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Kellie Fecteau1 and Luca Giori1,*

1Biomedical and Diagnostic Sciences Dept., University of Tennessee—College of Veterinary
Medicine—Knoxville, Knoxville, TN, United States of America

2Office of Information and Technology, University of Tennessee—Knoxville, Knoxville, TN, United States of
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*These authors contributed equally to this work.

ABSTRACT
Background. Stress anddiseases such as endotoxemia induce cortisol synthesis through
a complex biosynthetic pathway involving intermediates (progesterone, and 17α-
hydroxyprogesterone (17α-OHP)) and suppression of the hypothalamus-pituitary-
thyroid axis.
Objective. Tomeasure plasma concentrations of cortisol, progesterone, 17α-OHP, and
thyroid stimulating hormone (TSH) in dogs experimentally injected with intravenous
low-dose lipopolysaccharide (LPS). Our hypothesis was that LPS treatment would elicit
a significant increase in cortisol and its precursors, and a significant decrease in TSH
concentration.
Methods. Hormone measurements were performed on blood samples left over from
a previous investigation (2011) on the effect of low-dose LPS on hematological
measurands. Five sexually intact female dogs, none in estrous at the time of the
study, were administered saline treatment two weeks prior to LPS treatment. LPS was
administered intravenously at a dose of 0.1 µg/kg. Blood was collected before (baseline,
time -24 hours) and 3-, 6- and 24-hours post-injection. Mixed model analysis for
repeated measures was used, with both treatment and time as the repeated factors.
Ranked transformation were applied when diagnostic analysis exhibited violation
of normality and equal variance assumptions. Post hoc multiple comparisons were
performed with Tukey’s adjustment. Statistical significance was defined as p< 0.05.
Results. Significant differences relative to baseline values were detected following both
treatments. Compared to baseline, dogs had significantly higher cortisol and 17α-OHP
at 3-hours, and significantly lower TSH at 3- and 6-hours following LPS treatment.
Dogs had significantly lower TSH at 6- and 24- following saline treatment. Though not
statistically significant, the trend in progesterone concentrations was similar to cortisol
and 17α-OHP, with an increase at 3-hours post-injection followed by a decrease close
to baseline following both LPS and saline. Cortisol and 17α-OHP concentrations were
higher after LPS treatment than after saline treatment at 3- and 6-hours post-injection,
but differences were not statistically significant, and no significant differences between
treatments were detected for any other hormone or timepoint.
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Discussion and conclusion. Cortisol and its adrenal precursors are released in the
bloodstream following a low dose of LPS, while TSH appears to decrease. Similar
changes occurred following saline treatment, suggesting that even routine handling and
saline injection in conditioneddogs can elicit alterations in the internal equilibriumwith
subsequent modification of both hypothalamus-pituitary-adrenal and thyroid axes.
Changes to adrenal and thyroid hormone concentrations must be interpreted in light
of clinical information. Further studies are needed to elucidate mechanisms of adrenal
steroidal hormone synthesis and secretion in response to various stressful stimuli in
both neutered and intact animals.

Subjects Veterinary Medicine, Diabetes and Endocrinology
Keywords Adrenocorticosteroids, LPS, Canine, Thyroid-stimulating-hormone

