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CHAPTER 1 

 

INTRODUCTION 

 

As a consequence of the antisymmetric properties of a fermion system, the 

expectation value of any two-body operator yields two terms: the direct term and the 

exchange term. This is the case for example of the Coulomb interaction. The resulting 

terms are called the direct Coulomb and the exchange Coulomb energies respectively. 

The computation of the direct term is relatively easy and straightforward while the 

exchange term is complicated by the presence of a non-local density term. One can 

compute the exchange term through an exact calculation which can be quite tedious and 

time consuming. In order to simplify the calculation, an approximation (dubbed as the 

Slater approximation) was used to calculate the exchange term. The Slater 

approximation has been employed in mean field approaches such as Hartree-Fock (see 

e.g. Vautherin and Brink (1972)) and Hartree-Fock-Bogoliubov (see e.g. Decharge and 

Gogny (1980)) calculations as well as in the density functional approach (see e.g. 

Bulgac and Shaginyan (1996)). It has been shown to be a reasonable approximation in 

some limited cases (Titin-Schnaider and Quentin, 1974 and Skalski, 2000). A more 

general study of the validity of this approximation is the purpose of this study. 

 

In the Slater approximation, the Slater determinant which describes the nucleons 

inside the nucleus is written in terms of plane waves. As is well known, upon using 

plane waves the probability of finding a nucleon (in this case a proton) is equal for any 

position in space. The first study of the validity of different approximations used to 

calculate the exchange Coulomb energy was performed by Titin-Schnaider and Quentin 
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(1974) using the SIII Skyrme parametrization for the effective nucleon-nucleon strong 

interaction. They had calculated the error associated with these approximations for the 

ground state solutions for light nuclei (
16

O to 
56

Ni) mainly of deformed shapes. The 

results for the Slater approximation showed that the validity of the Slater approximation 

will be maximal when the relevance of a constant density ansatz will be expected. This 

consideration leads to the conclusion that this validity should be better in heavy than in 

light nuclei since in the former most of the nuclear matter is located in the saturated part 

of the density profile. Actually it showed a decreasing pattern as a function of mass 

number, A which was almost stabilized to about 5% for the last four heavier nuclei 

(Titin-Schnaider and Quentin, 1974). The same type of reasoning should imply that 

upon increasing the nuclear surface (as in extremely deformed nuclei) this validity 

should be arguably, less guaranteed. A more recent study having the same goal has been 

performed by Skalski (2000) who has calculated the differences in the exchange 

Coulomb energy for a wide range of only spherical nuclei starting from light to 

superheavy ones. The SkP and SkM* parameterizations were employed in the 

calculation in which the difference in the exchange Coulomb energy was found to be 

nearly identical for the two different sets of Skyrme parameters (Skalski, 2000) even 

though the single particle energies was found to be not the same. Incidentally, the 

exchange Coulomb energies for 
16

O and 
40

Ca did compare very well with those obtained 

in Titin-Schnaider and Quentin (1974) with the SIII Skyrme interaction. These findings 

prompted the author to suggest that the results are independent on the choice of realistic 

Skyrme force parameters being used in the Hartree-Fock calculation. 

 

 The next step to take is thus to verify the validity of the Slater approximation 

beyond the closed shells yet first preserving the spherical shape to disentangle the 

nucleon number effect from any deformation effects, even though, as well known, these 
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nuclei should be generally deformed in their ground states. It is the main goal of this 

study. Since the Coulomb interaction acts only between protons, it is safe to assume that 

the addition of neutrons into the nucleus (as in an isotopic series) would not affect much 

the order of magnitude of the correction of the exchange Coulomb energy. We then 

mostly look for the effect brought upon by the addition of extra protons into the nuclear 

system which can be made by studying different isotonic series. From another point of 

view, we have studied for a fixed proton number how the considered error would vary 

with moderately large deformations which is another way to change the single particle 

level density with proton valence configuration ranging between closed and open shell 

situation. 

 

 Beyond that study, it is also interesting to look into the validity of Slater 

approximation as nuclei undergo a large scale deformation process as e.g. in fission or 

fusion. Before a nucleus breaks apart through fission for instance, the shape of the 

nucleus will be distorted away from a compact almost spherical shape where the surface 

is minimal at constant volume. Then one may wonder how good the Slater 

approximation is, immediately after the scission point in which the nucleus breaks into 

two smaller fragments. In view of this, the effect of nuclear deformation onto the 

exchange Coulomb energy would therefore be very much interesting. Similar studies 

could be interesting when extending them to a system of two colliding nuclei before 

reaching the top of the fission barrier. 

