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Permitting semi-conditional grammars are such extensions of context-free grammars

where each rule is associated with a word w and such a rule can be applied to a sentential
form u only if w is a subword of u. We consider a generalization of these grammars where

each rule r is associated with a set of words P and r is applicable only if every word in
P occurs in u. The paper investigates the generative power of these grammars with no

erasing rules. A pumping lemma is proven for their languages, and it is shown that they

are strictly weaker than context-sensitive grammars. Moreover, their generating power
is compared to that of forbidding random context grammars with no erasing rules.
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1. Introduction

Context-free (CF) grammars are extensively studied since they serve as formal mod-

els in many areas of computer science. They have many good properties. For exam-

ple, their membership problem is efficiently solvable. CF grammars were invented

by Noam Chomsky to describe the structures of words in sentences of natural lan-

guages. However, it turned out that certain natural languages contain phenomena

such as cross-serial dependencies that cannot be handled by CF grammars (see e.g.

[12]). The more powerful context-sensitive (CS) grammars are able to model cross-

serial dependencies, but the membership problem for them is PSPACE-complete,

i.e., not efficiently solvable.

∗Research of this author was partially supported by the Hungarian National Research, Develop-

ment and Innovation Office (NKFIH) under grant K 108448.
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One way to enrich CF grammars with context sensitivity and raise their gen-

erative power is to control their derivations by context conditions. For example, in

conditional grammars (CGs) [7, 16] a regular language is added to every context-

free rule and a rule is applied only to sentential forms in the associated language. It

turned out that these grammars are equivalent to CS grammars when erasing rules

are not allowed, and with erasing rules they are Turing-equivalent [19].

Many variations of conditional grammars have already been investigated. In

random context grammars (RCGs) [20] two sets of nonterminals, a permitting P

and a forbidding one Q, are associated to every context-free rule. Then a rule is

applicable, if it is applicable in the context-free sense and nonterminals in Q do not

occur, while every nonterminal in P does occur in the current sentential form. If

in an RCG each rule is associated with an empty forbidding set (resp. permitting

set), then the grammar is called a permitting (resp. forbidding) RCG.

It turned out that RCGs have equal power to that of Turing machines (see e.g.

[3]), thus recently a restricted variant of them was introduced and investigated [15].

In these grammars the permitting and forbidding sets are associated to the nonter-

minals rather than to the rules. Moreover, one of these sets is always a singleton

and the other one is empty. We will call these grammars restricted random context

grammars (rRCGs). It was shown that even with this very limited ability of con-

trolling the derivations these grammars are equivalent to random context grammars

[2, 15]. Moreover, permitting rRCGs are as powerful as permitting RCGs [2], and

this is the case for the forbidding variants too if erasing rules are allowed [9].

Păun [17], motivated by the grammars of Kelemen [13], introduced another

variant of conditional grammars called semi-conditional grammars (SCGs). In these

grammars every rule r is associated with two words, a permitting word w1 and a

forbidding one w2, and r is applicable only if w1 is a subword of the sentential form,

but w2 is not. An SCG G is of degree (i, j) if the length of its permitting words is at

most i and that of the forbidding words is at most j. It was shown in [17] that these

grammars with degree (1, 0) or (0, 1) can already generate non-semilinear (hence

non-context-free) languages. Moreover, with degree (1, 2) or (2, 1) they determine

exactly the class of CS languages if erasing rules are not allowed and with erasing

rules they are Turing-equivalent.

In [17] it was also shown that SCGs without erasing rules and with degree (1, 1)

cannot generate every CS language. However, it remained an open question if this

property still holds if we consider SCGs with degree (i, 0) for some i ≥ 2. In [10]

we gave a negative negative answer to this question by showing that there is a CS

language that cannot be generated by any permitting SCG (permitting SCGs are

SCGs with degree (i, 0) for some i ≥ 0).

The present paper is an extended version of [10]. Here we consider SCGs in a

more general form: each rule is associated with two sets of words P and Q, and such

a rule can be applied to a sentential form u only if every word of P is a subword

of u, and no word in Q is a subword of u (cf. also Definition 3.2.6 in [18]). We

call these grammars generalized semi-conditional grammars or gSCGs to be short
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Fig. 1. A comparison of the power of some variants of grammars mentioned in the introduction.

Arrows with solid lines represent strict inclusions, while arrows with dashed lines indicate inclusions
which are not known to be strict. References to the presented equalities or strict inclusions are also

given. Inclusions represented by dashed lines follow from definitions. gSCGλ, RCGλ, and rRCGλ

(resp. gSCG, RCG, and rRCG) denote the classes of the corresponding grammars with erasing
rules (resp. with no erasing rules). For a class of grammars C, L(C) denotes the class of languages

generated by grammars in C, and pC (resp. fC) denotes that subclass of C, where only permitting

(resp. forbidding) context conditions are used.

(notice that gSCGs are generalizations of RCGs too). It is known that gSCGs have

equal computational power to that of SCGs (see Theorem 3.2.6 in [18]). Concerning

the power of permitting gSCGs (pgSCGs for short), in this paper we show that they

are still not able to generate every CS language. A comparison of some language

classes generated by grammars discussed so far is given in Figure 1.

The key to prove the results of this paper is a pumping lemma (Lemma 13) which

was motivated by a pumping lemma for permitting RCGs proved in [6]. In more

details, in [6] it was shown that sufficiently long derivations of a permitting RCG

with no erasing rules always contain two sentential forms α and β such that β is

derived from α and, for every nonterminal A, |α|A ≤ |β|A (here |α|A and |β|A denote

the number of occurrences of A in α and β, respectively). This property follows from

Dickson’s lemma [4] which states that any infinite sequence v1, v2, . . . of n-vectors

over the natural numbers contains an infinite sub-sequence vi1 ≤ vi2 ≤ · · · , where

≤ is the componentwise ordering of n-vectors. To prove our pumping lemma we

had to employ such sentential forms α and β that satisfy a stronger condition: if

u is a permitting word of G, then β should contain at least as many occurrences

of u as the number of these strings is in α. In our work we used Higman’s lemma

[11], which ensures that in any infinite sequence v1, v2, . . . of words, there is an

infinite subsequence vi1 ≤s vi2 ≤s · · · , where ≤s is the subsequence (or scattered

subword) relation. However, to find an appropriate α and β we could not apply

directly Higman’s lemma to the sentential forms of a derivation, but rather to

certain carefully defined words obtained from these sentential forms.

Using Lemma 13 we could compare the generative power of permitting gSCGs
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and forbidding RCGs as follows. We could show that, for every i ≥ 1, there is a

language L such that L can be generated by an fRCG but cannot by pgSCGs with

degree (i, 0).

