
How to cite this paper:

Odili, J. B. (2018). Implementation analysis of cuckoo search for the benchmark rosenbrock and levy test

functions. Journal of Information and Communication Technology (JICT), 17 (1), 17-32.

IMPLEMENTATION ANALYSIS OF CUCKOO SEARCH FOR THE BENCHMARK ROSENBROCK

AND LEVY TEST FUNCTIONS

Julius Beneoluchi Odili

Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang, Malaysia

odili_julest@yahoo.com

ABSTRACT

This paper presents the implementation analysis of the benchmark Rosenbrock and Levy test functions using the

Cuckoo Search with emphasis on the effect of the search population and iterations count in the algorithm’s

search processes. After many experimental procedures, this study revealed that deploying a population of 10

nests is sufficient to obtain acceptable solutions to the Rosenbrock and Levy test functions (or any similar

problem to these test landscapes). In fact, increasing the search population to 25 or more nests was a demerit to

the Cuckoo Search as it resulted in increased processing overhead without any improvement in processing

outcomes. In terms of the iteration count, it was discovered that the Cuckoo Search could obtain satisfactory

results in as little as 100 iterations. The outcome of this study is beneficial to the research community as it helps

in facilitating the choice of parameters whenever one is confronted with similar problems.

Keywords: Cuckoo search, iteration, Levy function, population, Rosenbrock function.

Received: 6 June 2017 Accepted:24 July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/268871412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

17

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

 Received: 6 June 2017 Accepted:24 July 2017

 IMPLEMENTATION ANALYSIS OF CUCKOO SEARCH FOR THE
BENCHMARK ROSENBROCK AND LEVY TEST FUNCTIONS

Julius Beneoluchi Odili

Faculty of Computer Systems and Software Engineering
 Universiti Malaysia Pahang, Malaysia

odili_julest@yahoo.com

ABSTRACT

This paper presents the implementation analysis of the benchmark
Rosenbrock and Levy test functions using the Cuckoo Search
with emphasis on the effect of the search population and
iterations count in the algorithm’s search processes. After many
experimental procedures, this study revealed that deploying
a population of 10 nests is sufficient to obtain acceptable
solutions to the Rosenbrock and Levy test functions (or any
similar problem to these test landscapes). In fact, increasing
the search population to 25 or more nests was a demerit to the
Cuckoo Search as it resulted in increased processing overhead
without any improvement in processing outcomes. In terms of
the iteration count, it was discovered that the Cuckoo Search
could obtain satisfactory results in as little as 100 iterations. The
outcome of this study is beneficial to the research community as
it helps in facilitating the choice of parameters whenever one is
confronted with similar problems.

Keywords: Cuckoo search, iteration, Levy function, population, Rosenbrock
function.

INTRODUCTION

The scientific community has adduced several reasons for the popularity of
optimization among researchers since the second half of the 20th century. One
of the reasons for this popularity is due to the impact of optimization on some
very remarkable scientific and technological breakthroughs the world has

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

18

experienced since the advent of the optimization field of knowledge. Some of
the areas where the application of optimization principles have been beneficial
to mankind includes decision-making (Odili, 2013b), aviation (West et al.,
2012), job scheduling (Taheri, Lee, Zomaya, & Siegel, 2013), vehicle routing
(Odili, Kahar, & Anwar, 2015), product assembly plants (D. Yang et al.,
2015), parameter-tuning of Proportional Integral and Derivatives Controllers
in Automatic Voltage Regulators (Odili & Mohmad Kahar, 2016), etc.

Optimization which is generally a method/technique of getting the maximum
outcome from a minimum input could be traceable to the works of early 20th
century scientists like John Holland who designed the Genetic Algorithm
(Holland, 1992) and Karl Menger who designed the first mathematical
formulation of the travelling salesman’s problem in the early 1930s (Odili,
2013a). The impact of the works of these early scientists has revolutionized
the field of optimization, making it a favored area of scientific investigations.

The development of optimization has led to the development of several
optimization techniques that drew their inspiration from various sources
ranging from physics, chemistry and biology to other natural phenomena
common to man. Some of the most popular optimization techniques are those
drawn from the biological processes in plants, man and animals. Some of
these popular techniques include the Genetic Algorithm (Holland, 1992),
Particle Swarm Optimization (Kennedy, 2011), Ant Colony Optimization
(Dorigo & Gambardella, 2016), etc. In the past ten years, some methods have
been developed which have proven to be very successful and sometimes more
effective than the earlier techniques. Some of these new techniques are the
Cuckoo Search (X.-S. Yang, 2012b), Flower Pollination Algorithm (X.-S.
Yang, 2012) and African Buffalo Optimization (Odili & Kahar, 2015), etc.

