
How to cite this paper:  

 

Odili, J. B. (2018). Implementation analysis of cuckoo search for the benchmark rosenbrock and levy test 

functions. Journal of Information and Communication Technology (JICT), 17 (1), 17-32. 

 

 

IMPLEMENTATION ANALYSIS OF CUCKOO SEARCH FOR THE BENCHMARK ROSENBROCK 

AND LEVY TEST FUNCTIONS 

 

Julius Beneoluchi Odili 

 

Faculty of Computer Systems and Software Engineering 

Universiti Malaysia Pahang, Malaysia 

 

odili_julest@yahoo.com 

 

 

ABSTRACT 

 

This paper presents the implementation analysis of the benchmark Rosenbrock and Levy test functions using the 

Cuckoo Search with emphasis on the effect of the search population and iterations count in the algorithm’s 

search processes. After many experimental procedures, this study revealed that deploying a population of 10 

nests is sufficient to obtain acceptable solutions to the Rosenbrock and Levy test functions (or any similar 

problem to these test landscapes). In fact, increasing the search population to 25 or more nests was a demerit to 

the Cuckoo Search as it resulted in increased processing overhead without any improvement in processing 

outcomes. In terms of the iteration count, it was discovered that the Cuckoo Search could obtain satisfactory 

results in as little as 100 iterations. The outcome of this study is beneficial to the research community as it helps 

in facilitating the choice of parameters whenever one is confronted with similar problems. 

 

Keywords: Cuckoo search, iteration, Levy function, population, Rosenbrock function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Received: 6 June 2017 Accepted:24 July 2017 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/268871412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


17

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

 Received: 6 June 2017         Accepted:24 July 2017

 IMPLEMENTATION ANALYSIS OF CUCKOO SEARCH FOR THE 
BENCHMARK ROSENBROCK AND LEVY TEST FUNCTIONS

Julius Beneoluchi Odili

Faculty of Computer Systems and Software Engineering
 Universiti Malaysia Pahang, Malaysia

odili_julest@yahoo.com

ABSTRACT

This paper presents the implementation analysis of the benchmark 
Rosenbrock and Levy test functions using the Cuckoo Search 
with emphasis on the effect of the search population and 
iterations count in the algorithm’s search processes. After  many 
experimental procedures, this study revealed that deploying 
a population of 10 nests is sufficient to obtain acceptable 
solutions to the Rosenbrock and Levy test functions (or any 
similar problem to these test landscapes). In fact, increasing 
the search population to 25 or more nests was a demerit to the 
Cuckoo Search as it resulted in increased processing overhead 
without any improvement in processing outcomes. In terms of 
the iteration count, it was discovered that the Cuckoo Search 
could obtain satisfactory results in as little as 100 iterations. The 
outcome of this study is beneficial to the research community as 
it helps in facilitating the choice of parameters whenever one is 
confronted with similar problems.

Keywords: Cuckoo search, iteration, Levy function, population, Rosenbrock 
function.

INTRODUCTION

The scientific community has adduced several reasons for the popularity of 
optimization among researchers since the second half of the 20th century. One 
of the reasons for this popularity is due to the impact of optimization on some 
very remarkable scientific and technological breakthroughs the world has 
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experienced since the advent of the optimization field of knowledge. Some of 
the areas where the application of optimization principles have been beneficial 
to mankind includes decision-making (Odili, 2013b), aviation (West et al., 
2012), job scheduling (Taheri, Lee, Zomaya, & Siegel, 2013), vehicle routing 
(Odili, Kahar, & Anwar, 2015), product assembly plants (D. Yang et al., 
2015), parameter-tuning of Proportional Integral and Derivatives Controllers 
in Automatic Voltage Regulators (Odili & Mohmad Kahar, 2016), etc.

Optimization which is generally a method/technique of getting the maximum 
outcome from a minimum input could be traceable to the works of early 20th 
century scientists like John Holland who designed the Genetic Algorithm 
(Holland, 1992) and Karl Menger who designed the first mathematical 
formulation of the travelling salesman’s problem in the early 1930s (Odili, 
2013a). The impact of the works of these early scientists has revolutionized 
the field of optimization, making it a favored area of scientific investigations.

