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ABSTRACT 

Consider the single server queue in which the system capacity is infinite and the 

customers are served on a first come, first served basis. The case of a system without 

deterioration is first studied. The stationary queue length distribution and the stationary 

waiting time distribution are derived for the system in which the service time and 

interarrival time distributions are assumed to have constant asymptotic rates. The results 

found are verified by using simulation. Next consider a system in which the server would 

deteriorate due to random shocks and the seriously affected server will be sent for repair. A 

similar method is applied for deriving the stationary queue length distribution in a system 

in which the interarrival time distribution (or service time) is assumed to have a constant 

asymptotic rate while the service time (or interarrival time) remains exponentially 

distributed. From the stationary queue length distribution, a number of other characteristics 

can be derived. These include the sojourn time distribution of a customer who arrives when 

the queue is in a stationary state, and the expected length of the duration between two 

successive repair completions. From these distributions and expected length, the value of 

the specified maintenance level is found such that the long run average cost is minimized. 
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ABSTRAK 

Pertimbangkan giliran satu-pelayan di mana muatan sistem adalah tak terhingga dan 

pelanggan dilayan berasaskan siapa yang datang dulu akan dilayan dulu. Kes yang mana 

sistem tidak akan merosot dikaji terlebih dahulu. Taburan panjang giliran pegun dan 

taburan masa menunggu pegun diterbitkan untuk sistem di mana taburan untuk masa 

layanan dan lat ketibaan dianggap mempunyai kadar asimptot yang malar. Hasil yang 

didapati disahkan dengan menggunakan simulasi. Sistem yang dipertimbangkan seterusnya 

ialah sistem di mana pelayan akan merosot disebabkan kejutan rawak dan pelayan yang 

terjejas teruk akan dihantar untuk dibaiki. Kaedah yang serupa digunakan untuk 

menerbitkan taburan panjang giliran pegun bagi sistem di mana taburan lat ketibaan (atau 

masa layanan) dianggap mempunyai kadar asimptot yang malar manakala masa layanan 

(atau lat ketibaan) kekal bertaburan eksponen. Daripada taburan panjang giliran pegun, 

beberapa ciri lain boleh diterbitkan. Ciri tersebut termasuk taburan masa persinggahan 

pelanggan yang sampai ke giliran dalam keadaan pegun, dan panjang jangkaan untuk 

tempoh di antara dua pembaikan yang berjaya. Daripada taburan dan panjang jangkaan 

tersebut, nilai tahap penyelenggaraan ditentukan supaya kos purata jangka panjang adalah 

minimum.    
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

Diverse field of applications in queueing theory has aroused interest of many 

researchers to study this topic. In reality, the phenomena of queue exist in our daily life, 

and in areas such as, telecommunication, manufacturing, and computing. Queueing Theory 

was first applied to telephone traffic in the early 20th century. One of the most influential 

persons in this field of study is Erlang [1], who applied the theory of probability to 

problems of telephone traffic and published in 1909 his first work on this subject, entitled 

“The Theory of Probabilities and Telephone Conversations”. The works in queueing theory 

had developed initially rather slowly, but the pace has quickened since the mid of 20th 

century when the computing machinery had advanced, and the applications were extended 

beyond the scope of telephone system. Despite the slow momentum of growth in the early 

days, there were a few significant contributions from the researchers who laid the 

foundation for further dynamic development in the field. In 1953, Kendall [2] introduced 

the well-known Kendall’s notation to classify different types of queueing systems. The 

notation is described by A/B/m where A indicates the interarrival time distribution, B the 

service time distribution, and m the number of parallel service channels. The notation is 

later extended by Lee [3] to five-part descriptor A/B/m/Y/Z, where Y is the maximum 

number of customers the system can accommodate and Z is the queue discipline. For 

example, the M/M/1 denotes a single server queue of which both the interarrival time and 

service time have an exponential distribution, M/G/1 denotes a single server queue with 
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exponential input, and a general service time distribution, and GI/G/c denotes a c-server 

queue with general interarrival time and service time distributions.   

Different queueing systems may be represented by different models. Steady-state 

queue length and waiting time distributions are basic performance measures in the analysis 

of queueing systems. These distributions are of paramount importance for further study to 

optimize the production, reduce the manufacturing cost, avoid excessive waiting time, etc. 

The earliest queueing systems are modeled based on the assumption that the service time is 

exponentially distributed and the customers arrive according to a Poisson process in a 

single service channel (M/M/1) with the first come first served (FCFS) queueing 

characteristic. The memoryless property of the exponential distribution allows the M/M/1 

system to be modeled as a Markov process which satisfies the Chapman-Kolmogorov 

Equation and the steady-state derivation is not an arduous process.  When the service time 

or interarrival time distribution is non-exponential, we may no longer have a Markov 

process since the memoryless property does not hold. However, the imbedded Markov 

chains identified in the queueing systems (for example, M/G/1 and GI/M/c) allow a 

probabilistic approach to be applied for analyzing the system.  

With the relaxation of the exponential assumption in both the service time and 

interarrival time distributions, we may find difficulty in analyzing the model for the 

queueing process. When the interarrival and service times are discrete random variables, 

the GI/G/1 queue is referred to as a discrete-time queue. In a discrete-time queue, the time 

axis is segmented into equidistant time units of length Δt, called slots. Several authors 

determined the steady-state waiting time distribution in the discrete-time GI/G/1 queue by 

numerical evaluations of the Wiener-Hopf factorization ([4–9]) and the matrix-analytic 

method ([10] and [11]). Steady-state waiting time distribution in the continuous-time 

GI/G/1 queues can be found by numerical approximations based on the theory of Fredholm 
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integral equations [12]. In [13], a discrete-time version of the distributional Little’s law was 

established. Based on this law, the queue length distribution for the discrete-time GI/G/1 

queue may be obtained from its waiting-time distribution. Neuts [14] approximated the 

general distributions of service time and arrival time with phase-type distributions, and 

solved for the steady-state distribution using the matrix-geometric approach. 

Works of all the aforementioned authors focused on the queueing systems without 

deterioration. However, some of the queueing systems may deteriorate or fail due to 

different causes, including age, usage and catastrophe. White & Christie [15] were the first 

to consider an M/M/1 queueing system with the service station subject to exponentially 

distributed interruptions. Soon after White & Christie paper, several papers related to server 

with interruptions were published [16–19]. The study of server with interruptions triggered 

investigations on maintenance of queueing systems subject to breakdowns. Maintenance 

can be categorized into preventive and corrective maintenance. Preventive maintenance is 

the maintenance carried out to prevent the systems from failing during operation. 

Corrective maintenance is the task performed to rectify and restore the systems back to 

operational condition when the systems fail.  In 1960, Barlow & Hunter [20] initiated a 

simple periodic replacement model with minimum repair at failure. In their model, the 

system after repair is restored to its prior state before failure. Further investigations and 

extensions of the original minimal repair model have been proposed [21–25]. Various 

policies have been developed to provide maintenance for different queueing problems (see 

for example, [26–36]). Reviews in this area can be found in [26, 37–42] .  

Besides maintenance policies, shock models have also been studied extensively. A 

general shock model is composed of two components Xn and Yn, where Xn is the magnitude 

of the n-th shock and Yn the interarrival time between two consecutive shocks. Shock 
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models may be categorized into three distinct types: cumulative shock model, extreme 

shock model and δ-shock model. In the cumulative shock model, the system breaks down 

when the cumulative shock magnitude exceeds the given threshold [34–36, 43–46]. The 

extreme shock model is one in which the system fails as soon as the magnitude of an 

individual shock goes into some critical region [27, 47–49]. When the time lag between the 

two successive shocks falls into some critical region defined by a parameter δ, we get the δ-

shock model [30, 50–54]. Some extensions have been made to the traditional shock models. 

For instance, Igaki et al. [55] extended the general shock models in [46] and [49] to a 

trivariate stochastic process 0{ , , }n n n nX Y J 
  where (Xn, Yn) is a correlated pair of renewal 

sequences, Jn a Markov chain formed by the external system states, and (Xn+1, Yn+1, Jn+1) 

depends on (Xi, Yi, Ji) for 0 ≤ i ≤ n through Jn only. Gut [56] presented a mixed shock 

model in which the system may break down either due to a large shock or an accumulation 

of many small shocks, depending on which reaches its critical level first. In 2005, Gut & 

Hüsler [45] extended this model to a framework in which the critical boundary for fatal 

shock decreases when there is an arriving non-fatal shock.  A current literature review on 

shock models can be found in [57].  

When a system subject to failure could only presume two operational states, namely 

perfect functioning state and complete failure state, it is called a two-state deteriorating 

system. Considering the existence of intermediate states between the above two operational 

states, the research can be extended to multi-state deteriorating system. For example, for a 

multi-state system which goes from the current operating state to the next inferior state, 

replacement policies [58–60] and inspection policies [61–64] have been developed. When 

random shock could occur and deteriorate the system, the corresponding systems have also 

been examined [35–36, 65–71].  
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Some authors assumed that the service rate may be reduced in the multi-state 

deteriorating system. For example, Kaufman & Lewis [72] considered a multi-state single 

server whose state may deteriorates from a state s to s – 1 after a random amount of time 

and the service rate at state s – 1 is less than that in state s. They analyzed the maintenance 

policies in the repair model and the replacement model using a semi-Markov decision 

process. Yang et al. [35] studied a model given by an unreliable M/M/1 queue with a multi-

state server whose service rate deteriorates due to the shocks which occur randomly with 

random magnitudes. They derived the system size distribution, sojourn time distribution 

and expected length of the duration between two successive repair completions by using the 

matrix-geometric method of Neuts [14]. Based on the above characteristics of the system, 

they derived the long run average cost of the system and found the optimal strategy which 

minimized the cost. Yang et al. [36] modified their previous model by assuming that the 

system may also deteriorate whenever it produces an item. Chakravarthy [73] changed the 

arrival process in the model in [35] to a Markovian arrival process and studied the resulting 

unreliable MAP/M/1 queue. 

 

1.2 Introduction to the Thesis 

The present thesis considers a distribution of which the rate tends to a constant as the 

time t tends to infinity. Abbreviating constant asymptotic rate to CAR, we may refer to the 

distribution as the CAR distribution. The requirement for the distribution to have a constant 

asymptotic rate is not a great restriction since in practice many distributions such as 

exponential, Erlang, hyperexponential, gamma, etc. satisfy this requirement. A numerical 

method is proposed to find the stationary queue length distribution and waiting time 

distribution in a one-server queue of which the interarrival time and service time 
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distributions are CAR distributions. The numerical method proposed is adapted to 

investigate the model given in [35] with the distribution of the interarrival time or service 

time changed to a CAR distribution. The resulting queue, denoted as a CAR/M/1 or 

M/CAR/1 queue, cannot be represented as a continuous-time Markov chain. Hence, to 

analyze the queue, we may either explore the possibility of applying the matrix-geometric 

method to a Markov chain imbedded within the CAR/M/1 or M/CAR/1 queue, or use the 

proposed numerical method which is applicable for a non-Markovian process. In this thesis, 

the latter is chosen. For each of the above non-reliable CAR/M/1 and M/CAR/1 queues, its 

basic characteristics are derived. 

 

1.3 Layout of the Thesis 

In Chapter 2, a numerical method is proposed to find the stationary queue length and 

waiting time distributions of a CAR/CAR/1 queue.  

In Chapter 3, the model given in [35] is studied. The interarrival time distribution in 

the model is changed to a CAR distribution. The numerical method proposed in Chapter 2 

is adapted to find the queue length distribution, sojourn time distribution and the expected 

length of the duration between two successive repair completions when the queue is in a 

stationary state. The results thus found are used to find an optimal maintenance policy that 

minimizes the long run average cost.  

The multi-state M/M/1 queue studied in [35] is considered again in Chapter 4. In this 

chapter, the distribution of the service time is instead changed to a CAR distribution. The 

model is then analyzed. 

The thesis is concluded by some concluding remarks. 
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CHAPTER 2 

QUEUE LENGTH AND WAITING TIME 
DISTRIBUTIONS IN A SINGLE SERVER QUEUE 

 
2.1 Introduction 

Consider the single server queue in which the system capacity is infinite and the 

customers are served on a first come, first served basis. Suppose the probability density 

function ( )f t  and the cumulative distribution function F(t) of the interarrival time are such 

that the rate ( ) [1 ( )]f t F t  tends to a constant as t  , and the rate computed from the 

distribution of the service time tends to another constant. Distributions of interarrival time 

and service time with the above constant asymptotic rates have been referred to in Chapter 

1 as CAR distributions. We may denote the resulting queue as a CAR/CAR/1 queue. When 

the queue is in a stationary state, a set of equations for the stationary probabilities of the 

queue length and the states of the arrival and service processes is derived. Approximate 

results for the stationary probabilities can be obtained by solving the equations. Each 

probability may be found more accurately by an extrapolation of the probability on the 

values of ∆t. The stationary probabilities obtained can be used to find the stationary queue 

length distribution and the waiting time distribution of a customer who arrives when the 

queue is in the stationary state. 

 

2.2 Derivation of Equations for the Stationary Probabilities 

A set of equations for the stationary probabilities of the queue length and the states of 

the arrival and service processes in the discretized CAR/CAR/1 queue is derived. First let 
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g(t) be the probability density function (pdf) of the service time and τk the interval 

(( 1) , ]k t k t    for k = 1, 2, 3,…. Furthermore let  

( )

( )
k

k t

g k t

g u du
 







, 1 ≤ k ≤ I, 

where I is large enough such that 

limI kk
 


 .  

Suppose a service starts at time t = 0. Then the probability that the service will be 

completed in the interval τ1 is approximately µ1∆t, and given that the service is not 

completed in τ1, τ2, …, τk–1, the probability that the service will be completed in τk is 

approximately µk∆t, k = 2, 3, 4,… where µk = µI for k ≥ I. 

For the arrival process, let f(t) be the pdf of the arrival time. Furthermore let 

( )

( )
k

k t

f k t

f u du
 







, 1 ≤ k ≤ J, 

where J is large enough such that 

limJ kk
 


 .  

Suppose a customer has arrived at time t = 0. Then the next customer will arrive in the 

interval τ1 with an approximate probability λ1∆t, and given that the next customer does not 

arrive in the interval τ1, τ2,…, τk–1, the probability that the next customer will arrive in τk 

will be approximately λk∆t for  k = 2, 3, 4,… where λk = λJ for k ≥ J.    

Let the interval before τ1 as τ0. Given that a service starts at a time in τ0, we may 

define the state number ξk of the service process at the end of τk as 
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ξk = 

 0, if  

 k = 0; or  

 the service ends in τk, for k ≥ 1; or  

 the server is idle in (0, k∆t]. 

 min(k, I), if the service does not end in τk, k ≥ 1. 

Next, given that a customer arrives at a time in τ0, we may define the state number ψk 

of the arrival process at the end of τk as  

ψk = 

 0, if k = 0 or the next customer arrives in τk, k ≥ 1. 

 min(k, J), if the next customer does not arrive in τk, k ≥ 1. 

Let nk be the queue length at the end of τk and hk = (nk, ξk , ψk). We may refer to hk as 

the vector of characteristics of the queue at the end of τk. 

Let ( )k
nijP be the probability that at the end of τk, the number of customers in the system 

is n (including the customer that is being served), the service process is in state i and the 

arrival process is in state j, where n ≥ 0, i{0, 1, 2,…, I} and j{0, 1, 2,…, J}. Assume 

that 

( )lim k
nij nijk

P P


  

exists. To find the Pnij, we first make the following observations.  

