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How to Avoid the Curse of Dimensionality:
Scalability of Particle Filters with and
without Importance Weights\ast 
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Abstract. Particle filters are a popular and flexible class of numerical algorithms to solve a large
class of nonlinear filtering problems. However, standard particle filters with importance
weights have been shown to require a sample size that increases exponentially with the
dimension D of the state space in order to achieve a certain performance, which precludes
their use in very high-dimensional filtering problems. Here, we focus on the dynamic aspect
of this ``curse of dimensionality"" (COD) in continuous-time filtering, which is caused by
the degeneracy of importance weights over time. We show that the degeneracy occurs
on a time scale that decreases with increasing D. In order to soften the effects of weight
degeneracy, most particle filters use particle resampling and improved proposal functions
for the particle motion. We explain why neither of the two can prevent the COD in general.
In order to address this fundamental problem, we investigate an existing filtering algorithm
based on optimal feedback control that sidesteps the use of importance weights. We use
numerical experiments to show that this feedback particle filter (FPF) by [T. Yang, P. G.
Mehta, and S. P. Meyn, IEEE Trans. Automat. Control, 58 (2013), pp. 2465--2480] does
not exhibit a COD.

Key words. particle filter, high-dimensional, filtering, sequential Monte Carlo

AMS subject classifications. 65C05, 93E11, 82C22, 91G60

DOI. 10.1137/17M1125340

1. Introduction. Filtering problems are rarely exactly solvable with a finite
amount of computational resources, requiring numerical techniques in order to ap-
proximately represent or sample from the filtering distribution. Particle filters, which
were first introduced by [20], have seen widespread use as general-purpose algorithms
to solve nonlinear filtering problems (see [18, 21, 8] for a general survey). They use
sequential importance sampling in order to calculate the filtering distribution. At
each time step, samples or particles are drawn from a proposal density (such as the
prior transition probability) and then reweighted according to the observations. Par-
ticle filters have very few restrictions regarding the type of generative model that
underlies the filtering problem; they can be applied to highly nonlinear and non-
Gaussian models, which is an advantage compared to the well-known Kalman fil-
ters.
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80 SIMONE CARLO SURACE, ANNA KUTSCHIREITER, AND JEAN-PASCAL PFISTER

However, they suffer from a very severe problem that affects all importance
sampling-based algorithms: their efficiency diminishes rapidly with increasing dimen-
sion of the state space. This ``curse of dimensionality"" (COD) occurs because in
high-dimensional spaces the importance weights are more likely to be degenerate, i.e.,
only a few weights are significant and all others are very close to zero. There have
been numerous studies on the COD in particle filtering [12, 3, 5, 24], which will be
described below in more detail.

In this paper, we first revisit the COD in particle filters with a focus on the
dynamic aspect of the problem. We study how the time scales of weight degeneracy
and of the performance benefit due to resampling scale with dimension. We find that
the time scale of weight degeneracy is inversely proportional to the dimensionality and
proportional to the logarithm of ensemble size. From this, we obtain an exponential
scaling of the ensemble size that is required to obtain a fixed time scale of weight
degeneracy. We argue that because the resampling-induced benefits occur on a time
scale that scales weakly with dimension, this exponential scaling is necessary in order
to avoid the collapse of the particle filter.

Next, we show that the COD can be avoided by particle filters that do not employ
importance weights. Such a filter must sample the posterior distribution directly, and
the particle motions have to fully take into account the observations. An unweighted
particle filter for the classical filtering problem, the feedback particle filter (FPF) from
[31], uses optimal feedback control in order to guide the particle motions according to
the observations. As a result, the particles of the FPF are samples from the posterior
distribution. Although the authors claim that the FPF method does not suffer from
the COD, to our knowledge this has never been explicitly demonstrated. We fill
this gap in the literature by demonstrating that the FPF does not suffer from the
COD.

1.1. Existing Literature on the COD in Particle Filtering. The COD of particle
filters has been studied using simple back-of-the-envelope calculations [12, 24] and by
proving statements on the convergence of the maximum weight [3, 5]. These works
reduce the filtering problem to a single Bayesian update step. In doing so, the COD of
particle filters is reduced to the general COD of importance sampling, and the effects
of proposal distributions or resampling on the COD are not explored in detail.