Our interest in this study was born out popularity due to its effectiveness
and efficiency in the Cuckoo Search. Though a relatively newly designed
technique, the Cuckoo search has enjoyed wide applicability. This study
aimed to investigate the effect of the search population as well as the number
of iterations needed to obtain very good solutions in the Cuckoo Search. It
was our aim that coupled with making the Cuckoo Search more user-friendly,
the outcome of this study would benefit the scientific community in terms
of parameters-tuning when they are required to solve optimization problems
using the Cuckoo Search. Similarly, our choice of the Rosenbrock function
as the target of this diagnostic evaluation was due to its popularity among
researchers due to its complex nature. The benchmark Rosenbrock function
being of the one of the five functions developed by Kenneth Dejong in his
PhD thesis in 1975, has become very popular due to its flat surface that tends

19

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

to provide insufficient information to many search agents. Similarly, the
growing popularity of the benchmark Levy function is a motivation for its
choice in this study. As a result of the deceptive landscape of the Levy and
Rosenbrock functions, both functions are gradually becoming favorite test
cases to many researchers when investigating the search capability of new
optimization algorithms (De Jong, 1975).

CUCKOO SEARCH

Cuckoo Search (CS) is an optimization algorithm developed from careful
observation, mathematical modelling of the craftiness of the cuckoo bird in
the egg incubation process. The cuckoo birds being lazy and irresponsible
do not like the laborious egg- incubating process so they rather prefer to
lay their eggs among the eggs of other birds or other cuckoo species. The
host birds, with a certain probability (randomness), may incubate the cuckoo
eggs along with theirs (exploitation), discover the strange eggs and either
abandon their nests or throw the strange eggs away (exploration) (X.-S.
Yang & Deb, 2009).

In this algorithm (the CS), the eggs of the host bird in any given nest
represents an optimization solution, while the strange eggs of the cuckoo
birds represent new solutions. Through careful manipulation of the cuckoo
eggs and those of the host birds, the CS is able to arrive at good optimization
solutions to complex optimization problems (X.-S. Yang & Deb, 2009).

Since its development, the CS has enjoyed wide applications to various
optimization problems. Some of the successful application areas of the CS
includes the travelling salesman’s problems, wireless sensor networks, job
scheduling, image processing, flood forecasting, classification task in the
health sector, etc. (Anwar et al., 2017; Kamat & Karegowda, 2014). The
pseudocode of the CS (Agrawal, Panda, Bhuyan, & Panigrahi, 2013) is
presented below:

1. Begin
2. Objective function:
3. Randomly initialize the nest in the search space
4. While (not termination), do

4

problems (X.-S. Yang & Deb, 2009).

Since its development, the CS has enjoyed wide applications to various optimization

problems. Some of the successful application areas of the CS includes the travelling

salesman’s problems, wireless sensor networks, job scheduling, image processing,

flood forecasting, classification task in the health sector, etc. (Anwar et al., 2017;

Kamat & Karegowda, 2014). The pseudocode of the CS (Agrawal, Panda, Bhuyan,

& Panigrahi, 2013) is presented below:

1. Begin
2. Objective function: f(x) x = (x1, x2 … . 𝑥𝑥𝑛𝑛)
3. Randomly initialize the nest in the search space
4. While (not termination), do
5. For 𝑖𝑖=1 to 𝑛𝑛, do
6. Generate a cuckoo randomly through Levy flight by using
7. 𝑋𝑋𝑖𝑖𝑖𝑖(t + 1) = 𝑋𝑋𝑖𝑖𝑖𝑖(t)+ α Levy (𝜆𝜆)
8. Ascertain the fitness of the generated cuckoo
9. Randomly select a nest among the host nests available
10. If (𝑓𝑓𝑖𝑖>𝑓𝑓𝑘𝑘) then

11. Replace k with the better solution
12. End if
13. Abandon some of the unfruitful nests and generate newer ones
14. Retain the good solutions found
15. Rank the newly-found good solutions
16. Determine the current overall best
17. End for
18. End while
19. Output the best outcome
20. End

The Pseudocode of Cuckoo Search

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK

Since the focus of the first part of this paper was to determine the effect of the search

population-cum-number of iterations required to obtain the best output to the

Rosenbrock and the second part was to examine the same in Levy test functions (and by

implication, other similar problems), it was necessary for the sake of fairness to run the

experiments in the same machine. The experiments in this study were performed on a

PC, 4GB RAM, Intel Duo Core i7 370 CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The

population of nests was 10 and 50. Also, the number of iterations included 10, 20, 100,

1000, 5000, and 10,000. The CS parameters used for the experiments were u=rand (size

(s)) * sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01*

step. Each experiment test case was executed five times. The benchmark Rosenbrock

