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Abstract

Background

Hypobaric hypoxia has been reported to cause endothelial cell and platelet dysfunction

implicated in the formation of microvascular lesions, and in its extremes may contribute to

vascular leakage in high altitude pulmonary edema or blood brain barrier disruption leading

to cerebral micro-hemorrhage (MH). Platelet function in the development of microvascular

lesions remained ill defined, and is still incompletely understood. In this study platelet- and

endothelial cell-derived extracellular vesicles (PEV and EEV, respectively) and cell adhe-

sion molecules were characterized in plasma samples of members of a high altitude expedi-

tion to delineate the contribution of platelets and endothelial cells to hypobaric hypoxia-

induced vascular dysfunction.

Methods and findings

In this observational study, platelet and endothelial cell-derived extracellular vesicles were

analysed by flow-cytometry in plasma samples from 39 mountaineers participating in a med-

ical research climbing expedition to Himlung Himal, Nepal, 7,050m asl. Megakaryocyte/

platelet-derived AnnexinVpos, PECAM-1 (CD31) and glycoprotein-1b (GP1b, CD42b) posi-

tive extracellular vesicles (PEV) constituted the predominant fraction of EV in plasma sam-

ples up to 6,050m asl. Exposure to an altitude of 7,050m led to a marked decline of CD31pos

CD42neg EEV as well as of CD31pos CD42bpos PEV at the same time giving rise to a quanti-

tatively prevailing CD31neg CD42blow/neg subpopulation of AnnexinVpos EV. An almost hun-

dredfold increase in the numbers of this previously unrecognized population of CD31neg

CD42blow/neg EV was observed in all participants reaching 7,050m asl.
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Conclusions

The emergence of CD31neg CD42blow/neg EV was observed in all participants and thus rep-

resents an early hypoxic marker at extreme altitude. Since CD31 and CD42b are required

for platelet-endothelial cell interactions, these hypobaric hypoxia-dependent quantitative

and phenotypic changes of AnnexinVpos EV subpopulations may serve as early and sensi-

tive indicators of compromised vascular homeostasis.

Introduction

Humans who permanently live or work at, as well as mountaineers climbing to, high altitudes

are at risk of developing high-altitude diseases, such as chronic or acute mountain sickness

(AMS), high-altitude pulmonary edema (HAPE) and high-altitude cerebral edema (HACE) [1,

2].

Although the pathophysiology of high altitude diseases is only incompletely understood,

endothelial damage is a hallmark in each of the different diseases. For example in HAPE, fluid

transudation is aggravated due to endothelial damage resulting in vascular leakage. In HACE,

disruption of the blood-brain barrier is leading to edema formation and the characteristic

micro-hemorrhages (MH). Magnetic resonance imaging (MRI) in a recent prospective cohort

study revealed new cerebral MH in 20%, that is, 3 of 15 climbers reaching an altitude of

7,050m [3]. The detection of MH and retinal hemorrhage in phenotypically healthy mountain-

eers at extreme altitude [3, 4] implicates an underestimated prevalence of substantial vascular

dysfunction in “healthy” subjects exposed to hypoxia, which is yet prone to exacerbate anytime

upon progression to severe hypoxic exposure.

Hypobaric hypoxia is the underlying cause of high altitude sickness by leading to sustained

endothelial cell damage and platelet activation. Hallmarks of endothelial dysfunction include

the expression of adhesion molecules and increased extracellular vesicle (EV) release into the

circulation [5, 6]. Platelets are important for prevention of endothelial leakage, as they stop

bleeding by forming clots at the site of endothelium injury [7]. Through this direct interaction

with endothelial cells, platelets play an important role in the development of microvascular

pathology. The interaction between platelets and the vessel wall is mediated by cellular recep-

tors on the surface of platelets and endothelial cells, such as integrins and selectins [7]. Condi-

tions caused by deficiency or dysfunction of CD42b, such as the Bernard-Soulier syndrome

