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CHAPTER 2 

CIRCULAR DATA 

 

2.1 Introduction 

 

In this chapter, we review the definition of circular data. Circular data can be 

visualized as being distributed on the circumference of a unit circle in the range of 0 to 

2π radian. The data are commonly found in many scientific fields such as meteorology 

and biology where researchers are interested in studying direction of wind and direction 

of movement of animals, respectively. In this chapter, we give explanations and present 

some example of circular descriptive statistics. Briefly, we introduce several 

distributions of circular data and review several appropriate circular plots for circular 

data and review goodness of fit (GOF) tests for the circular distributions.  

 

2.2 Descriptive Statistics of Univariate Circular Data 

 

Descriptive statistics can be used to summarize and describe data. Several 

descriptive statistics are often used at one time to give a full picture of the data. Some 

commonly used descriptive statistics for circular data are described below (see Fisher 

(1993)): 

i. The mean direction,  

Let n ,...1  be a sample of circular data. The mean direction is defined by 

the angle made by the resultant vector with the horizontal line. Specifically, 

we have the resultant length of the resultant vector, R given by 
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ii. Mean resultant length, R  

Mean resultant length is useful for unimodal data to measure how 

concentrated the data is towards the centre. It is defined by 
n

R
R   and lies 

in the range  1,0 . When R  is close to 1, all directions in the data set are 

almost similar. The data is said to have small dispersion and is more 

concentrated towards the centre. 

 

iii. The median direction 

Mardia and Jupp (2000) defined the median as any point , where half of the 

data lie in the arc   , and the other points are nearer to   than to 

  . Basically, for any circular sample, Fisher (1993) defined the median 

direction as the observation which minimizes the summation of circular 

distances to all observations,    


n

i
id

1

 for i = 1,..., n. 

Fisher‟s definition is used to obtain the circular median in the Oriana 

statistical software package. 
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iv. The sample circular variance 

The sample circular variance is defined by the quantity RV 1 , where 

10 V . The smaller values of circular variance refer to a more 

concentrated sample. The sample circular standard deviation is defined by 

the quantity  





vR

Vv

0,log2

)1log(2

 

 

v. The circular range  

The circular range is the length of the smallest arc which contains all the 

observations. Consider 1 , 2 ,…, n  in the range  20  i . Let 

   n  ...1 be the linear order statistics of 1 , 2 ,…, n . The arc lengths 

between adjacent observations are 

   iiiT   1 ,   1,...,1  ni ;      12   nnT . 

The circular range w is  

 nTTw ,...,max2 1   

 

vi. The concentration parameter 

The concentration parameter, denoted by  , is a standard measure of 

dispersion for circular data. Best and Fisher (1981) gave the maximum 

likelihood estimates of the concentration paramater  as follows 
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where R is mean resultant length. 

vii. The circular quantile 

The first and third quantile directions 1Q and 3Q is any solution of  


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
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25.0)(
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 3

25.0)(
Q
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


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respectively and   is a median direction. 1Q can be considered as the 

median of the first half of the ordered data and 3Q as the median of the 

second. 

 

2.3 Circular Graphs 

 

 There are several plots available for circular data, such as rose diagram, circular 

histogram, arrow histogram, raw data and simple circular plots. These plots is able to 

give a general picture of the data set such as the distribution of the data, the circular 

mean and its 95% confidence interval as well as the possible occurrence of outliers. The 

plots can be obtained from the Oriana statistical software. As an illustration, some plots 

of wind direction data (Fisher‟s (1993)) are shown in Figures 2.1-2.4.  
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 Figure 2.1: Rose histogram    Figure 2.2: Circular histogram 

 

 

 

 

 

 

 

 

 

 Figure 2.3: Arrow histogram    Figure 2.4: Raw data plot 

 

 Figure 2.1 shows the rose histogram which illustrates the frequencies of all 

observations in the given interval with the mean direction being 350  and the 95% 

confidence interval for the mean direction   10,330 . The shape of rose histogram is 

actually based on the pattern of the rose flower. The circular histogram and arrow 

histogram given in Figure 2.2 and Figure 2.3 respectively are similar to the rose 

histogram but the frequency for circular histogram is represented by rectangular shape 
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while that for arrow histogram is by arrows. On the other hand, the raw data plot in 

Figure 2.4 is the analogue of a simple dot plot illustrating the locations of all 

observations with mean direction and the 95% confidence interval for the mean 

direction included. 

