APPENDIX A: ¹H-NMR for macromers and related copolymers (MMC)

Figure 1:¹H-NMR for AlkOA65

Figure 2 : ¹H-NMR for AL1 containing 50% macromer

Figure 3 : ¹H-NMR for AL2 containing 35% macromer

Figure 4 : ¹H-NMR for AL3 containing 20% macromer

Figure 5 : ¹H-NMR for AM1 containing 50% macromer

Figure 6 : ¹H-NMR for AM3 containing 20% macromer

Figure 7 : ¹H-NMR for AlkOA28

Figure 8 : ¹H-NMR for AS1 containing 50% macromer

Figure 9 : ¹H-NMR for AS2 containing 35% macromer

Figure 10: ¹H-NMR for AS3 containing 20% macromer

APPENDIX B: DSC thermograms for macromers

Figure 2 : DSC trace of AlkOA40

Figure 3 : DSC trace of AlkOA28

APPENDIX C: Overlaid FTIR spectra of macromers, related copolymers (MMC), oleic acid and PMMA

Figure 1 : FTIR spectra of AlkOA40, related copolymers, oleic acid and PMMA

Figure 2 : FTIR spectra of AlkOA65 and related copolymers

APPENDIX D: Overlay of GPC chromatograms of AlkOA65, AlkOA28, related copolymers and PMMA

Figure 1 : Overlay of GPC chromatograms of AlkOA65, related copolymers and PMMA

Figure 2 : Overlay of GPC chromatograms of AlkOA28, related copolymers and PMMA

APPENDIX E: DSC thermograms for copolymers (MMC)

Figure 1 : DSC thermogram of AL1 containing 50% macromer

Figure 2 : DSC thermogram of AL2 containing 35% macromer

Figure 3 : DSC thermogram of AL3 containing 20% macromer

Figure 4 : DSC thermogram of AM1 containing 50% macromer

Figure 5 : DSC thermogram of AM2 containing 35% macromer

Figure 6 : DSC thermogram of AM3 containing 20% macromer

Figure 7 : DSC thermogram of AS1 containing 50% macromer

Figure 8 : DSC thermogram of AS2 containing 35% macromer

Figure 9 : DSC thermogram of AS3 containing 20% macromer

Figure 10 : DSC thermogram of PMMA

Figure 1 : TGA thermogram for AL1 containing 50% macromer

Figure 2 : TGA thermogram for AL2 containing 35% macromer

Figure 3 : TGA thermogram for AL3 containing 20% macromer

Figure 4 : TGA thermogram for AM1 containing 50% macromer

Figure 5 : TGA thermogram for AM2 containing 35% macromer

Figure 6 : TGA thermogram for AM3 containing 20% macromer

Figure 7 : TGA thermogram for AS1 containing 50% macromer

Figure 8 : TGA thermogram for AS2 containing 35% macromer

Figure 9 : TGA thermogram for AS3 containing 20% macromer

APPENDIX G: DMA graphs for copolymers (MMC)

Figure 1 : Plots of loss modulus versus temperature for samples AL1, AL2 and AL3 containing 50%, 35% and 20% macromer respectively

Figure 2 : Plots of loss modulus versus temperature for samples AM1, AM2 and AM3 containing 50%, 35% and 20% macromer respectively

Figure 3 : Plots of loss modulus versus temperature for samples AS1, AS2 and AS3 containing 50%, 35% and 20% macromer respectively

APPENDIX H: FTIR spectra for modified copolymers with BA (MMBC)

Figure 1 : Overlaid FTIR spectra for ALB series

Figure 2 : Overlay FTIR spectra for AMB series

APPENDIX I: ¹H-NMR spectra for modified copolymers with BA (MMBC)