(BSS) [8], underline the functional relevance of these surface molecules. BSS is a hereditary

bleeding disorder affecting the megakaryocyte/platelet lineage, indicating that CD42b is func-

tionally required for normal primary hemostasis. Endothelial extracellular vesicles (EEV) and

platelet extracellular vesicles (PEV) are released by activated and apoptotic endothelial cells

and megakaryocytes/platelets, respectively, and carry surface molecules originating from their

parental cells [9]. EEV and PEV carry an array of signaling molecules including cytokines,

adhesion molecules, surface receptors, and bioactive lipids [10]. Megakaryocyte/platelet-

derived PEV carry procoagulant factors, and trigger the binding of platelets to the subendothe-

lial matrix [11]. Thus, PEV have been implicated to contribute to coagulation and vascular

homeostasis, and endothelial dysfunction.

To assess the impact of extreme altitude on plasma EV of the 39 mountaineers of the medi-

cal research expedition to Mount Himlung Himal 2013, we analysed by flow cytometry plasma

concentrations of platelet- and endothelial cell-derived extracellular vesicles (PEV and EEV)

and quantitatively measured cell surface expression of AnnexinV, CD31, and CD42b. We
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report here the emergence of a previously unrecognized CD31neg subpopulation population of

AnnexinVpos EV of all mountaineers reaching 7,050m asl that may serve as an indicator of the

initiation of vascular dysfunction.

The challenging logistics of such a high altitude medical expedition precluded a large collec-

tion of plasma samples limiting the number of parameters that could be comprehensively

investigated. Thus, the observations reported will benefit from future detailed systematic in

vitro analyses. Especially more in depth characterization of the emerging type of CD31neg

CD42low/neg AnnexinVpos EV will reveal the cellular origin, molecular composition, and func-

tion of this previously unrecognized population of EV.

Methods and material

Experimental setting

HiReach 2013 was a high altitude medical research field study to Mount Himlung Himal (7126

m), Nepal. 39 healthy and physically fit subjects were examined by baseline (PR) and post-

expedition (PO) testings at 550 m asl, eight to nine weeks before and four to five weeks after

climbing to Himlung Himal. The study was approved by the relevant institutional ethical com-

mittee, (the Kantonale Ethik Komitee, KEK 226/12) and was registered on clinicaltrials.gov

(NCT01953198). Informed consent was obtained from all subjects before study inclusion and

all data were anonymized for analysis. During the climb examinations were performed one

day after arrival each at Base Camp (BC1) at 4844m, in Camp 2 (C2) at 6022 m, and in Camp 3

(C3) at 7050 m. Subject recruitment procedures and ascent protocol has been published previ-

ously [3].

Blood sample collection

Citrate-plasma samples from climbers were prepared by centrifugation of peripheral blood

samples for 10 minutes at 2,000 g (EBA 20, Hettich AG, Bäch, Switzerland) afterwards 300μl of

plasma aliquots were frozen at -40˚C to -60˚C on-site and stored at -80˚C until analysis.

Flow cytometry of extracellular vesicles in plasma

Effects of hypobaric hypoxia at high altitude on extracellular vesicles (EV) in plasma were ana-

lyzed by flow cytometry (Fig 1A). This is currently the most widely used and accepted method-

ology for EV analyses [12]. In recent years, EV attracted much academic as well as clinical

attention due to their assumed function as signaling units and biomarkers in a plethora of

physiological and pathophysiological contexts [13, 14]. Large consortia strive to assess and

establish protocols for standardization and quality control of qualitative as well as quantitative

characterization of EV [12–14] as prerequisites for reliable routine application. As previously

described (17) we here followed basic, and well-established protocols for flow cytometrical

analysis of EV, [15–17]. EV were identified by size and granularity, and further specified by

phosphatidylserine (PS) surface exposure (AnnexinV-binding). Platelet-derived (P)EV and

endothelial cell-derived (E)EV were defined by platelet endothelial cell adhesion molecule

(PECAM-1, CD31) surface antigen expression. The EV origin was further differentiated by

platelet glycoprotein Ib alpha chain (GPIb, CD42b) expression on PEV (CD42b-positive) ver-

sus EEV (CD42b-negative). Flow cytometry of surface expression of CD31 (PECAM-1) and