The development of optimization has led to the development of several 
optimization techniques that drew their inspiration from various sources 
ranging from physics, chemistry and biology to other natural phenomena 
common to man. Some of the most popular optimization techniques are those 
drawn from the biological processes in plants, man and animals. Some of 
these popular techniques include the Genetic Algorithm (Holland, 1992), 
Particle Swarm Optimization (Kennedy, 2011), Ant Colony Optimization 
(Dorigo & Gambardella, 2016), etc. In the past ten years, some methods have 
been developed which have proven to be very successful and sometimes more 
effective than the earlier techniques. Some of these new techniques are the 
Cuckoo Search (X.-S. Yang, 2012b), Flower Pollination Algorithm (X.-S. 
Yang, 2012) and African Buffalo Optimization (Odili & Kahar, 2015), etc.

Our interest in this study was born out popularity due to its effectiveness 
and efficiency in the Cuckoo Search. Though a relatively newly designed 
technique, the Cuckoo search has enjoyed wide applicability. This study 
aimed to investigate the effect of the search population as well as the number 
of iterations needed to obtain very good solutions in the Cuckoo Search. It 
was our aim that coupled with making the Cuckoo Search more user-friendly, 
the outcome of this study would benefit the scientific community in terms 
of parameters-tuning when they are required to solve optimization problems 
using the Cuckoo Search. Similarly, our choice of the Rosenbrock function 
as the target of this diagnostic evaluation was due to its popularity among 
researchers due to its complex nature. The benchmark Rosenbrock function 
being of the one of the five functions developed by Kenneth Dejong in his 
PhD thesis in 1975, has become very popular due to its flat surface that tends 
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to provide insufficient information to many search agents. Similarly, the 
growing popularity of the benchmark Levy function is a motivation for its 
choice in this study. As a result of the deceptive landscape of the Levy and 
Rosenbrock functions, both functions are gradually  becoming favorite test 
cases to many researchers when investigating the search capability of new 
optimization algorithms (De Jong, 1975). 

CUCKOO SEARCH

Cuckoo Search (CS) is an optimization algorithm developed from careful 
observation, mathematical modelling of the craftiness of the cuckoo bird in 
the egg incubation process. The cuckoo birds being lazy and irresponsible 
do not like the laborious egg- incubating process so they rather prefer to 
lay their eggs among the eggs of other birds or other cuckoo species. The 
host birds, with a certain probability (randomness), may incubate the cuckoo 
eggs along with theirs (exploitation), discover the strange eggs and either 
abandon their nests or throw the strange eggs away (exploration) (X.-S. 
Yang & Deb, 2009).

In this algorithm (the CS), the eggs of the host bird in any given nest 
represents an optimization solution, while the strange eggs of the cuckoo 
birds represent new solutions. Through careful manipulation of the cuckoo 
eggs and those of the host birds, the CS is able to arrive at good optimization 
solutions to complex optimization problems (X.-S. Yang & Deb, 2009). 

Since its development, the CS has enjoyed wide applications to various 
optimization problems. Some of the successful application areas of the CS 
includes the travelling salesman’s problems, wireless sensor networks, job 
scheduling, image processing, flood forecasting, classification task in the 
health sector, etc. (Anwar et al., 2017; Kamat & Karegowda, 2014). The 
pseudocode of the CS (Agrawal, Panda, Bhuyan, & Panigrahi, 2013) is 
presented below:   

         
1.   Begin
2.   Objective function: 
3.   Randomly initialize the nest in the search space
4.   While (not termination), do

4 
 

problems (X.-S. Yang & Deb, 2009).  

 

Since its development, the CS has enjoyed wide applications to various optimization 

problems. Some of the successful application areas of the CS includes the travelling 

salesman’s problems, wireless sensor networks, job scheduling, image processing, 
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Kamat & Karegowda, 2014). The pseudocode of the CS (Agrawal, Panda, Bhuyan, 
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1. Begin 
2.            Objective function: f(x) x = (x1, x2 … . 𝑥𝑥𝑛𝑛) 
3.          Randomly initialize the nest in the search space 
4.           While (not termination), do 
5.                        For 𝑖𝑖=1 to 𝑛𝑛, do 
6.                        Generate a cuckoo randomly through Levy flight by using 
7.                           𝑋𝑋𝑖𝑖𝑖𝑖(t +  1)  =  𝑋𝑋𝑖𝑖𝑖𝑖(t )+ α  Levy (𝜆𝜆) 
8.                        Ascertain the fitness of the generated cuckoo 
9.                        Randomly select a nest among the host nests available 
10.                        If ( 𝑓𝑓𝑖𝑖>𝑓𝑓𝑘𝑘) then 