The paper is organized as follows. First, we introduce the necessary notions and

notations. Then, in Section 3 we present the results of the paper. Finally, we give

some concluding remarks in Section 4.

2. Preliminaries

We define here the necessary notions, however we assume that the reader is familiar

with the basic concepts of the theory of formal languages. For a comprehensive

guide we refer to [19]. An alphabet Σ is a finite, nonempty set of symbols whose

elements are also called letters. Words over Σ are finite sequences of letters in Σ.

As usual, Σ∗ denotes the set of all words over Σ including the empty word ε. For a

word u ∈ Σ∗, |u| denotes the length of u. N denotes the set of natural numbers. For

n,m ∈ N, n < m, [n,m] denotes the set {n, n + 1, . . . ,m}. If n = 1, then [n,m] is

denoted by [m]. The set of positions in u (pos(u) for short) is [|u|].
Let u ∈ Σ∗. A word v is a scattered subword of u, if v can be obtained from

u by erasing some (possibly zero) letters. Moreover, v is a subword of u if there

are words u1, u2 ∈ Σ∗ such that u = u1vu2. Let i ∈ pos(u) and m ≥ 1 be such

that i + m − 1 ∈ pos(u). Then subw(u, i,m) denotes that subword of u which

starts on the ith position and has length m. It will always be clear from the context

whether we consider an arbitrary subword of u or that one which starts on a certain

position. Those subwords of u that have length m are also called m-subwords. The

subsequence relation ≤s over Σ∗ is a binary relation defined as follows. For u, v ∈
Σ∗, u ≤s v, if u is a scattered subword of v. Let f : [k] → [l] (k, l ≥ 1) be a

(partial) function. The domain and range of f , denoted by dom(f) and ran(f),

respectively, are defined as follows: dom(f) = {i ∈ [k] | ∃j ∈ [l] : f(i) = j} and

ran(f) = {i ∈ [l] | ∃j ∈ [k] : f(j) = i}. If I ( [k], then f |I denotes the restriction

of f to I. Let u, v ∈ Σ∗ and f : pos(v) → pos(u) be a (partial) function. If, for

every i ∈ dom(f), subw(v, i, 1) = subw(u, f(i), 1), then we call f letter-preserving.

A well-quasi-ordering (wqo for short) on a set S is a reflexive, transitive binary

relation ≤ such that any infinite sequence a1, a2, . . . (ai ∈ S, i ≥ 1) contains a pair

aj ≤ ak with j < k. The following result is due to [11] (see also [14]).

Proposition 1. Let Σ be an alphabet. Then ≤s is a wqo on Σ∗. Consequently, for

every infinite sequence u1, u2, . . . (ui ∈ Σ∗, i ≥ 1), there is an infinite subsequence

ui1 ≤s ui2 ≤s · · · .

A generalized semi-conditional grammar (gSCG for short) is a 4-tuple G =

(V,Σ, R, S), where V and Σ are alphabets of the nonterminal and terminal symbols,

respectively (it is assumed that V ∩ Σ = ∅), S ∈ V is the start symbol, and R is a

finite set of production rules of the form (A→ α, P,Q), where A ∈ V, α ∈ (V ∪Σ)+

(that is A → α is a usual non-erasing context-free rule), and P and Q are finite
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disjoint sets of words in (V ∪ Σ)+. For a rule r = (A → α, P,Q), P and Q are

called the permitting and forbidding context of r, respectively. The right-hand side

of r (denoted by rhs(r)) is α. We will often denote V ∪ Σ by VG. The derivation

relation ⇒G of G is defined as follows. For every word u1, u2, α ∈ V ∗G and A ∈ V ,

u1Au2 ⇒G u1αu2 if and only if there is a rule (A→ α, P,Q) ∈ R such that (i) every

word in P is a subword of u1Au2, and (ii) no word in Q is a subword of u1Au2. We

will often write ⇒ instead of ⇒G when G is clear from the context. As usual, the

reflexive, transitive closure of ⇒ is denoted by ⇒∗ and the language generated by

G is L(G) = {u ∈ Σ∗ | S ⇒∗ u }. A word α ∈ V ∗G is often called a sentential form

of G (or just a sentential form) if S ⇒∗ α.

Example 2. (Cf. Example 1.1.7 in [3]) Consider the gSCG G = ({S,A,B,D}, {a},
{r1, r2, . . . , r5}, S), where r1 = (S → AA, ∅, {B,D}), r2 = (A → B, ∅, {S,D}),

r3 = (B → S, ∅, {A,D}), r4 = (A→ D, ∅, {S,B}), and r5 = (D → a, ∅, {S,A,B}).
Notice that every rule in R has an empty permitting context and that the forbid-

ding contexts are subsets of the set of nonterminal symbols. It can be seen moreover

that L(G) = {a2n | n ≥ 1}. Indeed, consider the word Si for some i ≥ 1. To this

word we have to apply r1 as long as S occurs in the sentential form (rules with A

on the left-hand side are forbidden to use by S). Thus we get A2i. Now we can apply

only r2 or r4. If we apply r2, then we should apply it as long as we get B2i. To this

word we can apply only r3 and we should apply this rule until we get S2i. On the

other hand, if we apply r4 to A2i, then we should apply this rule until we get D2i.

Now we can apply only r5 until we get a2i.

Let G = (V,Σ, R, S) be a gSCG. A derivation der from α to β in G is a sequence

α1 ⇒G α2 ⇒G · · · ⇒G αn+1 of words in V ∗G for some n ≥ 0 such that α1 = α and

αn+1 = β. The length of der (denoted by |der|) is n. Let α, β ∈ V ∗G and der be a

derivation from α to β. The sentential form vector of der (denoted by sfv(der))

is (u1, . . . , uk) (k = |α|, ui ∈ V ∗G, i ∈ [k]), such that β = u1 · · ·uk and, for every

i ∈ [k], ui is derived from subw(α, i, 1). Let der : α1 ⇒ · · · ⇒ αn (n ≥ 1) and

der′ : αn ⇒ · · · ⇒ αk (k ≥ n). Then der der′ denotes the derivation α1 ⇒ · · · ⇒ αk.

Let i, j ≥ 0. G is of degree (i, j) if, for every rule (p, P,Q) ∈ R, P (resp. Q)

contains only words with length at most i (resp. j). For i ≥ 0, gSCGs with degree

(i, 0) are also called permitting gSCGs, or pgSCGs for short. Let G = (V,Σ, R, S)

be a pgSCG. The set of permitting contexts of G is pw(G) =
⋃

(p,P,Q)∈R P and

maxpw(G) = max{|u| | u ∈ pw(G)}.
A random context grammar (RCG) is a semi-conditional grammar, where the

sets of permitting and forbidding contexts are subsets of the nonterminal alphabet.