Suppose at the end of τk–1, the system is not empty, and the service and arrival 

processes  are  in  state  i – 1  and  j – 1  at  the  end  of  τk–1  respectively.  Then only one of 

the following events can occur in the next time interval τk:  

(a) A customer enters the system with the arrival rate λj*, and at the end of τk, the vector 

of characteristics becomes hk = (n + 1, i*, 0); 

(b) A customer leaves the system with the departure rate µi*, and hk = (n – 1, 0, j*);   
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(c) No customers enter or leave the system, and hk = (n, i*, j*); 

where i* = min(i, I) and j* = min(j, J). However if the system is empty at the end of τk–1, 

and the arrival process is in state j – 1, then either one of the following events may occur in  

τk: 

(d) A customer enters the system with arrival rate λj*, and hk = (1, 0, 0); 

(e) No customers enter the system, and hk = (0, 0, j*). 

Figures 2.2.1 to 2.2.5 illustrate the occurrence of the five events described above. In the 

figures, 

1) the number inside the rectangle denotes the queue length at the end of indicated 

small time interval. 

2) the number inside the ellipse denotes the state of the service process at the end of 

indicated small time interval. 

3) the number inside the circle denotes the state of the arrival process at the end of 

indicated small time interval. 

4) the symbol ‘x’ indicates that a customer enters the system at the indicated time. 

5) the symbol ‘↓’ indicates that a customer leaves the system at the indicated time. 

Service state

Arrival state

i–1

j–1 0

k∆t

τk–1 τk

i*

Queue size n n+1

(k–1)∆t

 
Figure 2.2.1 Transitions of queue length and states when Event (a) occurs. 



11 

 

j*

k ∆t

τk

0

(k–1)∆t

Service state

Arrival state

Queue size n n–1

τk–1

i–1

j–1
 

Figure 2.2.2 Transitions of queue length and states when Event (b) occurs. 

j*

τk

i*

k ∆t

Service state

Arrival state

Queue size

τk–1

(k–1)∆t

n n

i–1

j–1
 

Figure 2.2.3 Transitions of queue length and states when Event (c) occurs. 

0

τk

0

k ∆t

Service state

Arrival state

Queue size

τk–1

(k–1)∆t

0 1

0

j–1
 

Figure 2.2.4 Transitions of queue length and states when Event (d) occurs. 
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j*

τk

0

k ∆t

Service state

Arrival state

Queue size

τk–1

(k–1)∆t

0 0

0

j–1
 

Figure 2.2.5 Transitions of queue length and states when Event (e) occurs. 

1

k ∆t

τk

0

(k–1)∆t

Service state

Arrival state

Queue size 1 0

τk–1

0

0
 

Figure 2.2.6 Transitions of queue length and states when Event (b) occurs in τk. 

 

From Figure 2.2.6, it is easy to see that 

( ) ( 1)
001 100 1 1( )(1 )k kP P t t     .                                                                  (2.2.1) 

When k→∞, (2.2.1) yields, 

001 100 1 1( )(1 )P P t t     .                                                                  (2.2.2) 

Similarly, with the aid of Figures 2.2.1–2.2.5, the following equations can be obtained. 

1

00 00( 1) 1 ( 1) 1
0

(1 ) ( )(1 )
j

j j j i j i j
i

P P t P t t  


  


        for 2 ≤ j ≤ J–1, (2.2.3) 
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1

00 00( 1) 00 1 ( 1) 1
0

1

1 1 1
0

(1 ) (1 ) ( )(1 )

( )(1 ) ( )(1 )

J

J J J J J i J i J
i

J

iJ i J IJ I J
i

P P t P t P t t

P t t P t t

   

   



  







         

       




. (2.2.4) 

When the queue length is n = 1, 

1

00 00 1 00
1

( ) ( )
J

n j j J J
j

P P t P t 





    ,  (2.2.5) 

1

01 ( 1) 0 1 1 ( 1) 0 1
1

( )(1 ) ( )(1 )
I

n n i i n I I
i

P P t t P t t   


  


        ,  (2.2.6) 

1

0 ( 1) ( 1) 1
0, 1

( 1) ( 1)

( )(1 )

( )(1 )

I

n j n i j i j
i i j

n I j I j

P P t t

P t t

 

 



  
  

 

   

   


 

for 2 ≤ j ≤ J–1, (2.2.7) 

1

0 ( 1) ( 1) 1 ( 1) ( 1)
0, 1

1

( 1) 1 ( 1)
0

( )(1 ) ( )(1 )

( )(1 ) ( )(1 )

I

n J n i J i J n I J I J
i i J

I

n iJ i J n IJ I J
i

P P t t P t t

P t t P t t

   

   



    
  



  


       

       




, (2.2.8) 

( 1)( 1) (1 )(1 )nij n i j i jP P t t      
 

for  i ≤  j, 1 ≤ i ≤ I–1, 1 ≤ j ≤ J–1, (2.2.9) 

( 1)( 1) ( 1)(1 )(1 ) (1 )(1 )niJ n i J i J n i J i JP P t t P t t              
 

for 1 ≤ i ≤ I–1, (2.2.10) 

( 1)( 1) ( 1)(1 )(1 ) (1 )(1 )

(1 )(1 )
nIJ n I J I J n I J I J

nIJ I J

P P t t P t t
P t t

   

 
           

    
. (2.2.11) 

When the queue length is n = 2, the expressions for Pn0j, 1 ≤ j ≤ J are the same as those 

given by (2.2.6), (2.2.7) and (2.2.8). Other Pnij when the queue length is n = 2, can be 

computed from the equations below: 

1

0 ( 1)( 1) 1
1

( 1)( 1)

(1 )( )

(1 )( )

J

ni n i j i j
j i

n i J i J

P P t t

P t t

 

 



  
 

 

   

   


 for 1 ≤ i ≤ I–1, (2.2.12) 



14 

 

0 ( 1)( 1)( 1) ( 1)( 1)

( 1)

(1 )( ) (1 )( )
(1 )( )

nI n I J I J n I J I J

n IJ I J

P P t t P t t
P t t

   

 
    



       

   
, (2.2.13) 

( 1)( 1)(1 )(1 )nij n i j i jP P t t      
 

for i ≠ j, 1 ≤ i ≤ I–1, 1 ≤ j ≤ J–1, (2.2.14) 

( 1)( 1) ( 1)(1 )(1 ) (1 )(1 )niJ n i J i J n i J i JP P t t P t t              
 

for 1 ≤ i ≤ I–1, (2.2.15) 

( 1)( 1) ( 1)(1 )(1 ) (1 )(1 )nIj n I j I j nI j I jP P t t P t t              
 

for 1 ≤ j ≤ J–1, (2.2.16) 

( 1) ( 1)(1 )(1 ) (1 )(1 )

(1 )(1 )
nIJ n I J I J nI J I J

nIJ I J

P P t t P t t
P t t

   

 
          

    
. (2.2.17) 

When the queue length is n ≥ 3, the values of all the Pnij (except Pni0) can be computed 

using (2.2.14) to (2.2.17) and (2.2.6) to (2.2.8), whereas those of Pni0 can be computed 

using the following equations: 

1

10 ( 1)0 1 1 ( 1)0 1
1

(1 )( ) (1 )( )
J

n n j j n J J
j

P P t t P t t   


  


        , (2.2.18) 

1

0 ( 1)( 1) 1
0, 1

( 1)( 1)

(1 )( )

(1 )( )

J

ni n i j i j
j j i

n i J i J

P P t t

P t t

 

 



  
  

 

   

   


 

for 2 ≤ i ≤ I–1, (2.2.19) 

1

0 ( 1)( 1) 1 ( 1)( 1)
0, 1

1

( 1) 1 ( 1)
0

(1 )( ) (1 )( )

(1 )( ) (1 )( )

J

nI n I j I j n I J I J
j j I

J

n Ij I j n IJ I J
j

P P t t P t t

P t t P t t

   

   



    
  



  


       

       




. (2.2.20) 

   

2.3 Stationary Queue Length Distribution 

Before solving (2.2.2) to (2.2.20) in Section 2.2 to obtain the stationary queue length 

distribution, we may first let cij, dij, eij, fj and gij be constants and introduce the following 

notations: 

(a) Pn** = { Pnij: 0 ≤ i ≤ I, 0 ≤ j ≤ J }; 



15 

 

(b) (Pm**, P(m+1)**, P(m+2)**) denotes the set of equations of the form 

( 1) ( 2)
0 0 0 0 0 0

0
I J I J I J

ij mij ij m ij ij m ij
i j i j i j

c P d P e P 
     

     ; 

(c)  (Pmij | P0**, P(m+1)**) denotes the equation of the form 

00 ( 1)
0 0 0

J I J

mij j j ij m ij
j i j

P f P g P 
  

   . 

With the above notations, (2.2.5) to (2.2.11) in the case when n = 1 can be represented 

as 

(P0**, P1**, P2**),                                          (2.3.1) 

and (2.2.12) to (2.2.17) together with (2.2.6) to (2.2.8) in the case when n = 2 may be 

represented as  

(P1**, P2**, P3**).                (2.3.2) 

Furthermore (2.2.18) to (2.2.20) together with (2.2.14) to (2.2.17) and (2.2.6) to (2.2.8) in 

the case when n ≥ 3 may be represented as   

(P(n–1)**, Pn**, P(n+1)**).             (2.3.3) 

It can be shown that from the set of equations given by (2.3.1), we can get 

(P1ij | P0**, P2**)              for 0 ≤ i ≤ I, 0 ≤ j ≤ J.             (2.3.4) 

By substituting the expression of P1ij given by (2.3.4) into (2.3.2), and solving for P2ij, we 

get  

(P2ij | P0**, P3**)      for 0 ≤ i ≤ I, 0 ≤ j ≤ J.        (2.3.5) 

By substituting the expression of P2ij given by (2.3.5) into (2.3.3) when n = 3 and solving 

for P3ij, we get 

(P3ij | P0**, P4**)      for 0 ≤ i ≤ I, 0 ≤ j ≤ J.      (2.3.6) 
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Next for n ≥ 4, repeat the process of substituting the expression of P(n–1)ij given by 

(P(n–1)ij | P0**, Pn**)             (2.3.7) 

into (2.3.3) and solving for Pnij to get  

(Pnij | P0**, P(n+1)**)     for 0 ≤ i ≤ I, 0 ≤ j ≤ J.      (2.3.8) 

When n = N is large enough, we may set all the P(n+1)ij in (2.3.8) to be zero and obtain 

 (PNij | P0**)      for 0 ≤ i ≤ I, 0 ≤ j ≤ J.      (2.3.9) 

Substituting (2.3.9) into (2.3.8) when n = N – 1, we get 

(P(N–1)ij | P0**, PN**)   (P(N–1)ij | P0**)   for 0 ≤ i ≤ I, 0 ≤ j ≤ J.    (2.3.10) 

Similarly, for n = N – 2, N – 3,…,1, we may perform the substitution of (P(n+1)ij | P0**) into 

(2.3.8) and obtain   

(Pnij | P0**)      for 0 ≤ i ≤ I, 0 ≤ j ≤ J.      (2.3.11) 

When  n = 1,  (2.3.11)  yields  (P1ij | P0**).  By  using  the  results  given  by  (P1ij | P0**) and 

(2.2.2) to (2.2.4), we get the following system of J equations:  

(P00j | P0**)      for 0 ≤ j ≤ J.                (2.3.12) 

An inspection of (2.3.12) reveals that among the J equations, only J – 1 of them are linearly 

independent. Hence, we need to include another linearly independent equation so that the 

resulting system of J equations has a unique solution. Equating the sum of the left sides of 

the equations given by (2.3.11) to the sum of the right sides of (2.3.11), we get an equation 

of the form, 

 00
1

N

nij j j
n i j j

P k P


                            (2.3.13) 

where the kj are constants.  

As 
0

1
N

nij
n i j

P


 , we get from (2.3.13) an equation involving only P00j, 1 ≤ j ≤ J. 

The equation derived from (2.3.13), and J – 1 equations chosen from (2.3.12), constitute a 
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system of J equations which can be solved to yield numerical answers for P00j, 1 ≤ j ≤ J. 

Then using (2.3.11), we can get numerical answers for Pnij where n ≥ 1, 0 ≤ i ≤ I and           

0 ≤ j ≤ J. The stationary probability that the queue length is n can then be obtained as 

0 0

I J

n nij
i j

P P
 

 .                                  (2.3.14) 

 

2.4 Waiting Time Distribution 

Suppose a customer arrives at the system which is in the stationary state. Let the time 

of arrival of the customer be denoted as t = 0. Furthermore, let Wq be the time the customer 

needs to wait before being served and  

Wq(t) = P(Wq ≤ t), 

the cumulative distribution function (cdf) of the waiting time Wq. 

To find the waiting time distribution Wq(t), we first note that when the system is in the 

stationary state, an arrival of a customer at time t = 0 which is inside an interval τ of length 

∆t may occur with an approximate probability λj+1∆t if the arrival process is in state j at the 

beginning of the interval τ. Meanwhile at the beginning of τ, the service process may be in 

state i where 0 ≤ i ≤ I. Thus the probability that  

(i) the queue length at the beginning of τ is n; 

(ii) the service process is in state i at the beginning of τ;  

(iii) the arrival process is in state j at the beginning of τ; 

(iv) a customer arrives in τ;  

is given approximately by  

Pnij λj+1∆t.              (2.4.1) 

Let gi+1(t) be the pdf of the service time given that the service process is in state i at the 

beginning of τ, and  g(n–1)(t) the (n–1)-fold convolution of g(t). The customer who arrives in 
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τ (see (iv)) under the conditions given by (i), (ii) and (iii) above will have a waiting time of 

zero if 0n , and a waiting time of which the pdf is given by the convolution              

gi+1(t) * g(n–1)(t) if n ≥ 1. The cdf Wq(t) is then given approximately by 

( 1)
00 1 1 10

1 1 0 0

00 1 1
1 1 0 0

( ) ( )
( )

J N I J t n
j j nij j iu

j n i j
q J N I J

j j nij j
j n i j

P t P t g u g u du
W t

P t P t

 

 


  

   

 
   

   


  

  

 
.       (2.4.2) 

The cdf Wq(t) may also be computed approximately by a simulation procedure described 

below. 

Suppose a customer arrives at time t = 0 and the next m-th customer arrives at time 

1

m

k
k

t A


  where A1, A2,… are independent and identically distributed with pdf f(t). Next let 

the service time of the next m-th customer be Bm of which B0, B1,… are independent and 

identically distributed with pdf g(t). For a chosen large integer M, the value of                    


v  = {(0, B0), (A1, B1), …, (AM, BM)} is generated and the following waiting times are 

obtained:  

W q, 0 = 0,   

Wq, m = 
 0, if Wq, m–1+Bm–1 < Am, 

Wq, m–1 + Bm–1 – Am, if Wq, m–1+Bm–1 ≥ Am, 1 ≤ m ≤ M–1, 

where Wq, m is the waiting time of the m-th customer. Then 

Wq(t)   (Number of the Wq, m which are less than t)/ M. 
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2.5 Numerical Examples 

Let Gamma( , )   denote a gamma distribution of which κ is the shape parameter and 

θ the scale parameter. The related probability density function is then given by 

      1; , xf x x e        . Consider an example in which the service time (S) has 

a gamma distribution with the parameter  vector  (κ1, θ1) = (1.5, 2),  and  the  interarrival  

time  (T)  has  another  gamma distribution with the parameter vector (κ2, θ2) = (3.1, 2). The 

utilization factor will then be ρ = E(S)/E(T) = 0.48. The reason for considering gamma 

distribution (κ, θ) with fractional values of the shape parameter κ is that the term 1t  

appearing in the pdf f(t) and g(t) will usually make the existing analytical methods for 

finding queue length distribution fail. The reason behind such failure is that when we set 

t x y  , the function 1( )x y   cannot be expressed as a finite sum of products of a 

function of x alone and a function of y alone. 