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

20

5. For i=1 to , do
6. Generate a cuckoo randomly through Levy flight by using
7.
8. Ascertain the fitness of the generated cuckoo
9. Randomly select a nest among the host nests available
10. If then
11. Replace k with the better solution
12. End if
13. Abandon some of the unfruitful nests and generate newer ones
14. Retain the good solutions found
15. Rank the newly-found good solutions
16. Determine the current overall best
17. End for
18. End while
19. Output the best outcome
20. End
The Pseudocode of Cuckoo Search

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK

Since the focus of the first part of this paper was to determine the effect of the
search population-cum-number of iterations required to obtain the best output
to the Rosenbrock and the second part was to examine the same in Levy test
functions (and by implication, other similar problems), it was necessary for the
sake of fairness to run the experiments in the same machine. The experiments
in this study were performed on a PC, 4GB RAM, Intel Duo Core i7 370
CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The population of nests was 10
and 50. Also, the number of iterations included 10, 20, 100, 1000, 5000, and
10,000. The CS parameters used for the experiments were u=rand (size (s)) *
sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01*
step. Each experiment test case was executed five times. The benchmark
Rosenbrock function (Shi & Eberhart, 1999) was

(1)

It is important to note that the optimum solution to the Rosenbrock test
function (see Figure 1) is:

(2)

4

problems (X.-S. Yang & Deb, 2009).

Since its development, the CS has enjoyed wide applications to various optimization

problems. Some of the successful application areas of the CS includes the travelling

salesman’s problems, wireless sensor networks, job scheduling, image processing,

flood forecasting, classification task in the health sector, etc. (Anwar et al., 2017;

Kamat & Karegowda, 2014). The pseudocode of the CS (Agrawal, Panda, Bhuyan,

& Panigrahi, 2013) is presented below:

1. Begin
2. Objective function: f(x) x = (x1, x2 … . 𝑥𝑥𝑛𝑛)
3. Randomly initialize the nest in the search space
4. While (not termination), do
5. For 𝑖𝑖=1 to 𝑛𝑛, do
6. Generate a cuckoo randomly through Levy flight by using
7. 𝑋𝑋𝑖𝑖𝑖𝑖(t + 1) = 𝑋𝑋𝑖𝑖𝑖𝑖(t)+ α Levy (𝜆𝜆)
8. Ascertain the fitness of the generated cuckoo
9. Randomly select a nest among the host nests available
10. If (𝑓𝑓𝑖𝑖>𝑓𝑓𝑘𝑘) then

11. Replace k with the better solution
12. End if
13. Abandon some of the unfruitful nests and generate newer ones
14. Retain the good solutions found
15. Rank the newly-found good solutions
16. Determine the current overall best
17. End for
18. End while
19. Output the best outcome
20. End

The Pseudocode of Cuckoo Search

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK

Since the focus of the first part of this paper was to determine the effect of the search

population-cum-number of iterations required to obtain the best output to the

Rosenbrock and the second part was to examine the same in Levy test functions (and by

implication, other similar problems), it was necessary for the sake of fairness to run the

experiments in the same machine. The experiments in this study were performed on a

PC, 4GB RAM, Intel Duo Core i7 370 CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The

population of nests was 10 and 50. Also, the number of iterations included 10, 20, 100,

1000, 5000, and 10,000. The CS parameters used for the experiments were u=rand (size

(s)) * sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01*

step. Each experiment test case was executed five times. The benchmark Rosenbrock

4

problems (X.-S. Yang & Deb, 2009).

Since its development, the CS has enjoyed wide applications to various optimization

problems. Some of the successful application areas of the CS includes the travelling

salesman’s problems, wireless sensor networks, job scheduling, image processing,

flood forecasting, classification task in the health sector, etc. (Anwar et al., 2017;

Kamat & Karegowda, 2014). The pseudocode of the CS (Agrawal, Panda, Bhuyan,

& Panigrahi, 2013) is presented below:

1. Begin
2. Objective function: f(x) x = (x1, x2 … . 𝑥𝑥𝑛𝑛)
3. Randomly initialize the nest in the search space
4. While (not termination), do
5. For 𝑖𝑖=1 to 𝑛𝑛, do
6. Generate a cuckoo randomly through Levy flight by using
7. 𝑋𝑋𝑖𝑖𝑖𝑖(t + 1) = 𝑋𝑋𝑖𝑖𝑖𝑖(t)+ α Levy (𝜆𝜆)
8. Ascertain the fitness of the generated cuckoo
9. Randomly select a nest among the host nests available
10. If (𝑓𝑓𝑖𝑖>𝑓𝑓𝑘𝑘) then

11. Replace k with the better solution
12. End if
13. Abandon some of the unfruitful nests and generate newer ones
14. Retain the good solutions found
15. Rank the newly-found good solutions
16. Determine the current overall best
17. End for
18. End while
19. Output the best outcome
20. End

