Cucurbalsaminones A–C, Rearranged Triterpenoids with a 5/6/3/6/5-Fused Pentacyclic Carbon Skeleton from *Momordica balsamina* as Multidrug Resistance Reversers

Andreia Mónico,[†] Cátia Ramalhete,^{†, ‡} Vânia André,[§] Gabriella Spengler,[⊥] Silva Mulhovo,[†] M. Teresa Duarte,[§] and Maria-José U. Ferreira^{*,†}

[†] Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal

[‡] ATLÂNTICA – Escola Universitária de Ciências Empresariais, Saúde, Tecnologias e

Engenharia, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Oeiras, Portugal

[§] Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av.

Rovisco Pais, 1049-001 Lisbon, Portugal

¹ Department of Medical Microbiology and Immunobiology, Faculty of Medicine,
 University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary

¹ Centro de Estudos Moçambicanos e de Etnociências, Faculdade de Ciências e Matemática, Universidade Pedagógica, 21402161 Maputo, Mozambique

X-ray Crystallography

Formula	$C_{27}H_{40}O_3$		
Fw	412.59		
Crystal form, color	Block, colourless		
Crystal size (mm)	0.20×0.10×0.04		
cryst. syst.	Orthorhombic		
space group	$P2_{1}2_{1}2_{1}$		
<i>a</i> , Å	6.1959(4)		
b, Å	14.0177(8)		
<i>c</i> , Å	26.2372(16)		
Ζ	4		
$V, \text{\AA}^3$	2278.8(2)		
<i>Т</i> , К	150(2)		
$D_{\rm c}$, g cm ⁻³	1.203		
μ (Mo K α), mm ⁻¹	0.076		
θ range (°)	2.745-26.436		
refl. Collected	26968		
independent refl.	4682		
$R_{ m int}$	0.0813		
R_1^{a} , wR_2^{b} $[I \ge 2\sigma(I)]$	0.0496, 0.1140		
GOF on F^2	1.013		

 Table S1. Crystal data and structure refinement details for 1 (CCDC 1878164).

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$

O(2)-C(7)	1.214(4)	C(12)-C(13)-C(18)	110.1(2)	C(3)-C(5)-C(4)	119.9(3)
O(3)-C(23)	1.194(4)	C(12)-C(13)-C(17)	117.5(2)	C(6)-C(5)-C(4)	59.2(2)
C(13)-C(12)	1.524(4)	C(18)-C(13)-C(17)	108.1(2)	C(10)-C(5)-C(4)	123.3(3)
C(13)-C(18)	1.544(4)	C(12)-C(13)-C(14)	107.1(2)	C(19)-C(9)-C(11)	106.8(2)
C(13)-C(17)	1.558(4)	C(18)-C(13)-C(14)	112.2(2)	C(19)-C(9)-C(10)	108.6(2)
C(13)-C(14)	1.571(4)	C(17)-C(13)-C(14)	101.6(2)	C(11)-C(9)-C(10)	109.7(3)
C(8)-C(7)	1.532(4)	C(7)-C(8)-C(14)	111.6(2)	C(19)-C(9)-C(8)	106.9(3)
C(8)-C(14)	1.560(4)	C(7)-C(8)-C(9)	114.5(2)	C(11)-C(9)-C(8)	113.2(2)
C(8)-C(9)	1.584(4)	C(14)-C(8)-C(9)	117.1(2)	C(10)-C(9)-C(8)	111.5(2)
C(17)-C(20)	1.534(4)	C(20)-C(17)-C(13)	119.5(2)	O(3)-C(23)-C(24)	121.5(3)
C(17)-C(16)	1.571(4)	C(20)-C(17)-C(16)	112.0(2)	O(3)-C(23)-C(22)	121.8(3)
C(20)-C(21)	1.521(4)	C(13)-C(17)-C(16)	102.7(2)	C(24)-C(23)-C(22)	116.6(3)
C(20)-C(22)	1.535(4)	C(21)-C(20)-C(17)	114.3(2)	C(15)-C(16)-C(17)	107.5(2)
C(7)-C(6)	1.493(4)	C(21)-C(20)-C(22)	108.5(3)	C(2)-C(1)-C(10)	107.6(3)
C(10)-C(5)	1.522(4)	C(17)-C(20)-C(22)	108.3(2)	C(14)-C(15)-C(16)	103.9(2)
C(10)-C(1)	1.558(4)	O(2)-C(7)-C(6)	118.2(3)	C(12)-C(11)-C(9)	118.9(2)
C(10)-C(9)	1.565(4)	O(2)-C(7)-C(8)	120.8(3)	C(23)-C(22)-C(20)	114.6(3)
C(12)-C(11)	1.528(4)	C(6)-C(7)-C(8)	120.8(3)	C(3)-C(2)-C(1)	106.1(3)
C(6)-C(5)	1.506(4)	C(5)-C(10)-C(1)	102.9(2)	O(1)-C(3)-C(5)	126.1(3)
C(6)-C(4)	1.508(4)	C(5)-C(10)-C(9)	110.9(3)	O(1)-C(3)-C(2)	125.1(3)
C(14)-C(30)	1.536(4)	C(1)-C(10)-C(9)	115.3(2)	C(5)-C(3)-C(2)	108.8(3)
C(14)-C(15)	1.537(4)	C(13)-C(12)-C(11)	110.9(3)	C(29)-C(4)-C(6)	122.8(3)
C(5)-C(3)	1.486(4)	C(7)-C(6)-C(5)	118.4(3)	C(29)-C(4)-C(28)	111.8(3)
C(5)-C(4)	1.548(4)	C(7)-C(6)-C(4)	124.3(3)	C(6)-C(4)-C(28)	115.1(3)
C(9)-C(19)	1.543(4)	C(5)-C(6)-C(4)	61.8(2)	C(29)-C(4)-C(5)	120.2(3)
C(9)-C(11)	1.557(4)	C(30)-C(14)-C(15)	106.7(2)	C(6)-C(4)-C(5)	59.0(2)
C(23)-C(24)	1.494(5)	C(30)-C(14)-C(8)	110.2(2)	C(28)-C(4)-C(5)	118.7(3)
C(23)-C(22)	1.504(5)	C(15)-C(14)-C(8)	116.0(2)		
C(16)-C(15)	1.543(5)	C(30)-C(14)-C(13)	112.8(2)		
C(1)-C(2)	1.537(5)	C(15)-C(14)-C(13)	101.2(2)		
O(1)-C(3)	1.211(4)	C(8)-C(14)-C(13)	109.9(2)		
C(2)-C(3)	1.501(5)	C(3)-C(5)-C(6)	120.2(3)		
C(28)-C(4)	1.519(4)	C(3)-C(5)-C(10)	108.9(3)		
C(29)-C(4)	1.507(5)	C(6)-C(5)-C(10)	117.9(2)		