INTRODUCTION
Endotoxin, a toxic heat-stable lipopolysaccharide (LPS) substance present in the outer
membrane of gram-negative bacteria is a potent proinflammatory agent that commonly
exerts pathologic, potentially life-threatening effects on humans and animals with naturally-
occurring disease (Moran, Prendergast & Appelmelk, 1996; Roach et al., 2005; Munford,
2008). Experimental administration of LPS is used to study the pathophysiology of sepsis
(Hardaway, 2000; Flatland et al., 2011; Holowaychuk et al., 2012; Yu, Kim & Park, 2012;
Lee et al., 2013). Ample evidence supports the interconnectedness of inflammatory and
hormonal pathways. Sepsis and endotoxemia elicit strong and prolonged activation of
both the hypothalamus-pituitary adrenal and thyroid axes (Kondo et al., 1997b; Beishuizen
& Thijs, 2003; Kanczkowski et al., 2015). Effects of cortisol and other adrenocorticosteroids
on the immune and nervous systems have been described in humans and several animal
species (Meij et al., 1997; Folan et al., 2001; Lisurek & Bernhardt, 2004; Ammersbach et al.,
2006; Feng et al., 2014; Kanczkowski et al., 2015; Dembek et al., 2017). In vivo and in vitro
evidence support a bidirectional relationship between the hypothalamus-pituitary-adrenal-
axis (HPA axis) and the immune system: tissue or cellular damage stimulates macrophages
and lymphocytes to release inflammatory cytokines (such as IL-1, IL-6 and TNF α)
that promote hypothalamic and pituitary secretion of CRH and ACTH, respectively,
which increase plasma steroid concentrations. In turn, the increased adrenal corticosteroid
response has inhibitory effects on the production and action of these immune inflammatory
mediators, indicating the existence of a feedback loop, where immuno-regulatory cytokines,
and adrenal hormones act as afferent and efferent hormonal signals, respectively (Meil
& Mol, 2008). Systemic inflammation causes down-regulation of thyrotropin-releasing
hormone (TRH), leading to lowered secretion of thyroid stimulating hormone (TSH),
total T4 and T3 (Yu, Kemppainen & MacDonald, 1998; Straub, 2014). Increased cortisol
from activation of the HPA axis can also impact thyroid function and thyroid hormone
metabolism, affecting both the hypothalamic and pituitary release of stimulating factors and
decreasing the deiodination of thyroxine (T4) into themetabolically active triiodothyronine
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(T3) in peripheral tissues (Peterson et al., 1984; Ferguson & Peterson, 1992;Meij et al., 1997;
Daminet & Ferguson, 2003).

To the authors’ knowledge, there have been no previous investigations of the effects of
experimental LPS administration on plasma adrenocorticosteroids or TSH concentrations
in dogs. The objective of the present study was to investigate the effects of intravenous
(IV) low-dose (0.1 µg/kg) LPS administration on plasma concentration of cortisol, its
precursors (progesterone, 17α-OHP), and TSH, in dogs. We hypothesized that low-
dose LPS administration would result in increased concentration of plasma cortisol,
progesterone, and 17α-OHP, and decreased plasma concentration of TSH.

MATERIALS AND METHODS
Study design and sample collection and banking
This study used samples remaining from an earlier investigation in canines administered
low-dose LPS (Flatland et al., 2011). Study design and methodology are described in detail
elsewhere (Flatland et al., 2011). Briefly, five sexually intact female dogs, none in estrous
at the time of the study, were injected intravenously with physiologic saline and, after
a two-week washout period, with LPS (0.1 µg/kg IV). All dogs received subcutaneous
crystalloid fluids (20 mL/kg) prior to treatment (saline and LPS). Blood samples were
collected into EDTA tubes 24 h before (baseline) and at 3-, 6- and 24-hours after both
treatments. Hematological analyses were performed within 30 min of blood collection.
The remaining blood from each sample was centrifuged at 700× g for 10 min (Sero-Fuge
centrifuge; Becton, Dickinson and Co, Franklin Lakes, NJ, USA), and plasma was separated
and stored in sterile microcentrifuge tubes at −80 ◦C until use in 2017.