An RCG G = (V,Σ, R, S) is a forbidding RCG (fRCG) if, for every rule (p, P,Q) ∈
R, P is empty. Notice that the grammar G in Example 2 is an fRCG.

We denote by L(pgSCG), L(fRCG) and L(CS) the families of languages gen-

erated by pgSCGs, fRCGs and context-sensitive grammars, respectively. Moreover,

for a number i ≥ 0, L(pgSCGi) denotes the class of languages generated by pgSCGs
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of degree (i, 0).

3. The Main Results

Here we show first that pgSCGs are strictly weaker than context sensitive grammars

by proving that the language L = {a22n | n ≥ 0} cannot be generated by any pgSCG

(Theorem 14). We show this by using a pumping lemma (Lemma 13). The proof of

this lemma consists of the following main steps.

(1) First we define the notion of m-embedding (Definition 3). Intuitively, a word

α can be m-embedded to a word β, if there is an injective mapping of the m-

subwords of α to the m-subwords of β such that this mapping preserves the

order of these words and satisfies certain additional conditions.

(2) Then we show that if a pgSCG G = (V,Σ, R, S) has a derivation of the form

α⇒∗ β ⇒∗ γ where α, β ∈ V ∗G, γ ∈ Σ∗, |α| < |β| and α can be m-embedded to

β, then this derivation can be ”extended” into a derivation α ⇒∗ γ′ for some

γ′ ∈ Σ∗ with |γ| < |γ′| ≤ (m+ 1)|γ| (Lemma 9).

(3) Finally, we show that, for any m ≥ 1, sufficiently long derivations of a pgSCG

G always contain sentential forms α and β such that α can be m-embedded to

β (Lemma 12). To this end we will use the fact that ≤s is a wqo on V ∗G.

Definition 3. Let Σ be an alphabet, α, β ∈ Σ∗, k = |α|, l = |β|, and m ≥ 1. An

m-embedding of α to β is a strictly increasing function g : [k −m + 1] → [l] such

that the following (partial) mapping f : pos(β) → pos(α) is letter-preserving and

well defined: for every i ∈ [k − m + 1] and κ ∈ [0,m − 1], f(g(i) + κ) = i + κ.

If g is an m-embedding, then the above f is denoted by invm(g). Moreover, if an

m-embedding of α to β exists, then we denote this by α m β.

Example 4. Here we give two examples to demonstrate the notion of m-embedding

(see also Fig. 2).

(1) Let α = BAAB and β = BAAAB. Any 3-subword of α is a subword of β, too.

Due to the letter-preserving property, only the following g can be a 3-embedding

of α to β: g(1) = 1 and g(2) = 3. The mapping f = invm(g) is letter-preserving,

but not well defined. Indeed, with i = 1 and κ = 2 we get f(g(i)+κ) = f(3) = 3,

while with i = 2 and κ = 0, f(g(i) + κ) = f(3) = 2. This implies that there is

no 3-embedding of α to β.

(2) Let α = ABBAC, β = AABBAABAC and g be the following strictly increas-

ing function: g(1) = 2, g(2) = 3, and g(3) = 7. Then the mapping f = invm(g)

is letter-preserving and well defined: f(i) = i − 1 (i ∈ [2, 5]) and f(i) = i − 4

(i ∈ [7, 9]). Thus g is a 3-embedding of α to β.

The following properties of m-embeddings will be useful in what follows.

Proposition 5. Let Σ be an alphabet, m ≥ 1, and α, β ∈ Σ∗. Assume that g is an

m-embedding of α to β and f = invm(g). Then the following statements hold.
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Fig. 2. A visualization of the mappings used in Example 4.

(i) For every i ∈ pos(α), |{t ∈ pos(β) | f(t) = i}| ≤ m.

(ii) If |α| = |β|, then α = β.

(iii) If i, j ∈ pos(α) with j = i+ 1, then g(j)− g(i) = 1 or g(j)− g(i) ≥ m.

(iv) If s, t ∈ pos(β) with s < t and f(s) = f(t), then t− s ≥ m− 1.

Proof. We show (i) first. Let i ∈ pos(α) and J = {j ∈ pos(α) | i ∈ [j, j + m −
1]}. Clearly, |J | ≤ m. Let S = ran(g|J). Since g is strictly increasing, |S| = |J |.
Moreover, using that for every s ∈ S, f |[s,s+m−1] is a strictly increasing function to

the set [f(s), f(s) +m− 1], we get that there is exactly one t ∈ [s, s+m− 1] with

f(t) = i. It is also clear that for every t ∈ pos(β) with f(t) = i there is an s ∈ S
with t ∈ [s, s+m− 1]. Thus, |{t ∈ pos(β) | f(t) = i}| ≤ |S| = |J | ≤ m.

To see (ii) it is enough to observe that since g is a strictly increasing function, it

should map every i ∈ [k−m+1] to i (k = |α|). Thus f(i) = i for every i ∈ [k−m+1],

and the statement follows using that f is letter preserving.

To prove (iii) let d = g(i+1)−g(i). If d ≤ m−1 then f(g(i)+d) = f(g(i+1)) =

i + 1 and f(g(i) + d) = i + d (by the definition of f for i + 1 and κ = 0, and for i

and κ = d, respectively). Since f must be a (partial) function, we get that in this

case d = 1.

To prove (iv) assume that f(s) = f(t) for some s, t ∈ pos(β) and s < t. Let

i, j ∈ [k − m + 1] (k = |α|) and µ, ν ∈ [0,m − 1] be such that s = g(i) + µ and

t = g(j) + ν. Then f(s) = i + µ and f(t) = j + ν by the definition of f . Now, s 6∈
[g(j), t], otherwise f(s) = f(t) contradicts the definition of an m-embedding (notice

that f |[g(j),g(j)+m−1] is an injective function and [g(j), t] ⊆ [g(j), g(j) + m − 1]).

This proves g(i) < g(j), and thus i < j by the strictly increasing property of g.

According to (iii) g(j) − g(i) = j − i + d where either d = 0 or d ≥ m − 1. Thus

(t− ν)− (s−µ) = g(j)− g(i) = j− i+d = (f(t)− ν)− (f(s)−µ) +d = −ν+µ+d.

Consequently, t− s = d. Since s < t, only d ≥ m− 1 is possible, which finishes the

proof of (iv).