The Pseudocode of Cuckoo Search

IMPLEMENTATION EVALUATION OF CUCKOO ROSENBROCK

Since the focus of the first part of this paper was to determine the effect of the search

population-cum-number of iterations required to obtain the best output to the

Rosenbrock and the second part was to examine the same in Levy test functions (and by

implication, other similar problems), it was necessary for the sake of fairness to run the

experiments in the same machine. The experiments in this study were performed on a

PC, 4GB RAM, Intel Duo Core i7 370 CPU @ 3.40GHz, 3.40GH, Windows 10 OS. The

population of nests was 10 and 50. Also, the number of iterations included 10, 20, 100,

1000, 5000, and 10,000. The CS parameters used for the experiments were u=rand (size

(s)) * sigma; v= rand (size(s)); pa=0.5; step = u./abs (v). ^ (1/beta); step size =0.01*

step. Each experiment test case was executed five times. The benchmark Rosenbrock

5

function (Shi & Eberhart, 1999) was

𝑓𝑓(𝑥𝑥) = ∑[(100 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖1)2]
𝑑𝑑−1

𝑖𝑖=1
 (1)

 It is important to note that the optimum solution to the Rosenbrock test function (see

Figure 1) is:

 𝑓𝑓(𝑥𝑥) = 0 (2)

 The simulation outcomes obtained after a number of experimental evaluations using the

CS algorithm with search populations of 10 nests as well as different numbers of

iterations ranging from 10 to 10,000 are shown in Table 1.

Table 1
Comparative Search with 10 Population (Nnests)

Iterations 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Average Time
(secs
)

Average
Time
(s)

10

2.3080

0.5634

0.040

0.031

0.0013 0.031
0.0329 0.033
0.4738 0.034
0.0012 0.018

100

3.9731𝑒𝑒−13

5.0611𝑒𝑒−13

0.172

0.163

9.8137𝑒𝑒−14 0.162
4.4142𝑒𝑒−12 0.154
1.5596𝑒𝑒−13 0.170
5.5449𝑒𝑒−15 0.157

1000

4.6147𝑒𝑒−85

4.4527𝑒𝑒−78

1.565

1.5874

1.0024𝑒𝑒−83 1.556
4.2801𝑒𝑒−78 1.563
4.2170𝑒𝑒−69 1.600
8.1493𝑒𝑒−75 1.653

5000

0

2.4697𝑒𝑒−320

8.118

7.9480

3.0304𝑒𝑒−318 8.086
4.3782𝑒𝑒−318 7.867
0 7.848
4.9407𝑒𝑒−324 7.821

10000 0 0 15.372
5

function (Shi & Eberhart, 1999) was

𝑓𝑓(𝑥𝑥) = ∑[(100 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖1)2]
𝑑𝑑−1

𝑖𝑖=1
 (1)

 It is important to note that the optimum solution to the Rosenbrock test function (see

Figure 1) is:

 𝑓𝑓(𝑥𝑥) = 0 (2)

 The simulation outcomes obtained after a number of experimental evaluations using the

CS algorithm with search populations of 10 nests as well as different numbers of

iterations ranging from 10 to 10,000 are shown in Table 1.

Table 1
Comparative Search with 10 Population (Nnests)

Iterations 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Average Time
(secs
)

Average
Time
(s)

10

2.3080

0.5634

0.040

0.031

0.0013 0.031
0.0329 0.033
0.4738 0.034
0.0012 0.018

100

3.9731𝑒𝑒−13

5.0611𝑒𝑒−13

0.172

0.163

9.8137𝑒𝑒−14 0.162
4.4142𝑒𝑒−12 0.154
1.5596𝑒𝑒−13 0.170
5.5449𝑒𝑒−15 0.157

1000

4.6147𝑒𝑒−85

4.4527𝑒𝑒−78

1.565

1.5874

1.0024𝑒𝑒−83 1.556
4.2801𝑒𝑒−78 1.563
4.2170𝑒𝑒−69 1.600
8.1493𝑒𝑒−75 1.653

5000

0

2.4697𝑒𝑒−320

8.118

7.9480

3.0304𝑒𝑒−318 8.086
4.3782𝑒𝑒−318 7.867
0 7.848
4.9407𝑒𝑒−324 7.821

10000 0 0 15.372

21

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

The simulation outcomes obtained after a number of experimental evaluations
using the CS algorithm with search populations of 10 nests as well as different
numbers of iterations ranging from 10 to 10,000 are shown in Table 1.