 

 In Chapter 2 of this dissertation, we shall look into some theoretical aspects of 

the present work. Notably, the discussion will focus a) on the Hartree-Fock method 

which is the backbone of the microscopic method used in the present work, b) a 

discussion of the Slater approximation. The phenomenological Skyrme interaction used 
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to describe the nucleon-nucleon interaction and the Bardeen-Cooper-Schrieffer (BCS) 

approach to treat pairing correlations will be also discussed. Chapter 3 shall deal with 

the method of solving the Hartree-Fock equations through the computation of the 

various scalar functions entering the Hartee-Fock equations and of relevant matrix 

elements. Then, the results of the calculations will be presented in Chapter 4. In the 

present work, the focus is on heavy nuclei as suggested by the essay title. Nevertheless, 

the present study also applies very well to medium heavy nuclei which results have 

been included herein. Finally, we shall provide conclusions of the present work in 

Chapter 5. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 

 

2.1.1 NUCLEON-NUCLEON INTERACTION IN FREE SPACE 

Two nucleons interact with one another through a nucleon-nucleon interaction which 

can be described by an attractive plus short range repulsive potential. There are three 

levels of invariance of the nucleon-nucleon interaction in the strong interaction sector 

with respect to changing the nucleon charge which are in decreasing order of 

stringency: 

 

 Charge independence (i.e. neutron-neutron, neutron-proton and proton-proton 

interactions are the same. Since neutron-proton interaction belongs to the T=0 

and T=1 subspaces where T is the total isospin quantum number, then it means 

in particular that the nucleon-nucleon interaction is the same in the two 

subspaces.) 

 Isospin invariance (i.e. for rotations in the isospin space, the interaction may 

depend on T but not on    (third component of the total isospin) 

 Charge symmetry (i.e. when changing neutron-neutron into proton-proton 

interaction or in other words the       components of the nucleon-nucleon 

interaction are similar.) 

 

We will adopt here the isospin invariance for the Hartree-Fock part of the approach 

(as in usual Skyrme forces) and only the charge symmetry for the treatment of pairing 

correlations. Apart from its repulsive core part, the nucleon-nucleon interaction is a 
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somewhat short range (~ 1 fm) attractive interaction. Such an interaction is only valid 

for free nucleons, where the two nucleons form an isolated system devoid of any other 

forces at work. However, the correct description of nucleon-nucleon interaction in a 

nuclear medium is complicated by the presence of other neighbouring nucleons.  

 

 To account for the presence of other nucleons, an effective potential, Veff (r1,r2) 

is used. It describes the interaction between two nucleons at positions r1 and r2 while 

summing up the averaged contributions from other surrounding nucleons. There are two 

schools of thoughts to describe the effective interaction. On one hand, one has described 

it from an approximate account of free two-body nucleon-nucleon interactions in a more 

or less sophisticated many-body approach. While such approach is fundamentally 

sound, the actual process is nevertheless lengthy and time consuming if at all possible. 

On the other hand, one has undertaken a phenomenological approach whereby the 

effective interaction is described by some a priori mathematical expression with some 

adjustable parameters that are fitted to experimental data. The advantages and 

weaknesses of the phenomenological approach lie in its mathematical simplicity. 

Nevertheless, it has allowed to reproduce some experimental data quite satisfactory. 

Much work has been done in the development of phenomenological interactions giving 

rise to many types of phenomenological effective interactions (see e.g. Ring and Schuck 

(1980)) which were employed in the study of nuclear properties. 

 

2.1.2 PHENOMENOLOGICAL SKYRME INTERACTIONS 

One of the examples of phenomenological interactions is the so called Skyrme 

interaction. The application of Skyrme interaction in nuclear structure calculation was 

first attempted around the 1970’s in studying the ground state of spherical and deformed 
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nuclei, as well as fission barriers of heavy nuclei. Skyrme initially proposed the average 

potential as a sum of two-body and three-body interaction (Skyrme, 1956): 

 

                
   

 
              

   
 
   

 
  (1) 

 

The choice of the indices is made to avoid double counting the same interaction. The 

mathematical form of the local two-body interaction is such that its    representation is: 

                    
             

 

 
              

                 

                            
                             (2) 

 

while the three-body term is given by: 

 

                                       (3) 

 

The momentum operator     acts on the right and is defined as: 

 

     
 

  
              (4) 

 

while the adjoint operator of    ,      
 
denoted here as        acts on the left: 

 

         
 

  
              (5) 

 

Here, the terms t0, t1, t2, t3, x0 and Wo are parameters which are obtained by fitting 

nuclear experimental data and P
σ
 refers to the spin-exchange operator.  
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Further, one has rather considered the Skyrme force as purely a two-body interaction 

with the three-body interaction giving rise to a density dependence force which is 

written for even-even nuclei as (Vautherin and Brink, 1972): 

 

            
 

 
                  

     

 
  (6) 

 

The two approaches are consistent provided   is even with respect to time-reversal. 