11.                        Replace k with the better solution 
12.                       End if 
13.                       Abandon some of the unfruitful nests and generate newer ones 
14.                       Retain the good solutions found 
15.                              Rank the newly-found good solutions 
16.                              Determine the current overall best 
17.                        End for 
18.   End while 
19.          Output the best outcome 
20.      End 

The Pseudocode of Cuckoo Search 
 
 

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK 
 

Since the focus of the first part of this paper was to determine the effect of the search 

population-cum-number of iterations required to obtain the best output to the 

Rosenbrock and the second part was to examine the same in Levy test functions (and by 

implication, other similar problems), it was necessary for the sake of fairness to run the 

experiments in the same machine. The experiments in this study were performed on a 

PC, 4GB RAM, Intel Duo Core i7 370 CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The 

population of nests was 10 and 50. Also, the number of iterations included 10, 20, 100, 

1000, 5000, and 10,000. The CS parameters used for the experiments were u=rand (size 

(s)) * sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01* 

step. Each experiment test case was executed five times.  The benchmark Rosenbrock 
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5.   For i=1 to , do
6.    Generate a cuckoo randomly through Levy flight by using
7. 
8.   Ascertain the fitness of the generated cuckoo
9.   Randomly select a nest among the host nests available
10.   If                then
11.   Replace k with the better solution
12.   End if
13.   Abandon some of the unfruitful nests and generate newer ones
14.   Retain the good solutions found
15.   Rank the newly-found good solutions
16.   Determine the current overall best
17.   End for
18.   End while
19.   Output the best outcome
20. End
The Pseudocode of Cuckoo Search

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK

Since the focus of the first part of this paper was to determine the effect of the 
search population-cum-number of iterations required to obtain the best output 
to the Rosenbrock and the second part was to examine the same in Levy test 
functions (and by implication, other similar problems), it was necessary for the 
sake of fairness to run the experiments in the same machine. The experiments 
in this study were performed on a PC, 4GB RAM, Intel Duo Core i7 370 
CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The population of nests was 10 
and 50. Also, the number of iterations included 10, 20, 100, 1000, 5000, and 
10,000. The CS parameters used for the experiments were u=rand (size (s)) * 
sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01* 
step. Each experiment test case was executed five times.  The benchmark 
Rosenbrock function (Shi & Eberhart, 1999) was
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function (Shi & Eberhart, 1999) was 

              

𝑓𝑓(𝑥𝑥) = ∑[(100 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖1)2]  
𝑑𝑑−1

𝑖𝑖=1
                                                                                (1) 

                         
 It is important to note that the optimum solution to the Rosenbrock test function (see 

Figure 1) is:  

 

 𝑓𝑓(𝑥𝑥) = 0                                                                                                                       (2)  

 

 The simulation outcomes obtained after a number of experimental evaluations using the 

CS algorithm with search populations of 10 nests as well as different numbers of 

iterations ranging from 10 to 10,000 are shown in Table 1.  

 
Table 1 
Comparative Search with 10 Population (Nnests) 

Iterations 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Average Time 
(secs
) 

Average 
Time 
(s) 

10 

2.3080 

0.5634 

0.040  
 
0.031 

0.0013 0.031 
0.0329 0.033 
0.4738 0.034 
0.0012 0.018 

100 

3.9731𝑒𝑒−13 

5.0611𝑒𝑒−13 

0.172  
 
0.163 

9.8137𝑒𝑒−14 0.162 
4.4142𝑒𝑒−12 0.154 
1.5596𝑒𝑒−13 0.170 
5.5449𝑒𝑒−15 0.157 

1000 

4.6147𝑒𝑒−85 

4.4527𝑒𝑒−78 

1.565  
 
1.5874 

1.0024𝑒𝑒−83 1.556 
4.2801𝑒𝑒−78 1.563 
4.2170𝑒𝑒−69 1.600 
8.1493𝑒𝑒−75 1.653 

5000 

0 

2.4697𝑒𝑒−320 

8.118  
 
7.9480 

3.0304𝑒𝑒−318 8.086 
4.3782𝑒𝑒−318 7.867 
0 7.848 
4.9407𝑒𝑒−324 7.821 

10000 0 0 15.372  
5 
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0 7.848 
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The simulation outcomes obtained after a number of experimental evaluations 
using the CS algorithm with search populations of 10 nests as well as different 
numbers of iterations ranging from 10 to 10,000 are shown in Table 1. 