Table 1

Comparative Search with 10 Population (Nnests)

Iterations fmin Average Time (secs) Average Time (s)

10

2.3080

0.5634

0.040

0.0310.0013 0.031

0.0329 0.033

0.4738 0.034

0.0012 0.018

100

3.9731e–13

5.0611e–13

0.172

0.1639.8137e–14 0.162

4.4142e–12 0.154

1.5596e–13 0.170

5.5449e–15 0.157

1000

4.6147e–85

4.4527e–78

1.565

1.58741.0024e–83 1.556

4.2801e–78 1.563

4.2170e–69 1.600

8.1493e–75 1.653

5000

0

2.4697e –

320

8.118

7.94803.0304e–318 8.086

4.3782e–318 7.867

0 7.848

4.9407e–324 7.821

10000

0

0

15.372

15.7610 15.586

0 15.683

0 15.979

0 16.183

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

22

A close look at Table 1 reveals that the CS algorithm obtained the best
result in iteration 10,000. It obtained the optimum solution in all runs when
searching with a population of 10 nests. A commendable feat, no doubt,
since stochastic optimization algorithms, generally, do not guarantee optimal
solutions. Though obtaining the optimal result here was commendable another
examination reveals that it was obtained at an average of 15.751 seconds.
Comparing this result with the ones obtained when the iteration counts were
just 10 (mean: 0.5631e–13) at an average of 0.031 seconds or 100 iterations
(mean: 5.0611) at an average of 0.163 seconds, it could be argued that the
result obtained at 100 iterations was by far cheaper and, therefore, better. This
line of argument is in tandem with the conclusions of an earlier study that a
good trade-off in terms of time and output is a mark of a good optimization
algorithm (Khompatraporn, Pintér, & Zabinsky, 2005).

In the light of the above discussion, this study recommends that in using the
CS to solve the Rosenbrock test function (or a similar optimization problem)
when the search population is 10, a good enough result is obtainable at
iteration 100 in order to save time since the amount of time used to obtain
the solution correlates with the use of computer resources. The exception to
this recommendation would be in a situation where the main consideration is
the ability to obtain the optimum result. If obtaining the optimum solution is
the primary concern, then the CS obtains the best result (when solving this
particular problem and using the above parameters set) at iteration 10,000 as
can be seen in Table 1. It must be emphasized that the results obtained when
deploying 1000 and 5000 iterations are also very close to the optimum.

To conclude this part, it is necessary to examine the experimental output when
a population of 50 nests are used. The simulation results obtained by using
50 nests and different iteration counts from 10, 100, 1000, 5000 to 10,000 are
shown in Table 2.

Figure 1. Rosenbrock function.

7

Figure 1. Rosenbrock function.

Table 2

Comparative Search with 50 Population (Nests)

Iterations 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Average Time
(secs

Average
Time
(s)

10

0.1048

1.0334

0.071

0.0784 1.1899 0.068

0.0314 0.068
2.9252 0.068
0.9157 0.117

100

4.1464𝑒𝑒−14

3.8376𝑒𝑒−15

0.172

0.163 6.8572𝑒𝑒−14 0.162

2.6223𝑒𝑒−16 0.154
2.7811𝑒𝑒−15 0.170
2.7811𝑒𝑒−16 0.157

1000

1.3143𝑒𝑒−54

2.2048𝑒𝑒−55

6.231

6.310 5.4190𝑒𝑒−56 6.257

1.6071𝑒𝑒−56 6.364
1.0727𝑒𝑒−55 6.384
1.6111𝑒𝑒−54 6.313

5000

6.8572𝑒𝑒−161

4.9646𝑒𝑒−165

26.775

30.042 2.6223𝑒𝑒−169 25.366

2.7811𝑒𝑒−165 31.439
7.3016𝑒𝑒−165 32.744
5.2609𝑒𝑒−167 33.884

10000 2.0759𝑒𝑒−269 5.3958𝑒𝑒−272 67.500

23

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

Table 2

Comparative Search with 50 Population (Nests)

Iterations Average Time (secs Average Time (s)

10

0.1048

1.0334

0.071

0.07841.1899 0.068

0.0314 0.068

2.9252 0.068

0.9157 0.117

100

4.1464e–14

3.8376e–15

0.172

0.1636.8572e–14 0.162

2.6223e–16 0.154

2.7811e–15 0.170

2.7811e–16 0.157

1000

1.3143e–54

2.2048e–55

6.231

6.3105.4190e–56 6.257

1.6071e–56 6.364

1.0727e–55 6.384

1.6111e–54 6.313

5000

6.8572e–161

4.9646e–165

26.775

30.0422.6223e–169 25.366

2.7811e–165 31.439

7.3016e–165 32.744

5.2609e–167 33.884

10000

2.0759e–269

5.3958e–272

67.500

68.4416.5280e–272 68.044

8.5684e–271 68.585

8.2255e–269 70.631

1.5813e–279 67.447

It is interesting to note that the experimental results of Table 2 when 50
population of nests are used are inferior to those of Table 1 that uses less
numbers of search agents. This finding is remarkable because using more
search agents leads to more evaluations per iterations and so much time is

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

24

taken to obtain results. In spite of so much time being taken, the results are
not superior. In fact, at no iteration was the optimum solution obtained. This
emphasizes the need of this study to avoid unnecessary waste of computer
resources.

