±1.70ab 73.27±2.14c 

DMSO (10%) in FRE 307 24.09±0.79b 9.27±0.28b 40.24±0.74c 26.42±1.35a 
 

*N = Total number of observations (straws). 
abcMeans with different superscripts within a column were significantly different (P<0.05). 
 
Table 4.68: Sperm motion characteristics (mean±SEM) of post-thawed cryopreserved  
                   sperm of African catfish (Clarias gariepinus) using different types of extender  
                   and cryoprotectant 
 

Types of 
Extender 

*N VAP 
( µm/s ) 

VSL 
( µm/s ) 

VCL 
( µm/s ) 

ALH 
( µm ) 

BCF 
( Hz ) 

STR 
(%) 

LIN 
(%) 

Glycerol 
(0.5 M) in 
TCAYE 

127 56.91 
±2.27b 

49.89 
±2.09b 

82.87 
±3.08c 

5.34 
±0.24b 

14.99 
±0.89a 

86.36 
±0.64a 

63.02 
±1.16a 

Glycerol 
(1.0 M) in 
TCAYE 

135 52.80 
±1.89b 

47.94 
±1.81b 

73.80 
±2.22b 

4.92 
±0.24ab 

13.61 
±0.94a 

88.78 
±0.60b 

64.79 
±1.22a 

Glycerol 
(2.0 M) in 
TCAYE 

115 45.84 
±2.00a 

40.77 
±1.85a 

65.43 
±2.45a 

4.60 
±0.31a 

14.55 
±1.21a 

88.79 
±0.73b 

65.18 
±1.55a 

DMSO 
(10%) in FRE 

300 56.44 
±0.82b 

49.37 
±0.72b 

77.77 
±1.05bc 

5.13 
±0.11ab 

12.81 
±0.27a 

87.43 
±0.23ab 

63.85 
±0.42a 

 
*N= Total number of observations (straws).  
abcMeans with different superscripts within a column were significantly different (P<0.05).
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Table 4.69: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) using 0.5 M glycerol in TCAYE extender 
 

 
( )  Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
 
 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .667** 
(135) 

.638** 
(135) 

.685** 
(135) 

.879** 
(135) 

-.927** 
(135) 

.267** 
(127) 

.266** 
(126) 

.253** 
(127) 

.145 
(127) 

.012 
(127) 

-.027 
(127) 

.025 
(127) 

Progressive motility  1 .959** 
(135) 

.702** 
(135) 

.378** 
(135) 

-.627** 
(135) 

.318** 
(127) 

.327** 
(126) 

.266** 
(127) 

.149 
(127) 

-.076 
(127) 

.066 
(127) 

.104 
(127) 

Rapid   1 .738** 
(135) 

.429** 
(135) 

-.679** 
(135) 

.288** 
(127) 

.286** 
(126) 

.257** 
(127) 

.114 
(127) 

-.057 
(127) 

.045 
(127) 

.067 
(127) 

Medium    1 .591** 
(135) 

-.746** 
(135) 

.099 
(127) 

.118 
(126) 

.072 
(127) 

.067 
(127) 

-.069 
(127) 

.072 
(127) 

.037 
(127) 

Slow     1 -.953** 
(135) 

.217* 
(127) 

.217* 
(126) 

.208* 
(127) 

.131 
(127) 

.033 
(127) 

-.045 
(127) 

.014 
(127) 

Static      1 -.265** 
(127) 

-.265** 
(126) 

-.245** 
(127) 

-.143 
(127) 

-.002 
(127) 

.017 
(127) 

-.036 
(127) 

VAP       1 .965** 
(126) 

.870** 
(127) 

.499** 
(127) 

-.067 
(127) 

-.119 
(127) 

.117 
(127) 

VSL        1 .753** 
(126) 

.547** 
(126) 

-.136 
(126) 

.057 
(126) 

.257** 
(126) 

VCL         1 .375** 
(127) 

.103 
(127) 

-.385** 
(127) 

-.278** 
(127) 

ALH          1 .158 
(127) 

-.141 
(127) 

.141 
(127) 

BCF           1 -.524** 
(127) 

-.337** 
(127) 

STR            1 .680** 
(127) 

LIN             1 
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Table 4.70: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) using 1.0 M glycerol in TCAYE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 
 

.744** 
(147) 

.701** 
(147) 

.576** 
(147) 

.752** 
(147) 

-.794** 
(147) 

.035 
(135) 

.032 
(135) 

.011 
(135) 

.044 
(135) 

-.129 
(135) 

.019 
(135) 

.001 
(135) 

Progressive motility 
 

 1 
 

.940** 
(147) 

.622** 
(147) 

.539** 
(147) 

-.675** 
(147) 

-.016 
(135) 

-.014 
(135) 

-.016 
(135) 

.050 
(135) 

-.038 
(135) 

.056 
(135) 

-.058 
(135) 

Rapid   1 
 

.664** 
(147) 

.633** 
(147) 

-.767** 
(147) 

.011 
(135) 

.012 
(135) 

.003 
(135) 

.055 
(135) 

-.054 
(135) 

.058 
(135) 

-.039 
(135) 

Medium    1 
 

.579** 
(147) 

-.677** 
(147) 

.094 
(135) 

.091 
(135) 

.047 
(135) 

.118 
(135) 

-.123 
(135) 

-.009 
(135) 

-.006 
(135) 

Slow     1 
 

-.979** 
(147) 

.081 
(135) 

.082 
(135) 

.049 
(135) 

.033 
(135) 

-.179* 
(135) 

.038 
(135) 

.025 
(135) 

Static      1 
 

-.070 
(135) 

-.071 
(135) 

-.040 
(135) 

-.041 
(135) 

.155 
(135) 

-.043 
(135) 

-.010 
(135) 

VAP       1 
 

.982** 
(135) 

.872** 
(135) 

.507** 
(135) 

-.078 
(135) 

.070 
(135) 

.483** 
(135) 

VSL        1 
 

.792** 
(135) 

.480** 
(135) 

-.145 
(135) 

.223** 
(135) 

.579** 
(135) 

VCL         1 
 

.475** 
(135) 

.099 
(135) 

-.185* 
(135) 

.083 
(135) 

ALH          1 
 

.192* 
(135) 

-.190* 
(135) 

.204* 
(135) 

BCF           1 
 

-.417** 
(135) 

-.267** 
(135) 

STR            1 
 

.572** 
(135) 

LIN             1 
 
( ) Represents no. of samples. 
** Pearson correlations were significant (P<0.01). 
  * Pearson correlations were significant (P<0.05). 
 