We will also need the following operation which inserts words into certain posi-

tions of a word. Let Σ be an alphabet and α = X1 · · ·Xk (k ≥ 1, Xi ∈ Σ, i ∈ [k]). Let

moreover u1, . . . , ul ∈ Σ∗ and f : [k]→ [l] be a (partial) function. The substitution

of u = (u1, . . . , ul) into α by f (denoted by subst(u, α, f)) is the word β = v1 · · · vk,

where vi (i ∈ [k]) is defined as follows. If f(i) is defined, then let vi = uf(i), and let

vi = Xi otherwise.



December 15, 2017 21:31 WSPC/INSTRUCTION FILE
permittingSCG˙IJFCS6

8

1 2 3 4

A

α

αn
αn+1

u1 u2 u3 u4

γ

1 2 3 2 3 4
v1 v2

v3 v4 v5

u1 u2 u3

v6 v7

v8 v9 v10

u2 u3 u4
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γ γ

A A

β
βn
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Fig. 3. The inductive proof of Lemma 7 assuming m = 3 and |P | = 1.

Sometimes we will need to extend a function f used in a substitution. An exten-

sion of f (with respect to α) is a function f̂ defined as follows. For every i ∈ dom(f),

f̂(i) = f(i), and for every i ∈ [k]− dom(f), f̂ is either undefined or defined as fol-

lows: if there is a j ∈ dom(f) such that subw(α, i, 1) = subw(α, j, 1), then take such

a j and let f̂(i) = f(j). Notice that f is always an extension of itself.

Example 6. Let Σ = {A,B,C}, α = ABCBB and u = (u1, u2, u3), where u1 =

AA, u2 = ABC, u3 = CC. Let furthermore f : [5]→ [3] be the following partial func-

tion. f(2) = f(3) = 3, f(5) = 1. Then subst(u, α, f) = Au3u3Bu1 = ACCCCBAA

and f has two possible extensions other than f . f̂(1) is undefined. f̂(2) = f̂(3) = 3,

f̂(5) = 1 and f̂(4) is either 1 or 3 resulting in subst(u, α, f̂) equal to AC4A4 or

AC6A2, respectively.

The following result will be crucial in the proof of Lemma 9.

Lemma 7. Let G = (V,Σ, R, S) be a pgSCG, m = 2 ·maxpw(G), and α, α′, β ∈ V ∗G.

Assume that α⇒∗ α′ and α m β. Let der be a derivation from α to α′, g an m-

embedding of α to β, and f = invm(g). Then, for every extension f̂ of f , β ⇒∗ βf̂ ,

where βf̂ = subst(sfv(der), β, f̂).

Proof. Let β′ = subst(sfv(der), β, f). We first show that β ⇒∗ β′ by induction on

n = |der|. If n = 0, then one can see that β′ = β, and thus the statement trivially

holds. Assume that it holds for n. We prove it for n+1. In this case der can be written

as der = der1der2, where der1 is α0 ⇒ · · · ⇒ αn, der2 is αn ⇒ αn+1, α0 = α, and

αn+1 = α′. Let βn = subst(sfv(der1), β, f). By the induction hypothesis, there is a

derivation der′1 from β to βn. Let (u1, . . . , uk) = sfv(der1) (k = |α|). Assume that

G rewrites a nonterminal A during αn ⇒ αn+1 using a rule r = (A→ γ, P, ∅) (see

Fig. 3 for an example).

Let i ∈ [k] and κ ∈ pos(ui) be such that the rewritten A occurs on the κth

position of ui. Let i1 < i2 · · · < iξ be all the positions in pos(β) with f(ij) = i

(j ∈ [ξ]). Let (v1, . . . , vl) = sfv(der′1) (l = |β|). Then, for every j ∈ [ξ], vij =

ui and thus, for every such j, there is a position κj ∈ pos(βn) satisfying that

κj corresponds to the κth position in vij . Clearly subw(βn, κj , 1) = A and β′ =
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βn+1 = subst((γ), βn, h) where h : pos(βn) → {1} is defined as follows: h(j) = 1 if

j ∈ {κ1, . . . , κξ}, and it is undefined otherwise. Therefore, to prove βn ⇒∗ β′ it is

enough to show that G can use r to rewrite each nonterminal A that occurs on a

position κj (j ∈ [ξ]) in βn.

Let m′ = maxpw(G), then m = 2m′. Since G can apply r at the step αn ⇒ αn+1,

αn should contain all permitting contexts of P . Then, for every p ∈ P , let µ(p) ∈ [k]

and ν(p) ∈ [0,m′ − 1] such that p occurs in the subword uµ(p) · · ·uµ(p)+ν(p) of αn
(notice that G has no erasing rules). Let moreover P0 = {p ∈ P | i ∈ [µ(p), µ(p) +

ν(p)]} and P1 = P \ P0.

First, consider the permitting contexts of P1. For every p ∈ P1, p is a subword

of uµ(p) · · ·uµ(p)+ν(p) and this word avoids ui. Since g is an m-embedding of α to

β, vg(µ(p)) · · · vg(µ(p))+ν(p) = uµ(p) · · ·uµ(p)+ν(p). Furthermore it contains p and does

not contain the positions κj (j ∈ [ξ]). So the contexts of P1 are subwords of the

sentential form after rewriting even all the A’s at the positions κj (j ∈ [ξ]).

Now, consider the permitting contexts of P0. It can be seen that, for all

p ∈ P0, uµ(p) · · ·uµ(p)+ν(p) is a subword of umax(1,i−m′+1) · · ·umin(k,i+m′−1). Since

|[max(1, i−m′ + 1),min(k, i+m′ − 1)]| ≤ m− 1, it is a subword of ux · · ·ux+m−2

for some x ∈ [k]. Since g is an m-embedding of α to β, it is clear that w =

vg(x) · · · vg(x)+m−2 = ux · · ·ux+m−2. Moreover, w contains all contexts of P0 and

by (iv) of Proposition 5 there is exactly one index j ∈ [ξ] such that w contains A

on the κjth position in βn. Then G should rewrite first those A’s in βn that occur

on positions other than κj and, at the last step, that A which occurs on the κjth

position. Therefore βn ⇒∗ βn+1 = β′ which implies that β ⇒∗ β′.
To finish the proof of the lemma consider a derivation der′ from β to β′. Looking

at the inductive proof of β ⇒∗ β′, one can see that, the letters in β that are on

such positions which are not included in dom(f) do not occur in the permitting

contexts used during der′. Assume that i ∈ pos(β)− dom(f) such that f̂(i) = f(j),

for some j ∈ dom(f). Let u be the f(j)th word in sfv(der) and X = subw(β, j, 1).

