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Abstract 

Anthropogenic activities in intensively managed landscapes (IMLs) have significantly 

modified material travel times and delivery, and have led to more pronounced event-based 

dynamics compared to undisturbed conditions.  Understanding and mitigating human impacts 

requires the use of both field-based observations and physically-based numerical models to tease 

out causal relationships and feedbacks between the relevant processes across the cascade of 

scales, from the plot to the watershed.  Unfortunately, there are no event-based numerical models 

capable of adequately simulating sediment fluxes across scales in IMLs, thus hampering our 

ability to understand and mitigate anthropogenic impacts.   

The goal of this study was to develop a conceptual modeling framework for IMLs that 

considered all the connections and interactions between terrestrial and in-stream sources on an 

event basis, and to use the framework to identify a characteristic scale unit (CSU) representative 

of sediment flux laws within the drainage network.  The CSU was considered to be a scale at 

which local-scale variability in landscape properties ceased to have an effect on mean trends in 

sediment fluxes and, thus, an appropriate scale for simulating/monitoring sediment fluxes for 

watershed management purposes. 

The framework was developed and tested in the South Amana sub-watershed (SASW), 

IA.  An upland erosion model was coupled with an instream sediment transport model to 

simulate material fluxes along different pathways in SASW.  A sediment fingerprinting model 

was also utilized to constrain the predicted contributions of terrestrial and instream sources.  

Modeling advances made included the incorporation of a surface roughness evolution threshold, 

space/time variant flow resistance representations of landscape attributes, and the stochastic 

representation of material origins, travel times, and delivery to the watershed outlet.  The 

developed model was validated via an extensive field campaign performed at scales ranging 

from the plot to the sub-watershed.  

The study results revealed thresholds of influence of landscape roughness attributes, and 

highlighted important intra-seasonal trends in source contributions driven by the co-play of land 

use and rainfall.  A CSU for sediment fluxes and the factors affecting it were identified.  Future 

studies must examine the CSU as dictated by the interplay between event-based and seasonal 

dynamics, and the implications for watershed management.   
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1.1. Overview 

Anthropogenic activities related to food production and other life-sustaining services in 

intensively managed landscapes (IMLs) such as the U.S. Midwest have significantly modified 

the earth’s critical zone over a range of spatial scales, impacting both terrestrial and aquatic 

ecosystems, and negatively affecting the sustainability of arable lands and stream water quality.  

This is highlighted in Figure 1.1, which shows a map of cropland in the US experiencing erosion 

rates above tolerance limits (i.e., limits above which continued sustainable productivity of the 

land is not guaranteed) as a result of intensive management [USDA, 2015].   Changes in the land 

cover in these landscapes from what were previously grasslands have led to a high degree of 

spatial heterogeneity and temporal variability in landscape processes that were previously absent.  

The different practices have led to changes in the percentage of bare soil, soil surface roughness, 

flow pathways, soil fertilization, and erosion and depositional patterns [Papanicolaou et al., 

2015; Van Meter et al., 2016; Woo and Kumar, 2017].  The installation of tile drains and the 

straightening of channels have modified material travel times and altered the hydrologic regime 

of the region, with a more pronounced event-based dynamics [Sloan, 2013].   These changes and 

continued human modification are believed to maintaining the system in a state of disequilibrium 

in which material fluxes over a season are now non-stationary [Sullivan et al., 2017].  

 

 

 

 

Figure 1.1: Cropland in the U.S. with erosion rates exceeding the soil loss tolerance rate [USDA, 2015] 
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To mitigate these effects, a good understanding of the critical zone processes and how 

they are affected by anthropogenic activities is needed.  Thus, observatories such as the NSF’s 

Critical Zone Observatory for Intensively Managed Landscapes (IML-CZO) have been set up to 

quantify fluxes and transformations of water, sediment, and nutrients, as well as their 

interactions, thresholds, and feedbacks, in these landscapes.   A central hypothesis is that human 

modification has resulted in the critical zone exceeding a threshold whereby it has changed from 

being a transformer of material flux with high residence times and storage of water, sediments, 

and nutrients to being a transporter with low residence times and storage, thereby threatening the 

resiliency of the landscape and increasing its vulnerability [Kumar et al., 2016].   

Understanding these changes and complex interactions within the critical zone requires a 

two-pronged approach that combines physical observations with numerical modeling to establish 

the causal relationships between the key variables across the different spatiotemporal scales.   

Although physical observations can enhance our understanding of critical zone process and 

reveal some cause-and-effect relationships, there is a limitation on how much inference can be 

drawn due to limited data in time and/or space [Michaelides and Wainwright, 2008; Brantley and 

Lebedeva, 2011].  Physically-based numerical models have the potential to “fill in the blanks” 

and tease out direct cause-and-effect relationships between the modified land surface and the 

fluxes across different spatial and temporal scales, thereby providing further insight into the 

impacts of humans over the broad range of scales and how these can be mitigated appropriately.   

However, due to the significantly modified spatiotemporal scales of critical zone 

processes in IMLs, there is a lack of numerical models that can adequately capture the 

pronounced event-based dynamics across scales, as well as a lack of understanding of the 

appropriate spatial and temporal scales at which field observations and modeling efforts need to 

consider [Papanicolaou et al., 2018].  Most existing tools for these landscapes have thus far been 

developed for spatiotemporal scales corresponding to marginally modified systems, or have 

focused solely on limited domains within the system (e.g., only on terrestrial processes) 

[Papanicolaou et al., 2015; Conroy et al., 2006; Wu, 2008]. 

This dissertation develops a modeling framework for capturing event-based dynamics in 

IMLs and utilizes the framework to investigate causal relationships and factors affecting water 

and sediment fluxes from the plot scale to the sub-watershed scale.  Emphasis is placed on these 

scales because natural processes can easily be distinguished from those induced by humans due 
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to the relatively shorter lag times [Blöschl et al., 2007].  The study combines field observations 

of water and sediment fluxes /travel times, improvements to sediment fingerprinting techniques 

for IMLs, numerical model development for event-based dynamics, novel model validation 

techniques, and modeling of representative land cover and storm events in an IML, to provide 

insight on appropriate scales to consider for field campaigns and modeling efforts in IMLs.  It 

also sheds light on the factors that influence these scales. 

 

1.2. Background and Critical Needs 

The co-play of land management and climate dictates the net effects of anthropogenic 

activities on the critical zone in IMLs [Papanicolaou et al., 2015].   Figure 1.2 depicts the degree 

of heterogeneity and some of the impacts of the combined action of rainfall and human 

modification observed in these landscapes.   During a typical storm event, rain drops falling atop 

the soil surface break apart soil aggregates giving rise to rain splash erosion.  As runoff 

accumulates during the storm event, the eroded soil particles are transported from interrill areas 

through concentrated flow channels, such as rills and gullies, downslope and eventually into the 

stream network.  The concentrated flow within rills and gullies also produce erosion due to shear 

action of the flow, causing the rills and gullies to grow in size and extend horizontally in space.  

Some of the particles that are being transported within these channels are deposited along the 

way depending on the runoff conditions, effectively redistributing soil of different sizes across 

the landscape.  Aggregates and larger size particles tend to be deposited on the downslope end of 

the hillslope due to milder slopes and higher sediment concentrations, as shown in the figure.  

These highly complex interactions between runoff and sediment processes are further 

compounded by activities such as tillage, which brings subsurface soil to the surface, exposing it 

to weathering, thereby increasing the susceptibility of soil aggregates to detachment and thus 

increasing soil erosion.  Redistribution is not limited to abiotic system components alone.  Biotic 

component such as residue are also transported by flow and in soil aggregates.  Both the biotic 

and abiotic interactions ultimately lead to different transformation rates across the landscape due 

to the different landscape properties.  
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Figure 1.2:  Evolving modification of the land through management and rainfall events affects heterogeneity 

of features and properties (abiotic and biotic) [Papanicolaou et al., 2015] 

 

 

The impact of the co-play of land management and rainfall has also been observed within 

the stream network, where fluxes originate from both terrestrial and instream sources ( 

Figure 1.3).  Increased water fluxes from the landscape are known to exacerbate instream 

erosion processes, including sediment entrainment through mining of the stream bed, fluvial 

erosion of bank material (i.e., particle-by-particle entrainment), and mass failure of the stream 

bank (i.e., the slumping and collapse of stream banks en masse) [Sutarto et al., 2014].  The 

sediment fluxes from the exacerbated instream erosion processes interact with the increased 

fluxes from terrestrial sources in a complex fashion to collectively determine the net impact of 

the co-play on the total fluxes and stream water quality [Papanicolaou and Abban, 2016]. 

Both the terrestrial and in-stream erosion processes vary spatially and temporally as a 

result of the complex interactions of water, soil/sediment, and crop rotations [Tayfur and Kavvas, 

1998; Govers et al., 2007; Papanicolaou et al., 2015].  This results in a high variability in flux 

characteristics with scale in regards to net amounts and proportions of source contributions 

[Wilson et al., 2012; Yu, 2017]. Flux behavior changes from the plot scale to the watershed scale, 

and over the course of a season. Whereas some events result in highly intermittent fluxes, others 

result in fluxes that propagate in the form of waves [Abban et al., 2016; Sullivan et al., 2017].   
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Figure 1.3:  Terrestrial and instream sources collectively affect the total sediment budget (Photos: two top 

photos taken by the Papanicolaou group and third one from the Rhoads group) 

 

 

Our current ability to predict how water and sediment fluxes transport from the plot scale 

to the watershed scale in the intensively managed landscapes is questionable.  As described 

above, the modification of the key pathways and connectivity from the plot to the drainage 

network due to the co-play of land-use and climate has affected the time scale of the processes, 

driven now more by event-based dynamics rather than seasonal averages.  Current watershed 

models are unable to capture the dynamic connectivity that arises from the co-play at the event 

scale due to simplistic lumped representations of terrestrial processes that are mostly valid over 

longer time periods and at larger spatial scales [e.g., SWAT, THREW, VIC, etc.].    

The simplistic lumped treatment of hillslopes in watershed scale studies may be 

warranted when simulating water fluxes at larger spatial scales because of the existence of a 

characteristic scale unit at which the specific flow discharge does not change with increasing 

spatial scale and, thus, statistical representation of watershed properties can be used to represent 

flow dynamics [Wood et al., 1988; Blöschl et al., 1995].   However, it is uncertain whether or not 

this lumped treatment is valid for sediment fluxes at the hillslope scale, or at what scale it can be 

used to assess sediment fluxes with fair accuracy within drainage network where terrestrial and 

instream contributions interact.  Recently, Dermisis [2012] has demonstrated that the 

spatiotemporal evolution of water fluxes in response to spatial variability in landscape attributes 
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can significantly alter runoff volumes and hydrograph characteristics at the hillslope scale for a 

storm event, with the potential to significantly alter sediment flux rates and amounts leaving the 

hillslope into stream networks.  In some cases, he found that hillslopes with patchy vegetation on 

which the spatial variability in landscape attributes was taken into account yielded hydrographs 

with peaks that were a twice as large as “equivalent” lumped hillslopes that assumed a spatial 

averaging of the landscape properties (see Figure 1.4).  Since sediment flux rates have been 

shown to correlate with peak runoff rates [Finkener et al., 1989], this has implications for the 

predictive ability lumped models when it comes to sediment fluxes on an event basis.   

Another reason why our current ability to predict how sediment fluxes transport from the 

plot scale to the watershed scale is questionable is that most existing sediment laws assume that 

the system is in some state of equilibrium.  However, as explained above, continued human 

modification in IMLs are believed to maintaining the system in a state of disequilibrium in which 

material fluxes over a season may be non-stationary.  Sediment fluxes can be intermittent at 

times, and of different provenance (e.g. terrestrial versus instream sources), while in other 

instances fluxes can be described in the form of waves [Abban et al., 2016].  Further, simplistic 

assumptions are often made in watershed studies regarding material delivery from terrestrial 

sources that simply do not hold true for IMLs.   Storm sequence, in addition to intensity and 

frequency, affects soil fluxes and redistribution although it has largely been neglected [Wilson et 

al., 2012] (see Figure 1.5).  Also, only a few studies actually consider the exchanges between 

floodplain and in-stream sediment and the implications that they may have on sediment scaling 

laws at the watershed scale.  All these limitations have so far hampered our ability to identify a 

characteristic scale unit for sediment fluxes where the specific sediment discharge is not 

significantly affected by local-scale variability on the landscape (i.e., statistical representation of 

watershed properties can be used to estimate fluxes) and flux laws representative of the mean 

watershed response can be established.  Such a scale unit is needed for the practical benefits of 

watershed monitoring and evaluation. 

The aforementioned limitations of existing approaches in IMLs are often enshrouded 

through model calibration, which is usually performed at the outlet of the watershed based on 

total observed sediment fluxes.   However, as Belmont et al. [2014] have demonstrated in  

FIGURE 1.6 using the SWAT model, different plausible assumptions regarding terrestrial 

and instream  
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Figure 1.4: Hydrographs predicted on an intensively managed patchy concave hillslope using a model that 

captures the spatial variability in landscape model and another model that assumes lumped spatially 

averaged landscape properties [Dermisis, 2012]. 

 

 

 

 

 

Figure 1.5: Observed sediment rating curves at the same location in an intensively managed for two 

successive storm events.  the hysteresis loops depict exhaustion of material and the change in gradient depict 

less material available for transport during the second event [Wilson et al., 2012] 
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Figure 1.6: Demonstration of the equifinality issue using the SWAT model – different source contributions 

can lead to very similar net sediment fluxes [Belmont et al., 2014] 

 

 

sources can yield the same total sediment fluxes despite significantly different contributions from 

terrestrial and instream sources, raising the issue of equifinality (the case where different 

conditions lead to the same result) and questions about the true predictive capability of existing 

models.   Evidently, current modeling frameworks that do not consider the dynamic connectivity 

between terrestrial and instream sources in IMLs, and whose calibration and validation 

approaches do not capture the relative contributions of the different sources to the total fluxes, 

are inadequate to ensure that the correct system dynamics are being captured.  A modeling 

framework that is capable of capturing the connectivity between terrestrial and instream 

processes at the right level of detail is therefore needed to be able to simulate how fluxes of 

water and sediment propagate from the plot scale to the watershed scale.   

Based on the above synthesis, the following two critical needs have been identified for 

IMLs to enable the understanding of human impact on the landscape across the different scales: 

1. There is a need for the development and use of tools that can account for event-based 

dynamics when predicting fluxes in IMLs.  These tools must be able to capture the 

dynamic connectivity between terrestrial and instream sources, and how it is affected by 

the co-play of land use and storm events. 

2. There is a need for identifying a characteristic scale unit beyond which the specific 

sediment discharge becomes invariant with increasing spatial scale.  Besides offering a 

parameterization unit where statistical representations of watershed properties can be 

used to predict mean sediment fluxes, such a scale unit has other practical merits in that is 
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suited for watershed management and monitoring since it offers a scale at which 

sediment flux laws can be used dependably to hindcast/forecast mean watershed 

response. 

 

1.2.1. Overarching Goal and Hypotheses 

The overarching goal of this study is, thus, to develop a modeling framework that 

considers all the connections and interactions between terrestrial and in-stream sources on an 

event basis, and to use the framework to identify a characteristic parameterization unit that is 

representative of the sediment flux laws within the drainage network. 

Emphasis is placed on scales up to the sub-watershed scale because natural processes at 

these scales can easily be distinguished from those induced by humans due to the relatively 

shorter lag times [Blöschl et al., 2007].  A much better understanding of the processes and 

interactions at these scales will serve as a platform for extending the knowledge gained to larger 

scales.  The study focuses on the South Amana Sub-watershed (SASW), located in the 

headwaters of the Clear Creek Watershed, IA, which is part of the IML-CZO. SASW, which is 

characterized by corn-soybean rotations on moderately well-drained to somewhat poorly drained 

soils and a well-integrated drainage network, was selected for the study because it displays 

features needed to address all the critical needs identified above for IMLs.  A more detailed 

description of the site is provided in Chapters 2, 4, 5, and 6.  

This study is premised on the following hypotheses: 

1. Continued human modification of the landscape has affected the connectivity between 

terrestrial and instream domains, significantly altering the travel times and net fluxes of 

water and sediment through the drainage network, compared to undisturbed conditions.  

The continued modification is leading the system along a non-stationary path where intra-

seasonal patterns in fluxes that are regulated by the collective action of land use and 

rainfall play an important role on the system state at a given time. 

2. There exists a characteristic scale unit where the specific sediment discharge is not 

significantly affected by local-scale variability in landscape and hydrologic properties, 

and at which statistical representations of watershed properties may be used to predict 

sediment fluxes.  However, this characteristic scale unit for sediment differs from that for 

specific flow discharge due to differences in travel times and processes involved. 
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1.3. Specific Study Objectives 

Based on the overarching goal and hypotheses, the following specific objectives are pursued: 

1. To use a bottom-up approach to examine and identify the key variables and cause–effect 

relations affecting water and sediment fluxes from the plot scale to the sub-watershed scale in 

IMLs.  This will include: 

a) The use of state-of-the-art plot scale experiments to examine the interaction between 

rainfall and land use in modulating soil surface roughness, as well as to examine the 

fluxes of water and sediment from the different land covers present in IMLs.   

b) The development of an advanced numerical approach for capturing the spatiotemporal 

effects of roughness related to the different landscape attributes on water and sediment 

fluxes at the hillslope scale by accounting for the feedbacks between flow and roughness.  

Then, using the approach, the examination of flux travel times and magnitude, i.e., 

amplitude and wavelength, at the hillslope scale for IMLs.   

c) The provision of a numerical approach that accounts for the key pathways of transport 

(i.e., connectivities) between terrestrial and instream domains, and incorporates travel 

times from the different terrestrial and instream source areas.  Then, using the model, the 

examination of the amplitude and wavelength of fluxes at the sub-watershed scale.   

2. To develop a Bayesian statistical sediment sourcing model to validate the numerical 

treatment of the connectivity between terrestrial and instream sources in space and time 

outlined in objective 1c.  The Bayesian model will utilize prior and current data on land use 

and rainfall, and will quantify the contributions of the different sources to flux estimates and 

associated uncertainties. 

3. To identify numerically the existence of a scale beyond which the mean sediment discharge 

per unit area remains reasonably constant with increasing scale, and at which trends in mean 

sediment fluxes can be monitored.  This scale is examined for different rainfall events and 

land covers that are representative of conditions at different times of the growing season.   
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1.4. Outline of Dissertation 

The modeling framework development and its subsequent use for examining flux 

propagation in space and time will require a multi-scale approach that addresses key processes 

from the plot scale to the sub-watershed scale.  This approach must necessarily involve a 

combination of field experiments and numerical modeling exercise to achieve the study goals.  A 

roadmap of the dissertation following the approach is provided in Figure 1.7. 

Chapter 2 focuses on the plot scale and addresses a critical component of upland erosion 

models regarding the evolution of soil surface roughness under raindrop action.  The majority of 

existing models assume a decay in soil surface roughness with continued rainfall, without a 

limiting threshold for such a decay.  The chapter examines roughness evolution under raindrop 

action on smooth surfaces to determine if such an assumption is always valid, and whether or not 

there is a threshold length scale at which it becomes invalid.   

Chapter 3 deals with flow resistance representation in overland models, focusing 

specifically on landscapes that display heterogeneity in surface roughness.  Although studies 

suggest that, for a given surface, flow resistance varies both in space and time with changing 

flow conditions, the common assumption made in many overland models is that flow resistance 

due surface roughness is invariant with respect to space and/or time during a storm event.  The 

chapter investigates the implications of this assumption on runoff hydrograph peak and shape at 

the hillslope scale, and any potential implications this may have on sediment transport 

predictions.  Threshold storm magnitudes and hillslope gradients under which the assumption 

could be valid are also identified for different landscape attributes found in IMLs.   

Chapter 4 tackles the issue of connectivity representation between terrestrial and 

instream sources when modeling IMLs by coupling an established upland erosion model with an 

established instream sediment transport model.  The ability of the model to capture flow-related 

network dynamics such as backwater effects and sediment fluxes to the watershed outlet are 

examined and validated using benchmark data and observed rating curves.   

Chapter 5 develops a sediment sourcing model for validating the treatment of sediment 

connectivity between terrestrial and instream sources in IMLs at the sub-watershed scale.  

Sourcing studies are performed based on previous field campaigns to investigate the intra-

seasonal patterns in sediment connectivity between terrestrial and instream sources, and its 

influence on relative source contributions to sediment fluxes at the sub-watershed scale.  
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Figure 1.7: Dissertation Roadmap  
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Chapter 6 presents the complete modeling framework for IMLs, incorporating the 

outcomes from Chapters 2-5.  A combination of terrestrial and instream experiments are used to 

measure travel times and fluxes of water and sediment from the plot to the sub-watershed scale 

for validating the framework.  The validated framework is then used to investigate the existence 

of a characteristic scale unit at which local-scale variability in landscape and hydrologic 

properties does not significantly affect the specific sediment discharge, as well as any factors that 

may affect this scale.  

Finally, Chapter 7 synthesizes and summarizes the key findings from Chapters 2-6 and 

provides recommendations for future research.   Except for Chapters 1 and 7, each chapter in the 

dissertation is presented in the form of a standalone paper.  
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Chapter 2 

Quantifying the changes of soil surface microroughness due to rainfall impact 

on a smooth surface 
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Abstract  

This study examines the rainfall induced change in soil microroughness of a bare smooth 

soil surface in an agricultural field. The majority of soil microroughness studies have focused on 

surface roughness on the order of ~5-50 mm and have reported a decay of soil surface roughness 

with rainfall.  However, there is quantitative evidence from few studies suggesting that surfaces 

with microroughness less than 5 mm may undergo an increase in roughness when subject to 

rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, 

a low roughness condition observed seasonally in some landscapes under bare conditions, and 

chosen to systematically examine the increasing roughness phenomenon.  Three rainfall 

intensities of 30 mm/h, 60 mm/h and 75 mm/h are applied to a smoothened bed surface in a field 

plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser 

scanner. Several indices are utilized to quantify the soil surface microroughness, namely the 

Random Roughness (RR) index, the crossover length, the variance scale from the Markov-

Gaussian model, and the limiting difference.  Findings show a consistent increase in roughness 

under the action of rainfall, with an overall agreement between all indices in terms of trend and 

magnitude.  Although this study is limited to a narrow range of rainfall and soil conditions, the 

results suggest that the outcome of the interaction between rainfall and a soil surface can be 

different for smooth and rough surfaces, and thus warrant the need for a better understanding of 

this interaction.  Further, an important implication of the findings is that a surface undergoing 

roughness increase or decrease under rainfall action will approach a limiting threshold where the 

RR ceases to change significantly.  This threshold needs to be accounted for in existing models. 

 

 

2.1. Introduction 

Soil surface roughness influences many hydrologic processes such as flow partitioning 

between runoff and infiltration, flow unsteadiness, as well as soil mobilization and re-deposition 

at scales ranging from a few millimeters to hillslope level [e.g. Huang and Bradford, 1990; 

Magunda et al., 1997; Zhang et al., 2014].  There are three distinct classes of microtopography 

surface roughness for agricultural landscapes, each one of them depicting a representative length 

scale [Römkens and Wang, 1986; Potter, 1990].  Following Oades and Waters [1991], the first 

class includes microrelief variations from individual soil grains to aggregates in the order of 
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0.053-2.0 mm.  The second class consists of variations due to soil clods ranging between 2-100 

mm. The third class of soil surface roughness is systematic elevation differences due to tillage, 

referred to as oriented roughness (OR), ranging between 100-300 mm.  

From the outlined above, the first two classes are the so-called random roughness (RR), 

and constitute the main focus of the present research. RR is quantified on a surface after 

correction for both slope and tillage marks.  Contrary to OR, which changes seasonally and 

during crop rotations, RR changes on an event base [Abaci and Papanicolaou, 2009]. RR reflects 

the effects of rainfall action on the soil surface and inherently varies in space and time. As a 

result, RR affects key hydrologic processes at the soil scape and ultimately at the hillslope scale 

e.g., infiltration, overland flow, etc. [Gómez and Nearing, 2005; Chi et al., 2012].  

Several studies have been performed to characterize RR. Most have focused on initial 

microroughness length scales of 5-50 mm [e.g., Zobeck and Onstad, 1987; Gilley and Finkner, 

1991].  In these studies, a decay of roughness due to precipitation action is predicted, since 

rainfall impact and runoff “smoothen” the rough edges of soil grains, aggregates and clods, 

especially in the absence of cover [Potter, 1990; Bertuzzi et al., 1990; Vázquez et al., 2008; 

Vermang et al., 2013]. There are few studies that have examined surfaces with initial 

microroughness less than 5 mm, a low roughness condition observed seasonally in some 

landscapes under bare conditions [e.g., Kamphorst et al., 2000; Vázquez et al., 2008; Zheng et 

al., 2014].   Hereafter, for shortness, tests with initial RR less than 5 mm will be referred to as 

“smooth”, whereas tests with initial RR greater than 5 mm will be referred to as “rough”.  There 

are some quantitative indications that under bare smooth surface conditions, soil surface 

roughness may actually increase under the action of rainfall. Specifically, the study by Huang 

and Bradford [1992] calculated the semi-variance with respect to length scale before and after 

rainfall, and an increase in roughness with rainfall was denoted using the Markov-Gaussian 

model for a surface with low initial roughness. Rosa et al. [2012] introduced an index (called 

Roughness Index) estimated from the semivariogram to describe roughness, and an increase of 

the index with rainfall was observed under some conditions, and attributed to the fragmentation 

of aggregates and clods to smaller aggregates. Zheng et al. [2014] also reported an increase in 

values of the RR after the application of rainfall on smooth soil surfaces.  However, none of the 

above studies acknowledged and related the increasing trend in surface microroughness to 

rainfall impact on smooth surfaces.  
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The main goal of this study is to examine changes in RR under rainfall impact for initial 

microroughness less than 2 mm, since this appears to be the lower limit of roughness scales 

examined in the literature. It is postulated that an increase in microroughness may occur under 

the action of rainfall on pre-existing smooth surfaces due to the nature of the interaction between 

rainfall and the soil surface.  An implication of this postulate is that a surface undergoing 

roughness increase or decrease under rainfall action will approach a limiting threshold where the 

RR ceases to change significantly.  To meet the study goal, we employ four commonly used 

indices, the RR index, the crossover length, the variance scale from the Markov-Gaussian model, 

and the limiting difference. The last three indices are alternate methods and used here to 

supplement the RR index analysis for relative change in roughness.    

 

2.2. Materials and Methods  

2.2.1. Experimental Conditions 

This study was conducted on an experimental plot of the U.S. National Science 

Foundation Intensively Managed Landscapes Critical Zone Observatory in the headwaters of 

Clear Creek, IA (41.74º N, -91.94º W and an elevation of 250 m above mean sea level; Figure 

2.1 and Figure 2.2). The soil series at the plot where the experiments were conducted is Tama 

(fine-silty, mixed, superactive, mesic Cumulic Endoaquoll) 

(http://criticalzone.org/iml/infrastructure/field-areas-iml/). It consists of 5% sand, 26% clay, 68% 

silt, and an organic matter content of 4.4%. The aggregate size distribution of the soil consists of 

19% of the soil size fraction less than 250 μm, 48% between 250 μm and 2 mm, and 33% greater 

than 2 mm. These soils contain both smectite and illite, with high cation exchange capacity 

between 15 and 30 Meq/100 g. The experimental plot was uniform in terms of downslope 

curvature, its gradient was 9% and the plot size was approximately 7 m long by 1.2 m wide.  

The soil surface was prepared before each experiment by tamping using a plywood board 

to create a smoothened surface.   This was done to ensure a consistency in surface roughness 

between the experiments, as well as to ensure that any potential bias introduced in the plot  

preparation would be also be consistent, if not minimal.  This was confirmed by the observed 

roughness of the experiment replicates.  Rainfall was applied to the plot using Norton Ladder 

Multiple Intensity Rainfall Simulators designed by the USDA-ARS National Soil Erosion 

Research Laboratory, IN.  
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Figure 2.1: Location of experimental plot in the headwaters of Clear Creek, IA(41.74º N, -91.94º W) 
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Figure 2.2: (a) Types of soil surface microroughness. (b) Experimental plot. The rainfall simulator 

is placed above the bare soil surface and a base made of wood is put into place to facilitate the 

movement of the surface-profile laser scanner. 
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Figure 2.3 shows the setup for all the experimental runs considered in the present study. 

For each test, three rainfall simulators were mounted in series over the experimental plot (Figure 

2.3a) and approximately 2.5 m atop the plot surface (Figure 2.3b) in order to ensure that raindrop 

terminal velocity was reached. Water was continuously pumped from a water tank under 

controlled pressure, and uniform rainfall was applied through oscillating VeeJet nozzles which 

provided spherical drops with median diameters between 2.25-2.75 mm and a terminal velocity 

between 6.8-7.7 m/s depending on the rainfall intensity. The distribution of raindrop sizes 

generated by the rainfall simulators was calibrated using a disdrometer and followed a Marshall-

Palmer distribution [Elhakeem and Papanicolaou, 2009], which is a widely accepted distribution 

for natural raindrop sizes in the U.S. Midwest where the study was performed [Marshall and 

Palmer, 1948]. The calibration of the raindrop sizes was achieved by adjusting the pressure and 

swing frequency of the VeeJet nozzles. This level of attention was taken to minimize any 

potential biases compared to natural rainfall with respect to raindrop size distribution, and, thus, 

render the rainfall simulation experiments scalable to other regions experiencing the same type 

of soil, bare surface, roughness conditions, and natural rainfall characteristics.  