Hormone measurements
Hormone assays were performed in the Clinical Endocrinology Laboratory at theUniversity
of Tennessee College of Veterinary Medicine. Frozen plasma from the earlier study
was thawed by removing specimens from the −80 ◦C freezer and allowing them to
equilibrate with room temperature. Cortisol, progesterone, and TSHweremeasured using a
chemiluminescence immunoassay system (Immulite 1000; Siemens Healthcare Diagnostics
Products Ltd., Los Angeles, CA, USA) and specific reagent kits for each hormone (Cortisol:
LKCO1 kit; Progesterone: LKPG kit; TSH: Canine TK9 kit; Siemens Healthcare Diagnostics
Products Ltd., Los Angeles, CA, USA). 17α-OHP measurement was performed by
radioimmunoassay (RIA) using commercial reagent antibody (ImmuChemTM Double
Antibody 17-Hydroxyprogesterone kit; MP Biomedicals, LLC, Orangeburg, NY, USA).
The radioactivity of the supernatant was measured using a gamma counter (Packard
Cobra II Auto-Gamma, Packard Instrument Company, Meridian, CT, USA)). Cortisol,
progesterone, and TSH concentrations were measured once (Immulite) while 17α-OHP
concentrations were measured in duplicate (RIA). The Immulite analyzer routinely
performs 12 replicate measurements for each sample and reports the results as mean of
the ten readings, after excluding the lowest and highest values. Hormone analyses were
performed on completely thawed samples, all in one day. All hormone measurements were
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performed in accordance with the manufacturer’s instructions by personnel trained in use
of the instruments and test kits.

Data analysis
The effects of treatment and time on response variables (cortisol, progesterone, 17α-OHP,
and TSH) were analyzed respectively using mixed model analysis for repeated measures
with the experiment unit ID as the random effect while both treatment and time as the fixed
factors. Mixed model analysis was adopted in current analysis because both random effect
(subject) and fixed effects (treatment and time) are involved in the experimental design.
Ranked transformation were applied on each response variable because diagnostic analysis
for Shapiro–Wilk test and Levene’s test on residuals exhibited violation of normality and
equal variance assumptions. Post hoc multiple comparisons were performed with Tukey’s
adjustment. Statistical significance was identified at the level of 0.05. All analyses were
conducted in SAS 9.4 TS1M4 (SAS institute Inc., Cary, NC, USA). Data were presented
as mean ± standard error. Statistical comparisons made were results at 3, 6, and 24 h,
respectively, vs. baseline following each treatment (saline vs. LPS). Results following each
treatment at each timepoint were also compared to each other (baseline saline vs. baseline
LPS, 3- hour saline vs. 3-hour LPS, etc.). Data at each timepoint included results from
all 5 dogs, except for 24-hours. At 24 h, results included data from only 4 dogs, because
one sample from dog 2 (after saline treatment) and one sample from dog 3 (after LPS
treatment) were unavailable for testing.

RESULTS
Cortisol
Raw data are given in Table 1 and depicted in Fig. 1. Mean for cortisol concentrations in all
animals following both treatments at each time point are listed in Table 2. Following LPS
treatment, plasma cortisol concentration was significantly increased at 3 h post injection
versus baseline. No significant differences were observed at 6- or 24-hours versus the
baseline concentration. Following saline treatment, significant difference was not observed
for any time points versus baseline. When data for each treatment were compared, a
significant difference was detected only at 6-hours post-injection. No significant differences
for LPS vs. saline were observed at any other timepoint (baseline, 3- and 24-hours).

Progesterone
Raw data are given in Table 1 and depicted in Fig. 2. Mean progesterone concentrations in
all animals following both treatments at each time point are listed in Table 2. Progesterone
concentrations from dog 1 were excluded from analysis because these were above
institutional reference intervals calculated using data from a group of healthy intact
female in anestrus. Although changes were observed, particularly at 3-hours post-injection,
no changes were statistically significant between treatments at the same time points nor
between any time point and baseline concentrations for each treatment.
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Table 1 Hormone concentrations in five dogs treated IV with saline or low-dose LPS.