 

143 



 

  

 

144 
 
 

Table 4.71: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) using 2.0 M glycerol in TCAYE extender 
 

 Total motility Progressive 
motility  

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .719** 
(128) 

.703** 
(128) 

.674** 
(128) 

.862** 
(128) 

-.903** 
(128) 

.078 
(115) 

.065 
(115) 

.117 
(115) 

.077 
(115) 

.145 
(115) 

-.048 
(115) 

-.147 
(115) 

Progressive motility  1 .976** 
(128) 

.772** 
(128) 

.522** 
(128) 

-.706** 
(128) 

-.082 
(115) 

-.097 
(115) 

-.015 
(115) 

-.064 
(115) 

.142 
(115) 

-.060 
(115) 

-.160 
(115) 

Rapid   1 .776** 
(128) 

.550** 
(128) 

-.735** 
(128) 

-.062 
(115) 

-.081 
(115) 

.012 
(115) 

-.072 
(115) 

.139 
(115) 

-.082 
(115) 

-.177 
(115) 

Medium    1 .583** 
(128) 

-.720** 
(128) 

-.071 
(115) 

-.084 
(115) 

.008 
(115) 

-.041 
(115) 

.085 
(115) 

-.079 
(115) 

-.182 
(115) 

Slow     1 -.969** 
(128) 

.088 
(115) 

.085 
(115) 

.109 
(115) 

.091 
(115) 

.112 
(115) 

-.020 
(115) 

-.116 
(115) 

Static      1 -.049 
(115) 

-.042 
(115) 

-.090 
(115) 

-.054 
(115) 

-.129 
(115) 

.041 
(115) 

.148 
(115) 

VAP       1 .982** 
(115) 

.893** 
(115) 

.613** 
(115) 

.058 
(115) 

-.176 
(115) 

.215* 
(115) 

VSL        1 .827** 
(115) 

.582** 
(115) 

-.029 
(115) 

-.016 
(115) 

.312** 
(115) 

VCL         1 .666** 
(115) 

.257** 
(115) 

-.423** 
(115) 

-.191* 
(115) 

ALH          1 .393** 
(115) 

-.324** 
(115) 

-.112 
(115) 

BCF           1 -.512** 
(115) 

-.446** 
(115) 

STR            1 .587** 
(115) 

LIN             1 
 

( )  Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Table 4.72: Correlations among sperm motility characteristics of post-thawed cryopreserved sperm of African catfish (Clarias  
                   gariepinus) using 10% DMSO in FRE extender 
 

 Total motility Progressive 
motility 

Rapid Medium Slow Static VAP VSL VCL ALH BCF STR LIN 

Total motility 1 .769** 
(307) 

.504** 
(305) 

.410** 
(305) 

.421** 
(305) 

-.611** 
(305) 

.131* 
(300) 

.112 
(300) 

.133* 
(300) 

.085 
(300) 

.063 
(299) 

-.135* 
(300) 

-.062 
(300) 

Progressive motility 
 

 1 .604** 
(305) 

.287** 
(305) 

.136* 
(305) 

-.488** 
(305) 

.099 
(300) 

.084 
(300) 

.113 
(300) 

.011 
(300) 

.097 
(299) 

-.143* 
(300) 

-.101 
(300) 

Rapid   1 .485** 
(305) 

.171** 
(305) 

-.781** 
(305) 

.105 
(300) 

.080 
(300) 

.098 
(300) 

.043 
(300) 

.053 
(299) 

-.175** 
(300) 

-.100 
(300) 

Medium    1 .349** 
(305) 

-.683** 
(305) 

.104 
(300) 

.092 
(300) 

.068 
(300) 

.153** 
(300) 

-.049 
(299) 

-.135* 
(300) 

-.008 
(300) 

Slow     1 -.724** 
(305) 

.067 
(300) 

.052 
(300) 

.024 
(300) 

.050 
(300) 

.071 
(299) 

-.118* 
(300) 

.011 
(300) 

Static      1 -.121* 
(300) 

-.096 
(300) 

-.085 
(300) 

-.084 
(300) 

-.061 
(299) 

.196** 
(300) 

.055 
(300) 

VAP       1 .978** 
 

.913** 
(300) 

.488** 
(300) 

-.070 
(299) 

-.269** 
(300) 

.234** 
(300) 

VSL        1 .857** 
(300) 

.460** 
(300) 

-.105 
(299) 

-.110 
(300) 

.322** 
(300) 

VCL         1 .496** 
(300) 

.011 
(299) 

-.418** 
(300) 

-.031 
(300) 

ALH          1 .096 
(299) 

-.397** 
(300) 

-.066 
(300) 

BCF           1 -.318** 
(299) 

-.382** 
(299) 

STR            1 .561** 
(300) 

LIN             1 
 
( ) Represents no. of samples. 
** Pearson correlations were significant (P< 0.01). 
  * Pearson correlations were significant (P<0.05). 
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Chapter 5 

5.0   DISCUSSION 

5.1 EFFECT OF INDIVIDUAL BODY WEIGHT ON FRESH SPERM MOTILITY 

CHARACTERISTICS IN AFRICAN CATFISH (Clarias gariepinus) (EXPERIMENT 

1) 