Surface elevations were obtained prior to and after the completion of the experiments via 

an instantaneous digital surface-profile laser scanner [Darboux and Huang, 2003], developed by 

the USDA-ARS National Soil Erosion Research Laboratory, IN (Figure 2.4a). Laser scanner 

measurements before the runs confirmed that the overall microrelief was less than 2 mm.  

Horizontal and vertical accuracies of the laser are 0.5 mm. Thus, microroughness features less 

than 0.5 mm may not have been captured in the analysis. Points were measured every 1 mm. The 

system consists of two laser diodes mounted 40 cm apart to project a laser plane over the 

targeted surface. The beam is captured by an 8-bit, high-resolution progressive scan charge-

couple device camera with 1030 rows x 1300 columns and a 9 mm lens. The camera and lasers 

are mounted on a 5 m long carriage assembly and their movement on the carriage is controlled 

by software that regulates the travel distance based on a user-specified distance (Figure 2.4a). 

Information captured by the camera is recorded with an attached computer. The information 

from each scan is converted into a set of (x,y,z) coordinates using a calibration file and the 

software developed from the USDA-ARS National Soil Erosion Research Laboratory for data 

transformation as explained by Darboux and Huang [2003]. The set of (x,y,z) coordinates 

obtained for each experiment are imported into ArcGIS 10.3.1 in order to create the 
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Figure 2.3: Setup of the experimental tests: (a) Rainfall simulators are mounted in series and a 

pump provides them with water from a tank. (b) Rainfall simulators are placed and adjusted at a 

height of 2.5 m above the experimental plot surface to ensure drop terminal velocity is reached. 

 

 

 

Figure 2.4: (a) Instantaneous digital surface-profile laser scanner used in the experimental runs and 

laser beam projected on the soil surface. (b) Cloud of (x,y,z) data acquired from the laser scanner 

for an experimental test along with the associated 3D representation of the soil surface microrelief 

through inverse distance weighted interpolation . 
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corresponding Digital Elevation Models (DEMs) through inverse distance weighting 

interpolation and thereby visualize or analyze the surfaces (Figure 2.4b). The resulting DEMs 

have a horizontal resolution of 1 mm and an accuracy of 0.5 mm in the vertical. 

Three tests of varying rainfall intensity were conducted on the experimental plot. Rainfall 

intensities were respectively 30, 60 and 75 mm/h for experiments 1, 2 and 3. These simulated 

intensities represent typical storms observed in the region of South Amana where the plot is 

located [Huff and Angel, 1992]. Three replicates of each rainfall intensity case were performed 

until steady state conditions, and repeatability was confirmed by evaluation of changes in RR at 

specific cross-sections in the rainsplash dominated zone. It was found that on an average, the 

relative error of the RR ratios between replicates did not exceed 7%. The volumetric water 

content was recorded via six 5TE soil moisture sensors manufactured by Decagon Devices, Inc. 

and placed along the plot to a depth of 10 mm. The initial volumetric water content was found to 

be similar for each experiment and approximately equal to 35% at the whole plot, where the field 

capacity of the specific soil is 38%. Each experiment was run for nearly 5 hours, sufficiently 

long to reach steady state conditions, as confirmed by weir readings and discrete samples taken 

at the outlet of the plot. The infiltration rate was estimated during all rainfall simulation runs by 

subtracting the measured runoff rates from the constant rainfall rates. This approach has been 

commonly used in plot experiments and provides a good estimate of the spatially averaged 

infiltration rates [e.g., Mohamoud et al., 1990; Wainwright et al., 2000]. Averaged saturated 

hydraulic conductivity values ranged from 3.20 – 4.56 mm/h, which are in agreement with the 

averaged saturated hydraulic conductivity value of 4.3 mm/h measured by Papanicolaou et al. 

[2015a] using semi-automated double ring infiltrometers at the field where the study was 

performed. Although the average saturated hydraulic conductivity values were low with respect 

to the applied rainfall rates, minimal ponding was observed on the experimental plot, owing to 

the smooth bare conditions and the high plot gradient of 9%, which led to low depression 

storage. 

The initial microroughness length scale in Experiment 1 (1.17 mm) was greater than that 

of Experiment 2 (0.42 mm) and Experiment 3 (0.32 mm) – see Table 1. This is attributed to the 

different timing of the experiment runs with respect to tillage. Experiment 1 was performed in 

early August, soon after harvest, so the soil surface had recently been disturbed. However, for 

Experiments 2 and 3 which were performed in late September, the soil presented less surface 
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disturbance due to the cumulative action of runoff from upslope areas on the plots arising from 

natural rainfall within that period [Papanicolaou et al., 2015b]. Therefore, despite tamping with 

plywood, remnants of tillage effects remained in Experiment 1 yielding different initial 

microroughness length scales than Experiments 2 and 3. This, however, is not an issue since all 

the results are presented herein in a dimensionless form (see Section 2.2.2 below on the index 

ratios). All cases, nonetheless, exhibited initial microroughness length less than 2 mm 

corresponding to smooth surface bed conditions as confirmed with the laser scanner. Dry soil 

bulk density was 1.25 g/cm3 for Experiment 1, and about 6% higher for Experiments 2 and 3 due 

to self-weigh consolidation of soil. 

Figure 2.5a provides an example of the experimental plot at pre-rainfall and post-rainfall 

conditions. Since the focus of this research is only on plot regions where raindrop detachment is 

dominant over runoff, we are using the scanned profiles that correspond only to these upslope 

locations, which are shown in Figure 2.5b. Rill formation was not observed in these regions 

throughout the experiments. Visual observations confirmed that raindrop detachment was 

dominant and the main driver of the change in soil surface roughness.  For scanned profiles 

within the Region of Interest (ROI) (i.e., a selected 200 mm x 200 mm window size), we 

extracted the data for further statistical and geostatistical analyses by utilizing the public domain 

R software (https://www.r-project.org/). The geostatistics (‘gstat’) and spatial analysis (‘sp’) 

libraries were imported to create sample semivariograms. 

 

2.2.2. Soil Surface Roughness Quantification 

According to Paz-Ferreiro et al. [2008], the RR index, which was first proposed by Allmaras et 

al. [1966], is the most widely used statistical microrelief index for the evaluation of soil surface 

roughness. The RR index was initially calculated per Allmaras et al. [1966] as the standard 

deviation of the log-transformed residual point elevation data. In this study, it is calculated 

according to Currence and Lovely [1970] as the standard deviation of bed surface elevation data 

around the mean elevation, after correction for slope using the best fit plane and removal of 

tillage effects in the individual height readings: 

 

𝑅𝑅 = √
∑ (𝑍𝑖−𝑍)

2𝑛
𝑖=1

𝑛
           (1) 
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Figure 2.5: (a) Experimental plot under pre- and post-rainfall conditions for an experimental test. 

The dashed boxes indicate the extent of the Region of Interest (ROI), where raindrop detachment is 

dominant over runoff. (b) Scanned profiles extracted from the laser-scanned areas of the three 

experimental tests considered, under both pre- and post-rainfall conditions. 

 

 

 

where 𝑍𝑖 and 𝑍̅ are individual elevation height readings and their mean, respectively, and n is the 

total number of readings.  

The RR index calculated from Eq. (1) is the principal method to quantify soil surface 

roughness due to its frequent and widespread use in various studies and landscape models as a 

descriptor of microroughness. The RR index, however, requires that there is no spatial 

correlation between the surface elevations [Huang and Bradford, 1992].  Hence, special care 

must be taken in adopting the RR index. If correlation exists within a certain spatial scale, the 

RR index will likely change with the changing window size of observed data [Paz-Ferreiro et 

al., 2008] and may be dependent on the resolution of the measurement device [Huang and 

Bradford, 1992].  Thus, alternative scale-independent methods that consider spatial correlation 

have been developed by other researchers in order to address this issue. These methods include 

first-order variogram analysis [Linden and van Doren, 1986; Paz-Ferreiro et al., 2008], 

semivariogram analysis [Vázquez et al., 2005; Oleschko et al., 2008; Rosa et al. 2012; Vermang 

et al., 2013], fractal models based on Fractional Brownian Motion [Burrough, 1983a; Vázquez et 

al., 2005; Papanicolaou et al., 2012; Vermang et al., 2013], multifractal analysis [Lovejoy and 

(a) (b) 
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Schertzer, 2007; Vázquez et al., 2008], Markov-Gaussian model [Huang and Bradford, 1992; 

Vermang et al., 2013], and two-dimensional Fourier Transform [Cheng et al., 2012], among 

others. We herein employ additional indices derived from the first-order variogram and the 

semivariogram as alternatives to the RR index, which is also utilized accounting for its 

limitations. These include the crossover length, the Markov-Gaussian variance length scale, and 

the limiting difference. 

The crossover length derived from semivariogram analysis is an index that is commonly 

used in most recent soil microrelief studies to describe surface microroughness. It has the 

advantage of its quantification being scale independent through the consideration of the spatial 

correlation between surface elevations [Vázquez et al., 2007; Paz-Ferreiro et al., 2008; Tarquis 

et al., 2008]. The semivariogram is calculated from the following equation: 

 

𝛾(ℎ) =
1

2𝑛(ℎ)
∑ [𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]

2𝑛(ℎ)
𝑖=1         (2) 

 

where 𝛾(ℎ) is the semivariance, ℎ is the lag-distance between data points, 𝑍(𝑥) is the elevation 

height value at location 𝑥 after correction for both slope and tillage marks and 𝑛(ℎ) is the total 

number of pairs separated by lag-distance ℎ considered in the calculation. The semivariogram is 

the plot of the semivariance with respect to the lag-distance.   

Key indices for describing soil surface roughness can be derived from the semivariogram. 

Assuming a fractional Brownian motion model for describing soil surface roughness, as 

proposed in the pioneering work of Mandelbrot and van Ness [1968], the following expression 

for 𝛾(ℎ) that incorporates the generalized Hurst exponent, 𝐻, is obtained [Huang and Bradford, 

1992; Vázquez et al., 2007; Paz-Ferreiro et al., 2008; Tarquis et al., 2008]: 

 

𝛾(ℎ) = 𝑙2−2𝐻ℎ2𝐻          (3) 

 

where H is a measure of the degree of correlation between the surface elevations at lag distance h 

with 0 < 𝐻 < 1 and l is the crossover length. The crossover length is a measure of the vertical 

variability of soil surface roughness at the particular scale where the fractal dimension is 

estimated, hence greater roughness is associated with larger crossover length values and vice 

versa (Huang and Bradford, 1992). The generalized Hurst exponent is a less sensitive descriptor 
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of soil surface evolution as influenced by rainfall [Vázquez et al., 2005], hence attention is 

mostly centered on the crossover length. Given the semivariogram plot calculated using Eq. (2), 

H and l can be extracted by fitting a power law relationship in the form of  𝑦 = 𝐴𝑥𝐵 to the 

semivariance-lag distance data, where 𝑦 = 𝛾(ℎ) and 𝑥 = ℎ. According to Eq. (3), the B 

regression variable gives the generalized Hurst exponent value and the A regression variable 

yields the crossover length. 

The Markov-Gaussian model is a random process that has been adopted for the 

quantification of soil surface roughness [Huang and Bradford, 1992; Vermang et al., 2013]. In 

that case, the semivariogram is written as an exponential-type function with the following form: 

 

𝛾(ℎ) = 𝜎2(1 − 𝑒−ℎ/𝐿)         (4) 

 

where σ is the variance length scale, representing the roughness of a surface at the large scale, 

and L is the correlation length scale, which is a measure of the rate at which small scale 

roughness variations approach the constant value of σ. These indices are obtained by fitting the 

exponential-type function of Eq. (4) to the semivariogram obtained from Eq. (2). 

Finally, the limiting difference (LD) index is another index adopted to quantify soil 

surface roughness. It is calculated from the first-order variogram with elevation data corrected 

for both slope and tillage marks [Linden and van Doren, 1986; Paz-Ferreiro et al., 2008], which 

is written in the form: 

 

𝛥𝛧(ℎ) =
1

𝑛(ℎ)
∑ |𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)|
𝑛(ℎ)
𝑖=1        (5) 

 

Then, a linear relationship is fitted between 1/ΔZ(h) and 1/h: 

 

1/𝛥𝛧(ℎ) = 𝑎 + 𝑏/ℎ          (6) 

The limiting difference (LD) index is then calculated as 𝐿𝐷 = 1/𝑎. LD has units of length, and 

represents the value of the first-order variance at large lag distances. It is considered as an 

indicator of soil surface roughness, thus adopted in the present study as an additional roughness 

index. 
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In order to negate the effects of the differences that existed in the initial microrelief 

amongst the three runs due to the different timing of the experiments (see Section 2.2.1), and 

compare rainfall-induced changes in relative terms, the results from the rainfall experiments are 

presented in the form of ratios of the roughness indices. More precisely, the RR ratio, defined as 

the ratio of the RR index post-rainfall over the RR index prior to the rainfall (RRpost/RRpre), is 

calculated for each experiment. Semivariograms are plotted under pre- and post-rainfall 

conditions at the ROI to assess the spatial correlation of surface elevations. Along the same lines, 

ratios between pre- and post-rainfall conditions are calculated for the crossover length, the 

variance length scale of the Markov-Gaussian model, and the limiting difference to assess 

changes in microroughness along with the RR ratio.    

 

2.3. Results 

2.3.1. Changes in the RR index 

Based on visual inspection of the DEMs in Figure 2.5b, it is evident that microroughness in the 

splash-dominated region increases with rainfall. Table 2.1 summarizes the results of this study 

along with results from other studies focused on smooth surfaces, documenting the RR index 

values before and after the rainfall events, the cumulative rainfall, as well as the associated RR 

ratio. The present study, along with Vázquez et al. [2008] and Zheng et al. [2014]  generally 

report an increase in RR with rainfall under the conditions examined.  The Vázquez et al. (2008) 

study, however, differs from the present study and Zheng et al. [2014] in that it examined 

roughness evolution under successive rainfall events per run.  Only the RR data collected on 

completion of the last rainfall succession in each run conducted by Vázquez et al. [2008] are 

presented in Table 2.1. The final RR values after the last rainfall succession were selected for 

being the more closely comparable to the steady-state conditions examined herein. Although 

both Vázquez et al. [2008] and Zheng et al. [2014] recorded an increase in RR with rainfall, they 

had significantly lower values of RR ratio than the present study. Τhis could be due to several 

factors including, but not limited to, lower applied rainfall intensity and amount, the initial 

surface microroughness, and different soil conditions.  

Other studies not included in Table 2.1 have also shown increasing trends of roughness 

with rainfall, as quantified with the use of different indices. For instance, Huang and Bradford 

[1992] calculated the semivariograms for different surfaces and used fractal and Markov- 
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Table 2.1: Summary of the rainfall induced change in the RR index in the experimental tests of this 

study, as well as in experiments reported in the literature. Smooth conditions refer to initial 

microroughness less than 5 mm. Cumulative rainfall amounts are also provided. 

Study Rainfall 

Intensity 

(mm/h) 

Cumulative 

Rainfall 

(mm) 

Soil Type Pre-rainfall 

RR (mm) 

Post-rainfall 

RR (mm) 

RR 

Ratio 

Present study 30 150 silty clay loam 1.17 1.57 1.34 

60 300 silty clay loam 0.42 1.48 3.55 

75 375 silty clay loam 0.32 1.46 4.56 

Vázquez et 

al., [2008]* 

30 85 silt loam 3.39 3.70 1.09 

30 50 silt loam 3.00 2.13 0.71 

65 195 silt loam 4.72 5.10 1.08 

Zheng et al., 

[2014] 

40 ~60 silty clay loam 2.01 2.35 1.17 

90 ~135 silty clay loam 2.40 2.68 1.12 

* The Vázquez et al. [2008] study looked at RR evolution under successive rainfall events, unlike the other two studies.  Post-

rainfall RR data presented  for Vázquez et al. [2008] are those that were determined on completion of the last rainfall succession 

in each experiment.  

 

 

 

Gaussian parameters to quantify the roughness. Markov-Gaussian analysis showed a relative 

increase in the roughness parameter for a surface of low initial roughness. Finally, Rosa et al. 

[2012] introduced the Roughness Index, which is estimated from the semivariogram sill (i.e., the 

upper value where the semi-variance levels out), in order to quantify roughness, and observed an 

increase with rainfall under low initial roughness conditions. That increase was attributed to the 

fragmentation of aggregates and clods to smaller aggregates but was not linked to smooth bare 

soil surface conditions.  Overall, the experimental evidence suggests that the interaction between 

rainfall and smooth soil surfaces can lead to an increase in microroughness.   

The results outlined above for the use of the RR index as a descriptor of change in 

microroughness have been based on the assumption that there is no statistically significant 

spatial correlation in elevation readings between neighboring locations at the ROI.  This 

condition was indeed not violated due to the choice in ROI.  The following subsection outlines 

and discusses the results of the semivariogram analysis and additional indices used to confirm 

the validity of the assumption and their comparison with the RR index method.      

 



32 

 

2.3.2. Changes in alternative roughness indices  

Semivariograms and first-order variograms were obtained from geostatistical analysis 

and plotted at four different angles – 0°, 45°, 90°, and 135°– with respect to the downslope 

direction Since the action of rainfall is isotropic and adds no systematic trend along any 

direction, no significant differences were expected between semivariograms. A nonparametric 

test for spatial isotropy was performed per Guan et al. [2004] using the public domain R 

statistical package with the ‘spTest’ library. The spatial isotropy hypothesis was confirmed (p < 

0.05). Thus, no bias was determined in taking any direction to calculate the semivariograms and 

the associated crossover lengths.  

The semivariograms calculated at the ROI were chosen to be in the downslope direction 

at an angle of 0° and are presented for each experiment in Figure 2.6. The vertical dashed lines 

designate the lag distances above which the spatial autocorrelation of the elevations is not 

statistically significant. These lag distances are approximately 10 mm, so the selected 200 mm 

window size of the ROI is almost 20 times greater than the spatial autocorrelation range. This 

implies that the window size of the ROI falls at the scale of the semivariogram sill (which is 

defined as the near-constant value of semivariance at large lag distances where the 

semivariogram levels out – see horizontal dashed lines in Figure 2.6). RR is directly related to 

the semivariogram sill [e.g., Vázquez et al., 2005; Vermang et al., 2013], therefore it can be 

considered independent of the selected window size, given that the latter far exceeds the spatial 

autocorrelation range. 

Figure 2.6 shows that the post-rainfall sills are greater than their corresponding pre-

rainfall values. Also, the difference in sills between pre- and post-rainfall conditions for the 30 

mm/h precipitation intensity is much lower than those of the 60 mm/h and 75 mm/h events.  

These observations are in accordance with visual inspection of the surfaces as well as with the 

results noted earlier for the RR ratio (see Table 2.1). Complete agreement between the trends of 

the RR index, the semivariogram sill, and visual inspection of the surfaces justify the use of the 

RR index as a representative and unbiased descriptor of microroughness. 
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Figure 2.6:  Semivariograms at the region of interest for the three experimental tests, under pre- 

and post-rainfall conditions. Horizontal dashed lines indicate the semivariogram sills and vertical 

dashed lines indicate the lag distance above which the spatial autocorrelation of the elevations is 

negligible. 

 

 

Table 2.2 lists the crossover length, the Markov-Gaussian variance length scale and the 

limiting difference indices for the three experimental tests, and their relative change after the 

rainfall. These indices show an increase with rainfall that is of the same magnitude and trend as 

the RR index and crossover length, and provide a supplemental analysis about the role of rainfall 

intensities on the relative increase in roughness. Our findings were compared against those 

reported in the literature. Huang and Bradford [1992] studied the evolution of soil surface 

roughness with the Markov-Gaussian variance length scale, and saw an increase of 6% in 

roughness for a surface of low initial roughness. Moreover, Paz-Ferreiro et al. [2008], who used 

the LD index to quantify soil surface roughness, also recorded a 10% increase in the LD index 

for a low roughness conventional tillage soil surface. The higher relative increase in roughness 

seen in our study (Table 2.2) compared to other studies is attributed to the lower initial roughness 

conditions in addition to different soil types and management.  

Overall, the results provided suggest that all the indices employed in this study may be 

used interchangeably to characterize rainfall induced changes in soil surface roughness, and can 

capture an increase in soil surface roughness, especially for smooth soil surfaces. For these 

microroughness scales, the relative increase in roughness is also shown to increase with rainfall 

intensity under the conditions examined herein.  
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Table 2.2: Summary of the rainfall induced change in the crossover length, the Markov-Gaussian 

variance length scale and limiting difference indices for the experimental tests of this study. 

Index Rainfall 

Intensity 

(mm/h) 

Cumulative 

Rainfall 

(mm) 

Pre-

rainfall 

value 

Post-

rainfall 

value 

Index 

Ratio 

l (mm) 30 150 0.71 0.73 1.03 

60 300 0.09 0.20 2.13 

75 375 0.15 0.39 2.56 

σ (mm) 30 150 1.19 1.63 1.37 

60 300 0.42 1.52 3.62 

75 375 0.31 1.43 4.56 

LD (mm) 30 150 0.79 0.87 1.10 

60 300 0.26 0.87 3.39 

75 375 0.15 0.71 4.84 

 

 

 

2.4. Discussion and Conclusions 

Many studies have examined the response of rough surfaces to rainfall, and have reported 

a decay of roughness. Few studies have assessed microscale variation of smooth surfaces in 

response to rainfall under controlled conditions. The experiments presented herein were designed 

to help us decipher the role of rainsplash on RR for smooth surfaces with initial microroughness 

on the order of 2 mm by isolating the role of other factors such as runoff, variable water content, 

bare soil surface, and soil texture, among others. Our results show a consistent increase in 

roughness under the action of rainfall, with an overall agreement between all the roughness 

indices examined herein in terms of trend and magnitude. Our findings are consistent with 

findings of other studies that have examined length scales less than 5 mm and suggest the 

possible existence of a characteristic roughness threshold below which RR is expected to 

increase due to the action of rainfall.  The value of this threshold may depend on the specific soil 

and rainfall conditions.  A caveat of our study is that due to the limited range of conditions 

examined herein more experiments are needed to further solidify the conditions under which RR 

is expected to increase under rainfall action.  An outcome of this study is the awareness that 

within landscape regions where smooth surfaces are present, an increase in RR may occur during 

the early part of the storm where rainsplash action is more important than runoff.  Another 
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outcome is the fact that the mere action of rainfall cannot completely smoothen out a decaying 

soil surface roughness. Thus, localized microroughness residuals will always remain at locations 

where the action of runoff is low or absent.  This limiting threshold needs to be accounted for in 

upland models. 

This study suggests that the effects of the interaction between rainfall and a soil surface 

can be different for smooth and rough surfaces, and highlights the need for a better 

understanding of the interaction due to its potential impact on hydrologic response. This potential 

impact is demonstrated with the following established pedotransfer function for the effects of 

soil crusting, roughness, and rainfall kinetic energy on the bare hydraulic conductivity, Kbr, 

[Risse et al., 1995]: 

 

𝐾𝑏𝑟 = 𝐾𝑏[𝐶𝐹 + (1 − 𝐶𝐹)𝑒−𝐶.𝐸𝑎(1−𝑅𝑅𝑡/𝑅𝑅𝑡−𝑚𝑎𝑥)]      (7) 

 

where 𝐾𝑏 is the baseline hydraulic conductivity, CF is the crust factor, C is soil stability factor, 

Ea is the cumulative rainfall kinetic energy since the last tillage, RRt is random roughness height, 

and RRt-max is the maximum random roughness height.  Using the following typical values for the 

study site based on literature [Flanagan et al., 1995; Chang, 2010]:  Ea = 10,000 J/m², C = 

0.0002 m²/J, RRt-max = 40 mm, the percentage change in bare hydraulic conductivity for 

increasing roughness can be estimated for an initial RRt value of 2 mm and minimal CF factor.   

Performing the analysis for the range of random roughness ratios observed in this study (~1.3 – 

4.5), the percentage increase in hydraulic conductivity is found to range between 5% –42%, 

which will have a significant impact on rainfall-runoff partitioning.   

It is recognized that the soil preparation method in our study could have introduced some 

bias to the soil properties such as aggregate size distribution, compaction, and aggregate stability.  

Nonetheless, for the purpose this study was designed for, this preparation method ensured 

consistency in the initial and final roughness states, as confirmed by replications of our 

experimental runs.  It is also recognized that drier, silty type soils may not exhibit the increase in 

RR shown here.  Further, the role of sealing may be important on roughness development under 

bare soil conditions and needs further examination. Soil water retention characteristics of the 

soils under sealing and its implication to RR must be considered [Saxton and Rawls, 2006]. 
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Finally, the role of successive storm events on changing roughness for smooth surfaces is not 

covered in this study and needs to be examined. 

The exact mechanisms leading to increase in roughness remain unknown and are not the 

focus of this study. However, changes in roughness during a storm event have been attributed to 

compression and drag forces from the raindrop impact on the soil, angular displacement due to 

rainsplash, aggregate fragmentation, and differential swelling [Al-Durrah and Bradford, 1982; 

Warrington et al., 2009; Rosa et al., 2012; Fu et al., 2016].  Regions exhibiting different median 

raindrop diameters may experience different soil surface roughness evolution due to different 

aggregate fragmentation and rain splash effects [Warrington et al., 2009; Rosa et al., 2012; Fu et 

al., 2016].  Future research should explore these mechanisms. 
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Chapter 3 

Flow Resistance Interactions on Hillslopes with Heterogeneous Attributes:  

Effects on Runoff Hydrograph Characteristics 
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Abstract 

An improved modeling framework for capturing the effects of space and time-variant 

resistance to overland flow is developed for intensively managed landscapes.  The framework 

builds on the WEPP model but it removes the limitations of the “equivalent” plane and time-

invariant roughness assumption.  The enhanced model therefore accounts for spatiotemporal 

changes in flow resistance along a hillslope due to changes in roughness, in profile curvature, 

and downslope variability.  The model is used to quantify the degree of influence – from 

individual soil grains to aggregates, “isolated roughness elements”, and vegetation – on overland 

flow characteristics under different storm magnitudes, downslope gradients, and profile 

curvatures.  It was found that the net effects of land use change from vegetation to a bare surface 

resulted in hydrograph peaks that were up to 133% larger.  Changes in hillslope profile curvature 

instead resulted in peak runoff rate changes that were only up to 16%.  The stream power 

concept is utilized to develop a taxonomy that relates the influence of grains, isolated roughness 

elements, and vegetation, on overland flow under different storm magnitudes and hillslope 

gradients.  Critical storm magnitudes and hillslope gradients were found beyond which the 

effects of these landscape attributes on the peak stream power were negligible.  The results also 

highlight weaknesses of the space/time-invariant flow resistance assumption and demonstrate 

that assumptions on landscape terrain characteristics exert a strong control both on the shape and 

magnitude of hydrographs, with deviations reaching 65% in the peak runoff when space/time-

variant resistance effects are ignored in some cases.   

 

 

3.1. Introduction 

Overland flow is the main agent for the transport and delivery of water and soil particles 

[e.g., Kirkby, 1988], dissolved chemicals as well as sediment-borne pollutants from hillslopes 

into the stream networks [e.g., Lal and Stewart, 1994; Loperfido et al., 2010].  In landscapes, 

spatially heterogeneous hillslope attributes such as soil surface characteristics, surface 

cover/vegetation, and downslope profile curvature, contribute to landscape bed surface 

roughness.  During a storm event, this roughness impacts resistance to flow and plays an 

important role in the generation and transport mechanisms of surface runoff, sediment delivery 
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pathways, and nutrient distribution [e.g., Woolhiser et al., 1989; Flanagan and Nearing, 1995; 

Wicks and Bathurst, 1996; Wang and Hjelmfelt, 1998; Katul et al., 2011].   

Figure 3.1 presents representative types of landscape attributes that are ubiquitous in 

intensively managed landscapes.  These include “microrelief variations” from individual soil 

grains to aggregates (less than 2 mm) and “isolated roughness elements” (stones and clods ~2-

100 mm in size), as well as vegetation [Römkens and Wang, 1986].  In addition to these 

attributes, features such as oriented roughness (~100-300 mm) that are formed from tillage 

implements can significantly affect overland flow and pathways of water and sediment delivery.  

Other landscape features such as profile curvature (uniform, concave or convex), hereafter 

referred to as macro-scale features, can also further affect overland flow and its distribution 

[Reike-Zapp and Nearing, 2005].   