SALINE LPS

Collection
time (hours)

Cortisol
µg/dL

Progesterone
ng/mL

17α-OHP
ng/mL

TSH
ng/mL

Cortisol
µg/dL

Progesterone
ng/mL

17α-OHP
ng/mL

TSH
ng/mL

baseline 2.9 36.7 3.31 0.14 3.5 25.4 3.01 0.12
3 1.7 32.5 3.42 0.12 17.0 15.2 9.57 0.04
6 1.2 29.4 2.99 0.1 4.3 10.5 3.56 <0.03

Dog
1

24 1.1 31.6 2.75 QNS 1.9 13.4 2.23 0.07
baseline 1.2 <0.20 0.08 0.21 1.3 0.52 0.22 0.07
3 8.6 0.33 0.46 0.13 16.5 3.49 3.69 <0.03
6 1.0 <0.20 0.12 0.04 2.7 0.68 0.65 <0.03

Dog
2

24 NA NA NA NA 1.2 0.39 0.42 <0.03
baseline 1.2 3.57 0.86 0.07 1.6 <0.20 <0.08 0.14
3 15.9 6.35 4.7 0.04 16.0 1.33 1.46 0.04
6 1.3 3.49 1.06 <0.03 11.4 0.65 0.65 0.06

Dog
3

24 1.4 3.13 1.56 <0.03 NA NA NA NA
baseline 2.2 0.95 0.29 0.09 1.4 0.58 0.19 0.12
3 25.5 6.08 4.33 0.03 25.8 4.99 5.5 <0.03
6 3.4 1.24 0.65 <0.03 5.5 0.67 0.9 <0.03

Dog
4

24 1.4 0.82 0.68 0.04 1.9 0.66 0.58 0.04
baseline 1.5 <0.20 0.91 0.18 3.1 <0.20 1.13 0.15
3 1.9 <0.20 1.41 0.08 18.7 4.69 8.56 0.05
6 2.2 <0.20 0.97 0.07 13.2 2.13 5.4 0.03

Dog
5

24 <1.0 <0.20 0.66 0.05 4.1 <0.20 1.31 0.04

Notes.
QNS, Quantity not sufficient; NA, Not applicable.
Dark gray-shaded represent excluded data.

17α-OHP
Raw data are given in Table 1 and depicted in Fig. 3. Mean for 17α-OHP concentrations
in all animals following both treatments at each time point are listed in Table 2. Similar
to cortisol, following LPS treatment, plasma 17α-OHP concentration was significantly
increased only at 3 h post injection versus baseline. No significant differences were observed
at 6- and 24-hours versus baseline concentration. Following saline treatment, significant
difference was not observed for any time points versus baseline. No significant differences
were observed for LPS vs. saline at the same time points (baseline, 3-, 6- and 24-hours).

TSH
Raw data are given in Table 1 and depicted in Fig. 4. Mean for TSH concentrations in
all animals following both treatments at each time point are listed in Table 2. After LPS
treatment, plasma TSH concentration was significantly decreased both at 3- and 6-hours
post injection versus baseline. No significant differences were observed at 24-hours
versus baseline concentration. After saline treatment, TSH concentration was significantly
decreased both at 6- and 24-hours post injection versus baseline. No significant differences

Corder-Ramos et al. (2019), PeerJ, DOI 10.7717/peerj.7468 5/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.7468


Figure 1 Mean plasma cortisol concentrations in five dogs pre-treatment (baseline), at 3-, 6- and 24-
hours post-injection with saline and LPS. The institutional reference interval for canine cortisol (based
on n= 95 clinically healthy dogs of varying breeds) is represented by the shaded grey area from < 1.0–6.0
µg/dL. �P < 0.05 for between group differences; *P < 0.05 versus time 0 within LPS group.

Full-size DOI: 10.7717/peerj.7468/fig-1

were observed at 3-hours versus baseline concentration. No significant differences were
observed for LPS vs. saline at the same time points (baseline, 3-, 6- and 24-hours).