The current study found that body weight of African catfish affects the fresh sperm 

motility characteristics before freezing. The most interesting finding was that large BW of 

African catfish with (>1.5kg) gave the highest total motility (82.40±4.59%) as compared to 

the other two groups. Another important finding was that small BW with (<1.5kg) gave the 

lowest sperm total motility (40.40±12.16%). It is difficult to explain this result, but it 

might be related to a numbers of factors such as the variations of fresh sperm among 

individual broodstock fish and the effects of body weight of African catfish on the percent 

total sperm motility produced. The presumptive reasons behind effects of body weight 

might be associated with the age of male African catfish broodstocks which can produce a 

high sperm total motility, but this is not an absolute reason since a limited sample size of 

fish were used for each groups. These findings further support the idea of Vuthiphandchai 

and Zohar (1999) who suggested age of broodstocks have a significant influence on the 

sperm quality and may affect the success of storing sperm. In captive-reared striped bass 

(Morone saxatilis), 3-year-old fish had higher sperm quality than the 1-year or 12-month-

old fish, based on higher sperm production and increased sperm longevity during short-

term storage. However, the fertilising capacity of virgin and repeat spawners was 

comparable in Atlantic cod, G. morhua (Trippel and Neilson, 1992). Another possible 

explanation for this is that the nutrition shows an important factor that affects the body 

weight of African catfish. Nutrition is susceptible to affect not only fecundity and 

gametogenesis, but also gamete quality, and existing work has been extensively reviewed 
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(Kjorsvik et al., 1990; Brooks et al., 1997; Izquierdo et al., 2001). Improvement in 

broodstock nutrition and feeding greatly improves gamete quality and seed production 

(Izquierdo et al., 2001). According to Alavi et al. (2009), found that significant 

relationships were observed between weight and length of broodfish (Barbus barbus L.) 

with total number of sperm and sperm concentration, but not with sperm volume. The 

evidence of this was associated with endocrinological mechanism regulating hydration of 

sperm during spermiation (Nagahama, 1994; Billard et al., 1995; Alavi and Cosson, 2006). 

 The pattern of positive correlations among sperm motility for respective small, 

medium and large BW group was different. In small BW group, the pattern of sperm 

motility characteristics correlations were medium and slow; VAP and VSL; VAP and LIN; 

VSL and STR; VSL and LIN and STR and LIN. This pattern of correlations differ in 

medium and large BW group, which showed correlations of total motility and progressive 

motility; total motility and rapid; total motility and medium; progressive motility and 

rapid; progressive motility and medium; VAP and VSL; VAP and VCL; VAP and ALH; 

VAP and LIN; VSL and VCL; VSL and ALH; VSL and LIN as well as ALH and LIN. In 

large BW group, the patterns of correlations was progressive motility and rapid; 

progressive motility and LIN; rapid and STR; rapid and LIN; VAP and VSL; VAP and 

VCL; VAP and ALH; VSL and VCL and VSL and ALH. In general, therefore, percent 

total motility and sperm velocity have been correlated to reproductive success in fish; 

reductions in these parameters may decrease fecundity (Blaxhall et al., 1973; Bustos-

Obregon et al., 1975; Brunette et al., 2001; Cabrita et al., 2003). The variation of pattern in 

correlation among sperm motility characteristics across the body weight group was 

assumed to be related with the average gamete quality of each group. 
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5.2 EFFECTS OF MOLARITY OF GLYCEROL IN TCAYE EXTENDER, 

EQUILIBRATION DURATION, VAPOUR TEMPERATURE AND VAPOUR 

EXPOSURE DURATION ON FROZEN-THAWED SPERM MOTILITY OF 

AFRICAN CATFISH (Clarias gariepinus) (EXPERIMENT 2) 

Molarities of glycerol in TCAYE extender and equilibration duration are identified as the 

superior factors that gave significant differences in cryopreservation of African catfish 

sperm. However, the sperm total motility results for vapour temperature and vapour 

exposure duration using TCAYE extender were not statistically significant. Refrigeration 

temperature (4oC) has been used for equilibration since it was postulated to be optimal for 

cryoprotectant addition and equilibration, and it is routinely been used in avian sperm 

cryopreservation protocols (Donoghue et al., 2000).  

 Three molarities of glycerol were studied in order to have an optimum result for 

molarity of frozen-thawed sperm. The results of this study indicated that glycerol with 

molarity of 0.5 M showed significant highest values of sperm total motility (32.27±2.05%) 

as compared to the total motility values of 1.0 M (24.50±1.81%). The present findings 

seem to be consistent with Asmad et al. (2008), who found that there were significant 

differences between three molarities of glycerol (0.5, 1.0 or 1.5 M) whereby, 0.5 M 

glycerol showed the highest sperm total motility (54.92±0.93%) for frozen-thawed red 

tilapia sperm (Oreochromis niloticus) compared with 1.0 M ( 46.90±0.76%) and 1.5 M 

(35.65±0.71%). These results may be explained by the fact that lower molarity of glycerol 

is more suitable for cryopreservation of African catfish and red tilapia sperm. This finding 

is also in agreement with Huang et al. (2004a), who showed higher concentrations of 

glycerol (14 to 17%) yielded the highest sperm motility (77%) immediately after thawing, 

but lower concentrations (8 to 11%) retained sperm motility longer when stored at 4oC, as 

was found in previous study with Xiphophorus helleri. Other finding showed that glycerol 
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at a concentration of 10% was found to be the best cryoprotectant for European catfish 

ejaculated sperm, which obtained 36% motility for frozen-thawed sperm (Linhart et al., 

1993). Glycerol (10%) also proved effective for freezing Asian catfish, Heteropneustes 

fossilis and Clarias batrachus sperm, yielding 69 to 84% of control hatching rates (Padhi 

et al., 1995). However, glycerol was toxic to salmonid sperm, whereas DMSO could be 

used for cryopreservation (Stoss et al., 1981). 