Different landscape attributes can in turn create different types of overland flow 

resistance [Shen and Li, 1973; Abrahams et al., 1992; Abrahams, 1998; Lawrence, 2000; Gomez 

and Nearing, 2005; Hu and Abrahams, 2006].  The types of flow resistance associated with the 

landscape attribute roughness are presented in Figure 3.2 and include skin, rainfall-induced, 

form, and wave resistance, which are briefly defined hereafter.  Skin resistance refers to the 

resistance offered by bed surface grain and the submerged sides of isolated roughness elements 

(i.e., clods, stones). Form resistance is prevalent where the height of bed roughness elements is 

comparable to the runoff depth.  That is, h/Dr ≤ 1, where h/Dr is defined as the relative 

submergence, h is the approaching flow depth and Dr denotes the isolated element tip height 

[Lawrence, 1997; Papanicolaou et al., 2011].  The obstruction to the flow in the case of a 

roughness element or an array of roughness elements results in complex, highly varied overland 

flow patterns that yield energy dissipation through eddy separation, localized increases in shear 

stress, and secondary currents [Abrahams et al., 1992; Clifford et al., 1992; Nikora et al., 2001; 

Lacey and Roy, 2008; Papanicolaou, 2012].  In addition, partially submerged roughness 

elements can introduce significant wave resistance associated with the deformation of the water 

surface around these elements under certain ranges of flow [Abrahams et al., 1992].  

The aforementioned types of flow resistances vary in space and time since they arise 

from the interactions between the landscape attributes and overland flow depth/velocity, which 

change in space and time over the course of a storm event in response to storm patterns and 

changes in attribute resistance as the flow conditions change [Abaci and Papanicolaou, 2009;  
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Figure 3.1:  Images illustrating the various types of roughness encountered in Intensively Managed 

Landscapes that are examined in this study: (a) Grain roughness and raindrop impact; (b) Isolated 

roughness elements; and (c) Vegetation.  All images are from the Clear Creek Watershed, IA, and 

the Upper Sangamon River Basin, IL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Definition sketch of the types of flow resistance associated with the various roughness 

types 
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Abban et al., 2017].  Although several studies have examined the need to account for the 

space/time-variant resistance offered by individual roughness [e.g., Shen and Li, 1973; 

Lawrence, 2000; Katul et al., 2011], none have examined the need to account for their collective 

effects and interplay with profile curvature on hydrograph properties at the hillslope scale.  Most 

studies still treat the resistances as space/time-invariant from the plot to the hillslope scale and 

further studies are therefore still needed to examine these effects.  It is postulated here that the 

net effects of the space and time varying interactions between landscape attributes and overland 

flow are ensemble averaged (i.e., integrated over space and time) at the hillslope outlet, where 

the effects are depicted through changes in the shape, peak, and modality of the runoff 

hydrograph.  In other words, local scale interactions between the flow and landscape attributes, 

such as grain, isolated roughness elements, and vegetation, further interact with macro-scale 

attributes, such as profile curvature, and through this interaction shape the overall characteristics 

of runoff hydrographs at the hillslope outlet [Abrahams, 1998; Lawrence, 2000; Hu and 

Abrahams, 2006; Katul et al., 2011; Thompson et al., 2011].  For example, Young and Mutchler 

[1969] found runoff velocities to be higher in the upper parts of concave plots compared to 

convex plots, due to steeper slopes.  However, whereas runoff velocities on convex plots doubled 

in low-lying positions as the slope steepened, runoff velocities on concave plots decreased 

marginally.  Neibling and Alberts [1979] and Dermisis et al. [2010] concluded that vegetated 

strip length inversely affected runoff velocity, promoting infiltration and reducing runoff 

volumes and sediment yields.  It was also suggested by Dermisis et al. [2010] that there was a 

threshold scale unit beyond which no appreciable changes in runoff and sediment yields was 

observed.  In summary, these studies highlighted the need for more research to identify the 

threshold scale unit where the net effects of the spatiotemporal interactions between different 

landscape attributes and overland flow seize to play a role on runoff characteristics.   

The spatiotemporal interactions of flow with the landscape attributes can also lead to 

other effects such as the manifestation of kinematic shock waves [Iwagaki, 1955; Kibler and 

Woolhiser, 1972; Borah et al., 1980; Hairsine and Parlange, 1986; Schmid, 1990; Luo and 

Harlin, 2003; Huang and Lee, 2009; Costabile et al., 2012].  Borah et al. [1980] provide a few 

examples under which kinematic shock waves have been observed on agricultural catchments.  

They are generated when “fast” moving waves, propagating from an upstream surface, “catch-

up” with “slower” moving waves propagating on a downstream surface with different roughness 



47 

 

features, resulting in the steepening of the wave front [Miller, 1984].  The explicit modulation of 

shock waves is currently lacking in most overland flow models [e.g. Iwagaki, 1955; Kibler and 

Woolhiser, 1972; Borah et al., 1980; Croley and Hunt, 1981; Hairsine and Parlange, 1986; 

Schmid, 1990; Tseng, 2010; Papanicolaou et al., 2010].  A space/time-invariant approximation 

of flow resistance is commonly adopted that inhibits shock wave resolution.  In this 

approximation, a spatially averaged roughness resistance over the hillslope is considered and the 

resistance is treated as constant during a storm event.  However, the explicit modulation of shock 

waves is needed because variations in the surface roughness in overland flows are usually of the 

same order of magnitude as the water depth and can lead to sharp flow gradients, thereby 

affecting hydrograph propagation, peakiness and modality [e.g., Zhang and Cundy, 1989; Jirka 

and Uijttewaal, 2004; Nikora et al., 2007].   

It is hypothesized here that the net effects of space/time-variant resistance to overland 

flow under different types of landscape attributes (i.e., grain roughness, isolated roughness 

elements, and vegetation) can lead to different shape and modality hydrographs at the hillslope 

outlet.  It is also hypothesized that there exists a critical storm magnitude and hillslope gradient 

beyond which the net resistance effects of a surface roughness type on the runoff hydrograph at 

the hillslope outlet will be relatively insignificant for a given hillslope length.  

Consequently, this study undertakes the following specific objectives: (1) evaluation of 

the implications of the space/time-invariant resistance assumption on flow routing; (2) 

examination of the degree of influence of the landscape attributes on runoff hydrograph 

characteristics, and; (3) identification of the critical storm magnitude and hillslope gradient 

where the net resistance effects of a surface roughness type on the hydrograph characteristics 

become negligible.  The study advances our understanding of the net effects of flow resistance 

on hydrographs from hillslopes with heterogeneous landscape attributes, by removing the 

limitation of the space/time-invariant resistance assumption in overland flow routing and 

accounting for the role of kinematic shock waves due to roughness variations.  Profile curvature 

effects are explicitly considered. For the first time, the stream power concept, based on the 

product of the runoff rate and gradient, is used to quantify the degree of influence of the 

attributes under different storm events.   
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3.2. Methodology 

The well-established Water Erosion Prediction Project (WEPP) model [Version 2012.8; 

Flanagan et al., 2007] is utilized for developing and testing our modeling framework.  In the 

current version of WEPP, however, there is a limitation in the representation of spatial variability 

of landscape attributes for flow routing through the use of the equilibrium storage concept of Wu 

et al. [1978].   This concept handicaps WEPP’s ability to simulate space/time-variant resistance 

effects on flow on landscapes with spatially variable attributes, including shock wave formation 

and propagation.   

For the purpose of this study, WEPP has been enhanced to remove the aggregated 

roughness restriction. Routing of the flow hydrograph along a cascade of overland flow elements 

(OFEs) is now performed on an “OFE-by-OFE” basis by considering the specific physical and 

geometric properties of each OFE (see Figure 3.3), without aggregating the properties of all the 

OFEs into a single equivalent plane.  In addition, new physically-based resistance formulations 

have been incorporated into WEPP to account for resistance due to grain roughness, isolated 

roughness elements, and vegetation, as well as raindrop impact which can be significant under 

shallow flows [Shen and Li, 1973].  These formulations allow spatiotemporal updates of flow 

resistance during a storm event.  Last but not least, a shock capturing scheme has been 

incorporated for addressing shock formation and propagation.   

Using the enhanced WEPP model, the degree of influence of grain roughness, isolated 

roughness elements, and vegetation on runoff hydrograph characteristics (see hypothesis) is 

examined for different storm events and hillslope gradients.  To identify the critical storm 

magnitude and hillslope gradient where their influence diminishes, the dimensionless stream 

power, Ψ*, defined as the product between the normalized flow rate and normalized hillslope 

gradient (i.e., Ψ* = q*So*, where q* and So* are normalized unit flow rates and slopes, 

respectively, with q* reflecting soil texture and roughness effects, and So* reflecting topographic 

and curvature effects) is related to the dimensionless storm intensity, I*, in the form of a power 

law as follows: 

 

𝛹∗ = 𝑘𝐼∗
𝑙                      (1) 

 

where k and l are coefficients.  The values of k and l are examined for a wide range of intensities  
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Figure 3.3: Illustration of enhanced WEPP model implementation steps for routing overland flow 

over a heterogeneous downslope. 
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and hillslope gradients for each of the attributes to establish its extent of influence in relation to 

the storm magnitude and gradient.  The stream power concept is beneficial for this analysis 

because it combines storm and hillslope characteristics in a single metric that can be readily 

examined. 

The approach described above is based on a set of assumptions, which are provided in 

detail below.   

 

3.2.1. Modeling assumptions 

The following assumptions are made for routing overland flow on an OFE-by-OFE basis 

and for examining the degree of influence of the landscape attributes:  

1. A hillslope can be represented by a mosaic of discrete OFEs to adequately account for 

spatial heterogeneity in downslope profile curvature, surface roughness, and vegetation 

(see Figure 3.3).  The number of OFEs is defined by the user to reflect the degree of spatial 

variability of the physical properties along the hillslope.  It is assumed that rainfall excess 

can be routed sequentially from OFE to OFE from the hillslope summit to the outlet.  For 

example, in Figure 3.3, the rainfall excess, vi-1, is routed along OFEi-1 to produce a 

hydrograph at the downstream end of OFEi-1.  This calculated hydrograph is then used as 

an upstream boundary condition for the downstream overland flow element, OFEi, and is 

then routed along with the rainfall excess vi from OFEi to OFEi+1.  

2. Infiltration rate, if, calculations performed per OFE using the Green-Ampt Mein-Larsen 

model (see Equation A1), rather than for a single equivalent plane as is originally done in 

the current WEPP version, can adequately resolve runoff generation on heterogeneous 

hillslopes [Borah et al., 1980]. Rainfall excess rate, v, is calculated for each OFE with 

adjustments being made for the effects of roughness on the depression storage.  Before if 

and v are calculated, the rainfall rate, r, is also adjusted for losses due to canopy and 

surface residue cover interception.   

3. The kinematic wave approximation (see Equations A1 and A2) is valid under the overland 

flow conditions examined (i.e., SoLo/hoFo² ≥ 20 and SoLo/ho ≥ 5 for low Froude number 

flows [Morris and Woolhiser, 1980]; where So is the gradient, Lo is the length of the plane, 

ho is the normal depth and Fo is the Froude number based on normal flow).  This has been 

found to be a good assumption for most overland flows [e.g. Ponce et al., 1978; 
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Govindaraju et al., 1988; Singh, 1994; Singh, 2017] and is widely adopted in existing 

hillslope models.   

4. The depth-discharge coefficient, α = CSo
0.5 (see Equation A2), calculated for each OFE 

based on its gradient, So, and Chezy coefficient, C, is a time varying coefficient that can 

adequately represent time varying resistance effects through OFE-specific friction factor 

functions related to C.  The friction factors, which represent the different types of 

roughness (see Section 3.2.2), are updated at the end of each computational time step to 

reflect current flow conditions. 

5. The contributions of different types of flow resistances (friction factors) can be added to 

determine the overall resistance to overland flow (i.e. the equivalent friction factor, feq).  

While some studies have considered different forms of expressions for determining the 

overall resistance [e.g. Hirsch, 1996], other studies have found the additive assumption of 

roughness components to be a good approximation of the underlying physics [e.g. Gilley 

and Weltz, 1995; Hu and Abrahams, 2006]. 

6. The effects of the surface tension on the friction factors are minimal and can be ignored for 

the depth ranges considered here [Papanicolaou et al., 2011]. 

 

3.2.2. Friction factor relations for capturing the interdependency of roughness and flow 

The semi-theoretical relations below have been incorporated into the enhanced WEPP 

model to describe skin, form, wave, and vegetation resistance.  The effects of soil grains and 

raindrop impact on flow resistance are considered for two Reynolds number, Re, regimes 

(Re=q/ν, where q is the unit flow discharge and ν is the kinematic viscosity).  For flows with 

Re<1000, Shen and Li [1973] provide the following formula based on laboratory rainfall 

experiments to calculate skin resistance, fs, due to grains and raindrops, as function of the 

Reynolds number, the rainfall intensity (m/s), I,: 

 

),(

407.0)(3393
)(

thRe

ktI
t

s
f o

                 (2) 

 

where ko is a friction coefficient.  Values of ko have been tabulated by Woolhiser [1975] for 

different roughness surfaces. 
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For flows with Re>1000, the skin resistance is represented with the formula by Hirsch 

[1996] (also adopted by Liu and Singh [2004] and Hu and Abrahams [2006]): 

 

45.0),(

19.3
)(

thRe
t

s
f 

  

(3)

 

 

The form friction factor, ff, is introduced based on the formula proposed by Abrahams 

[1998], which was derived from laboratory flume experiments performed by Lawrence [1997] on 

beds covered with protruding cylindrical elements with roughness concentrations, or packing 

densities, varying between 10 - 100%.  The formula accounts for the role of relative 

submergence, and concentration of roughness elements in an array as follows [Abrahams, 1998]: 
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D
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Ctf

)(16
)(   (4) 

 

where Cd, Dr and  are the drag coefficient (-), diameter (m) and concentration of the roughness 

elements (-), respectively.   

When h/Dr < 1, waves are introduced into the flow by the roughness elements.  In this 

case an additional friction factor is incorporated that depends on the Froude Number 

Fr=q/(gh³)0.5.  For flows with Fr > 0.5, the wave friction factor, fw, developed by Hu and 

Abrahams [2006] is incorporated in the model as follows: 

 

5.0),(
32.3)(

thFr
tfw


  (5) 

 

When Fr < 0.5, the effects of wave roughness are assumed to increase proportionally from 0 to 

the maximum value of fw at Fr=0.5 [Abrahams and Parsons, 1994]. 

A semi-empirical equation for the friction factor due to shallow vegetated flows, fveg, is 

introduced based on the work by Katul et al. [2011] and Thompson et al. [2011] as follows: 

 



53 

 













































cc

cc

veg L

th

L

h

th

L

tf

)(

2

1
exp1

2
exp

)(
2

)(

8

22 
   (6) 

 

where  is the momentum absorption coefficient estimated as )33.0,135.0min( chLAI ; hci 

(m) is the canopy height; and Lc (m) is the adjustment length scale equal to (Cd LAI/hc)
-1, where 

LAI (m²/m²) is the leaf area index defined as the one-sided green leaf area per unit ground surface 

area. 

Finally the overall friction factor, feq, which accounts for the collective effects of the 

different landscape attributes, is approximated as follows (see assumption 5 in Section 3.2.1): 

 

vegwfseq fffff   (7) 

 

where fs, ff, fw, and fveg are estimated from equations (1)-(5) above. 

 

3.2.3. Shock-capturing scheme for overland flow routing 

The Total Variation Diminishing (TVD) MacCormack scheme is adopted in WEPP 

because it is relatively simple to implement and has been documented to handle the formation 

and propagation of shocks without violating the continuity equation.  The scheme is a finite 

difference scheme of second order accuracy capable of rendering solutions oscillation free [e.g., 

Davis, 1984; Garcia-Navarro et al., 1992; Mingham et al., 2001; Papanicolaou et al., 2010].  It 

is suitable for implementation in an explicit time-marching algorithm and involves a two-step 

procedure known as the “predictor-corrector” algorithm [Garcia-Navarro et al., 1992].  To solve 

the 1-D KWE (see Appendix A), the computational domain, represented by each OFE (see 

Figure 3.3), is first discretized as xi = iΔx and tj = jΔt, where i and Δx denote space and the size 

of the mesh, respectively, and j and Δt denote time and the time step, respectively.  Then, the 

TVD-MacCormack scheme is applied as follows [MacCormack, 1969, 1985; Tseng, 2010]: 
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Corrector Step: 
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             (9) 

 

where the symbols (~) and (≈) denote predictor and corrector steps, respectively, h denotes the 

flow depth, q is the unit flow discharge, and v is the rainfall excess rate. 

A dissipative term, denoted as TVDi and defined as follows, is used to provide an 

oscillation free solution in the presence of large gradients [Mingham et al., 2001]: 

 

   111   iiiiiii hhGrhhGrTVD              (10) 

 

where, 
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where 
i  is the flux limiter function given as: 
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and
ir  is the ratio of successive gradients equal to  
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In equation (10a), the function 
iCf is dependent on the local courant number, 

iCr , and is given as: 
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The courant number,
iCr , is calculated as follows: 

 

x

t
cCr ii



              (10e) 

 

where ci is the wave celerity equal to 5.05.0
05.1 ii hSC .  The TVD-MacCormack scheme must satisfy 

the Courant-Friedrichs-Lewy (CFL) criterion at each cell in order to be stable.  The Δt is selected 

to satisfy the CFL criterion defined as: 
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At the end of a time step, the final value for the cross-sectional flow depth is determined 

by averaging the predicted and corrected values (equations (7) and (9)) and adding the 
iTVD  

term: 
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The final flow discharge is then computed as follows: 

 

5.111   j

i

j

i hq                   (15) 

 

where the α coefficient, which is a function of the feq, is updated at the end of each time step.    

 

3.3. Experiments and Modeling Exercises 

This section is organized as follows.  First, model validation exercises are presented 

demonstrating the enhanced WEPP’s ability to simulate the net effects of space/time-variant flow 

resistance on the runoff hydrograph using observed data from several field and laboratory 

experiments.  These experiments have been performed by various investigators, including the 
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authors, for different surface roughness (grain, isolated roughness elements, and vegetation) 

under different sets of storm and hillslope gradient/curvature conditions.   

Following the model validation, observations from a hillslope-scale field experiment 

performed by Helmers et al. [2012] are used to examine the effect of the space/time-invariant 

resistance assumption on runoff hydrograph prediction.  This exercise compares the performance 

of the enhanced WEPP (space/time-variant resistance) and the original WEPP (space/time-

invariant resistance) in simulating an observed runoff hydrograph from a hillslope with vegetated 

filter strips and an S-shaped profile curvature.  

Last but not least, the Helmers et al. [2012] experiment is used as a basis to perform 

numerical experiments to examine the influence of grain roughness, isolated roughness elements, 

and vegetation on runoff hydrographs under different storm magnitudes and hillslope gradients.  

These experiments also compare of the effects of the individual roughness types.  Emphasis is 

first placed on the net influence of the roughness types on runoff hydrograph characteristics at 

the hillslope outlet for three storm events of different rainfall amounts (i.e., small to large 

storms),  as well as for hillslopes of three different gradients (i.e., mild to steep slopes).  Then, 

building on the findings, the critical storm magnitudes and hillslope gradients beyond which the 

influence of the roughness types becomes negligible are identified.  

 

3.3.1. Model Validation 

Four validation cases were used to test the model’s ability to capture the integrated 

effects of the space/time-variant flow resistance on the runoff hydrograph in the presence of the 

different landscape attributes; Case 1 examined the effects of grain roughness on a bare surface 

using measurements from field experiments by Abban et al. [2017]; Case 2 considered the 

effects of isolated roughness elements via laboratory flume experiments performed by Jomaa et 

al. [2012]; Case 3 evaluated the effects of vegetation and patchiness using field experiments by 

Neibling and Alberts [1979], and; Case 4 examined the effects of concave profile curvature and 

the ability of the model to capture shock formation and propagation using the flume experiments 

performed by Iwagaki [1955].  The details of each of the cases and relevant model inputs are 

summarized in Table 3.1. 
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Table 3.1:  Model parameters for validation Cases 

Model parameters 

Case 1: Bare hillslope I = 60 mm/hr; So = 9% ; ko = 500 

Case 2: Isolated roughness elements I = 74 mm/hr;  So = 9%; ko = 500; Cd = 1.0; Dr = 0.06 m; λ = 0.2 

Case 3: Vegetation Patchiness I = 74 mm/hr;  LAI = 1; hc = 0.1 m; Cd = 1.0 

Case 4: Curvature ql,ofe1 = 0.108 cm/s; ql,ofe2 = 0.064 cm/s; ql,ofe3 = 0.08 cm/s;  

So,ofe1 = 2%; So,ofe2 = 1.5%; So,ofe3 = 1%; 

 

 

In each validation case, the performance of the model was examined by comparing the 

numerically computed hydrographs at the hillslope outlet with the field or laboratory 

observations.  The comparisons were made with the Nash-Sutcliffe model efficiency coefficient 

(Ef) proposed by Nash and Sutcliffe [1970] as follows: 
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where j is time counter, n is the number of data points, O is the observed (or measured) flow 

discharge, M is the modeled (or simulated) discharge, and O  is the time-averaged observed 

discharge of the event.  Ef provides a measure of a model’s performance over the course of an 

event in comparison to the O  of the event.  An Ef value of 1.0 corresponds to a perfect agreement 

between the observed and simulated flow hydrographs whereas an Ef value of 0.0 shows no 

agreement.   

 

3.3.1.1.Case 1: Effects of bare surface 

Abban et al. [2017] performed field experiments to investigate space/time-variant 

resistance effects on overland flow and soil erosion under bare surface conditions.  The 

experiments were performed on uniform-profile plots that had a gradient of 9% and were 

approximately 7.5 m long by 1.2 m wide.  A uniform rainfall intensity of 60 mm/hr was applied 

over the plots for a period of 5 hrs using rainfall simulators.  Flow rate measurements were taken 
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at the outlet at regular time intervals using a v-notch weir.  The measurements were taken during 

the rising limb phase of the hydrograph and at steady state.  No measurements were taken during 

the falling limb phase of the hydrograph. The soil type was silty loam.  

Figure 3.4a provides a comparison of the measured and simulated flow hydrographs for 

one of the experimental runs.  The figure illustrates very good agreement overall between the 

measured and enhanced WEPP simulated volumetric runoff rates, with Ef ≈ 0.91.  The simulated 

time to runoff initiation was ~5.0 min versus the ~7 min observed time. The figure also compares 

the performance of the enhanced and original WEPP models.  The primary difference between 

the original WEPP and enhanced WEPP predicted hydrographs is seen in the rising limb. The 

rising limb in the original WEPP leads both observed and enhanced WEPP results by up to ~4 

mins.  This is because the original WEPP uses a fixed friction factor value, so at low flows it will 

tend to underestimate the flow resistance whereas at high flows it will overestimate the flow 

resistance.   

 

3.3.1.2.Case 2: Effects of isolated roughness elements 

Jomaa et al. [2012] performed laboratory experiments in a 2.2% slope, 6 m × 1m flume 

to investigate the effects of rock fragments coverage on overland flow and soil erosion.    The 

experimental scenario simulated herein had a 20% coverage of isolated roughness elements 

(fluvial rock fragments) approximately 6 cm in diameter.  Rainfall was applied at 74 mm/hr 

resulting in low submergence conditions.  The measurements were only presented for the rising 

limb and steady state phases of the hydrograph.   

Figure 3.4b provides a comparison of the flow hydrographs between the measured and 

simulated data.  The enhanced WEPP and observed hydrographs illustrate good agreement, 

overall, with Ef ≈ 0.75.  The simulated time to runoff initiation was ~9.0 min versus the ~8.3 min 

observed during the flume experiments.  For this case, the original WEPP and enhanced WEPP 

hydrographs are nearly identical.   This is to be expected.  At low flows, friction due to grain 

roughness is dominant.   As the flow depth increases, friction due to grain roughness drops (see 

Eqn. 2).  However, this drop in friction is counteracted by an increase in friction due to form 

roughness as the relative submergence of the isolated roughness elements increases (see Eqn. 4).  

The net effect of these balancing interactions is a fairly constant friction factor along the length 

of the plot considered herein.   
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Figure 3.4: Validation of the enhanced WEPP model’s ability to capture the effects of the 

interaction between the landscape attributes and overland flow on the runoff hydrograph for (a) a 

bare surface (b) a surface with isolated roughness elements (c) a surface with vegetation patchiness, 

and (d) a concave hillslope profile.  The model simulations are compared to observed data from 

field or laboratory experiments. 

6.1 m ×3.6 m plot 

7% gradient 

74 mm/hr intensity 

(a) 

7.5 m ×1.2m plot 

9% gradient 

60 mm/hr intensity 
(b) 

6.0 m ×1.0 m flume 

2.2% gradient 

74 mm/hr intensity 

(c) (d) 
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3.3.1.3.Case 3: Effects of vegetation patchiness 

Neibling and Alberts [1979] performed experiments on 6.1 m × 3.6 m field plots with 

gradient of 7% and a specified length of vegetation strip at the base of the plot.  Their experiment 

with a vegetation strip length of 2.45 m is examined herein.  Rainfall was supplied for about 1 hr 

at an intensity of 74 mm/hr.  The calibrated flume captured runoff rates during the rising limb, at 

steady state, and during the falling limb of the hydrograph.   

Figure 3.4c compares the measured and simulated flow hydrographs.  As seen, there is 

very good agreement between the measured and enhanced WEPP simulated data which is in 

accordance with the Ef ≈ 0.87.  The simulated time to runoff was ~26 min whereas the observed 

time to runoff was ~30 min.  The original WEPP overestimated the time to runoff initiation (~6 

mins) and underestimated runoff rates.  The spatial averaging of roughness effects impacts the 

ability to predict rainfall excess rates, as well as travel times that arise from the vegetation 

patchiness.  On the other hand, the enhanced WEPP, which performs simulations on OFE-by-

OFE basis, was better able to capture the different rainfall excess rates on the vegetated and bare 

surfaces, as well as the interaction between runoff from the two surfaces. 

 

3.3.1.4.Case 4: Effects of curvature 

The notable laboratory experiments of Iwagaki [1955] are employed herein to test the 

enhanced WEPP’s ability to capture the effects of changes in the gradient along the downslope 

as well as shock formation and propagation on the runoff hydrograph at the outlet. The 

experiments were performed in a 24 m × 0.196 m flume.  No rain was applied in these 

experiments.  Water instead was supplied laterally for a duration of 10s in the flume at 0.108 

cm/s, 0.0638 cm/s, and 0.08 cm/s, respectively, from top to bottom, at three sections 8 m in 

length each.  The flume bed was impermeable, with respective gradients of 2%, 1.5%, and 1% 

for the three sections.   

A comparison between the observed and simulated hydrographs is provided in Figure 

3.4d.  The Ef between the observed and enhanced WEPP simulated hydrographs is ~0.88, 

indicating very good agreement between them.  A sharp increase in runoff rate is noted in the 

observed hydrograph around 23 s, depicted by the near vertical gradient in the rising limb.  

Iwagaki noted that this increase was due to a shock wave that had formed when faster upstream 

waves caught up with slower downstream waves generating steep wave fronts that propagated to 
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the outlet.  As also shown in the figure, the original WEPP model is unable to capture both the 

peak runoff rate and the time to peak.  The peak is ~25% less and the time to peak is ~5 s slower.  

This is because the original WEPP model uses an average hillslope gradient to route the flow 

downslope.  Hence the influence of the concave curvature, where waves from upslope travel 

faster and catch up with downstream waves is not captured.  The enhanced WEPP model, on the 

other hand, captures these dynamics and is able to better match the observed data. 

 

3.3.2. Evaluation of the space/time-invariant resistance assumption for representing the 

interaction betweeen the landscape attributes and flow. 

To examine the implications of the space/time-invariant resistance assumption, runoff on 

a hillslope in the Walnut Creek Watershed, IA, observed by Helmers et al. [2012] was simulated 

using both the enhanced and original WEPP models.  A depiction of the examined hillslope (plan 

and cross-sectional views) is provided in Figure 3.5a and Figure 3.5b.  The hillslope had an 

average gradient of 7.7% and a mean length of approximately 250 m.  The management practice 

was a two-year no-till corn-soybean rotation, with three vegetated filter strips positioned at 

different locations along the downslope.  The hillslope comprised silty loam soil.   The simulated 

storm event occurred on 8/8/2010 and yielded ~46 mm of rainfall. 

