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Abstract
We describe a global dataset of quality‐controlled in situ daily air temperature ob-
servations covering the period 1850–2015, developed in the framework of the 
EUSTACE (EU Surface Temperature for All Corners of Earth) project (www.eusta 
cepro ject.org). The dataset includes a total of 35,364 daily series of maximum and 
minimum temperature obtained from seven different collections. About 97% of the 
series are publicly available in a common format, while the remaining 3% can be 
obtained from the original data providers. Unlike other similar products, duplicates 
have been removed without blending of series, which simplifies data traceability and 
improves the temporal homogeneity of the individual series at the cost of a smaller 
average length. Residual artificial signals (breakpoints) in the series caused by sta-
tion relocations, changes in instrumentation, etc., have been detected by means of 
the combination of four breakpoint detection tests, four variables and three temporal 
aggregations. The combined results give not only the most probable position of the 
breakpoints, but also a measure of their likelihood. The reliability of the detection 
was estimated for each year of each target series, based on the number of reference 
series and on their correlation with the target series. Moreover, its general perfor-
mance was evaluated through a benchmark of synthetic series. This product will be 
combined with datasets of marine and ice in situ air temperature observations and 
with measurements from satellite to produce the first complete global statistical re-
construction of daily near‐surface air temperature.
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1 |  INTRODUCTION

Station‐based meteorological observations are a fundamen-
tal data source for studying recent climate change and the 
only one providing daily resolution information on secular 
timescale. Despite the still non‐optimal management of these 
observations (see Thorne et al., 2017), numerous efforts in 
recent years created large collections of daily and sub‐daily 
data that are freely and easily accessible to the scientific 
community (e.g., Klein Tank et al., 2002; Dunn et al., 2012; 
Menne et al., 2012; Rennie et al., 2014).

Station data, however, have several caveats. One of these is 
the inconsistency of the measurements over time, due mainly 
to relocations, changes in the instruments (in particular from 
liquid‐in‐glass to electronic) and changes in the standard pro-
cedures to observe meteorological variables that have occurred 
throughout history. Unfortunately, these changes (which are 
station dependent) are rarely documented in global datasets. 
The inhomogeneities that they introduce are, in most cases, 
step‐like signals (so‐called ‘breakpoints’) that can be detected 
statistically when their magnitude is sufficiently large.

Dozens of methods have been developed to detect break-
points, each giving different results (Venema et  al., 2012). 
In global datasets, the large amount of data limits the usabil-
ity of most of these methods. The Pairwise Homogeneity 
Assessment (Menne and Williams Jr, 2009) is one of the few 
examples of breakpoint detection methods that have been ap-
plied to global datasets (e.g., Lawrimore et al., 2011; Dunn 
et al., 2014; Thorne et al., 2016).

Another limitation of station data is their uneven spa-
tial distribution. Instrumental observations have started in 
Europe in the 17th century and have then spread in the rest 
of the world following colonization and commercial routes 
(Brönnimann and Wintzer, 2018). Even nowadays data cov-
erage depends strongly on socio‐economic factors, meaning 
that some areas of the world are still poorly monitored. In the 
last few decades, however, satellites have provided a revolu-
tionary alternative to in situ observation, allowing a nearly 
complete coverage of the planet's surface.

The EUSTACE (EU Surface Temperature for All Corners 
of Earth) project was funded to combine, in a statistical way, 
station and satellite observations in order to reconstruct daily 
fields of near‐surface air temperature at every point on Earth 
since 1850. The dataset described in this paper is an inter-
mediate product of EUSTACE that will be combined with 
consistent satellite‐based air temperature estimates in future 
work. It represents a state‐of‐the‐art global collection of daily 
temperature observations, controlled for quality and homoge-
neity issues. In particular, we applied for the first time mul-
tiple breakpoint detection methods to a global dataset. This 
reduces the impact of shortcomings in a certain method and, 
at the same time, provides useful information on the break-
points from the agreement between different methods. The 

strategies adopted within the EUSTACE project to adjust the 
detected inhomogeneities are described in separate papers 
(e.g., Squintu et al., 2019), and the adjusted data will be pub-
lished as separate datasets.

The aim of this paper is to describe the advantages of this 
dataset, as well as its limitations, so that it can be effectively 
used by the research community. We start by describing the 
data sources and how the raw data were processed (Section 
2). In Section 4, we evaluate the performance of the break-
point detection and show some examples of the information 
that can be derived from it. We finally summarize the main 
characteristics of the dataset in Section 5.

2 |  DATA PRODUCTION 
METHODS

2.1 | Data sources
The data used to assemble the EUSTACE land station data-
set come from seven collections that include the main public 
databases and a selection of smaller datasets that were pro-
duced by different research projects or provided by National 
Weather Services (NWSs). The variables represented are 
daily maximum and minimum temperature, and the period 
covered is 1850–2015. The amount of pre‐1850 temperature 
data in digital form is currently insufficient for the aims of 
the EUSTACE project; therefore, those data were not in-
cluded in the dataset.