 

2.4 The Distributions of Circular Data 

 

 A circular distribution is a probability distribution whose total probability is 

concentrated on the circumference of a unit circle. Each point on the circumference 

represents a direction. The range of a circular random variable  , measured in radians, 

may be taken to be  2,0  or   , . Circular distributions are essentially of two 

types; they may be discrete, assigning probability masses only to a countable number of 

directions, or may be absolutely continuous with respect to the measure on the 

circumference of a unit circle. 

 Various distributions are available for circular data, for example, uniform 

distribution, wrapped Cauchy distribution, wrapped normal distribution, cardioid 

distribution, and others. Jammalamadaka and SenGupta (2001) reviewed the wrapped 

  stable distribution with the wrapped Cauchy and the wrapped normal distributions as 

the special cases. On the other hand, several bivariate circular distributions exist, such 

as the bivariate von Mises distribution, wrapped bivariate normal distribution and 

circular-linear distribution. 

 Several reviews have comprehensively discussed the circular distributions 

including Jammalamadaka and SenGupta (2001), Mardia (1972) and Fisher (1993). 

The von Mises distribution (also known as the circular normal distribution) is the most 

commonly used which is a continuous probability distribution on a circle. The von 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Circle
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Mises distribution may be thought of as a close approximation to the wrapped normal 

distribution, which is the circular analogue of the normal distribution. 

 

2.4.1 The circular uniform distribution  

 

  The uniform distribution is a basic distribution on the circle. For this 

distribution, all directions of the data are equally likely; it is also known as random 

distribution. There is no certain concentration towards one or more preferred 

directions. The probability density function is given by 

 



2

1
f  

where   20   and denoted by cU . Furthermore, Mardia and Jupp (1972) stated 

that the circular uniform distribution has a unique property such that if 1  is uniformly 

distribution and 2  is chosen from any distribution, 1  and 2  are independently 

distributed then 21    is also distributed uniformly. 

 

2.4.2 The von Mises distribution  

 

 The von Mises (VM) distribution was introduced by von Mises (1918) to study 

the deviations of measured atomic weight from integral values. The VM distribution 

has been extensively discussed where many inference techniques have been 

developed. The VM distribution is denoted by  ,VM , where   is the mean 

direction and  is the concentration parameter. The probability distribution function 

for VM distribution is given by 

     )cos(exp)(2)(
1

0  


If   20  , 0  

http://en.wikipedia.org/wiki/Wrapped_normal_distribution
http://en.wikipedia.org/wiki/Wrapped_normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
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   




2

0

1
0 )cos(exp)2()( dI  

is the modified Bessel function of order zero; a series expansion and method for 

evaluating )(0 I  is given by Fisher (1993). The distribution function of VM  is given 

by 

     


2,0,)cos(exp)(2)(
0

1
0  


dIF  

The parameter   is the mean. As the parameter 0 , the distribution converges to 

the uniform distribution cU , while if  , the distribution tends to the point 

distribution concentrated in the direction . 

As an illustration, we generate data from von Misses with different value of 

10,5,3  and fix the sample size n  = 20 and the mean direction   = 0. The data is 

given in Appendix 1 and the circular plots of the data are shown in Figures 2.5-2.7. All 

the three plots suggest that as  increases, the generated data sets are more 

concentrated in the direction 0 .  

 

 

 

 

 

 

 

 

 

 Figure 2.5:  3,0,20  nVM           Figure 2.6:  5,0,20  nVM
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             Figure 2.7:  10,0,20  nVM  

 

2.4.3 The general Wrapped Stable (WS) family distribution 

 

Jammalamadaka and SenGupta (2001) discussed the general wrapped  -stable 

distribution which is constructed by using the characteristic function of the  -stable of 

the real line. The characteristic function as given by Lukacs (1970) is 

 
     

 






























,1 if,exp

 ,2,11,0 if,
2

tansgn1exp











tit

titit
t  

where 1i , 20,1,0   , while  is a real number. The density 

function of a wrapped  -stable random variable for   2,0  is given by 

      ,
2

tancosexp
1

2

1

1 







 








  kkkf

k

 

when    2,11,0  , with   conveniently redefined as  (mod 2 ). Note that 

although there is generally no closed form expression for the density of an  -stable 

distribution on the real line, we are able to write such density for the wrapped case, at 

least as an infinite series. 



17 

 

 The particular case corresponding to 0 gives us the symmetric wrapped 

stable (SWS) family of circular densities, which we will simply refer to as wrapped 

stable (WS), given by 

    ,cos
1

2

1

1







 




kf

k

k  

where    exp . We shall denote such distributions as   ,,WS . The special 

case with 2 and 0  gives us the wrapped normal density with  2exp   . 