Table 1

Comparative Search with 10 Population (Nnests)

Iterations fmin Average Time (secs) Average Time (s)

10

2.3080

0.5634

0.040

0.0310.0013 0.031

0.0329 0.033

0.4738 0.034

0.0012 0.018

100

3.9731e–13

5.0611e–13

0.172

0.1639.8137e–14 0.162

4.4142e–12 0.154

1.5596e–13 0.170

5.5449e–15 0.157

1000

4.6147e–85

4.4527e–78

1.565

1.58741.0024e–83 1.556

4.2801e–78 1.563

4.2170e–69 1.600

8.1493e–75 1.653

5000

0

2.4697e –

320

8.118

7.94803.0304e–318 8.086

4.3782e–318 7.867

0 7.848

4.9407e–324 7.821

10000

0

0

15.372

15.7610 15.586

0 15.683

0 15.979

0 16.183
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A close look at Table 1 reveals that the CS algorithm obtained the best 
result in iteration 10,000. It obtained the optimum solution in all runs when 
searching with a population of 10 nests. A commendable feat, no doubt, 
since stochastic optimization algorithms, generally, do not guarantee optimal 
solutions. Though obtaining the optimal result here was commendable another 
examination reveals that it was obtained at an average of 15.751 seconds. 
Comparing this result with the ones obtained when the iteration counts were 
just 10 (mean: 0.5631e–13) at an average of 0.031 seconds or 100 iterations 
(mean: 5.0611) at an average of 0.163 seconds, it could be argued that the 
result obtained at 100 iterations was by far cheaper and, therefore, better. This 
line of argument is in tandem with the conclusions of an earlier study that a 
good trade-off in terms of time and output is a mark of a good optimization 
algorithm (Khompatraporn, Pintér, & Zabinsky, 2005).

In the light of the above discussion, this study recommends that in using the 
CS to solve the Rosenbrock test function (or a similar optimization problem) 
when the search population is 10, a good enough result is obtainable at 
iteration 100 in order to save time since the amount of time used to obtain 
the solution correlates with the use of computer resources. The exception to 
this recommendation would be in a situation where the main consideration is 
the ability to obtain the optimum result. If obtaining the optimum solution is 
the primary concern, then the CS obtains the best result (when solving this 
particular problem and using the above parameters set) at iteration 10,000 as 
can be seen in Table 1. It must be emphasized that the results obtained when 
deploying 1000 and 5000 iterations are also very close to the optimum.

To conclude this part, it is necessary to examine the experimental output when 
a population of 50 nests are used. The simulation results obtained by using 
50 nests and different iteration counts from 10, 100, 1000, 5000 to 10,000 are 
shown in Table 2.

Figure 1. Rosenbrock function.

7 
 

 
 
 
 
 
 

 
Figure 1. Rosenbrock function. 
  
Table 2 
  
Comparative Search with 50 Population (Nests) 

Iterations 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Average Time 
(secs 

Average 
Time 
(s) 

10 

0.1048 

1.0334 

0.071  
 
0.0784 1.1899 0.068 

0.0314 0.068 
2.9252 0.068 
0.9157 0.117 

100 

4.1464𝑒𝑒−14 

3.8376𝑒𝑒−15 

0.172  
 
0.163 6.8572𝑒𝑒−14 0.162 

2.6223𝑒𝑒−16 0.154 
2.7811𝑒𝑒−15 0.170 
2.7811𝑒𝑒−16 0.157 

1000 

1.3143𝑒𝑒−54 

2.2048𝑒𝑒−55 

6.231  
 
6.310 5.4190𝑒𝑒−56 6.257 

1.6071𝑒𝑒−56 6.364 
1.0727𝑒𝑒−55 6.384 
1.6111𝑒𝑒−54 6.313 

5000 

6.8572𝑒𝑒−161 

4.9646𝑒𝑒−165 

26.775  
 
30.042 2.6223𝑒𝑒−169 25.366 

2.7811𝑒𝑒−165 31.439 
7.3016𝑒𝑒−165 32.744 
5.2609𝑒𝑒−167 33.884 

10000 2.0759𝑒𝑒−269 5.3958𝑒𝑒−272 67.500  
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Table 2
 
Comparative Search with 50 Population (Nests)

Iterations Average Time (secs Average Time (s)