CD42b (GPIb, CD42b) on EV is a widely used method to discriminate PEV (CD31pos

CD42bpos) from EEV (CD31pos CD42bneg)[15]. Plasma EV were analyzed as published previ-

ously [16]. Briefly, plasma samples were thawed at 37o C and centrifuged at 17,000 g for 10

min at RT. Pelleted material was resuspended in AnnV-binding buffer according to
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manufacturer´s instructions and aliquoted into BD Truecount Tubes (all BD Biosciences, Hei-

delberg, Germany). Samples were incubated with APC anti human CD42b and PE anti human

CD31 in the dark at RT for 15 min before analysis with a FacsCalibur (all BD Biosciences). For

analysis, gating started with total plasma EV, including the Truecount microbeads for quantifi-

cation of EV/ml (Fig 1A, left), before AnnVpos EV (Fig 1A, middle) were further analyzed for

CD31 and CD42 expression in order to differentiate between CD31pos CD42bpos PEV and

CD31pos CD42bneg EEV (Fig 1A, right).

Measurement of soluble cell adhesion molecules

Plasma levels of human Vascular Endothelium Cadherin (VE-Cadherin), Intercellular Adhe-

sion Molecule 1 (ICAM-1), and Vascular Cell Adhesion Molecule 1 (VCAM-1) were deter-

mined by specific ELISA (DuoSet ELISA: #DY809 (VCAM-1), #DY720 (ICAM-1), #DY938-05

Fig 1. Extracellular vesicle contents in the plasma of mountaineers over the course of the high altitude expedition.

Defined extracellular vesicle types were quantified by flow cytometry in plasma samples drawn from mountaineers at

the indicated camp sites. (A) Gating strategy for identification of PEV and EEV among AnnexinVpos extracellular

vesicles by expression of CD31 and CD42b. (B) Plasma contents of total EV (left panel) and AnnexinVpos EV (right

panel). (C-E) Plasma contents of (C) CD31pos CD42bpos PEV, (D) CD31pos CD42bneg EEV, and (E) CD31neg

CD42blow/neg EV emerging at high altitude beyond 6.000 m asl. Shown are means +/- SE of data from all individuals

reaching the indicated camp sites. Statistical significance is indicated by “�”, “��”, or “���” representing p-values of

p<0.05, p<0.01, or p<0.001, respectively; “n.s.” = not significant.

https://doi.org/10.1371/journal.pone.0220133.g001
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(VE-Cadherin); R&D Systems, Inc., USA) according to the manufacturer’s instructions.

Plasma samples were centrifuged at 17,000 g for 10 minutes and supernatant was diluted 1:100

for detection of VE-Cadherin, 1:250 for ICAM-1 and 1:500 for VCAM-1 in 1% BSA/PBS. All

samples were measured in duplicates. Absorbance was determined at 450 nm with a multi-

mode microplate reader (EnSpire, Perkin Elmer, USA) and plasma concentrations were calcu-

lated by four-parameter nonlinear regression model (4-PL) curve-fitting.

Statistics

According to the Shapiro-Wilk normality test, the data were largely not normally distributed.

Therefore, p-values were determined by Mann-Whitney Rank Sum Test.

Results

Thirty nine subjects participated the expedition of whom 35 reached Camp 2 and 15 Camp 3.

Details on time course of the expedition and subjects characteristics are given in Table 1. Addi-

tional details have been published previously [3, 18]. Most importantly and as expected, arte-

rial oxygen saturation correlated inversely proportional with altitude (Table 1). Despite

increasingly high variation at extreme altitudes, arterial oxygen saturation differed highly sig-

nificantly (p< 0.001) for any comparison of camp sites except for the comparison between PR

and P0.