 

2.1.3  CHOICE OF A SKYRME PARAMETERISATION 

As mentioned earlier, the parameters in the Skyrme force are fitted to some 

experimental results. Many sets of parameters have been obtained and some appear to 

be better suited for some given nuclear properties. In the present study, the SkM* 

parameterization is chosen as it is shown to give a good description of nucleus in fission 

process (somewhat better as compared to other sets of parameters (Bonneau, Quentin 

and Samsoen, 2004)). Historically, the SkM* set by Bartel et al. (1982) is an 

improvement over the earlier SkM set (Krivine, Treiner and Bihigas, 1980) and was 

able to describe correctly the fission barrier of 
240

Pu. The values for the parameters 

within the SkM* set are given as below: 
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2.2  COULOMB INTERACTION AMONG PROTONS 

 

2.2.1  Importance of Coulomb interaction 

In addition to the nucleon-nucleon interaction, protons also interact among themselves 

through the long range Coulomb interaction. The Coulomb interaction plays a very 

important role in the study of nuclear properties. One of the first effects of the Coulomb 

energy can be seen in the existence of a “valley” of stable nuclei deviating from the 

N=Z line. The nuclear strong interaction up to a very good approximation is charge 

independent in that the interactions between proton-proton, neutron-neutron and proton-

neutron are the same. Through the Pauli principle among nuclei composed of a given 

(even) number of nucleons (isobars) the one with the same amount of protons and 

neutrons will be preferred (through maximizing the exchange free interaction terms). 

However, moving towards heavier stable nuclei they are composed of more neutrons 

than protons. This is because even though one looses in them some energy due the loss 

in the symmetry energy, one gains more by reducing the repulsive Coulomb energy. 

This means that some protons are “converted” into neutrons leaving the nucleus with a 

lesser number of protons and thus a lesser repulsion due to Coulomb interaction. 

Therefore, a stable heavy nucleus has more neutrons than protons. 

 

 Coulomb interaction also plays some role in limiting the size of the nucleus. 

From the semi-empirical mass formula, one writes the total binding energy, BE, as (see 

e.g. Preston and Bhaduri (1975)): 

 

                
           

     (7) 
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The terms on the right hand side of the equation correspond to the volume, surface and 

Coulomb energy terms respectively. If a nucleus has a large size assuming that the 

number of protons is about half or somewhat less than the total number of nucleons: 

 

   
 

 
  (8) 

 

then, the Coulomb term in the semi-empirical mass formula would vary roughly as  
 

  , 

thus varying more rapidly with A than the leading linear volume term.  Assuming 

that a nucleus has a constant volume, there will be only two dominant energy terms that 

vary with deformation. They are the surface energy term and the Coulomb energy term. 

The surface energy term corrects for the volume term since nucleons near the surface 

interact with less nucleons compared to those near the inner part of the nucleus. Being a 

term reflecting the lack of binding, it is clearly positive. The expression for the surface 

energy, ES term is: 

       (9) 

 

with S and T being the nuclear surface and surface tension respectively. For a spherical 

nucleus           with      
 

   so that: 

 

        
   

 
      

    (10) 

 

The coefficient aS is given (neglecting for the sake of simplicity of the present 

exposition the corresponding symmetry energy) by (see e.g. Preston and Bhaduri 

(1975)): 

              (11) 
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The surface energy term varies proportionally to the surface area as shown in equation 

(9). Therefore, as a nucleus become more and more deformed from a spherical shape the 

surface area, and thus its surface energy, increases resulting in a higher energy and thus 

in a lower total binding energy (defined as positive quantity). 

 

On the contrary, the Coulomb energy results in an opposite effect to the total 

binding energy with regards to deformation. For a spherically charged nucleus, the 

expression for the Coulomb energy, EC for a spherical nucleus: 

 

    
 

 

     

 
 

 

 

     

   
 

  
   

  

 
 

  
 (12) 

 

which is inversely proportional to the radius, R. The coefficient    has the value of ~ 

0.717 MeV (see e.g. Preston and Bhaduri (1975)). The radius of a nucleus is minimal 

for a spherical shape nucleus and increases for a deformed shape. Therefore, as the 

shape of the nucleus grows in deformation the correction to the total binding energy due 

to the Coulomb energy (which is roughly inversely proportional to the global size) 

decreases which leads to more binding. 

 

 The possibility of a nucleus to undergo the fission process can then be viewed as 

resulting from the competition between the surface energy which decreases the binding 

energy and the Coulomb energy which increases the binding energy as the nucleus 

becomes more deformed. The radius of a deformed nucleus can be expanded in term of 

the spherical harmonics such that (see e.g. Irvine (1972) and Nilsson and Ragnarsson 

(1995)): 

 

                     
           (13) 
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where       is a deformation dependent radius (placed here to conserve the volume) 

while   and   are the azimuthal and polar angles of the cylindrical coordinates 

respectively. For a small deformation, the quadrupole (   ) term is found to be more 

important and since we are looking at axially symmetrical deformations, the expansion 

is taken only in the m=0 case. We then have: 

 

                             (14) 

 

Using this deformation dependent radius, the surface and Coulomb energies for a small 

distortion of the nuclear shape are given by the relation (see e.g. Nilsson and 

Ragnarsson (1995)): 

 

       
   

 

 
  

  
 

   
  

     (15) 

 

       
   

 

 
  

  
 

   
  

   (16) 

 

with    
 and    

 being the surface and Coulomb energy of an undistorted (spherical) 

nucleus. With these relations, one can easily see that the surface energy increases while 