 The correlations of sperm motility characteristics observed for the three respective 

molarities of glycerol (0.5, 1.0 and 2.0 M) showed a similar pattern, but 0.5 M glycerol 

showed a slightly different pattern for positive correlations among total motility and 

progressive motility; total motility and rapid; total motility and medium; total motility and 

slow; total motility and VAP; total motility and VSL; total motility and VCL; progressive 

motility and rapid; progressive motility and medium; progressive motility and slow; 

progressive motility and VAP; progressive motility and VSL; progressive motility and 

VCL; rapid and medium; rapid and slow; rapid and VAP; rapid and VSL; rapid and VCL; 

medium and slow; slow and VAP; slow and VSL; slow and VCL; VAP and VSL; VAP 

and VCL; VAP and ALH; VSL and VCL; VSL and ALH; VSL and LIN; VCL and ALH; 

STR and LIN. Both 1.0 and 2.0 M glycerol showed similarities of pattern of correlations 

among sperm motility characteristics. 

On the question of optimum equilibration duration, this study found that at 140 

minutes equilibration, the value of total motility (31.69±2.19%) was significantly higher as 

compared to 120 minutes which gave the significant lower value (25.26±1.76%). Contrary 

to expectations, this study did not find a significant difference between the values of sperm 

total motility at 140 minutes (31.69±2.19%) and 160 minutes (28.17±2.11%) equilibration. 

A possible explanation for this might be that longer equilibration permitted the sperm-

diluent mixture to allow the maximum adaptation phase in a slow shock process without 
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giving toxicity effect of cryoprotectant on sperm. Another possible explanation is that 

longer equilibration at optimal osmotic, ionic and pH conditions could enable the 

reconstitution of the ATP content in sperm (Linhart et al., 2005). It can thus be suggested 

that equilibration duration is an important process for slow reduction of temperature within 

an ideal duration in order to avoid cold shock during sperm freezing. In agreement with 

Huang et al. (2004b), optimal equilibration duration before freezing is necessary to allow 

permeating cryoprotectant to penetrate the sperm while minimising toxicity. The most 

commonly equilibration duration used for fish sperm cryopreservation is 10 to 20 minutes 

(Billard, 2001). In red tilapia, 60 minutes equilibration gave the highest sperm motility 

(50.85±1.01%) of frozen-thawed sperm as compared to shorter durations (30 and 45 

minutes) (Asmad et al., 2008). According to Steyn, (1993), best results for the 

cryopreservation of sperm of African sharp-tooth catfish, Clarias gariepinus, were 

obtained using a two-step cooling regime, including a cooling rate of 5oC/min. Further 

study by Christensen et al. (2005), they found that a cooling rate of 45oC/min yielded 

higher post-thawed motility than 3oC/min. 

 The correlations among sperm motility characteristics for the three equilibration 

durations (120, 140 and 160 minutes) showed  similarities in the pattern except there were  

differences in correlations of total motility and VAP; progressive motility and ALH; static 

and STR and VCL and BCF at 120 minutes; ALH and LIN at 140 minutes and progressive 

motility and BCF at 160 minutes. 

 Surprisingly, vapour temperature and vapour exposure duration did not give any 

significant effects on frozen-thawed sperm of African catfish. The rates of total motility for 

frozen-thawed sperm of African catfish for the three vapour temperatures (-80, -90 and -

100oC) obtained were ranged from 25.95±2.34% to 29.41±1.69%. Although, these results 

differ from findings reported by Asmad et al. (2008), the research indicated that vapour 
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temperature gave a significant results for sperm total motility of frozen-thawed in red 

tilapia, in which -80oC and -90oC produced a higher values of total motility (51.03±1.12%) 

and (50.22±1.06%), respectively, but the findings were consistent with the present study of 

vapour exposure duration in which no significant difference was observed at the three 

vapour exposure durations (5, 10 and 15 minutes). 

 Among -80, -90 and -100oC vapour temperature, there were similarities in the 

pattern of correlations between the sperm motility characteristics, except one correlation at 

-80oC was not found at -90 and -100oC, between slow and BCF. Other variations of pattern 

were observed for vapour temperature of -90oC as with those of -80 and -100oC, in which 

it showed correlations of total motility and slow; rapid and ALH and VCL and BCF. At -

100oC vapour temperature, it differs from -80 and -90oC for correlations of total motility 

and rapid; total motility and medium; progressive motility and rapid; progressive motility 

and medium; progressive motility and VCL; rapid and VCL; medium and VCL and static 

and STR. 

 For 5 minutes vapour exposure relative to 10 and 15 minutes, the patterns of 

correlation were different among medium and BCF; slow and BCF and VAP and LIN. A 

correlations among progressive motility and rapid; progressive motility and medium; rapid 

and VAP; rapid and VSL; rapid and VCL; slow and VAP; slow and VSL; VAP and LIN 

and ALH and BCF were only noticeably be shown at 10 minutes vapour exposure, whereas 

15 minutes was found to give correlations among progressive motility and rapid; 

progressive motility and BCF; slow and VSL; slow and LIN and ALH and BCF.  
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5.3 EFFECTS OF EQUILIBRATION DURATION, VAPOUR TEMPERATURE 

AND VAPOUR EXPOSURE DURATION ON FROZEN-THAWED SPERM 

MOTILITY OF AFRICAN CATFISH (Clarias gariepinus) USING FRE EXTENDER 

(EXPERIMENT 3) 

The results for the present study indicated that the main factors affect the survivability of 

frozen-thawed sperm of African catfish using FRE extender were equilibration duration 

and vapour temperature whereby both factors gave significant results of total motility. 