Figure 1 : ¹H-NMR for AL1B containing 50% macromer

Figure 2 : ¹H-NMR for AL2B containing 35% macromer

Figure 3 : ¹H-NMR for AL3B containing 20% macromer

Figure 4 : ¹H-NMR for AM1B containing 50% macromer

Figure 5 : ¹H-NMR for AM3B containing 20% macromer

Figure 6 : ¹H-NMR for AS1B (10%) containing 50% macromer

Figure 7: ¹H-NMR for AS2B (10%) containing 35% macromer

Figure 8: ¹H-NMR for AS3B (10%) containing 20% macromer

Figure 1 : DSC thermogram of AL1B containing 50% macromer

Figure 2 : DSC thermogram of AL2B containing 35% macromer

Figure 3 : DSC thermogram of AL3B containing 20% macromer

Figure 4 : DSC thermogram of AM1B containing 50% macromer

Figure 5 : DSC thermogram of AM2B containing 35% macromer

Figure 6 : DSC thermogram of AM3B containing 20% macromer

Figure 8: DSC thermogram of AS2B (10%) containing 35% macromer

Figure 9 : DSC thermogram of AS3B(10%) containing 20% macromer

Figure 10 : DSC thermogram of AS1B (5%) containing 50% macromer

Figure 11 : DSC thermogram of AS2B (5%) containing 35% macromer

Figure 12 : DSC thermogram of AS3B (5%) containing 20% macromer

Figure 1 : Overlay of GPC chromatograms of ALB series

Figure 2 : Overlay of GPC chromatograms of AMB series

Figure 3 : Overlay of GPC chromatograms of ASB(10%) series

Figure 4 : Overlay of GPC chromatograms of ASB(5%) series

Figure 1 : TGA graph for AL1B containing 50% macromer

Figure 2 : TGA graph for AL2B containing 35% macromer

Figure 3 : TGA graph for AL3B containing 20% macromer

Figure 4 : TGA graph for AM1B containing 50% macromer

Figure 5 : TGA graph for AM2B containing 35% macromer

Figure 6 : TGA graph for AM3B containing 20% macromer

Figure 7 : TGA graph for AS1B(10%) containing 50% macromer

Figure 8: TGA graph for AS2B(10%) containing 35% macromer

Figure 9: TGA graph for AS3B (10%) containing 20% macromer

Figure 10 : TGA graph for AS1B(5%) containing 50% macromer

Figure 11 : TGA graph for AS2B(5%) containing 35% macromer

Figure 12 : TGA graph for AS3B (5%) containing 20% macromer

APPENDIX M: DMA graphs for copolymers modified with BA (MMBC)

Figure 1 : Plots of loss modulus versus temperature for samples AL1B, AL2B and AL3B with 50%, 35% and 20% macromer respectively

Figure 2 : Plots of loss modulus versus temperature for samples AM1B, AM2B and AM3B with 50%, 35% and 20% macromer respectively

Figure 3 : Plots of loss modulus versus temperature for samples AS1B(10%), AS2B(10%) and AS3B(10%) with 50%, 35% and 20% macromer respectively

Figure 4 : Plots of loss modulus versus temperature for samples AS1B (5%), AS2B(5%) and AS3B (5%) with 50%, 35% and 20% macromer respectively

APPENDIX N: Description of Figures 3.12, 3.14, 3.16 and Table 3.20 in Chapter 3

Conversion (α)	q (Kmin ⁻¹)	T _p (K)	$1/T_{p}(K^{-1})$	ln(q)	E _d (kJ/mol)
0.1	10	601	0.001664	2.302	109.6
	15	605	0.001653	2.708	
	20	614.4	0.001628	2.996	
	25	601	0.001664	3.219	
	30	616	0.001623	3.401	
	10	619.3	0.001615	2.302	-
	15	625.4	0.001599	2.708	
0.2	20	634	0.001577	2.996	168.3
	25	625.4	0.001599	3.219	
	30	635.2	0.001574	3.401	
	10	631.5	0.001584	2.303	
	15	634.9	0.001575	2.708	
0.3	20	641.3	0.001559	2.996	243.9
	25	639.7	0.001563	3.219	
	30	646.2	0.001548	3.401	
	10	638.9	0.001565	2.302	2479
	15	642	0.001558	2.708	
0.4	20	648.6	0.001542	2.996	
	25	646.8	0.001546	3.219	
	30	653.5	0.001530	3.401	
	10	644.7	0.001551	2.302	247.5
	15	649.2	0.001540	2.708	
0.5	20	653.5	0.001530	2.996	
	25	654	0.001529	3.219	
	30	660.8	0.001513	3.401	
	10	649.6	0.001539	2.302	252.6
	15	654.43	0.001528	2.708	
0.6	20	658.4	0.001519	2.996	
	25	658.7	0.001518	3.219	
	30	665.7	0.001502	3.401	
0.7	10	653.5	0.001530	2.302	
	15	659.9	0.001515	2.708	
	20	663.2	0.001508	2.996	254.4
	25	663.5	0.001507	3.219	1
	30	670	0.001493	3.401	
0.8	10	660.8	0.001513	2.302	284.1
	15	664.7	0.001504	2.708	
	20	668.2	0.001497	2.996	
	25	668.7	0.001495	3.219	
	30	675.4	0.001481	3.401	1

Table 1 : Measuring of the temperatures corresponding to $0.1 \ge \alpha \le 0.9$ at different
heating rates to calculate activation energy for AlkOA28 macromer

' Tabl	e 1, continued	,			
0.9	10	673	0.001486	2.302	
	15	677.8	0.001475	2.708	
	20	680.3	0.001470	2.996	302.1
	25	682	0.001466	3.219	
	30	687.6	0.001454	3.401	

Ozawa Plots for calculation of activation energy using OFW method for AlkOA28 at different heating rates corresponding to fixed value of degree of conversion, ($0.1 \ge \alpha \le 0.9$).