Coulomb energy decreases, with deformation. This is clearly demonstrated in Figure 2.1 

which gives the plot of the Coulomb, surface and the net deformation energies (in MeV) 

as a function of quadrupole deformation,   . The near total cancellation of the surface 

and Coulomb energy makes it important to correctly calculate both contributions so as 

to obtain accurate deformation energy. 
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Figure 2.1: The surface and Coulomb energy as a function of quadrupole deformation 

for 
252

Cf. The near cancellation of both terms give rise to a relatively small 

deformation energy (taken from R. Vandenbosch and J. R. Huizenga 

(1973)) 

 

For a nucleus to be stable against small deformation, the change in the Coulomb energy 

has to be smaller than the change in the surface energy, so that: 

 

 
   

   
   (17) 

 

By introducing the fissility parameter, X given by: 

 

   
  

   
 (18) 

 

one can write the total deformation energy as: 
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     (19) 

 

The equation above shows that for    , the deformation energy is increasing around 

     which means that there is a fission barrier for elements beyond iron that the 

nucleus needs to overcome before fission process could occur. On the other hand, the 

deformation energy has a downsloping character when     even for small 

deformation (small value of   ). Thus, the nucleus is not stable against small 

deformation if the fissility parameter is greater than unity.  

 

 From the definition of the fissility parameter, one sees that: 

 

   
   

     
  

 
  

 
  (20) 

 

The heaviest nucleus that exists naturally, which is 
238

U, has a fissility parameter 

     . This is a typical value for nuclei with a mass number, A=230-240. One can see 

from equation (20) that spontaneous fission is more likely to occur for nuclei with a 

large number of protons for a given total number of nucleons A.  

 

The two physical consequences discussed above highlights the importance of the 

Coulomb interaction on nuclear structure. It is therefore imperative that the Coulomb 

interaction is treated properly in most nuclear properties calculations. 
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2.2.2  Derivation of the direct and exchange Coulomb contribution  

For any two-body interaction (in the present case the Coulomb interaction) described by 

the operator    . The expectation value of a two-body interaction in a Slater 

determinant,      is equal to: 

 

           
 

 
              

    (21) 

 

with                    resulting from the anti symmetric properties of the state     . 

Writing the above equation in coordinate space and for a local two-body interaction, one 

would get: 

 

 
 

 
              

    
 

 
                                          

   
                (22) 

 

Expanding the equation further with           
                     , one gets: 

 

       
 

 
                         

 
           

      

                       
 

 
                                             

    (23) 

 

We shall denote the single particle wavefunction of the state in the coordinate space as: 

 

                (24) 

 

so that                          . Finally, the expression for the total Coulomb energy is 

thus: 
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    (25) 

 

The first term on the right hand side refers to the direct Coulomb contribution while the 

second term is the exchange part. The direct Coulomb term gives rise to the repulsive 

part of the Coulomb interaction while the exchange part causes an extra binding 

between the nucleons. The calculation of the direct term is much easier as one needs 

only for computing the nucleon density                
  

  (         ) as a function of a 

single spatial variable. The direct term has been exactly included in all previous self-

consistent calculations. In contrast, the exchange part is more complicated in that one 

now needs to know the non-local nucleon density,              
 
  as a function of two 

space variables. The computational time for the exchange Coulomb part is therefore 

much longer than for the direct term. To overcome these problems, the Slater 

approximation detailed below is commonly used in place of the exact Coulomb 

expression for the exchange term.  

 

2.2.3   Energy contribution from direct and exchange Coulomb term 

We will adopt here an equivalent but somewhat different (from the rest of our text) 

point of view to obtain the expressions of the direct and exchange Coulomb energies. 

By taking nucleon as having a diffuse density rather than a point particle, the total 

Coulomb energy may be written in the form (Quentin, 1975): 

 

    
  

 
          

 

        
           (26) 
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The symbol           denotes the probability of finding two protons at position    and    . 

The general form of this probability written for any wavefunction,      is: 

 

                                                             
   

 
  (27) 

 

Taking for      a Slater determinant consisting of plane waves, it may be shown (see e.g. 

Quentin (1975)) that the probability           is given: 

 

              
 
 
 
   

 

 
     

 
          

 
  (28) 

 

with the function C(x) defined as: 

 

      
      

 
 

 

   
    

 
       (29) 

 

where       is the spherical Bessel function of the first kind which is related to the 

Bessel function of the first kind,       by the relation        
 

  
 
  

 

 

       

      . In the above,   
 
 is the average proton density at the Fermi surface which is 

related as well known with the Fermi momentum for a system of doubly spin-

degenerated fermions by: 

 

    
 
 
 

      
 
 (30) 

 

From equation (28), it is apparent that there are two terms contributing to the total 

Coulomb energy in equation (26). The first term on the right hand side of equation (28) 

represent the direct Coulomb part while the second term is the exchange Coulomb part. 
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One then has the expression for the Coulomb energy coming from direct and exchange 

part respectively as follows: 

               
  

 
    

       
  

        
          (31)  

                    
  

 
    

       
      

 
          

 

        
           (32) 

 