The effect of proposal distributions on particle filtering in high-dimensional prob-
lems has received some attention. In discrete time, particle filters with ``smart"" pro-
posal distributions (i.e., with improved laws that govern the motion of particles) have
been shown to perform well in certain high-dimensional problems [26, 27, 1], leading
some authors to conjecture that the COD could be avoided using carefully crafted
proposal distributions. However, it has been argued [25] that the system considered
in [1] (and similar systems) was effectively a low-dimensional system disguised as a
high-dimensional one. A precise definition of a sequence of filtering problems of in-
creasing dimension therefore requires a notion of ``effective dimension,"" which also
plays a role in the arguments brought forward by [12] and [24]. Special properties of
the model sequence, e.g., a low-dimensional dynamical system that is embedded in
spaces of increasing dimensions, could potentially avoid the COD as a function of D,
but not as a function of effective dimension. Improved proposals are usually designed
to reduce weight degeneracy by minimizing the rate of change of the variance of the
importance weights, but even the optimal proposal function is not able to completely
prevent the weight degeneracy. Moreover, in continuous time it is not known whether
an optimal proposal even exists.
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CURSE OF DIMENSIONALITY IN PARTICLE FILTERS 81

Meanwhile, the existing literature offers only a cursory treatment of the effect
of resampling on the dimensionality-dependent scaling of particle filters. While it is
understood that the most widespread resampling algorithm, multinomial resampling,
is suboptimal compared to branching (see [9], [6], [16], [7], and also [2, p. 250]), we
cannot be certain about the existence of a resampling scheme that resolves the COD.
The arguments against such a possibility, which are brought forward, e.g., in [25] and
[6], are mostly heuristic and can be summarized as follows: while resampling resets
the particle weights to undo the effects of weight degeneracy, it does not improve the
quality of the sample instantaneously. The potential improvement is temporary and
comes from particle motions that originate from regions of high likelihood. In the
next section we will look more closely at this mechanism and thereby support the
explanation provided by [25].

The conjecture that the COD can be avoided by particle filters without impor-
tance weights has been brought up in previous works. For example, the (stochastic)
particle flow filter [13, 15] holds the promise of avoiding the COD [14]. This filter
implements an implicit Bayesian update by defining a flow field at each measurement:
whenever a measurement is registered, a little loop in synthetic time is inserted, during
which the particles evolve according to this flow field and are thus propagated from
the prediction to the posterior density. A similar approach, the continuous-discrete
feedback particle filter [29], also relies on inserting an artificial loop at the times of
measurement arrival, but the particles are propagated according to an innovation-error
based gain feedback structure. Since particle flow filters require a clear separation be-
tween prediction and update in their respective filtering algorithms, it is not clear how
the results would transfer to continuous-time measurement models, where prediction
and update have to be processed simultaneously.

2. Preliminaries. We restrict our overall discussion to the classical nonlinear
filtering problem in continuous time, where the state Xt \in RD and the observation
Yt \in RD are D-dimensional diffusion processes that are solutions to the It\^o stochastic
differential equations (SDEs)

dXt = f(Xt)dt+ g(Xt)dWt,(1)

dYt = h(Xt)dt+ dVt,(2)

where Wt and Vt are independent D-dimensional Brownian motions. The stochas-
tic filtering problem is to find conditional expectations E

\bigl[ 
\varphi (Xt)| \scrF Y

t

\bigr] 
, where \varphi :

RD \rightarrow R is a measurable function and \scrF Y
t is the filtration generated by the obser-

vation process. Next, we describe the two approximate filtering algorithms that will
be studied and compared in this paper.

2.1. The Bootstrap Particle Filter (BPF). The bootstrap or vanilla particle fil-
ter uses importance sampling (IS) to approximate the conditional expectation as

(3) E
\bigl[ 
\varphi (Xt)| \scrF Y

t

\bigr] 
\approx \varphi t

.
=

N\sum 
i=1

m
(i)
t \varphi (Z

(i)
t ),

where Z
(i)
t \in RD are the samples or ``particles"" that evolve according to the dynamics

of the hidden state, and m
(i)
t are the (normalized) importance weights. This particle

filter is usually formulated in discrete time [20, 18], but we will use the standard
formulation of continuous-time particle filtering (see Chap. 9 of [2] and Chap. 23 of
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82 SIMONE CARLO SURACE, ANNA KUTSCHIREITER, AND JEAN-PASCAL PFISTER