The following is a procedure to find the values of ∆t and I (or J). Initially we find the 

value of T such that the rates at time t ≥ T exhibit small variations. A small fractional value 

(for example, 0.1 or 0.05) is assigned to ∆t and I is then obtained as the integer which is 

approximately equal to T/∆t. If I is very large (for example, I > 1000), then a bigger unit is 

chosen for t until I ≤ 1000. It can be shown that when ∆t = 0.04, suitable values of I and J 

are respectively I = 550 and J = 550. By using the proposed numerical method, the 

stationary queue length distribution is found. The stationary queue length distribution may 

also be computed using the simulation procedure in the software “QtsPlus” (accompanying 

software for Gross and Harris [74]) when the number of runs is M1 = 107. The results 

obtained are shown in Table 2.5.1.  
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Table 2.5.1 
Comparison of stationary queue length distribution computed from the proposed numerical 

method, and those obtained from the software “QtsPlus”  
[(κ1, θ1) = (1.5, 2), (κ2, θ2) = (3.1, 2), ∆t = 0.04]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation (QtsPlus) 

0 0.518854 0.516033 
1 0.366244 0.366475 
2 0.089790 0.091326 
3 0.019748 0.020488 
4 0.004227 0.004444 
5 8.97E-04 9.48E-04 
6 1.90E-04 2.15E-04 
7 4.01E-05 5.44E-05 
8 8.47E-06 1.33E-05 
9 1.79E-06 3.43E-06 

10 3.78E-07 1.79E-07 
… … … 
20 6.67E-14 0 

 
From Table 2.5.1, we see that the stationary queue length distribution obtained using 

the proposed numerical method is close to that obtained from the software “QtsPlus”.   

Figures 2.5.1–2.5.8 show the stationary queue length probabilities found by the 

numerical method using various other values of ∆t. The dotted lines in the figures give the 

extrapolated values based on polynomials of low degrees fitted to the values (represented 

by the symbol “.”) of (Pn, ∆t). The y-values in the dotted lines when the x-values are zero 

will represent the final results based on the numerical method for the queue length 

probabilities. The plots given in Figures 2.5.1, 2.5.3 and 2.5.4 show that the final results 

based on the numerical method agree quite well with the results based on “QtsPlus”. 

Meanwhile the plot given in Figure 2.5.2 indicates that the result based on numerical 

method would be more accurate than that found by simulation. The plots for Pn against ∆t 

for n = 4, 5, 6 and 7 (Figures 2.5.5, 2.5.6, 2.5.7 and 2.5.8) indicate that only the final result 

for P4 based on simulation agrees quite well with that based on the numerical method. 
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Figure 2.5.1 Stationary   probability   that   queue   length   is   0n    [(κ1, θ1) = (1.5, 2), 

(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.2 Stationary   probability   that   queue   length   is   1n    [(κ1, θ1) = (1.5, 2), 

(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.3 Stationary   probability   that   queue   length   is   2n    [(κ1, θ1) = (1.5, 2), 

(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.4 Stationary   probability   that   queue   length   is   3n    [(κ1, θ1) = (1.5, 2), 

(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.5 Stationary   probability   that   queue   length   is   4n    [(κ1, θ1) = (1.5, 2),  
(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.6 Stationary   probability   that   queue   length   is   5n    [(κ1, θ1) = (1.5, 2),  
(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.7 Stationary   probability   that   queue   length   is   6n    [(κ1, θ1) = (1.5, 2),  
(κ2, θ2) = (3.1, 2)]. 
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Figure 2.5.8 Stationary   probability   that   queue   length   is   7n    [(κ1, θ1) = (1.5, 2),  
(κ2, θ2) = (3.1, 2)]. 
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Table 2.5.2 shows that the stationary waiting time distribution obtained by using the 

numerical method in Section 2.4 is close to that obtained by the simulation procedure.   

Table 2.5.2 
Comparison of stationary waiting time distribution computed respectively by using the 

proposed numerical method, and the simulation procedure (∆t = 0.04). 

Time, t P(Wq ≤ t) 
Numerical method Simulation 

0 0.716771 0.717751 
0.04 0.720011 0.719061 
0.08 0.723321 0.721774 
0.12 0.726602 0.725983 
0.16 0.729799 0.728072 
0.20 0.732959 0.731658 
0.24 0.735939 0.734215 
0.28 0.738872 0.738393 
0.32 0.741849 0.740451 
0.36 0.744914 0.742415 
… … … 
20 0.999523 0.999638 

 
 

2.6 Discrete Time GI/G/1 Queue 

The stationary queue length and stationary waiting time distributions of a discrete 

time GI/G/1 can also be found by using the proposed numerical method in Sections 2.2 to 

2.4 after some modifications of the equations for the stationary probabilities given in 

Section 2.2. An explanation of why the above modifications are necessary is as follows.  

First we note that the values of the µk (or λk) for the discrete service time (or arrival 

time) distribution is such that all the µk (or λk) are zero except for the cases when k∆t 

coincides with the service time (or arrival time) which has a nonzero probability of 

occurrence. Let the values of such k be denoted by k1, k2,…, kd. The value of a typical 
ik  

will be such that 
ik t   is a constant. This means that when ∆t is made very small, the value 

of 
ik  will have to be inflated correspondingly. Thus, if the system is not empty at time t, 

the simultaneous occurrence of the events that 
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(A) a customer arrives within the interval (t, t + ∆t]; and  

(B) a service is completed within the interval (t, t + ∆t]; 

may not tend to zero when ∆t tends to zero. Thus the equations for stationary probabilities 

given in Section 2.2 need to be modified by taking into account of the simultaneous 

occurrence of events (A) and (B). The modified version of the equations in Section 2.2 is as 

follows. 

When the queue length is n = 0, the values of the Pnij can be found from (2.2.2)–

(2.2.4). When the queue length is n = 1, the expressions for Pnij, 1 ≤ j ≤ J, i ≤ j are the same 

as those given by (2.2.9)–(2.2.11), whereas Pn0j can be computed from the equations below: 

1 1 1
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for 1 ≤ j ≤ J–1, (2.6.2) 
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. (2.6.3) 

When n = 2, the values of the Pn0j, 1 ≤ j ≤ J can be computed using (2.6.2)–(2.6.3), while 

(2.2.12)–(2.2.13) can be used to find the values of Pni0, 1 ≤ i ≤ I. The values of the PniJ and 

PnIj can be obtained from (2.2.15) and (2.2.16) respectively. All the other values of Pnij can 

be computed using the following equations. 
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for 1 ≤ i ≤ I–1, 1 ≤ j ≤ J–1, (2.6.5) 

( 1)( 1) ( 1)

( 1)

(1 )(1 ) (1 )(1 )
(1 )(1 ) (1 )(1 )

nIJ n I J I J n I J I J

nI J I J nIJ I J

P P t t P t t
P t t P t t

   

   
  



         

         
. (2.6.6) 

For n ≥ 3, the values of all the Pnij (except Pni0) can be computed using (2.2.15)–(2.2.16) 

and (2.6.2)–(2.6.6), whereas those of Pni0 can be computed using the following equations.  
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for 1 ≤ i ≤ I–1, (2.6.7) 
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We may solve the above equations by using the proposed numerical method in 

Section 2.3 to obtain all the values of Pnij and hence the stationary queue length distribution. 

From the values of the stationary probabilities, we can find the stationary waiting time 

distribution by using the method proposed in Section 2.4. The cdf Wq(t) for the discrete 

time GI/G/1 queue is now given approximately by 
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Table 2.6.1 shows the results of the stationary queue length distribution computed 

using the proposed numerical method. The table also shows the results given in [13] where 

the authors found the stationary queue length distribution from the sojourn time distribution 

using the distributional Little’s law. The functions T(z) and S(z) appearing in Tables 2.6.1–

2.6.3 and 2.6.5–2.6.6 are respectively the probability generating functions of the discrete 

service time and interarrival time. 

Table 2.6.1 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and that given in Kim & Chaudhry [13]. 

Queue 
Length, n 

Example 1 
P(Queue Length = n) 

[T(z) = z/10 + 3z2/10 + 2z3/5 + z4/5, S(z) = 3z/10 + 3z2/5 + z3/10] 
Numerical method  

(∆t = 1.0) 
Numerical method  

(∆t = 0.1) Kim & Chaudhry [13] 

0 0.333333 0.333333 0.333333 
1 0.596799 0.596799 0.596799 
2 0.067034 0.067034 0.067034 
3 0.002728 0.002728 0.002728 
4 0.000101 0.000101 0.000101 
5 3.81E-06 3.81E-06 0.000004 
6 1.43E-07 1.43E-07 0 
7 5.38E-09 5.38E-09 0 
8 2.02E-10 2.02E-10 0 
9 7.60E-12 7.60E-12 0 

10 2.86E-13 2.86E-13 0 
… … … … 

  
From Table 2.6.1, we can see that the queue length probabilites obtained by using the 

proposed numerical method is close to that given in [13]. When ∆t ≤ 1, the values of the µk 

(or λk) are able to capture all the details of the discrete distribution of the service time (or 

arrival time). Thus the results given in columns 2 and 3 in Table 2.6.1 are identical. 

Tables 2.6.2 and 2.6.3 show the stationary queue length distribution in three other 

examples of discrete queue. 
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Table 2.6.2 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and that given in Kim & Chaudhry [13] (∆t = 1.0). 

Queue Length, n 

Example 2 
P(Queue Length = n) 

[T(z) = z(z/2 + 1/2)38, S(z) = (z + z2 +…+ z35)/35] 
Numerical method Kim & Chaudhry [13] 

0 0.100000 0.100000 
1 0.323533 0.323533 
2 0.291648 0.291648 
3 0.146160 0.146160 
4 0.071163 0.071163 
5 0.034640 0.034641 
6 0.016862 0.016862 
7 0.008208 0.008208 
8 0.003995 0.003995 
9 0.001945 0.001945 

10 9.47E-04 9.47E-04 
… … … 

    
 

Table 2.6.3 
Comparison of stationary queue length distributions computed using the proposed 

numerical method, and that given in Kim & Chaudhry [13] (∆t = 1.0). 

Queue 
Length, n 

Example 3  Example 4 
P(Queue Length = n) 
[T(z) = z(z/2 + 1/2)38,  
S(z) = (z + z2 + z3)/3] 

 P(Queue Length = n) 
[T(z) = z(z/2 + 1/2)38,  

S(z) = (z + z2 +…+ z19)/19] 
Numerical 

method 
Kim & 

Chaudhry [13] 
 Numerical 

method 
Kim & 

Chaudhry [13] 
0 0.900000 0.900000  0.500000 0.500000 
1 0.100000 0.100000  0.494811 0.494811 
2 2.49E-12 2.49E-12  0.005189 0.005189 
3 2.21E-25 2.21E-25  1.53E-08 1.53E-08 
4 1.52E-46 0  2.19E-14 2.19E-14 
5 3.54E-60 0  3.13E-20 2.75E-20 
6 … …  … … 

    
Tables 2.6.2 and 2.6.3 show that the results obtained by using the proposed numerical 

method are very close to those given in [13].  
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From the stationary probabilities, the stationary waiting time distributions can be 

obtained using (2.6.9), the results obtained are shown in Table 2.6.4.  

Table 2.6.4 
Stationary waiting time distributions computed by using the proposed numerical method 

(∆t = 1.0). 

Time, t P(Wq ≤ t) 
Example 1  Example 2  Example 3  Example 4 

0 0.847762  0.242019  1  0.955516 
1 0.964654  0.259177  1  0.972644 
2 0.992963  0.276887  1  0.984262 
3 0.998538  0.294817  1  0.991529 
4 0.999699  0.313157  1  0.995754 
5 0.999938  0.331907  1  0.998002 
6 0.999987  0.350904  1  0.999113 
7 0.999997  0.370697  1  0.999619 
8 0.999999  0.390268  1  0.999842 
9 1  0.410278  1  0.999933 

… …  …  …  … 
 
For a customer who arrives at time t = 0, his sojourn time is equal to the sum of his 

waiting time and service time. Thus from the waiting time and service time distributions of 

the incoming customer, we can compute his sojourn time distribution. Tables 2.6.5 and 

2.6.6 show the results of the stationary sojourn time distribution computed using the 

proposed numerical method and those given in [13]. 
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Table 2.6.5 
Comparison of stationary sojourn time distributions computed by using the proposed 

numerical method, and that given in Kim & Chaudhry [13] (∆t = 1.0). 

Time, t 

Example 1  Example 2 
Sojourn Time Distribution 

[T(z) = z/10 + 3z2/10 + 2z3/5 + z4/5, 
S(z) = 3z/10 + 3z2/5 + z3/10] 

 Sojourn Time Distribution  
[T(z) = z(z/2 + 1/2)38,  

S(z) = (z + z2 +…+ z35)/35] 
Numerical 

method 
Kim & Chaudhry 

[13] 
 Numerical 

method 
Kim & Chaudhry 

[13] 
0 0 0  0 0 
1 0.254329 0.254329  0.006915 0.006915 
2 0.543725 0.543708  0.007410 0.007408 
3 0.163404 0.163375  0.007911 0.007913 
4 0.030347 0.030357  0.008432 0.008429 
5 0.006524 0.006540  0.008968 0.008956 
6 0.001326 0.001339  0.009503 0.009493 
7 2.74E-04 0.000279  0.010059 0.010039 
8 5.66E-05 0.000058  0.010610 0.010595 
9 1.16E-05 0.000012  0.011178 0.011160 

10 2.40E-06 0.000002  0.011746 0.011731 
… … …  … … 

    
 

Table 2.6.6 
Comparison of stationary sojourn time distributions computed using the proposed 

numerical method, and that given in Kim & Chaudhry [13] (∆t = 1.0). 

Time, t 

Example 3  Example 4 
Sojourn Time Distribution 

[T(z) = z(z/2 + 1/2)38,  
S(z) = (z + z2 + z3)/3] 

 Sojourn Time Distribution 
[T(z) = z(z/2 + 1/2)38,  

S(z) = (z + z2 +…+ z19)/19] 
Numerical 

method 
Kim & Chaudhry 

[13] 
 Numerical 

method 
Kim & Chaudhry 

[13] 
0 0 0  0 0 
1 0.333333 0.333333  0.050290 0.050290 
2 0.333333 0.333333  0.051192 0.051193 
3 0.333333 0.333333  0.051803 0.051804 
4 1.62E-11 1.62E-11  0.052186 0.052187 
5 3.97E-13 4.04E-13  0.052408 0.052408 
6 … …  … … 
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From Tables 2.6.5 and 2.6.6, we can see that the stationary sojourn time distributions 

computed by using the proposed numerical method are very close to those given in [13].  

 

2.7 Conclusion 

Most of the existing methods in the literatures find the queue length distribution in the 

GI/G/1 queue via the waiting time distribution. On the contrary, the present proposed 

method finds the queue length distribution directly for the CAR/CAR/1 queue. The 

accuracy of the numerical results for the distribution can be greatly improved by an 

extrapolation process. Furthermore the queue length distribution thus found can later be 

used to find the waiting time distribution. The main drawback of the proposed method is 

that we may encounter dimensionality problem when I(or J) is very large.  

The method proposed in this chapter may also be applied to other queueing models. 

For example, in Chapters 3 and 4, it is applied to the queueing systems which are 

deteriorated by random shocks. 
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CHAPTER 3 

MAINTENANCE OF A DETERIORATING QUEUE 
WITH NON-POISSON ARRIVALS 

  

3.1 Introduction 

Consider the model in [35] in which the service rate of a multi-state M/M/1 queue 

would deteriorate due to random shocks. In their model, it is assumed that the shocks arrive 

at the system according to a Poisson process with random magnitudes. The server is 

repaired when its state is above a specified maintenance level. In this chapter, the 

distribution of the customer’s interarrival time in their model is changed to a CAR 

distribution while the service time remains exponentially distributed. The numerical 

method proposed in Section 2.2 is adapted for deriving the set of equations for the 

stationary probabilities of the queue length and the states of the arrival, service and repair 

processes. The stationary probabilities obtained can be used to find   

(A)  the sojourn time distribution of a customer who arrives when the queue is in a 

stationary state;  and  

(B)  the expected length of the duration between two successive repair completions 

when the queue is in a stationary state.  