Figure 3.5c compares the observed runoff hydrograph (red solid line) to hydrographs 

simulated under the space/time-invariant resistance assumption (blue dotted line; original WEPP) 

and the space/time-variant resistance assumption (black dashed line; Enhanced WEPP).  It is 

apparent that the assumption of a space/time-invariant resistance cannot adequately predict the 

peak runoff rate or hydrograph shape for hillslopes with the type of landscape attribute 

configuration examined herein.  The space/time-invariant resistance under-predicts the peak 

runoff rate by as much as ~65% in this case.  On the other hand, the space/time-variant resistance 

well predicts the peak runoff rate and hydrograph shape under these conditions.  The excellent 

agreement between the space/time-variant-resistance-predicted hydrograph and the observed 

hydrograph also suggests that accounting for changes in resistance in space and time is indeed 

able to capture steep gradients in the hydrograph rising limb that arise from rainfall, topographic 

and roughness variability.   
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Figure 3.5:  Implication of the space/time-invariant resistance assumption on flow hydrograph 

prediction.  The figures show, respectively: (a) a plan view of the examined hillslope; (b) a depiction 

of the hillslope cross-section along the downslope, illustrating the profile curvature and vegetation 

patchiness; and (c) the observed vs simulated hydrographs.  The solid red line represents the 

observed hydrograph [Helmers et al., 2012], whereas the dashed black and dotted blue lines 

represent hydrographs that consider space/time-variant resistance (simulated with the enhanced 

version of WEPP) and space/time-invariant resistance (simulated with the original version of 

WEPP), respectively.   

 

 

 

 

(a) (b) 

(c) 
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3.3.3. Evaluation of the degree of influence of landscape attributes on runoff hydrograph 

characteristics 

To decipher the effects of the interplay of grain roughness, isolated roughness, and 

vegetation with runoff volume (Section 3.3.3.1) and hillslope gradient (Section 3.3.3.2), the 

validated enhanced WEPP model of the Walnut Creek hillslope presented in Section 3.3.2 above 

was used as a basis to perform “thought” experiments in which the storm magnitude and 

hillslope gradients were varied to evaluate the runoff hydrograph response.  For each experiment, 

the surface was assumed to consist entirely of grain roughness, isolated roughness elements, or 

vegetation.  Three storm magnitudes were examined that corresponded to rainfall amounts of 23 

mm, 46 mm, and 92 mm (see Figure 3.6).  The hillslope gradients examined were 3.5%, 7%, and 

14% (see Figure 3.7).  Thought experiments were also performed to examine profile curvature 

effects (i.e., concave, uniform, and convex slopes) on the hillslope hydrograph (see Figure 3.8). 

The simulated runoff rates from the experiments are presented in Figure 3.6-Figure 3.8 in 

the form of normalized runoff hydrographs to enable comparison between the different 

roughness types, storm events, hillslope gradient, and curvature scenarios.  In each case, the 

presented hydrographs are normalized using the highest peak runoff rate observed between the 

three roughness types.  The results from these experiments are described below.   

 

3.3.3.1.Effects of the interplay between surface roughness and event magnitude on runoff 

hydrographs 

Figure 3.6a and Figure 3.6b examine the effects of grain roughness, isolated roughness 

elements, and vegetation for the three storm events with rainfall totals of 23mm, 46mm, and 92 

mm, respectively.  The storm distribution in each case is based on the storm from Section 3.3.2.  

The hillslope profile and the average hillslope gradient are the same as those in Section 3.3.2. 

Effects on hydrograph peakiness, spread, and times to peak: Hydrographs on the bare 

surface with only grain roughness were peakier with narrower spreads compared to the other two 

surfaces. Vegetation tended to have a smoothening effect, resulting in less peaky, drawn out 

hydrographs with wider spreads.  Peak runoff rates of 2.7×10-3 m³/s/m (Figure 3.6a), 8.3×10-3 

m³/s/m (Figure 3.6b), and 19.9×10-3 m³/s/m (Figure 3.6c) were observed on the bare surface 

(grain roughness) for the 23, 46, and 92 mm events, respectively.  For the isolated roughness 

elements and vegetated surfaces, peak runoff rates of 1.7×10-3 m³/s/m, 4.8×10-3 m³/s/m, and  
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Figure 3.6: Normalized hydrographs simulated with the enhanced WEPP model demonstrating the 

net effects of the interplay between surface roughness and storm magnitude on hydrograph 

characteristics.   The normalizing unit discharge in each case is the highest peak discharge between 

the three attribute hydrographs.  They are 0.0027 m³/s/m, 0.0083 m³/s/m and 0.019 m³/s/m for the 

(a) 23 mm, (b) 46 mm and (c) 92 mm storms, respectively. 
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12.4×10-3 m³/s/m, and 0.9×10-3 m³/s/m, 3.6×10-3 m³/s/m, and 11.1×10-3 m³/s/m, respectively, 

were observed.  

The times corresponding to the hydrograph peaks for the three roughness types ranged 

between 38 – 51 mins for the 23 mm storm event, 36 – 43 mins for the 46 mm event, and 33 – 38 

mins for the 92 mm event.  In each case, the time to peak on the bare surface was shortest while 

the time to peak on the vegetated surfaces was longest.  The decreasing range of times to peak 

from the lowest magnitude event (13 mins) to the highest magnitude event (5 mins) points 

towards an increasing similarity in the hydrographs as the storm magnitude increases.  Further, 

as seen in Figure 3.6, the range of hydrograph start and end times were more similar for the 

highest event compared to the lowest event suggesting that the influence of the roughness types 

began to diminish as the storm magnitude increased.   

Quantitative comparison of effects using the root-mean-square deviation (RMSD): The 

similarities in the hydrographs between the different landscape attributes were calculated using 

the RMSD.  A low value of RMSD implied greater similarity whereas a high value implied less 

similarity.  The vegetated surface hydrographs were used as the reference hydrographs for the 

RMSD calculations.  The RMSD values between the bare and the vegetated surface hydrographs 

were 0.063, 0.051, and 0.049 for the 23, 46, and 92 mm events, respectively, confirming the 

greater similarity in hydrographs as the storm magnitude increased.  The same trend was 

observed when comparing the hydrographs predicted on the isolated roughness elements surface 

with the vegetated surface, i.e., the RMSD reduced from 0.036 to 0.013 from the lowest to the 

highest magnitude event.  Overall, the consistent reduction in RMSD from the lowest event to 

the highest event confirms that the influence of the examined surface roughness types on the 

runoff hydrograph diminishes with increasing runoff volume. 

 

3.3.3.2.Effects of the interplay between surface roughness and hillslope gradient on runoff 

hydrographs  

Figure 3.7a - Figure 3.7c examine the effects of grain roughness, isolated roughness 

elements, and vegetation on hillslopes with average gradients of 3.5%, 7%, and 14%, 

respectively. For this set of simulations, the simulated storm event in each case was the same as 

the storm in Section 3.3.2.   
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Figure 3.7: Normalized hydrographs simulated with the enhanced WEPP model demonstrating the 

net effects the interplay between surface roughness and hillslope gradient on hydrograph 

characteristics.  The normalizing unit discharge in each case is the highest peak discharge between 

the three attribute hydrographs.  They are 0.007 m³/s/m, 0.0083 m³/s/m, and 0.0092 m³/s/m for the 

(a) 3.5%, (b) 7% and (c) 14% gradients, respectively. 

3.5 percent 

7 percent 

14 percent 

(a) 

(b) 

(c) 

N
o

r
m

a
li

ze
d

 u
n

it
 d

is
ch

a
rg

e
 

N
o

r
m

a
li

ze
d

 u
n

it
 d

is
ch

a
rg

e
 

N
o

r
m

a
li

ze
d

 u
n

it
 d

is
ch

a
rg

e
 



67 

 

Effects on hydrograph peakiness, spread, and times to peak: The increase in hillslope 

gradient from 3.5% (Figure 3.7a) to 14% (Figure 3.7c) led to an increase in the peak runoff rate 

from 7.0×10-3 m³/s/m to 9.2×10-3 m³/s/m on the bare surface, and increases in the peak rates on 

the isolated roughness elements and vegetated surfaces from 3.7×10-3 m³/s/m to 6.4×10-3 m³/s/m, 

and 2.7×10-3 m³/s/m to 4.7×10-3 m³/s/m, respectively.  The spread of the hydrographs reduced as 

the hillslope gradient increased.  For example, on the vegetated surface, 95% of the runoff 

hydrograph volume fell between 0 – 142 mins on the 2% gradient whereas it only fell between 0 

– 97 mins on the 14% gradient.   

The range of the times to peak between the three roughness types reduced with increasing 

hillslope gradient.  Whereas it fell between 38 – 49 mins for the 3.5% gradient, it fell between 34 

– 38 mins for the 14% gradient.  As expected, the range for the 7% gradient fell between those of 

the other two gradients, i.e. 36 – 43 mins.  

Quantitative comparison of attribute effects using the RMSD:  The RMSD comparing the 

normalized hydrographs between the bare and isolated roughness elements surfaces decreased 

from 0.049 to 0.037 from the 3.5% to the 14% gradient, suggesting that the differences in 

hydrographs reduced with increasing gradient.  This was confirmed by comparing the RMSD 

between the bare and vegetated surfaces for the 3.5% and 14% gradients.  In this case, the 

RMSD decreased from 0.058 to 0.051. This observed trend of growing similarity between the 

hydrographs with hillslope gradient is investigated in more detail in Section 3.3.4 where we 

examine if a continued growth in similarity with increasing gradient occurs, and if this increase 

in the gradient leads to a threshold stream power beyond which the differences in the 

hydrographs become negligible.   

 

3.3.3.3.Effects of the interplay between surface roughness and downslope curvature on 

runoff hydrographs  

This part of the study examines the effects of curvature on the runoff hydrograph at the 

outlet.  It examines the same conditions on the Helmer’s et al. [2012] hillslope, with only the 

profile curvature being modified.  Concave, uniform, and convex profiles are examined.  The 

results from these experiments are shown in Figure 3.8. 
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Figure 3.8: Normalized hydrographs simulated with the enhanced WEPP model demonstrating the 

net effects of curvature on hydrograph characteristics. The normalizing discharge, 0.0032 m³/s/m, 

corresponds to the peak discharge on the concave hillslope. The red, green, and blue dashed lines 

represent, respectively, hydrographs on the concave, uniform, and convex hillslopes.  

 

 

It is seen from the figure that curvature has an effect on the shape of the hydrograph.  The 

times to peak on the convex hillslope was 39 mins, which was different than the times to peak on 

the uniform and concave hillslopes, which were 50 mins and 51 mins, respectively.  

Furthermore, an inspection of the hydrographs reveals that the hydrographs on the convex and 

concave hillslopes have two modes, whereas the hydrograph on the uniform hillslope has three 

modes.  These differences are attributed to the differences in wave speeds on the three hillslopes 

that arise from curvature effects interacting with hillslope patchiness.  The three modes on the 

uniform hillslope correspond to changes in the wave speed due to the three vegetation patches, 

whereas the two modes on the convex and concave hillslopes result from changes in the speed of 

one of the modes due to curvature effects.   

Overall, the effects of curvature were smaller compared to the effects of surface 

roughness.  For example, whereas the change from a vegetated surface to a surface with only 

grain roughness resulted in approximately a 133% increase in the peak runoff rate (3.6×10-3 

m³/s/m to 8.3×10-3 m³/s/m), the maximum change in peak runoff rate due to change in curvature 

was  16% (2.7×10-3 m³/s/m to 3.2×10-3  m³/s/m) from the uniform to the concave profile.   
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3.3.4. Identification of the critical storm magnitude and hillslope gradient  

The results presented in Sections 3.3.3.1 and 3.3.3.2 suggest the existence of a critical 

storm magnitude and hillslope gradient beyond which the effects of a surface roughness type on 

the runoff hydrograph will be relatively insignificant.  To test this postulate, the peak unit stream 

power is examined for a range of 1-hr duration storms with intensities ranging between 25 

mm/hr to 150 mm/hr on hillslopes with gradients ranging from 1% to 40%.  The peak stream 

power is considered because it incorporates both runoff magnitude and hillslope gradient effects 

in a single metric. The range of intensities were selected to bracket the range of 1-hr intensities 

reported in the Iowa SUDAS (Statewide Urban Design and Specification) manual [2017] for 

storms of different return periods between 1-yr to 500-yr.  The intensities are thus representative 

for a typical mid-western landscape.  The range of gradients were also selected to bracket the 

range of hillslope gradients observed within the Clear Creek Watershed, IA, which is one of the 

watersheds constituting the Critical Zone Observatory for Intensively Managed Landscapes.  The 

gradients were obtained from Lidar data provided by the Iowa Geographic Information Council 

(http://www.iowagic.org/projects/lidar-for-iowa/).  This range of gradients is assumed to be 

representative of other similar watersheds in the region.  

Figure 3.9 presents results from the analyses showing the normalized peak storm 

intensities, I*, against the dimensionless peak stream power, Ψ* = q*So* for each of the three 

surface roughness types (grain roughness, isolated roughness elements, and vegetation).  The 

storm intensities are normalized using 150 mm/hr as the reference value, whilst the gradients are 

normalized with 40% as the reference gradient.  For the unit flow discharge, the peak unit 

discharge on the 40% slope for the 150 mm/hr intensity storm is used as the reference.  The 

curves are drawn for each hillslope gradient.  For the curves presented, potential fits to the power 

law equation 𝛹∗ = 𝑘𝐼∗
𝑙, where k and l are coefficients that reflect the effects of surface roughness 

resistance and hillslope gradient on the stream power, are examined.  Two distinct zones are 

apparent for each landscape attribute type (demarcated with the solid red lines): 1) Zone 1, where 

k is a function of the gradient, So, and l is a function of both resistance, f, and So, and; 2) Zone 2, 

where only k is a function of So and l = 1.  The results confirm the existence of threshold values 

of Ψ* and I* beyond which the peak stream power is not affected by the presence of the 

roughness elements (i.e. Zone 2).  Under these conditions, the peak stream power on a given 

hillslope is primarily governed by storm magnitude (runoff).  Below the threshold value (i.e.,  

http://www.iowagic.org/projects/lidar-for-iowa/
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Figure 3.9: Variation of dimensionless peak stream power 𝜳∗ = 𝒒∗𝑺∗  with dimensionless peak 

storm intensity I* on uniform hillslope with: (a) grain roughness; (b) isolated roughness elements; 

and (c) vegetation. 
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Zone 1), the roughness elements have a clear effect on the peak stream power, exhibited in 

changing values of l (local slope) as the storm intensity changes for a given hillslope gradient 

(this is clearly seen in Figure 3.9b and Figure 3.9c).  Both the effects of surface roughness 

resistance and storm intensity play an important role in this case.  The effect of gradient is 

important in both zones as seen from the dependence of k and l on So in Zone 1 and the 

dependence of a on So in Zone 2.    

Comparing the plots for the different surface roughness types (Figure 3.9a-Figure 3.9c), 

vegetation has the largest influence, affecting the peak stream power over the widest range of 

conditions, followed by the isolated roughness elements, and then the bare surface with grain 

roughness.  The critical dimensionless intensity and stream power values for vegetation are 0.68 

and 0.022, respectively, whereas they are 0.33 and 0.017, and 0.16 and 0.004 for the isolated 

roughness and grain roughness surfaces, respectively.  This trend is in accordance with the 

predicted hydrograph characteristics presented in Figure 3.6 and Figure 3.7, where the vegetated 

surface has the largest influence on the runoff hydrograph due to the greater resistance to 

overland flow, followed by the isolated roughness elements and then the grain roughness surface.  

Thus, the degree of resistance offered by a surface roughness type to flow appears to dictate its 

influence on the critical stream power threshold between Zone 1 and Zone 2 for a given storm 

magnitude.  A larger resistance leads to a larger threshold value and vice versa. 

The above results are summarized in a generalized sketch in Figure 3.10, which presents 

a taxonomy on the degree of influence of surface roughness on the peak stream power for 

different storm intensities.  The figure clearly shows the two zones separated by the threshold 

line.  Below the threshold (Zone 1), the relationship between the stream power and the storm 

intensity is non-linear, whereas above the threshold (Zone 2), the relationship between the stream 

power and the storm intensity is linear.  The linear relationship in Zone 2 depicts the finding that 

the main factors dominating this hillslope response are the storm intensity (runoff magnitude) 

and hillslope gradient.  The non-linear relationship in Zone 1 highlights the added influence of 

the surface roughness types, and implies that the curve will intercept the horizontal axis at a 

point where the storm magnitude is just large enough to generate runoff under the given surface 

roughness.    
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Figure 3.10:  Conceptual representation of roughness effects - variation of dimensionless stream 

power Ψ*=q*s* with dimensionless storm intensity I* on a uniform hillslope.  The threshold line is 

derived from a logarithmic scale on both the vertical and horizontal axes, based on values of 

normalized stream power and storm magnitude in the physical ranges examined herein. 
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3.4. Discussions and Conclusion  

A framework has been developed herein using an enhanced WEPP model that is capable 

of capturing the integrated effects of space/time-variant resistance on overland flow at the 

hillslope scale under different types of landscape attributes present in intensively managed 

landscapes.  The framework was validated using observed data from field and laboratory 

experiments examining the effects of the different landscape attributes.   

Using the framework, the implications of the assumption of invariant resistance over 

space and time on runoff hydrographs were examined for a hillslope in the Walnut Creek 

Watershed, IA, with isolated roughness elements and vegetation patches.  It was found that this 

type of assumption can lead to discrepancies in the shape and magnitude of runoff hydrographs, 

with deviations in the peak runoff of up to 65% compared to hydrographs that consider the 

space/time-variant flow resistance.   

The influence of surface roughness on runoff hydrograph characteristics and how these 

changed with storm magnitude and hillslope gradient was also investigated.  Results from the 

analyses suggest that the conversion of a landscape from vegetation to a bare surface with only 

grain roughness or a surface with isolated roughness elements has a more profound effect on the 

runoff hydrograph than the effects of profile curvature.  Whereas the change in cover from 

vegetation to a bare surface resulted in a 133% increase in the peak runoff rate, the maximum 

change in peak runoff rate due to change in profile curvature was 16%.  In IMLs, crop rotations 

have resulted in landscapes where the soil surface is bare 30 – 75% of the time during the 

calendar year [Abaci and Papanicolaou, 2009].  Since naturally occurring storm events were 

simulated in this study, the above results provide a quantitative measure of the degree to which 

management practices can impact runoff, and consequently sediment fluxes, from different 

hillslopes within an IML watershed over the course of a season.   Furthermore, the results also 

suggest that the use of Best Management Practices (BMPs) such as grassed waterways is likely 

to have a larger impact on fluxes than practices that modify the landscape through shaping of the 

hillslope.   

The space/time-variant resistance offered by the different landscape attributes was also 

found to affect hydrograph characteristics such as the peak and modality.  The results further 

suggested that the influence of surface roughness on runoff hydrograph characteristics reduced 

with increasing storm magnitude and hillslope gradient.  This observed trend in hydrograph 
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characteristics with storm magnitude and hillslope gradient pointed towards the existence of a 

threshold beyond which the influence of surface roughness on hydrograph characteristics became 

relatively insignificant.  This was examined using the concept of the overland stream power, a 

single metric that takes into account both runoff rates (storm magnitude) and gradient.  Results 

from simulations covering a series of 1-hr duration storms, with different rainfall intensities on 

hillslopes with different gradients confirmed the existence of the threshold for the peak stream 

power (see Figure 3.9).  Below the threshold, the peak stream power is dependent on the surface 

roughness flow resistance, the storm magnitude, and the hillslope gradient.  Above the threshold, 

the peak stream power is governed primarily by storm magnitude and hillslope gradient.  In this 

case, flow resistance from the surface roughness is negligible and so the peak stream power is at 

its highest possible value.  These results for runoff have implications for sediment transport since 

the peak stream power has been shown to correlate with the sediment yield [e.g. Dade, 2012].  

One must bear in mind, however, when translating these results to sediment transport, that the 

actual amount of energy available to mobilize and transport material from the bed surface will 

depend on how erodible the soil is, and how much of it is exposed and available for mobilization/ 

transportation.  More in-depth studies that consider these factors are needed to determine how 

the findings in this study translate to sediment and nutrient transport.   

Within the context of this study, since the threshold identifies the most dominant 

variables governing runoff fluxes from the hillslope, a practical benefit is that it can be used as a 

guide to determine the appropriate model complexity for examining event-based dynamics under 

different land cover and climatic forcing [e.g. Woode et al., 1995; Blöschl et al., 2007].   The 

study of processes and fluxes occurring at a scale below the threshold, i.e. in Zone 1 of Figure 

3.10, will have to be based on the space/time-variant resistance representation of surface 

roughness in order to reveal the causal relationships and feedbacks occurring between the 

important processes concerned (i.e., a model such as the enhanced WEPP model introduced 

herein must be used).  Beyond the threshold, i.e. Zone 2 of Figure 3.10, examination of flux 

dynamics may rely on spatially-averaged representation of the hillslope to adequately capture 

and understand causal relationships and feedbacks (i.e., the original WEPP model or other 

lumped models can be used in this case).   Since the threshold is not static, but dependent on 

surface roughness, hillslope gradient, and storm event characteristics, it will have to be derived 

for storms of different return periods and under different roughness and gradients for a 
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watershed.  From these, an envelope of thresholds can then be derived that landscape managers 

can use as a guide for determining the model complexity to consider when simulating fluxes and 

designing/evaluating BMPs under different conditions. A lack of consideration of this threshold 

envelope, especially in cases where lumped models are used, could lead to results that are error 

prone and have a large degree of uncertainty associated with them. 

Another utility of this study pertains to the design of BMPs.  Dermisis et al. [2010] 

examined grassed waterways (GWW) of different lengths in an IML in Iowa, and found a 

threshold length for a GWW to remain effective for a range of representative flows for the region 

(see Figures 7-10 in their study). This effective threshold length concept has subsequently been 

recommended in BMP design efforts e.g., in the Agricultural BMP Handbook for Minnesota 

[2012].   The threshold length determined in the Dermisis et al. [2010] study corresponds to the 

stream power threshold identified in this study, as it indicates the point at which the effects of 

flow magnitude overshadows the effects of vegetation.  This is illustrated in Figure 3.11, where 

we utilize data from their study to plot the dimensionless stream power against dimensionless 

storm magnitude for a GWW length of 300 m on 2% gradient hillslope (the normalizing factors 

are based on the data from their study).  For reference, we indicate on the figure the event 

numbers (used in their study) and peak flowrates, Qpeak, corresponding to each of the data points.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Stream power curve for a 300m GWW on a 2% gradient hillslope using data from 

Dermisis et al., [2010]. The event numbers used in the study and their corresponding peak runoff 

rates are shown in the legend. 
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The figure clearly shows two stream power zones and suggests that for storms with Qpeak’s larger 

than some value between 0.9-2.1 m³/s, the storm magnitude plays a more dominant role than the 

GWW (Zone 2).  This is in agreement with the findings shown in Figure 9 of the Dermisis et al. 

[2010] study, where it is seen that the 300 m GWW is only effective up to a peak flowrate of 

~1.5 m³/s.  Thus, a practical benefit of this study is the provision of a direct approach with which 

effective BMP dimensions can be obtained for watershed management.  This approach is 

illustrated in Figure 3.12.  For a given watershed or region, a stream power threshold envelope 

can be developed for the range of storm magnitudes and hillslope gradients present, for different 

BMP dimensions (GWW length in this case).  Then, for each location identified within the 

watershed where a BMP (GWW) can be deployed, the threshold envelope can be used to 

determine the appropriate effective BMP dimension (GWW length) using the gradient at the 

location and design storm magnitude – this step will involve interpolating the appropriate 

dimension from the threshold and stream power lines.  For such an effort, the identification of 

potential BMP locations could be achieved by considering the spatial distribution of stream 

power as described in the following paragraph, or using a tool such as the Agricultural 

Conservation Planning Framework tool [2013]. 

The stream power concept can also be used to evaluate where on the landscape BMPs 

may be needed, or how alternative BMPs will perform.  A spatial map of the landscape showing 

the distribution of stream power on the landscape could be examined to determine locations 

where the stream power exceeds the threshold and mitigation is needed.  Corresponding stream 

power maps could then be created for alternative BMPs to determine how they perform and the 

economic costs associated with each option.  An example of an alternative to GWW is contour 

farming, which although not examined directly in this study, is also expected to have a larger 

region of influence than a surface with isolated roughness elements due to the added oriented 

roughness perpendicular to the flow.   

Finally, the numerical approach presented in this study, being a physically-based 

approach that is validated with measured baseline data for different roughness attributes, can be 

used for dynamic flow resistance casting (DFRC), where it serves as a “baseline model” for 

casting the flow resistance in real hillslopes (where all or a combination of roughness attributes 

are present but measured data are difficult to obtain) in order to isolate and examine the effects 

of each roughness type on the flow resistance.  The main assumption behind this approach is that  



77 

 

 

 

Figure 3.12:  Illustration of methodology for determining effective GWW dimensions from stream 

power threshold envelope. 
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the space/time-variant friction relationships for grain, form, wave, and vegetation can be 

extended to the hillslope scale since they have been calibrated and validated with field data albeit 

at a smaller scale.   

It is acknowledged that the assumption that the addition of the space/time-variant friction 

relationships to the WEPP model assumes that the other underlying WEPP model assumptions 

are not affected and that the relationships add processes that are currently missing in the original 

WEPP model, leading to a better resolution of hillslope scale fluxes.  It is believed that validating 

the collective effects herein, using datasets other than what were originally used to develop the 

relationships (see Section 3.3.1), provides some validation to the approach used in this study. 
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Appendix A. Kinematic Wave Equations 

For simulating overland flow, WEPP utilizes the 1-D kinematic wave approximation 

(KWA), which is considered adequate when the gravity forces predominate over pressure and 

inertia forces [e.g., Woolhiser et al., 1989; Julien and Moglen, 1990; Flanagan and Nearing, 

1995; De Roo et al., 1996; Singh, 1997; Singh, 2001].  The 1-D KWA includes the continuity 

equation for flow over a planar surface (equation (1)) and a simplified version of the momentum 

equation (equation (2)), expressed as follows:   

 

firv
qh











xt
                          (A1) 

 

mhq                          (A2) 

 

where, q is the flow discharge per unit width (m³/s/m); h is the flow depth (m); x and t denote 

longitudinal distance (m) and time (s), respectively; r is the rainfall rate (m/s); if is the infiltration 

rate (m/s); v is the rainfall excess rate (m/s); m is a depth-discharge exponent equal to 1.5; and    

α = 
5.0

oCS is the kinematic depth-discharge coefficient (m1/2/s), where C denotes the Chezy 

roughness coefficient (m1/2/s), and So denotes the slope of the planar surface (m/m).   The Chezy 

coefficient is determined as C = (8g/feq)
0.5, where g is the acceleration due to gravity (m/s²), and 

feq is an equivalent Darcy-Weisbach friction factor (-) for the equivalent plane that accounts for 

both skin and form resistance, but in static (space/time-invariant) manner.  The static feq 

assumption was mainly been made for computational expediency in the early development stages 

when computational power was limited [J. E. Gilley, personal communication, 2011].   
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Chapter 4 

Coupling WEPP and 3ST1D models for improved prediction of flow and 

sediment transport at watershed scales 
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Abstract 

Watershed modeling is a key component of watershed management that involves the 

simulation of hydrological and fluvial processes for predicting flow and sediment transport 

within a watershed.  For practical purposes, most numerical models have been developed to 

simulate either runoff and soil erosion processes on uplands alone, or flow and sediment 

transport processes within channels that are isolated from the surrounding land.  This lack of 

connectivity between the upland and in-stream processes introduces significant error in water 

volume and sediment yield estimates at watershed scales.  The objective of this study is to 

develop a coupled model that bridges upland and in-stream processes, allowing more accurate 

estimates of water volume and sediment yield to be made at the watershed scale. The proposed 

coupled model utilizes the well-established physically based, distributed parameter Water 

Erosion Prediction Project (WEPP) model for simulating upland processes and the 3ST1D 

hydrodynamic and sediment transport model for simulating in-stream processes.  The coupled 

model is applied to an agricultural watershed located in east-central Iowa in the United States.  

Model verification exercises indicate that the proposed coupled model can adequately simulate 

flow and sediment transport from the uplands to the outlet of a watershed.   

 

 

4.1. Introduction 

Soil erosion is a major environmental threat to the sustainability and productive capacity 

of agriculture.  It is estimated that 90% of U.S. cropland is losing soil above the sustainable rate 

(i.e., the maximum rate of erosion that will not cause a reduction in long-term productivity).  

Moreover, the annual cost of erosion related problems in the United States is estimated to be ~ 

$44 billion [Pimentel et al., 1995].  In addition to the loss of arable lands, soil erosion drastically 

lowers water quality as surface runoff and erosion enhance transport of dissolved chemicals and 

sediment borne pollutants from the upland areas into natural streams [Lal and Stewart, 1994].   

In response to soil degradation and decreasing water quality, various numerical models 

have been developed over the past decades to simulate hydrological and soil erosion processes 

for soil and water conservation planning, design, development, operation, and management 

[Singh and Woolhiser, 2002].  A considerable amount of work has been performed by 

researchers to understand and simulate these processes at the hillslope scale (i.e., “small” scale 
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processes in the upland areas).  Yet, the challenge remains to accurately simulate these processes 

at the watershed scale (i.e., “large” scale processes within the watershed), where water and 

sediment are being transported from their original location in the upland areas towards the 

drainage network (i.e., streams, rivers) and through the network to the watershed outlet [Jetten et 

al., 2003].  Traditionally, most of the numerical models have been developed to simulate either:  

(a) rainfall-runoff and soil erosion processes in upland areas without providing an estimation of 

the flow and sediment transport from the drainage network to the watershed outlet; or (b) flow 

routing and sediment transport processes within the drainage network assuming that the drainage 

network is isolated from its surrounding land.   