When 1 and 0 , it gives us the wrapped Cauchy density with    exp . 

 

2.4.4 The wrapped Cauchy (WC) distribution  

 

The wrapped Cauchy distribution is obtained by wrapping the Cauchy distribution on 

the real line around a unit circle. The wrapped Cauchy distribution is denoted by 

 ,WC , where   is the mean direction and   is another measure of concentration 

parameter such that   1A , 
)(

)(
)(

0

1
1 




I

I
A  is the ratio of two modified Bessel 

functions. The probability distribution function for the wrapped Cauchy distribution is 

given by  

)cos(21

1

2

1
)(

2

2











f    20  , 10    

while the distribution function is given by 

 

















 

)cos(21

2)cos(1
cos

2

1
)(

2

2
1






F    20  , 

As 0 , the distribution converges to a uniform distribution. On the other hand, as 

1 , the distribution tends to a point distribution concentrated in the direction  .  
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As an illustration, we generate data from the wrapped Cauchy distribution with 

different values of 597.0,7.0,3.0  and fix the sample size n  = 20 and the mean 

direction  = 0. The data sets are given in Appendix 2 and the plots of the data are in 

Figures 2.8-2.10. Generally, the generated data sets show similar behaviour as that of 

the von Mises distribution. When the measure of concentration parameter   gets 

close to 1, the distribution tends to a point distribution concentrated in the 

direction 0 . However, since the wrapped Cauchy distribution is a heavy tail 

distribution, the generated data set has observations which are located further away 

from the rest, even for high value of   (see Figure 2.8).  

     

 

 

 

 

 

 

 

 Figure 2.8:  3.0,0,20  nWC      Figure 2.9:  7.0,0,20  nWC   

 

 

 

 

 

 

 

     

 

Figure 2.10:  975.0,0,20  nWC  
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2.4.5 The wrapped normal (WN) distribution 

 

A wrapped normal distribution is obtained by wrapping a normal distribution around a 

unit circle. The normal distribution is denoted by ),(
2

LLN   where L  is the mean 

and 
2

L  is the variance while the WN distribution is denoted by  ,WN , where   is 

the mean direction and   is the measure of concentration parameter. Its probability 

distribution function is given by 

 



 











 
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k
f

2

2

2

2
exp

2

1
)(






  

where 2  is the circular variance. 

From Whittaker and Watson (1944), an alternative and more useful representation of 

this density is 

  













 



1

2
cos21

2

1
)(

k

k kf 


 ,  20   , 10    

The distribution is unimodal and symmetric about the value   . Unlike the von 

Mises distribution, the WN distribution possesses the additive property, that is, the 

convolution of two WN variables is also WN. Specifically, if ),(~ 111  WN , 

),(~ 222  WN , and are independent, then ),(~ 212121   WN (see 

Jammalamadaka and SenGupta (2001)). 

For illustration, we generate data from the wrapped normal with different values 

of 975.0,7.0,3.0  and fix the sample size n = 20 and the mean direction 0 . The 

data set are given in Appendix 3 and the circular plots of the data are in Figures 2.11-

2.13. Unlike the wrapped Cauchy distribution, the behaviour of the wrapped normal 

distribution is closer to that of the von Mises distribution. As   increase from 0 to 1, 
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the points are more concentrated in the direction 0 . As the value of   gets smaller, 

the generated data set tends to be uniformly distributed. 

 

 

 

 

 

 

 

 

Figure 2.11:  3.0,0,20  nWN     Figure 2.12:  7.0,0,20  nWN  

     

 

 

 

 

 

 

 

 

 Figure 2.13:  975.0,0,20  nWN  

 

2.4.6 Discussion 

From the circular plots in Figures 2.5-2.7, we can see that as the concentration 

parameter    increases, data from the von Mises distribution are more concentrated 

around the mean direction 0 . Similarly for the wrapped Cauchy distribution and the 

wrapped normal distribution, as the measure of concentration parameter   increases, 

the data will be closer to the given mean direction 0 . However, the wrapped Cauchy 

distribution has a long tail even for a data set with high concentration value  . Note 
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that  and   have a relationship such that )(1
1   A , where the function 

)(

)(
)(

0

1
1 




I

I
A   is the ratio of two modified Bessel function. Appendix 4 gives the list 

of values of   and the corresponding values of  .  