The results in (A) and (B) can next be used to compute the average cost of the system 

and find the maintenance level such that the average cost is minimized.  
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3.2 Notations and Assumptions 

The following notations are used throughout Chapter 3: 

β largest possible service state 

α maintenance level for the system, α ≤ β 

µi service rate in state i of the service process 

δr repair rate in state r of the repair process 

λj arrival rate in state j of the arrival process 

γ shock rate  

n number of customers in the system  

gx probability that the random amount of the shock is x 

τk interval given by ((k–1)∆t, k∆t], k = 0, 1, 2, … 

nk queue length of the system at the end of τk  

ξk state number of the service process at the end of τk, {1,2,3,..., }k   

φk state number of the repair process at the end of τk, {0, , 1,..., }k      

ψk state number of the arrival process at the end of τk, {0,1,2,..., }k J   

( )k
nirjP  the probability that at the end of τk, 

(a) the number of customers in the system is n (including the customer that is 

being served); 

(b) the service process is in state i;  

(c) the repair process is in state r; and 

(d) the arrival process is in state j.  
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Assumptions: 

1. Service state indexes are ordered. State 1 is the best state with the largest service rate, 

state β is the worst. 

2. Repair is performed immediately on the system when the service state exceeds α – 1. 

3. Each successful repair brings the service state back to state 1. 

4. ( )lim k
nirj nirjk

P P


  exists. 

 

3.3 A Model for Deteriorating Single Server Queue 

Consider the following multi-state M/M/1 queue studied in [35]. The server would 

deteriorate when the system is subject to random shocks. When the service state is i, the 

service rate is denoted as i  where 1 ≤ i ≤ β, with i j   for i < j. The server is initially in 

state 1. It is assumed that shocks arrive at the system according to a Poisson process with 

rate γ. A shock increases the current service state i to a new value given by min( , )i x   

where x is random and having a probability distribution given by gx, x = 1, 2, 3,…. The 

adopted preventive maintenance policy requires the server to be repaired when the service 

state i exceeds α – 1 where α ≤ β, and it is assumed that repair rate is δr where r i  is 

defined to be the repair state. The server does not provide service to the customers during a 

repair.  

In this chapter, the distribution of the interarrival time is changed to one which has a 

constant asymptotic rate (CAR), and the resulting queue is denoted as a CAR/M/1 queue. 

With the change in the interarrival time distribution, the model can be applied to the system 

where the assumption of the Poisson arrival process is violated. Yang et al. [35] used the 

matrix-geometric approach developed by Neuts [14] to derive the basic characteristics of 

the multi-state M/M/1 queue. In this chapter, in which the interarrival time has a CAR 
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distribution while the service time still has an exponential distribution, a numerical 

procedure is used instead to derive the basic characteristics. 

 

3.4 Derivation of Equations for the Stationary Probabilities 

Let f(t) be the probability density function (pdf) of the interarrival time of the 

customers. The rate of the interarrival time distribution evaluated at t = k∆t is then given by 

( )

( )
k

k t

f k t

f u du
 







.  

When the interarrival time has a CAR distribution, we may assume that there is a large 

positive integer J such that  

limJ kk
 


 .  

Suppose a customer has arrived at time t = 0. Then the next customer will arrive in the 

interval τ1 with an approximate probability λ1∆t, and given that the next customer does not 

arrive in the intervals τ1, τ2,…, τk–1, the probability that he/she will arrive in τk will be 

approximately λk∆t for  k = 2, 3, 4,… where λk = λJ for k ≥ J.  

Given that a customer arrives at a time in the interval τ0 = (–∆t, 0], we may define the 

state number ψk of the arrival process at the end of the interval τk = ((k – 1)∆t, k∆t] as  

ψk = 
 0, if k = 0 or the next customer arrives in τk, k ≥ 1. 

 
 min(k, J), if the next customer does not arrive in τk, k ≥ 1. 
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We next define the state number of the service process at the end of τk as 

ξk = 

 1, if k = 0 or a repair is completed in τk, k ≥ 2. 

 i, if the service state is i at the end of τk–1 for 1 ≤ i < α, and no 

shocks occur in τk, k ≥ 1.    

 r, if the service state is r at the end of τk–1 for α ≤ r ≤ β, and no 

repair completions occur in τk, k ≥ 1.    

 min(i + x, β), if the service state is i at the end of τk–1 for 1 ≤ i < α, and a 

shock with magnitude x occurs in τk, k ≥ 1. 

The state number of the repair process at the end of τk is defined as 

φk = 

 0, if  

 k = 0; or  

 ξk–1 < α at the end of τk–1, and no shocks occur in τk, 1k  ; 

or  

 the service state is i at the end of τk–1 for 1 ≤ i < α–1, and a 

shock with magnitude x occurs in τk for i + x < α, k ≥ 1. 

 min(i + x, β), if the service state is i at the end of interval τk–1 for 1 ≤ i < α, 

and a shock with magnitude x occurs in τk for  i + x ≥ α, k ≥ 1. 

 r, if the repair state is r at the end of τk–1 for α ≤ r ≤ β, and no 

repair completions occur in τk, k ≥ 2.    

Let nk be the queue length at the end of τk and hk = (nk, ξk, φk, ψk). We may refer to hk 

as the vector of characteristics of the queue at the end of τk. 

Let ( )k
nirjP be the probability that at the end of τk, the number of customers in the system 

is n (including the customer that is being served), the service process is in state i, the repair 

process is in state r and the arrival process is in state j. Assume that 
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( )lim k
nirj nirjk

P P


   

exists. To find the Pnirj, we first make the following observations.  

Suppose at the end of τk–1, the queue length n is not empty (i.e. nk–1 = n ≥ 1), the server 

is in state i < α (i.e. ξk–1 = i < α) and the arrival process is in state j – 1 (i.e. ψk–1 = j – 1). In 

this case the server is still active and we define the repair state number to be zero (i.e. 

1 0k r    ). This means the vector of characteristics at the end of τk–1 is given by           

hk–1 = (n, i, 0, j – 1). With this value of hk–1, only one of the following events can occur in 

τk:  

(a) A customer enters the system with the arrival rate λj*, and at the end of τk, the vector 

of characteristics becomes hk = (n + 1, i, 0, 0); 

(b) A customer leaves the system with the departure rate µi, and hk = (n – 1, i, 0, j*); 

(c) A shock with magnitude x occurs and deteriorates the service state to 

* min( , )i i x   , yielding hk = (n, i*, r*, j*);    

(d) No customers enter or leave the system, and no shocks arrive, yielding 

( , , 0, *)k n i jh ; 

where j* = min(j, J), and  

r* = 

 0, if 1 < i + x < α, 
for x ≥ 1. 

 min(i + x, β), if  i + x ≥ α, 

However if at the end of τk–1, the system is empty (i.e. nk–1 = 0), the state number i of 

the  idle  server  is  less  than  α  and  the  arrival  process  is  in  state  j – 1,  then one of the 

following events can occur in τk:  

(e) A customer enters the system with arrival rate λj* and hk = (1, i, 0, 0); 

(f) A shock with magnitude x occurs and deteriorates the service state to 
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* min( , )i i x   , yielding hk = (0, i*, r*, j*);  

(g) No customers enter the system and no shocks arrive, yielding hk = (0, i, 0, j*). 

Suppose at the end of τk–1, the queue length is nk–1 = n ≥ 0, the arrival process is in 

state 1j  , the repair process is in state φk–1 = r ≥ α and the service process is in state 

1k i r    . Then one of the following events can occur in τk: 

(h) A customer enters the system with arrival rate λj*, and hk = (n + 1, r, r, 0); 

(i) A completion of repair occurs with the repair rate δr, bringing the service state back 

to state 1, and yielding hk = (n, 1, 0, j*);  

(j) No customers enter the system and no completion of repair occurs, yielding 

( , , , *)k n r r jh . 

Figures 3.4.1 to 3.4.10 illustrate the occurrence of events (a)–(j) described above. In the 

figures, 

1) the number inside the rectangle denotes the queue length at the end of indicated 

small time interval. 

2) the number inside the ellipse denotes the state of the service process at the end of 

indicated small time interval. 

3) the number inside the triangle denotes the state of the repair process at the end of 

indicated small time interval. 

4) the number inside the circle denotes the state of the arrival process at the end of 

indicated small time interval. 

5) the symbol ‘x’ indicates that a customer enters the system at the indicated time. 

6) the symbol ‘↓’ indicates that a customer leaves the system at the indicated time. 

7) the symbol ‘ ’ indicates that a repair is completed at the indicated time. 

8) the symbol ‘ ’ indicates that a shock deteriorates the system at the indicated time. 
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Figure 3.4.1 Transitions of queue length and states when Event (a) occurs. 
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Figure 3.4.2 Transitions of queue length and states when Event (b) occurs. 
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Figure 3.4.3 Transitions of queue length and states when Event (c) occurs. 
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Figure 3.4.4 Transitions of queue length and states when Event (d) occurs. 
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Figure 3.4.5 Transitions of queue length and states when Event (e) occurs. 
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Figure 3.4.6 Transitions of queue length and states when Event (f) occurs. 



                                                                         

42 
 

i

j–1 j*

τk

i

k∆t(k–1)∆t

Queue Size

Service State

Arrival State

Repair State 0 0

j–1

τk–1

0 0

 
Figure 3.4.7 Transitions of queue length and states when Event (g) occurs. 
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Figure 3.4.8 Transitions of queue length and states when Event (h) occurs. 
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Figure 3.4.9 Transitions of queue length and states when Event (i) occurs. 
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Figure 3.4.10 Transitions of queue length and states when Event (j) occurs. 

 

By setting nk–1 = 1, ξk–1 = 1, φk–1 = 0 and ψk–1 = 0 and letting Event (b) occur in τk, we 

get 

( ) ( 1)
0101 1100 1(1 )( )k kP P t t     .                                               (3.4.1) 

When k → ∞, we get from (3.4.1), 

0101 1100 1(1 )( )P P t t     .                                                   (3.4.2) 

In general, for a given value of hk, we can likewise find the combinations of hk–1 and the 

event in τk which lead to hk, and obtain an equation similar to (3.4.2). The following 

equations can thus be obtained.  

0 01 1 00(1 )( )i i iP P t t      for 1 ≤ i < α, (3.4.3) 

0102 0101 2 1101 1(1 )(1 ) (1 )( )P P t t P t t            ,  (3.4.4) 

010 010( 1) 0 ( 1)

110( 1) 1

(1 )(1 ) ( )

(1 )( )

j j j mm j m
m

j

P P t t P t

P t t





  

 

 




      

   


 for 3 ≤ j < J,   (3.4.5) 
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010 010( 1) 010

0 ( 1) 0 110( 1) 1

110 1

(1 )(1 ) (1 )(1 )

( ) ( ) (1 )( )

(1 )( )

J J J J J

mm J m mmJ m J
m m

J

P P t t P t t

P t P t P t t
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 



 
 

         

       

   

  , (3.4.6) 

1
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1

0 0( 1) 1 0( 1)
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i j m j i m
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i j j i j i

P P t g

P t t P t t


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

 


 

 

        


 for 2 ≤ i < α, 2 ≤ j < J, (3.4.7) 

1 1

0 0 0 0( 1) 0 0
1 1

0 0( 1) 0 0

1 0( 1) 1 0
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m m
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 
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 
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       

 
 for 2 ≤ i < α , (3.4.8) 

1

0 2 0 01
1

( )( )rr m r m
m

P P t g








   for α ≤ r < β, (3.4.9) 

11

0 2 0 01
1 1

( ) 1
m

m u
m u

P P t g


 
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 

 
   

 
  .  (3.4.10) 

For n ≥ 0 and α ≤ r ≤ β,  

1

0( 1)
1

( 1)

( )( )

(1 )(1 )

nrrj nm j r m
m

nrr j r j

P P t g
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
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

 
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

 
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
 for α ≤ r < β, 3 ≤ j < J  if n = 0, 

1 ≤ j < J  if n ≥ 1, 
(3.4.11) 

1 1
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 
 for α ≤ r < β, (3.4.12) 
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 for 3 ≤ j < J  if n = 0, 

1 ≤ j < J  if n ≥ 1, (3.4.13) 
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.  (3.4.14) 

When n = 1, 
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 for 2 ≤ i < α, 1 ≤ j < J , (3.4.19) 

1 1

0 0( 1) 0
1 1

0( 1)

0

( 1) 0( 1) ( 1) 0

( )( ) ( )( )

(1 )(1 )(1 )
(1 )(1 )(1 )

(1 )( ) (1 )( )

i i

ni J nm J i m nm J i m
m m

ni J i J

ni J i J

n i J i n i J i

P P t g P t g

P t t t
P t t t
P t t P t t

 
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  
   

 

  
 



  

   

      

      
       

 

 for 2 ≤ i < α. (3.4.20) 

When n ≥ 2,  

1

00 ( 1) 0 1
0

( 1) 0

(1 )(1 )( )

(1 )(1 )( )

J

ni n i m i m
m

n i J i J

P P t t t

P t t t

  

  



 




     

     


 for 1 ≤ i < α, (3.4.21) 

and   

1

0 ( 1) 1 ( 1)
0

(1 )( ) (1 )( )
J

nrr n rrm r m n rrJ r J
m

P P t t P t t   


  


         for α ≤ r ≤ β. (3.4.22) 
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3.5 Stationary Queue Length Distribution 

Before solving the equations in Section 3.4 to find the Pnirj, we may first let bij, crj, dij, 

erj, fij, hij, urj and vij be constants and introduce the following notations: 

(a)     *** : 1 , 0,0 or , ,0n nirjP P i r j J i r r j J             ; 

(b) Pn*0* = {Pni0j: 1 ≤ i < α, 0 ≤ j ≤ J}; 
 

(c) (Pm***, P(m+1)***, P(m+2)*0*) denotes the set of equations of the form 

1 1

0 ( 1) 0
1 0 0 1 0

1

( 1) ( 2) 0
0 1 0

0

J J J

ij mi j rj mrrj ij m i j
i j r j i j

J J

rj m rrj ij m i j
r j i j

b P c P d P

e P f P

 



 



 


     



 
   

 

  

  

 
; 

(d)  (Pmirj | P0***, P(m+1)*0*) denotes the equation of the form 

1 1

0 0 0 ( 1) 0
1 0 0 1 0

J J J

mirj ij i j rj rrj ij m i j
i j r j i j

P h P u P v P
 



 


     

     . 