[10]). Between resampling times, the time evolution of the particle system is given by

dZ
(i)
t = f(Z

(i)
t )dt+ g(Z

(i)
t )dB

(i)
t ,(4)

m
(i)
t =

M
(i)
t\sum N

j=1 M
(j)
t

, dM
(i)
t = M

(i)
t h(Z

(i)
t ) \cdot dYt,(5)

where B
(i)
t are independent Brownian motions and \cdot denotes the standard scalar prod-

uct on RD. In this formulation, the unnormalized importance weight M
(i)
t arises as

a Radon--Nikodym derivative dP(i)/d\~P of the measure P(i) under which the observa-

tions are generated from the state Z
(i)
t to a reference measure \~P under which Yt is a

Brownian motion.
It is well established [18] that the BPF suffers from weight degeneracy, i.e., the

weights evolve to become less equal, with only a few significant weights and all other
weights being negligibly small. As a result, the variance of the IS estimate in (3) grows
and performance drops. It is useful to introduce an ``effective sample size"" Neff that
measures the number of samples that would be required to match the performance of
IS with a Monte Carlo sampler that samples directly from the filtering distribution.
A useful approximation of effective sample size is given by the inverse of the sum of
squared weights,

(6) Neff,t \approx 

\Biggl[ 
N\sum 
i=1

\Bigl( 
m

(i)
t

\Bigr) 2
\Biggr]  - 1

.
= \~Neff,t

(see [23] and references therein). As a measure that only depends on the importance
weights and not on the locations of the samples, it is not a good predictor of perfor-
mance when samples are clustered. In particular, the typical outcome of multinomial
resampling from an impoverished sample is that there are only a few distinct particle
positions and multiple particles at each of those positions. The new sample is still
impoverished and has a large variance, despite the fact that the above definition of
Neff,t yields a value of N (after resampling, all weights are reset to a value of 1/N).

With this caveat in mind, we assume that \~Neff,t in (6) gives an upper bound on the
true value of Neff,t.

Because of the weight degeneracy outlined above, the particle system has to be
frequently resampled. Resampling is performed according to a schedule that is usually
based either on regular resampling intervals or on the effective sample size. We use

the convention that particle trajectories are right-continuous with left-side limits Z
(i)

t - r
encoding the position before resampling. At each resampling time t = tr, new par-
ticle positions ( \~Z

(i)
tr )ni=1 are drawn from the set of positions \{ Z(i)

t - r
, i = 1, . . . , n\} with

replacement. The probability that Z
(i)

t - r
appears ni times within the tuple ( \~Z

(i)
tr )ni=1 is

chosen according to the multinomial distribution,

(7) Prob (n1, n2, . . . , nN ) = N !
N\prod 
i=1

\Bigl( 
m

(i)
t

\Bigr) ni

ni!
,

N\sum 
i=1

ni = N.

The new position at t = tr is then set to the resampled position, i.e., Z
(i)
tr \leftarrow \~Z

(i)
tr and

all weights are reset to 1/N \leftarrow \~m
(i)
tr . A discussion of various other forms of resampling

can be found, e.g., in [9], [6], [16], and [7].
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CURSE OF DIMENSIONALITY IN PARTICLE FILTERS 83

2.2. A Particle Filter without Importance Weights: The Feedback Particle
Filter (FPF). In [31], a particle filter was proposed that does not require importance
weights, i.e., posterior expectations are approximated by unweighted averages,

(8) E
\bigl[ 
\varphi (Xt)| \scrF Y

t

\bigr] 
\approx \=\varphi t

.
=

1

N

N\sum 
i=1

\varphi (Z
(i)
t )

(note the distinction to the weighted average \varphi t in (3)). By definition, the time evolu-
tion of particles fully incorporates the information given by the history of observations.
The particle system of the FPF evolves according to the It\^o SDEs

dZ
(i)
t =

\Bigl( 
f(Z

(i)
t ) + \Omega (Z

(i)
t , t)

\Bigr) 
dt

+ g(Z
(i)
t )dB

(i)
t +K(Z

(i)
t , t)

\Bigl[ 
dYt  - 1

2 (h(Z
(i)
t ) + \=ht)dt

\Bigr] 
,

(9)

where K is a (D\times D matrix-valued) function, and \Omega is a D-dimensional vector-valued
function with components given by

(10) \Omega i(z, t) =
1

2

D\sum 
j=1

D\sum 
k=1

Kjk(z, t)
\partial 

\partial zj
Kik(z, t), i = 1, . . . , D.