2.2.4  Calculation of the direct Coulomb potential 

One can see that a singularity point appears in equation (31) when    approaches    . To 

avoid this problem, one can use the substitution of the term as shown below as was 

employed for instance in Quentin (1975) and Vautherin (1973): 

 

     
   
           

 

        
 (33) 

 

After the substitution, one then integrate by parts to obtain: 

 

               
  

 
                 

            (34) 

 

One then need to change the coordinate system into cylindrical coordinate considering 

the earlier fact that the nucleus is assumed to be axially symmetric along the z- 

direction. The expression for the direct Coulomb energy after integration over the 

azimuthal angle is (see for e.g. Quentin (1975)): 

 

                           

 
                        

 
  

 

  
  

     
    

       
 
       

 
 
 

  
          

          (35) 
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with the following expression for E(x): 

 

                    
 

  

 
 (36) 

 

2.2.5  The Slater approximation of the Coulomb exchange within the Local Density 

Approximation 

From equation (32) for the exchange Coulomb potential, one may further show (see e.g. 

Quentin (1975)) that upon changing into relative coordinate and center-of-mass 

coordinate,  

              (37) 

 

        
 

 
         (38) 

 

one gets: 

 

             
   

 
 

 

 
 

 
  
   

 
 
 

    (39) 

 

The symbol   represents the total volume of the system under study. One can then write 

the expression for exchange Coulomb energy density as: 

 

 
            

 
  

   

 
 

 

 
 

 
  
   

 
 
 

               (40) 

 

In nuclear matter, as was considered so far, the distribution of protons and neutrons in 

space is constant. This situation is very similar to the density distribution of nucleons 

inside the nucleus where the density is almost constant in the center and only fall off 
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gradually at the nuclear surface. Therefore, this allows one to take the Local Density 

Approximation in which the density inside a nucleus is taken to be locally constant and 

then one would have the total Coulomb exchange energy given as: 

 

             
   

 
 

 

 
 

 
  

    
 
 
 

        (41) 

 

Equation (41) for the coulomb exchange energy is called the Slater approximation for 

the exchange part of the Coulomb interaction (Slater, 1951). It amounts to consider 

locally (in   ) that the proton distribution is a piece of nuclear matter at the locally 

experienced proton density. This approximation has been regularly used in most self-

consistent calculation, see for example Quentin and Flocard (1978). 

 

2.3  HARTREE-FOCK-SKYRME APPROXIMATION 

 

2.3.1  Introduction to Hartree-Fock approximation 

The Hartree-Fock (HF) method was initially proposed for the study of atomic physics 

but its wide applicability in many other fields of physics makes it one of the most 

popular approximations of the quantal many-body problem used so far. In nuclear 

physics, the HF method has been found to be relevant to study the ground state energy 

and wavefunction of a specific nucleus. Much work in such a framework has been done 

thus far such as reviewed in Quentin and Flocard (1978), Aberg, Flocard and 

Nazarewicz (1990) and Bender, Heenen and Reinhard (2003), ranging from light nuclei 

up to heavy ones. 

 

 This method stems from a microscopic point of view, whereby the argument was 

that any proper description of the properties of nucleus under study should start from a 
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basic free nucleon-nucleon interaction. However, due to the mathematical difficulty 

encountered to treat at all orders the effect of such a two-body interaction, a 

mathematical ansatz was proposed instead, to describe the nucleonic interactions inside 

a nucleus. Hence, the name phenomenological effective interaction was given to it. In 

this approach, three main assumptions were made (see e.g. Bonneau (2003)): 

 

i. The kinetic energy of nucleons inside the nucleus is assumed to be non-

relativistic, its average being about 20 MeV, 

ii. The nucleons interact with one another through an interaction which is described 

by an effective two-body phenomenological interaction (possibly density 

dependent) 

iii. Mesonic degrees of freedom are not taken into account. 

 

 In this approach, the many-body wavefunction of the A nucleons is a priori 

approximated by a product of single particle wavefunctions. However, since nucleons 

are fermions, they have to obey the Pauli antisymmetrization principle and as such the 

appropriate wavefunction would be an (antisymmetrized) Slater determinant written as: 

       
 

  
             

 

  
 
             

   
             

  (42) 

 

For a two body system, the Slater determinant would thus be: 

 

          
 

  
                             (43) 

 

From this, one can see that in a Slater determinant two nucleons cannot be at the exactly 

same state (so-called Pauli exclusion principle). 
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2.3.2  Concept of an average potential 

In a nucleus consisting of A nucleons, the total Hamiltonian is given (for a two body 

interaction) by: 

 

            
 
   

 
 

 
   (44) 

 

The first term on the right hand side represents the kinetic energy of the nucleons, where 

the summation is taken over all constituent nucleons in the nucleus. The second term is 

the two-body interaction between nucleons with a choice of indices i and j made in 

order to avoid double counting the interaction. 