With the above notations, (3.4.11) to (3.4.20) in the case when 1n  can be 

represented as 

(P0***, P1***, P2*0*),                                         (3.5.1) 

and (3.4.17) to (3.4.22) together with (3.4.11) to (3.4.14) in the case when n ≥ 2 can be 

represented as  

(P(n–1)***, Pn***, P(n+1)*0*).             (3.5.2) 

It can be shown that from the set of equations given by (3.5.1), we can get 

(P1irj | P0***, P2*0*)  for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.          (3.5.3) 

By substituting the expression of P1irj given by (3.5.3) into (3.5.2) when n = 2, and solving 

for P2irj, we get  

(P2irj | P0***, P3*0*) for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.     (3.5.4) 
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By substituting the expression of P2irj given by (3.5.4) into (3.5.2) when n = 3 and solving 

for P3irj, we get 

(P3irj | P0***, P4*0*) for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.     (3.5.5) 

Next for n ≥ 4, we repeat the process of substituting the expression of P(n–1)irj given by 

(P(n–1)irj | P0***, Pn*0*)   for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J     (3.5.6) 

into (3.5.2) and solving for Pnirj to get  

 (Pnirj | P0***, P(n+1)*0*).                 (3.5.7) 

When n = N is large enough, we may set all the P(n+1)*0* in (3.5.7) to be zero and obtain 

(PNirj | P0***)  for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.      (3.5.8) 

For n = N – 1, N – 2,…,1, we may perform the substitution of (P(n+1)irj | P0***) into (3.5.7) 

and obtain   

(Pnirj | P0***)  for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.     (3.5.9) 

When n = 1, (3.5.9) yields (P1irj | P0***). By using the results given by (P1irj | P0***) and 

(3.4.3) to (3.4.14), we get the following system of  0 ( ) ( 1)N J         equations: 

(P0irj | P0***)  for 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J.   (3.5.10) 

An inspection of (3.5.10) reveals that among the N0 equations, only N0–1 of them are 

linearly independent. Hence, we need to include another linearly independent equation so 

that the resulting system of N0 equations has a unique solution. Equating the sum of the left 

sides of the equations given by (3.5.9) to the sum of the right sides of (3.5.9), we get an 

equation of the form, 

 0
1

N

nirj ij irj
n i j i j

P k P


                    (3.5.11) 

where the kij are constants, and the value of r depends on i.  

As 
0

1
N

nirj
n i j

P


 , we get from (3.5.11) an equation involving only P0irj, 1 ≤ i < α,   
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r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J. This equation derived from (3.5.11), and N0 – 1 

equations chosen from (3.5.10), constitute a system of N0 equations which can be solved to 

yield numerical answers for the P0irj, 1 , 0, 0i r j J      or 

, , 0i r r j J      . Then using (3.5.9), we can get numerical answers for the Pnirj 

where 1n  , 1 ≤ i < α, r = 0, 0 ≤ j ≤ J or i = r, α ≤ r ≤ β, 0 ≤ j ≤ J. The stationary 

probability that the queue length is n is then given by the sum of the Pnirj over all i, r and j, 

 n nirj
i j

P P .                              (3.5.12) 

In Equation (3.5.12), the sum over the value of r is not included as the value of r depends 

on i as summarized below:  

r   
 0  for 1 ≤ i < α 

.  
 i  for α ≤ i ≤ β 

 

3.6 Sojourn Time Distribution  

Suppose the system is in the stationary state. Let t = 0 be a reference point in time 

under this condition of the system and assume that a customer arrives at t = 0. The sojourn 

time of the arriving customer is equal to the length of time between t = 0 and the time when 

the service given to the customer is completed. The sojourn time distribution will be 

derived in this section. 

Let 
0 0 0

( )
|

k
nir n i rP  be the probability that at the end of τk, the service state is i, the repair 

state is r and there are n customers in the queue formed by the customers who arrive before 

t = 0 and still remain in the system, given that a customer has arrived in τ0, and at the end of 

τ0, the queue length is n0, the service state is i0 and the repair state is r0. When the system is 

in the stationary state, we note the probability of the event E(0) that 
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(a) the queue length at the beginning of τ0 is n0 – 1; 

(b) the service process is in state i0 at the beginning of τ0;  

(c) the repair process is in state r0 at the beginning of τ0; and 

(d) a customer arrives in τ0; 

is given approximately by  

0 0 0 0 0 0

1

( 1) 1 ( 1)
0

( ) ( )
J

n i r j j n i r J J
j

P t P t 


  


   .               (3.6.1) 

When E(0) has occurred, the queue length, service state and repair state at the end of τ0 will 

be n0, i0, and r0, respectively. Thus we may denote the probability of E(0) by 
0 0 0

(0)
n i rP . By 

using a method similar to that used in Section 3.4, it can be shown that   

0 0 0 0 0 0

( ) ( 1)
0 0| 1 0| (1 )( )k k
i n i r i n i r iP P t t    

 
for 1 ≤ i < α, (3.6.2) 

0 0 0 0 0 0 0 0 0

0 0 0

( ) ( 1) ( 1)
10| 10| 1 |

( 1)
( 1)10| 1

(1 )(1 ) ( )

(1 )( )

k k k
n n i r n n i r nmm n i r m

m
k

n n i r

P P t t P t

P t t





  

 

 






      

   


,  (3.6.3) 

0 0 0 0 0 0 0 0 0

0 0 0

1
( ) ( 1) ( 1)
0| 0| 0|

1
( 1)

( 1) 0|

( )( ) (1 )(1 )

(1 )( )

i
k k k

ni n i r nm n i r i m ni n i r i
m

k
n i n i r i

P P t g P t t

P t t

  

 


 







      

   


 for 2 ≤ i < α, (3.6.4) 

0 0 0 0 0 0 0 0 0

1
( ) ( 1) ( 1)

| 0| |
1

( )( ) (1 )k k k
nrr n i r nm n i r r m nrr n i r r

m
P P t g P t



 


 




      for α ≤ r < β, (3.6.5) 

and   

0 0 0 0 0 0 0 0 0

11
( ) ( 1) ( 1)

| 0| |
1 1

( ) 1 (1 )
m

k k k
n n i r nm n i r u n n i r

m u
P P t g P t



   
 

 

 

 
      

 
  .  (3.6.6) 

When n = 0 at the end of τk, the service of the customer who arrives in τ0 will have been 

completed in τk, and the sojourn time of the customer who arrives in τ0 is approximately 

given by k∆t.  
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For k = 1, 2, …, we can use (3.6.2) to (3.6.6) to compute 
0 0 0

( )
|

k
nir n i rP  from the values of 

the 
0 0 0

( 1)
' ' ' |
k

n i r n i rP   where n’ = n, n + 1. When the characteristics of the system at the end of τ0 

are given by n0, i0, and r0, the probability that the customer who arrives in τ0 has a sojourn 

time falling approximately in τk is given by  

0 0 0 0 0 0

1
( ) ( )

, , 0 0|
1

k k
n i r i n i r

i
S P





 .            (3.6.7) 

Thus the pdf of the sojourn time evaluated at k∆t is given by  

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( ) (0) (0)
, ,

1 ( , ) 1 ( , )

( )
N N

k
s n i r n i r n i r

n i r R n i r R
f k t S P P

   

   
     

   
            (3.6.8) 

where    0 0 0 0 0 0 0 0 0 0( , ) : 1 , 0 or ( , ) : ,R i r i r i r i r i          and N is a large positive 

integer. 

 

3.7 T-Cycle 
 

In [35], T-cycle is defined as the duration between two successive repair completions, 

and the length of the duration is denoted as T. The T-cycle can be divided into two time 

intervals of lengths T1 and T2 respectively: 

(a) The interval from the time immediately after a repair to the time when the system is 

sent for repair again; and 

(b) The interval from the beginning of a repair to the completion of the repair. 

The expected value of T when the system is in the stationary state is an important 

value in the determination of the average cost of maintaining the system. We may find the 

expected value of T via the expected values of T1 and T2:  

E[T] = E[T1] + E[T2].  

To find E[T1] and E[T2], we may first use the methods in Sections 3.7.1 to 3.7.2 to 
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find the distributions of T1 and T2.  

 

3.7.1 Distribution of T1 

When the system is in the stationary state, the probability of the event (0)
1F  that, 

(a) the queue length at the beginning of τ0 is n0; 

(b) the repair process is in state r0 at the beginning of τ0 where α ≤ r0 ≤ β; and 

(c) a completion of repair occurs in τ0; 

is given approximately by  

0 0 0 0

0 0

( )
J

n r r j r
r j

P t





 

 .            (3.7.1) 

When (0)
1F  has occurred, the queue length, service state and repair state at the end of τ0 will 

be n0, 1, and 0, respectively. Thus we may denote the probability of (0)
1F  by 

0

(0)
10nP . By using 

a method similar to that used in Section 3.4, it can be shown that  

0 0 0 0

( ) ( 1)
10| 10 10| 10(1 )k k

n n n nP P t   ,  (3.7.2) 
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
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

      for 2 ≤ i < α, (3.7.3) 
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m
P P t g
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
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



   for α ≤ r < β, (3.7.4) 

and   

0 0 0 0

11
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1 1
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m u
P P t g
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

 

 
   

 
  .  (3.7.5) 

Suppose at the end of τk, the service state is i ≥ α. The system will then be sent for repair, 

and the value of T1 is given approximately by k∆t.  

For k = 1, 2, …, we can use (3.7.2) to (3.7.5) to compute 
0 0

( )
| 10

k
n ir nP  from the values of 
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the 
0 0

( 1)
' '| 10

k
n i r nP  . When the event (0)

1F  has occurred, the probability that the server will 

deteriorate to a state which needs a repair at the end of τk is given approximately by 

0 0 0

( ) ( )
10 | 10

k k
n n rr n

r
U P





 .            (3.7.6) 

Thus the pdf, evaluated at k∆t, of the time elapsed before the system is sent for repair again 

is given by  

1 0 0 0

0 0

( ) (0) (0)
10 10 10

0 0

( )
N N

k
T n n n

n n
f k t U P P

 

   
     

   
   .         (3.7.7) 

 

3.7.2 Distribution of T2 

When the system is in the stationary state, the probability of the event (0)
2F  that, 

(a) the queue length at the beginning of τ0 is n0; 

(b) the service process is in state i0 at the beginning of τ0 where 1 ≤ i0 < α; and 

(c) a shock with magnitude x occurs in τ0 and deteriorates the server to state i* where 

0*i r  and 0r   ; 

is given approximately by  

0 0 0

(0)
n r rP   

 
0 0 0 0

0

1

0
1 0

( )( )
J

n i j r i
i j

P t g






 

  for α ≤ r0 < β 

. (3.7.8) 
 0 0

0 0

0

11

0
1 0 1

( ) 1
r iJ

n i j u
i j u

P t g



 

  

 
  

 
   for r0 = β 

We note that n0, r0, r0 appearing in the left term of (3.7.8) denote, respectively, the queue 

length, service state, and repair state at the end of τ0. These characteristics at the end of τ0 

are the consequences of the occurrence of the event (0)
2F . By using a method similar to that 

used in Section 3.4, it can be shown that  
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0 0 0 0 0 0 0 0 0 0 0

( ) ( 1)
10| | ( )k k

n n r r n r r n r r rP P t  , for α ≤ r0 ≤ β, (3.7.9) 

and   

0 0 0 0 0 0 0 0 0 0 0 0 0

( ) ( 1)
| | (1 )k k

n r r n r r n r r n r r rP P t    for α ≤ r0 ≤ β. (3.7.10) 

Suppose at the end of τk, the service state is i = 1. Then the repair process is completed, and 

the value of T2 is given approximately by k∆t. 

For k = 1, 2, …, we can use (3.7.9) and (3.7.10) to compute 
0 0 0 0

( )
|

k
n ir n r rP  from the values 

of the 
0 0 0 0

( 1)
' '|

k
n i r n r rP  . When the event (0)

2F  has occurred, the probability that the repair process 

is completed at the end of τk is given approximately by 

0 0 0 0 0 0 0

( ) ( )
10|

k k
n r r n n r rV P .          (3.7.11) 

Thus the pdf, evaluated at k∆t, of the time elapsed before the repair is completed is given 

by  

2 0 0 0 0 0 0 0 0 0

0 0 0 0

( ) (0) (0)

0 0

( )
N N

k
T n r r n r r n r r

n r n r
f k t V P P

 

    

   
     

   
   .      (3.7.12) 

 

3.8 Numerical Examples 

In this section, the deteriorating M/M/1 queue of which the repair time is 

exponentially distributed is first considered. Let β = 10, µi = 8 – 0.7(i – 1) for 1 ≤ i ≤ β, 

4  , and δr = 8 – 0.7(r – 1) for α ≤ r ≤ β, γ = 0.2, and gi = (1 – p)pi where p = 0.5. By 

using the proposed numerical method, the results for the stationary queue length 

distribution, mean queue length, mean sojourn time and expected T-cycle length are found. 

The results can also be computed by the matrix-geometric method (see [35]). Simulation is 

also carried out to verify the results obtained. Some of the results obtained are shown in 

Tables 3.8.1 and 3.8.2. 
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Table 3.8.1 
Comparison of stationary queue length distribution obtained by the proposed numerical 
method, those computed using matrix-geometric approach, and simulation procedure 

Maintenance level, α = 4 
[∆t = 10– 9 for queue length distribution, ∆t = 10– 3 for mean sojourn time and expected      

T-cycle length, λj = λ, J = 2, 500N  ]. 

Queue Length, n P(Queue Length = n) 
Numerical method Matrix-geometric approach Simulation 

0 0.425728 0.425728 0.424873 
1 0.232254 0.232254 0.232926 
2 0.130903 0.130903 0.130475 
3 0.076396 0.076396 0.075914 
4 0.046195 0.046195 0.046029 
5 0.028905 0.028905 0.029022 
6 0.018659 0.018659 0.018647 
7 0.012377 0.012377 0.012432 
8 0.008397 0.008397 0.008508 
9 0.005801 0.005801 0.006088 

10 0.004065 0.004065 0.004193 
… … … … 
50 1.33E-08 1.33E-08 0 

Mean Queue Length 1.551949 1.551949 1.563290 
Mean Sojourn Time 0.388057 0.387987 0.386802 

Expected T-Cycle Length 7.667340 7.667340 7.677104 
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Table 3.8.2 
Comparison of stationary queue length distribution obtained by the proposed numerical 
method, those computed using matrix-geometric approach, and simulation procedure 

Maintenance level, α = 9 
[∆t = 10– 9 for queue length distribution, ∆t = 10– 3 for mean sojourn time and expected      

T-cycle length, λj = λ, J = 2, 500N  ]. 

Queue Length, n P(Queue Length = n) 
Numerical method Matrix-geometric approach Simulation 

0 0.364463 0.364463 0.364076 
1 0.210426 0.210426 0.210650 
2 0.127473 0.127473 0.127984 
3 0.081149 0.081149 0.081064 
4 0.054163 0.054163 0.053839 
5 0.037704 0.037704 0.037416 
6 0.027188 0.027188 0.027079 
7 0.020169 0.020169 0.020306 
8 0.015300 0.015300 0.015604 
9 0.011812 0.011812 0.011993 

10 0.009247 0.009247 0.00958 
… … … … 
50 1.28E-05 1.28E-05 5.66E-06 

Mean Queue Length 2.400651 2.400652 2.386995 
Mean Sojourn Time 0.600273 0.600163 0.601444 

Expected T-Cycle Length 9.915090 9.915090 9.859619 
 

In Tables 3.8.1 and 3.8.2, the values for ∆t have been chosen so that the results based 

on the proposed numerical method are very close to those obtained using the matrix-

geometric approach. When compared to the simulation results, it is noted that the numerical 

results based on the above two methods are quite close to the simulation results.  

For the case of M/M/1 queue the numerical method is able to yield results which are 

comparable to the matrix-geometric approach in terms of accuracy. 

However the proposed numerical method appears to be more versatile than the matrix-

geometric approach as it can handle the following case in which the customer interarrival 

time has a gamma distribution which is a special case of the CAR distribution. Suppose the 

parameters of the gamma distribution are chosen to be (κ, θ) = (5/4, 2/15) and the other 

parameter settings are the same as those used earlier. The stationary queue length 
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distribution, mean queue length, mean sojourn time and expected T-cycle length are found. 

The results obtained are shown in Tables 3.8.3, 3.8.4 and 3.8.5. 