Then G derives u during der′ from this X. On the other hand, by the definition

of f̂ , subw(β, i, 1) = X. Thus, der′ can be extended to such a derivation where

G, using the appropriate rules simultaneously, derives u also from that X which

occurs on the ith position of β. Following this way of thinking one can see that

der′ can be extended to a derivation of βf̂ from β which completes the proof of the

lemma.

Let us consider now the pgSCG G and β, βf from the previous lemma. We have

seen that β ⇒∗G βf . In the next proposition we will see that β  m βf also holds.

This result will be important in the proof of Lemma 9. However, first we need to

introduce some more concepts.

Let g : α m β be an m-embedding. The mapping

cmpg(i) =

{
g(i) for i ∈ [k −m+ 1]

g(k −m+ 1) + i− (k −m+ 1) for i ∈ [k −m+ 2, k]
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is called the completion of g. Note that dom(cmpg) = pos(α) and by the definition

of an m-embedding cmpg is letter-preserving. If f = invm(g) then f(cmpg(i)) = i

holds for i ∈ [k].

Proposition 8. Let α ∈ Σ∗, |α| = k, zi ∈ Σ∗, zi 6= ε (i ∈ [k]) and β = z1 · · · zk with

|β| = l. Let m ≥ 1 and suppose that g : α  m β with f = invm(g) and ḡ = cmpg.

Then

g′ : β  m subst(u, β, f),

where u = (z1, . . . , zk) and g′ is defined as follows. Let

• xi =

{
zf(i) if i ∈ dom(f)

subw(β, i, 1) if i 6∈ dom(f)
,

• ζ(i, r) =
∑i−1
j=1 |zj |+ r, where i ∈ [k] and r ∈ pos(zi), and

• ξ(i, r) =
∑i−1
j=1 |xj |+ r, where i ∈ [l] and r ∈ pos(xi).

Then g′(ζ(i, r)) := ξ(ḡ(i), r) (ζ(i, r) ∈ [l −m+ 1]).

Proof. First, observe that x1 · · ·xl = subst(u, β, f) holds by the definition of xi’s

and of a substitution. Let us denote this word by β′. Let f ′ : pos(β′) → pos(β)

be the following (partial) function: for every i ∈ [l − m + 1] and κ ∈ [0,m − 1],

f ′(g′(i) + κ) := i+ κ. g′ is strictly increasing, so the following are left to prove: (†)
f ′ is letter-preserving and (‡) f ′ is well-defined.

To prove (†) it is enough to show that subw(β, τ,m) = subw(β′, g′(τ),m) holds

for τ = ζ(i, r) ∈ [l −m+ 1], i ∈ [k], r ∈ pos(zi). Suppose, that τ +m− 1 = ζ(j, r′)

for some j ∈ [k] and r′ ∈ pos(zj), then subw(β, τ,m) = subw(zi · · · zj , r,m). By the

assumptions, |zp| ≥ 1 holds for all p ∈ [k], which implies j − i ≤ m− 1.

Let ∆ = Σ ∪ Z be an alphabet, where Z = {z1, . . . , zk} is a set of k symbols,

satisfying Σ ∩ Z = ∅. Let z = z1 · · · zk and x = x1 · · ·xl, where xi = zf(i), if f(i)

is defined, and xi = xi, otherwise (that is, z and x are words of length k and l,

respectively, over ∆). Then z  m x by the same m-embedding g, which implies

zi · · · zj = xḡ(i) · · ·xḡ(i)+j−i for 1 ≤ i ≤ j ≤ k and j − i ≤ m− 1 over the alphabet

∆.

It follows that the analogous equation zi · · · zj = xḡ(i) · · ·xḡ(i)+j−i over the

alphabet Σ holds, too. So we have subw(β, τ,m) = subw(zi · · · zj , r,m) =

subw(xḡ(i) · · ·xḡ(i)+j−i, r,m) = subw(β′, ξ(ḡ(i), r),m) = subw(β′, g′(τ),m) by the

definitions proving (†).
It remains to show (‡). To this end, for every τ < τ ′ ∈ pos(β), let c(τ, τ ′) =

(g′(τ ′)− g′(τ))− (τ ′ − τ). Notice that c(τ, τ ′) ≥ 0 due to the fact that g′ is strictly

increasing. Moreover, c(τ, τ ′) has the following property (?) c(τ, τ ′) =
∑τ ′−1
j=τ c(j, j+

1). Indeed, c(τ, τ ′) = (g′(τ ′)−g′(τ))−(τ ′−τ) =
∑τ ′−1
j=τ (g′(j+1)−g′(j))−(τ ′−τ) =∑τ ′−1

j=τ c(j, j + 1). We claim, that (??) c(τ, τ ′) 6∈ [1,m− 2], for any τ < τ ′ ∈ pos(β).

Due to (?) it is enough to prove (??) for τ ′ = τ + 1, since if one of the c(j, j + 1)’s
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is at least m + 1, then c(τ, τ ′) should be at least m + 1 as well. Thus, we need to

show that either g′(τ + 1) − g′(τ) = 1 or g′(τ + 1) − g′(τ) ≥ m. Let τ = ζ(i, r)

and τ + 1 = ζ(i′, r′) for some i, i′ ∈ [k], r ∈ pos(zi), r
′ ∈ pos(zi′). Then we have the

following two cases.

Case 1 : i′ = i and r′ = r+ 1. Then g′(τ + 1)− g′(τ) = ξ(ḡ(i), r+ 1)− ξ(ḡ(i), r) = 1.

Case 2 : i′ = i + 1, r = |zi| and r′ = 1. By (iii) of Proposition 5, ḡ(i + 1) − ḡ(i) 6∈
[2,m− 1] holds, since ḡ|[k−m] = g and ḡ(i+ 1)− ḡ(i) = 1 for i ∈ [k −m+ 1, k − 1].

Therefore, we need to discuss the following two sub-cases.

Case 2a: ḡ(i+1) = ḡ(i)+1. Then g′(τ+1)−g′(τ) = ξ(ḡ(i)+1, 1)−ξ(ḡ(i), |zi|) =

1.
Case 2b: ḡ(i+1)−ḡ(i) ≥ m. Then g′(τ+1)−g′(τ) = ξ(ḡ(i+1), 1)−ξ(ḡ(i), |zi|) ≥
ξ(ḡ(i)+m, 1)−ξ(ḡ(i), |zi|) =

∑m−1
j=1

(
ξ(ḡ(i)+j+1, 1)−ξ(ḡ(i)+j, 1)

)
+ξ(ḡ(i)+

1, 1)− ξ(ḡ(i), |zi|) ≥ (m− 1)1 + 1 = m.