Altitude dependent decline of CD31 expressing PEV and EEV associated

with the emergence of a CD31neg subpopulation of AnnexinVpos EV

Plasma concentrations of all EV increased with increasing altitude from ~6x105 EV/ml at PR

to about 1.7x106 EV/ml at C3 and declined to baseline levels within 4 to 5 weeks after returning

to PO at 550m asl (Fig 1B). Similar kinetics were observed for AnnexinVpos EV that constitute

the majority of all EV (Fig 1B). Analysis of subpopulations of AnnexinVpos EV revealed that

CD31pos/CD42pos PEV constituted the vast majority of AnnexinVpos EV at altitudes up to

6,022m (Fig 1C). It is worth emphasizing that CD31pos/CD42bpos EV are composed of both

platelet- and megakaryocyte-derived EV [19]. Thus, the term PEV reflects the entire megakar-

yocyte/platelet lineage as cellular origin. Compared to baseline levels (PR), PEV slightly

increased at 4,844m asl, remained stable at 6,022m, yet markedly dropped at 7,050m asl (C3;

Fig 1C). In contrast, the number of CD31pos/CD42neg EEV remained constant from PR to

4,844m (BC1) and then gradually dropped from 6,022m to 7,050m to about 5x104 EEV/ml

(Fig 1D). Surprisingly, small numbers of a previously unrecognized population of CD31neg EV

were detectable at PR, which gradually increased to become at C3 the quantitatively dominant

population of AnnexinVpos EV (Fig 1E).

The discrepancy between the increase of EV numbers and the decline of CD31pos EV

prompted us to analyse CD31 expression on PEV and EEV in greater detail. Flow cytometry

analysis of samples from a representative individual (“R”) indicate a stable distribution of PEV

and EEV up to C2 (6,022m asl). At C3 (7,050m) a large population of CD31neg EV emerged

(Fig 2A). At post-expedition analysis, this CD31neg EV population declined back to normal

levels. At C3, the mean fluorescence intensities of CD31 on PEV and EEV was comparable to

those observed at 550m and 4,800m (Fig 2B and 2C). Similar results were obtained for CD42b

on PEV (Fig 2D). These data suggest that the remaining small populations of CD31pos PEV

and EEV express CD31 or CD42b (PEV) at normal densities. In contrast, the emerging

CD31neg EV showed a continuum of low to absent CD42 expression, i.e. slightly above and

below the threshold for background staining (Fig 2E).
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The patterns of PEV and EEV kinetics of the three individuals suffering from hypobaric

hypoxia-induced microhemorrhages in the brain (climbers A, B, and C as described by Kottke

et al. [3]) were of special interest. However, the individual CD31 and CD42b expression pro-

files of PEV and EEV of these climbers were mostly inconspicuous (Fig 3).

The quantitative and phenotypic changes of AnnexinVpos EV suggested a perturbed

homeostasis of endothelial cells and/or platelets. To assess further markers of endothelial cell

and/or platelet dysfunction, we analyzed as proxy the plasma concentrations of soluble cell

adhesion molecules ICAM-1, VE-Cadherin and VCAM-1. As shown in Fig 4, ICAM-1 slightly

but not significantly increased with altitude. In contrast, the concentrations of VCAM-1 and

VE-cadherin significantly dropped at C3, that is, by 20%, p(PR vs. C3) = 0.003, and 16%, p(PR vs

C3) = 0.02, respectively, indicating a cellular response of endothelial cells to hypobaric hypoxia

at 7,050m.

Notably, only 15 out of 39 participants dropped reached camp 3. To rule out a possible bias,

we plotted selectively the data from only those climbers that reached C3 (EVs and soluble

adherence molecules). As shown in supplemental S1 Fig and S2 Fig, the overall picture

remained the same, that is, the altitude-dependet changes of EEV, PEV, and AnnexinVpos,

CD31neg, CD42blow/neg EV populations of C3 climbers were comparable to those observed

with entire population.