Table 3.8.3 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 2 
[∆t = 0.002 for queue length distribution, mean sojourn time and expected T-cycle length, 

400J  , N = 500]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.189619 0.189588 
1 0.162565 0.162583 
2 0.123777 0.123812 
3 0.095899 0.095885 
4 0.075452 0.075454 
5 0.060171 0.060137 
6 0.048551 0.048569 
7 0.039569 0.039519 
8 0.032525 0.032512 
9 0.026924 0.026929 

10 0.022419 0.022432 
… … … 
50 3.52E-05 3.61E-05 

Mean Queue Length 4.638622 4.643121 
Mean Sojourn Time 0.780414 0.778980 

Expected T-Cycle Length 5.372657 5.378967 
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Table 3.8.4 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 4 
[∆t = 0.002 for queue length distribution, mean sojourn time and expected T-cycle length, 

400J  , N = 500]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.164642 0.164453 
1 0.145296 0.145233 
2 0.114241 0.114174 
3 0.091437 0.091417 
4 0.074311 0.074265 
5 0.061173 0.061164 
6 0.050890 0.050881 
7 0.042699 0.042717 
8 0.036071 0.036104 
9 0.030636 0.030666 

10 0.026131 0.026119 
… … … 
50 7.69E-05 7.18E-05 

Mean Queue Length 5.502307 5.509168 
Mean Sojourn Time 0.925434 0.924170 

Expected T-Cycle Length 7.667340 7.674061 
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Table 3.8.5 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 9 
[∆t = 0.002 for queue length distribution, mean sojourn time and expected T-cycle length, 

400J  , N = 500]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.090909 0.090995 
1 0.082469 0.082612 
2 0.067268 0.067400 
3 0.056253 0.056379 
4 0.048082 0.048200 
5 0.041870 0.041962 
6 0.037028 0.037029 
7 0.033160 0.033190 
8 0.030000 0.029998 
9 0.027364 0.027395 

10 0.025128 0.025168 
… … … 
50 0.003383 0.003381 

Mean Queue Length 17.457620 17.378550 
Mean Sojourn Time 2.932430 2.985675 

Expected T-Cycle Length 9.915090 9.904495 
 

Tables 3.8.3, 3.8.4 and 3.8.5 show that when ∆t = 0.002, the results obtained using the 

proposed numerical method are close to the simulation results. The results based on the 

numerical method may be improved if the results are extrapolated based on a number of 

small values of ∆t. For example, to improve the accuracy of Pn, we may fit a low degree 

polynomial function to a number of points (∆t, Pn) obtained by varying the values of ∆t, 

and get an answer based on the polynomial for Pn when ∆t = 0. 

Next, the formula  

 ( ) [ ] [ ]H S RC C E N C E T                (3.8.1) 

given in [35] is used to compute the average cost per unit time ( )C   from the holding cost 

per customer per unit time HC , the expected queue length E[NS], the fixed repair cost 
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12RC  , and the expected length E[T] of the T-cycle. Figure 3.8.1 shows the average cost 

per unit time for the system at different values of the maintenance level α and holding cost 

HC . Figure 3.8.2 compares the average costs when the mean arrival times given by Table 

3.8.6 are used. The corresponding parameters of the gamma distributions are also shown in 

Table 3.8.6. In approximating the gamma distributions by the CAR distributions, we have 

made used of the values of ∆t and J given in Table 3.8.6. 

Table 3.8.6 
Parameters of gamma distribution and the values of ∆t and J used for obtaining CAR 

distribution. 

Mean arrival time, κθ 1/6 1/5 1/4 1/2 
Parameter vector, (κ, θ) (1.25, 1/7.5) (1.6, 0.125) (1.25, 0.2) (2.5, 0.2) 
Length of interval, ∆t 0.002 0.0022 0.003 0.005 
J 400 500 500 500 
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Figure 3.8.1 Average cost over maintenance level and unit holding cost                         

[(κ, θ) = (5/4, 2/15),    β = 10,    µi = 8 – 0.7(i – 1),    δr = 8 – 0.7(r – 1)   for            
α ≤ r ≤ β, γ = 0.2, gi = 0.5(i+1) and CR = 12]. 

 



                                                                         

60 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8 9 10

Av
er

ag
e 

C
os

t, 
C

(α
)

Maintenance Level, α

Mean arrival time = 1/6
Mean arrival time = 1/5
Mean arrival time = 1/4
Mean arrival time = 1/2

 
Figure 3.8.2 Average cost over maintenance level and mean of customer arrival 

distribution [β = 10, µi = 8 – 0.7(i – 1), δr = 8 – 0.7(r – 1) for α ≤ r ≤ β,         
γ = 0.2, gi = 0.5(i+1), CR = 12 and CH = 0.12]. 

 
Figure 3.8.1 shows that when the unit holding costs are 0.02, 0.06 and 0.12, the 

average cost is lowest when α = 7, 5 and 5, respectively. Thus the optimal maintenance 

level tends to decrease as the unit holding cost CH increases.  

Figure 3.8.2 reveals that when the mean arrival times are 1/6, 1/5, 1/4 and 1/2, the 

average cost is lowest when α = 5, 7, 8 and 10, respectively. Thus the optimal maintenance 

level increases as the mean of the arrival distribution increases.  

Tables 3.8.7, 3.8.8 and 3.8.9 show the results obtained when the parameters of the 

gamma distribution are (5, 1.25), (1.675, 2) and (2.5, 1.8), respectively.  
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Table 3.8.7 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 5 
[(κ, θ) = (5, 1.25), β = 8 , µi = 1 – 0.05(i – 1),  δr = 1 – 0.05(r – 1), γ = 0.1, gi = 0.5(i+1)] 

[∆t = 0.05 for queue length distribution, mean sojourn time and expected T-cycle length, 
400J  , N = 150]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.800391 0.800423 
1 0.190476 0.190449 
2 0.008578 0.008565 
3 5.19E-04 5.25E-04 
4 3.39E-05 3.48E-05 
5 2.25E-06 2.49E-06 
6 1.50E-07 8.10E-08 
7 1.01E-08 0 
8 6.74E-10 0 
9 4.52E-11 0 

10 3.03E-12 0 
… … … 
20 5.60E-24 0 

Mean Queue Length 0.209337 0.209306 
Mean Sojourn Time 1.314895 1.310193 

Expected T-Cycle Length 17.275573 17.271143 
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Table 3.8.8 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 6 
[(κ, θ) = (1.675, 2), β = 12 , µi = 1 – 0.05(i – 1),  δr = 1 – 0.05(r – 1), γ = 0.1, gi = 0.5(i+1)] 

[∆t = 0.0375 for queue length distribution, mean sojourn time and expected T-cycle length, 
400J  , N = 150]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.618381 0.618486 
1 0.261449 0.261437 
2 0.078249 0.078256 
3 0.026406 0.026352 
4 0.009591 0.009579 
5 0.003626 0.003616 
6 0.001399 0.001389 
7 5.46E-04 5.39E-04 
8 2.14E-04 2.12E-04 
9 8.42E-05 8.31E-05 

10 3.32E-05 3.23E-05 
… … … 
20 3.07E-09 0 

Mean Queue Length 0.568928 0.568496 
Mean Sojourn Time 1.930162 1.916403 

Expected T-Cycle Length 18.934896 18.927775 
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Table 3.8.9 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

Maintenance level, α = 8 
[(κ, θ) = (2.5, 1.8), β = 10 , µi = 0.7 – 0.06(i – 1),  δr = 0.7 – 0.06(i – 1), γ = 0.1, gi = 0.5(i+1)] 

[∆t = 0.0475 for queue length distribution, mean sojourn time and expected T-cycle length, 
400J  , N = 400]. 

Queue Length, n P(Queue Length = n) 
Numerical method Simulation 

0 0.436836 0.436990 
1 0.269865 0.269914 
2 0.120586 0.120621 
3 0.067156 0.067111 
4 0.040299 0.040257 
5 0.024750 0.024699 
6 0.015320 0.015286 
7 0.009513 0.009480 
8 0.005916 0.005886 
9 0.003682 0.003662 

10 0.002292 0.002292 
… … … 
20 2.02E-05 1.99E-05 

Mean Queue Length 1.307250 1.306171 
Mean Sojourn Time 5.921582 5.917252 

Expected T-Cycle Length 24.314795 24.322062 
 

3.9 Conclusion 

In this chapter, the multi-state deteriorating M/M/1 queue given in [35] is studied. The 

customer’s interarrival time distribution in the model is changed to one which has a fairly 

general distribution called the CAR distribution. The numerical method proposed in 

Chapter 2 has been successfully adapted for finding the stationary queue length 

distribution, stationary sojourn time distribution and expected T-cycle length. The results 

thus found are used to find an optimal maintenance policy such that the long run average 

cost is minimized. The numerical results obtained show that the optimal maintenance level 

increases as the unit holding cost CH decreases or when the mean of the arrival distribution 

increases. 
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CHAPTER 4 

MAINTENANCE OF A DETERIORATING QUEUE 
WITH NON-EXPONENTIAL SERVICE TIMES 

 
4.1 Introduction 

Consider again the multi-state M/M/1 queue studied in [35]. In Chapter 3, the 

distribution of the interarrival time in the above model is changed to one which has a 

constant asymptotic rate (CAR). In the present chapter, the distribution of the service time 

is instead changed to one which has a constant asymptotic rate. Then the resulting queue 

may be called an M/CAR/1 queue. In what follows, the deterioration of the CAR service 

time in the presence of a shock which occurs randomly with a random magnitude is 

described.  

As in Chapter 2, let g(t) be the probability density function (pdf) of the service time. 

When the service is in the initial state of “1”, the rate of the service time distribution 

evaluated at t = s∆t is given by  

1
( )

( )
s

s t

g s t

g u du
 







, s ≥ 1. 

When the service time has a CAR distribution, we may assume that there is a large positive 

integer I such that 

1 1limI ss
 


 .  

This means 1 1s I   for s ≥ I.   

When the server experiences a shock at time t = s∆t, the shock is assumed to have 

magnitude x with probability gx. The service state will then be changed from 1 to 
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min(1 , )i x   . When i ≥ α, the server will be sent for repair. However when i < α, we 

assume that the service rate will deteriorate from 1s  to ( )
1

i
is s f   where (1) 1f   and 

( ) 1if   for 2 ≤ i ≤ β is a constant. When the server who is in state i < α experiences yet 

another shock with magnitude x* at time t = s*∆t, it is assumed that the service state will 

change to i* = min(i + x*, β). When *i  , the server will be sent for repair. But when 

*i  , the service rate will deteriorate from *is  to ( *)
* * 1 *

i
i s s f  . The above description 

shows that the rate of the server depends on i (or i*) which will be increased to a larger 

value by a shock, and also on s (or s*) which will increase with time for s (or s*) < I and 

remain at I when s (or s*) ≥ I. We may thus use (i, s) (or (i*, s*)) to denote the overall state 

of the server. 

The adopted preventive maintenance policy requires the server to be repaired when 

the first component i of the service state (i, s) exceeds α – 1 where α ≤ β, and it is assumed 

that the repair time is exponentially distributed with rate δr where r = i is defined to be the 

repair state. The server does not provide service to the customers during a repair.  

 

4.2 Notations and Assumptions 

The following notations are used throughout Chapter 4: 

β largest possible service state 

α maintenance level for the system, α ≤ β 

µis service rate in state (i, s) of the service process 

δr repair rate in state r of the repair process 

λ arrival rate of the arrival process 

γ shock rate  



66 

 

n number of customers in the system  

gx probability that the random amount of the shock is x 

τk interval given by ((k – 1)∆t, k∆t], k = 0, 1, 2,… 

nk queue length of the system at the end of τk  

(ξk, ωk) state vector of the service process at the end of τk, {1,2,3,..., }k   and 

{0,1,2,3,..., }k I   

φk state number of the repair process at the end of τk, {0, , 1,..., }k      

ψk state number of the arrival process at the end of τk, {0,1}k   

nisrjP  the probability that at the end of τk, 

(a) the number of customers in the system is n (including the customer that is 

being served); 

(b) the state vector of the service process is (i, s);  

(c) the repair process is in state r; and 

(d) the arrival process is in state j  

Assumptions: 

1. The first component i of the service state vector (i, s) is ordered. The server has the 

largest service rate when i = 1.  

2. Repair is performed immediately on the system when the first component i of the 

service state vector (i, s) exceeds α – 1. 

3. Each successful repair brings the service state vector back to (1, 0). 

4. ( )lim k
nisrj nisrjk

P P


  exists. 
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4.3 Derivation of Equations for the Stationary Probabilities 

Given that a customer arrives at a time in τ0, we may define the state number ψk of the 

arrival process at the end of τk as  

ψk = 
 1, if k = 0 or the next customer arrives in τk, k ≥ 1. 

 0, if the next customer does not arrive in τk, k ≥ 1. 

Next, define the state vector of the service process at the end of τk as 

(ξk, ωk) = 

 (1, 0) , if k = 0 or a repair is completed in τk, k ≥ 1.  

 (i, 0) , if  

 the server is active and having the state vector 

( , min( 1, ))i k I  at the end of τk–1 for 1 ≤ i < α, 

and the service ends in τk, k ≥ 1; or 

 the server is idle and having the state vector   

(i, 0) at the end of τk–1 and the server remains 

idle in τk or a customer arrives in τk, k ≥ 1. 

 (i, k*), if the server is active and having the state vector 

( , min( 1, ))i k I  at the end of τk–1 for 1 ≤ i < α, 

and no shocks or no service completions occur in 

τk, k ≥ 1 where k* = min(k, I).    
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 (i + x, k*), if the server is active and having the state vector  

(i, min(k – 1, I)) at the end of τk–1 for 1 ≤ i < α, and 

a shock with magnitude x occurs in τk and 

deteriorates the first component of the service state 

vector to i + x < α, k ≥ 1, and k* = min(k, I). 

 (min((i + x), β), 0), if 

 the server is active and having the state vector 

(i, min(k – 1, I)) at the end of τk–1 for 1 ≤ i < α, 

and a shock with magnitude x occurs in τk and 

deteriorates the first component of the service 

state vector to i x   , k ≥ 1; or 

 the server is idle and having the state vector   

(i, 0) at the end of τk–1 1 ≤ i + x < α, and a 

shock with magnitude x occurs in τk and 

deteriorates the service state vector to    

(min((i + x), β), 0). 

 (r, 0), if the service state vector is (r, 0) at the end of τk–1 

for α ≤ r ≤ β, and no repair completions occur in τk, 

k ≥ 1.    
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The state number of the repair process at the end of τk is defined as 

φk = 

 0, if  

 k = 0; or  

 ξk–1 = i < α at the end of τk–1 and, no shocks occur in τk; 

or  

 ξk–1 = i < α at the end of τk–1 and, a shock with 

magnitude x < α – i occurs in τk, k ≥ 1; or 

 the repair state is r at the end of τk–1 for α ≤ r ≤ β and a 

repair completion occurs in τk, k ≥ 2. 

 min(i + x, β), if the service state vector is (i, min(k – 1, I)) at the end of 

τk–1 for 1 ≤ i < α, and a shock with magnitude x ≥ α – i 

occurs in τk, k ≥ 1. 

 r, if the repair state is r at the end of τk–1 for α ≤ r ≤ β and, no 

repair completions occur in τk, k ≥ 2.    

Let nk be the queue length at the end of τk and hk = (nk, ξk, ωk, φk, ψk). We may refer to 

hk as the vector of characteristics of the queue at the end of τk. 

Let ( )k
nisrjP be the probability that at the end of τk, the number of customers in the system 

is n (including the customer that is being served), the service process is in state (i, s), the 

repair process is in state r and the arrival process is in state j. Assume that  

( )lim k
nisrj nisrjk

P P


   

exists. To find the Pnisrj, we first make the following observations.  