The function K is the solution to an Euler--Lagrange boundary value problem (EL--
BVP). The latter results from an optimal control problem: the function K is chosen
such as to make the distribution of particle positions as close as possible to the pos-
terior filtering distribution, and it ensures that the particle distribution converges to
the true filtering distribution when K is chosen according to the filtering distribution.
The function K, also called gain function, is analogous to the Kalman gain of the
Kalman--Bucy filter for the linear filtering problem. As such, K (and therefore \Omega )
introduces interactions between the particles, in contrast to the BPF, where particles
evolve independently from each other between resampling times. Another interesting
aspect of the FPF is the structure of the innovation term (in (9), the term in square
brackets) that multiplies the gain function: the new observation dYt is compared to

the arithmetic mean of the individual particle's estimate h(Z
(i)
t ) and the population

estimate \=ht. The function \Omega comes from the conversion from Stratonovich form to
It\^o form.

In practical implementations of the FPF, the main difficulty lies in the solution
of the EL-BVP. In multiple dimensions (D > 1), na\"{\i}ve approaches to the EL-BVP
turn out to be computationally expensive. This problem was recently addressed in
[30] using a Galerkin approximation of the gain function. We use the constant gain
approximation from that paper, which corresponds to a Galerkin approximation with
coordinate functions as basis functions. With this choice, the gain function is

(11) Kij(z, t) =
1

N

N\sum 
k=1

\Bigl( 
hj(Z

(k)
t ) - \=ht,j

\Bigr) 
Z

(k)
t,i , i, j = 1, . . . , D,

which is constant in z (but not in time) and corresponds to the sample covariance
matrix between the particle positions and the observation function h. It can be
shown that for a linear filtering problem, the constant gain approximation equals the
Kalman gain in the limit of an infinite number of particles [30]. In addition, under
this approximation the FPF gives rise to almost the same particle dynamics as in the
ensemble Kalman--Bucy filter (EnKFBF) [4], only differing slightly in the estimation
of the covariance matrix from the observations.

© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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84 SIMONE CARLO SURACE, ANNA KUTSCHIREITER, AND JEAN-PASCAL PFISTER

3. Results.

3.1. Illustration of the Curse of Dimensionality for a Linear Problem. We
consider the linear D-dimensional problem

dXt =  - Xtdt+
\surd 
2dWt,(12)

dYt = 2Xtdt+ dVt,(13)

where the numerical factors are chosen in order to ensure a unit prior variance and
time-constant and a (one-dimensional) mean squared error (MSE) of the optimal filter
E[( \^Xi,t  - Xi,t)

2] = 1/2 across all values of D. For the linear system in (12)--(13), the
BPF is given by

dZ
(i)
t =  - Z(i)

t dt+
\surd 
2dB

(i)
t ,(14)

m
(i)
t =

M
(i)
t\sum N

j=1 M
(j)
t

, dM
(i)
t = 2M

(i)
t Z

(i)
t \cdot dYt,(15)

where i = 1, . . . , N and Z
(i)
0 \sim \scrN (0,1D\times D) andm

(i)
0 = 1/N . We note that in principle

all processes should carry an index that refers to the dimension D. However, in the
interest of readability, we omit this index.

3.1.1. The Time Scale of Weight Decay Shortens in Higher Dimensions. We
study the effect of the number of dimensions D on the time scale on which the decay
of \~Neff,t occurs. In Figure 1 we show numerical results for the trial-averaged \~Neff,t,

illustrating the decay of \~Neff,t as a function of time forN = 104 andD = 10, 20, . . . , 50.

The decay of \~Neff,t critically limits the performance of the filter. We measure the
performance by the MSE of the particle estimate of the hidden state,

(16) MSEt =
1

D
E

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Xt  - 
N\sum 
i=1

m
(i)
t Z

(i)
t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2
\right]  ,

where the average is estimated numerically by averaging independent trials, as in
the case of expected stopping time. In our numerical experiment, the initial value is
MSE0 = 1 due to the initialization of the particles according to the prior distribution.
The MSE reaches an asymptotic value of two as the effective sample size goes to one.
As we show in Figure 1 (bottom), for low values of D the MSE has a transient dip
that is followed by a gradual increase toward the asymptotic value. The dip becomes
shallower and the increase becomes faster as the dimension D increases. For very high
D, the dip disappears and the MSE increases immediately.