Discussion

Accumulating evidence suggests that endothelial cell dysfunction is a primary factor of hypo-

baric hypoxia-induced high altitudes sickness [2]. According to the prevailing opinion, endo-

thelial cells are both primary targets of hypobaric hypoxia as well as important determinants of

the development of vascular damage causing AMS, HACE, or HAPE. Since EEV serve as

marker of endothelial activation or apoptosis [9], we here phenotyped EEV in plasma samples

from mountaineers during a high altitude medical expedition. Surprisingly, the major observa-

tion revealed by this field study is a previously unrecognized population that sharply emerged

at 7,050m to become the quantitatively predominating EV population in all participants and

thus can be regarded as a new and early marker of hypobaric hypoxia-induced perturbance of

vascular homeostasis. The cellular origin of this new class of CD31neg CD42blow/neg EV has not

been resolved. This was due mainly to logistic limitations of such a medical expedition, partic-

ularly the small plasma sample volume per person and camp site and the large time intervals

between sample takings. Notwithstanding, the finding that EEV and PEV concomitantly and

significantly declined at 7,050m strongly suggests that the emerging population of AnnexinV-
pos CD31neg CD42blow/neg EV originates from both activated/apoptotic endothelial cells and

Table 1. Details of the time course of the expedition, study sites altitude, and subjects examined.

Camp site

PR¶ BC1 C2 C3 PO

Course of the expedition

Time since Kathmandu 8/9 weeks before 5 days 11 days 23/24 days 4/5 weeks after expedition

Altitude 550 m 4800 m 6050 m 7050 m 550 m

Subject characteristics

Mean age of 45.5 ± 12.1 years

Subjects [n] 39 39 36 15 39

SaO2 [%] 97.6 ± 0.8 83.8 ± 4.6 72.7 ± 8.8 68.8 ± 9.6 97.4 ± 0.7

¶Abbreviations: PR = pretest examination, BC1 = Base Camp, first assessment, C2 = Camp 2, C3 = Camp 3, PO = post expedition examination

https://doi.org/10.1371/journal.pone.0220133.t001
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megakaryocytes/platelets. However, the possibility remains that hypobaric hypoxia induces

apoptosis of third party cell types and subsequent release of AnnexinVpos CD31neg EV. Future

studies using purified platelets/megakaryocytes and endothelial cells cultured in hypobaric

hypoxic chambers will corroborate the cellular origin and define the molecular mechanisms

underlying the emergence of the AnnexinVpos CD31neg CD42blow/neg EV population. Specifi-

cally, it should be worthwhile to explore whether this population is generated by activation of

sheddases or secondary to down-regulation of the corresponding genes, which will provide

further insights into the hypobaric hypoxic stress response of megakaryocytes/platelets and

endothelial cells, respectively. The generation of AnnexinVpos CD31neg CD42blow/neg EV

Fig 2. Expression levels of CD31 and CD42b on AnnexinVpos extracellular vesicles. Plasma samples of

mountaineers were analysed by flow cytometry as specified in Fig 1. Expression levels of the markers CD31 and CD42b

were determined as mean fluorescence intensity (MFI). (A) Dot plots of expression levels of CD31 and CD42b on

AnnVpos EV of a representative individual (“R”) are shown at each altitude. The emergence of a large amount of

CD31neg CD42blow/neg EV at C3 is highlighted. (B-C) Expression levels of CD31 on PEV (B) and EEV (C). (D-E)

Expression levels of CD42b on PEV (D) and CD31neg CD42blow/neg EV (E). Shown are means +/- SE of data from all

individuals reaching the indicated camp sites. Statistical significance of p<0.001 is indicated by “���”; “n.s.” = not

significant.

https://doi.org/10.1371/journal.pone.0220133.g002
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Fig 3. Analysis of the AnnexinVpos extracellular vesicles of individuals with cerebral microhemorrhages. Plasma

samples of mountaineers were analysed by flow cytometry as described in Fig 1. (A) Amounts of PEV, EEV, and

CD31neg CD42blow/neg EV in the plasma of the individuals A, B, and C (open symbols) in comparison to the mean +/-

SE values of all non-hemorrhagic peers (closed symbols). (B) Dot plots of CD31 and CD42b expression on AnnVpos

EV of individuals A, B, and C at the various camp sites.

https://doi.org/10.1371/journal.pone.0220133.g003

Fig 4. Levels of soluble ICAM-1, VCAM-1, and VE-Cadherin in plasma over the course of the high altitude

expedition. Plasma contents of soluble ICAM-1, VCAM-1, and VE-Cadherin were quantified by specific ELISA.