Suppose at the end of τk–1, the queue length n is not empty (i.e. nk–1 = n ≥ 1), the server 

is in state (i, s – 1) where i < α, and the arrival process is in state j. In this case the server is 

still active and we define the repair state number to be zero. This means the vector of 
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characteristics at the end of τk–1 is given by hk–1 = (n, i, s – 1, 0, j). With this value of hk–1, 

only one of the following events can occur in τk:  

(a) A customer enters the system with the arrival rate λ, and at the end of τk, the vector 

of characteristics becomes hk = (n + 1, i, s*, 0, 1); 

(b) A customer leaves the system with the departure rate µis*, and hk = (n – 1, i, 0, 0, 0); 

(c) A shock with magnitude x occurs and deteriorates the service state to 

* min( , )i i x   , yielding hk = (n, i*, s*, r*, 0);    

(d) No customers enter or leave the system, and no shocks arrive, yielding                   

hk = (n, i, s*, 0, 0) 

where  

s* = 
 min(s, I), if 1 ≤ i + x < α, 

x ≥ 0. 
 0, if  i + x ≥ α, 

 and 

r* = 
 0, if 1 < i + x < α,  

x ≥ 1. 
 min(i + x, β), if  i + x ≥ α, 

However if at the end of τk–1, the system is empty (i.e. nk–1 = 0), the state number i of 

the idle server is less than α and no customer arrives in τk–1 with hk–1 = (0, i, 0, 0, 0), then 

one of the following events can occur in τk:  

(e) A customer enters the system with arrival rate λ, and hk = (1, i, 0, 0, 1); 

(f) A shock with magnitude x occurs and deteriorates the service state to i*, yielding  

hk = (0, i*, 0, r*, 0);  

(g) No customers enter the system and no shocks arrive, yielding hk = (0, i, 0, 0, 0). 

Suppose at the end of τk–1, the queue length is nk–1 = n ≥ 0, the repair process is in state 
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φk–1 = r ≥ α, the service state vector is (r, 0), and the arrival process is in state j, yielding  

hk–1 = (n, r, 0, r, j). Then one of the following events can occur in τk: 

(h) A customer enters the system with arrival rate λ, and hk = (n + 1, r, 0, r, 1); 

(i) A completion of repair occurs with the repair rate δr, bringing the service state 

vector back to (1, 0) and, yielding hk = (n, 1, 0, 0, 0);  

(j) No customers enter the system and no completion of repair occurs, yielding           

hk = (n, r, 0, r, 0). 

Figures 4.3.1 to 4.3.10 illustrate the occurrence of events (a)–(j) described above. In the 

figures, 

1) the number inside the rectangle denotes the queue length at the end of indicated 

small time interval. 

2) the number inside the ellipse denotes the state of the service process at the end of 

indicated small time interval. 

3) the number inside the triangle denotes the state of the repair process at the end of 

indicated small time interval. 

4) the number inside the circle denotes the state of the arrival process at the end of 

indicated small time interval. 

5) the symbol ‘x’ indicates that a customer enters the system at the indicated time. 

6) the symbol ‘↓’ indicates that a customer leaves the system at the indicated time. 

7) the symbol ‘ ’ indicates that a repair is completed at the indicated time. 

8) the symbol ‘ ’ indicates that a shock deteriorates the system at the indicated time. 
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Figure 4.3.1 Transitions of queue length and states when Event (a) occurs. 
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Figure 4.3.2 Transitions of queue length and states when Event (b) occurs. 

i, s–1

0

τk

k ∆t

Queue Size

Service State

Arrival State

Repair State r*

j

i*, s*

τk–1

(k–1)∆t

n n

0

 
Figure 4.3.3 Transitions of queue length and states when Event (c) occurs. 
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Figure 4.3.4 Transitions of queue length and states when Event (d) occurs. 
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Figure 4.3.5 Transitions of queue length and states when Event (e) occurs. 
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Figure 4.3.6 Transitions of queue length and states when Event (f) occurs. 
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Figure 4.3.7 Transitions of queue length and states when Event (g) occurs. 

r, 0

1

τk

k ∆t

Queue Size

Service State

Arrival State

Repair State r

j

r, 0

τk–1

(k–1)∆t

n n+1

r

 
Figure 4.3.8 Transitions of queue length and states when Event (h) occurs. 
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Figure 4.3.9 Transitions of queue length and states when Event (i) occurs. 
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Figure 4.3.10 Transitions of queue length and states when Event (j) occurs. 

 

By setting nk–1 = 0, (ξk–1, ωk–1) = (1, 0), φk–1 = 0 and ψk–1 = 0 and letting Event (e) 

occur in τk, we get 

( ) ( 1)
11001 01000 (1 )( )k kP P t t     .                                                           (4.3.1) 

When k→∞, we get from (4.3.1), 

11001 01000(1 )( )P P t t     .                                                                  (4.3.2) 

Similarly, with the aid of Figures 4.3.1 to 4.3.10, we can obtain the following equations. 
1

01000 01000 0 0 0 11 00 1( 1)
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11 00 1 11001 11
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       

  ,  (4.3.3) 
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

  
for 2 ≤ i < α, (4.3.4) 
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        for α ≤ r < β, (4.3.5) 
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( ) 1 (1 )(1 )
m

m u
m u

P P t g P t t


      
 

 

 
        

 
  . (4.3.6) 



76 

 

When n = 1, 

1 001 0 000(1 )( )i iP P t t    
 

for 1 ≤ i < α, (4.3.7) 

11100 11000 11 11001 11(1 )(1 )(1 ) (1 )(1 )(1 )P P t t t P t t t                   , (4.3.8) 

11 00 11( 1)00 1(1 )(1 )(1 )s s sP P t t t          for 2 ≤ s < I, (4.3.9) 

11 00 11( 1)00 1 11 00 1(1 )(1 )(1 ) (1 )(1 )(1 )I I I I IP P t t t P t t t                   ,  (4.3.10) 
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for 2 ≤ i < α, (4.3.11) 
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for 2 ≤ i < α, 2 ≤ s < I, (4.3.12) 
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for 2 ≤ i < α, (4.3.13) 
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 for α ≤ r < β, (4.3.14) 
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(4.3.15) 

1 0 1 0 0 0(1 )( )r r r r rP P t t      for α ≤ r ≤ β. (4.3.16) 
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For n ≥ 1,  
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 (4.3.17) 
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 for 2 ≤ i < α. (4.3.18) 

When n = 2, 
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 for 1 ≤ i < α, (4.3.19) 

2 01 1 ( 1)00(1 )(1 )( )is i s isP P t t t       

 

for 1 ≤ i < α, 2 ≤ s < I, (4.3.20) 
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For n ≥ 2,  
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for 2 ≤ i < α, (4.3.25) 
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for 2 ≤ i < α, 2 ≤ s < I, (4.3.26) 
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for 2 ≤ i < α, (4.3.27) 
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 (4.3.29) 
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for α ≤ r ≤ β. (4.3.30) 

For n ≥ 3,  
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for 1 ≤ i < α, (4.3.31) 
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for 1 ≤ i < α, 2 ≤ s < I, (4.3.32) 
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for 1 ≤ i < α. (4.3.33) 
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4.4 Stationary Queue Length Distribution 

Before solving (4.3.3) to (4.3.33) in Section 4.3 to obtain the stationary queue length 

distribution, we first let bisj, crj, disj, erj, fisj, hi, ur and visj be constants and introduce the 

following notations: 

1)     **** : 1 , 0 , 0, 0,1 or , 0, , 0,1n nisrjP P i s I r j i r s r j              ; 

2) Pn**0* = { Pnis0j: 1 ≤ i < α, 0 ≤ s ≤ I, j = 0,1}; 
 

3) (Pm****, P(m+1)****, P(m+2)**0*) denotes the set of equations of the form 

1 1 1 1 1 1

0 0 ( 1) 0 ( 1) 0
1 0 0 0 1 0 0 0

1 1
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0 0 0
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I I
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 
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  

 

   


; 

4)  (Pmisrj | P0i0*0, P(m+1)**0*) denotes the equation of the form 

1 1 1

0 000 0 0 0 ( 1) 0
1 1 0 0

I

misrj i i r r r isj m is j
i r i s j

P h P u P v P
 



 


    

      . 

With the above notations, (4.3.7) to (4.3.18) in the case when n = 1 can be represented 

as 

(P0****, P1****, P2**0*),                                (4.4.1) 

and (4.3.17) to (4.3.30) in the case when n = 2 may be represented as  

(P1****, P2****, P3**0*).                  (4.4.2) 

When n ≥ 3, (4.3.17) to (4.3.18) together with (4.3.22) to (4.3.33) can be represented as 

(P(n–1)****, Pn****, P(n+1)**0*).             (4.4.3) 

It can be shown that from the set of equations given by (4.4.1), we can get 

(P1isrj | P0i0*0, P2**0*)     for 0( , , , )i s r j R            (4.4.4) 

where  
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   0 ( , , , ) : 1 ,1 , 0, 0,1 ( , , , ) : , 0, , 0,1 .              R i s r j i s I r j i s r j i s r i j
 
By substituting the expression of the P1isrj given by (4.4.4) into (4.4.2), and solving for the 

P2isrj, we get  

(P2isrj | P0i0*0, P3**0*)    for 0( , , , )i s r j R .               (4.4.5) 

By substituting the expression of the P2isrj given by (4.4.5) into (4.4.3) when n = 3 and 

solving for the P3isrj, we get 

 (P3isrj | P0i0*0 , P4**0*)    for 0( , , , )i s r j R .          (4.4.6) 

Next for n ≥ 4, repeat the process of substituting the expression of the P(n–1)isrj given by 

(P(n–1)isrj | P0i0*0, Pn**0*)   for 0( , , , )i s r j R .            (4.4.7) 

into (4.4.3) and solving for the Pnisrj to get  

(Pnisrj | P0i0*0, P(n+1)**0*)   for 0( , , , )i s r j R .           (4.4.8) 

When n = N is large enough, we may set all the P(n+1)**0* in (4.4.8) to be zero and obtain 

(Pnisrj | P0i0*0)     for 0( , , , )i s r j R .         (4.4.9) 

For n = N – 1, N – 2,…,1, we may perform the substitution of (P(n+1)isrj | P0i0*0) into (4.4.8) 

and obtain   

(Pnisrj | P0i0*0)     for 0( , , , )i s r j R .         (4.4.10) 

When n = 1, (4.4.10) yields (P1isrj | P0i0*0). By using the results given by (P1isrj | P0i0*0) and 

the equations (4.3.3) to (4.3.6), we get the following system of 0N   equations: 

(P0i0*0 | P0i0*0)     for 1 ≤ i ≤ β.        (4.4.11) 

An inspection of (4.4.11) reveals that among the 0N  equations, only 0 1N   of them are 

linearly independent. Hence, we need to include another linearly independent equation so 

that the resulting system of 0N  equations has a unique solution. Equating the sum of the 

left sides of the equations given by (4.4.10) to the sum of the right sides of (4.4.10), we get 
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an equation of the form, 

 0 0 0
1

N

nisrj i i r
n i s j i

P k P


                    (4.4.12) 

where 1 ≤ i < α, r = 0 or i = r, α ≤ r ≤ β, and the ki are constants.  

As 
0

1
N

nisrj
n i s j

P


 , we get from (4.4.12) an equation involving only P0i0r0,          

1 ≤ i < α, r = 0 or i = r, α ≤ r ≤ β. This equation derived from (4.4.12), and 0 1N   

equations chosen from (4.4.11), constitute a system of 0N  equations which can be solved 

to yield numerical answers for P0i0r0, 1 ≤ i < α, r = 0 or i = r, α ≤ r ≤ β. Then using (4.4.10), 

we can get numerical answers for Pnisrj where 1n  , 1 , 0 , 0, 0,1i s I r j       or 

, 0, , 0,1i r s r j      . The stationary probability that the queue length is n is then 

given by the sum of the Pnisrj over all i, s, r and j, 

n nisrj
i s j

P P .                   (4.4.13) 

In Equation (4.4.13), the sum over the value of r is not included as the value of r depends 

on i as summarized below:  

r   
 0  for 1 ≤ i < α 

.  
 i  for α ≤ i ≤ β 

 

4.5 Sojourn Time Distribution 

Suppose the system is in the stationary state. Let t = 0 be a reference point in time 

under this condition of the system and assume that a customer arrives at t = 0. The 

distribution of the sojourn time of the arriving customer will be derived in this section.  

Let 
0 0 0 0

( )
|

k
nisr n i s rP  be the probability that at the end of τk, the service state vector is (i, s), 
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the repair state is r and there are n customers in the queue formed by the customers who 

arrive before t = 0 and still remain in the system, given that at the end of τ0, the queue 

length is n0, the service state vector is (i0, s0) and the repair state is r0. When the system is 

in the stationary state, we note the probability of the event E(0) that 

(i) the queue length at the beginning of τ0 is n0 – 1; 

(ii) the state vector of the service process is 0 0( , 1)i s   at the beginning of τ0;  

(iii) the repair process is in state r0 at the beginning of τ0; and 

(iv) a customer arrives in τ0; 

is given approximately by 

0 0 0 0 0 0 0 0( 1) ( 1) 0 ( 1) ( 1) 1( ) ( )n i s r n i s rP t P t       .                     (4.5.1) 

When E(0) has occurred, the queue length, service state vector and repair state at the end of 

τ0 will be n0, (i0, s0), and r0, respectively. Thus we may denote the probability of E(0) by 

0 0 0 0

(0)
n i s rP . By using a method similar to that used in Section 4.3, it can be shown that 

0 0 0 0 0 0 0 0

0 0 0 0

1
( ) ( 1)

0 00| 1 0| ( 1)
0

( 1)
1 0|

(1 )( )

(1 )( )

I
k k
i n i s r im n i s r i m

m
k

iI n i s r iI

P P t t

P t t

 

 









   

   


 for 1 ≤ i < α, (4.5.2) 

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

1
( ) ( 1) ( 1)
100| 0 | ( 1)1 0| 1( 1)

0

( 1)
( 1)1 0| 1

( ) (1 )( )

(1 )( )

I
k k k

n n i s r nm m n i s r m n m n i s r m
m m

k
n I n i s r I

P P t P t t

P t t





  

 


 

 
 




     

   

 
, (4.5.3) 

0 0 0 0 0 0 0 0

( ) ( 1)
1 0| 1( 1)0| 1(1 )(1 )k k

n s n i s r n s n i s r sP P t t 
      for 1 ≤ s < I, (4.5.4) 

0 0 0 0 0 0 0 0 0 0 0 0

( ) ( 1) ( 1)
1 0| 1( 1)0| 1 1 0| 1(1 )(1 ) (1 )(1 )k k k

n I n i s r n I n i s r I n I n i s r IP P t t P t t    
          , (4.5.5) 

0 0 0 0 0 0 0 0

0 0 0 0

1
( ) ( 1)
00| ( 1) 0| ( 1)

0
( 1)

( 1) 0|

(1 )( )

(1 )( )

I
k k

ni n i s r n im n i s r i m
m

k
n iI n i s r iI

P P t t

P t t

 

 



 






   

   


 

for 2 ≤ i < α, (4.5.6) 
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0 0 0 0 0 0 0 0

0 0 0 0

1
( ) ( 1)

0| ( 1)0|
1

( 1)
( 1)0|

( )( )

(1 )(1 )

i
k k

nis n i s r nm s n i s r i m
m

k
ni s n i s r is

P P t g

P t t



 



 






 

    


 for 2 ≤ i < α, 1 ≤ s < I , (4.5.7) 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1
( ) ( 1)

0| ( 1)0|
1

1
( 1) ( 1)

0| ( 1)0|
1
( 1)

0|

( )( )

( )( ) (1 )(1 )

(1 )(1 )

i
k k

niI n i s r nm I n i s r i m
m

i
k k

nmI n i s r i m ni I n i s r iI
m

k
niI n i s r iI

P P t g

P t g P t t

P t t



  

 



 




 

 




 

      

    



  for 2 ≤ i < α, (4.5.8) 

0 0 0 0 0 0 0 0 0 0 0 0

1
( ) ( 1) ( 1)

0 | 0| 0 |
1 0

( )( ) (1 )
I

k k k
nr r n i s r nmq n i s r r m nr r n i s r r

m q

P P t g P t


 


 


 

      for α ≤ r < β, (4.5.9) 

and  

0 0 0 0 0 0 0 0 0 0 0 0

11
( ) ( 1) ( 1)

0 | 0| 0 |
1 0 1

( ) 1 (1 )
mI

k k k
n n i s r nmq n i s r u n n i s r

m q u
P P t g P t



     
 

 

  

 
      

 
  . (4.5.10) 

When n = 0 at the end of τk, the service of the customer who arrives in τ0 will have been 

completed in τk, and the sojourn time of the customer who arrives in τ0 is given 

approximately by k∆t. 