 

 The two-body interactions between all the nucleons can be averaged out to 

obtain an average one-body potential, U, which is felt by all nucleons. Adding U inside 

equation (44) would give: 

          
 
        

 
   

 
      

 
    

  (45) 

            
       

 
   

 
      

 
    

  (46) 

 

whereby     
 is the single particle energy, which is defined as the sum of the kinetic 

energy and the one-body potential of the i
th

 nucleon: 

 

    
        (47) 

 

In the Hartree-Fock approximation, the average one-body potential, U is derived from 

the two-body interaction, V above. The term on the right hand side inside the bracket in 

equation (46) is called the residual interaction, representing the remaining part of the 

interaction beyond the average potential. Examples of residual interactions generally 
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taken into account are designed to treat correctly pairing or vibrational correlations. For 

the Hartree-Fock approximation to be relevant, the residual interaction has to be as 

small as possible. 

 

          

 
      (48) 

 

One then has a reduction of an initial many-body problem into a one-body problem 

which is much easier to solve. Solving the Schrodinger equation for the Hamiltonian 

    will give a result approximating the exact wavefunction, in the form of a Slater 

determinant. The residual part       then may be treated as a perturbation of the 

approximate result.  

 

2.3.3 Solving the Hartree-Fock equation using variational method 

To obtain the total energy of the nucleus, one would need to solve the Schrodinger 

equation. This can be done by employing the variational method as a mean of solving 

the static Schrodinger equation. An energy functional associated with a wavefunction  

     for the Hamiltonian operator     can be written as: 

 

      
         

     
 (49) 

 

in which      is the Slater determinant as mentioned above and the denominator term 

here is to ensure that the wavefunction remains normalised during the variation. One 

arbitrary varies      about any       where       is the solution to the eigenvalue 

equation               to obtain a stationary total energy such that: 

 

     
         

     
   (50) 
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The      and      may be treated as independent variable in the variation process (this is 

related to the complex character of the wavefunction acssociated to     ), so that the 

variation is carried out for either one of them. By varying     , one can get: 

 

    
                   

     
 (51) 

 

If            or in other words,      is the eigenfunction of the Hamiltonian operator 

then one obtains a stationary energy and therefore solving the variational equation is 

equivalent to solving the Schodinger equation. Let us denote the ket of the true ground 

state of a system as    
 
 . One may prove that for any     : 

         
 
  (52) 

 

Therefore, one strives to minimize the value of      in order to get a better 

approximation to the real ground state of a system. 

 

2.3.4  Local and non-local potential 

The HF one body potential, U is defined as (see e.g. Preston and Bhaduri (1975)):  

                     
    (53) 

with 

                    (54) 

 

The indices l,m,p and q label the single particle states and        represents the 

antisymmetric state of a two fermion system. 
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Defining the single particle states      as eigenfunctions of the single particle 

Hamiltonian operator,       with eigenvalue,   , one has: 

 

                     (55) 

 

Writing equation (55) in coordinate space where               is the single particle 

wavefunction would yield: 

 

 
 

  
                                                       (56) 

 

The first term on the right hand side is the kinetic energy term while UH denotes the 

local part of U and UF denotes its non-local part, with 

 

             
     

 
                     

    (57) 

 

and 

 

                
     

 
                     (58) 

 

 

The local potential term (Hartree term) reflects the total potential felt classically by a 

nucleon in position   1 due to the presence of other nucleons in   2. The summation, 

though, is taken for all nucleons inside the nucleus which means that the particular 

nucleon of interest itself contributes to the potential. This is obviously not physically 

true, and is corrected for, among other effects, by the non-local term (Fock term) or 

exchange term. As it turns out, the considered effective interaction depends on the local 
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density, ρ at the center of mass of the system, 
         

 
 of the two interacting nucleons. 

The density dependence is indeed very important to reproduce the experimental total 

and single particle energies (see e.g. Preston and Bhaduri (1975)). This results in an 

extra term in equation (56) which now becomes: 

 

 
 

  
                                                       

           

 (59) 

 

UR is called the rearrangement potential due to the density dependence of the 

interaction. 

(Note: the above simple local expression for UR is only valid for a zero range density 

dependent two-body interaction as in the case of the Skyrme and Gogny interaction.) 

 

2.3.5  General description of solving Hartree-Fock equation 

To solve the eigenvalue equation (55), the expectation value of the single particle 

Hamiltonian is taken between single particle states       and      . 

 

                  (60) 

 

The single particle states can be expanded in terms of certain basis states such as 

harmonic oscillator potential eigenstates denoted here as      (  
  being the expansion 

coefficient of the state m): 

 

        
        (61) 
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By introducing the HF single particle operator; 

 

             
   (62) 

 

one has: 

 

                  
  

 
   

   
  (63) 

 

where the symbols   and   label harmonic oscillator basis states. 