10

0.1048

1.0334

0.071

0.07841.1899 0.068

0.0314 0.068

2.9252 0.068

0.9157 0.117

100

4.1464e–14

3.8376e–15

0.172

0.1636.8572e–14 0.162

2.6223e–16 0.154

2.7811e–15 0.170

2.7811e–16 0.157

1000

1.3143e–54

2.2048e–55

6.231

6.3105.4190e–56 6.257

1.6071e–56 6.364

1.0727e–55 6.384

1.6111e–54 6.313

5000

6.8572e–161

4.9646e–165

26.775

30.0422.6223e–169 25.366

2.7811e–165 31.439

7.3016e–165 32.744

5.2609e–167 33.884

10000

2.0759e–269

5.3958e–272

67.500

68.4416.5280e–272 68.044

8.5684e–271 68.585

8.2255e–269 70.631

1.5813e–279 67.447

It is interesting to note that the experimental results of Table 2 when 50 
population of nests are used are inferior to those of Table 1 that uses less 
numbers of search agents. This finding is remarkable because using more 
search agents leads to more evaluations per iterations and so much time is 
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taken to obtain results. In spite of so much time being taken, the results are 
not superior. In fact, at no iteration was the optimum solution obtained. This 
emphasizes the need of this study to avoid unnecessary waste of computer 
resources.

IMPLEMENTATION OF THE LEVY FUNCTION

 The focus of the second part of this paper was to examine the implementation 
strategies of the Levy function. The choice of this function was an attempt to 
popularize this extremely useful benchmark function despite its complexity.  
This function (see Figure 1) has several peaks and multiple minima and 
optima solutions. The determination of the global minima is a good test for an 
optimization algorithm.

In this study, our major considerations were the determination of the effect 
of the search population-cum-number of iterations required to obtain the best 
output of this test function and, by implication, other similar problems. Each 
experiment test case was executed five times.

Figure 2. Levy function.

The mathematical description of the Levy function is:

(3) 
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In Eq. 3,                        and  i = 1-d. Moreover, the benchmark Levy function 
is normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d. 
The global minimum is:

             (4)

The simulation outcome is presented in Table 3. 

Table 3

Simulation Outcome of CS on Levy

Population Iterations fmin Time (s)

10

100

3.64E-06 0.133

5.76E-06 0.097

5.29E-06 0.134

9.34E-06 0.131

2.62E-06 0.11

200

7.84E-06 0.135

7.57E-06 1.892

9.39E-06 0.117

8.07E-06 0.102

1.06E-06 0.115

500

5.29E-06 0.109

2.18E-06 0.133

9.34E-06 0.133

2.62E-06 0.104

7.84E-06 0.119

2000

9.39E-06 0.143

8.07E-06 0.1

1.06E-06 0.101

5.22E-06 0.111

6.37E-06 0.126

10,000

7.69E-07 0.126

9.29E-06 0.128

8.36E-06 0.161

7.13E-06 0.116

7.66E-06 0.133
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Population Iterations fmin Time (s)

10 100,00

8.47E-06 0.146
7.77E-06 0.111
2.72E-06 0.141
7.46E-06 0.114
1.75E-06 0.122

A close examination of Table 4 reveals that the CS was very efficient 
and effective in solving the benchmark Levy function. It is particularly 
interesting to note the speed of the algorithm in arriving at a solution. Even 
when 100,000 iterations were deployed the algorithm was able to converge 
at a solution in less than a second. This is a mark of the efficiency of CS in 
the use of computer resources in its search for solutions.

Another remarkable outcome of this investigation, especially when 
a population of 10 nests were used (see Table 3) was that in spite of the 
number of iterations deployed, the CS was able to obtain a solution close 
enough to the global optima of 0 (see Eq. 4). This is an indication of the 
effectiveness of the CS. Though a recently developed optimization algorithm, 
the effectiveness of the algorithm as can be seen in this study, may be the 
primary reason for its popularity among researchers and its consequent wide 
applicability.