For k = 1, 2, …, we can use (4.5.2) to (4.5.10) to compute 
0 0 0 0

( )
|

k
nisr n i s rP  from the values 

of the 
0 0 0 0

( 1)
' ' ' '|
k

n i s r n i s rP   where n’ = n, n + 1. When the characteristics of the system at the end of 

τ0 are given by n0, i0, s0, and r0, the probability that the customer who arrives in τ0 has a 

sojourn time falling approximately in τk is given by  

0 0 0 0 0 0 0 0

1
( ) ( )

, , , 0 00|
1

k k
n i s r i n i s r

i
S P





 .          (4.5.11)         

Thus the pdf of the sojourn time evaluated at k∆t is given by  

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

( ) (0) (0)
, , ,

1 ( , , ) 1 ( , , )

( )
N N

k
s n i s r n i s r n i s r

n i s r R n i s r R
f k t S P P

   

   
     

   
     ,    (4.5.12) 
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where    0 0 0 0 0 0 0 0 0 0 0 0 0 0( , , ) : 1 ,1 , 0 ( , , ) : , 0,R i s r i s I r i s r i s r i               

and N is a large positive integer. 

 

4.6 T-cycle 

Let T, T1 and T2 be as defined in Section 3.7. We may use a method similar to that in 

Section 3.7 to find the distributions of T1 and T2, and find the expected value of T via the 

expected values of T1 and T2:  

E[T] = E[T1] + E[T2]. 

 

4.6.1 Distribution of T1 

When the system is in the stationary state, the probability of the event (0)
1F  that, 

(a) the queue length at the beginning of τ0 is n0; 

(b) the repair process is in state r0 at the beginning of τ0 where α ≤ r0 ≤ β; and 

(c) a completion of repair occurs in τ0; 

is given approximately by  

 0 0 0 0 0 0 0 0

0

0 0 0 1( ) ( )n r r r n r r r
r

P t P t




 


   .          (4.6.1) 

When (0)
1F  has occurred, the queue length, service state vector and repair state at the end of 

τ0 will be n0, (1, 0), and 0, respectively. Thus we may denote the probability of (0)
1F  by 

0

(0)
100nP . By using a method similar to that used in Section 4.3, it can be shown that, 

when n0 = 0,  

0 0 0 0

( ) ( 1)
100| 100 100| 100(1 )k k

n n n nP P t   ,  (4.6.2) 
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0 0 0 0 0 0
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( ) ( 1) ( 1)

00| 100 00| 100 00| 100
1

( )( ) (1 )
i

k k k
n i n n m n i m n i n
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 
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for 2 ≤ i < α,  (4.6.3) 

0 0 0 0

1
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m
P P t g
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
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   for α ≤ r < β, (4.6.4) 

0 0 0 0
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For n0 ≥ 1,    

0 0 0 0

( ) ( 1)
1 0| 100 1( 1)0| 100(1 )k k

n s n n s nP P t
   , for 1 ≤ s < I, (4.6.6) 

0 0 0 0 0 0

( ) ( 1) ( 1)
1 0| 100 1( 1)0| 100 1 0| 100(1 ) (1 )k k k

n I n n I n n I nP P t P t  
      ,  (4.6.7) 
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10| 100 100| 100 1( )( )k k
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for 2 ≤ i < α,  (4.6.8) 
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for 2 ≤ i < α, 2 ≤ s < I, (4.6.9) 
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for 2 ≤ i < α, (4.6.10) 

0 0 0 0 0 0
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0 | 100 1 0| 100 1 0| 100
0 2 1

( )( ) ( )( )
I I

k k k
n r r n n q n r n mq n r m

q m q
P P t g P t g



 


 
 

  

      for α ≤ r < β, (4.6.11) 

and   

0 0 0 0 0 0

2 11
( ) ( 1) ( 1)

0 | 100 1 0| 100 0| 100
0 1 2 1 1

( ) 1 ( ) 1
mI I

k k k
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   
    . (4.6.12) 

Suppose at the end of τk, the first component i of the service state vector (i, s) exceeds 

1  . The system will then be sent for repair, and the value of T1 is given approximately by 

k∆t.  

For k = 1, 2, …, we can use (4.6.2) to (4.6.12) to compute 
0 0

( )
| 100

k
n isr nP  from the values of 
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the 
0 0

( 1)
' ' ' | 100

k
n i s r nP  . When the event (0)

1F  has occurred, the probability that the server will 

deteriorate to a state which needs a repair at the end of τk is given approximately by 

0 0 0

( ) ( )
100 0 | 100

k k
n n r r n

r
U P





 .          (4.6.13) 

Thus the pdf, evaluated at k∆t, of the time elapsed before the system is sent for repair again 

is given by  

1 0 0 0

0 0

( ) (0) (0)
100 100 100

0 0

( )
N N

k
T n n n

n n
f k t U P P

 

   
     
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   .       (4.6.14) 

   

4.6.2 Distribution of T2 

When the system is in the stationary state, the probability of the event (0)
2F  that, 

(a) the queue length at the beginning of τ0 is n0; 

(b) the service process is in state (i0, s0) at the beginning of τ0 where 01  i ,             

0 ≤ s0 ≤ I; and 

(c) a shock with magnitude x occurs in τ0 and deteriorates the first component i0 of the 

service state vector to state i* where 0*i r  and 0r   ; 

is given approximately by  

0 0 0

(0)
0n r rP   

  0 0 0 0 0 0 0 0
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1
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. (4.6.15) 
  
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 
   for r0 = β 

We note that n0, (r0, 0), r0 appearing in the left term of (4.6.15) denote, respectively, the 

queue length, service state vector, and repair state at the end of τ0. These characteristics at 

the end of τ0 are the consequences of the occurrence of the event (0)
2F . By using a method 
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similar to that used in Section 4.3, it can be shown that  

0 0 0 0 0 0 0 0 0 0 0

( ) ( 1)
100| 0 0 | 0 ( )k k

n n r r n r r n r r rP P t   for α ≤ r0 ≤ β, (4.6.16) 

and   
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0 | 0 0 | 0 (1 )k k

n r r n r r n r r n r r rP P t    for α ≤ r0 ≤ β. (4.6.17) 

Suppose at the end of τk, the first component of the service state vector (i, s) is i = 1. Then 

the repair process is completed, and the value of T2 is given approximately by k∆t. 

For k = 1, 2, …, we can use (4.6.16) and (4.6.17) to compute 
0 0 0 0

( )
| 0

k
n isr n r rP  from the 

values of the 
0 0 0 0

( 1)
' ' '| 0

k
n i s r n r rP  . When the event (0)

2F  has occurred, the probability that the repair 

process is completed at the end of τk is given approximately by 

0 0 0 0 0 0 0

( ) ( )
0 100| 0

k k
n r r n n r rV P .          (4.6.18) 

Thus the pdf, evaluated at k∆t, of the time elapsed before the repair is completed is given 

by  
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   .    (4.6.19) 

 

4.7 Numerical Examples 

Consider again the case of a deteriorating M/M/1 queue with the same set of 

parameters as specified in the first example of Section 3.8: β = 10, µi = 8 – 0.7(i – 1) for 

1 i    and I = 3, λ = 4, δr = 8 – 0.7(r – 1) for α ≤ r ≤ β, γ = 0.2, and gi = (1 – p)pi where         

p = 0.5. By using the proposed numerical method, the results for the stationary queue 

length distribution, mean queue length, mean sojourn time and expected T-cycle length are 

found. We may compare the results thus obtained with those computed by the method used 
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in [35]. Simulation is again carried out to verify the results obtained. Some of the results 

obtained are shown in Tables 4.7.1 and 4.7.2.  

Table 4.7.1 
Comparison of stationary queue length distribution obtained by the proposed numerical 
method, those computed using matrix-geometric approach, and simulation procedure 

Maintenance level, α = 4 
[∆t = 10– 9 for queue length distribution, ∆t = 10– 3 for mean sojourn time and expected       

T-cycle length, µis = µi, I = 3, 500N  ]. 

Queue Length, n 
P(Queue Length = n) 

Numerical method Matrix-geometric 
approach Simulation 

0 0.425728 0.425728 0.427626 
1 0.232254 0.232254 0.233299 
2 0.130903 0.130903 0.130803 
3 0.076396 0.076396 0.075977 
4 0.046195 0.046195 0.045670 
5 0.028905 0.028905 0.028482 
6 0.018659 0.018659 0.018256 
7 0.012377 0.012377 0.012109 
8 0.008397 0.008397 0.008226 
9 0.005801 0.005801 0.005662 

10 0.004065 0.004065 0.003945 
… … … … 
50 1.33E-08 1.33E-08 0 

Mean Queue Length 1.551949 1.551949 1.533833 
Mean Sojourn Time 0.388057 0.387987 0.385118 

Expected T-Cycle Length 7.667336 7.667340 7.692020 
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Table 4.7.2 
Comparison of stationary queue length distribution obtained by the proposed numerical 
method, those computed using matrix-geometric approach, and simulation procedure 

Maintenance level, α = 9 
[∆t = 10– 9 for queue length distribution, ∆t = 10– 3 for mean sojourn time and expected       

T-cycle length, µis = µi, I = 3, 500N  ]. 

Queue Length, n 
P(Queue Length = n) 

Numerical method Matrix-geometric 
approach Simulation 

0 0.364463 0.364463 0.365332 
1 0.210426 0.210426 0.211206 
2 0.127473 0.127473 0.127579 
3 0.081149 0.081149 0.081466 
4 0.054163 0.054163 0.054116 
5 0.037704 0.037704 0.037418 
6 0.027188 0.027188 0.026955 
7 0.020169 0.020169 0.019792 
8 0.015300 0.015300 0.015095 
9 0.011812 0.011812 0.011594 

10 0.009247 0.009247 0.009100 
… … … … 
50 1.28E-05 1.28E-05 5.82E-06 

Mean Queue Length 2.400651 2.400652 2.375517 
Mean Sojourn Time 0.600259 0.600163 0.599452 

Expected T-Cycle Length 9.914940 9.915090 9.909612 
 

Tables 4.7.1 and 4.7.2 show that the results based on the proposed numerical method 

are very close to those obtained using the matrix-geometric approach and the simulation 

procedure.  

Next, consider an example in which the service time has a gamma distribution with 

parameter (κ, θ) = (5/4, 2/25) and mean service time, E(Sm) = 0.1. Suppose the other 

parameter settings are, β = 10, ( ) (11 ) 10if i   for 1 ≤ i ≤ β, λ = 6, δr = r for α ≤ r ≤ β, 

0.08  , and gi = (1 – p)pi where p = 0.6. The results for the stationary queue length 

distribution, mean queue length, mean sojourn time and expected T-cycle length are 

computed using the proposed numerical method. The results obtained are shown in Table 

4.7.3.  
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Table 4.7.3 
Comparison of stationary queue length distribution computed using the proposed numerical 

method, and simulation procedure 

[∆t = 0.0015 for queue length distribution, mean sojourn time and expected T-cycle length, 
400I  , N = 300]. 

Maintenance Level, α α = 4  α = 6 

Queue Length, n 
P(Queue Length = n)  P(Queue Length = n) 

Numerical 
method Simulation  Numerical 

method Simulation 

0 0.346995 0.347099  0.306561 0.305688 
1 0.230229 0.230297  0.210037 0.209710 
2 0.142501 0.142571  0.135975 0.135877 
3 0.088364 0.088324  0.089217 0.089100 
4 0.055801 0.055698  0.060258 0.060191 
5 0.036155 0.036009  0.042104 0.042067 
6 0.024145 0.024128  0.030453 0.030420 
7 0.016664 0.016676  0.022753 0.022827 
8 0.011897 0.011903  0.017498 0.017626 
9 0.008777 0.008754  0.013791 0.013884 
10 0.006675 0.006678  0.306561 0.305688 
… … …  … … 
50 1.34E-05 1.19E-05  2.96E-05 3.12E-05 

Mean Queue Length 2.222147 2.221585  2.951975 2.969179 
Mean Sojourn Time 0.374662 0.370374  0.496362 0.497001 

Expected T-Cycle Length 18.682908 18.683166  22.688576 22.627509 
 
Table 4.7.3 shows that when ∆t = 0.0015, the results obtained using the proposed 

numerical method are close to the simulation results. The results based on the numerical 

method may be improved by using the extrapolation procedure described in Section 2.5.  

Next use the formula in (3.8.1) to compute the average cost per unit time, ( )C  . 

Figure 4.7.1 shows the average cost per unit time for the system at different values of the 

maintenance level α and holding cost HC . In Figure 4.7.2, the average costs are compared 

when the arrival rates are given by λ = 2, 4, 6 and fixed repair cost 12RC  , respectively.  
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Figure 4.7.1 Average cost over maintenance level and unit holding cost                         

[(κ, θ) = (5/4, 2/25), β = 10, ( ) (11 ) 10if i  , λ = 6, δr = r for α ≤ r ≤ β,          
γ = 0.08, (1 ) i

ig p p   where p = 0.6 and CR = 12]. 
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Figure 4.7.2 Average cost over maintenance level and arrival rate [(κ, θ) = (5/4, 2/25),      

β = 10, ( ) (11 ) 10if i  , λ = 6, δr = r for α ≤ r ≤ β, γ = 0.08, (1 ) i
ig p p   

where p = 0.6, CR = 12 and CH = 0.12]. 
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Figure 4.7.1 shows that when the unit holding costs are 0.02, 0.07 and 0.12, the 

average cost is lowest when α = 7, 6 and 5, respectively. Thus the optimal maintenance 

level decreases as the unit holding cost CH increases.  

Figure 4.7.2 reveals that when the arrival rates are 2, 4, and 6, the average cost is 

lowest when α = 10, 7 and 5, respectively. Thus the optimal maintenance level increases as 

the mean of the arrival distribution increases. 

 

4.8 Conclusion 

In this chapter, the multi-state deteriorating single server queue given in [35] is 

studied again by assuming that the service time has a CAR distribution. The basic 

characteristics of the queue are evaluated and the optimal maintenance policy for the 

system is determined. Although the service time distribution used in this chapter is fairly 

general, the model may still be improved further. For example, we may take into account 

the deterioration due to usage by introducing a correlation structure between two 

consecutive service times. 
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CONCLUDING REMARKS 

The thesis introduces a new methodology for finding the stationary queue length 

distribution in the one-server queue in which the distributions of the service time and 

interarrival time have respectively a fairly general distribution called the CAR distribution. 

It is shown that the proposed methodology can also be used to find the stationary waiting 

time distribution. 

The proposed numerical method can be adapted to investigate a multi-state 

deteriorating single server queue in which the service rate deteriorates due to random 

shocks, and the interarrival time or service time in the queue is assumed to have a CAR 

distribution. Approximate results for the stationary queue length distribution, stationary 

sojourn time distribution and expected T-cycle length are found. More accurate results can 

be obtained by using a smaller value of the length ∆t of the time interval, and the results 

can be improved by using extrapolation. It would be theoretically possible to apply the 

method to the multi-state deteriorating single server queue in which both the service time 

and interarrival time distributions have respectively a constant asymptotic rate. However 

we may encounter dimensionality problem as the procedure involves the solution of a large 

number of equations.    

The proposed numerical method may also be used to study other more general 

queueing systems such as a system involving two or more queues, or a system of which the 

consecutive service times are correlated.  
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