To finish the proof of (‡), assume that µ = g′(τ) + κ = g′(τ ′) + κ′ holds for some

τ, τ ′ ∈ [l], τ < τ ′, and κ, κ′ ∈ [0,m − 1]. Then f ′(µ) = τ + κ = τ ′ + κ′ should hold

for f ′ being well-defined. 1 ≤ τ ′ − τ = g′(τ ′)− g′(τ)− c(τ, τ ′) = κ− κ′ − c(τ, τ ′) ≤
m − 1 − c(τ, τ ′). (??) implies c(τ, τ ′) = 0, i.e., τ ′ − τ = κ − κ′ should hold. This

proves (‡) and thus we have shown that g′ is an m-embedding of β to β′ with

f ′ = invm(g′).

Lemma 9. Let G = (V,Σ, R, S) be a pgSCG and m = 2 ·maxpw(G). Suppose that

α ⇒∗ β, β ⇒∗ γ, α  m β, and |α| < |β| hold for some α, β, γ ∈ V ∗G. Then there

exists a γ′ ∈ Σ∗ such that (i) α⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m+ 1)|γ|.

Proof. Let k = |α|, l = |β|, and g be an m-embedding of α to β with f = invm(g).

Let moreover der′ and der′′ be any derivations from α to β and from β to γ,

respectively. Let u = sfv(der′) and β′ = subst(u, β, f). By Lemma 7 it holds that

β ⇒∗ β′. Moreover, applying Proposition 8 with the above parameters and Σ = VG,

we get g′ : β  m β′. Let f ′ = invm(g′) and xi (i ∈ [l]), ζ(i, r) (i ∈ [k], r ∈ pos(zi)),
and ξ(i, r) (i ∈ [l], r ∈ pos(xi)) be as defined in Proposition 8 (recall that u =

(z1, . . . , zk)).

Let f̂ ′ be the following function. For every τ ∈ pos(β′), if τ ∈ dom(f ′), then

let f̂ ′(τ) = f ′(τ). Otherwise let τ = ξ(i, r), for some i ∈ [l] and r ∈ pos(xi),

and we define f̂ ′(τ) as follows. If i ∈ dom(f), then let f̂ ′(τ) = ζ(f(i), r), and

let f̂ ′(τ) = i, otherwise. Notice that f̂ ′ is a letter preserving function form β′

to β. Indeed, if i ∈ dom(f), then xi = zf(i), and xi = subw(β, i, 1), otherwise. Let

τ ∈ pos(β′)−dom(f ′). Since g′ is an m-embedding of β to β′, there is a τ ′ ∈ pos(β′)
with f ′(τ ′) = f̂ ′(τ). Then subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1) = subw(β, f ′(τ ′), 1) =

subw(β′, τ ′, 1). Thus f̂ ′ is an extension of f ′.

Now let γ′ = subst((v1, . . . , vl), β
′, f̂ ′), where (v1, . . . , vl) = sfv(der′′). By

Lemma 7, β′ ⇒∗ γ′. This, together with α ⇒∗ β and β ⇒∗ β′ implies α ⇒∗ γ′,
i.e., Statement (i) of the lemma holds. Statement (ii) can be seen as follows. Since

g′ is an m-embedding of β to β′, for every i ∈ [l], there is a τ ∈ pos(β′) with
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f ′(τ) = i. Thus, each vi (i ∈ [l]) is substituted for a position in β′ by f ′. There-

fore |γ| = |v1 · · · vl| ≤ |subst((v1, . . . , vl), β
′, f ′)| ≤ |subst((v1, . . . , vl), β

′, f̂ ′)| = |γ′|.
Moreover, since |α| < |β|, there is an i ∈ [k] such that |zi| ≥ 2. Let j ∈ [l] with

f(j) = i. Then |xj | ≥ 2, so |β| = l < l + 1 ≤
∑l
s=1 |xs| = |β′|. This implies that

|γ| = |γ′| cannot hold, consequently |γ| < |γ′|.
On the other hand, by (i) of Proposition 5, for every i ∈ [k], zi is substituted

for at most m different positions in β by f . Moreover, one can see that, for every

i ∈ dom(f), f̂ ′ is an injective function from [ξ(i, 1), ξ(i, |xi|)] to [l]. Furthermore, f̂ ′

is injective on the set {τ | τ = ξ(i, 1), i ∈ [l]−dom(f)}, too. Consequently, for every

i ∈ [l], vi is substituted for at most m+ 1 different positions in β′ by f̂ ′. Therefore,

|γ′| ≤ (m+ 1)|γ| should hold finishing the proof of Statement (ii).

Next we demonstrate some of the constructions used in the previous proof.

Example 10. Let G = (V,Σ, R, S) be a pgSCG, α = ABBA, β = EABBFBACA

(A,B,C,E, F ∈ V ∪ Σ), and m = 2. Let γ ∈ Σ∗, and assume that G has two

derivations der′ and der′′ from α to β and from β to γ, respectively. Clearly |α| < |β|
and α  m β with the following m-embedding g: g(1) = 2, g(2) = 3, and g(3) = 6.

Then, according to Lemma 9, we can give a γ′ ∈ Σ∗ with the following properties:

(i) α⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m+ 1)|γ| (see also Fig. 4).

Assume, for instance, that sfv(der′) = (z1, z2, z3, z4), where z1 = E, z2 = AB,

z3 = BF , and z4 = BACA. Let f = invm(g). Then β′ = subst(sfv(der′), β, f) =

x1 · · ·x9, where x1 = E, x2 = E, x3 = AB, x4 = BF , x5 = F , x6 = BF ,

x7 = BACA, x8 = C, and x9 = A. Now, if we define g′ according to the proof

of Proposition 8, then we get that dom(g′) = [1, 8], and g′(i) = i + 1 if i ∈ [1, 3],

and g′(i) = i + 4, otherwise. It is easy to verify that g′ is an m-embedding of

β to β′. Let f ′ = invm(g′). Then dom(f ′) = [2, 5] ∪ [8, 13]. Let us define now

f̂ ′ according to the proof of Lemma 9, that is, f̂ ′(1) = 1, f̂ ′(6) = f̂ ′(7) = 5,

f̂ ′(14) = 8, and f̂ ′(15) = 9. One can check that, for every τ ∈ [1, 15] − dom(f ′),

subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1). Assume that sfv(der′′) = v1 · · · v9, where vi ∈ Σ∗

(i ∈ pos(β)). Then γ′ = subst(sfv(der′′), β′, f̂ ′) = v1v1v2 · · · v5v5v4v5 · · · v9v8v9. By

(i) of Lemma 9, α⇒∗ γ′, and it is easy to check that γ′ satisfies Statement (ii) too.