The philosophy behind the EUSTACE station dataset is to 
reach an acceptable compromise between data quantity and 
quality. Although data coverage was improved locally (e.g. 
parts of South America) with respect to other global datasets, 
for most regions this is not necessarily the case. Individual 
data sources were critically evaluated and excluded if there 
were clear indications of general quality and/or consistency 
issues. In particular, one of the requirements was for observa-
tions to be actual daily extremes (i.e. measured with a max/
min thermometer or equivalent). To decrease series inhomo-
geneity, we tried to avoid blended series. Despite this, we took 
advantage of the massive collection work already done for the 
GHCN‐Daily dataset, whose data have been through a blend-
ing procedure (see Menne et al., 2012). For other sources, we 
always chose the ‘non‐blended’ version when possible. We 
also collected information on the time of observation and on 
the original data source in case of blended series.

The vast majority of the series (97%) have an open data 
policy, and the rest cannot be redistributed (i.e. they can 
be provided exclusively by the original sources, typically 
NWSs). Table 1 lists the collections and the number of series 
that we included in the final dataset, as well as their policy. 
We did not include obvious duplicates (e.g. ECA&D series 
contained in GHCN‐Daily), plus a number of problematic 
subsets. Global Summary of the Day (GSOD) and HadISD 
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daily data, in particular, were excluded because they are often 
calculated from a few synoptic observations and would intro-
duce a systematic underestimation of the diurnal temperature 
range. Moreover, in several cases we found frequent, unre-
alistically large differences between GSOD daily values and 
the corresponding official daily records provided by NWSs.

The geographical and temporal distribution of the series – 
after duplicates have been removed (see Section 2.2) – are sum-
marized in Figures 1 and 2. Figure 3 gives an overview of how 
the data are processed (the single steps are described in detail in 
the rest of this section).

2.2 | Duplicates
The preliminary dataset contained a large number of dupli-
cates. Two data points are duplicates when they originate 
from the same instrument at the same station. However, de-
tecting when this is the case is not always straightforward. 

Station name and coordinates of two duplicates can differ 
for many reasons (different languages, different precision, 
manipulation errors, etc.), while data manipulation can in-
troduce differences in the temperature values. International 
identifiers such as the WMO number exist only for some of 
the stations, and not all sources report them.

We applied a simple duplicate detection algorithm that 
analyses the daily temperature values one by one. Each year 
of each record is compared with data of the same year from 
all stations within a 200‐km radius, by looking at daily dif-
ferences. When the absolute value of the differences does 
not reach 0.8  K for 60  days in a row (excluding missing 
values), the data in that year are considered duplicated. A 
year that has <60 available days is considered duplicated if 
all observations in that year are exactly identical to those 
of another series (at least 15 observations required). If the 
years i − 1 and i + 1 (or either one at the end and beginning 
of a series, respectively) are considered to be duplicated, 

T A B L E  1  List of sources used to assemble the EUSTACE global land station dataset

Name Reference Public series Non‐redistr. series
Excluded 
subsets

GHCN‐Daily v3.22 Menne et al. (2012) 29,023 0 GSOD

European Climate Assessment & Dataset 
(ECA&D) non‐blended

Klein Tank et al. 
(2002)

3,627 1,007  

International Surface Temperature 
Initiative (ISTI) v1.00 – stage 2

Rennie et al. (2014) 1,327 0 Brazil, GSOD, 
HadISD

DECADE Hunziker et al. (2017) 338 0  

Servicio Meteorologico Nacional 
Argentina

‐ 0 23  

ERA‐CLIM Stickler et al. (2014) 15 0  

Southern Alps homogenized Brugnara et al. (2016) 0 4  

Total   34,330 1,034  

F I G U R E  1  (a) Map of the stations 
included in the EUSTACE dataset, where 
the size and colour of the points depend 
on the length of the series. Longer series 
are plotted on top of shorter series. (b) 
Temporal evolution of the total amount of 
data

150

100

75

50

30

(years)

(a)

S
ta

tio
n 

da
ys

 (1
06 )

1850 1865 1880 1895 1910 1925 1940 1955 1970 1985 2000 2015

0
1

2
3

4
5

6

(b)



192 |   BRUGNARA et Al.

then the year i is considered duplicated too, independently 
from the outcome of the duplicate detection. We neglect 
the detection if less than three duplicated years are found. 
The algorithm is run independently for each of the two 
variables.

The threshold of 0.8 K encompasses most roundings and 
conversions, while 60 days are required instead of the whole 
year to allow for isolated large differences caused by data 
manipulation or digitization errors. Possible temporal shifts 
due to different reporting conventions are taken into account.

F I G U R E  2  Map of station availability 
in four selected years, shown on a grid of 
10 × 10 degree boxes

F I G U R E  3  Flow chart that summarizes the process followed to build the EUSTACE global station dataset
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Even though duplicates at distances larger than 200 km 
are possible, they are relatively rare. We found 94.1% of the 
duplicates to be within 20 km of each other and 99.6% within 
100 km.