Contrary to expectations, this study did not find a significant difference in value of sperm 

total motility after frozen-thawed for vapour exposure duration.   

 The current study found that the total motility at 120 minutes (76.65±2.27%) and 

160 minutes equilibrations (76.01±2.04%) were comparatively higher values than 140 

minutes (66.90±2.60%). It is probable, therefore, those 120 minutes is the most suitable 

duration to equilibrate the sperm because it produced relatively the highest total motility 

frozen-thawed sperm. Babiak et al. (2001) suggested that the effect of equilibration was 

significantly dependent on the type of cryoprotectant used; they observed that equilibration 

was not harmful in the case of DMA, whereas it significantly lowered the fertilising ability 

of cryopreserved sperm in rainbow trout when DMSO or ethylene glycol was used as 

cryoprotectants. Interaction with extender constituents could be the reason for conflicting 

information about the use of the equilibration in cryopreservation of fish sperm (Stoss, 

1983; Piironen, 1993). 

 The pattern of sperm motility characteristics correlations among 120, 140 and 160 

minutes equilibration durations showed a different pattern, in which 120 minutes gave a 

contrast correlations between total motility and VAP; total motility and VCL; medium and 

VAP; medium and ALH and ALH and BCF. However, at 140 minutes marked differences 

were found among correlations of progressive motility and VAP; progressive motility and 
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VSL and progressive motility and VCL. The differences in pattern of correlations were 

shown also at 160 minutes among progressive motility and slow and static and LIN. 

 The effects of vapour temperature were also significant, in which the values of total 

motility and progressive motility for vapour temperatures of both -90oC and -100oC 

(74.07±2.02% and 16.99±0.85%, respectively) and (74.95±1.88% and 20.55±0.93%, 

respectively) did not show any significant differences, but they were significantly different 

with -80oC, which gave comparatively lower values (64.59±5.08% and 13.19±1.54%, 

respectively). This finding suggested that -90 and -100oC are two optimum temperatures 

which appeared to be suitable for frozen-thawed sperm of African catfish. This study 

produced results which corroborate with the Asmad et al. (2008) findings that suggested -

80oC (51.03±1.12%) and -90oC (50.22±1.06%) showed higher value of total motility of 

frozen-thawed sperm of red tilapia using TCAYE extender. Differences in freezing 

requirements may have depended on membrane composition, sperm water content or 

metabolism (Lahnsteiner et al., 2000). Best results for cryopreservation of sperm in 

channel catfish, Ictalurus punctatus, were obtained at 45oC/min of cooling rate which gave 

higher frozen-thawed motility compared to 3oC/min (Christensen and Tiersch, 2005). 

 Correlations among sperm motility characteristics of -80, -90 and -100oC showed a 

slightly different in which -80oC was found to have correlations among total motility and 

VAP; total motility and VSL; progressive motility and slow; rapid and slow; medium and 

VAP; medium and VSL; medium and VCL; slow and VAP; slow and VSL and ALH and 

BCF. However, at -90oC, it showed correlations among total motility and BCF; medium 

and BCF and static and STR. At -100oC, only one correlation differ from -80oC and -90oC 

that was shown correlation among VAP and LIN. 

 However, the observed differences of total motility at 5, 10 and 15 minutes vapour 

exposure durations in this study were not statistically significant. The rates of the frozen-
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thawed sperm total motility obtained at 5 to 15 minutes were 72.67±2.27% to 

73.99±2.34%. At 5 minutes, only one correlation was different from 10 and 15 minutes 

which was correlation among progressive motility and slow. The correlations among 

medium and VAP; medium and VCL and ALH and BCF were different at 10 minutes 

vapour exposure duration. Marked differences of pattern correlations were found at 15 

minutes vapour exposure, between correlations of total motility and BCF; progressive 

motility and VSL; progressive motility and BCF; rapid and VSL; medium and BCF and 

slow and BCF.   

 

5.4 EFFECTS OF DIFFERENT EXTENDERS AND CRYOPROTECTANTS ON 

FROZEN-THAWED SPERM MOTILITY CHARACTERISTICS OF AFRICAN 

CATFISH (Clarias gariepinus) (EXPERIMENT 4) 

It is interesting to note that DMSO (10%) in FRE extender was relatively better and gave 

more consistent frozen-thawed sperm motility results in comparison with TCAYE 

extender. The current study found that the combination of DMSO (10%) in FRE extender 

showed the highest significant values of total motility and progressive motility 

(73.52±1.35% and 18.37±0.61%, respectively) as compared to the three molarities of 

glycerol (0.5, 1.0 and 2.0 M) in TCAYE extender. It is encouraging to compare this 

finding with that found by Pan et al. (2008) who found that Ringer extender and 10% 

methanol was the best combination maintained the highest post-thawed motility 

(65.00±5.00%), fertilisation (90.47±3.67%) and hatching rate (88.00±4.00%). Other 

finding by Viveiros et al. (2000) showed highest hatching rates were obtained by sperm 

frozen of African catfish, Clarias gariepinus, in 10% methanol in Ginzburg fish ringer 

and post-thawed diluted to 1:200. Previous study by Rurangwa et al. (2001) on frozen-

thawed sperm of African catfish suggested Mounib’s extender provided the best 
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cryoprotection to the sperm for all post-thawed sperm quality measurements and at all 

freezing durations. To cryopreserve sperm for long-term, diluents were usually used to 

supply the sperm cells with sources of energy, protect the cells from temperature-related 

damage, and maintain a suitable environment for the sperm to survive temporarily (Purdy, 

2006). Various extenders with different ion concentrations, osmolality and pH have been 

successfully used for cryopreservation of different freshwater fish sperm (Linhart et al., 

2000; Ji et al., 2004). Prior studies noted that ringer extender is used for diluting sperm of 

freshwater fish (Li et al., 1994), Kurokura-1 extender is better for sperm Chinese carps, 

and D-15 extender is known to be very efficient for freezing sperm of Grass carp, 

Cicnopharyngodon idellus, and Silver carp, Hypopthalmichihys molitrix, (Chen et al., 

1992). A finding by Kumar (1988) has shown that egg-yolk citrate produced the highest 

post-thawed motility and fertilising ability of cryopreserved Indian major carp sperm. 

