ABSTRACT

Beta-Secretase is a transmembrane aspartic protease that cleaves the amyloid precursor protein (APP) to generate amyloid beta peptide (A β) that is believed to be responsible for the Alzheimer's disease (AD). Beta-Secretaes include BACE1 and BACE2 which are close homologues, sharing 61.5% similarity and 45% identity at the amino acid level. BACE1 is responsible for generating amyloid plaques in Alzheimer's disease through cleaving Aß peptides from the amyloid precursor protein, however, the fragments of A β produced by BACE2-cleaved have not been observed in senile plaques in AD. The early onset of dementia in patients with Down's syndrome is believed to be associated with BACE2, and it is believed to be greatly expressed in breast cancers. Although the structure of BACE1 and BACE2 are very similar, there are some important different between their sequences and structure which made their function different with each other. In this study, I compared the conservation pattern of BACE1 and BACE2 throughout species and identified their active site by using evolutionary trace method. By using this method we can rank the functional significance of amino acids in the protein structure and also imply some data about the protein sequence-structure-function relationship. The result of this study identified that, in BACE1 and BACE2 structures, most of the conserved residues are located in the ligand binding site which are the key functionally residues for their activities. The other few conserved residues are more or less randomly localized in the rest of the structure. Also it was observed that, the structure of BACE1 and BACE2 reveals differences in some active site residues which may be of interest for the design of selective BACE1 or BACE2 inhibitors.

ACKNOWLEGMNET

I would like to express my sincere gratitude to my supervisor, Dr. Saharuddin bin Mohammad for his direction, assistance, and guidance. This work would not have been completed without his kind help and support.

I would like to thank Dr Khang Tsung Fei, Coordinator of Bioinformatics Department, University of Malaya, for all his help and guidance during my master degree.

I would like to express my special thanks to my parents who have been always there for me and support me in my life. I owe them everything and wish I could show them just how much I love and appreciate them. I am also very grateful to my husband and my brother, who supported my emotionally and encourage me during the hard time.

Last but not the least, I wish to thank to my friends, Elham Kalfi, Niloofar Alavi, Maryam Yazdi and Negar Havazade, who were always willing to help me and encourage me in whatever I wanted to do.

Table of Contents

ABSTRACT	i
ACKNOWLEGMNET	ii
LIST OF FIGURE	vi
LIST of TABLE	ix
LIST OF ABBREVATIONS	X
CHAPTER 1: INTRODUCTION	1
1.1 Alzheimer disease	1
1.2 Study Approach	2
1.3 Objective	5
CHAPTER 2: LITRETURE REVIWE	6
2.1 Alzheimer's disease	6
2.2 Molecular causes of AD	6
2.3 Beta Secretase	9
2.4 APP Cleavage	10
2.5 BACE1 & BACE2 Structures	12
CHAPTER 3: METHODOLOGY	15
3.1 Selection of a protein sequence	15
3.2 Database Similarity Searching	15
3.3 Multiple Sequence Alignment	16
3.4 Phylogenetic Tree Construction	16
3.5 Molecular Evolution Analysis	17
3.6 Protein Mapping	
CHAPTER4: RESULT	
4.1 Candidate Sequences Selection	19

	4.2 Similarity Sequence searching	19
	4.3 Multiple Sequence Alignments	23
	4.4 Phylogenetic Tree Construction	23
	4.5 Molecular Evolution Analysis	28
	4.5.1 BACE1 sequence analysis	28
	4.5.1.1 Partition P1	28
	4.5.1.2 Partition P2	32
	4.5.1.3 Trace Residues Analysis of BACE1	32
	4.5.1.4 Protein structure of BACE1	37
	4.5.1.5 Trace residues mapping on BACE1 Protein structure	40
	4.5.1.6 Ligand binding site of BACE1 protein structure	40
	4.5.2 BACE2 sequence analysis	47
	4.5.2.1 Partition P1	48
	4.5.2.2 P2 partition	50
	4.5.2.3 Partition P3	52
	4.5.2.4 Trace Residues Analysis of BACE2	54
	4.5.2.4 Protein structure of BACE2	57
	4.5.2.6 Trace residues mapping on BACE2 Protein structure	60
	4.5.1.6 Ligand binding site of BACE1 protein structure	60
	4.5.3 BACE1 & BACE2 sequences analysis	66
	4.5.3.1 Partition P1	66
	4.5.3.2 Trace Residues Analysis of BACE1 and BACE2	69
	4522 Trace residues manning on RACE2 Protein structure	
	4.3.5.5 Trace residues mapping on BACE2 Protein structure	69
C	2.3.5.5 Trace residues mapping on BACE2 Protein structure	69 74
C	4.3.3.5 Trace residues mapping on BACE2 Protein structure CHAPTER 5: DISCUSSION 5.1 Evolutionary Trace Analysis Result	69 74 74