DISCUSSION
LPS is an important inflammatory stimulus. The LPS molecule itself is capable of inducing
a septic response upon sufficient exposure (Munford, 2016). Restoration of internal
equilibrium after endotoxemia occurs through many mechanisms, including activation
of the HPA axis by neuroendocrine and immune mechanisms (Cavaillon, 1990; Elenkov
et al., 1992; Grinevich et al., 2001; Webster, 2004). Briefly, endotoxemia induces an acute
phase response that involves activation of signaling cascades leading to release of pro-
inflammatory cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor
necrosis factor- α (TNF- α) (Perlstein et al., 1993; Tracey, 2002; Beishuizen & Thijs, 2003).
Circulating cytokines affect neuronal signaling in the HPA axis, resulting in the production
of glucocorticoids, which in turnproduce anti-inflammatory effects that restore equilibrium
(Sternberg, 2006).

In this investigation, cortisol and progestin (progesterone and 17α-OHP) concentrations
were above institutional reference intervals at 3-hours post-injection after both saline LPS
treatments. Production of cortisol from cholesterol occurs through a complex biosynthetic
pathway involving various precursors, including intermediates such as progesterone, and
17α-hydroxyprogesterone (17α-OHP) which are released in the bloodstream together
with the main glucocorticoid (Lisurek & Bernhardt, 2004; Mullington, 2009). Therefore, a
significant increase in progesterone and 17α-OHP at 3-hours was expected following LPS
treatment. However, a boost in cortisol, progesterone, and 17α-OHP concentrations was
also observed following saline treatment, suggesting that restraint and/or saline injection
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Table 2 Descriptive statistic for all hormones at each time point in all dogs from saline and LPS
groups.

Measure Treatment n obs. Time Mean

5 baseline 2.18
5 3 18.80*

5 6 7.42�
LPS

4 24 2.28
5 baseline 1.80
5 3 10.72
5 6 1.82

Cortisol

SALINE

4 24 1.23
4 baseline 0.38
4 3 3.63
4 6 1.03

LPS

3 24 0.42
4 baseline 1.23
4 3 3.24
4 6 1.28

Progesterone

SALINE

3 24 1.38
5 baseline 0.93
5 3 5.76*

5 6 2.23
LPS

4 24 1.14
5 baseline 1.09
5 3 2.86
5 6 1.16

17αOHP

SALINE

4 24 1.41
5 baseline 0.12
5 3 0.04*

5 6 0.04*
LPS

4 24 0.05
5 baseline 0.14
5 3 0.08
5 6 0.05*

TSH

SALINE

3 24 0.04*

Notes.
*P < 0.05 versus time 0 within each group.
�P < 0.5 for between group differences.

elicited a cortisol based physiologic stress response in some dogs. Two of the five dogs
did not show any changes compatible with activation of the HPA axis after injection of
saline at any time point, while the other three showed elevations of cortisol and progestins
ranging between 7- and 12-fold above baseline concentrations, mimicking, in at least
two animals (dogs 3 and 4) their responses to LPS. These dogs were part of a research
kennel and were conditioned to being handled for research projects. Nevertheless, these
results suggest that a simple manipulation pre-experiment or the injection of a placebo
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Figure 2 Mean plasma progesterone concentrations from 4 dogs pre-treatment (baseline), at 3-, 6-,
and 24-hours post-injection with saline and LPS. Data from one dog suspected to be in diestrus were ex-
cluded (see discussion for detail). The institutional reference interval for canine progesterone (based on
n= 20 clinically healthy intact female in anestrus of varying breeds) is represented by the shaded grey area
from< 0.20 –2.16 ng/mL.

Full-size DOI: 10.7717/peerj.7468/fig-2

Figure 3 Mean plasma 17 α-OHP concentrations from five dogs pre-treatment (baseline), at 3-, 6-,
and 24-hours post-injection with saline and LPS. The institutional reference interval for canine 17 α-
OHP (based on n= 20 clinically healthy intact female in anestrus of varying breeds) is represented by the
shaded grey area from 0.08–0.69 ng/mL. *P < 0.05 versus time 0 within LPS group.