Similar result was found in cryopreservation of Cyprinus carpio sperm when using Tris-

egg yolk (Lakra et al., 1997). 

 Cryoprotectant protects sperm cells from damaging during the process of freezing 

and thawing, but the extent of damage varies according to the species. The effectiveness 

of each cryoprotectant such as DMSO, Glycerol and methanol vary in different animal 

species (Horvath et al., 2003; Zhang et al., 2003; Velasco-Santamaria et al., 2006). In the 

present study, 10% DMSO gave a better result for sperm motility characteristics of 

African catfish. The observed 10% DMSO showed higher total motility of sperm and 

relatively gave the best results, this could be attributed to the fast penetration into sperm 

and by its interaction with the phospholipids of the sperm membrane (Ogier de Baulny et 

al., 1996). Glycerol with molarity of 0.5 M also showed the moderately good sperm total 

motility which obtained 32.27±2.05%. An implication of this is the possibility that 

glycerol was found to be less harmful in vitro in many fish species at concentrations 
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greater than 20% and for longer equilibration times (Stoss et al., 1983; Leung et al., 1991; 

Linhart et al., 1993).   

The pattern of correlations among sperm motility characteristics showed a 

similarity between glycerol with molarity of 1.0 and 2.0 M. It is likely, therefore, that such 

connections exist between 1.0 and 2.0 M glycerol. However, a slightly different pattern of 

correlations among sperm motility characteristics for 0.5 M glycerol in comparison of 1.0 

and 2.0 M glycerol was shown in which it differs between correlations of total motility and 

VAP; total motility and VSL; total motility and VCL; progressive motility and VAP; 

progressive motility and VSL; progressive motility and VCL; rapid and VAP; rapid and 

VSL; rapid and VCL; slow and VAP; slow and VSL and slow and VCL. As for 10% 

DMSO in FRE extender, it showed similarities with 0.5, 1.0 and 2.0 M glycerol, except it 

differs from those of the three molarities of glycerol among correlations of medium and 

ALH and static and STR.  

 

5.5 GENERAL DISCUSSION 

5.5.1 Overall Findings of This Study 

This is believed to be the first successful study on sperm cryopreservation of African 

catfish (Clarias gariepinus) using TCAYE and FRE extenders reported in Malaysia. The 

findings of this study showed that FRE extender produced more efficient freezability than 

the TCAYE extender. One of the main problems of African catfish sperm is the presence 

of lipid globules in the semen that interfere with the freezing process. However, 

satisfactory procedures developed in this study were able to overcome the problems 

somewhat, especially for the FRE extender freezing protocol. Some of the successful 

approaches carried out in this study were to determine the sperm frozen-thawed effects of 

type and molarity of cryoprotectants, equilibration duration, vapour temperature and 
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vapour exposure duration. Consequently, after analysing the frozen-thawed sperm using 

the IVOS 73%, 32% total motility was obtained for the FRE and TCAYE extenders, 

respectively.  

 

5.5.2 Constraints and Suggestions for Future Improvement 

In the present study, there are a lot of constraints and limitations which were faced during 

the sperm cryopreservation of African catfish. Among the constraints was the limited 

supply of male African catfish broodstocks, which were bought from a local fish farm. The 

problem was worsened by the necessity to sacrifice the male broodstocks for each 

collection of fresh semen.  This is in contrast, for an example, in red tilapia fish, stripping 

is applied to collect the semen. In African catfish, hand-stripping is impractical due to the 

body shape of this fish is not flat as in red tilapia. Apart from that, the testis of African 

catfish is located rear of gut and fats; when massage the abdomen, the pressure is applied 

to the guts and fats instead of testis. This causes blockage of semen from flowing out. 

Thus, it is highly recommended that a new approach such as surgical technique can be 

applied for semen collection of African catfish rather than sacrificed technique to ensure 

that the male of African catfish broodstocks can be kept as brooders for other experiments.  

Other constraint faced during the present study was the viscosity and insolubility of 

African catfish semen with some types of extender that resulted interference with the 

freezing process of the sperm. From the present study, it was found that TCAYE extender 

insoluble with African catfish semen, when mixed, it tends to form sperm egg yolk 

agglutination. Sperm egg yolk agglutination becomes worse when the sperm-extender 

mixture was activated with water affecting the reading of automated semen analyzer 

(IVOS; Hamilton-Thorne, USA) failed to analyse the sperm motility characteristics. 

Understanding the basis of seminal fluid composition may help to improve the suitability 
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of extender-sperm for freezing technique. A further study should be carried out to design a 

suitable extender that is similar to the environment of semen.  

IVOS assessment is a useful method since it has the added advantage of providing 

accurate data on additional parameters such as path velocity (VAP), straight-line velocity 

(VSL), curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), beat 

cross frequency (BCF), straightness (STR) and linearity (LIN) that cannot be validated by 

subjective assessment. IVOS has been used widely and proven, especially in the field of 

andrology for human semen assessment which provide results that reproducible within and 

between laboratories, and eliminate the subjective human error as well as reduce time-

consuming. In the present study, the same concept was applied in fish breeding for 

determining the parameters affecting fertility in fish. Although IVOS is not the promising 

method for the success of reproduction of African catfish using frozen-thawed sperm, but it 

can give a preliminary prediction and assists the selection of high fertility broodstocks. It is 

recommended that in future a fertilisation trial should be carried out in order to ensure that 

the frozen-thawed sperm can produce fingerlings. 