IMPLEMENTATION OF THE LEVY FUNCTION

 The focus of the second part of this paper was to examine the implementation
strategies of the Levy function. The choice of this function was an attempt to
popularize this extremely useful benchmark function despite its complexity.
This function (see Figure 1) has several peaks and multiple minima and
optima solutions. The determination of the global minima is a good test for an
optimization algorithm.

In this study, our major considerations were the determination of the effect
of the search population-cum-number of iterations required to obtain the best
output of this test function and, by implication, other similar problems. Each
experiment test case was executed five times.

Figure 2. Levy function.

The mathematical description of the Levy function is:

(3)

9

Figure 2. Levy function.

The mathematical description of the Levy function is:

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1) + ∑(𝑤𝑤𝑖𝑖 − 1)2
𝑑𝑑−1

𝑖𝑖=1
+ [10 + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1 + 1)] + (𝑤𝑤𝑑𝑑 − 1)2 ⌈1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋(𝑤𝑤𝑑𝑑)⌉ (3)

In Eq. 3, 𝑤𝑤𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−14 and i =1-d. Moreover, the benchmark Levy function is
normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d. The global
minimum is:

 (4)

The simulation outcome is presented in Table 3.

9

Figure 2. Levy function.

The mathematical description of the Levy function is:

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1) + ∑(𝑤𝑤𝑖𝑖 − 1)2
𝑑𝑑−1

𝑖𝑖=1
+ [10 + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1 + 1)] + (𝑤𝑤𝑑𝑑 − 1)2 ⌈1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋(𝑤𝑤𝑑𝑑)⌉ (3)

In Eq. 3, 𝑤𝑤𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−14 and i =1-d. Moreover, the benchmark Levy function is
normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d. The global
minimum is:

 (4)

The simulation outcome is presented in Table 3.

25

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

In Eq. 3, and i = 1-d. Moreover, the benchmark Levy function
is normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d.
The global minimum is:

 (4)

The simulation outcome is presented in Table 3.

Table 3

Simulation Outcome of CS on Levy

Population Iterations fmin Time (s)

10

100

3.64E-06 0.133

5.76E-06 0.097

5.29E-06 0.134

9.34E-06 0.131

2.62E-06 0.11

200

7.84E-06 0.135

7.57E-06 1.892

9.39E-06 0.117

8.07E-06 0.102

1.06E-06 0.115

500

5.29E-06 0.109

2.18E-06 0.133

9.34E-06 0.133

2.62E-06 0.104

7.84E-06 0.119

2000

9.39E-06 0.143

8.07E-06 0.1

1.06E-06 0.101

5.22E-06 0.111

6.37E-06 0.126

10,000

7.69E-07 0.126

9.29E-06 0.128

8.36E-06 0.161

7.13E-06 0.116

7.66E-06 0.133

9

Figure 2. Levy function.

The mathematical description of the Levy function is:

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1) + ∑(𝑤𝑤𝑖𝑖 − 1)2
𝑑𝑑−1

𝑖𝑖=1
+ [10 + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1 + 1)] + (𝑤𝑤𝑑𝑑 − 1)2 ⌈1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋(𝑤𝑤𝑑𝑑)⌉ (3)

In Eq. 3, 𝑤𝑤𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−14 and i =1-d. Moreover, the benchmark Levy function is
normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d. The global
minimum is:

 (4)

The simulation outcome is presented in Table 3.

9

Figure 2. Levy function.

The mathematical description of the Levy function is:

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1) + ∑(𝑤𝑤𝑖𝑖 − 1)2
𝑑𝑑−1

𝑖𝑖=1
+ [10 + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝜋𝜋1 + 1)] + (𝑤𝑤𝑑𝑑 − 1)2 ⌈1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋(𝑤𝑤𝑑𝑑)⌉ (3)

In Eq. 3, 𝑤𝑤𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−14 and i =1-d. Moreover, the benchmark Levy function is
normally evaluated on a hypercube with xi ∈ [-10, 10], for all i = 1, …, d. The global
minimum is:

 (4)

The simulation outcome is presented in Table 3.