The separation/decomposition of the watershed scale processes into upland and in-stream 

processes may have some practical merits for the purposes of simulation [Wu, 2008].  However, 

since these two domains (upland and in-stream) are highly interrelated, the lack of connectivity 

between the upland erosion and the in-stream channel processes introduces significant error in 

the water volume and sediment yield estimates along the channel network [Conroy et al., 2006; 

Wu, 2008].  For example, accelerated upland erosion caused by anthropogenic activities (e.g., 

deforestation, mining) may increase the sediment yield to the channels, resulting in excess 

sedimentation and reduction of the transport capacity of the channels. The failure to account for 

this interaction will undoubtedly result in miscalculation of the simulated flow and sediment 

transport rates within the channels and the watershed as a whole. 

Recent efforts to integrate upland and channel models include work by Conroy et al. 

[2006] who described a prototype modeling system using the Water Erosion Prediction Project 

(WEPP) [Flanagan and Nearing, 1995] and the National Center for Computational 

Hydrodynamics and Engineering One-Dimensional hydrodynamic and sediment transport model 

(CCHE1D) [Wu and Vieira, 2002] for assessing forest management-related erosion by predicting 

sediment transport within a watershed.  A key limitation of the Conroy et al. [2006] study was 

that CCHE1D could only handle localized supercritical and transcritical flows without hydraulic 

jumps [Wu and Vieira, 2002].  Wang et al. [2010] also implemented hydrologic and hydraulic 

channel flow-routing routines in WEPP, utilizing the Muskingum-Cunge and the kinematic-wave 

methods, respectively.  Both routing methods exhibit some important limitations.  The 

Muskingum-Cunge method cannot account for backwater effects and may not provide accurate 

results when rapidly rising hydrographs are routed through flat channel sections [USACE, 1994].  
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The kinematic-wave method includes only the gravitational and frictional forces and neglects the 

inertial and pressure forces.  Consequently, the kinematic-wave method is limited to flow 

conditions that do not demonstrate significant hydrograph attenuation and cannot be used where 

backwater condition and flow reversal occur [USACE, 1994].  

This study develops a coupled upland-instream model for simulating fluxes at the 

watershed scale, taking into consideration all the relevant flow and sediment transport processes 

in both the upland and instream domains.  The coupled model evaluates the transport of water 

and sediment from: (i) the hills to the main channels using a process-based hydrology and upland 

erosion prediction model; and (ii) the main channels to the watershed outlet using an advanced 

in-stream hydrodynamic and sediment transport model that overcomes limitations of previously 

developed models.  The advanced in-stream model is be able to (a) account for the role of 

turbulence on sediment movement (b) handle the transport of both cohesive and non-cohesive 

sediments, and (c) accurately simulate backwater effects, transcritical flows along channel 

reaches, and the formation and location of hydraulic jumps.  The coupled model is verified by: 

(i) testing its ability to route hydrographs through a benchmark hypothetical channel network; 

and (ii) applying it to route water and sediment fluxes from a small agricultural sub-watershed in 

the US Midwest and comparing the results against two observed sediment rating curves, one 

based on data at the sub-watershed outlet and the other based on global data [Dade, 2012]. 

 

4.2. Methodology 

4.2.1. Upland erosion model -WEPP 

WEPP is a well-established physically based, distributed parameter model developed by 

the US Department of Agriculture-Agricultural Research Service (USDA-ARS) to simulate 

rainfall-runoff and soil erosion processes for virtually any type of landscape management 

including rural, urban, cropland, rangeland, construction sites, and roads [Flanagan and Nearing, 

1995].  WEPP uses fundamental physical equations governing overland flow hydraulics, 

infiltration, evapotranspiration, plant growth, erosion and deposition processes.  Consequently, 

WEPP allows a more accurate representation of the processes and their interactions than 

empirically based models.  Further, being a distributed parameter model, WEPP can account for 

the spatial variability of erosion by allowing the heterogeneity of soil, land use and topography to 

be adequately represented (i.e., a hillslope profile can be divided up to 10 sub-units) [Flanagan 
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and Livingston, 1995].  WEPP is applicable to hillslopes and small watersheds.  However, its 

application at the watershed scale has the following limitations: (i) it does not explicitly include 

hydrodynamic channel network flood flow routing; and (ii) the sediment transport capacity 

equation the model uses for determining erosion and deposition within channels is mainly 

applicable for rill and interrill areas [Conroy et al., 2006].  As a result, WEPP does not provide 

an accurate estimation of the water volume and sediment rates in the main channels.   

Recently, Papanicolaou et al. [2018] and Papanicolaou et al. [2015] have implemented 

updates to the overland flow and sediment transport components to the original WEPP (Version 

2012.8; Flanagan et al., 2007) to account for space/time variant resistance effects, and 

preferential mobilization and transport of material of different size fractions from and to the soil 

active layer. The current terrestrial component of the enhanced WEPP model considers either 

concentrated flow downslope with lateral supply from interrill areas or unidirectional flow 

downslope representative of either a planar flow or flow along a contoured surface.  These are 

depicted in Figure 4.1 below for some representative land cover types in intensively managed 

landscapes.  For the first scenario of concentrated flow with lateral interrill supply, the flow 

within the concentrated pathway is simulated with the 1D St. Venant’s equations [Papanicolaou 

et al., 2010], whereas the lateral supply is simulated with the 2D Diffusive wave model [Lopez-

Barrera et al., 2012].  The second scenario of unidirectional flow downslope is also simulated 

with the 1D St. Venant’s equations.  In all cases, infiltration and rainfall excess calculations are 

performed using WEPP’s modified Green-Ampt Mein-Larson infiltration model.  The governing 

equations for flow are summarized as follows: 

 

1D St. Venants: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑟𝑒 + 𝑞𝑙𝑖          (1a) 

 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑄2

𝐴
) = −𝑔

𝜕𝐼1

𝜕𝑥
+ 𝑔𝐼2 + 𝑔𝐴(𝑆𝑜 − 𝑆𝑓)       (1b) 
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Figure 4.1: Representation of flow pathway conceptualization in coupled modeling framework 
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2D Diffusive Wave: 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 𝑟𝑒          (2a) 

 

𝜕

𝜕𝑥
(𝑔

ℎ2

2
) = 𝑔ℎ(𝑆𝑜𝑥 − 𝑆𝑓𝑥)          (2b) 

 

𝜕

𝜕𝑦
(𝑔

ℎ2

2
) = 𝑔ℎ(𝑆𝑜𝑦 − 𝑆𝑓𝑦)          (2c) 

 

where 𝐴 is the flow cross-sectional area, 𝑄 is the cross-sectional flow discharge, 𝑟𝑒 is the rainfall 

excess rate, 𝑞𝑙𝑖 is the lateral flow supply from interrill areas, 𝐼1 is a term that accounts for the 

hydrostatic forcing, 𝐼2 accounts for changes in the cross-sectional width, 𝑆𝑜 is the bed slope, 𝑆𝑓 is 

the friction slope, x, y and t are the spatial and temporal coordinates, h is the flow depth, u and v 

are the depth averaged flow velocities direction in the x and y directions, respectively, and g is 

the acceleration due to gravity. 

In both scenarios, the sediment continuity equation is used to simulate sediment fluxes on 

the landscape [Tayfur et al., 2002; Wu, 2002].  Following observations by various investigators, 

a transport capacity formula is not used for overland flow, since the transport capacity has been 

found to be non-unique for a given soil type, slope and flow rate [Polyakov et al., 2003; 

Wainwright et al., 2015].  The study follows the approach of Sanders et al. [2007] and Cao et al., 

[2016], and computes erosion and deposition separately, assuming that they are independent 

concurrent processes, allowing the “transport capacity” to evolve naturally as an outcome of the 

balance between the two processes.  The sediment continuity relationships solved can be 

summarized as follows: 

 

1D Sediment Continuity  

𝜕ℎ𝐶

𝜕𝑡
+

𝜕𝑢ℎ𝐶

𝜕𝑥
= 𝑞𝑙𝑐 + 𝐸 − 𝐷         (3) 

 

2D Sediment Continuity 

𝜕ℎ𝐶

𝜕𝑡
+

𝜕𝑢ℎ𝐶

𝜕𝑥
+

𝜕𝑣ℎ𝐶

𝜕𝑦
= 𝐸 − 𝐷         (4) 
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where 𝐶 is the depth-averaged sediment concentration, 𝑞𝑙𝑐 is the lateral sediment flux from 

interrill areas, 𝐸 is the erosion from the soil active layer, and 𝐷 is the deposition to the soil active 

layer.  𝐸 is computed as the sum of rain splash erosion and shear-driven erosion using the 

concepts presented in Foster et al. [1995], Papanicolaou et al. [2015].  Likewise D is estimated 

as a function of the sediment concentration and particle fall velocity [Flanagan and Nearing, 

2000; Papanicolaou et al., 2015]. 

 

4.2.2. In-stream hydrodynamic and sediment transport model – 3ST1D 

Within the stream network, the 3ST1D model is used to route flow along each channel, 

which receives contributions from terrestrial sources.  3ST1D is a one-dimensional (1-D) 

numerical model developed by Papanicolaou et al. [2004] for simulating unsteady flow and 

sediment transport in both steep and mild streams.  The input files of 3ST1D, including the 

boundary and initial conditions, grain size distribution and cross-sectional data, were modified to 

read basic output data from the WEPP hillslope simulations, such as runoff, storm duration and 

soil loss.  The coupling of the two models is illustrated in Figure 4.2. 

The hydrodynamic component of 3ST1D is based on the unsteady form of the 1-D full St. 

Venant continuity and momentum equations (dynamic wave model), respectively:   

 

1D St. Venants 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞𝑙𝑡           (5a) 

 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑄2

𝐴
) = −𝑔

𝜕𝐼1

𝜕𝑥
+ 𝑔𝐼2 + 𝑔𝐴(𝑆𝑜 − 𝑆𝑓)       (5b) 

 

where 𝐴 is the flow cross-sectional area, 𝑄 is the cross-sectional flow discharge, 𝑞𝑙𝑡 is the lateral 

flow supply from terrestrial sources, 𝐼1 is a term that accounts for the hydrostatic forcing, 𝐼2 

accounts for changes in the cross-sectional width, 𝑆𝑜 is the bed slope, 𝑆𝑓 is the friction slope, x,  

and t are the spatial and temporal coordinates, h is the flow depth, u is the depth averaged flow 

velocity, and g is the acceleration due to gravity. 

A 1D advective-dispersive equation is used route sediment fluxes, where the source 

contributions are from terrestrial, bank and bed sources.  This is expressed as follows: 
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Figure 4.2: Depiction of WEPP-3ST1D. Each hillslope is first simulated with WEPP, then 

terrestrial fluxes are passed on to the 3ST1D network model where they are routed along with 

instream contributions to the watershed outlet. 
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1D Sediment Continuity 

𝜕ℎ𝐶

𝜕𝑡
+

𝜕𝑢ℎ𝐶

𝜕𝑥
=

𝜕

𝜕𝑥
(𝐾

𝜕ℎ𝐶

𝜕𝑥
) + 𝑞𝑙𝑡𝑐 + 𝐸 − 𝐷       (6) 

 

where 𝐶 is the depth-averaged sediment concentration, 𝐾 is the dispersion coefficient, 𝑞𝑙𝑡𝑐 is the 

lateral sediment flux from terrestrial sources, 𝐸 is the eroded material from the soil active layer 

and banks, and 𝐷 is the deposition to the soil active layer [Papanicolaou et al., 2004; 

Papanicolaou et al., 2015; Sutarto et al., 2014].  

Junctions in 3ST1D are treated using mass continuity and energy or momentum 

conservation.  Prevailing flow conditions dictate which equations are solved to obtain the key 

variables at a new time step. Sub-critical flows through a junction are simulated by either 

approximating the energy equation with stage equality across the branches [Akan and Yen, 

1981], or by utilizing a model which applies momentum conservation principles [Shabayek et al., 

2002].  Kesserwani et al. [2008a] found that the stage equality approximation was adequate for 

resolving flows with low Froude numbers whilst those with high Froude numbers were best 

simulated using momentum conservation principles.  A user-specified threshold Froude number 

is thus used to determine which model to apply during simulations. Supercritical flows are 

treated using the Kesserwani et al. [2008b] approach based on mass and momentum 

conservation. In all cases, the method of characteristics is used to provide the extra equations 

needed to close the system.  

 

4.2.3. Active Layer Updates 

The sediment transport equations described above are solved for different size fractions 

as described in Papanicolaou et al. [2011] and Papanicolaou et al. [2015].  The active layer 

concept employed in those studies is utilized herein to simulate updates to the active layer due to 

preferential mobilization, transport, and deposition of sediment of different size fractions within 

both the terrestrial and instream domains.  

 

4.2.4. Numerical Schemes 

Total variation diminishing (TVD) and Gudnov numerical schemes have been employed 

to solve the governing equations presented above.  The reader is referred to Papanicolaou et al. 
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[2011], [Lopez-Barrera et al., 2012], and Papanicolaou et al. [2018] for a more detailed 

description of the discretization and solution methods of these schemes.   

 

4.3. Model Verification 

The performance of the enhanced WEPP model in simulating terrestrial fluxes of water 

and sediment of different size fractions has been verified by Papanicolaou [2018] and 

Papanicolaou et al. [2015], respectively.  Emphasis in this section is, thus, placed on verification 

of the model coupling and the simulation of fluxes through the network.  This section first 

verifies the model’s ability to simulate boundary water fluxes and backwater effects through the 

channel network.  Next, it verifies the WEPP-3ST1D coupling and the model’s ability to 

simulate lateral and upstream terrestrial water fluxes through the network.  Finally, the model’s 

ability to simulate sediment fluxes from the various watershed sources to the outlet is examined 

 

4.3.1. Verification of flow discharge routing through channel network 

To verify the channel network model, it is applied to route hypothetical hydrographs 

through an artificial channel network.  The example used is adopted from work by Akan and Yen 

[1981] and includes a network of six channels and two junctions (Figure 4.3).  This example has 

also been used by Venkata Reddy et al. [2011] for verification purposes.  Figure 4.3 provides a 

sketch of the channel network and Table 4.1 summarizes the properties of the individual 

channels.   

 

 

 

 
 

Figure 4.3: The hypothetical channel network used to verify the network model proposed by Akan 

and Yen [1981] 
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Table 4.1: Properties of the channel network 

Channel 

number 

Length  

(m) 

Slope Width 

(m) 

Manning’s 

n 

1 600 0.005 5 0.0138 

2 600 0.005 5 0.0207 

3 600 0.005 5 0.0207 

4 600 0.005 5 0.0138 

5 600 0.001 8 0.0141 

6 600 0.001 10 0.0125 

 

 

All channels are assumed to have rectangular cross-sections.  The simulation is 

performed for the two sets of upstream inflow hydrographs shown in Figure 4.4a and Figure 

4.5a.  The initial condition for both cases is a steady flow condition corresponding to a discharge 

of 3 m3/s in channels 1 and 4, 2 m3/s in channels 2 and 3, 7 m3/s in channel 5, and 10 m3/s in 

channel 6.  The downstream boundary condition at the exit of channel 6 is established assuming 

uniform flow conditions.   

Figure 4.4b provides a comparison of the simulated hydrographs at the outlet of channel 

6 using the TVD MacCormack scheme (used in 3ST1D) and the four-point implicit finite 

difference scheme (adopted by Akan and Yen [1981]) for solving the full St. Venant equations.  

The comparison shows that there is a good agreement between the two schemes.  The peak 

discharge and runoff volume using the TVD MacCormack scheme are ~ 4 % and ~ 1 % higher, 

respectively, than the ones determined from the four-point implicit scheme, whereas the time to 

peak is ~ 10 % lower.   

Along the same lines, Figure 4.4c illustrates a comparison of the simulated hydrographs 

at the outlet of channels 2 and 3 using the aforementioned methods.  Figure 4.4c illustrates the 

backwater effects occurring at the outlet of channels 2 and 3.  According to Akan and Yen [1981], 

although a steady state condition was applied in channels 2 and 3 throughout the duration of the 

simulation (see the inflow hydrograph in Figure 4.3a), the flood wave traveling through channel 

1 raises the water elevation in the junction where the channels 1, 2, and 3 join.  Consequently, the 

flood wave propagates upstream the channels 2 and 3, reducing the flow discharge (see Figure 

4.4c between 0 – 11 min).  As the backwater effects reduce with time, the discharge will start 

increasing until it gets back to the steady state condition (see Figure 4.4c between 11 – 35 min).  

It is evident that both numerical schemes can capture the backwater effects.   
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Figure 4.4: (a) The hypothetical inflow hydrograph for the four channels (case I); Comparison of 

the simulated outflow hydrograph between the TVD MacCormack (3ST1D) and four-point implicit 

(Akan and Yen 1981) numerical schemes from (b) channel 6 and (c) channels 2 and 3 

 

 

 

 
 

Figure 4.5: (a) The hypothetical inflow hydrograph for the four channels (case II); (b) Comparison 

of the simulated outflow hydrograph from channel 6 between the TVD MacCormack (3ST1D) and 

four-point implicit (Akan and Yen, 1981) numerical schemes   
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Figure 4.5b compares the hydrographs simulated with the two numerical schemes at the 

outlet of channel 6 for the bell-shaped inflow hydrographs presented in Figure 4.5a.  In this case 

the peak discharge and runoff volume using the TVD MacCormack scheme are ~ 5 % and ~ 2 % 

higher, respectively, than the ones determined with the four-point implicit scheme, whereas the 

time to peak is ~ 7 % shorter. 

 

 

4.3.2. Verification of terrestrial-instream coupling of water fluxes 

The proposed coupled model is applied to a 4.6 km² portion of the South Amana Sub-

watershed (SASW) located in east-central Iowa in the United States.  The SASW, located at the 

headwaters of the Clear Creek Watershed system, has been reported to have high erosion rates 

due to the presence of highly erodible soils, steep gradients and intensive agriculture [Abaci and 

Papanicolaou, 2009].  The study site has elevations ranging from 802 to 900 ft above mean sea 

level (Figure 4.6a), and slopes varying between 0.2 – 40 % (Figure 4.6b).  Three soil types are 

present, namely Tama, Colo, and Muscatine (Figure 4.6c).  Of these, Tama is the most 

prominent, covering over 91 % of the site whilst Colo and Muscatine cover only 2.5 and 6.5 % 

respectively.  The current land uses at the site are pasture and row-crop agriculture which involve 

Corn-Soybean rotations and a growing season that lasts approximately six months, from April to 

October (Figure 4.6d).  The SASW has a mean annual rainfall of about 889 mm/year with most 

of the contributions occurring between April and September, and the peak occurring in June.  

The key factors that affect runoff generation and soil erosion are rainfall, soil type, soil 

biogeochemical properties, management practices, land use, and terrain characteristics.  These 

factors vary both spatially and temporally, and typically result in a high variation of runoff and 

soil erosion across a watershed.  A good representation of the study site and rainfall distribution 

is therefore needed to adequately simulate the natural processes that occur within the site.   

For this study, a simulation was performed for a single storm event that took place on 12 

September 2008 yielding 36.4 mm of rainfall (Figure 4.7).  The storm lasted approximately 24 

hrs and had a peak intensity of 10.3 mm/hr.  The study site was divided into a total of 28 

hillslopes and 11 channels as shown in the maps in Figure 4.6.  These maps were used to 

generate the necessary input files for the simulation.  Summaries of the hillslope and channel 

properties are given in Table 4.2 and Table 4.3, respectively.  
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Figure 4.6: (a) DEM of study area; (b) Slope map; (c) Soil type map and (d) Land use map 

 

 

 

Table 4.2: Hillslope properties 

Number of 

hillslopes 

Area  

(km²) 

Slope 

(%) 

28 0.015 – 0.539 0.2 - 40 

 

 

 

Table 4.3: Properties of the channel network 

Number of 

channels 

Length  

(m) 

Slope Width 

(m) 

Manning’s 

n 

11 260 - 1575 0.008 - 0.063 0.2 – 1.4 0.025 

(b) (a) 

(c) (d) 
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Figure 4.7: (a) Rainfall hyetograph; (b) Channel network 

 

  

The storm event was first simulated in WEPP to generate hillslope runoff hydrographs, 

which were then exported to 3ST1D through pass files.  The runoff hydrographs were introduced 

into the channel network as boundary conditions and the network routing was performed until 

the end of the storm event.  Figure 4.8 shows the predicted runoffs entering Channel 5 (defined 

in Figure 4.7b) as well as its outflow hydrograph.  The hydrographs from the left and right 

hillslopes were introduced as uniform lateral inflows whilst the hydrograph from the top 

hillslope was introduced as the upstream boundary condition.  The uplands are generally 

characterized by steep slopes, which typically result in runoff hydrographs with steep rising and 

falling limbs.  This is seen in Figure 4.8 where the hydrographs from the left and right hillslopes 

have relatively steep rising and falling limbs, highlighting the need for a model capable of 

handling shocks and transcritical flows.  The TVD MacCormack scheme used in 3ST1D was 

able to handle the rapid changes in slope associated with the predicted hillslope hydrographs. 

Figure 4.9 shows the predicted hydrograph at the watershed outlet.  The time to peak and 

the predicted peak discharge were 12.75 hrs and 8.5 m³/s respectively.  The current study was 

performed on a small watershed to allow comparison between its results and results from 

WEPP’s standalone watershed model, which is known to perform well for small watersheds.  

The predicted peak runoff with the WEPP watershed model was 10 m³/s, about 17.6 % higher 

than the peak discharge predicted with the coupled model.  Whilst the results from the two 

models are comparable, the WEPP watershed model is constrained by the size of the watershed 

that can be simulated and significant differences in the results are expected for larger watersheds.   

(a) (b) 
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Figure 4.8:  Inflow and outflow hydrographs - Channel 5 

 

 

 

 

Figure 4.9: Hydrograph at the outlet of the sub-watershed 
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The hydrographs entering the last channel downstream (Channel ll) are also presented in 

the Figure 4.9 to show the relative contributions of the two main network branches. The sub-

watershed that drains to Channel 10 is about two times the size of the one that drains to Channel 

9, explaining the higher runoff volume passing through Channel 10.  The hydrograph exiting 

Channel 9 peaks about 8 min earlier than the one exiting Channel 10, also illustrating the shorter 

time of concentration associated with the sub-watershed draining to Channel 9.  Overall, the 

coupled model appears to perform well in simulating the flow of runoff from the hillslopes 

through the channel network to the watershed outlet.  However, it should be noted that 

subsurface flows are not currently accounted for once runoff enters the channel network. 

 

4.3.3. Verification of the coupled model’s ability to simulate watershed sediment fluxes 

The models ability to simulate sediment fluxes at the watershed outlet was examined for 

the 26 km² South Amana Sub-watershed described in Section 4.3.2.  The coupled model was 

used to simulate fluxes from storm events that took place in 2007 and 2014.  These events are 

summarized in Table 4.4 below. The predicted fluxes were compared against a sediment rating 

curve developed for the site based on flow discharge and sediment flux measurements at the 

outlet of the watershed [Ellis, 2009].  The comparison is shown in Figure 4.10. 

As seen in the figure, the observed and predicted fluxes were compared for a flow range 

between 0.5 m³/s and 10 m³/s.  This is because the predicted flow rates for the storm events were 

generally greater than 0.5 m³/s while the observed flows were only up to 10 m³/s.  Nonetheless, it 

is clearly seen that the coupled model is able to predict well the trend in the relationship between 

the flow discharge and the sediment flux.  Moreover, the variability in its predicted fluxes also 

matches the variability in the observed fluxes, further confirming its ability to simulate flow and 

sediment fluxes at the watershed outlet.   

 

 

Table 4.4: Summary of storm events considered in characteristic scale unit analyses 

Month Event Year Peak Intensity (mm/hr) Total Duration Effective Peak Duration 

June 
1 2014 51.88 6.67 0.88 

2 2007 60.56 7.25 0.97 

July 
1 2014 62.84 2.75 0.70 

2 2007 22.08 7.25 1.41 
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Figure 4.10: Sediment Rating Curve at outlet of sub-watershed 

 

 

The model’s performance was further examined against observed water and sediment 

fluxes (normalized) at the outlets of 402 rivers around the globe.  This comparison is shown in 

Figure 4.11, which is adapted from Dade [2012].  According to Dade [2012], the rivers 

collectively drain about one-third of the Earth’s land area that overall sheds on average just 

under two km3, or equivalently, about 5 billion metric tons, of sediment each year.  The figure 

presents normalized sediment fluxes as a function of the normalized stream power.  As seen, the 

model predictions are in good agreement with the global data.  It is able to predict the mean 

trends and the variability in the predicted fluxes fall within the range of variability in the 

observed fluxes.  Overall, the plotted data for SASW fall on the mid-part of the graph, suggesting 

that the stream power and sediment fluxes in SASW are moderate compared to other systems 

across the globe.  It must be noted, however, that the data plotted in Figure 4.11 are restricted to 

the events and conditions examined in this manuscript, which mostly cover low flows and 

moderate storm events.  Higher water and sediment fluxes have been noted in some years in 

SASW, particularly in June months, by Abaci and Papanicolaou [2009], Wilson et al. [2012], 

and Abban et al. [2016].  
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Figure 4.11: Volumetric river-mouth sediment flux Qs shown as a function of the product of 

volumetric water discharge Q and average steepness S of river basins.  All quantities normalized by 

relevant global averages. Hollow circles are data from 402 streams around the globe. [Dade, 2012]. 

 

 

4.4. Conclusions 

The current lack of connectivity between upland and in-stream processes in existing 

numerical models is known to produce significant errors in water and sediment yield estimates at 

large spatial scales.  A coupled upland-instream model has, thus, been developed to bridge the 

gap between the processes, thereby paving the way for the evaluation of water and sediment 

transport at varying spatial scales.  This has entailed the coupling of the process-based 

hydrologic and upland erosion prediction model, WEPP, with the in-stream hydraulic and 

sediment transport model, 3ST1D.  

The coupled model has been verified and applied successfully to the agricultural South 

Amana sub-watershed in east-central Iowa in the United States to predict flow and sediment 

fluxes for typical storm events at the site.  The findings indicate that the coupled model performs 

well in simulating flow and sediment transport from the uplands through the channel network to 

the watershed outlet, capturing important features such as backwater effects.   The general 

steepness of the uplands and the steep slopes associated with headwater channels necessitated the 

use of a model capable of handling shocks along the channel network. The TVD MacCormack 

scheme employed in 3ST1D was well suited for this purpose [Papanicolaou et al., 2010] and 

Simulated 

Observed 



104 

 

performed well in the model verification exercise.   Despite the coupled model’s good 

performance, there are still a number of limitations associated with it.  For one, subsurface flows 

are not accounted for within the channel network.  Also, 3ST1D assumes a time invariant 

channel width and does not account for freeze-thaw effects. 
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Chapter 5 
 

An Enhanced Bayesian Fingerprinting Framework for Studying Sediment 

Source Dynamics in Intensively Managed Landscapes 
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Abstract 

An enhanced revision of the Fox and Papanicolaou [2008a] Bayesian, Markov Chain 

Monte Carlo fingerprinting framework (hereafter referred to as F-P framework) for estimating 

sediment source contributions and their associated uncertainties is presented.  The F-P 

framework included two key deterministic parameters,  and , that respectively reflected the 

spatial origin attributes of sources and the time history of eroded material delivered to and 

collected at the watershed outlet.  However, the deterministic treatment of  and  is limited to 

cases with well-defined spatial partitioning of sources, high sediment delivery and relatively 

short travel times with little variability in transport within the watershed.  For event-based 

studies in intensively managed landscapes, this may be inadequate since landscape heterogeneity 

results in variabilities in source contributions, their pathways, delivery times and storage within 

the watershed. Thus, probabilistic treatments of  and  are implemented in the enhanced 

framework to account for these variabilities.  To evaluate the effects of the treatments of  and  

on source partitioning, both frameworks are applied to the South Amana Sub-Watershed 

(SASW) in the US Midwest.  The enhanced framework is found to estimate mean source 

contributions that are in good agreement with estimates from other studies in SASW.  The 

enhanced framework is also able to produce expected trends in uncertainty during the study 

period, unlike the F-P framework, which does not perform as expected.  Overall, the enhanced 

framework is found to be less sensitive to changes in  and than the F-P framework, and, 

therefore, is more robust and desirable from a management standpoint. 

 

 

5.1. Introduction 

Understanding sediment source dynamics is important for managing the impacts of 

natural processes and anthropogenic activities on water resources and soil quality.  This 

importance cannot be overstated for intensively cultivated agricultural watersheds, where non-

conservation management practices can leave the landscape vulnerable to accelerated soil 

erosion with implications for the land productivity, soil biogeochemistry, and water quality [Lal, 

2001].   