Besides this, the quality of sperm among individual fish may vary according to 

their age and maturity of the testis during collection. However, in order to get better 

results, a maturity age of male catfish should be further studied. In the present study, the 

age of fish was estimated according to the rough information obtained from the local 

farmers that supply the fish. It was found that one of the factors that can be regarded as an 

indicator of maturity age of male catfish is through the size of active testis. The mature 

male catfish produces a bigger size of testis which formed a whitish-like lobules colour as 

opposed to the inactive or immature that looks small in size and appears translucent. In 

future, a study on the effects of testis size gives a clear view in understanding the maturity 

age of male catfish. Also, the feeding regime may also affect the spermatogenesis of 
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African catfish. African catfish is unknown for high feed intake; therefore, a sufficient 

amount of pellets is required for enhancement of the spermatogenesis process. 

From the results of the present study, it is obvious that a lot of factors during the 

freezing process could affect the survivability of African catfish sperm. The effects of each 

factor are different from one another. Factors such as molarity of glycerol, type of extender 

and cryoprotectant, equilibration duration and vapour temperature, have shown to play 

important roles in survivability of frozen-thawed sperm of African catfish sperm. Further 

research should address practical problems such as increasing frozen-thawed sperm 

motility characteristics in TCAYE extender, reducing the occurrence of egg yolk 

agglutination in TCAYE extender so that the IVOS assessment can analyse the data of 

frozen-thawed sperm. Similarly, for FRE extender, refined experiments should be 

conducted in certain areas of external factors such as toxicity study of various types and 

concentrations of cryoprotectants as well as temperature and rates of freezing and thawing. 

In addition, inherent biological factors of the fish such as age, body size and species as 

well as external factors such as micro- and macro-environment and nutrition would 

improve the freezability of African catfish sperm. Therefore, with the increase in 

understanding the biology and factors affecting the survival of sperm during freezing 

process, it will facilitate to design experiments on factors involved in optimising and 

developing a practical and simple freezing protocol of African catfish so that it can be used 

efficiently and routinely both by the scientists, conservationists and entrepreneurs.  
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Chapter 6 

6.0 CONCLUSIONS 

a) African catfish (Clarias gariepinus) sperm were successfully frozen using TCAYE 

and FRE extenders. 

b) TCAYE and FRE extenders comprise of glycerol and DMSO as cryoprotectants. 

c) Equilibration duration of 120 minutes for TCAYE extender gave the highest sperm 

total motility after frozen-thawed, while 140 minutes for FRE extender. 

d) Vapour temperatures of -90 and -100oC for TCAYE and FRE extenders, 

respectively, gave the highest sperm total motility after frozen-thawed. 

e) Exposure vapour durations ranging from 5 to 15 minutes for both TCAYE and FRE 

extenders were suitable for African catfish sperm freezing. 

f) The FRE extender produced higher frozen-thawed sperm motility characteristics 

than TCAYE extender. 

g) The optimal frozen-thawed sperm motility characteristics in African catfish using 

TCAYE extender was obtained with combination of 0.5 M of glycerol, 140 minutes 

equilibration duration, -90oC vapour temperature and  5 to 15 minutes exposure 

vapour duration. 

h) The optimal frozen-thawed sperm motility characteristics in African catfish using 

FRE extender was obtained with combination of 120 minutes equilibration 

duration, -100oC vapour temperature and 5 to 15 minutes exposure vapour duration.  

i) Therefore, it is recommended that FRE extender using DMSO as cryoprotectant 

apparently is suitable to cryopreserve the sperm of African catfish (Clarias 

gariepinus). However, further studies are needed in future so that it could be used 

routinely for the industry as well as conservation purposes. 
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j) The importance of IVOS giving more parameters that will assist the understanding 

sperm cryobiology and also may solve the fertility problems in the male broodstock 

with reference to sperm cryopreservation. 

k) Using the IVOS, satisfactory frozen-thawed sperm motility characteristics of 

African catfish using FRE extender when compared with those of fresh semen. 
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APPENDICES 

(The following material was adopted from FAO, 1996)  

APPENDIX 1   CHARACTERISTICS OF AFRICAN CATFISH (Clarias gariepinus) 

Appendix 1.1 Description of the Genus and Species 

In general, there are three types of catfish species which are similar physically, they are; 

Asian catfish, Clarias batrachus (native to South East Asia including Malaysia, Thailand, 

Eastern India, Sri Lanka, Bangladesh, Myanmmar, Indonesia, Singapore and Borneo), 

African catfish, Clarias gariepinus (native to middle east and throughout of Africa) and 

broadhead catfish, Clarias macrocephalus (native to tropical Asian countries such as 

Thailand, Vietnam, China, Malaysia, Guam and Philipines). The main distinguishing 

feature of the species is the shape of occipital process of skull (Appendix Figure 2.1). 

The catfish genus can be defined as displaying an eel shape, having an elongated 

cylindrical body with dorsal and anal fins being extremely long (nearly reaching or 

reaching the caudal fin) both fins containing only soft fin rays (Appendix Figure 2.2). The 

outer pectoral ray is in the form of a spine and the pelvic fin normally has six soft trays. 

The head is flattened, highly ossified, the skull bones (above and on the sides) forming a 

casque and the body is covered with a smooth scaleless skin. The skin is generally dark 

pigmented on the dorsal and lateral parts of the body. The colour is uniform marbled and 

changes from grayish olive to blackish according to the substrate. On exposure to light, the 

skin colour generally becomes lighter. They are very well-known for their ability to “walk” 

on land for long distances, especially during or immediately following rainfall (Axelrod et 

al., 1971; Courtenay et al., 1974; Hensley and Courtenay, 1980; Liem, 1987; Shafland, 

1994).  