In order to quantify the time scale of weight decay, we define the following ex-
pected stopping time, the mean first passage time of \~Neff,t through n,

(17) T (D,N, n) = E
\Bigl[ 
inf

\Bigl\{ 
t \geq 0| \~Neff,t \leq n

\Bigr\} \Bigr] 
, n \leq N,

as a measure for the time scale of weight degeneracy. By definition, we have

(18) T (D,N,N) = 0, T (D,N, 1) =\infty , N \in N.

We first give a rough analytical estimate of the dependence of T (D,N, n) on D.
The time evolution of the normalized weight can be written as

(19) dm
(i)
t = 4m

(i)
t (Z

(i)
t  - Zt) \cdot (Xt  - Zt)dt+ 2m

(i)
t (Z

(i)
t  - Zt) \cdot dVt

© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CURSE OF DIMENSIONALITY IN PARTICLE FILTERS 85

Fig. 1 Top left: The collapse of the effective sample size \~Neff,t over time is shown for different
dimensions D of the state space and for an ensemble size N = 104. The displayed time course
is an average of 100 independent trials. Top right: A plot of the stopping time T (D,N, n)
for n = 10 as a function of dimension D shows an approximate D - 1 scaling (thick black
line). Bottom: The time evolution of the MSE shows a dip and a subsequent deterioration
of performance due to weight decay for dimensions up to 50. The dip is shallower and the
deterioration faster for higher dimensions. For even higher dimensions, the dip is no longer
visible because the weight decay is too quick. All traces are averages of 100 independent trials
with an ensemble size of N = 104.

for the linear model. From this we obtain

(20) E

\biggl[ 
d
\Bigl( 
m

(i)
t

\Bigr) 2
\biggr] 
= E

\biggl[ 
4
\Bigl( 
m

(i)
t

\Bigr) 2
\biggl\{ 
2(Z

(i)
t  - Zt) \cdot (Xt  - Zt) +

\bigm\| \bigm\| \bigm\| Z(i)
t  - Zt

\bigm\| \bigm\| \bigm\| 2\biggr\} dt

\biggr] 
,

which consists of scalar products of D-dimensional vectors. Each of the vector com-
ponents is initially of order 1, independent of D. Even in the best of cases, i.e., if
the particle positions are samples from the true posterior distribution, each of the
vector components would be of the order of the true posterior standard deviation,
which is equal to 1/

\surd 
2 independent of D. Thus, the initial magnitude of change of

\~Neff,t, which is the inverse of the sum of the squared weights, is also proportional to
D. From this, a rough estimate of the scaling is T (D,N, n) \propto D - 1. In Figure 1 we
numerically estimated T by using trial averages, and we show the results as a function
of D for different values of N . This confirms that the scaling is close to D - 1.

Next, we study the dependence of T (D,N, n) on N , for which we rely on a
numerical investigation. The results are shown in Figure 2 for n = 10 and D =
10, 20, . . . , 50. We can see that as D increases, N has to increase exponentially in
order to achieve a fixed T , or in other words T (D,N, n) \propto logN .

3.1.2. The Effect of Resampling. If the criterion to resample the particles is
\~Neff,t = ncrit, the rate at which resampling occurs is tied to the time scale of weight

© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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86 SIMONE CARLO SURACE, ANNA KUTSCHIREITER, AND JEAN-PASCAL PFISTER

Fig. 2 Left: The time scale T of weight collapse (defined as the time it takes for \~Neff,t to reach
a value of 10; see black circles in Figure 1 top left) as a function of ensemble size N and
dimension D. Right: The required ensemble size to achieve T = 0.1 (see black circles in the
left panel) increases exponentially with dimension D.

degeneracy. The immediate implication is that with a fixed ensemble size N , re-
sampling occurs more frequently in higher dimensions, with resampling rate roughly
proportional to D. After resampling, \~Neff,t is reset to N , and since the resampled
particles are located at positions where the likelihood of observations is high, the ini-
tial decay of \~Neff,t is a bit slower than for an initialization from the prior. However,
since resampling does not add any new information about the true state, it cannot
lead to an immediate performance increase.