Moreover, Table 3 shows that the least convergence time (0.097 second) was 
when 100 iterations were used. On the other hand, the highest time taken to 
converge at a solution was 0.161 second at iteration 10,000.  This finding 
is consistent with existing literature: the use of more iterations in search of 
solutions leads to longer convergence periods. Based on this, it may be safe 
to conclude that the CS algorithm follows the same trend. However, it is 
worthy to note that in 100,000 iterations, the highest convergence time was 
0.141 second which was faster than the highest observed in 10,000 iterations 
(0.161 second). Statistically, it could be argued that the high convergence 
time of 0.161 second observed in 10,000 iterations could be rogue. Since 
rogue data are not sufficient ground to invalidate a research finding, this 
study concludes that if more iterations are deployed in search, more likely, 
more time is taken to converge at a solution. In the light of this conclusion, 
it is hereby recommended that when using the CS to solve the benchmark 
Levy function (or a similar problem to the benchmark Levy function), the 
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use of a population of 10 nests and 100 iterations may be a desirable choice.
In the next set of experiments, 25 search population (nests) were deployed 
to the search space. Moreover, we added the 1000 and 5000 iterations to the 
ones used in Table 3. The simulation results of this last set of experiments 
are presented in Table 4. 

Table 4

CS on Levy Function When Using 25 Nests

Population Iterations fmin Time (s)

25

 9.48E-06 0.255

 9.01E-06 0.222

100 1.28E-06 0.191

 5.42E-06 0.241

 2.81E-06 0.253

 5.45E-06 0.247

 9.06E-06 0.241

200 8.88E-06 0.256

 9.08E-06 0.269

 9.01E-06 0.184

 6.71E-06 0.268

 6.57E-06 0.254

 9.64E-06 0.237

500 9.39E-06 0.214

 5.45E-06 0.203

 6.23E-06 0.316

 6.21E-06 0.237

 7.30E-06 0.269

1000 6.90E-06 0.274

 8.82E-06 0.231

 2.46E-06 0.217

 2.35E-06 0.221

 6.92E-06 0.219

2000 5.66E-06 0.239

 7.18E-06 0.107

(continued)
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Population Iterations fmin Time (s)

25

 1.46E-06 0.28

 3.21E-06 0.257

 9.22E-06 0.242

5000 6.55E-06 0.176
 7.41E-06 0.223
 4.12E-06 0.279
 8.57E-06 0.274

10000 6.10E-06 0.208
 3.04E-06 0.198
 9.35E-06 0.205
 6.99E-06 0.189
 7.95E-06 0.231

100000 8.91E-06 0.251
 9.56E-06 0.317
 6.48E-06 0.227

The experimental output recorded in Table 4 follows the same trend of Table 3. 
The increase in the number of iterations did not translate to improved results. 
Again, it is obvious that the use of a higher number of nests (25) leads to an 
increase in convergence time. 

In the light of the above, since the use of more search agents did not improve 
the simulation outcomes but rather increased the processing overhead, the use 
of 10 search agents is sufficient to obtain optimal or near-optimal solutions. 
Again, it can be observed in Table 4 that at no point did the CS obtain the 
optimal solution. Consequently, the use of 100 iterations is recommended.

CONCLUSIONS

This paper presented the diagnostic evaluation of the effects of search population 
and the number of iterations in solving the benchmark Rosenbrock and Levy 
functions using the CS. After a number of experimental procedures, it was 
discovered that in solving the benchmark function as well as the benchmark 
Levy function, the CS obtained better results when a population of 10 nests 
were deployed to the search space. By using 10 nests, near-optimal solutions 
were obtainable from as low as 100 to 10,000 iterations. In fact, at 10,000 
iterations, the CS obtained the optimum solution to Rosenbrock function in 
every run. Surprisingly, however, this study discovered that increasing the 



29

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

search population to 25 and 50 nests did not improve the solution. It rather 
worsened the result and increased the processing time. 

Similarly, for the Levy function, the near-optimal solution was obtainable 
at 100 iterations and with a search population of 10 nests. The use of more 
iterations-cum-nests was discovered to only increase the processing overhead 
without the expected improvement in results

In the light of the findings of this paper, it is recommended that when 
solving the Rosenbrock and Levy functions or any similar problems, using 
a population of 10 nests will give an optimum or near-optimum solution. In 
terms of the required number of iterations, this study recommends from 100 
to 10,000 depending on the primary considerations. If the main consideration 
is the optimum solution, then using 10,000 iterations will almost certainly 
guarantee the optimum result to the Rosenbrock function. Results obtainable 
from 100 to 5000 iterations are near the optimum too. Conversely, for the Levy 
function, the use of 100 iterations is sufficient to give near-optimal solutions.

Before this study, it was believed by some researchers that the more populations 
deployed to the search space, the more likely it was to obtain optimal results. 
This study proved otherwise. Based on this finding, it is recommended that 
further implementation evaluations be carried out on the Rosenbrock and 
Levy functions using different platforms and parameter-set to validate the 
findings of this study.
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