Catfish species possesses a large accessory breathing organ which enables them to 

breathe atmospheric oxygen. A supra-branchial or accessory respiratory organ, composed 
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of a paired pear-shaped air-chamber containing two arborescent structures is generally 

present. These arborescent or cauliflower-like structures located on the second hand forth 

branchial arcs, are supported by cartilage and covered by highly vascularised tissues which 

can absorb oxygen from atmospheric air (Moussa, 1956). The air chamber communicates 

with the pharynx and with the gill-chamber. The accessory air-breathing organ allows the 

fish for many hours out of the water or for many weeks in muddy marshes.   

They have four pairs of unbranched barbells, one nasal, one maxillar (longest and 

most mobile) on the vomer and two mandibulars (inner and outer) on the jaw. Tooth plates 

are present on the jaws as well as on the vomer. The major function of the barbels is prey 

detection.  

The sex of the African catfish (Clarias gariepinus) can be easily distinguished as 

the male has a distinct sexual papilla, located just behind the anus. This sexual papilla is 

absent in females (Appendix Figure 1.1). 
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Appendix Figure 1.1:  Occipital process of Clarias macrocephalus (1), Clarias batrachus   

                                    (2) and Clarias gariepinus (3) (Srisuwahtach and Tangtrongpiros,  

                                     1985; Viveen et al., 1985). 

Occipital process 
of skull 

Broadhead catfish, Clarias 
macrocephalus 

Asian catfish, Clarias 
batrachus 

African catfish, Clarias gariepinus 
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Appendix Figure 1.2: Morphological characteristics of Clarias spp. (FAO, 1996). 
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Appendix Figure 1.3: Sexual characteristics of Clarias gariepinus (FAO, 1996). 
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Male 
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Appendix 1.2 Habitat 

Clarias spp. inhabits calm waters from lakes, streams, rivers, swamps to floodplains, some 

of which are subject to seasonal drying. The most common habitats frequented are 

floodplain, swamps and pools in which the catfish can survive during the dry seasons due 

to the presence of the accessory air breathing organs (Bruton and Clay, 1979). 

 

Appendix 1.3 Temperature Tolerance 

 The walking catfish is a tropical species with a moderate tolerance to colder waters. 

Shafland and Pestrak (1982) reported a lower lethal temperature of 9.8oC, based on which 

they placed Gainesville as the northern limit to its potential range expansion. During cold 

dry months, walking catfish burrow into sides of ponds and streams where they remain 

dormant until the spring rains initiate (Courtenay et al., 1974). Courtenay (1970) reported 

winter-kills of walking catfish during January of 1970, when the temperature in northern 

Broward County dropped to -1.67oC. However, deeper warm waters served as refuges, 

allowing many walking catfish to survive the brief cold spell. 

 

Appendix 1.4 Salinity Tolerance 

Clarias spp. occurs in fresh, brackish as well as marshy, muddy waters over its native 

range (Sen, 1985). Courtenay et al. (1970) reported walking catfish to occur in intercostals 

waterways of up to 18 ppt. 

 

Appendix 1.5 Distribution 

 There are still some questions regarding the natural range of Clarias spp. (Talwar and 

Jhingran, 1991). Walking catfish are considered native to Sri Lanka, Eastern India, 
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Pakistan, Bangladesh, Myanmmar, Ceylon, Malaysia, Singapore, Philipines, Borneo, Java 

and Thailand (Axelrod et al., 1971; Jayaram, 1981; Sen, 1985; Talwar and Jhingran, 1991).  

 

Appendix 1.6 Trophic Interaction 

 Walking catfish are voracious, opportunistic feeders. They are mainly active at night. 

Major prey items include attached periphyton for the young, insect larvae, insects such as 

Haliplus sp., dystiscid beetles, mayflies, and dragonflies, fish larvae, attached fish eggs, 

fish such as Fundulus, Gambusia, and Lepomis and occasionally they may take plant 

material (Courtenay, 1970; Courtenay et al., 1974). Courtenay and Miley (1975) and 

Courtenay (1978) reported walking catfish to kill large bass, without consuming them 

afterwards. During periods of drought, large numbers of individuals may congregate into 

isolated pools, and quickly consume most other species present (Courtenay et al., 1974). 

This species can remain dormant through periods of drought, and go several months 

without eating. Courtenay (1970) reported keeping several individuals deprived of food for 

eight months, without any ill effects observable, except minor weight loss. 

 

Appendix 1.7 Natural Reproduction 

Clarias spp. engages in mass spawning migrations in late spring and early summer 

(Courtenay et al., 1974). Inundated paddy fields have been reported as favored spawning 

grounds over its native range (Talwar and Jhingran, 1991). Adhesive eggs are laid in a nest 

or on submerged vegetation (Hensley and Courtenay, 1980). Males guard the nests 

(Hensley and Courtenay, 1980). Juveniles 50 mm appear in late summer, and late larval 

stages as well as early juveniles, have been collected until the first week of November in 

Broward County, Florida (Courtenay et al., 1974). Sexual maturity is attained at the end of 

the first year (Talwar and Jhingran, 1991).  
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Spawning usually takes place at night in the shallow inundated areas of the rivers 

lakes and streams. Courtship is preceded by highly aggressive encounters between males. 

Courtship and mating takes place in shallow waters between isolated pairs of males and 

females. The mating posture, a form of amplexus (the male lies in a U-shape curved 

around the head of the female) is held for several seconds (Figure 2.4). A batch of milt and 

eggs is released followed by a vigorous swish of the female’s tail to distribute the eggs 

over a wide area. The pair usually rest after mating (from seconds and up to several 

minutes) and then resume mating. 

There is no parental care for ensuring the survival of the catfish offspring except by 

the careful choice of suitable site. Development of eggs and larvae is rapid and the larvae 

are capable of swimming within 48-72 hours after fertilization at 23-28oC.  
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Appendix Figure 1.4: The courtship ritual of catfish (Bruton, 1970). 
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