5.3 BACE1 & BACE2 Active site comparison	77
CHAPTER6: CONCLUSION	82
REFERENCES	84
SUPPLEMET FIGURES	88

LIST OF FIGURE

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Overview of the prediction of active site of protein by using4
evolutionary trace Method
Non-amyloidogenic and amyloidogenic pathways of APP8
cleavages
The overall structure of BACE1 and BACE211
Human APP sequence Aβ region within APP14
sequence and α , β , γ secretase cleavages sites
Phylogenetic tree of BACE1's sequences25
Phylogenetic tree of BACE2's sequences
Phylogenetic tree of BACE1& BACE2's sequences27
P1 and P2 partition of BACE1 phylogenetic tree29
P1 partition of BACE1 phylogenetic tree
P1 partition's trace residues of BACE1 phylogenetic tree31
P2 partition of BACE1 phylogenetic tree
P1 partition's trace residues of BACE1 phylogenetic tree34
P1and P2 partition's result of BACE1

- Figure 4.10 Position of each consensus sequences from P1 partition in......36 human BACE1sequence
- Figure 4.11 The 3-dimensional structure of BACE1's chain A and its38 ligand

Figure 4.13	The 3-dimensional structure of BACE1's chain A with41	
	conserved residues from different view direction	
Figure 4.14	The 3-dimensional structure of ligand and trace residues	
	within BACE1's chain A, which are selected within 5.0 Armstrong from	
	different view direction	
Figure 4.15	The display of ligand and trace residues restricted within 5.045	
	Armstrong of BACE1's chain A	
Figure 4.16	Partitions, P1, P2 and P3 of BACE2's phylogenetic tree47	
Figure 4.17	P1partition of BACE2's phylogenetic tree48	
Figure 4.18	P1 partition's trace residues of BACE2 phylogenetic tree49	
Figure 4.19	P2 partition of BACE2's phylogenetic tree	
Figure 4.20	P2 partition's consensus sequences of BACE2 phylogenetic tree51	
Figure 4.21	P3 partition of BACE2 phylogenetic tree	
Figure 4.22	P3 partition's trace residues of BACE2 phylogenetic tree53	
Figure 4.23	P1, P2 and P3 partition's result of BACE2 phylogenetic tree55	
Figure 4.24	4 Position of each consensus sequences from P3 partition in	
	human BACE2 Sequences and PDB structure sequences	
Figure 4.25	The 3-dimensional structure of BACE2's chain A and it's	
	ligand	
Figure 4.26	The display of the BACE2's chain A with its ligand from59	
	different view direction	
Figure 4.27	The 3-dimensional structure of BACE2' chain A with61	
	conserved residues from different view direction	

Figure 4.28	The 3-dimensional structure of ligand and trace residues	
	within BACE2'S chain A, which are selected within 5.0 Armstrong from	
	different view direction	
Figure 4.29	The display of ligand and conserved residues within the64	
	ligand binding site of BACE2	
Figure 4.30	ire 4.30 P1 partition of BACE1 & BACE2 phylogenetic	
Figure 4.31	1 P1 partition's trace residues of BACE1 & BACE2	
Figure 4.32	2 Position of each consensus sequences from P1 partition70	
	in human BACE1 & BACE2 sequences	
Figure 4.33	The 3-dimensional structure of BACE1's chain A with72	
	conserved residues and group specific residues from different view	
	direction	
Figure 4.34	The 3-dimensional structure of BACE2's chain A with73	
	conserved residues and group specification from different view direction	
Figure 4.35	The position of all consensus sequences and group specific79	

Figure 4,36 The overall structure of BACE1 compared with BACE2......81

residues in human's BACE1 and BACE2 sequences

LIST of TABLE

Table 4.1	17 proteins sequences of BACE2 of different species with20
	their accession ID, definition, species usual name number of
	amino acid, similarity, score and E-value
Table 4.2	17 proteins sequences of BACE2 of different species with21
	their accession ID, definition, species usual name number of
	amino acid, similarity, score and E-value
Table 4.3	The conserved residues and position in the structure of 1FKN43
	protein
Table 4.4	The conserved residues positions in the structure which are46
	predicted present in active site
Table 4.5	The conserved residues and position in the structure of 2EWY62
	protein
Table 4.6	The conserved residues positions in the BACE2 structure65
	which are predicted present in active site

LIST OF ABBREVATIONS

AD	Alzheimer's Disease
APP	Amyloid Precursor Protein
Αβ	Amyloid Peptide
α-Secretases	Alpha Secratase
β-Secretases	Beta Secratase
γ-Secretases	Gamma Secratase
BACE1	Beta amyloid cleaving enzymes 1
BACE2	Beta amyloid cleaving enzymes 2
ET	Evolutionary Trace Method
BLAST	Basic Local Alignment Search Tool
MSA	Multiple Sequence Alignment
PDB	Protein Data Bank
3D	Three Dimensional