The benefit of resampling is that particles with vanishing weights are discarded,
and all computational efforts are expended for particles that are in an interesting
region of state space. It is therefore expected that resampling shows a delayed effect
due to the diffusion of particles away from resampled positions. For example, in the
extreme case where ncrit \approx 1, all particles will typically be resampled at the same
location. The particles have to diffuse away from their initial position such that their
empirical variance is of the same order of magnitude as the (true) posterior variance.
The time that is needed to reach such a state is related to the inverse of the squared
diffusion coefficient and therefore independent of dimension.

In order to quantify the delay between the resampling time and the time where
the MSE has maximally decreased due to resampling, we introduce the measure \tau MSE,
which is defined as the inverse absolute value of the slope of a linear fit to the initial
portion of the MSE time course (after resampling). In the right panel of Figure 3
we show \tau MSE as a function of dimension D. The time scale \tau MSE decreases with D,
but it tends to a constant value for very high D. This saturation is in sharp contrast
to the time scale of weight degeneracy, which continues to decay with D - 1. The
consequence is that in high dimensions, the weight decays during an interval which is
much shorter than the delay required for the resampling to have a beneficial effect.
Resampling is therefore ineffective in high dimensions, and it does not remove the
need for exponentially large ensembles.
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CURSE OF DIMENSIONALITY IN PARTICLE FILTERS 87

Fig. 3 The effect of resampling for an ensemble size of N = 104 and a constant resampling interval
of one time unit. Left: Resampling temporarily improves filter performance relative to the
mean performance as shown by the dip in the time course of the MSE (with its time average
subtracted) after resampling. The thin straight lines show the slope of the initial decay.
Right: We measure the slopes of the linear fits to the initial segment of the MSE time course
in the left panel. The characteristic time \tau MSE, which is defined as the inverse absolute value
of that slope, decays and stabilizes, whereas the time scale of weight degeneracy continues to
decay with D - 1 (thick black line; see also Figure 1).

3.2. Optimal Proposals in Continuous Time. In the literature on discrete-time
particle filters, optimal proposals for the particle motion have been shown to greatly
reduce the required ensemble size. However, proposals for discrete-time filters are not
directly applicable to the continuous-time case. For example, it is straightforward
to show (cf. Appendix A) that the optimal particle filter by [17] collapses to a BPF
as the time discretization step goes to zero. Since the reweighting of samples in
the continuous-time particle filter depends on the mutual absolute continuity of the
hidden state process and the particle process, the class of admissible particle motions
is restricted. Two diffusion processes are mutually absolutely continuous if and only
if they differ by a pure drift term. The SDE for the particle motion can therefore
differ from the hidden state SDE by at most a drift term Ft:

dZ
(i)
t =

\Bigl[ 
f(Z

(i)
t ) + F

(i)
t

\Bigr] 
dt+ g(Z

(i)
t )dB

(i)
t ,(21)

where F
(i)
t must be an \scrF Y

t \vee \scrF Z(i)

t -adapted D-dimensional process. The corresponding
(unnormalized) weight will evolve as

dM
(i)
t = M

(i)
t

\Bigl( 
h(Z

(i)
t ) \cdot dYt  - F

(i)
t \cdot dZ

(i)
t

\Bigr) 
.(22)

From this starting point, it could be interesting to formulate a stochastic control

problem in order to choose the processes F
(i)
t such as to minimize the effects of weight

degeneracy. There has been some work in this direction [28] for continuous-discrete
filters in the small observation noise regime, but we are not aware of any work on
generalizing this to the continuously observed case (and for large observation noise).

It is also interesting to note that both the optimal proposal and the FPF have
the aim of redirecting the particles based on the observations. However, the particle
motion of an importance sampling-based particle filter is more heavily constrained in
order for the importance weights to exist. Even the general form of (21) is less general
than the motion of the particles in the FPF, which includes an explicit dYt term. It
remains an open problem to reconcile the two frameworks of particle filtering.

© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

78
.1

96
.2

7.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



88 SIMONE CARLO SURACE, ANNA KUTSCHIREITER, AND JEAN-PASCAL PFISTER

●
●

●
●

●
●
●
●
●
●

●

●

■
■ ■ ■ ■ ■ ■■■

■
■ ■ ■ ■

■

■

▲

▲

▲
▲

▲
▲
▲
▲
▲
▲

▲

▲

◆
◆ ◆ ◆ ◆◆◆◆

◆◆
◆

◆ ◆◆
◆

◆

● BPF, ϵ=1.00

■ FPF, ϵ=1.00

▲ BPF, ϵ=0.85

◆ FPF, ϵ=0.85

10 50 100 500 1000
1

10

100

1000

104

105

106

dimension D

m
in
im
u
m
e
n
s
e
m
b
le
s
iz
e
to
re
a
c
h
M
S
E
≤
1

●

●

●
●

●

●

●

●

■

■

■
■

■

■

■

■

■

■
● BPF

■ FPF

10 50 100 500 1000
0.001

0.010

0.100

1

10

100

1000

dimension D
c
o
m
p
u
ta
ti
o
n
ti
m
e
p
e
r
ti
m
e
-
s
te
p
[m
s
]

Fig. 4 Left: Comparison of the ensemble size N1(D) and N0.85(D) that is required in order to reach
a performance of MSE \leq 1 and MSE \leq 0.85, respectively, as a function of dimension D for
the BPF and the FPF. The ensemble sizes are generally lower for the FPF and scale linearly
with dimension, whereas the BPF requires an exponentially large ensemble. Fits are shown
in red: NBPF

1 (D) \approx 38.0 \cdot e0.026D - 0.66 \cdot D - 30.2, NBPF
0.85 (D) \approx 68.1 \cdot e0.040D - 2.93 \cdot D - 50.9,

NFPF
1 (D) \approx 3.63 + 0.107 \cdot D, and NFPF

0.85 (D) \approx 3.46 + 0.253 \cdot D. Right: Comparison of the
run times of the two filtering algorithms for \epsilon = 1.

3.3. Dimensionality-Dependent Scaling of the BPF vs. FPF. We study the
minimum ensemble size that is required in order to reach a certain performance (mea-
sured as MSE)

(23) N\epsilon (D) = inf \{ N \in N| MSE \leq \epsilon \} ,

where the MSE is the expected time-averaged MSE defined as

(24) MSE =
1

Dt1
E

\int t1

0

dt

\left\{     
\bigm\| \bigm\| \bigm\| Xt  - 

\sum N
i=1 m

(i)
t Z

(i)
t

\bigm\| \bigm\| \bigm\| 2 for the BPF,\bigm\| \bigm\| \bigm\| Xt  - 1
N

\sum N
i=1 Z

(i)
t

\bigm\| \bigm\| \bigm\| 2 for the FPF.

In simulations, this integral is estimated using a Riemann sum over discrete time
steps, and t1 is chosen to be 5000 time units, for which we can drop the expectation
because of the ergodicity of the process. Particles of the BPF are resampled whenever
\~Neff/N \leq 0.1.

For our particular linear toy model, the theoretical range of sensible values of \epsilon is
0.5 < \epsilon < 2, and we can set N0.5(D) =\infty and N2(D) = 1 because the performance of
the optimal filter is set to produce an MSE of 0.5 and both filters go back to the prior
for N = 1, which yields an MSE of 2. However, the practical range of \epsilon is severely
restricted by the runtime of the simulations, especially for the BPF.

The results for \epsilon = 1 and \epsilon = 0.85 are displayed in Figure 4 (left). Already in
ten dimensions, the FPF starts out with a significant advantage, requiring only four
particles vs. 13 for the BPF. For larger dimensions, the ensemble size increases rapidly,
reaching a value of 421 by D = 100 and 6434 by D = 200. Simulations for D > 200
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CURSE OF DIMENSIONALITY IN PARTICLE FILTERS 89

were too time-consuming to run. Meanwhile, the FPF requires only 15 particles for
D = 100 and an estimated 25 particles for D = 200. We ran simulations of the FPF
up to D = 1000, where it requires merely 111 particles.

A least-squares fit of the numerical data reveals an exponential scaling for the
BPF and merely linear scaling for the FPF (see caption of Figure 4). The FPF thus
requires roughly one additional particle with every increase of the dimension by ten.
In contrast, for the same increase in dimension, the BPF requires a factor of 1.3 more
particles.