Figure 4 shows that the largest fraction of duplicates is 
found over the Eurasian continent. This is mostly caused 
by within‐source duplicates in ECA&D, but also by sub-
sets of ISTI (in particular for Russia, Japan and South‐East 
Asia) that are already represented in GHCN‐Daily and/or 
ECA&D.

In most cases, the period covered by two duplicate se-
ries is not exactly the same. It is then important not to re-
move entire series but only the parts that are duplicated. 
While we removed full duplicates (i.e. when all years are 
duplicates) from the dataset, we did not remove data from 
the partial duplicates; instead, we added a flag to mark du-
plicated data. Only the longest of the duplicate series in 
terms of available daily observations (our ‘best’ duplicate) 
is neither removed nor flagged. Figure 5 shows an example 
for multiple duplicates. Note that we do not perform any 
blending of series.

It is unlikely for two highly correlated series from different 
stations to be considered duplicates by our algorithm. This is 
also demonstrated by the fact that we hardly find duplicates in 

the United States, where station density is the highest but data 
come almost exclusively from GHCN‐Daily. On the other hand, 
parallel records (i.e. different thermometers at the same station) 
can have differences that are low enough to instigate a duplicate 
flag (e.g., Brandsma and Van der Meulen, 2008). Moreover, if 
the homogenized version of a series is provided alongside the 
original series, the algorithm is usually able to flag only part of 
the series, since homogeneity adjustments are typically in the 
order of 1 K (Brohan et al., 2006; Lawrimore et al., 2011).

2.3 | Data quality and reporting resolution
All series underwent the set of automatic quality tests de-
scribed in Durre et  al. (2010). These include checks on 
basic integrity, outliers, and internal, temporal and spatial 
consistency.

There are 14 different types of quality flags assigned by 
the algorithm, but a certain observation does not get more 
than one flag (the one coming from the first test that the ob-
servation failed).

We also estimated the reporting resolution for each year of 
each series by looking at the frequency of the decimal figures 
in each month and taking the coarser of the 12 monthly esti-
mations. Possible conversions from Fahrenheit and Rèaumur 

F I G U R E  4  Fraction of duplicate 
years for maximum temperature, shown on 
a grid of 10 × 10 degree boxes. The grey 
boxes denote the areas where there are no 
stations

F I G U R E  5  Example of handling of 
multiple duplicates in the EUSTACE dataset 
(station of Vaexjoe, Sweden). The parts in 
grey received the duplicate flag, and the 
entirely grey series was removed from the 
dataset. In this case, all duplicates had the 
same coordinates and station name with the 
exception of the last one, which is probably 
the airport station. Above each series, we 
show the original filenames in ECA&D
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scales are taken into account. To estimate the resolution, we 
required a minimum of 20 values in a month and of 200 val-
ues in a year.

2.4 | Metadata quality
The geographical coordinates of the stations are also af-
fected by errors and must be subjected to quality tests. We 
applied a semi‐automatic procedure in which we first com-
pared the elevation of each station to the digital elevation 
model (DEM) produced by the Shuttle Radar Topography 
Mission (Farr and Kobrick, 2000; Rodríguez et al., 2005) at 
1 km resolution. We then inspected manually those coordi-
nates where the reported elevation differs from the DEM by 
more than a certain threshold, defined from the spatial vari-
ability of the topography around the station (the higher the 
variability, the higher the threshold) to take into account the 
low precision of some coordinates, which can be reported 
with a resolution as coarse as 0.1 degrees. We detected ad-
ditional wrong coordinates by using a land/sea mask.

We corrected 128 erroneous sets of coordinates. The 
most common mistakes that could be detected are wrong 
signs of longitude next to the Greenwich meridian (e.g. 0.5 
instead of −0.5), transcription errors in one digit of lati-
tude or longitude (e.g. 30.3 instead of 33.3), and false zero 
elevations.

Figure  6 shows the distribution of the differences be-
tween station and DEM‐derived elevations. In about half of 
the cases, the absolute difference is lower than 10 m, while 
about 90% of the differences fall between −80 and +55 m, 
indicating that for a large majority of stations, the eleva-
tion provided by the source is sufficiently accurate for most 
applications.

For about 2% of the stations (730), the elevation was not 
provided. We used the DEM to estimate these missing ele-
vations (for Antarctica, we used the official elevation of the 
respective research stations instead).

2.5 | Homogeneity
We tested the temporal homogeneity of each series that had 
at least 10 years of data (23,347 series) by combining three 
statistical methods of breakpoint detection, described in 
Caussinus and Mestre (2004), Toreti et al. (2012) and Wang 
(2008), respectively. For the latter, we adopted a p‐value of 
0.05 to define significant breakpoints, while the other two 
methods employ the minimization of a penalized likelihood 
function given a maximum number of detectable breakpoints 
(set to be proportional to the length of the analysed series). 
The combination of different methods was shown to improve 
detection performance in previous studies (Kuglitsch et al., 
2012; Trewin, 2018). In the present paper, however, both the 
individual tests and the combination of their results are fully 
automated.