(continued)

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

26

Population Iterations fmin Time (s)

10 100,00

8.47E-06 0.146
7.77E-06 0.111
2.72E-06 0.141
7.46E-06 0.114
1.75E-06 0.122

A close examination of Table 4 reveals that the CS was very efficient
and effective in solving the benchmark Levy function. It is particularly
interesting to note the speed of the algorithm in arriving at a solution. Even
when 100,000 iterations were deployed the algorithm was able to converge
at a solution in less than a second. This is a mark of the efficiency of CS in
the use of computer resources in its search for solutions.

Another remarkable outcome of this investigation, especially when
a population of 10 nests were used (see Table 3) was that in spite of the
number of iterations deployed, the CS was able to obtain a solution close
enough to the global optima of 0 (see Eq. 4). This is an indication of the
effectiveness of the CS. Though a recently developed optimization algorithm,
the effectiveness of the algorithm as can be seen in this study, may be the
primary reason for its popularity among researchers and its consequent wide
applicability.

Moreover, Table 3 shows that the least convergence time (0.097 second) was
when 100 iterations were used. On the other hand, the highest time taken to
converge at a solution was 0.161 second at iteration 10,000. This finding
is consistent with existing literature: the use of more iterations in search of
solutions leads to longer convergence periods. Based on this, it may be safe
to conclude that the CS algorithm follows the same trend. However, it is
worthy to note that in 100,000 iterations, the highest convergence time was
0.141 second which was faster than the highest observed in 10,000 iterations
(0.161 second). Statistically, it could be argued that the high convergence
time of 0.161 second observed in 10,000 iterations could be rogue. Since
rogue data are not sufficient ground to invalidate a research finding, this
study concludes that if more iterations are deployed in search, more likely,
more time is taken to converge at a solution. In the light of this conclusion,
it is hereby recommended that when using the CS to solve the benchmark
Levy function (or a similar problem to the benchmark Levy function), the

27

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

use of a population of 10 nests and 100 iterations may be a desirable choice.
In the next set of experiments, 25 search population (nests) were deployed
to the search space. Moreover, we added the 1000 and 5000 iterations to the
ones used in Table 3. The simulation results of this last set of experiments
are presented in Table 4.

Table 4

CS on Levy Function When Using 25 Nests

Population Iterations fmin Time (s)

25

 9.48E-06 0.255

 9.01E-06 0.222

100 1.28E-06 0.191

 5.42E-06 0.241

 2.81E-06 0.253

 5.45E-06 0.247

 9.06E-06 0.241

200 8.88E-06 0.256

 9.08E-06 0.269

 9.01E-06 0.184

 6.71E-06 0.268

 6.57E-06 0.254

 9.64E-06 0.237

500 9.39E-06 0.214

 5.45E-06 0.203

 6.23E-06 0.316

 6.21E-06 0.237

 7.30E-06 0.269

1000 6.90E-06 0.274

 8.82E-06 0.231

 2.46E-06 0.217

 2.35E-06 0.221

 6.92E-06 0.219

2000 5.66E-06 0.239

 7.18E-06 0.107

(continued)

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

28

Population Iterations fmin Time (s)

25

 1.46E-06 0.28

 3.21E-06 0.257

 9.22E-06 0.242

5000 6.55E-06 0.176
 7.41E-06 0.223
 4.12E-06 0.279
 8.57E-06 0.274

10000 6.10E-06 0.208
 3.04E-06 0.198
 9.35E-06 0.205
 6.99E-06 0.189
 7.95E-06 0.231

100000 8.91E-06 0.251
 9.56E-06 0.317
 6.48E-06 0.227

The experimental output recorded in Table 4 follows the same trend of Table 3.
The increase in the number of iterations did not translate to improved results.
Again, it is obvious that the use of a higher number of nests (25) leads to an
increase in convergence time.

In the light of the above, since the use of more search agents did not improve
the simulation outcomes but rather increased the processing overhead, the use
of 10 search agents is sufficient to obtain optimal or near-optimal solutions.
Again, it can be observed in Table 4 that at no point did the CS obtain the
optimal solution. Consequently, the use of 100 iterations is recommended.

CONCLUSIONS

This paper presented the diagnostic evaluation of the effects of search population
and the number of iterations in solving the benchmark Rosenbrock and Levy
functions using the CS. After a number of experimental procedures, it was
discovered that in solving the benchmark function as well as the benchmark
Levy function, the CS obtained better results when a population of 10 nests
were deployed to the search space. By using 10 nests, near-optimal solutions
were obtainable from as low as 100 to 10,000 iterations. In fact, at 10,000
iterations, the CS obtained the optimum solution to Rosenbrock function in
every run. Surprisingly, however, this study discovered that increasing the

29

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

search population to 25 and 50 nests did not improve the solution. It rather
worsened the result and increased the processing time.