Terrestrial sources of eroded soil, such as those derived from interrill areas, rills, gullies, 

ditches, etc., as well as instream sources, such as bank soils and channel bed sediment, can 
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collectively contribute to the total amount of transported material [Matisoff and Whiting, 2011; 

Gellis and Mukundan, 2013; Walling, 2013; Sutarto et al., 2014].  The proportions of terrestrial 

and instream contributions to the total transported material in streams can vary depending on a 

number of factors including: hydrologic characteristics, landscape characteristics, seasonality, 

land use/land cover (LULC) and associated management practices to name a few.  It is, 

therefore, important to identify the provenance of the transported material in order to better 

identify “hot spots” (i.e., areas with disproportionately high erosion rates relative to their 

surroundings) and “hot moments” (i.e., time periods with disproportionately high erosion rates 

relative to longer intervening time periods) for effectively designing best management practices 

(BMPs) [U.S. EPA, 1999; Walling and Collins, 2008; Gellis and Walling, 2011; Mukundan et 

al., 2012]. 

Different studies have determined the relative contributions of terrestrial and instream 

sources to the total load [e.g., Yu and Oldfield, 1989; Wallbrink et al., 1998; Papanicolaou et al., 

2003; Collins and Walling, 2004; Matisoff et al., 2005; Walling, 2005; Fox and Papanicolaou, 

2007; 2008a; 2008b; Bonn and Rounds, 2010; Wilson et al., 2012; Cooper et al., 2015].   These 

studies, which are generally referred to as “fingerprinting” studies, have relied on the unique 

physical and biogeochemical characteristics of natural and artificial tracers (e.g., 15N, 13C, 

C/N, 210Pb, 137Cs, Al, Fe, Mg, soil texture, soil color, etc.) as a means of distinguishing between 

soil (terrestrial) and sediment (instream) sources [Davis and Fox, 2009; Guzman et al., 2013].  

Hereafter, the term tracer “signature” is used to refer to the physical and biogeochemical 

characteristics of natural and artificial tracers [e.g., Mukundan et al., 2012; Dutton et al., 2013].  

The schematic in Figure 5.1 shows different source areas contributing to the total load and the 

erosion mechanisms triggering terrestrial and instream contributions within a watershed.  The 

signature of transported eroded material collected at the watershed outlet (Figure 5.1), which is 

comprised of contributions from terrestrial and instream sources, is related to the unique 

signatures of these sources through mass balance to determine the relative source contributions.    

Fingerprinting studies combine the aforementioned tracers with statistical tools, known as 

un-mixing models, to relate the signatures of the transported material to the signatures of the 

source soils.  A key assertion in the approach is that the transported soils/sediments retain the 

unique signatures of their sources of origin [Yu and Oldfield, 1989; Guzman et al., 2013; 

Walling, 2013].  Different types of un-mixing models have been proposed including a least 
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Figure 5.1: Conceptual sketch of watershed showing typical terrestrial and instream soil/sediment sources in a watershed. 

Notation 

k    –  source in watershed, e.g. terrestrial and 

instream sources  

l    –  area within source k with unique erosion 

processes e.g. floodplains and uplands in 

terrestrial sources 

xlk  – signature of soil from area l of source k 

Srir – contributions by Rill and Interrill (rir) 

processes to terrestrial sediment yield 

Sgh – contributions by Gully and Headcut (gh) 

processes to terrestrial sediment yield 

z    –  signature of transported eroded material 

collected at outlet of watershed 

 

Bank contributions 

Bed contributions 

Collection location of the total transported 

eroded material (terrestrial and instream 

contributions) of signature z 

Terrestrial sample, of 

signature xlk, collected from 

upland area 

 

Terrestrial sample, of 

signature xlk, collected from 

floodplain area 

 

 

Rill contributions 

Gully/Headcut contributions 

Interrill 

contributions 

Terrestrial (upland and 

floodplain) soil 

contributions, Srir + Sgh  
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squares approach [e.g., Collins et al., 1998; Owens et al., 1999; Walling and Amos, 1999], an 

end-member mixing approach [e.g., Christophersen and Hooper, 1992; Burns et al., 2001; 

Wilson et al., 2008; Wilson et al., 2012], and more recently a Bayesian approach [e.g., Small et 

al., 2002; Douglas et al., 2003; Small et al., 2004; Douglas et al., 2007; Fox and Papanicolaou, 

2007; 2008a; Palmer and Douglas, 2008; D'Haen et al., 2013; Dutton et al., 2013; Massoudieh 

et al., 2013; Cooper et al., 2015].   

Unlike the two former approaches, the Bayesian approach combines past data in the form 

of a “prior” probability distribution with new data in the form of a “likelihood” to obtain updated 

information on the origin of soil/sediment fluxes derived from different sources in the form of a 

“posterior” probability distribution [e.g., Small et al., 2002].  Using prior knowledge for model 

parameters relaxes the assumption that tracers are fully characterized throughout the source areas 

and at the watershed outlet [Billheimer, 2001].  It is therefore considered here as the preferred 

un-mixing method for representing uncertainty in source contributions. 

Fox and Papanicolaou [2008a] utilized a Bayesian un-mixing framework that 

incorporated two new parameters, namely  and to represent watershed erosion processes and 

to perform source fingerprinting.  Their study built on work from Fox and Papanicolaou [2007] 

that used natural biogeochemical tracers, namely 15N and 13C, to differentiate soils derived 

from upland-floodplain areas of forested and agricultural sources.  In their un-mixing framework, 

 was used to define the spatial origin attributes of the contributing sources, while accounted 

for the time history (delivery, and residence time/integration) of source soils/sediments delivered 

to and at the collection point.  The framework was applied to a first-order, high gradient tributary 

of the Palouse River, ID, where instream contributions were negligible due to relatively low bank 

heights and coarse gravel stream beds.  Both  and were treated as deterministic parameters 

due in part to the well-defined spatial partitioning of the source areas and the high relief of the 

small watershed which led to short pathways and travel times with little variability  

However, the deterministic treatment of and  may not be justifiable in other 

landscapes where agricultural activities are intense and erosion processes are highly episodic 

[Gellis and Walling, 2011; Mukundan et al., 2012].  In these landscapes, erosion and sediment 

transport processes can be highly variable due to the complex interactions of water, 

soil/sediment, and crop rotations, leading to a highly variable  and   [Tayfur and Kavvas, 

1998; Govers et al., 2007; Liu et al., 2007; Giménez et al., 2004; Papanicolaou et al., 2015].  
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Also, instream sources in these landscapes cannot be neglected as they have been found to 

contribute significantly to material at the outlet with implications to the roles of  and  and their 

variability in an un-mixing analysis [Wilson et al., 2012]. The importance of accounting for the 

variabilities in  and  in un-mixing frameworks is discussed by Walling [2013], who explains 

the need for explicitly accounting for these inherent variabilities to adequately represent the 

uncertainty associated with source characterization, and to propagate this uncertainty to the final 

source ascription results.  This is readily achieved in the Bayesian framework through 

probabilistic treatments of  and .   

Thus, the current study builds on the Fox and Papanicolaou [2008a] Bayesian un-mixing 

framework to develop and test an enhanced version of the framework that offers a probabilistic 

treatment of  and .  Specifically, it: (1) develops stochastic representations of  and  capable 

of accommodating information on the variability in source contributions, their delivery times and 

storage within the watershed, and, thus, better reflecting uncertainty in source contributions; and 

(2) demonstrates the application of the enhanced framework for a representative intensively 

managed watershed, Clear Creek, IA, where instream contributions are significant.  In doing so, 

this study combines the use of the Bayesian un-mixing model with natural C and 15N tracers. 

These tracers provide a strong dependence of soil tracer signature with LULC and associated 

management practices [e.g., Fox and Papanicolaou, 2007].   

 

5.2. Existing Bayesian Un-mixing Framework 

5.2.1. Description of Key Framework Principles 

A synoptic description of the key principles of the Bayesian un-mixing framework is 

presented here to better familiarize the reader with the associated concepts and notations.  The 

reader is directed to Fox and Papanicolaou [2008a] for a more in-depth study of the details and 

principles.     

Figure 5.2 depicts the un-mixing framework in the form of a directed acyclic graph.  

Following a general Bayesian framework, the tracer signature, z, of the total (terrestrial and 

instream) eroded material collected at the outlet of a study area can be considered as a random 

draw from the following probability distribution: 

 

𝑧~MVNT(𝜑, 𝛤)  (1) 
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where MVNT is a multivariate normal distribution of dimension T; 𝜑 is the expected value of the 

signature of the collected eroded material; and 𝛤 is a T×T covariance matrix representing the 

uncertainty in z.  This uncertainty is collectively attributed to the above-mentioned variability in 

source material mobilization and storage, as well as measurement errors.  𝜑 is determined using 

mass balance as follows [Walling, 2013]: 

 

𝜑 = ∑ (𝑥𝑘 × 𝑃𝑘)𝑁
𝑘=1 , with ∑ 𝑃𝑘 = 1𝑁

𝑘=1  and 0 ≤ 𝑃𝑘 ≤ 1 (2) 

 

where k represents a sediment source; xk is the tracer signature of the eroded material 

corresponding to the kth source; Pk is the proportion of the collected eroded material originating 

from the kth source; and N is the total number of sources considered (see Figure 5.1).   

In Eq. (2), the vector of proportions, 𝑃𝑘, is the unknown parameter to be determined and 

is given a non-informative Dirichlet prior probability distribution in the model [Massoudieh et 

al., 2013].  xk, which reflects the signature of eroded material from source k integrated over a 

period of time, can be considered as a draw from the following probability distribution: 

 

𝑥𝑘~MVNT(𝜇𝑘, 𝛴𝑘)  (3) 

 

where 𝜇𝑘 is the expected value of the tracer signature of eroded material from source k and 𝛴𝑘 is 

the covariance matrix representing the variability in the signatures of time-integrated eroded 

soil/sediment contributions.  

Several studies have found a strong dependence of soil tracer signature with dominant 

erosion processes for biogeochemical tracers such as 15N and 13C [e.g. Fox and Papanicolaou, 

2007; Mukundan et al., 2010; Blake et al., 2012].  Fox and Papanicolaou [2007] found that 

upland soils had different signatures than floodplain soils and so contributions from the 

predominant rill and interrill erosion processes in the uplands had a different signature than 

contributions from gully and headcut erosion processes on the floodplain.  To accommodate 

these differences, Fox and Papanicolaou [2008a] assumed that each 𝑥𝑘was a weighted sum of 

the tracer signatures of soil/sediment from the areas contributing to source k.  Thus, they 

expressed 𝜇𝑘 in Eq. (3) as follows: 
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Figure 5.2:  Directed Acyclic Graph showing the relationships between the model parameters; 

plates representing multiple instances of objects are omitted for simplicity. The observed data are 

presented in the shaded boxes.  The solid arrows represent stochastic dependence while the dashed 

arrows represent deterministic dependence. 
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𝜇𝑘 = ∑ (𝛼𝑙𝑘 × 𝜇𝑙𝑘)𝑁
𝑙=1   (4) 

 

where 𝜇𝑙𝑘 is the expected value of the tracer signature of soil/sediment from area l of source k; 

and 𝛼𝑙𝑘 is the respective weight expressed as the proportion of the sediment yield from source k 

contributed by the erosion processes (e.g., interrill erosion, rill erosion, gully erosion etc.) in area 

l.  In their study, 𝛼𝑙, was calculated deterministically as: 

 

𝛼𝑟𝑖𝑟 =
𝑆𝑟𝑖𝑟

𝑆𝑟𝑖𝑟+𝑆𝑔ℎ
  , 𝛼𝑔ℎ =

𝑆𝑔ℎ

𝑆𝑟𝑖𝑟+𝑆𝑔ℎ
  (5) 

 

where rir and gh denote areas dominated by rill/interrill and gully/headcut erosion processes, 

respectively (see Figure 5.1).  𝑆𝑟𝑖𝑟 is the sediment yield contribution (in kg) by rill and interrill 

processes and 𝑆𝑔ℎ is the sediment yield contribution (in kg) by gully and headcut processes.  𝑆𝑟𝑖𝑟 

and 𝑆𝑔ℎwere estimated as proportions in Fox and Papanicolaou [2008a] using calibrated 

process-based numerical models for rill/interrill and gully/headcut erosion, respectively.  Further 

information on 𝑆𝑟𝑖𝑟 and 𝑆𝑔ℎ can be found in Fox and Papanicolaou [2008a].  Fox and 

Papanicolaou [2008a] also suggested that 𝛼𝑙in Eq. (5) could be estimated using historical trends 

from the watershed or scientific judgment. 

Similarly, 𝛴𝑘 in Eq. (3) was determined as follows: 

 

𝛴𝑘 =
1

𝛽𝑘
∑ (𝛼𝑙𝑘

2 × 𝛴𝑙𝑘
∗ )𝑁

𝑙=1   (6) 

 

where 𝛴𝑙𝑘
∗  represents the variability in the tracer signatures of soils/sediments from area l of 

source k; and 𝛽𝑘 is a factor that accounts for the change in variability of the signatures of eroded 

material from source k due to integration of the material over discrete time periods at the 

collection point. 𝛽𝑘 was also treated as deterministic and determined through optimization by 

modifying the variance of a source tracer distribution to match the variance of observed time-

integrated signatures of the total eroded material from the source.   𝛼𝑙𝑘 in Eq. (6) is squared 

because of the assumption that the normal distribution in Eq. (3) representing the source 
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signature 𝑥𝑘 is a weighted sum of the normal distributions of the signatures of the upland and 

floodplain soils (with 𝛼𝑙𝑘 being the weights; Albright et al. [2010]). 

𝜇𝑙𝑘 and 𝛴𝑙𝑘
∗  in Eqs. (4) and (6), respectively, were estimated from the tracer signatures, 

𝑥𝑘𝑙, of soil/sediment collected from contributing terrestrial and instream source areas as follows: 

 

𝑥𝑘𝑙~MVNT(𝜇𝑙𝑘, 𝛴𝑙𝑘
∗ )  (7) 

 

Following Bayes theorem, the joint posterior distribution of all the models parameters 

was expressed as:  

 

 

𝑝(𝜑, Γ, 𝑥𝑘 , 𝑃𝑘, 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘
∗ |𝑥𝑘𝑙, 𝛼𝑙𝑘, 𝛽𝑘, 𝑧) ∝  𝑝(𝜑, Γ, 𝑥𝑘, 𝑃𝑘 , 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘

∗ )  ×
                        𝑝(𝑥𝑘𝑙 , 𝛼𝑙𝑘, 𝛽𝑘, 𝑧|𝜑, Γ, 𝑥𝑘, 𝑃𝑘, 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘

∗ ) (8) 

 

 

 

where the first term on the right hand side is the joint prior probability distribution and the last 

term is the likelihood.  The marginal posterior distribution of each of the parameters on the left 

hand side of Eq. (8) was determined using conventional MCMC methods [Cowles, 2013].  

Hereafter, the Fox and Papanicolaou [2008a] model will be referred to as the “F-P” framework. 

 

5.2.2. Limitations of the F-P Framework 

In the Fox and Papanicolaou [2008a] study,  the well-defined spatial partitioning of the 

source areas and high relief (with short pathways and travel times) ensured extensive integration 

of source contributions for most storms, thus, lowering uncertainty and permitting the use of the 

deterministic and  parameters with little impact on source contribution estimates

However, as previously mentioned, the deterministic treatment of and  may not be 

justifiable in landscapes where erosion processes are highly variable.  This is especially true in 

intensively managed landscapes.  The complex interactions of water, soil/sediment, and crop 

rotations, can lead to a highly variable .  Also, instream sediments in these landscapes 

(including those from bank erosion) can exhibit different biogeochemical properties and 

transport characteristics than terrestrial soils [Rinaldi and Darby, 2008; Sloan, 2013] with 

Posterior Distribution Prior Distribution 

Likelihood 
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implications for the role of  and its variability in estimating relative contributions.  Further, 

differences in travel times of the terrestrial soils and instream sediments in this case could 

significantly affect the fractions and amounts of eroded material delivered to the outlet over time 

with implications for estimation and variability.  The length of time over which transported 

eroded material from different origins is collected and integrated, in relation to the transport 

times of the source contributions, dictates the extent of variability in the signatures of time-

integrated source material at the outlet [Fox and Papanicolaou, 2008a].  Clearly, an appropriate 

time-integration during collection at the outlet must be determined in an un-mixing framework to 

adequately capture variability in source contributions, terrestrial and instream, as well as 

variability in their delivery time at the watershed outlet [Fox and Papanicolaou, 2008a].   

Thus, probabilistic treatments of  and are proposed below to account for the 

variabilities.  These probabilistic treatments of  and are evidently more pressing in intensively 

managed landscapes where straightening of the stream channels and farming (often to the bank 

line) have affected the connectivity of these landscapes with direct implications on the relative 

contributions of sources and travel times to the outlet [Bellanger et al., 2004].   

 

5.3. Proposed Enhanced Bayesian Un-mixing Framework 

5.3.1. Modification of the Representation for  

To remove the limitation of using a fixed value for , we adopt herein a stochastic 

treatment for  that can accommodate varying degrees of information regarding the spatially 

distributed erosion processes in a watershed.  In our approach, a Dirichlet distribution is used to 

represent  to account for the relative contributions from different spatially distributed source 

areas [Bandeen-Roche and Ruppert, 1991; Gelman et al., 2004; Lingwall et al., 2008; Parnell et 

al., 2013]:   

 

(𝛼1, … , 𝛼𝑙)~Dirichlet(𝑒1, … , 𝑒𝑙)    (9) 

 

where el represents the relative sediment yield from each source area l adjusted for uncertainty.  

An informative prior is developed for based on prior erosion data, when such information is 

available.  In this case, el can be determined through optimization to obtain a sediment yield 
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proportion distribution that is similar to what is observed for source l [e.g., Yang et al., 2006].  

When no direct observations of erosion are available for the watershed, non-informative priors 

can be used instead, or priors for can be based on data from watersheds with similar 

characteristics as the study site.   

 

5.3.2. Modification of the Representation for  

Likewise, a stochastic representation of  is proposed to incorporate sediment delivery 

variability and time-integration effects into the analysis [Moore and Semmens, 2008; Solomon et 

al., 2011]: 

 

1/~Beta(𝑓𝑘, 𝑔𝑘)  (10) 

 

where fk and gk are parameters that describe the shape of the distribution.  The Beta distribution 

has previously been shown by de Rooij and Stagnitti [2004] to be applicable to soil solute fluxes 

by adequately representing the temporal variation of solute transport combined with the 

proportion of the study area contributing the solute.  The authors suggest that the shape factors of 

the Beta distribution for their case represent the effects of space and time, respectively.  

Consequently, the proposed Beta distribution represents the temporal variation of soil 

transport, combined with the proportion of the study area from which eroded soil is delivered to 

the watershed outlet.  Thus, the Beta distribution herein reflects the effects of both travel times 

and sediment delivery, which collectively determine the extent of integration for the mobilized 

material collected at the outlet.  This could imply that the shape of the Beta distribution reflects 

all these factors affecting soil/sediment transport intermittency, namely, landscape properties 

heterogeneity, storm magnitude and duration, number and sequence of storm events, and 

soil/sediment mobilization and storage.   

We posit herein that under conditions that promote significant sediment mobilization and 

delivery to the watershed outlet with short travel times, such as steep, bare landscapes 

experiencing intense high magnitude storm events, the Beta distribution will be narrow with a 

large mean value of representing significant integration of material at the outlet.  On the 

contrary, under conditions with little sediment mobilization, delivery and long travel times, such 
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as low-gradient, vegetated-covered surfaces experiencing low magnitude storm events, the 

distribution will be wider with a smaller mean value of representing less integration of material 

at the outlet.  A wider distribution suggests a wide range of travel, or equivalently, resting times.  

For un-mixing at the outlet, Eq. 10 allows the framework to sample over all plausible 

time-integrated signatures representative of the soil/sediment delivery rates and integration 

intervals during the collection period.  Where prior information on time-integrated signatures is 

available [e.g., Fox and Papanicolaou, 2008a], the values for fk and gk can be determined 

through optimization to get a distribution of 1/ that produces a modified source tracer 

distribution that better matches the observed time-integrated tracer signatures of material from 

the source.  Otherwise, a non-informative prior can be used, or a prior can be used that is based 

on data from a watershed with similar characteristics as the study site.   

 

5.3.3. Updated Posterior Distribution 

The stochastic expressions for  and  in Eqs. (9) and (10) above incorporate prior 

information on  and  into the Bayesian framework.  Hence, for the “enhanced framework”, the 

joint posterior distribution includes  and  as follows: 

 

 

𝑝(𝜑, Γ, 𝑥𝑘 , 𝑃𝑘, 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘
∗ , 𝛼𝑙𝑘, 𝛽𝑘|𝑥𝑘𝑙, 𝑧) ∝ 𝑝(𝜑, Γ, 𝑥𝑘, 𝑃𝑘 , 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘

∗ , 𝛼𝑙𝑘 , 𝛽𝑘)  ×
 𝑝(𝑥𝑘𝑙, 𝑧|𝜑, Γ, 𝑥𝑘 , 𝑃𝑘, 𝜇𝑘, 𝛴𝑘, 𝜇𝑙𝑘, 𝛴𝑙𝑘

∗ , 𝛼𝑙𝑘, 𝛽𝑘) (11) 

 

 

 

where marginal posterior distributions for  and  are obtained as part of the solution.  The 

freely available Bayesian, MCMC software, OpenBUGS v3.2.2 [Lunn et al., 2009], is employed 

in this study to estimate the marginal distributions of interest.  It utilizes the Gibbs sampling 

MCMC algorithm to obtain the target distributions from which inferences can be made.   

 

5.4. Description of Study Area, Tracer Techniques and Measurements 

We selected the study area and simulation periods for facilitating comparisons between 

the “F-P” and “enhanced” un-mixing frameworks.  The selected datasets capture major changes 

Posterior Distribution Prior Distribution 

Likelihood 
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in the spatial and temporal variability of source contributions for different event magnitude and 

LULC, and yet at a resolution that produced enough material for performing the un-mixing 

analyses in each time interval.   

 

5.4.1. Study Area 

The study area, known as the South Amana Sub-watershed (SASW), is located in the 

headwaters of the Clear Creek Watershed in southeastern Iowa, USA.  Clear Creek has recently 

become a U.S. National Science Foundation Intensively Managed Landscapes-Critical Zone 

Observatory (IML-CZO) [http://criticalzone.org/iml/].  SASW is a 26 km² sub-watershed that 

contains 1st and 2nd order channels with source areas similar to the ones depicted in Figure 5.1.  

In SASW the terrestrial and instream contributions have been observed to vary over the course of 

a season in response to changing hydrologic forcing and LULC [Abaci and Papanicolaou, 2009; 

Wilson et al., 2012].  The elevations, topography, land uses and soil types in SASW are shown in 

Figure 5.3.  The hillslope gradients range between 0.5% and 8% with an average of 4%.  The 

land use is predominantly row-crop agriculture with two-year corn-soybean rotations, and the 

dominant soil texture is silty clay loam [Abaci and Papanicolaou, 2009].  The average annual 

precipitation is ~890±220 mm/yr [Dermisis et al., 2010], with convective thunderstorms 

occurring between May and September with the peak month being June [Cruse et al., 2006].   

 

5.4.2. Description of Tracers 

A key component of this study is the use of naturally occurring C and 15N tracers capable of 

distinguishing sources of eroded material with different pedologic and anthropogenic histories 

[Fox and Papanicolaou, 2007; 2008a; 2008b; Laceby et al., 2014].  C and 15N are the 

relative amounts of 13C and 12C, and 15N and 14N stable isotopes present in the soil, respectively, 

in relation to a standard.  Specifically, the delta notation () in C and 15N is defined as 

follows: 

 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑑
− 1) × 103  (12) 

 

where X for this study is 13C or 15N; 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 is the isotopic ratio of the sample (13C/12C or 

http://criticalzone.org/iml/
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Figure 5.3: South Amana Sub-Watershed a) Elevation b) Topography (Hillshade) c) Land-uses d) 

Soil series.  
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15N/14N); and 𝑅𝑠𝑡𝑑 is the isotopic ratio of a standard (Vienna Pee Dee Belemnite and atmospheric  

 nitrogen, respectively).  expressed in ‰, indicates a depletion (-) or enrichment (+) of the 

heavier stable isotopes (13C, 15N) compared to the lighter stable isotopes (12C, 14N) in the soil. 

The carbon and nitrogen isotopic ratios in a soil volume are mainly dependent on the soil 

organic matter (SOM) derived from vegetation and plant roots undergoing decay in the soil 

[Ussiri and Lal, 2009].  The ratios are indicative of vegetation type and management, as well as 

the local biogeochemical processes [Mann, 1986; Behre et al., 2012].  An in-depth review of 

how these factors affect the ratios are provided in Fox and Papanicolaou [2007; 2008b]. 

 

5.4.3. Dataset Acquisition  

The selected dataset was obtained as part of a previous field study undertaken in 2007 

(unpublished).  The watershed sources and processes are summarized in Figure 5.4 and were 

identified based on the following considerations: 1) The total organic material collected at the 

outlet of SASW is a mixture of material from terrestrial, instream, and algal and detrital sources 

[Wilson et al., 2012; Delong and Thorp, 2006]; and 2) Source areas in the watershed that 

promote terrestrial soil/instream sediment deposition and re-suspension affect travel times of 

eroded material with potential impacts on time-integrated source tracer signatures [Olley, 2002].   

Sampling of source soils/sediments and transported eroded material was done during 

three consecutive time periods, each approximately one month long, from May to July of 2007.  

Table 5.1 provides the dates of these time periods as well as a summary of the rainfall and runoff 

characteristics for each period.  Rainfall data for the study period were obtained from a digital 

rain gauge situated within the sub-watershed.  The soil surface was initially bare at the beginning 

of the study period, but transformed to complete coverage as the crops grew during the study.  

This is seen in Figure 5.5 which shows Enhanced Thematic Mapper satellite imagery [Landsat 7, 

http://earthexplorer.usgs.gov/] for SASW for the study period. 

Terrestrial soil samples were collected from five fields distributed within the watershed 

(Figure 5.6a) that were considered to be representative of the land uses, soil types, and 

topography in SASW.  In each field, surface soil samples (0-5 cm and 5-10 cm) were collected 

along 75- to 100-m long planar transects located along the downslope to capture planar and 

downslope heterogeneity from the summit to the backslope, toeslope, and floodplain.   

 

http://earthexplorer.usgs.gov/


123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Sources and processes considered in South Amana Sub-Watershed  

 

 

 

Table 5.1: Rainfall and runoff characteristics over study period  

Period Dates Rainfall 

Amount 

(mm) 

Runoff 

Amount 

(mm) 

Average 

Intensity 

(mm/hr) 

Runoff 

Coefficient* 

Extent of Land 

Use/Land Cover 

1 05/10/07 - 06/08/07 113 14 1.9 0.12 Low to Medium 

2 06/08/07 - 06/29/07 86 25 3.6 0.29 Low to Medium 

3 06/29/07 - 07/24/07 74 10 2.8 0.14 Medium to High 

 

*Runoff Coefficient = (Runoff Amount)/(Rainfall Amount) 
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Figure 5.5: Natural color satellite imagery showing establishment of vegetative cover over the study 

period (Source: http://earthexplorer.usgs.gov/) 

 

 

Figure 5.6b shows the transect locations for two of the fields with No Till Bean – Spring Till 

Corn (NTB-STC) and Fall Till Bean – Spring Till Corn (FTB-STC) rotations and their 

underlying soil series.  In the first field, Transects 1, 2, and 3 were located on the summit, 

backslope and toeslope, respectively, whilst Transects 4 and 5 were located on the floodplain.  

Similarly, for the second field, Transects 10, 9, and 8 were located on the summit, backslope and 

toeslope, respectively, whilst Transects 6 and 7 were on the floodplain.  The upslope soil series 

are predominantly Tama, while the floodplain soil series type are Colo.  As shown in Figure 5.6b 

with dots, there were approximately eight sampling locations per transect to best capture planar 

heterogeneity in the transect.  At each dot location, samples were taken at two depths, since 

previous studies had shown that tracer signatures of the active layer (usually the top 10-20 cm 

depending on plowing depth) could vary with depth [Fox, 2005; Fox and Papanicolaou, 2008b].   

To characterize instream sediment sources, discrete samples were collected during non-flood 

flows using Sigma suspended sediment samplers following the Olley [2002] approach.   

Sampling of the total transported eroded material at the SASW outlet was done using 

stream tubes (Figure 5.6c), which are described in detail by Phillips et al. [2000] and Fox and 

Papanicolaou [ 2007].  For each of the three sampling periods (Table 5.1), two to four stream 

tubes were placed close to the bed of the stream outlet to continuously capture suspended eroded 

material over the period.  Stream conditions were such that the tubes primarily captured 

contributions from the storms that occurred during the period.   