We applied the three methods on difference series (can-
didate minus reference) constructed using three different 
temporal aggregations (annual means, April‐to‐September 
means and October‐to‐March means) and four variables 
(Tmax: maximum temperature; Tmin: minimum temperature; 
Tmean = (Tmax+Tmin)/2; DTR = Tmax−Tmin). We used the pe-
nalized maximal F test of Wang (2008) for one additional 
absolute test (i.e. without reference series) on monthly anom-
alies, again on three temporal aggregations (all months, 
April‐to‐September months only and October‐to‐March 
months only) and four variables and with a p‐value of 0.05. 
This test is employed when the available reference series are 
considered insufficient (see Section 2.5.1).

Altogether, we used up to 48 different combinations of 
method, temporal aggregation and variable, resulting in 48 
‘sets’ of breakpoints  (where a set is the output of a break-
point detection test) with annual resolution (i.e. we provide 
only the year of the breakpoint). Two additional sets, which 
we call for simplicity ‘breakpoints from metadata’, are based 
on information derived from certain characteristics of the 
maximum and minimum temperature series: in particular, 

F I G U R E  6  Distribution of differences 
between the elevations provided by the data 
sources and those estimated from the digital 
elevation model. The vertical lines indicate 
the 5th, 25th, 50th, 75th and 95th percentiles



   | 195BRUGNARA et Al.

we set breakpoints when there are changes in the reporting 
resolution, large gaps and changes in the data source. We 
did not make use of more specific metadata such as dates 
of relocations because these are currently not available for 
global datasets. These kinds of metadata, however, are often 
available for national datasets and constituted an additional 
validation tool for our method (see Section 4.1 and Kuglitsch 
et al., 2012).

For the relative tests (i.e. those using reference series), the 
algorithm looks for eight well‐correlated (r ≥ 0.6) reference 
stations located within 1,000  km of the candidate station. 
It also requires a minimum of 120 months of data in com-
mon with the candidate series. The statistical homogeneity 
tests were not applied to series with <120 months of data (a 
month with more than five missing days is considered miss-
ing). When more than eight references are found, priority is 
given to those that are geographically closer, provided that 
they have data in at least 80% of the period covered by the 
candidate series. Note that the selection is performed inde-
pendently for each variable, but not for each temporal aggre-
gation (first differences of annual means are used to calculate 
the correlation).

To assign the breakpoints, we used the pairwise compar-
ison approach (Caussinus and Mestre, 2004): a breakpoint is 
assigned to a certain year if it is found in at least three differ-
ence series, using a tolerance of ± 1 years. If fewer than three 
reference series are available, then only the absolute test is 
performed (5,147 series affected).

With this approach, using too many reference series would 
result in over‐detection, because the reference series are usu-
ally not homogeneous. Our choice of a maximum of eight 
reference series is based on tests with the synthetic dataset 
produced by Venema et al. (2012), which showed that using 
more than eight series increased the probability of false de-
tections (see also Section 2.5.2).

2.5.1 | Detectability index, merged 
breakpoints and likelihood index
We calculated a ‘detectability’ index to evaluate, for each 
year of the candidate series, the potential performance of the 
relative tests. It is defined as the sum of the Pearson correla-
tion coefficients of those reference series that have more than 
50% of data available within a window of ± 5 years from the 
target year. For example, the index for the year 1950 is calcu-
lated from those reference series that have at least 5.5 years 
of data in the period 1945–1955. If fewer than three reference 
series are available, then the detectability index is defined as 
zero. Its maximum theoretical value is 8, because no more 
than eight reference series are selected (in reality, the correla-
tion of the reference series is always lower than 1).

A large detectability index indicates many well‐correlated 
reference series available and thus ideal working conditions 

for the relative tests. We use the results of the absolute test 
only in those periods when the detectability index is lower 
than 4. The absolute test, which has a lower power of detec-
tion than the relative tests (Wang, 2008; Venema et al., 2012), 
is thus intended as a backup test for when a relative test is 
hardly possible. Long series (>50 years) for which only the 
absolute test could be performed are found in tropical islands 
(Sri Lanka, Indonesia), in large deserts (Sahara) and even in 
station‐rich areas if only an early period is covered. Also, 
most stations in Antarctica do not have sufficient reference 
series for the relative tests.

We finally added together the 50 sets of breakpoints (36 
sets from the relative tests, 12 from the absolute test and two 
from metadata) to obtain a number of detections for each 
year, which is an indication of the probability of a break-
point. We defined the most likely position of the breakpoints 
from the local maxima of the detections, and a ‘likelihood’ 
index for each breakpoint from the sum of the detections in 
the 3‐year window centred on the most likely position of the 
breakpoint. In this ‘merged’ set, the breakpoints are assumed 
to affect all variables at the same time. Similar merged sets 
can be produced for each variable and each temporal aggre-
gation using a smaller number of sets. Note that the original 
sets can have breakpoints in consecutive years (these are typi-
cally duplicates caused by disagreement among the reference 
series on the position of the breakpoint), while the merged 
set cannot; for this reason, the likelihood index can assume 
a value that is larger than the number of sets that contributed 
to the breakpoint.