 

Equation (60) can then be written as: 

 

                      
 

                  
 

            
  (64) 

 

The set of equations (64) constitutes a system of non linear equations to be solved 

iteratively. In order to do this, an ansatz for   is needed. This is usually done firstly by 

approximating the one-body potential, U, to be that of, for example, a harmonic 

oscillator or a Wood-Saxon potential. Equation (64) may be solved taking the state      

as being an eigenstate of the single particle Hamiltonian using one of these simple 

potentials. The left hand side of equation (64) is then solved as a linear system of 

equations yielding a new set of single particle states. From the new set of single particle 

states, the density operator of equation (63) can be calculated and is then used to get a 

new one-body potential, U. The calculation is then repeated as long as the convergence 

is not achieved. (The convergence being defined as the situation where the variation (in 

norm) of some chosen quantities is smaller than a given value.) 
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2.3.6  Hartree-Fock equation with Skyrme interaction 

Vautherin and Brink found out that by using the Skryme interaction, the total energy of 

a nucleus, E can be written in terms of a Hamiltonian density,       such that: 

        (65) 

 

               (66) 

 

The energy density is expressed in the Skyrme interaction case in terms of three local 

densities: the nucleon density, the kinetic energy density and the spin-orbit densities 

defined as follows (Vautherin and Brink, 1972): 

 

                           (67) 

 

                           (68) 

 

           
                    σ      σ      σ          (69) 

 

In these equations,       σ     represents the single particle state in space coordinate 

with       σ          σ        . The operator      is the spin operator with the relation 

      
 

 
                with     

  
  

      
  
   

          
  
  

 . 

The expression for the Hamiltonian density,       in equation (66) was derived by 

Vautherin and Brink for the case of nucleus with an even number of neutrons and 

protons, taking into account the time reversal invariance symmetry (see Vautherin and 

Brink (1972) for more details): 
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                                                      (70) 

                                                                                                                                                                                                                                

By applying the varational principle, they then obtained the following Hartree-Fock 

equations (Vautherin and Brink, 1972): 

 

      
  

   
     

                                        (71) 

 

The symbol   
      denotes an effective mass (coming from the Fock part of the HF 

potential) which depends only on the nucleon density.  The dependence of each term on 

the left hand side is given below. The first term is similar to the kinetic energy with a 

position dependent (effective) mass: 

 

  

   
     

 
  

  
 

 

 
         

 

 
          (72) 

 

The second and third terms are the one-body potential and spin-orbit potential 

respectively: 

 

             
 

 
         

 

 
     

 

 
    

    
    

 
 

 
         

   
 

  
         

    
 

 
          

 
 

 
          

 

 
                      

  
 

 

       (73) 
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               (74) 

 

In solving the Hartree-Fock equation with the Skyrme force as defined in equation (71), 

the matrix elements of the single particle Hamiltonian given by equation (72) to (74) 

have to be calculated and diagonalised. This part of the calculation is carried out in 

coordinate space. 

 

2.4  TREATMENT OF PAIRING INTERACTION 

 

2.4.1  The BCS Approximation 

As was mentioned earlier, one of the residual interactions to be necessarily treated is the 

one leading to pairing correlations between nucleons. Let us call it the pairing 

interaction. It leads to the formation of a pair of two nucleons being in two states 

conjugated by time reversal. This nucleon pair is promoted to a higher unoccupied 

single particle energy level but results in a lower binding energy of the whole nuclear 

system due to the added specific binding correlation energy when summed on all pairs. 

To account for this phenomenon, one usually makes use of the Bardeen, Cooper and 

Schrieffer (BCS) formalism which was initially proposed for the study of 

superconductivity (see e.g. Bardeen, Cooper and Schrieffer (1957)). 

  

One first makes the approximation that the ground state of an even-even nucleus 

can be written in terms of a BCS wavefunction given by (see e.g. Preston and Bhaduri 

(1975)): 

 

                 
    

          (75) 
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The ket     , here, denotes the vacuum state (a state devoid of any nucleon). The 

operators   
         

  are the particle creation operators in state   and its time-reverse 

state    (   and    being real non-negative numbers not larger than 1). In the present 

case, the Hamiltonian, H is a Hermitian operator satisfying time reversal invariance 

property which implies that if a state   is an eigenstate of H its time-reverse state    is 

also an eigenstate of H with the same (energy) eigenvalue. In the case (considered here) 

of axial symmetry and parity symmetry the third component of the total angular 

momentum, K is a good quantum number as well as the parity  . If the state   

corresponds to the quantum number    the state    corresponds to    . This property 

has been used to limit the product in the definition of the         state to only positive K 

value states only (denoted by    ). 

 

 One can see that the BCS wavefunction describes the nuclear system in a state 

where all nucleons are paired. A difference with regards to the independent particle 

description is that the occupation of the single particle states is given in terms of the 

probabilities of the state   for being empty (  
 ) or being filled (  

 ) instead of an 

integer particle number 0 (unoccupied) and 1 (occupied) respectively (note that due to 

the analytical form of the        state, the probability of any state   and its time-

reversed state are equal). 

 

The simplest Hamiltonian describing this case written in the second quantization 

notation is: 

        
        

    
           (76) 

The symbol   
         denotes the creation operator and annihilation operator 

respectively in the state  . The term G is the strength of the pairing force. It is positive 



32 
 

(attractive residual interaction). To solve the static Schrodinger equation associated with 

this Hamiltonian, a Lagrange multiplier   is introduced to minimize the Hamiltonian 

given in equation (76) under the constraint of    
       where N is the number of 

considered fermions. The modified “Hamiltonian” can then be written as (see e.g. 