In terms of computation time for a fixed performance of MSE = 1, we find that
the BPF requires a run time per time step that scales exponentially with dimension
(see Figure 4, right). In contrast, the FPF shows a cubic scaling, which is expected
because the gain function scales quadratically with the ensemble size and the latter
scales linearly with dimension. Interestingly, the FPF requires more computation time
for low dimensions, despite using fewer particles to achieve the same performance as
the BPF. However, we did not heavily optimize our code for performance, and we
expect that the run time could be reduced to compete with the BPF in low dimensions
using more careful programming.

4. Discussion. In this paper, we have revisited the problem of the COD in the
standard particle filter. We have considered the case of the classical filtering problem
with a continuous-time index. Even though the COD has been studied before, all the
existing literature considers only one Bayesian update step and implies a discrete-time
treatment. Here, we have closed this gap by studying the full dynamic nature of the
problem in continuous time.

The discrete- and continuous-time particle filters have some important differences.
The class of possible proposal distributions is larger in discrete time, where it is only
restricted in terms of practicality by virtue of tractability of the transition kernel.
In discrete time, it has been shown that even the optimal proposal distribution does
not avoid the COD [25]. In continuous time, the law of the particle motion has
to be absolutely continuous with respect to the law of the hidden state. It is an
open problem to show that there are nontrivial proposals that minimize the weight
degeneracy.

There has been a general consensus that the problems of particle filters in high-
dimensional problems result from importance sampling. It has therefore been conjec-
tured that a particle filter without importance weights could work efficiently in high
dimensions. Such a filter, the FPF, has recently been proposed by [31]. There have
been other related approaches to filtering with unweighted particles, e.g., in [11] and
[10], Chapter 23, the EnKBF [19, 4], and the neural particle filter in [22]. Both the
EnKBF and the neural particle filter are mathematically similar to the FPF with con-
stant gain approximation, and the latter differs only in terms of the structure of the
innovation term. Despite the promise of unweighted particle filters, their efficiency in
high dimensions has not yet been thoroughly demonstrated. This work complements
the analyses in [30, 22] by providing numerical evidence that the FPF requires only
a polynomial ensemble size and computation time as a function of dimensionality
and thereby avoids the COD. Future analytical work will hopefully shed light on the
mechanisms that underlie this finding.

Based on this important result, we want to draw the attention of researchers to the
FPF and similar unweighted approaches. Particle filters without importance weights
are promising algorithms for solving very high-dimensional problems. This opens
up new perspectives in applied fields such as geophysics and meteorology, especially
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numerical weather prediction, where data assimilation typically requires the solution
of very high-dimensional filtering problems.

Appendix A. Continuum Limit of the Optimal Proposal from [17]. In order
to apply the optimal importance function that is given in [17, Example 3], we have
to introduce a time-discretized version of our diffusion process:

Xk = Xk - 1 + fcont(Xk - 1)dt+ g(Xk - 1)
\surd 
dt\epsilon k,(25)

Yk  - Yk - 1 = h(Xk)dt+
\surd 
dt\eta k,(26)

where \epsilon k and \eta k are multivariate Gaussian random variables with mean zero and unit
covariance matrix. For constant g(x) = G and linear h(x) = Wx, this corresponds to
equations (9)--(10) in [17] with nx = ny = D, f(x) = x + fcont(x)dt, \Sigma v = dtGG\top ,
C = Wdt, and \Sigma w = dt1D\times D, where the increment Yk  - Yk - 1 was identified with yk
of [17] in order to preserve the nonregressive form of y. Taking equations (11) and
(12) in [17] and expressing the mean mk and covariance matrix \Sigma of the conditional
distribution xk| (xk - 1, yk) in terms of the quantities of the continuous-time model, we
obtain

mk = \Sigma 
\bigl( 
dt - 1G - \top G - 1xk - 1 +G - \top G - 1fcont(xk - 1) +W\top yk

\bigr) 
,(27)

\Sigma  - 1 = dt - 1G - \top G - 1 + dtW\top W.(28)

For small dt, the covariance matrix can be approximated as \Sigma \approx dtGG\top , and therefore
we obtain

(29) mk = xk - 1 + fcont(xk - 1)dt+ dtGG\top W\top yk.

The last term, when expressed in terms of the continuous-time process,

(30) dZ
(i)
t = fcont(Z

(i)
t )dt+GdWt +GG\top W\top dYtdt,

constitutes a dtdYt term, which vanishes. Therefore, the particle SDE reduces to

(31) dZ
(i)
t = fcont(Z

(i)
t )dt+GdWt,

which is equal to the prior.
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