2.5.2 | Performance of the 
breakpoint detection
To assess its performance, we applied our breakpoint de-
tection algorithm to a benchmark of synthetic daily tem-
perature series developed within the International Surface 
Temperature Initiative (ISTI) framework (Willett et  al., 
2014; Killick, 2016). The synthetic series are contaminated 
by inhomogeneities having the same statistical properties of 
those found in real temperature series, with the difference 
that the position of each breakpoint is known a priori.

The benchmark comprises four subsets representing 
different climatic regions in the contiguous United Stated 
(Wyoming, the Northeast, the Southeast and the Southwest). 
Each of the regions is reproduced in three or four parallel 
‘worlds’ that represent different choices in the simulation of 
the breakpoints and in the station density (Table  2). Three 
different types of breakpoints are simulated: shelter change, 
station relocation and urbanization.

Since the benchmark was created for daily mean tem-
perature only, we can only test our algorithm on that vari-
able. In other words, we use 13 sets of breakpoints (nine 
relative, three absolute and one from metadata) instead of 
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T A B L E  2  Different scenarios (or ‘worlds’) simulated in the ISTI benchmark (Killick, 2016)

World Description Regions Inhomogeneities Station density Autocorrelation

1 Real world All All Low Low

2 Uniform station 
density

All All High Low

3 No urbanization All Shelter changes and 
relocations

High Low

4 Temporal smoothing Wyoming All Low High

F I G U R E  7  Hit rate (a) and false 
alarms rate (b) of the EUSTACE breakpoint 
detection algorithm (merged breakpoints) 
for the ISTI benchmark as a function of the 
chosen likelihood threshold. In (c) and (d), 
the same is shown as a function of different 
intervals of the detectability index. In (e), 
the hit rate is shown as a function of the 
size of the breakpoints. The distribution of 
the sizes is shown in (f); the blue part of the 
bars represents the fraction detected by the 
EUSTACE algorithm

(a) (b)

(c) (d)

(e) (f)
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50. Moreover, the breakpoints from metadata include only 
the large data gaps, because changes in the reporting reso-
lution are not simulated.

To quantify the ability of the algorithm to detect actual 
breakpoints, we use the probability of detection (or hit rate): 

where h is the number of hits (when an actual breakpoint is 
detected, with a tolerance of ± 1 year) and m is the number 
of misses (when an actual breakpoint is not detected). The 
probability of false detections (or false alarms rate), on the 
other hand, gives the frequency of false detections: 

where f is the number of false alarms (i.e. breakpoints that are 
given by the detection algorithm but that are not within 1 year 
of an actual breakpoint) and n is the number of years in the 
candidate series.

We allow for an error of 1 year in the position of the break-
points because of the annual resolution of our detection; in 
particular, breakpoints occurring in the early part of the year 
are more likely assigned to the previous year (we define the 
year of the breakpoint as the year that ends a homogeneous 
sub‐period).

Because an increase in the POD usually means an in-
crease in the POFD, it is always necessary to find a com-
promise between the two. The advantage of defining a 
likelihood index for each breakpoint is that one can set 
a threshold to achieve the desired compromise, without 

performing a new detection. Setting a high minimum like-
lihood index allows the user to avoid false detections, but 
only large breakpoints can be detected; accepting break-
points with any likelihood index maximizes the hit rate, 
at the price of a large number of false detections. This is 
illustrated by the upper panels in Figure  7, where POD 
and POFD obtained from the ISTI benchmark are shown 
for different likelihood index thresholds (here, the abso-
lute values of the likelihood index are not representative 
of those provided in the EUSTACE dataset because of the 
reduced sets of breakpoints; see Section 2.5.2). While the 
increase of the POD with a decreasing threshold is nearly 
linear, the increase of the POFD is exponential. The lowest 
hit rate is found for the Wyoming subset, where the higher 
inter‐annual variability of the continental climate decreases 
the signal‐to‐noise ratio.

In the middle panels of Figure 7, we show the impact of 
the detectability index on the performance of the detection. 
The POD increases on average in an approximately linear way 
with the detectability index; therefore, this index is indeed 
a good proxy for the probability of detecting a breakpoint. 
The index, on the other hand, does not show an influence on 
the POFD (except when only the absolute test is performed), 
supporting our choice of a maximum of eight reference se-
ries. The results for the individual subsets are very noisy for 
small values of the index because of the limited size of the 
samples, sometimes smaller than 100 station years (the rela-
tively high station density in the benchmark implies that most 
of the series have high detectability index).