 Table S2. Bond lengths [Å] and angles [°] for compound 1.

compound	$PAR^{a} ID_{50} (\mu M)$	$MDR^{a} ID_{50} (\mu M)$
cucurbalsaminone A (1)	72.2 ± 1.3	68.3 ± 2.1
cucurbalsaminone B (2)	> 100	> 100
cucurbalsaminone C (3)	20.7 ± 2.7	37.6 ± 3.9

Table S3. Antiproliferative activity of compounds **1** - **3** on *ABCB1*-transfected mouse T-lymphoma (L5178Y) cells.

^{*a*} Values represent the mean \pm SD of three independent experiments

HRMS, IR and NMR spectra of compounds 1-3

Figure S1. HRMS of compound 1.

Figure S2. IR of compound 1.

Figure S3. ¹H-NMR spectrum of compound **1**, in CDCl₃ (300 MHz).

Figure S4. ¹³C-NMR spectrum of compound 1, in CDCl₃ (75 MHz).

Figure S5. DEPT spectrum of compound 1 in CDCl₃ (75 MHz).

Figure S6. COSY spectrum of compound 1 in CDCl₃.

Figure S7. HMQC spectrum of compound 1 in CDCl₃.

Figure S8. HMBC spectrum of compound 1 in CDCl₃

Figure S9. NOESY spectrum of compound 1 in CDCl₃.

Figure S10. HRMS of compound 2.

Figure S11. IR of compound 2.

Figure S12. ¹H-NMR spectrum of compound 2 in CDCl₃ (300 MHz)..

Figure S13. ¹³C-NMR spectrum of compound 2 in CDCl₃ (75 MHz).

Figure S14. DEPT spectrum of compound 2 in CDCl₃ (75 MHz).

Figure S15. COSY spectrum of compound 2 in CDCl₃.

Figure S16. HMQC spectrum of compound 2 in CDCl₃.

Figure S17. HMBC spectrum of compound 2 in CDCl₃.

Figure S18. NOESY spectrum of compound 2 in CDCl₃.

Figure S19. HRMS of compound 3.

🕀 SHIMADZU

Figure S20. HRMS of compound 3.

Figure S21 ¹H-NMR spectrum of compound 3 in CDCl₃ (300 MHz)..

Figure S22. ¹³C-NMR spectrum of compound 3 in CDCl₃ (75 MHz).

Figure S23. DEPT spectrum of compound 3 in CDCl₃ (75 MHz)

Figure S24. COSY spectrum of compound 3 in CDCl₃.

Figure S25. HMQC spectrum of compound 3 in CDCl₃.

Figure S26. HMBC spectrum of compound 3 in $CDCl_3$