 

13th May 2007 14th June 2007 7th July 2007 

http://earthexplorer.usgs.gov/


125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 : a) Sampling locations; b) Typical sampling transects showing different soil series (NTB-

STC and FTB-STC represent No Till Bean, Spring Till Corn and Fall Till Bean, Spring Till Corn 

crop rotations respectively); c) Stream tube used for in-stream sampling [after Fox and 

Papanicolaou, 2007]; d) Instream photographs taken in the headwaters of SASW showing evidence 

of the presence of algae 2.4 river kilometers upstream from the outlet collection point.  
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5.4.4. Tracer Signature Determination 

After the samples were collected, the C and 15N signatures of the fine grained portion 

(<53 m) of each sample were quantified using mass spectrometry.  In previous studies 

[Bellanger et al., 2004; Fox and Papanicolaou, 2008b], the associated C and 15N of the fine 

grained portion were found to be conservative due to the recalcitrant nature of the fine organic 

matter  and the small fractionation  of the size class during transport.  The samples were initially 

dried at 60°C. Then the coarse particulate organic matter (diameter >250 m) was removed.  

Sub-samples between 15-30 g were disaggregated in 50 mL of 0.5 mol/L Na-hexametaphosphate 

and gently washed through a 53 m sieve [Cambardella and Elliott, 1992].  Material passing 

through the 53 m sieve was allowed to settle at 4°C, the overlying water was decanted, and then 

dried again at 60°C.  The material was then ground on an orbital ball-mill for the mass 

spectrometry analysis to determine the C and 15N signatures. 

The stable isotope values were measured at the commercial Idaho Stable Isotopes 

Laboratory of the University of Idaho and represent bulk signatures of the soils.  The samples 

were initially combusted in a NC 2500 Elemental Analyzer (CE instruments) and the gases were 

passed in a helium flow to a continuous flow isotope ratioing mass spectrometer (Delta plusXL, 

Finnigan MAT GmbH, 28197 Bremen, Germany).  Precision of this method is typically better 

than 0.2‰ for nitrogen and 0.1‰ for carbon.  The measured values of each sample were 

compared against a standard.  The standard for the nitrogen is atmospheric nitrogen, while for 

carbon, the standard is from the Peedee Belemnite (PDB) marine fossil formation.  Additionally, 

each batch run of 40 samples contained a quality control sample with a known isotopic ratio.  

The percent differences between the reported and measured QC samples averaged 4% for the 

δ15N and 0.5% for the δ13C. 

Studies by Delong et al. [2001] and Delong and Thorp [2006] performed in the Upper 

Mississippi River, whose watershed characteristics are similar to SASW, suggested the presence 

of detritus and algae in organic matter ranging 1-100 m in size.  Algal and detrital material 

although not ubiquitous in Clear Creek has been observed in the headwaters of SASW (2.4 river 

kilometers upstream from the outlet where the creek is mostly a ditch) at certain times of the 

growing season where stagnant waters were present (Figure 5.6d).  Despite careful placement of 

stream tubes in flowing sections of the stream to minimize any algal and detrital influence, the 

potential settling of detrital matter and dead algae in the stream tube must be considered.  
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Although rather unlikely, it is also possible that incorporation of some suspended detritus and 

algae during sample retrieval could have contributed to the signatures of the eroded mixture 

samples at the outlet if indeed this was the case.  However, algal and detrital samples were not 

collected during the SASW study period.  Thus, literature ranges of C and 15N algae 

signatures based on the Delong et al. [2001] and Delong and Thorp [2006] studies, verified with 

the signature of a suspended benthic algal sample in Clear Creek from October 2015 (courtesy of 

Neal Blair and Adam Ward), were considered for further examination of possible contributions 

to the signature of the collected material in the tubes.   These are shown in Figure 5.7. 

 

5.5. Methodology for Applying Framework to the SASW dataset 

5.5.1. Simulation Periods 

Considering the hydrologic parameters and the degree of land use/land cover (LULC) for 

the three study periods presented in Table 5.1 and section 4, we evaluated the performance of the     

“F-P” and “enhanced” frameworks.  First, time periods 1 and 2 were compared as they had 

similar land cover extents (i.e., low to medium cover, although period 2 was slightly more), but 

dissimilar hydrologic conditions.  Period 2 experienced a much higher average storm intensity 

than period 1 (3.6 mm/hr vs. 1.9 mm/hr) and had a larger runoff coefficient (0.29 vs. 0.12). This 

allowed us to isolate the role of hydrologic effects on relative source contributions via the 

estimated posterior probability density functions (PDFs).   

Time periods 2 and 3 were then compared as these had dissimilar land cover extents but similar 

hydrologic conditions.  Period 2 had low to medium cover, whereas period 3 had high cover.  

The rainfall amounts were similar (85 mm in period 2 vs. 74 mm in period 3) with fairly high 

mean average rainfall intensities (3.6 mm/hr in period 2 vs. 2.8 mm/hr in period 3), although the 

values were slightly smaller for period 3.  Nonetheless, this scenario allowed the examination of 

the effects of LULC for nearly identical hydrologic conditions. 

 

5.5.2. Specification of Priors on and   

Since landscape heterogeneity and storm characteristics (magnitude and duration) affect 

the mean values and PDFs of both  and similar considerations must be made in specifying 

both prior probability distributions (Eqs. 9 and 10).  Before constructing the priors for SASW, a 
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Figure 5.7: Isotopic distributions for terrestrial, instream, and algae and detritus sources for study 

period. The algae and detritus signatures are adopted from Delong et al. [2001] and Delong and 

Thorp [2006].  The black star represents the signatures of a suspended algal sample from the Clear 

Creek watershed (courtesy of Neal Blair and Adam Ward). 

 

 

conceptual matrix was established in Table 5.2 to provide a qualitative assessment of how 

several combinations of hydrologic and LULC factors were likely to affect  and .  For large 

storm events on relatively bare soil, significant mobilization with short transport times and high 

delivery of both terrestrial and instream contributions to the watershed outlet was expected.  For 

events with little runoff, lower mobilization of soil with longer transport times and low delivery 

to the watershed outlet was expected. 

Comparing the observed hydrologic and LULC conditions presented in Table 5.1 to the 

matrix developed in Table 5.2 [Fox and Papanicolaou, 2008a; Abaci and Papanicolaou, 2009; 

Wilson et al., 2012], we informed our initial selection of the expected mean values for  and  

during each of the three periods to reflect the expected trends in hydrological forcing and land 

cover at the site.  We then selected appropriate values for the parameters in Eqs. 9 and 10 to 

adequately represent and by matching the means and variances of the probability distribution 

with their expected values (the physical ranges are provided in the paragraph below).  The 

selected values are summarized in Error! Reference source not found..   

Terrestrial 

Soil Sources 

Instream 

Sediment 

Sources 
Total transported 

eroded material for 

the three sampling 

periods  

(see Table 1) 

Algal and 

detrital Sources 

adopted from 

literature  
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Table 5.2: Effects of hydrologic conditions and land use/land cover on  and  

Rainfall 

Intensity 

Runoff 

Amount 

Surface 

Cover 

Sediment 

Delivery & Time 

Integration 

Impact on  Impact on  Comment 

high small low moderate 

Interrill erosion is important everywhere. 

Smaller transport capacity in downslope (toe 

slope and floodplain regions) compared to 

the upslope (summit and backslope regions) 

moderate reduction 

in variance of 

source tracer is 

expected 

moderate 

uncertainty in  and 

 

high large low high 

Interrill and concentrated flow erosion in 

most areas. Lower downslope gradients and 

transport capacity result in less mobilization 

by concentrated flows in the downslope 

large reduction in 

variance of source 

tracer is expected.   

small uncertainty in 

 and  

high small high low  

Surface cover regulates rainsplash effects. 

Lower downslope gradients and transport 

capacity result in less mobilization by 

concentrated flows in the downslope 

small reduction in 

variance of source 

tracer is expected 

large uncertainty in 

 and  

low small low/high low 

Little contributions from most areas. 

Upslope areas will contribute more but 

excess transport capacity in downslope may 

be greater compared to other scenarios due to 

limited supply from upslope 

small reduction in 

variance of source 

tracer is expected 

large uncertainty in 

 and  

low large low moderate 

Contributions primarily due to concentrated 

flow from both upslope and downslope 

zones. Lower downslope gradients and 

transport capacity result in less mobilization 

by concentrated flows in the downslope 

moderate reduction 

in variance of 

source tracer is 

expected 

moderate 

uncertainty in  and 

 
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Table 5.3: Summary of  and  parameters 

Period 
F-P Framework Enhanced Framework 

(uplands, 

floodplains) 


(terrestrial) 



instream
(uplands, 

floodplains) 


(terrestrial) 



instream

1 (05/10/07 – 06/08/07) 0.55, 0.45 0.6 0.5 Dirichlet(5.5, 4.5) Beta(6, 4) Beta(5, 5) 

2 (06/08/07 – 06/29/07) 0.65, 0.35 0.1 0.1 Dirichlet(6.5, 3.5) Beta(1,9) Beta(1,9) 

3 (06/29/07 – 07/24/07) 0.60, 0.40 0.8 0.7 Dirichlet(6, 4) Beta(8,2) Beta(7,3) 

 

 

Previous studies in SASW and other studies in the region with similar watershed 

characteristics suggest that the proportions of eroded terrestrial material from gullies and other 

erosion processes in the floodplain normally range between 0.19 to 0.45 [Laflen,1985; Spomer 

and Hjelmfelt,1986; Poesen et al., 2003; Abaci and Papanicolaou, 2009].  This was used as a 

guide to select the expected mean values of .  We based our variability on estimates from the 

calibrated SASW model of Abaci and Papanicolaou [2009] which suggested a standard 

deviation of the order of 0.15.  Similarly for 1/, we considered expected mean values in relation 

to ranges derived from time-integration data in the literature [Bellenger et al., 2004;  Fox and 

Papanicolaou, 2008a], which fell between 0.01 to 0.8.  The data also suggested standard 

deviations of the order of 0.12.   

 

5.5.3. Bayesian Analyses in OpenBUGS 

Three MCMC chains with overdispersed initial values were used in each model run.  In all, 

a total of 100,000 iterations were performed per run.  Model convergence was examined in a 

variety of ways including the Brooks, Gelman, and Rubin diagnostic [Brooks and Gelman, 1998], 

also known as the “BGR” diagnostic, history and autocorrelation plots, and Monte Carlo (MC) 

error.  The BGR diagnostic was used to quantitatively determine the burn-in period.  Burn-in 

lengths were generally less than 5,000 iterations.  Examination of the history plots following 

burn-in confirmed that the three chains were drawing from the same range of values and the plots 

resembled white-noise.  The autocorrelation plots suggested autocorrelation of iterates up to a 

maximum lag of about 100.  Hence we used long unthinned chains, i.e. ~95,000 iterates per chain, 

for Bayesian inference (as a more efficient alternative to thinning as concluded in Link and 
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Eaton [2012]).  Finally, in all cases we ensured that the MC error for each parameter was less than 

1/20th of the estimated posterior standard deviation [Cowles, 2013].   

 

 

5.6. Results 

Figure 5.7 shows bivariate plots of C and 15N signatures obtained for the sources and 

transported eroded material.  Hotelling’s T² tests performed on the tracer distributions confirmed 

that they were significantly different from each other (p < 0.05) and, thus, could be used to 

distinguish the sources.  The differences in isotopic signatures between the 0-5 and 5-10 cm 

samples were found to be insignificant (p > 0.05) and so differentiation of contributions between 

source depths could be ignored. 

The estimated mean source contributions for the three periods are summarized in Table 

5.4.  We also present the posterior marginal PDFs produced for terrestrial and instream source 

contributions in Figure 5.8 to evaluate the performance of the two frameworks in capturing the 

uncertainty in relative soil/sediment source contributions via  and .  Uncertainty in a source 

contribution is reflected in the spread and peak of its PDF; a wider spread and lower peak 

reflects greater uncertainty than a narrower spread and higher peak.  In Figure 5.8, the red dashed 

lines represent the PDFs produced with the F-P framework whilst the blue solid lines represent 

the PDFs produced with the enhanced framework.  The left hand side of the figure has the 

terrestrial contributions, while the right hand side contains the instream contributions.  The 

contributions for the three periods appear from top to bottom for periods 1, 2 and 3, respectively.  

Table 5.5 summarizes the performance of the enhanced and F-P frameworks in estimating mean 

source contributions and their associated “credible intervals” conceptually defined as the 

Bayesian form of confidence intervals.  A credible interval is an interval in the domain of the 

posterior PDF used to determine uncertainty i.e. the probability that the true source contribution 

lies within the interval. Table 5.5 also summarizes the sensitivities of both frameworks to the 

choice of  and .  These are discussed in greater detail below.
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Figure 5.8: Predicted posterior probability density functions of terrestrial and instream source contributions for the F-P (dashed red) and 

enhanced (solid blue) frameworks.  
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Table 5.4: Predicted means source contributions 

Period 

F-P Framework Enhanced Framework 

Terrestrial Instream 
Algae & 

Detritus 
Terrestrial Instream 

Algae & 

Detritus 

1 (05/10/07 – 06/08/07) 0.46 0.16 0.38 0.47 0.19 0.34 

2 (06/08/07 – 06/29/07) 0.53 0.37 0.10 0.54 0.37 0.09 

3 (06/29/07 – 07/24/07) 0.23 0.41 0.36 0.21 0.45 0.34 

 

 

Table 5.5: Summary of framework performance and sensitivity to  and  

Framework Performance in estimating source 

contributions and uncertainty 
Sensitivity to the choice of  and  Applicability to Best 

Management Practice 

(BMP) design and 

management Mean source 

contribution 

 Uncertainty 

(credible 

interval)  

Mean source contribution 

estimates 

Uncertainty in source 

contribution estimates 

F-P Can adequately 

predict mean 

contributions for 

all storm types 

given sufficient 

data. 

Only adequate for 

large magnitude, 

long duration 

reoccurring 

storms.  

Only sensitive to the choice of 

ot affected by  since is 

assumed to only affect the 

variance in source signatures.   

More sensitive to the choice 

of  and  due to their 

deterministic treatment.  

Less suitable for management 

purposes when BMP design 

depends on single storm 

events with relatively short 

durations.  It is also less 

robust (more sensitive). 

Enhanced Can adequately 

predict mean 

contributions for 

all storm types 

given sufficient 

data. 

Adequate for all 

storm types, 

including single 

storm events as 

well as a 

collection of 

events. 

Only sensitive to the choice of 

ot affected by  since is 
assumed to only affect the 

variance in source signatures. A 

similar performance as the F-P 

framework was noted due to the 

high degree of differentiation 

between the terrestrial and 

instream source signatures.  

Less sensitive to the choice 

of  and  due to their 

probabilistic treatment. The 

probabilistic treatment 

accounts for variabilities in 

source contributions, travel 

times and storage of 

material in the watershed. 

More suitable for 

management purposes since 

it is more robust (less 

sensitive) and better at 

predicting uncertainty (it can 

also be applied to single 

storm events) for BMP 

design and management.  
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5.6.1. Mean Relative Source Contributions  

Based on the results presented in Table 5.4, both the F-P and enhanced frameworks 

estimated mean terrestrial soil contributions to be larger than mean instream sediment 

contributions during both periods 1 and 2, with terrestrial contributions ranging between 46-54% 

and instream contributions between 16-37%.  This trend is consistent with observations from 

previous studies in the same watershed by Abaci and Papanicolaou [2009] who found terrestrial 

sources to yield the most eroded material in May and June, which correspond to periods 1 and 2.  

This is attributed, for the most part, to less land cover and more bare soil.  In addition, both 

frameworks estimated the mean instream sediment contributions during period 2 to be greater 

than the mean instream sediment contributions during period 1 (0.37 vs 0.18, respectively, on 

average).  This is consistent with the greater amount of runoff generated in period 2 resulting in 

more instream erosion [Sutarto et al., 2014] and the slightly greater cover in the period resulting 

in relatively less terrestrial erosion.  The results in Table 5.4 also suggest that mean algal and 

detrital contributions were relatively more in period 1 than in period 2 (0.36 vs 0.10, 

respectively, on average).  This is conceivably due to the much larger fluxes of eroded material 

leading to relatively more sediment contributions comparatively to algal and detrital 

contributions in period 2.  Also, data from SASW [ , unpublished data - see 

supplementary material] suggest an inverse relationship between the runoff discharge and the 

flux of algal concentrations following an event at the outlet, which is consistent with 

observations from other studies [e.g. Dorris et al., 1963; Baker and Baker, 1979; Reynolds and 

Descy, 1996; Ford and Fox, 2012].   The prolonged runoff discharge during period 1 would have 

led to smaller algal concentrations in period 2 and thus a smaller algal influence.  

The agreement in estimated mean contributions between the two frameworks for all the 

sources was also noted in the  period 2 vs. period 3 comparison, where both frameworks 

estimated mean terrestrial soil contributions to be less than mean instream sediment contributions 

in period 3, contrary to period 2.  Here, mean algal and detrital contributions were estimated to 

be more in period 3 comparatively to period 2.  The smaller mean terrestrial contributions for 

period 3 is attributed to the establishment of extensive surface cover, which has been shown to 

minimize rain drop impact and reduce erosion by both sheet and concentrated flow 

[Papanicolaou and Abaci, 2008; Dermisis et al., 2010; Gumiere et al., 2011].  Similar to the 

trends in periods 1 and 2, the smaller mean relative algal and detrital contributions in period 2 
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comparatively to period 3 is attributed to the larger fluxes of eroded material in period 2.  Further 

the reduced runoff discharge in period 3 due to land cover establishment would have led to 

increased algal concentrations, which would likely have increased algal influence in period 3 as 

observed [ , unpublished data - see supplementary document]. 

A comparison of the estimated mean soil/sediment source contributions from Table 5.4 

with numerical and field observations from previous studies in SASW confirms the ability of 

both frameworks to accurately estimate mean source contributions.  Upland erosion estimates for 

period 2 (June 2007) obtained from the calibrated Water Erosion Prediction Project (WEPP) 

model by Abaci and Papanicolaou [2009], along with bank erosion estimates based on field 

observed rates by Sutarto et al. [2014] and stream bed erosion estimates from the 3ST1D model 

by Papanicolaou et al. [2004] were combined and validated against field observed data of 

eroded material fluxes presented in Ellis [2009].  The SASW estimates from the aforementioned 

studies suggested relative terrestrial and instream source contributions of eroded material 

(expressed as proportions) of 0.59 and 0.41, respectively.  This is in good agreement with the F-P 

and enhanced framework estimates in this study of approximately 0.6 and 0.4 for terrestrial and 

instream sediment source contributions, respectively.  Further, a separate fingerprinting study 

performed by Wilson et al. [2012] for 2009 using radionuclide tracers found relative instream 

sediment contributions between 0.66-0.74 for certain events in SASW where the supply of 

material from terrestrial sources was limited.  This range agrees well with the F-P and enhanced 

framework relative sediment source estimates of approximately 0.7 and 0.3 for instream and 

terrestrial sources, respectively, in period 3 of this study where land cover is expected to limit the 

supply of material from terrestrial sources. 

The consistent, nearly identical relative source contribution estimates by both the F-P and 

enhanced frameworks for all periods suggests that for the same expected mean  and values in 

both frameworks, the estimated mean source contributions are not affected by the variability in 

soil/sediment fluxes and delivery to the collection point at the watershed outlet.  This conclusion 

is consistent with the findings of Phillips and Gregg [2001], who, using analytically-derived 

equations for uncertainty (verified with experimental data), showed that the mean relative source 

contributions were fairly independent of their standard error, and, thus, independent of the 

variability in the source signatures when their mean values were fixed (see Figure 2d of their 
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study).  This was also verified herein through un-mixing analyses on synthetic datasets (see 

Appendix A). 

 

5.6.2. Uncertainty in Relative Source Contributions  

For the period 1 vs. period 2 comparison in Figure 5.8, the enhanced framework 

produced terrestrial and instream PDFs in period 2 that were narrower with higher peaks (i.e. had 

less uncertainty) than their corresponding PDFs in period 1.  This, however, was not the case for 

the F-P framework, which produced an instream PDF in period 2 that was wider with a lower 

peak (i.e. had greater uncertainty) than the instream PDF in period 1.  For the period 2 vs. period 

3 comparison (also in Figure 5.8), the trends in the PDFs were more consistent, with both 

frameworks yielding terrestrial and instream PDFs that were narrower with higher peaks in 

period 2 than their corresponding PDFs in period 3.   

Phillips and Gregg [2001] showed that the uncertainty in estimated source contributions, 

were mostly dependent on the signature difference between the sources, the standard deviation in 

source and mixture signatures, and number of collected samples.  Since for this study, the 

standard deviation of the mixture (collected eroded material) signatures and the number of 

samples that were collected are fixed, we pay attention here to the signature difference between 

the sources and the standard deviation of source signatures as they pertain to  and , and use 

that to examine the expected and estimated trends in uncertainty in the three periods. 

The analytically-derived uncertainty equations in the Phillips and Gregg [2001] study 

revealed that the standard deviation of source tracer signatures had a substantial linear effect on 

the uncertainty of estimated source contributions.  This trend was also confirmed by Small et al. 

[2002] using a Bayesian framework.  Thus, since the parameter, which reflects delivery of 

eroded material and time-integration, reduces the variance of source tracer signatures, it is also 

expected to reduce uncertainty in estimated source contributions, and hence, the spread of their 

PDFs.  Comparing periods 1 and 2, given the greater average rainfall intensity and the greater 

amount of runoff during period 2, more erosion and a greater delivery of material to the 

watershed outlet is expected for period 2, resulting in more integration of collected eroded 

material.  Hence, both terrestrial and instream PDFs for period 2 are expected to be narrower 

with higher peaks than their corresponding PDFs for period 1, reflecting less uncertainty in 

period 2.  As seen in Figure 5.8, only the enhanced framework was able to fully replicate this 
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when compared to the F-P framework, suggesting that the F-P framework may not fully convey 

the uncertainty related to source contribution estimates.  It is worth noting, however, that there 

was a good correspondence between the two frameworks for period 2. 

Comparing periods 2 and 3, the greater protection offered by the surface cover during 

period 3 would have led to less mobilization of material in addition to the reduced runoff rates.  

In addition to that, the greater resistance offered to the flow by the vegetation would promote 

more deposition and reduce soil/sediment transport times and delivery rates to the watershed 

outlet [Neibling and Alberts, 1979; Thompson et al., 2011; Jones and Schilling, 2011].  Further, 

the high hydrologic forcing in period 2 would “create” a piston effect where action (flow) creates 

reaction (transported fluxes) with minimal delay and less intermittency in transported material.  

Hence one would expect less integration of material collected at the outlet during period 3 and 

corresponding PDFs with wider spreads and smaller peaks, comparatively to period 2.  Both 

frameworks performed as expected in this case (see Figure 5.8). 

The Phillips and Gregg [2001] analytical uncertainty equations also revealed that the 

uncertainty in estimated source contributions varied inversely with signature difference between 

the sources.  The parameter, which reflects spatial contributions from upland and floodplain 

areas of terrestrial sources, affects the signature difference between terrestrial and instream 

source signatures.  For a given isotope, an increase in signature difference between the two 

sources is expected to result in a decrease in the uncertainty and vice versa.   

The expected difference in the variance of terrestrial source signatures across the three 

periods due to the effects of  alone (for the chosen  priors) is estimated (with Eq. 6) to be less 

than 11%.  Hence its effects on the uncertainty of estimated source contributions, compared to 

that of  (which varied by as much as 87.5 % between the periods) is relatively less, and the 

trends in  are expected to dominate (see Eq. 6) the trends in the uncertainty of the source 

contribution PDFs above. 

Generally, the PDFs for the enhanced framework show wider spreads than the PDFs for 

the F-P framework.  This is expected since the deterministic specifications of anddo not 

convey the variability in source contributions, their delivery times and storage within the 

watershed.  On the contrary, the spreads of the probability distributions for andin the 

enhanced framework are reflected in the spreads of the source contribution PDFs as the wider 

spreads.   
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5.6.3. Sensitivity of the SASW Source Contribution Estimates to the  and  priors  

We evaluated the SASW relative source contribution estimates for their sensitivity to the 

application of  and  priors falling outside the observed range of physical values.  In the first 

set of simulations, we applied “extreme” values of  priors whilst keeping all other model 

parameters fixed.  These extreme values corresponded to two scenarios: one with contributions 

primarily from the uplands, and; one with contributions primarily from the floodplain.  In the 

second set of simulations, we applied “extreme” values of  priors whilst maintaining the same 

values for all other model parameters.  The two extreme values in this case represented: a 

scenario with considerable time-integration of material, and; a scenario with no time-integration 

of material. The chosen priors for each scenario are summarized in Table 5.6. 

 

5.6.3.1.Effect of high  priors 

For our evaluations, we consider the results from Section 6.1 as the “true” values as they 

have been shown to be in good agreement with field observations and other studies.  A summary 

of results from the first set of simulations examining the effect of on mean source 

contributions is provided in Figure 5.9 as deviations from the true values.  The performances of 

the two frameworks were similar for this set of tests.  The deviation of the estimated mean source 

contributions from the true mean values ranged between 0 and 0.04.  The similar performance of 

the two frameworks is expected since the mean values of  are the same for both frameworks.  

This implies that the mean terrestrial source signature will be the same in each case.  Thus, since 

the mean relative source contributions are dependent on only the mean signatures of the sources 

[Phillips and Gregg, 2001; see Section 6.1], the two frameworks should predict the same mean 

values. 

The percentage changes in the widths of the 95% credible intervals vary from the results 

in Section 6.2. by up to 20%.  Here as well, the impact of the choice of  on the spreads of the 

source contribution PDFs is similar for both two frameworks.  A likely reason for this is the 

distance or differentiation between the source signatures.  Synthetic analyses performed in this 

study (Section 6.4), as well as the results from the Phillips and Gregg [2001] study suggests that 

the distance between source signatures affects both uncertainty in source contributions estimates 

as well as their sensitivity to the source signature variances  (see Table A.1 and Figure A.2).   
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Table 5.6:  Parameter values used to examine uncertainty in the choice of  and  priors 

Scenario Period 

(uplands, floodplains) (terrestrial/instream) 

F-P Framework* 
Enhanced 

Framework* 

F-P 

Framework+ 

Enhanced 

Framework+ 

1 All periods  0.99, 0.01 Dirichlet(9.9,0.1) 0.01 Beta(0.1, 9.9) 

2 All periods 0.01, 0.99 Dirichlet(0.1,9.9) 1 Beta(9.9, 0.1) 

 

parameters remain the same as in Error! Reference source not found. 

+  parameters remain the same as in Error! Reference source not found. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5.9: Deviation of source contributions from the true mean for  priors outside the observed 

range of physical ranges. 
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The larger the distance between the source signatures, the less uncertainty there is in source 

contribution estimates and the less sensitive the source contribution estimates are to the source 

signature variances.  Thus, although the  parameter affects the distance between all the three 

source signatures and the variance of the terrestrial source signatures, its effects can be minimal 

if the source signatures are sufficiently far apart.  Under this condition, both frameworks are 

expected to perform similarly. 

 

5.6.3.2. Effect of high  priors 

The choice of  did not affect the mean source contribution estimates, but did affect the 

spreads of the estimated source contribution PDFs since it was assumed in both frameworks to 

only account for the reduction in the variance of the source signatures due to time-integration 

(See Eqs. 4 and 6).  A summary of the percentage change in the 95% credible intervals of the 

source contribution PDFs due to  choices beyond the range of observed physical values is 

provided in Figure 5.10.  The response of the source contribution PDFs to the choice of  was 

marked for each framework.  This was expected since the choice of different  values reflected 

different degrees of time-integration and, hence, different variances in time-integrated source 

signatures, which would affect the spread of the source contribution PDFs [Small et al., 2002].  

Although both frameworks showed marked response to the choice of , the spreads produced by 

the F-P framework appeared to be more sensitive to the choice of  than the spreads produced by 

the enhanced framework.  For example, in Period 2 of the 1/ =1 scenario, the percentage change 

in 95% credible interval varied by as much as ~120% for terrestrial sources in the F-P 

framework, whereas the corresponding percentage change in the enhanced framework was 

~50%.  A similar consistent trend is noted across all the three periods for the different sources.   

The greater sensitivity of the F-P framework is attributed to the deterministic treatment of 

 and  as opposed to their probabilistic treatment in the enhanced framework.  As explained in 

the section above, unlike the F-P framework, the spreads of the probability distributions for  

and   in the enhanced framework are reflected in the spreads of the estimated source 

contribution PDFs (as wider credible intervals) since the estimated source contribution PDFs 

represent the range of possible  and   values.  Thus, in changing the mean value of , the 

spreads of the probability distributions of  and  act as a “cushion” to reduce the relative  
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Figure 5.10: Percentage change in 95% credible interval for the a) values outside observed 

physical ranges, and b) 1/ values outside observed physical ranges. 
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sensitivity of the estimated source contribution PDFs to the change, comparatively to the F-P 

framework in which only single fixed values are used for  and  and source contribution PDFs 

are narrower. 