The algorithm performs best with breakpoints related to sta-
tion relocations (POD 49%) and to shelter changes (43%), that 
is to abrupt changes in the station's set‐up. Breakpoints caused 

(1)POD=
h

h+m
,

(2)POFD=
f

n−h−m
,

Variable Annual October to March
April to 
September All

Tmax 24.3 (93.4) 31.9 (231.2) 25.3 (136.1) 15.6 (62.9)

Tmin 22.9 (69.1) 30.0 (172.9) 24.7 (101.7) 15.5 (47.6)

Tmean 26.2 (101.4) 34.0 (261.6) 27.8 (151.0) 16.9 (69.7)

DTR 21.7 (42.5) 28.7 (79.4) 23.8 (63.6) 14.8 (27.4)

T A B L E  3  Length of mean 
homogeneous period (in years) for the 
relative tests (number of station years with 
detectability index greater or equal to 4 
divided by the number of breakpoints). In 
parentheses, the mean homogeneous period 
for the absolute test (number of station years 
with detectability index lower than 4 divided 
by the number of breakpoints). For the 
calculation, breakpoints in consecutive years 
are merged into a single breakpoint

  LI ≥ 1 LI ≥ 2 LI ≥ 3 LI ≥ 5 LI ≥ 10 LI ≥ 20 Test type

DI = 0 18.4 23.6 48.8 113.9 455.0 – Absolute

0 < DI < 4 7.4 9.7 13.6 22.5 61.1 287.6 Both

4 ≤ DI < 5 7.4 9.0 12.1 18.3 40.3 155.1 Relative

5 ≤ DI < 6 7.5 8.9 11.5 16.6 34.3 111.2 Relative

6 ≤ DI < 7 7.6 8.7 10.8 14.8 28.1 81.7 Relative

DI ≥ 7 7.4 8.4 10.0 13.2 23.7 62.6 Relative

T A B L E  4  Mean homogeneous 
period (in years) when considering merged 
breakpoints (number of station years divided 
by the number of breakpoints) for different 
thresholds of the likelihood index (LI) and 
different intervals of the detectability index 
for Tmean (DI)
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by urbanization have a significantly lower POD (32%), because 
they represent inhomogeneities that develop over a period of 
several years (usually in the form of a monotonic increase of 
temperature). Even if detected, such breakpoints are likely to 
be assigned to a much later point than the actual onset of the 
inhomogeneity, resulting in a miss by our definition. In fact, the 
results using world 3 show in general better detection scores be-
cause this world does not have urbanization. It should be noted 
here that the concept of an urbanization breakpoint as being 
one that develops over several years is a construct of the syn-
thetic dataset – while some urbanization breakpoints in the real 
world may indeed take this form, others may be manifested as 
step changes associated with a specific development (e.g. a new 
building close to the observation site).

As shown by the bottom panels of Figure 7, the reason 
why the hit rate remains far from 100% is that the majority of 
the breakpoints are very small (the median of the sizes in the 
benchmark ranges from 0.1 K in the world 2 of the Southeast 
to 0.4 K in the world 4 of Wyoming). For sizes larger than 
1 K, the hit rate approaches 80% (this value would probably 
be higher if four variables were used). Hence, about 20% of 
large breakpoints remain undetected, mostly because they 

are located close to the beginning or the end of a series, or 
close to another breakpoint (due to the annual resolution, 
we cannot detect breakpoints in two consecutive years). A 
lack of reference series is another reason for misses of large 
breakpoints, as shown in panel (c) of the figure.

2.5.3 | Statistics of breakpoints
Table 3 shows the length of mean homogeneous periods for 
each variable and season. For comparison, we also show 
the length of mean homogeneous periods for the absolute 
test.

Our results are qualitatively in agreement with those ob-
tained with the Pairwise Homogeneity Assessment algorithm 
(Thorne et  al., 2016); in particular, we find more frequent 
breakpoints (i.e. shorter homogeneous periods) for DTR than 
for the other variables. The seasonal results are clearly biased 
towards the Northern Hemisphere, where the October–March 
semester has fewer breakpoints because of the higher inter‐
annual variability. We find considerably more breakpoints by 
combining the three temporal aggregations than using annual 
means alone.

F I G U R E  8  Overview of the 
information provided for the station 
of Brenner, Austria (latitude 47.0° N, 
longitude 11.5° E, elevation 1,450 m; 
source: ECA&D‐TX_SOUID103851). 
From top to bottom: raw daily Tmax series, 
raw daily Tmin series, reporting resolution, 
annual detectability index and number 
of detections. Crossed values in the raw 
data series indicate observations flagged 
by the quality control. Vertical dashed 
lines indicate the position of the merged 
breakpoints, and the numbers on top of the 
bars indicate their respective likelihood 
index
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The absolute test, as expected, has a very low detection 
rate. Interestingly, it can detect about one‐third more break-
points for Tmin than for Tmax. This difference is very consistent 
across the different temporal aggregations and is not found in 
the relative tests. It might be an indication that the sizes of 
the breakpoints are generally larger for Tmin in the early years 
(when the absolute test is used more frequently).