The following proposition together with Lemma 12 will be used to show that

sufficiently long derivations of pgSCGs always contain sentential forms α and β

satisfying the conditions of Lemma 9.

Proposition 11. Let Σ be an alphabet and let n1, n2, . . . be an infinite sequence

of numbers in N. Then there is M ∈ N such that, for every sequence v1, v2, . . . , vn
where n ≥ M and vi ∈ Σ∗ with |vi| ≤ ni (i ∈ [n]), there are numbers i < j in [M ]

satisfying vi ≤s vj.

Proof. The proof is based on similar ideas as those used in the proof of Lemma 2

in [6]. Assume that there is no such M . It means that, for every k ≥ 1, there is a
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A B B A

E A B B F B A C A

α

β

γ v1 v2 v3 v4 v5 v6 v7 v8 v9

E A B B F B A C A

E E A B B F F B F B A C A C A

β

β′

γ′ v1 v1 v2 v3 v4 v5 v5 v4 v5 v6 v7 v8 v9 v8 v9

Fig. 4. A visualization of the mappings defined in Example 10. On the left solid arrows pointing

down denote g and these arrows with the dashed one denote ḡ. Arrows pointing up denote f .

On the right arrows pointing down denote g′, solid arrows pointing up denote f ′, and (solid and
dashed) arrows pointing up denote f̂ ′. Letters in boxes denote the domain of f .

counterexample, a sequence vk1, . . . , vkk such that |vki| ≤ ni (i ∈ [k]) and vki 6≤s vkj
(1 ≤ i < j ≤ k).

Since for every vk1 (k ≥ 1) |vk1| ≤ n1 holds, there are only a finite number of

possibilities for vk1, and there is thus an infinite index set α1 = {k1, k2, . . .} such

that vk1 = vk′1 (k, k′ ∈ α1). Choose u1 = vk11. Similarly, of the vk2’s (k ∈ α1)

there is also an infinite set of indices α2 such that vk2 = vk′2 (k,′ k ∈ α2), choose

u2 = vk2 (k ∈ α2). Continuing in this manner we get an infinite sequence u1, u2, . . .

satisfying ui 6≤s uj for all i < j which contradicts Proposition 1.

Let G = (V,Σ, R, S) be a pgSCG and m ≥ 1. We will apply the above result

to appropriate derivations of G in order to find sentential forms α and β satisfying

α m β. However, Proposition 11 ensures only that we can find such α and β which

satisfy α ≤s β. Clearly, this does not imply α m β. Thus we will apply Proposition

11 not directly to the derivations of G but to sequences of words constructed from

these derivations. To this end we will use two functions wdo and p defined below.

Let Σ be an alphabet and m ≥ 1. We denote by Σ≤m the set of all words in Σ∗

with length at most m. Since Σ≤m is a finite set, we will treat it as an alphabet.

Now let wdo : Σ∗ → (Σ≤m)∗ be defined as follows. Let u ∈ Σ∗. If |u| < m, then

let wdo(u) = u (that is, u on the right-hand side is considered as a letter in Σ≤m).

If |u| ≥ m, then let wdo(u) = subw(u, 1,m) · · · subw(u, |u| − m + 1,m) (again,

subw(u, i,m) (i ∈ [1, |u| − m + 1]) is considered as a letter in Σ≤m). The name

wdo comes from the word window, since for a word u, wdo(u) is that word whose

letters are determined by moving a window of length m on u from left to right.

The intuition behind the definition of wdo is the following: if wdo(α) ≤s wdo(β),

then every m-subword of α has to be an m-subword of β too. On the other hand

wdo(α) ≤s wdo(β) still does not imply α  m β (see, for example, the first item

in Example 4). Thus we will use the following function p before applying wdo on

the sentential forms of G. Let Σ be an alphabet and denote by Σ̂ the alphabet

{a(i) | a ∈ Σ, i ∈ [m]}. Now let p : Σ∗ → Σ̂∗ be defined as follows. For a word
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u = a1 · · · ak ∈ Σ∗ (ai ∈ Σ, i ∈ [k]), let p(u) = a
(1 mod m′)
1 · · · a(k mod m′)

k , where

m′ = m−1. Intuitively, p associates the number i mod m′ to the ith letter of u (we

put this number in parentheses in order not to confuse it with the usual notation

of the iteration of a letter). We will see in the proof of the next lemma that for two

sentential forms α and β of G, wdo(p(α)) ≤s wdo(p(β)) implies α m β.

Lemma 12. Let G = (V,Σ, R, S) be a pgSCG and m ≥ 1. Then there is M ∈ N
such that the following holds. For every derivation α0 ⇒ α1 ⇒ · · · ⇒ αn of G with

n ≥M , there are i < j in [M ] such that αi  m αj.

Proof. Let ρ = max{|rhs(r)| | r ∈ R} and consider the sequence n1, n2, . . . where

ni = iρ (i ≥ 1). Let moreover M be the number given in Proposition 11 and

α0 ⇒ α1 ⇒ · · · ⇒ αn be a derivation of G with n ≥M . Clearly, |wdo(p(αi))| ≤ ni,
for every i ∈ [n]. Then, by Proposition 11, there are numbers i < j in [M ] such

that wdo(p(αi)) ≤s wdo(p(αj)). We show that αi  m αj . To simplify the notation,

let us denote wdo(p(αi)) and wdo(p(αj)) by u and v, respectively. If |u| = 1, then

|αi| ≤ m and αi is a subword of αj . In this case αi  m αj trivially holds. Assume

now that |u| ≥ 2, and let k = |u| and l = |v|. Since u is a scattered subword of

v, there are i1 < · · · < ik in pos(v) such that u = subw(v, i1, 1) · · · subw(v, ik, 1).

Then let g : [k]→ [l] be a strictly increasing function defined as g(ν) = iν (ν ∈ [k]).

Notice that k = |αi| −m + 1. Let moreover f : pos(αj) → pos(αi) be a (partial)

function defined as f(g(ν) + κ) = ν + κ (ν ∈ [k], κ ∈ [0,m − 1]). To see that g is

an m-embedding of αi to αj it is enough to show that f is letter preserving and

well-defined.