Similarly, for the Levy function, the near-optimal solution was obtainable
at 100 iterations and with a search population of 10 nests. The use of more
iterations-cum-nests was discovered to only increase the processing overhead
without the expected improvement in results

In the light of the findings of this paper, it is recommended that when
solving the Rosenbrock and Levy functions or any similar problems, using
a population of 10 nests will give an optimum or near-optimum solution. In
terms of the required number of iterations, this study recommends from 100
to 10,000 depending on the primary considerations. If the main consideration
is the optimum solution, then using 10,000 iterations will almost certainly
guarantee the optimum result to the Rosenbrock function. Results obtainable
from 100 to 5000 iterations are near the optimum too. Conversely, for the Levy
function, the use of 100 iterations is sufficient to give near-optimal solutions.

Before this study, it was believed by some researchers that the more populations
deployed to the search space, the more likely it was to obtain optimal results.
This study proved otherwise. Based on this finding, it is recommended that
further implementation evaluations be carried out on the Rosenbrock and
Levy functions using different platforms and parameter-set to validate the
findings of this study.

REFERENCES

Agrawal, S., Panda, R., Bhuyan, S., & Panigrahi, B. K. (2013). Tsallis entropy-
based optimal multilevel thresholding using cuckoo search algorithm.
Swarm and Evolutionary Computation, 11, 16-30.

Anwar, S., Inayat, Z., Zolkipli, M. F., Zain, J. M., Gani, A., Anuar, N. B.,Chang,
V. (2017). Cross-VM cache-based side channel attacks and proposed
prevention mechanisms: A survey. Journal of Network and Computer
Applications.

De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive
systems. (Doctoral dissertation, University of Michigan). Dissertation
Abstracts International, 36(10), 5140B. (University Microfilms No. 76-
9381)

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

30

Dorigo, M., & Gambardella, L. (2016). Ant-Q: A reinforcement learning
approach to the traveling salesman problem. Paper presented at the
Proceedings of ML-95, Twelfth Intern. Conf. on Machine Learning.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72.

Kamat, S., & Karegowda, A. (2014). A brief survey on cuckoo search
applications. Int. J. Innovative Res. Comput. Commun. Eng, 2(2).

Kennedy, J. (2011). Particle swarm optimization. Encyclopedia of Machine
Learning (pp. 760-766): Springer.

Khompatraporn, C., Pintér, J. D., & Zabinsky, Z. B. (2005). Comparative
assessment of algorithms and software for global optimization. Journal
of Global Optimization, 31(4), 613-633.

Odili, J. B. (2013a). Application of ant colony optimization to solving
the traveling salesman’s problem. Science Journal of Electrical &
Electronic Engineering, 2013.

Odili, J. B. (2013b). Staff development programs and job performance:
Implications for productivity in Lagos state ministry of education.
Journal of Business Administration and Management Sciences
Research, 2(12), 330-334.

Odili, J. B., & Kahar, M. N. M. (2015). African buffalo optimization (ABO): A
new meta-heuristic algorithm. Journal of Advanced & Applied Sciences,
3, 101-106.

Odili, J. B., Kahar, M. N. M., & Anwar, S. (2015). African buffalo optimization:
A swarm-intelligence technique. Procedia Computer Science, 76, 443-
448.

Odili, J. B., & Mohmad Kahar, M. N. (2016). African buffalo optimization
approach to the design of PID controller in automatic voltage regulator
system. National Conference for Postgraduate Research, Universiti
Malaysia Pahang, September, 2016, 641-648.

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm
optimization. Paper presented at the Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on.

31

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 17–32

Taheri, J., Lee, Y. C., Zomaya, A. Y., & Siegel, H. J. (2013). A bee colony-
based optimization approach for simultaneous job scheduling and data
replication in grid environments. Computers & Operations Research,
40(6), 1564-1578.

West, P., Sculli, G., Fore, A., Okam, N., Dunlap, C., Neily, J., & Mills, P.
(2012). Improving patient safety and optimizing nursing teamwork
using crew resource management techniques. Journal of Nursing
Administration, 42(1), 15-20.

Yang, D., Jiao, J. R., Ji, Y., Du, G., Helo, P., & Valente, A. (2015). Joint
optimization for coordinated configuration of product families and
supply chains by a leader-follower Stackelberg game. European Journal
of Operational Research, 246(1), 263-280.

Yang, X.-S. (2012a). Flower pollination algorithm for global optimization.
Paper presented at the International Conference on Unconventional
Computing and Natural Computation.

Yang, X.-S. (2012b). Nature-inspired metaheuristic algorithms: Success and
new challenges. arXiv preprint arXiv:1211.6658.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Paper presented
at the Nature & Biologically Inspired Computing, 2009. NaBIC 2009.
World Congress on Nature & Biologically Inspired Computing.

	JICT VOL. 17, NO. 1, JAN 18_2
	17-32.pdf