Table 4 shows the length of mean homogeneous periods 
for the merged breakpoints for different thresholds of likeli-
hood index and various intervals of the detectability index. 
The merged breakpoints are by definition more frequent than 
the breakpoints found for the individual variables; on aver-
age, they are to be found every 8.8 years. With ideal reference 
series (detectability index of 7 or larger), the mean homoge-
neous period reaches 7.4  years, with the most ‘significant’ 
breakpoints (likelihood index of 20 or larger) found every 
62.6 years.

The results indicate that the impact of the detectabil-
ity index on the hit rate of the relative tests is small for low 
thresholds of the likelihood index, implying good consistency 
of the breakpoint detection across series, but it becomes 
more and more important for higher thresholds. Therefore, 

a meaningful selection of breakpoints based on a likelihood 
index threshold requires that the detectability index does not 
vary too much within the analysed data.

3 |  DATASET LOCATION AND 
FORMAT

The EUSTACE global land station daily air temperature 
dataset is archived at the Centre for Environmental Data 
Analysis (CEDA) and is stored in annual NetCDF files (one 
additional NetCDF file provides the information on break-
points and reporting resolution). A user guide is also pro-
vided. The data are offered under a non‐commercial licence.

4 |  DATASET USE

4.1 | Examples
Figures 8–10 show an overview of the information available 
to the user for three selected stations, each giving an example 
of the issues that can be found in the data.

F I G U R E  9  Same as Figure 8 for 
the station of Progreso, Peru (latitude 
14.671806° S, longitude 70.367775° W, 
elevation 3,925 m; source: DECADE‐
PEPU030614)
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The first example (Brenner, Austria) is for a station in 
central Europe with about 40 years of data and nearly op-
timal reference series, represented by a detectability index 
close to 8 over the whole period covered by the series. The 
detectability index is slightly lower for DTR because spatial 
correlation of this variable is usually lower than that of the 
other variables. However, the detectability index does not 
take into account that breakpoints in DTR have in general a 
larger amplitude (Zhang et al., 2011; Thorne et al., 2016).

The data of this station have two major breakpoints in 1967 
and 1981, highlighted by their high likelihood index (28 and 
23, respectively). The first large breakpoint is detected in all 
variables, while the second one seems to significantly affect 
only Tmax (the only detection for Tmin is caused by a change 
in the reporting resolution). The other five breakpoints are 
found in a much lower number of sets, predominantly in the 
DTR sets. A similar analysis of the sets can also be done by 
isolating the temporal aggregations instead of the variables 
(not shown).

Note that the reporting resolution until 1969 was of 1 K 
and only after 1981 did it reach the modern standard of 0.1 K; 
this is an important piece of information when analysing 

trends in extremes, since changes in resolution can introduce 
inhomogeneities in many commonly used indices (see Rhines 
et al., 2015).

The second example (Progreso, Peru) is for a station on 
the Andean Plateau. This region has a particularly low spatial 
correlation for Tmin (Hunziker et al., 2018), which negatively 
affects the detectability index for that variable. Nevertheless, 
the main breakpoint in Tmin (2003) is correctly detected. This 
inhomogeneity is caused by a new observer who was not 
trained in the use of the minimum thermometer, and it could 
be easily corrected if properly detected and attributed (see 
Hunziker et al., 2017, for more details).

For the third example (Zurich/Fluntern, Switzerland), we 
have metadata on the history of the station (Kuglitsch et al., 
2012): the station was relocated in 1949 and a new screen was 
installed in 1971. These two inhomogeneities are prominent 
in the detections plot with likelihood index of 37 and 31, re-
spectively. The quality flags between 1971 and 1980 are all 
caused by the temporal consistency test: in that decade, the 
Swiss NWS used a different time window to calculate Tmax, 
which caused some days to have Tmax lower than Tmin of the 
previous day. This kind of information is usually not provided 

F I G U R E  1 0  Same as Figure 8 for 
the station of Zurich/Fluntern, Switzerland 
(latitude 47.383053° N, longitude 8.566667° 
E, elevation 555 m; source: ECA&D‐TX_
SOUID100758)
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by the data sources; therefore, quality control and breakpoint 
detection are often the only instruments available to ensure 
that daily observations are consistently defined.

4.2 | Case study: Impact of breakpoints on 
trends in South America
The likelihood index provides a metric that allows ranking of 
the breakpoints according to their significance. As shown in 
Section 4.1, breakpoints with high likelihood index usually 
correspond to the events in the station history that have the 
largest impact on data homogeneity. For many applications, 
breakpoints with low likelihood can be neglected, resulting in 
longer, ‘quasi‐homogeneous’ sub‐series.