Let ν ∈ [k]. Using the definition of wdo we get that subw(p(αi), ν,m) =

subw(p(αj), g(ν),m) and in turn subw(αi, ν,m) = subw(αj , g(ν),m). Thus f is

letter preserving. Now, let ν ∈ [k − 1]. Using again the definition of wdo we

get that subw(p(αi), ν,m) = subw(p(αj), g(ν),m) and subw(p(αi), ν + 1,m) =

subw(p(αj), g(ν + 1),m). Thus, the upper index added by p to the first letter of

subw(αi, ν,m) should match that of subw(αj , g(ν),m). Similar observation holds

for the words subw(αi, ν+ 1,m) and subw(αj , g(ν+ 1),m). This implies that either

g(ν + 1) − g(ν) = 1 or g(ν + 1) − g(ν) ≥ m should hold. It is easy to see that in

both cases the definition of f is consistent. Therefore g is an m-embedding of αi to

αj .

Now we are ready to prove our pumping lemma.

Lemma 13. Let G = (V,Σ, R, S) be a pgSCG, m = 2 ·maxpw(G) and assume that

m ≥ 1. Then there is a number K such that for every word w ∈ L(G) with |w| ≥ K,

there is a word w′ ∈ L(G) with |w| < |w′| ≤ (m+ 1)|w|.

Proof. Let N = max{|rhs(r)| | r ∈ R} and M be the number given by Lemma 12.

Let K = MN and consider a word w ∈ L(G) with |w| ≥ K. We give a word w′

satisfying the conditions of the lemma. Let der : S = α0 ⇒ α1 ⇒ · · · ⇒ αn = w be



December 15, 2017 21:31 WSPC/INSTRUCTION FILE
permittingSCG˙IJFCS6

15

one of the shortest derivations of G from S to w. Clearly n ≥M . Thus, by Lemma

12, there are i < j in [M ] such that αi  m αj (remember, m = 2 ·maxpw(G)). We

can assume that |αi| < |αj |. Indeed, assume on the contrary that this is not the

case. Then, since G has no erasing rules, |αi| = |αj |. This, using (ii) of Proposition

5, implies that αi = αj . This yields that der′ : α0 ⇒ · · · ⇒ αi ⇒ αj+1 ⇒ · · · ⇒ αn
is also a derivation of G from S to w with |der′| < n. However this contradicts the

assumption that der is a shortest derivation from S to w. Applying Lemma 9 with

the parameters α = αi, β = αj , γ = w and γ′ = w′, we get that there is a word

w′ ∈ Σ∗ such that αi ⇒∗ w′ and |w| < |w′| ≤ (m + 1)|w|. Since S ⇒∗ αi, also

S ⇒∗ w′ holds. Consequently, w′ ∈ L(G).

Theorem 14. L(pgSCG) ( L(CS).

Proof. By [17] L(pgSCG) ⊆ L(CS). Thus, since L = {a22n | n ≥ 0} is clearly

included in L(CS), it is enough to show that L 6∈ L(pgSCG). Assume on the contrary

that L ∈ L(pgSCG) and let G be a pgSCG with L(G) = L. Let moreover m =

2 · maxpw(G). Since L is not a context-free language, we can assume that m ≥ 1.

Then let K be the number of Lemma 13 and let k ≥ K be such that 22k > m+ 1.

Now we put w = a22k

. Clearly w ∈ L(G) and it is easy to see that |w| ≥ K. Thus,

by Lemma 13, there is a word w′ ∈ L such that |w| < |w′| ≤ (m+ 1)|w|.
Clearly, the shortest word v ∈ L with |w| < |v| is a22k+1

. On the other hand,

|w′| ≤ (m + 1)22k < 22k · 22k = 22k+1

= |v|. Hence |w′| < |v| which implies that

w′ 6∈ L. This is a contradiction proving that L 6∈ L(pgSCG).

Using Lemma 13 we can also show that for every i ≥ 1, there is a language L in

L(fRCG) such that L 6∈ L(pgSCGi).

Theorem 15. For every i ≥ 1, L(fRCG) \ L(pgSCGi) 6= ∅.

Proof. Let i ≥ 1 and consider the language L = {a(2i+2)n | n ≥ 1}. It is easy

to see that replacing r1 in Example 2 by S → A2i+2 we get an fRCG generating

L. We show that L 6∈ L(pgSCGi). Assume on the contrary that L ∈ L(pgSCGi)

and let G = (V,Σ, R, S) be a pgSCG and m = 2 · maxpw(G). Let moreover K be

the number of Lemma 13 and consider w = a(2i+2)K . Then w ∈ L and thus, by

Lemma 13, there is a word w′ ∈ L with |w| < |w′| ≤ (m+ 1)|w| ≤ (2i+ 1)(2i+ 2)K .

On the other hand, the shortest word v ∈ L with |v| > |w| is a(2i+2)K+1

. Now

|w′| ≤ (2i + 1) · (2i + 2)K < (2i + 2) · (2i + 2)K = (2i + 2)K+1 = |v|. This is a

contradiction, thus L 6∈ L(pgSCGi). Hence L(fRCG) \ L(pgSCGi) 6= ∅.

4. Conclusions

In this paper we investigated permitting semi-conditional grammars introduced by

Kelemen [13], however we considered them in a more general form: every rule of
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these grammars is associated with a set of words rather than a word. Then such a

rule is applicable to a sentential form only if every word in the associated set is a

subword of the sentential form. We solved a long lasting open question about the

computational power of these grammars by showing that they are strictly weaker

than context-sensitive grammars when erasing rules are not allowed. However, there

are some interesting questions concerning these grammars that remained open. For

example:

(i) Are permitting semi-conditional grammars strictly weaker than CS grammars

if erasing rules are allowed?

(ii) Are the inclusions L(pgSCGi) ⊆ L(pgSCGi+1) (i ≥ 1) proper?

(iii) Is the inclusion L(pRCG) ⊆ L(pgSCG) proper?

(iv) Are the classes L(pgSCG) and L(fRCG) comparable?

Concerning (i), in [21] it was shown that allowing erasing rules does not increase

the generative power of permitting random context grammars. We suspect that this

might be the case for pgSCGs too. Concerning (iv), we think that the mentioned

classes are incomparable. If it was possible, for example, to simulate pgSCGs with

fRCGs, then fRCGs, on the one hand, could employ forbidding contexts, on the

other hand they would have the ability of simulating the presence of permitting

contexts. We think that this would imply that fRCGs can simulate RCGs. But

we know that fRCGs are strictly weaker than RCGs [5]. A similar argumentation

applies if we assume that pgSCGs can simulate fRCGs.
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