Shown are the means +/- SE for all individuals reaching the indicated camp sites. Statistical significance is indicated by

“�” or “��” representing p-values of p<0.05 or p<0.01, respectively; “n.s.” = not significant.

https://doi.org/10.1371/journal.pone.0220133.g004
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population under in vitro conditions, would make this EV population amenable to functional

investigations aiming at their possible impact on bleeding disorders or vascular leakage.

A previous study of participants of a climbing expedition to Peak Lenin revealed that the

fraction of CD31pos EEV did not change significantly with altitude up to 6,210m asl [5]. This is

consistent with the findings of the present study, where the numbers of CD31 expressing EEV

and PEV remained rather constant up to 6,022m asl. As shown in Fig 1E, the decline of CD31

expressing PEV and EEV became obvious only with climbers reaching an altitude of 7,050m

asl.

CD31 is fundamental for prevention of endothelial apoptosis and for the maintenance of

vascular integrity [20–23], Loss of CD31 surface expression by endothelial cells is secondary to

proteolytic CD31 shedding caused by metalloproteinases [24]. The decline of CD31pos EEV

and emergence of CD31neg EV might well reflect loss of CD31 expression by endothelial cells

at 7,050m. Thus our observations suggest but do not prove that apoptotic endothelial cells gen-

erate part of the CD31neg EV population at 7,050m.

Next to CD31, CD42b can be shed from the platelet surface by metalloproteinases [25], e.g.

by the TNFalpha converting enzyme (TACE), which is activated via p38 MAPK and endoge-

nously produced reactive oxygen species (ROS) [26]. During sojourns at extreme altitude,

chronic hypoxia leads to the production of superoxide and other ROS, because reduced mito-

chondrial respiration is associated with leakage of activated oxygen from mitochondria during

oxidative phosphorylation [27, 28]. Platelets contain small numbers of fully functional mito-

chondria that can generate significant concentrations of ROS [29]. Thus, it seems reasonable

to assume that increasing levels of ROS activate metalloproteinases at 7,050m asl leading to

phenotypic and functional changes of platelets thereby tipping the balance between altitude-

related adaptive processes and vascular disease.

CD42b has been shown to be functionally required for primary hemostasis. Shedding of

CD42b leads to a dramatic attenuation of platelet function [30]. A deficiency or dysfunction of

CD42b is the underlying defect of the Bernard-Soulier syndrome (BSS), a hereditary bleeding

disorder affecting the megakaryocyte/platelet lineage and characterized by bleeding tendency

[8]. Indeed, bleeding is a frequent disorder among climbers at high altitude. In particular, reti-

nal bleeding has been reported by us and other investigators [4, 31] affecting as many as 93%

of climbers directly after returning from 6,865m asl. Interestingly, during a previous high alti-

tude medical research expedition to Muztagh Ata (7,549m asl) we previoulsy detected at

extreme altitude a significant decrease of von Willebrand factor (vWF), a ligand of CD42b

[32]. This was associated with procoagulant changes including a prolonged PT and aPTT,

increased D-dimers and Activated Protein C (APC)-resistance. These changes of parameters

are characteristic of vWF consumption during ascent consistent with activation or disruption

of the endothelial structure. The results of this study suggest that vascular dysfunction at

extreme altitude is not only secondary to hypoxia-induced direct endothelial damage but also

promoted indirectly, i.e. by compromised interactions between endothelial cells and function-

ally defective platelets. It will be interesting to assess a possible functional relevance of the

emerging CD31neg CD42low/neg EV in platelet -endothelial cell interactions. Given that EV are

well-established carriers of micro RNAs, our previously reported findings of increased

miRNA-190 and miRNA-17 concentrations at C3 (18) suggest a role of this quantitatively

dominant CD31neg CD42low/neg EV population in hypoxia-induced vascular remodeling.