Full-size DOI: 10.7717/peerj.7468/fig-3

substance can perturb body homeostasis and activate the HPA axis in some individuals.
Implications are that apparently theoretically non-stressful events such as routine handling
and placebo injections can impact physiology, an important consideration when studying
adrenal hormones and stress. As for clinical settings, changes to adrenal hormones must be
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Figure 4 Mean plasma TSH concentrations from five dogs pre-treatment (baseline), at 3-, 6-, and 24-
hours post-injection with saline and LPS. The institutional reference interval for canine TSH (based on
n = 50 clinically healthy dogs of varying breeds) is represented by the shaded grey area from 0.04–0.38
ng/mL. *P < 0.05 versus time 0 within each group.

Full-size DOI: 10.7717/peerj.7468/fig-4

interpreted in light of anamnesis, clinical signs, other clinico-pathological abnormalities,
previous diagnostic tests, and prevalence of disease (i.e., for infectious diseases) (Akobeng,
2007; Sikkens et al., 2016).

The observed inverse relationship between cortisol and TSH concentrations is expected
and can be explained by the fact that LPS affects the HPT axis by decreasing thyroid and
thyrotropin stimulating hormones, and downregulating thyroid receptors on target tissues
(Van der Poll et al., 1999; Beigneux et al., 2003). Cortisol has been shown to exhibit negative
feedback on the HPT axis at the level of the hypothalamus, producing a significant decrease
in TSH (Nicoloff, Fisher & Appleman, 1970). In our study, a 70% decrease from baseline
concentration was observed in TSH 3-hours post-injection with LPS, in association with
the peak increase in cortisol at the same time point. TSH concentrations were close to the
lower reference limit both at 6- and 24-hours after injection. A similar trend was observed
following saline administration, with a significant decrease in TSH at 6- and 24-hours
post-injection. Although decreased TSH concentration following LPS administration is
most likely due to the aforementioned endotoxin effect on the hypothalamus and thyroxin
receptors, findings after saline administration suggest that cortisol and progestins alone
could affect TSH synthesis and illustrate that thyroid hormones are exquisitely sensitive to
physiologic stress.

It is well documented that glucocorticoids impact leukocyte kinetics. In dogs, a
corticosteroid-mediated leukogram (‘‘stress leukogram’’) is characterized by mature
neutrophilia, lymphopenia, monocytosis, and eosinopenia (Bertók, 1998; Weiss, Wardrop
& Schalm, 2010; Petrie, 2010). Cortisol increases neutrophil release from the bone marrow
storage pool and downregulates neutrophil L-selectin expression, decreasing adhesion
to endothelial cells and allowing neutrophil migration across the vascular wall (Burton
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et al., 1995, p. 1; Berton et al., 1996; Miles et al., 1998; Radi, Kehrli & Ackermann, 2001).
L-selectin downregulation shifts neutrophils from the marginated pool to the circulating
pool, causing an increase in neutrophil concentration as measured in blood (Stockham
& Scott, 2008). Multiple mechanisms has been suggested and documented to explain
stress-induced lymphopenia, which include both decreased efflux from lymph nodes, and
decreased proliferative and activation cytokines (e.g., IL-2) for lymphocytes (Stockham
& Scott, 2008). Hematologic changes documented in the study that preceded the present
one were consistent with cortisol-mediated effects in saline-treated dogs—effects that
were overshadowed by more dramatic direct effects of endotoxemia in LPS-treated dogs
(Flatland et al., 2011).