 

2.5 Goodness of Fit Test  

 

 In the case of circular data, Watson (1961) proposed a test for goodness of fit 

2U  of the von Mises distribution. However, the test can be extended to other circular 

distributions. Let )(F  be the distribution function of the von Mises distribution 

which is given by 

  



i

ii deIFz
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The test statistic 2U  is given by 
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where  
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n

i iz
n

z
1

1
 and 12  ici . The cut-off points were supplied by Stephens 

(1964). Then, we can plot a graph of the quantiles distribution of the data against the 

quantile of the von Mises distribution. If the quantiles are close to the straight line and 

the test statistic is smaller than the cut-off point, we can conclude that the data follow a 

von Mises distribution. 

 Brown (1994) obtained an alternative method which includes careful 

consideration of grouping effect. He first defined 
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where iO  is the ith observed value and iE  is the ith expected value. Then Brown‟s 

grouped version of 2U is 
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where 
N

n
p

j

j  , n  is a sample size and N  is a population size. The statistic 
2

dU  is 

invariant under cyclic permutations and order-reversing permutations of the cells. The 

null distribution of 
2

dU  is close to that of 2U ; if the value of Brown statistic is less 

than the cut-off point given in Table 6.5 of Mardia and Jupp (1972), we conclude that 

the fitted distribution is a good fit to the data. 

 In deciding whether a circular data set follows the von Mises (VM) distribution 

or the wrapped normal (WN) distribution, Kent (1976) highlighted the fact that both 

distributions are hardly distinguishable for 1.0  or 10 . Kendall (1974) noted that 

for any analytical, computational and statistical purposes, the WN distribution is more 

convenient for use in some cases and the VM distribution in other cases. In this thesis, 

we refer to the suggestion of Collet and Lewis (1981) who concluded that a minimum 

sample size required in order to distinguish the two distributions is 200.  

 For circular regression model case, Lund (1999) assessed the goodness-of-fit of 

the least circular regression model by using the function 

     


n

i
iii Xy

n
A

1
21

ˆ,ˆ,,cos
1

ˆ   as an analogue of residuals sums of squares in 

linear regression model. Abuzaid (2009) improved the goodness-of-fit test given by 
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i
ii yy
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2* ˆcos
1
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where y  the dependent angle, ŷ the estimate dependent angle and    1,0ˆ* A . 

Therefore, the closer  ̂*A  to 1 indicates a better goodness-of-fit of the model.  

 

2.6 Practical Example 

 

For illustration, we consider the Kuantan wind direction data measured in unit radian 

from the year 1999 to 2008. Table 2.1 give the yearly mean surface wind direction data 

obtained from the Malaysian Meteorological Department. Table 2.2 gives the values of 

circular descriptive statistics for the data. The mean direction   is 84.65° and the 

concentration parameter for this data is 3.33. We can conclude that the data sets are 

concentrated in the east direction. 

 

Table 2.1: Kuantan wind direction data 

Year 
Mean Surface Wind Direction  

( radian ) 

1999 0.28707 

2000 1.46071 

2001 0.87509 

2002 1.64563 

2003 1.56786 

2004 1.33478 

2005 1.80266 

2006 2.15736 

2007 1.73430 

2008 1.67275 

 

 

Table 2.2: Descriptive statistics 

 

Variable Angles 

Mean Vector (µ) 84.65° 

Length of Mean Vector (r) 0.88 

Concentration 3.33 

Circular Variance 0.12 

Circular Standard Deviation 28.45° 

Standard Error of Mean 10.57° 
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Figures 2.14 - 2.15 give the circular histogram and circular plot of the wind data 

respectively. It can be seen that the data are distributed with the mean direction close to 

90° and is located in the middle of the circular histogram plot. However, there is one 

 

 

 

 

 

 

 

Figure 2.14: Circular Histogram      Figure 2.15: Circular plot of Kuantan     

                                                                 wind data 

 

observation located a bit further from the rest. Further investigation is needed to 

understand this particular observation, which can be a candidate for outlier. Since the 

sample size of this data is small, we use result of Collet and Lewis (1981) such that we 

assume the data follow WN distribution.  

 

2.7 Summary 

In this chapter, we have discussed the difference of circular data from the linear data 

and argued on the need of special methods to analyse such data. We have reviewed 

circular descriptive statistics, circular graphs, and the goodness of fit test for circular 

data. However, the von Mises distribution and the wrapped normal distribution are 

indistinguishable when the sample size of the data set is small. In Section 2.6, we noted 

that the wrapped Cauchy distribution and the wrapped normal distribution are special 

cases of the wrapped stable family. In our study, we consider the wrapped normal 

distribution and compare the results obtained in the next chapter based on the WN 

distribution with the VM distribution. 