To illustrate this in more detail, we calculated trends in 
warm days, that is those days when Tmax is above the 90th 
percentile following the definition for ‘TX90p’ by the Expert 
Team on Climate Change Detection and Indices (ETCCDI) 
(see Zhang et al., 2011). We focus on South America, where 
the data availability in the EUSTACE dataset has improved 
the most with respect to other global datasets.

Figure 11 shows the mean detectability index for each Tmax 
series over the period 1981–2010. The detection is not possi-
ble when a series has <10 years of data (see Section 2.5); in 
that case, the detectability index is zero, as it is when <3 refer-
ence series are found. In most of the central and eastern parts 
of the continent, station density is high enough for the rela-
tive tests to be applied to most of the series that have enough 
data, resulting in high detectability index. In the north‐west-
ern part, only the absolute test could be applied; here, trends 
should be analysed only after a detailed inspection of the data.

Figure 12 shows the trends over the period 1981–2010 for 
all series that have a mean detectability index >4 (equivalent 
to five reference series with a correlation coefficient of 0.8) 
and for the quasi‐homogeneous series among them defined 
by three different thresholds of the likelihood index. The 
lower the threshold, the larger the number of series that are 
considered inhomogeneous. We require at least 80% of the 
period to be covered by data, and we exclude observations 
with a reporting resolution coarser than 0.2 K.

When homogeneity is not taken into account, a few outli-
ers in the trends are scattered over the region. Nevertheless, 
a meridional gradient is already visible (weaker trends in the 
southern part of the continent). After excluding the series that 
have at least one breakpoint with a likelihood index of 20 or 
greater, the trends become spatially more coherent because 
most outliers caused by inhomogeneous series are removed. 
Lower thresholds further increase this coherency and guar-
antee a better consistency of the breakpoint detection among 
the series (see Table 4), at the cost of reducing the spatial 
coverage. Less than 20% of the series are homogeneous when 
applying a threshold of 5 for the likelihood index. Even by a 
threshold of 10, none of the numerous series on the Andean 

Plateau is homogeneous. Hunziker et  al. (2018) found that 
data quality in that region is particularly poor and estimated 
one breakpoint per decade on average using a semi‐automatic 
detection software.

5 |  SUMMARY

The EUSTACE project has built on previous initiatives to 
assemble a large global collection of daily maximum and 
minimum air temperature series from land stations for the 
period 1850–2015. The data series were selected to ensure 
uniqueness and consistency, despite the intrinsic heteroge-
neity caused by the highly fragmented management of the 
station networks.

Data quality was assessed through a set of automatic rou-
tines that assign 14 different flags. This does not guarantee 
that all erroneous data were detected and still requires some 
expertise in the interpretation of the flags. An estimation of 
the reporting resolution of the observations is also provided, 

F I G U R E  1 1  Mean detectability index for Tmax in South 
America over the period 1981–2010. Series with larger index are 
plotted on the foreground
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which can facilitate further processing of the data needed 
before calculating indices based on percentiles. Coordinates 
were tested against a digital elevation model and a land/sea 
mask and large discrepancies were inspected manually, lead-
ing in many cases to corrections or to an estimation of miss-
ing elevations.

A new algorithm was developed to assess temporal 
homogeneity of the data series, by combining the results 
of four breakpoint detection methods. Instead of provid-
ing a single set of breakpoints for each station, up to 50 
different sets are provided representing different combi-
nations of methods, variables and seasons, together with 

a recommended merged set. This gives flexibility to the 
users, who can employ the sets that best fit their specific 
needs. Even though the magnitude of the detected inhomo-
geneity was not estimated, the agreement between the sets 
provides an alternative metric to define the relevance of 
each breakpoint. An index representing the probability of 
detection for each year of each series, based on the avail-
ability of reference series, is also provided.

The performance of the breakpoint detection algorithm 
was assessed by using a state‐of‐the‐art dataset of synthetic 
temperature series. It was shown that large breakpoints can 
be successfully detected in about 80% of the cases when 

F I G U R E  1 2  Trends in the number 
of warm days (TX90p) in South America 
over the period 1981–2010 in all Tmax series 
with mean detectability index (DI) larger 
than 4 and in those that do not have merged 
breakpoints with a likelihood index (LI) 
equal to or larger than 20, 10 or 5
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using only one variable. One drawback of the algorithm is the 
annual resolution of the breakpoints, which does not allow us 
to distinguish between breakpoints occurring in consecutive 
years.

About 3% of the data series presented here did not have an 
open licence, meaning that the authors are not allowed to pro-
vide them directly to the public. These data (and their quality 
flags) are replaced by missing values in the public version of 
the dataset. In many cases, these series can be obtained free 
of charge from the original data providers (inquiries can be 
addressed to the relevant sources listed in Table 1). All the 
remaining information, such as the breakpoints, is available 
without limitations.

Updates to the EUSTACE land station dataset are not 
planned. Data for the latest years can be obtained from the 
underlying sources (Table 1; note that the station identifiers 
adopted in the EUSTACE dataset are the same used in the 
sources). One must be aware, however, that new inhomoge-
neities would be likely introduced.
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