This study has some limitations. The dogs were all sexually intact, adult females not in
estrus at the time of the experiment. Based on hormone analysis, all dogs were considered
in anestrus except one (dog 1) that had high progesterone and 17α-OHP concentrations
during the entire 2 weeks of the experiment (at all-time points after saline or LPS injections)
(see dog 1 in Table 1). Additionally, another dog (dog 3) had mildly increased progesterone
concentrations in the first part of the experiment (at all-time points following saline).
Dog 1 was most likely in diestrus during the entire study, with increased progesterone
concentrations due to a persistent corpus luteum. It seems likely that a large amount of
progesterone originating from the corpus luteum masked subtler changes in progesterone
concentration originating from the adrenal glands. Although 17α-OHP increases were of
a similar magnitude as progesterone changes, concentrations of this hormone were lower
and changed at different time points following LPS treatment, suggesting that 17α-OHP
was released by the adrenal glands rather than a corpus luteum. It is known, that 17α-OHP
is primarily produced in the adrenal glands and only to some degree in the corpus luteum
and gonads (Honour, 2014; Karagüzel et al., 2019). In contrast to dog 1, progesterone
concentrations in dog 3 were mildly above institutional reference intervals only following
saline treatment at each time point. Dog 3 was most likely in an advanced diestrus phase
during the first (saline treatment) part of the study and in anestrous during the second part
(LPS treatment). 17α-OHP concentrations in dog 3 were just above the reference intervals
only after saline administration, suggesting that a corpus luteum could have contributed
to mildly increased 17α-OHP in this dog during this study phase.

A further limitation is that the study design did not control for day (i.e., saline treatments
done first in all dogs, followed by LPS treatments). Husbandry, dog handling, and sampling
conditions were kept constant throughout the experiment. Nonetheless, we cannot exclude
an effect of time (due to treatment sequence, innate biological variation and/or undetected
changes in the dogs’ environment or health status) on results. Despite this limitation, data
from this study and the one that preceded it support a true effect of LPS on plasma cortisol,
17α-OHP, and TSH concentrations.

Finally, plasma samples used for this study had been stored at−80 ◦ C for 6 years without
undergoing any thaw cycles. Use of stored samples may be seen as a limitation; however,
numerous publications attesting to the high stability of steroid and thyroid hormones
when preserved at −80 ◦C have been published (Kubasik et al., 1982; Kley, Schlaghecke &
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Krüskemper, 1985; Garde & Hansen, 2005; EL Ezzi, El-Saidi & Kuddus, 2010; Hillebrand,
Heijboer & Endert, 2017).

CONCLUSIONS
Cortisol, progesterone, and 17α-OHP exhibited similar trends in concentration at all
timepoints following treatment with saline or LPS. The increases in adrenal steroid
precursors and cortisol following LPS treatment supported our hypothesis. The data also
showed that the concentration of those hormones increased, albeit less consistently, after
saline treatment—suggesting that even a placebo treatment in conditioned subjects can
elicit activation of the HPA axis. Similarly, the decrease in TSH following LPS treatment
supported our hypothesis, and a milder decrease also occurred after saline treatment—
again, suggesting that even placebo treatment can affect thyroid hormone pathways.
Changes to adrenal and thyroid hormones must be interpreted in light of anamnesis,
clinical signs, and other clinico-pathological abnormalities.

This is an observational study that did not investigate pathogenetic mechanisms.
Changes reported here followed one particular type of inflammatory or placebo stimulus,
and mechanisms and physiologic responses may or may not be similar across other stimuli.
Further studies would be needed to elucidate mechanisms of adrenal steroidal hormone
synthesis and secretion in response to various stimuli in both neutered and intact animals.

Abbreviations and Symbols

17α-OHP 17α-hydroxyprogesterone
ACTH Adrenocorticotropic hormone
ANOVA Analysis of variance
CRH Corticotropin-releasing hormone
HPA Hypothalamic-pituitary-adrenal
HPT Hypothalamic-pituitary-thyroid
IL-1 Interleukin-1
IL-6 Interleukin-6
LPS Lipopolysaccharide
RIA Radioimmunoassay
TNF-α Tumor necrosis factor-α
TSH Thyroid stimulating hormone
WBC White blood cell
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