Preston and Bhaduri (1975)): 

 

             
        

    
           (77) 

 

One takes the expectation value of this operator with respect to the BCS trial 

wavefunction, thus obtaining: 

 

                         
      

               
      (78) 

 

In solving the BCS variational equation one will vary the coefficient,    in the trial 

wavefunction in order to minimize the expectation value of the Hamiltonian (note that 

   is determined when    is known). 

 

 
 

   
               (79) 

 

Solving the equation (79), one obtains the equation: 

 

     
             

    
   (80) 

 

with: 

   
        

                          (81) 
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From the above, using the relation   
    

   , one will then obtain the occupation 

probabilities as: 

   
  

 

 
   

  
   

    
    

 
   

  (82) 

   
  

 

 
   

  
   

    
    

 
   

  (83) 

 

The Lagrange multiplier,   is the chemical potential or a kind of Fermi level of the 

nuclear system (Preston and Bhaduri, 1975) which is determined by using the constraint 

relation: 

 

     
 

      (84) 

 

where N is the total number of nucleons under consideration. An important consequence 

of the introduction of the pairing interaction is to smear the occupation of the particle 

states near the Fermi level (corresponding to the uncorrelated case) since in the absence 

of pairing correlation, the single particle states below and above the Fermi level are 

fully occupied and fully empty, respectively. 

 

2.4.2  Quasiparticles and the Bogolyubov-Valatin transformation 

In order to obtain the expression for the operator    defined in equation (77), 

quasiparticle operators may be introduced through the Bogolyubov-Valatin 

transformation (Preston and Bhaduri, 1975). 

 

   
      

                                       
   (85) 
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The quasiparticle operators for the time-reverse state of   are: 

 

    
       

                                         
   (86) 

 

These quasiparticle operators obey the same anti commutation relations as the particle 

creation and annihilation operators:  

 

       
                               

    
     (87) 

 

Using these operators, one can deduce that the BCS wavefunction is a quasiparticle 

vacuum, since: 

   
         (88) 

 

The state   
        is called a single quasiparticle state. Single particle states lying 

deeper than the Fermi surface whose occupation probabilities,   
  are close to 1, are 

essentially one-hole states. On the other hand, states far above the Fermi level are one-

particle states. 

 

In order to obtain the expectation value of the operator   , one will need to 

inverse equations (85) and (86) to obtain: 

 

              
                            

  (89) 

 

Using these equations, one can then work out the expectation value of the operator    as 

given in equation (77). The energy of a single quasiparticle state can be obtained by 
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evaluating the expectation value of              
            and has the following 

expression (see e.g. Preston and Bhaduri (1975)): 

 

         
       

 
 (90) 

 

2.4.3  On the treatment of pairing correlations in a self-consistent calculation 

By introducing the occupation probabilities from the BCS equation, the three local 

densities introduced earlier namely the nucleon density, the kinetic energy density and 

spin-orbit density would now be written as (see e.g. Vautherin (1973)): 

 

           
                     (91) 

 

       
                         (92) 

 

            
   

 

 
                   σ      σ      σ          (93) 

 

where the sum sums on “positive” states as defined above. We shall then extend the 

variational method discussed earlier to account for the variation of the occupation 

probability of the single particle states. The pairing energy from the BCS formalism is 

given as (see e.g. Vautherin (1973)): 

                (94) 

 

One can write the energy functional, E as: 

 

        
                        (95) 
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The term inside the integral is the Hamiltonian density related to the Skyrme interaction 

which is added to the pairing energy to constitute the total energy. To get the minimum 

total energy of the nuclear system, one will need the functional E to be stationary with 

respect to the variation of the single particle states    and the occupation probability 

  
 . From this variational process, one will obtain two equations that will be solved 

iteratively (see Vautherin (1973)). The first one (Hartree-Fock equation) is similar to the 

one obtained without pairing interaction: 

 

       
  

   
     

                                        (96) 

 

where the various terms of the Hartree-Fock equation have been defined earlier in terms 

of densities (91-93) including now   
  probabilities. The second equation is related to 

the pairing interaction and is identical to the equation (80) above: 

 

         
    

      
   

 
          

     (97) 

 

whose solution is the occupation probability (as we have seen): 

 

   
  

 

 
   

     

        
 
   

  (98) 

 

With the inclusion of the BCS formalism, one has an additional loop inside the Hartree-

Fock equation to calculate the occupation probability,   
 .  
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 To recapitulate the calculation process, one first begins from a deformed 

harmonic oscillator approximation of the one-body potential solving for the energy and 

single particle wavefunction. One would then enter the BCS calculation loops from 

which the results would be the occupation probabilities that will be utilized in the next 

step for the calculation of the local densities. Subsequent calculation steps follow suit, 

as was described in the general method of solving the Hartree-Fock equation until 

convergence is achieved.  

 

  