Soluble cell adhesion molecules were assessed to further characterize endothelial dysfunc-

tion under hypoxic conditions. VCAM-1 is an adhesion molecule that is upregulated upon

endothelial activation [33, 34] and mediates endothelial leukocyte adherence and trafficking,

therefore promoting inflammatory immune responses. The soluble forms are released into cir-

culation by proteolytic cleavage. Circulating VCAM-1 has been shown to be a promising

Emergence of AnnexinVpos CD31neg CD42blow/neg extracellular vesicles at extreme altitude

PLOS ONE | https://doi.org/10.1371/journal.pone.0220133 August 1, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0220133


marker of endothelial dysfunction [35, 36]. VE-cadherin is a transmembrane protein exclu-

sively expressed by endothelial cells [37], whose extracellular domain forms dimers with VE-

cadherin on adjacent cells [38]. VE-cadherin-induced activation of phosphoinositide 3-kinase

(PI3K) and Akt kinase, results in up-regulation of the tight-junction adhesive protein claudin

5, thus promoting junction tightening [39]. VE-cadherin activates and maintains endothelial

cell quiescence by promoting expression of genes implicated in inhibition of cell proliferation

and apoptosis [40] and by limiting growth factor receptor signaling [41]. ICAM-1 is constitu-

tively expressed on vascular endothelial cells as well as some lymphocytes and monocytes [42],

but can be induced by inflammatory cytokines such as interleukin-1, interferon gamma[43],

and TNF alpha[44]. ICAM-1 participates in leukocyte-epithelial cell interactions and enables

leukocyte migration from the capillary bed into tissue[45].

We hypothesized that altitude-related endothelial dysfunction would lead to progressive

shedding of ICAM-1, VCAM-1 and VE-cadherin into plasma. Indeed, we detected a slight yet

insignificant altitude-dependent increase of ICAM-1. In contrast, VCAM-1 and VE-cadherin

significantly declined at 7,050m. This surprising observation merits some consideration. The

plasma concentration of adhesion molecules is the result of many processes comprising in gen-

eral a) production (e.g. cell surface expression, shedding) and b) plasma half-life time depend-

ing on e.g. binding to cognate ligands, internalization by cell-bound ligands, or proteolytic

degradation. Thus, the changes of plasma concentrations of ICAM-1, VCAM-1 and VE-cad-

herin do not necessarily correlate with the phenotype of EV released by endothelial cells or

platelets under hypobaric hypoxic conditions.

Although the functional implications of our study remain unresolved, the emerging

CD31neg CD42blow/neg subpopulation of AnnexinVpos EV is a new and potentially valuable

biomarker for hypobaric hypoxic stress.
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cated by “�” representing a p-value of p<0.05; “n.s.” = not significant.

(TIF)

S1 Table. Dataset for all EV in Fig 1B.

(XLSX)

S2 Table. Dataset for AnnVpos EV in Fig 1B.

(XLSX)

Emergence of AnnexinVpos CD31neg CD42blow/neg extracellular vesicles at extreme altitude

PLOS ONE | https://doi.org/10.1371/journal.pone.0220133 August 1, 2019 10 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220133.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220133.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220133.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220133.s004
https://doi.org/10.1371/journal.pone.0220133


S3 Table. Dataset for PEV in Fig 1C.

(XLSX)

S4 Table. Dataset for EEV in Fig 1D.

(XLSX)

S5 Table. Dataset for CD31neg CD42low/neg EV in Fig 1E.

(XLSX)

S6 Table. Dataset for PEV in Fig 2B.

(XLSX)

S7 Table. Dataset for EEV in Fig 2C.

(XLSX)

S8 Table. Dataset for PEV in Fig 2D.

(XLSX)

S9 Table. Dataset for CD31neg CD42low/neg EV in Fig 2E.

(XLSX)

S10 Table. Dataset for ICAM-1 in Fig 4.

(XLSX)

S11 Table. Dataset for VCAM-1 in Fig 4.

(XLSX)

S12 Table. Dataset for VE-Cadherin in Fig 4.

(XLSX)

Author Contributions

Conceptualization: Jacqueline Pichler Hefti, Martin Krönke.
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