Figure 1 : Plot of ln (q) versus 1/T at 10% decomposition ($\alpha = 0.1$) for AlkOA28

Figure 2 : Plot of ln (q) versus 1/T at 20% decomposition ($\alpha = 0.2$) for AlkOA28

Figure 3 : Plot of ln (q) versus 1/T at 30% decomposition ($\alpha = 0.3$) for AlkOA28

Figure 4 : Plot of ln (q) versus 1/T at 40% decomposition ($\alpha = 0.4$) for AlkOA28

Figure 5 : Plot of ln (q) versus 1/T at 50% decomposition ($\alpha = 0.5$) for AlkOA28

Figure 6 Plot of ln (q) versus 1/T at 60% decomposition ($\alpha = 0.6$) for AlkOA28

Figure 7 : Plot of ln (q) versus 1/T at 70% decomposition ($\alpha = 0.7$) for AlkOA28

Figure 8 : Plot of ln (q) versus 1/T at 80% decomposition ($\alpha = 0.8$) for AlkOA28

Figure 9 : Plot of ln (q) versus 1/T at 90% decomposition ($\alpha = 0.9$) for AlkOA28

Conversion (a)	q (Kmin ⁻¹)	T _p (K)	$1/T_{p}(K^{-1})$	ln(q)	E _d (kJ/mol)
0.1	10	553.5	0.001807	2.302	
	15	565.9	0.001767	2.708	
	20	568.2	0.001760	2.996	107
	25	580.1	0.001724	3.219	
	30	575.4	0.001738	3.401	
	10	599.8	0.001667	2.303	
	15	608.7	0.001643	2.708	
0.2	20	611.1	0.001636	2.996	151.3
	25	620.6	0.001611	3.219	
	30	620.1	0.001613	3.401	
	10	617.9	0.001618	2.302	
	15	626.6	0.001596	2.708	
0.3	20	630.1	0.001587	2.996	165.4
	25	637.3	0.001569	3.219	
	30	639	0.001565	3.401	
	10	629.4	0.001589	2.302	
	15	638.7	0.001566	2.708	
0.4	20	642	0.001558	2.996	176.6
	25	648.7	0.001542	3.219	
	30	649.7	0.001539	3.401	
	10	637.7	0.001568	2.302	
	15	647.3	0.001545	2.708	
0.5	20	650.1	0.001538	2.996	187.1
	25	654.9	0.001527	3.219	
	30	658.7	0.001518	3.401	
	10	646	0.001548	2.302	
	15	654.4	0.001528	2.708	
0.6	20	658.7	0.001518	2.996	195.6
	25	663	0.001508	3.219	
	30	666.3	0.001501	3.401	
0.7	10	653.4	0.001530	2.302	
	15	663	0.001508	2.708	
	20	666.3	0.001501	2.996	208.6
	25	669.7	0.001493	3.219	
	30	673	0.001486	3.401	
0.8	10	664.1	0.001506	2.302	
	15	673	0.001486	2.708	
	20	677.3	0.001476	2.996	209.2
	25	678.7	0.001473	3.219	
	30	684.9	0.001460	3.401	
0.9	10	685.3	0.001459	2.302	
	15	691.6	0.001446	2.708	
	20	696.8	0.001435	2.996	243.6
	25	696.8	0.001435	3.219	
	30	704	0.001420	3.401	

Table 2 : Measuring of the temperatures corresponding to $0.1 \ge \alpha \le 0.9$ at different heating
rates to calculate activation energy for AlkOA40 macromer

Ozawa Plots for calculation of activation energy using OFW method for AlkOA40 at different heating rates corresponding to fixed value of degree of conversion, ($0.1 \ge \alpha \le 0.9$).

Figure 1 : Plot of ln (q) versus 1/T at 10% decomposition ($\alpha = 0.1$) for AlkOA40

Figure 2 : Plot of ln (q) versus 1/T at 20% decomposition ($\alpha = 0.2$) for AlkOA40

Figure 3 : Plot of ln (q) versus 1/T at 30% decomposition ($\alpha = 0.3$) for AlkO40

Figure 4 : Plot of ln (q) versus 1/T at 40% decomposition ($\alpha = 0.4$) for AlkOA40

Figure 5 : Plot of ln (q) versus 1/T at 50% decomposition ($\alpha = 0.5$) for AlkOA40

Figure 6 : Plot of ln (q) versus 1/T at 60% decomposition ($\alpha = 0.6$) for AlkOA40

Figure 7 : Plot of ln (q) versus 1/T at 70% decomposition ($\alpha = 0.7$) for AlkOA40

Figure 8 : Plot of ln (q) versus 1/T at 80% decomposition ($\alpha = 0.8$) for AlkOA40

Figure 9 : Plot of ln (q) versus 1/T at 90% decomposition ($\alpha = 0.9$) for AlkOA40

Conversion (a)	q (Kmin ⁻¹)	T _p (K)	1/ T _p (K ⁻¹)	ln(q)	E _d (kJ/mol)
0.1	10	575.4	0.00174	2.302	
	15	577.4	0.00173	2.708	
	20	590.2	0.00169	2.996	105.8
	25	592.6	0.00169	3.219	
	30	602.4	0.00166	3.401	
	10	608.3	0.00164	2.303	
	15	612.0	0.00163	2.708	
0.2	20	623.0	0.00161	2.996	141.5
	25	624.2	0.00160	3.219	
	30	631.5	0.00158	3.401	
	10	626.9	0.00160	2.302	
	15	631.8	0.00158	2.708	
0.3	20	640.2	0.00156	2.996	169.0
	25	641.6	0.00156	3.219	
	30	648.5	0.00154	3.401	
	10	639.2	0.00156	2.302	
	15	645.5	0.00155	2.708	
0.4	20	651.4	0.00154	2.996	177.3
	25	655.4	0.00153	3.219	
	30	661.2	0.00151	3.401	<u> </u>
	10	651.4	0.00154	2.302	191.5
	15	655.8	0.00152	2.708	
0.5	20	664.2	0.00151	2.996	
	25	666.1	0.00150	3.219	
	30	671.5	0.00149	3.401	
	10	663.7	0.00151	2.302	192.7
	15	668.6	0.00150	2.708	
0.6	20	675.5	0.00148	2.996	
	25	676.4	0.00148	3.219	
	30	685.3	0.00146	3.401	
	10	674.0	0.00148	2.302	194.8
0.7	15	678.9	0.00147	2.708	
	20	685.7	0.00146	2.996	
	25	687.7	0.00145	3.219	
	30	696.5	0.00144	3.401	
0.8	10	685.7	0.00146	2.302	219.8
	15	690.2	0.00145	2.708	
	20	696.5	0.00144	2.996	
	25	697.0	0.00143	3.219	
	30	705.8	0.00142	3.401	
	10	698.0	0.00143	2.302	244.4
0.9	15	704.9	0.00142	2.708	
	20	709.8	0.00141	2.996	
	25	709.6	0.00141	3.219	
	30	719.1	0.00139	3.401	

Table 3 : Measuring of the temperatures corresponding to $0.1 \ge \alpha \le 0.9$ at different heating
rates to calculate activation energy for AlkOA65 macromer

Ozawa Plots for calculation of activation energy using OFW method for AlkOA65 at different heating rates corresponding to fixed value of degree of conversion, ($0.1 \ge \alpha \le 0.9$).

Figure 1 : Plot of $\ln(q)$ versus 1/T at 10% decomposition ($\alpha = 0.1$) for AlkOA65

Figure 2 : Plot of ln (q) versus 1/T at 20% decomposition ($\alpha = 0.2$) for AlkOA65

Figure 3 : Plot of ln (q) versus 1/T at 30% decomposition ($\alpha = 0.3$) for AlkOA65

Figure 4 : Plot of ln (q) versus 1/T at 40% decomposition ($\alpha = 0.4$) for AlkOA65

Figure 5 : Plot of ln (q) versus 1/T at 50% decomposition ($\alpha = 0.5$) for AlkOA65

Figure 6 : Plot of ln (q) versus 1/T at 60% decomposition ($\alpha = 0.6$) for AlkOA65

Figure 7 : Plot of ln (q) versus 1/T at 70% decomposition ($\alpha = 0.7$) for AlkOA65

Figure 8 : Plot of ln (q) versus 1/T at 80% decomposition ($\alpha = 0.8$) for AlkOA65

Figure 9 : Plot of ln (q) versus 1/T at 90% decomposition ($\alpha = 0.9$) for AlkOA65