 

5.6.4. Further Evaluation of Framework Sensitivity to  and  priors using Synthetic Data 

To provide further insight into the sensitivities of the two frameworks to  and , as well 

as some guidance to modelers on conditions under which the frameworks could be applied to 

other un-mixing studies in intensively managed landscapes, we performed extra sets of analyses 

using synthetic datasets for which the true source contributions were known.  The details of these 

extra sets of analyses and the observations are discussed in depth in Appendix A.  The synthetic 

datasets were generated to allow us to evaluate the effects of the degree of landscape 

heterogeneity, source signature variability, differentiation between sources, and the number of 

sources on the framework sensitivity to  and  priors.  Overall, the results from the synthetic 

analyses were in agreement with our observations and conclusions in Sections 6.1, 6.2, and 6.3 

above.   For the examined scenarios, the enhanced framework was found to be consistently more 

robust than the F-P framework due to the probabilistic treatments of  and .  Also, the 

performance of the two frameworks tended to converge when extensive integration of eroded 

material was assumed, and to diverge when little integration was assumed.  This confirmed the 

limitation of the F-P framework to scenarios with large magnitude storm events and long 

integration periods (yielding extensive integration of eroded material), unlike the enhanced 

framework, which was not limited and thus more generally applicable. 

 

5.7. Discussion and Conclusions 

Several studies have highlighted the need to adopt un-mixing frameworks that are 

capable of adequately capturing uncertainty in relative source contributions for improved 

management of soil and sediment fluxes [e.g. Walling, 2013, Cooper et al., 2014].  This study 

presents an enhanced revision of the Bayesian, fingerprinting un-mixing framework of Fox and 

Papanicolaou [2008a], capable of adequately estimating source contributions and their 

associated uncertainties in a watershed.   The enhanced framework, contrary to the F-P 

framework, offers a probabilistic treatment of the  and parameters that can better account for 
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the variability in source contributions, delivery times and storage within the watershed (see Table 

5.5).   

Results from the study indicate that, whereas both the F-P and enhanced frameworks may 

adequately estimate mean source contributions, the performance of the F-P framework in 

estimating associated uncertainty is limited to large magnitude and long duration reoccurring 

storm events.  The two frameworks estimated similar results during period 2 of the study in 

which there was substantial amount of material transported from the terrestrial and instream 

sources to the outlet.  However, based on the other periods, the enhanced framework was better 

able to represent source contributions and associated uncertainties without requiring the 

occurrence of large magnitude storm events and longer integration periods like the F-P 

framework did.  The absence of this precondition makes the enhanced framework applicable to 

both single storm events and a collection of events, and thus makes it more versatile for 

management decisions since the design and implementation of BMPs are also based on single 

storm events. 

The importance of the probabilistic treatments of  and  are further highlighted in 

Figure 5.11.  In the figure, we show the probability density functions (PDFs) of  and  derived 

from observed data in relation to values of  and  that would be used in the F-P framework.  

We argue that the range of values for  and  in the PDFs are very much reflective of the degree 

of connectivity within the watershed and the associated variabilities in contributions, travel times 

and storage of material in the watershed.  Moreover, the estimated 95% credible intervals for 

source contributions were found to be less sensitive to changes in  and  in the enhanced 

framework comparatively to the F-P framework due to the probabilistic treatments of  and  

with several consequences in LULC management.   From a management standpoint, a less-

sensitive framework is more desirable since it reduces uncertainty in decision making.  Thus, by 

accounting for the variability in source contributions, their delivery times and storage within the 

watershed, we have provided a more robust framework that better quantifies uncertainty in un-

mixing analyses.    

However, as with any framework, there are some caveats associated with the enhanced 

framework and the analyses presented herein.  Since we used two tracers, we assumed that the 

signatures of both the source soils and eroded material mixtures followed multivariate normal 

distributions (no skewness).  In reality, however, each of them could follow either log-normal or  
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Figure 5.11: a) Sample probability distribution of  for a section of a hillslope derived from data in 

Abaci and Papanicolaou [2009];  b) Sample probability distribution of 1 from time-integrated 

data from Fox and Papanicolaou[2008a]. 
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gamma distributions depending on the types of sources and erosion processes [e.g. Hilton et al., 

2013].  However, the more general multivariate treatment of these other types of distributions 

can be quite challenging [Krishnaiah and Rao, 1961; Tsionas, 2004; Das and Dey, 2010].  Thus, 

for simplicity and computational expediency, the multivariate normal is the most feasible choice 

of distribution.   In instances where the true distributions are roughly symmetric and not terribly 

heavy-tailed, as is the case for SASW (see Figure 5.12), the use of multivariate normal 

distributions should not have a substantial effect on inference based on the model.  This however 

may not be the case if the distributions are actually extremely skewed.   

Another potential shortcoming of this study is the use of algal and detrital signatures from 

other studies with similar watershed characteristics.  Whilst this is common practice [e.g., Olley, 

2002], the broad range of algal and detrital signature values reported in the literature introduces 

some uncertainty into estimated contributions and so a more detailed representation of algal and 

detrital signatures from field campaigns could be beneficial for further constraining the credible 

intervals of estimated contributions of eroded material.  Nonetheless, the known flashiness of the 

SASW system [Sloan, 2013] and the careful placement of the stream tubes 2.4 km downstream 

the ditch location where algae usually grow ensured that the influence of the algal and detrital 

sources on the uncertainty of collected eroded material was kept to a minimum.  Further, our 

approach was justified by the close agreement of estimated eroded material contributions with 

observations from other studies [Abaci and Papanicolaou, 2009; Sutarto et al., 2014; Ellis, 2009; 

Wilson et al. 2012], as well as in parts by the qualitative agreement of the estimated trends in 

mean algal and detrital contributions with the unpublished data of Papanicolaou et al. [2014] 

showing an inverse relationship between runoff discharge and algal concentrations following an 

event. 

Last but not least, the analyses using both frameworks suggested that source contribution 

estimates could be affected by the choice of  and  priors.  Applying an  value outside the 

range of observed physical values led to a change in source contributions of 0.04 in some cases.  

This is 4% of the range of likely values of source contributions.  This change did not affect 

inferences regarding the relative importance of terrestrial and instream sources in SASW.  The 

prudent choice of tracers in SASW ensured that mean source signatures were separated far 

enough to minimize uncertainty in the mean contribution estimates due to The effect of  was 

however more pronounced, with changes in the widths of the 95% credible intervals of up to  



146 

 

 

 

Figure 5.12: Sample histograms for SASW showing tracer distributions of upland and floodplain 

soils that are roughly symmetric and not terribly skewed 
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120% compared to that of 20% for .  The response of the two frameworks to the choice of both 

 and  suggests that careful attention must be paid in un-mixing studies to select priors that are 

reflective of conditions observed in the field.  For datasets such as the SASW dataset, where 

mean source signatures are considerably far apart, inferences from the un-mixing results may not 

be significantly affected by the choice of priors [Phillips and Gregg, 2001]. 

Several studies have recommended the adoption of watershed management approaches 

that combine sediment source fingerprinting with sediment budgeting investigations 

(determination of flux magnitudes and links between sources, sinks, and yields) to provide a 

good understanding of sediment source dynamics for developing management strategies [Gellis 

and Walling, 2011; Munkundan et al., 2012].  A key aspect of such an approach will be the 

synthesis of mechanistic numerical modeling with field-based investigations to obtain sediment 

budgets.  Source fingerprinting techniques can be used in addition to conventional approaches of 

utilizing point field observations, such as sediment fluxes with time at the outlet, to calibrate and 

validate the numerical models, resulting in a more comprehensive synthesis of the two 

approaches and allowing the dynamics between the sources to be better replicated and 

understood.  Knowledge of source dynamics is important for understanding how implemented 

BMPs will perform and how effective they will be in attaining targeted load reductions.  Many 

cases have been reported in the literature where extensive BMPs were applied in agricultural 

areas to mitigate high magnitude events, and yet downstream water and sediment volumes 

increased for more than 10 years after the BMP installation [e.g., Garrison and Asplund, 1993].  

In such cases, the following question arises: “are the BMPs ineffective or does it just take several 

years to see the downstream benefits of the BMPs?”.  The accommodation of natural variability 

in sediment fluxes in model predictions with the probabilistic treatment of  and  is important if 

uncertainty in erosion estimates and BMP performance are to be considered in the management 

efforts.  and  in the PDFs reflect variabilities in contributions, travel times and storage of 

material in the watershed which collectively affect BMP performance. In this regard, the 

probabilistic fingerprinting technique presented herein is invaluable and will allow uncertainty 

estimates to be quantified naturally based on the accommodation of the spatiotemporal 

variability in erosion processes discussed earlier.  
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Appendix A: Sensitivity of the F-P and Enhanced Frameworks to the choice of  and  

priors 

We evaluate herein the sensitivity of the two frameworks to the choice of  and  priors 

using synthetic datasets for which the true source contributions are known.  The synthetic 

datasets have been generated to allow us to evaluate the effects that the degree of heterogeneity 

on the landscape, source signature variability, the degree of differentiation between sources and 

number of sources considered have on the sensitivity of the model to the  and   priors.  For 

each scenario examined, we first generate artificial signatures for the various sources (based 

roughly on the observed data for SASW), and then perform artificial mixing with known 

proportions as well as known  and  priors.  Un-mixing analyses are then performed on the 

resultant mixtures with each framework assuming high  and  priors.  The model predictions 

are then examined to evaluate the sensitivity of each framework to the selection of  and  and 

how these sensitivities are affected by the aforementioned properties.  Table A.1 summarizes the 

examined scenarios.   The results from the un-mixing analyses with the synthetic datasets are 

presented below. 

 

A.1. Sensitivity of un-mixing analysis to the choice of high priors. 

Table A.1, Table A.2 and Figure A.1 summarize the un-mixing analyses performed to 

evaluate the effects of .   Since only terrestrial and instream sources are considered, results are 

only presented for terrestrial sources (the results for instream sources mirror those of the 

terrestrial sources).  Overall, both frameworks predict similar mean source contributions 

regardless of the choice of .  This outcome is consistent with the findings of Phillips and Gregg 

[2001], who, using analytically-derived equations for uncertainty (verified with experimental 

data), showed that the mean relative source contributions were fairly independent of their 

uncertainty, and, thus, independent of the variability in the source signatures.  Since the mean 

values of the source and mixture signatures as well as those of  are the same in both 

frameworks, the predicted mean source contributions should be the same, as observed.  This is 

also consistent with the findings in Section 6.1.   
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Table A.1:  Examined Scenarios and Parameters for the Synthetic Analyses 

 
Sensitivity priors 

examined 

Source 

Area 

Distribution 

parameter 

Examined Scenarios*  (13C, 15N) 

Baseline Heterogeneity Signature Variability Signature Differentiation 

 (uplands, 

floodplains) 

F-P:  

 = (0.99,0.01) 

 

Enhanced: 

 ~ Dirichlet(9.9,0.1) 

Upland 
Mean (-15.00, 3.20) (-15.50, 4.00) (-15.00, 3.20) (-13.00, 3.20) 

Variance (2.25, 2.25) (2.25, 2.25) (1.00, 1.00) (2.25, 2.25) 

Floodplain 
Mean (-17.50, 7.00) (-16.80, 6.00) (-17.50, 7.00) (-15.00, 7.00) 

Variance (2.25, 2.25) (2.25, 2.25) (1.00, 1.00) (2.25, 2.25) 

Instream 
Mean (-24.86,5.21) (-24.86,5.21) (-24.86,5.21) (-27.36, 5.21) 

Variance (2.25, 2.25) (2.25, 2.25) (1.00, 1.00) (2.25, 2.25) 

 

(terrestrial / 

instream) 

F-P:  

 = 0.01;  

1/ = 1 

 

Enhanced: 

 ~ Beta

 ~ Beta 

Upland 
Mean (-15.00,4.50) - (-15.00,4.50) (16.2, 4.5) 

Variance (2.25, 2.25) - (9.00, 9.00) (2.25, 2.25) 

Floodplain 
Mean (-17.28, 8.00) - (-17.28, 8.00) (-17.60, 8.00) 

Variance (2.25, 2.25) - (9.00, 9.00) (2.25, 2.25) 

Instream 
Mean (-24.86,5.21) - (-24.86,5.21) (-22.00, 5.20) 

Variance (2.25, 2.25) - (9.00, 9.00) (2.25, 2.25) 

* (0.5, 0.5) and (0.5) were used in the synthetic mixing.  50 samples were generated for each source area. 

 

 

Table A.2: Predicted Mean Terrestrial Source Contributions and 95% Credible Intervals (CI) for Synthetic Analyses examining the 

effects of Heterogeneity, Signature Variability and Signature Differentiation on model sensitivity to  

Scenario Baseline Less Heterogeneity 
Less Signature 

Variability 

More Signature 

Differentiation 

Mean SC 95% CI Mean SC 95% CI Mean SC 95% CI Mean SC 95% CI 

True Value 0.49 - 0.495  0.498 - 0.498 - 

Enhanced Framework 0.435 (0.23,0.64) 0.458 (0.28,0.62) 0.409 (0.30,0.51) 0.459 (0.35,0.56) 

F-P Framework* 0.432 (0.39,0.47) 0.460 (0.42,0.50) 0.405 (0.38,0.43) 0.465 (0.44,0.49) 

          *Confidence intervals highlighted in red are those that do not bracket the true value of the source contribution 
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Figure A.1: Sensitivity of un-mixing analyses to the choice of : a) influence of heterogeneity (less heterogeneity results in upland and 

floodplain signatures converging); b) signature variability effects; c) signature differentiation effects.
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The primary difference between the two frameworks pertaining to the sensitivity to , lay 

in their prediction of the 95% credible intervals.  The enhanced framework consistently predicted 

wider 95% credible intervals than the F-P framework for the synthetic datasets.  This was 

attributed to the used of probabilistic representation for .  As discussed in greater detail below, 

these differences have important implications to the robustness of the models in terms of model 

predictions and uncertainty quantification. 

Effects of the degree of heterogeneity - Increasing heterogeneity within a source may 

result in increasing distinction between the signatures at different locations within the source 

experiencing different processes.  The net effect of this is illustrated in Figure A.1, which shows 

that the sensitivity of mean source contribution predictions increases with increasing 

heterogeneity.  The percentage difference between the true and predicted mean source 

contributions for the least heterogeneous scenario was ~8 % whereas it was ~11% for the most 

heterogeneous scenario.  In each case, the enhanced framework was less sensitive to the choice 

of  than the F-P framework due to its larger 95% credible intervals.  This is seen in Table A.2, 

where the 95% credible intervals predicted by the enhanced framework always bracketed the true 

source contribution.  This was not the case for the F-P framework, whose 95% credible interval 

for the most heterogeneous (baseline) scenario, (0.39, 0.47), did not include the true contribution, 

0.49, suggesting that the F-P framework is less robust than the enhanced framework.  The 

increasing sensitivity with heterogeneity highlights the importance of adequately selecting and 

accounting for the effects of  in heterogeneous landscapes. 

Effects of signature variability - Contrary to the effect of heterogeneity, increasing 

signature variability results in decreasing sensitivity of both frameworks to the choice of .  This 

is seen in Figure A.1 where the percentage difference between the true and predicted mean 

source contributions for the case with the least variability is ~18%, whereas it is ~11% for the 

case with the most variability.  The decreasing sensitivity of the two frameworks with increasing 

signature variability is attributed to the greater role that uncertainty in the signatures plays in the 

un-mixing analysis, which overshadows the influence of spatial heterogeneity for which  is 

applied.  The larger uncertainty in the data provides a greater degree of freedom in the models by 

providing larger sample spaces, thus reducing the influence of  and the model sensitivity to it.  

It is also noted for this set of analyses that the 95% credible intervals predicted by the enhanced 

framework are less sensitive than those predicted by the F-P framework (see Table A.2).  
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Similarly, unlike the enhanced framework, the F-P framework’s 95% credible interval did not 

contain the true mean value in either of the scenarios examined, again confirming the better 

robustness of the enhanced framework.   

Effects of differentiation between sources - Increasing differentiation between source 

signatures is generally known to result in better estimates of mean source contributions [Phillips 

and Gregg, 2001] by improving the ability of un-mixing models to distinguish between sources 

due to a reduction in the influence of signature variability and heterogeneity.  This was the case 

for this set of analyses.  Since the role of  is directly dependent on the roles of signature 

variability and heterogeneity (See Equations 4 and 6), the reduction in the influence of signature 

variability and heterogeneity is expected to minimize the role of  in determining the mean 

source contributions in the un-mixing analyses.  This is noted in Figure A.1 where the sensitivity 

of mean source contributions to the choice of  is seen to diminish with increasing source 

signature differentiation.  The reduction in the role of variability with increasing differentiation is 

further noted in Figure A.2, which shows a greater influence of variability when the source 

differentiation is lower (i.e. approximately 8% difference between the high variability and low 

variability scenarios) than when the source differentiation is greater (i.e. approximately 3% 

difference between the high variability and low variability scenarios).  Likewise for this set of 

analyses, as noted from the 95% credible intervals, the enhanced framework is more robust than 

the F-P framework.  

 

 

 

 

 

 

 

 

 

Figure A.2:  Relative effects of source signature variability and differentiation on the choice of .  

Increasing differentiation reduces model sensitivity to signature variability 
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A.2. Sensitivity of un-mixing analysis to the choice of high priors.

Table A.1 and Figure A.3 summarize the un-mixing analyses performed to evaluate the 

effects of .  For each scenario we performed two sets of analyses assuming either considerable 

time integration (1/) or very little time integration (1/).  Since the role of  in the 

mixing process only affects uncertainty in the signatures (see Equation 6), we do not present 

mean sources contributions from the analyses as these are unaffected.  The performances of the 

two frameworks are evaluated based on the response of the widths of the 95% credible intervals. 

As in the case of , the enhanced framework consistently predicted wider 95% credible 

intervals than the F-P framework in these set of analyses because of the stochastic representation 

of .  The predicted trends and implications are presented in the following paragraphs. 

Effects of signature variability - As seen in Figure A.3, the trend in the effects of 

signature variability on model sensitivity to the choice of  is similar to that of  i.e. there is a 

decrease in sensitivity with increasing signature variability for each framework.  This is also 

attributed to the greater role that uncertainty in the signatures plays in the un-mixing analysis, 

which minimizes the influence of time integration effects for which  is applied.  A further 

observation is that although the 95% credible intervals predicted by the enhanced framework  are 

wider than the intervals for the F-P framework, the differences in the predictions of the two 

frameworks are smaller when considerable time integration is assumed ( ~15% - 16%) and 

greater when very little time integration is assumed (~28% - 45%).  This agrees with the notion 

that the deterministic representation of  is justified when there is considerable time integration 

and so the two frameworks should converge under such a scenario.  Conversely, the two 

frameworks should diverge when there is less integration, which is what is noted.  Overall, the 

wider 95% credible intervals predicted with the enhanced framework makes it generally less 

sensitive comparatively to the F-P framework, which is more desirable from a management 

standpoint. 

Effects of differentiation between sources - It has been alluded to above that increasing 

differentiation between the source signatures results in less uncertainty in source contribution 

estimates in un-mixing studies due to the diminishing role of source signature variability.  The 

smaller uncertainty implies narrower 95% credible intervals of source contribution estimates, 

which will be relatively more sensitive to changes in the choice of .  On the contrary, a wider 

95% credible interval will be less sensitive to choices of .  This is noted in Figure A.3, where 
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Figure A.3: Sensitivity of un-mixing analyses to the choice of assuming little and considerable 

integration, respectively, under: a) signature variability effects; and b) signature differentiation 

effects 
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the sensitivity of both frameworks to the choice of  is seen to increase with increasing 

differentiation between the source signatures. The percentage difference in the width of the 95% 

credible increased from ~44%-60% to ~61%-77% when the spread between the source 

signatures was increased.  It is also noted that the two frameworks tend to converge under the 

assumption of considerable time integration and diverge when little integration is assumed.  

Further, similar to all the other scenarios examined herein, the enhanced framework is generally 

less sensitive comparatively to the F-P framework. 

 

A.3. Sensitivity of un-mixing analysis to the number of sources 

We further examined the effect of one additional source on the choice of  and  based 

on the relative positions of the source signatures in SASW.  The sensitivity of both frameworks 

increased with the additional source due to the relatively smaller contributions and confidence 

intervals per source.  These are shown in Figure A.4. Since in general the inclusion of additional 

sources introduces a new complexity regarding the relative position of the sources, further 

analyses were not performed herein and will be the focus of future research on the roles of  and 

. 
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Figure A.4: Sensitivity of un-mixing analyses to the choice of  and  for scenarios with 2 and 3 

sources 
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  Chapter 6 

Examination of characteristic scale units for flow and sediment at the 

Subwatershed scale 

 
  



164 

 

Abstract 

A modeling framework to simulate water and sediment flux dynamics in intensively 

managed landscapes (IMLs) is presented in this study.  The framework takes advantage of 

modeling advances from other IML studies to predict event-based water and sediment flux 

dynamics under different rainfall and land cover conditions in IMLs.  An extensive field 

campaign covering terrestrial and instream fluxes at scales ranging from the plot to the watershed 

scale has been performed in the South Amana Sub-watershed, IA, and used to validate the 

framework model.  The model has been found to adequately predict flow and sediment fluxes, as 

well as, the relative contributions of different source areas to the total sediment flux at the 

watershed outlet.  The validated model was used to confirm the existence of a characteristic scale 

unit for sediment fluxes, and then, to compare it with the characteristic scale unit for water under 

different rainfall and land cover conditions.  There were notable differences in the characteristic 

scale units for flow and sediment, with the flowrate and sediment concentration appearing to be 

correlated with the size of the characteristic scale unit for sediment.  For the South Amana Sub-

watershed, sediment source had a notable influence on the size of the sediment characteristic 

scale unit.  It was smaller whenever instream source contributions for sediment fluxes were 

dominant, and larger whenever terrestrial source contributions were dominant.  This was found 

to be due differences in sediment size characteristics between terrestrial and instream source 

contributions, which were finer and coarser, respectively.  The identified sediment characteristic 

scale unit can be used as a parameterization unit for modeling larger watersheds.  It is also an 

appropriate scale for monitoring watersheds and evaluating the performance of best management 

practices. 

 

 

6.1. Introduction 

Anthropogenic activities for food production and other life-sustaining services in regions 

such as the U.S. Midwest have significantly modified the landscapes on which they rely, 

transforming previous grasslands to lands that now display a considerable amount spatial 

heterogeneity and temporal variability in surface cover and material fluxes.   The various 

practices have led to changes in the percentage of bare soil, soil surface roughness, flow 

pathways, soil fertilization, and erosion/depositional patterns, all of which change over the 
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course of a season, and from season to season [Papanicolaou et al., 2015; Van Meter et al., 

2016].  Tile drain installation and channel straightening have modified material travel times and 

significantly altered the hydrologic regime of the systems, with more pronounced event-based 

dynamics compared to pre-Anthropocene conditions, which were mostly seasonal-driven [Sloan, 

2013].   Consequently, the modifications and continued human intervention are believed to 

maintaining the systems in a non-stationary state in which material transport and transformation 

times are now much shorter, with implications to stream water quality and the continued 

productivity of the landscape [Papanicolaou et al., 2015; Abban et al., 2016; Sullivan et al., 

2017].   

Mitigating anthropogenic impacts will require an understanding of how the various land 

management practices are affecting critical zone processes.  This calls for a two-pronged 

approach in which physical observations are combined with numerical modeling exercises to 

establish the causal relationships between key variables governing critical zone processes at 

different spatiotemporal scales.  Although physical observations can enhance our understanding 

of critical zone process and reveal some cause-and-effect relationships, there is a limitation on 

how much inference can be drawn due to limited data in time and/or space.  Physically-based 

numerical models have the potential to “fill in the blanks” and tease out direct cause-and-effect 

relationships between land surface modifications and fluxes across different spatiotemporal 

scales [Michaelides and Wainwright, 2008; Brantley and Lebedeva, 2011].  As such, they can be 

used to provide further insight on human impacts over a broad range of scales and how these can 

be mitigated appropriately.   

Even though several models have been developed for simulating critical zone processes 

in intensively managed landscapes, most of the models have either focused on specific aspects or 

domains within the landscape or, in the case of watershed-scale models, have used lumped 

representations of terrestrial processes that are inadequate for capturing the event-based 

dynamics induced by human activity.  For example, some models have been developed to 

simulate rainfall-runoff and soil erosion processes in terrestrial areas without considering flow 

and sediment transport within the stream network (e.g., WEPP, Dhara 3D, RUSLE, PALMs, 

etc), while others have been developed to simulate flow routing and sediment transport processes 

within the stream network without considering inputs from terrestrial areas (e.g. 3ST1D, 

CCHE1D, etc).   
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The separation or decomposition of watershed scale processes into terrestrial and 

instream processes may have some practical merits for the purposes of simulation [Wu, 2008].  

However, since the two domains are highly interrelated, the lack of connectivity between the 

terrestrial and the instream processes introduces significant error in the water volume and 

sediment yield estimates along the stream network [Conroy et al., 2006; Wu, 2008; Jensco et al., 

2009].  For example, accelerated upland erosion caused by anthropogenic activities may increase 

sediment yields to the channels, resulting in excess sedimentation and reduction in the transport 

capacity of the channels. Failure to account for this interaction will undoubtedly lead to the 

miscalculation of sediment transport rates within the channels and the watershed as a whole. 

The use of lumped representation of terrestrial processes in some watershed models (e.g. 

SWAT, THREW, etc.) may be warranted at some scales and under certain conditions.  Woods et 

al. [1995] identified a characteristic scale unit (i.e., a representative elementary area) above 

which local scale variabilities in landscape properties and rainfall characteristics played a 

minimal role on the average watershed hydrologic response.  This scale unit was proposed as the 

fundamental building block for watershed modeling and considered appropriate for simulating 

water fluxes at larger scales [Wood et al., 1988].  Although a characteristic scale unit has been 

identified for water fluxes, no such scale unit has been explored for sediment fluxes.  It is 

unknown whether or not such a scale unit exists, and if it does, what factors affect it and whether 

or not it differs from the scale unit for water fluxes.  The existence of a characteristic scale unit 

for sediment fluxes would provide two key benefits: (a) a parameterization unit for simulating 

sediment fluxes at the watershed scale, and; (b) a landscape unit at which field observations could 

be used to monitor the impacts of human activities on mean trends in watershed sediment fluxes. 

Besides hampering our ability to understand and mitigate the impact of anthropogenic 

activities in intensively managed landscapes, the lack of a reliable method for predicting fluxes 

of water and sediment from the plot scale to the watershed scale is also a key reason why a 

characteristic scale unit for sediment fluxes has not yet been explored.  Identification of a 

characteristic scale unit must necessarily involve the examination of fluxes from the plot scale to 

the watershed scale, taking into consideration all flux pathways as well as connectivities between 

terrestrial and instream sources; only a systematic examination of the behavior of the mean 

sediment flux response with scale can reveal the threshold at which it becomes stationary (or 
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“pseudo-stationary”) and is not significantly influenced by local-scale variations in landscape 

and rainfall properties.  

There is a need, therefore, for the development a modeling framework that is capable of 

capturing all the relevant pathways and connectivities between terrestrial and instream sources, 

as impacted by humans, and the event-based dynamics that control fluxes from the plot scale to 

the watershed scale in intensively managed landscapes.  Not only will such a framework help us 

understand how the various land management practices are affecting critical zone processes, it 

will also allow us to investigate the existence of a characteristic scale unit for sediment fluxes.  It 

is hypothesized herein that a characteristic scale unit for sediment fluxes does indeed exist, but it 

differs from the characteristic scale unit for water fluxes due to differences in the travel times 

and processes involved. 

The goals of this study are twofold: (a) to develop and validate a modeling framework 

that captures the pathways, connectivities, and event-based dynamics prevalent in intensively 

managed landscapes, for use in simulating fluxes of water and sediment from the plot scale to 

watershed scale, and; (b) to use the framework to investigate the existence of a characteristic 

scale unit for sediment fluxes, and factors that affect the scale unit.  The framework is developed 

and tested in the South Amana Sub-watershed (SASW) located in the headwaters of the Clear 

Creek Watershed, IA, which is part of the NSF’s Critical Zone Observatory for Intensively 

Managed Landscapes.  The study couples state-of-the-art terrestrial, instream, and sediment 

sourcing models, which collectively encompass the key processes that occur in intensively 

managed landscapes.   Observations from the plot scale to the sub-watershed scale are used to 

validate the coupled model, which is then used to examine fluxes under different land cover and 

rainfall conditions in SASW.  Variations in the specific sediment discharge with scale are finally 

used to examine the characteristic scale unit. 

 

6.2. Modeling Framework for Intensively Managed Landscapes 

6.2.1. Overview 

The modeling framework presented herein employs a coupled model for intensively 

managed landscapes [Abban et al., 2011] that utilizes the well-established watershed erosion 

prediction project (WEPP) model for representing terrestrial processes [Flanagan et al., 2007] 

and the widely validated Steep Stream Sediment Transport 1D (3ST1D) model for representing 
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instream processes [Papanicolaou et al., 2004].  For ensuring that the connectivities and 

interactions between terrestrial and instream sources are adequately represented, the framework 

also employs a Bayesian sediment sourcing model for intensively managed landscapes [Abban et 

al., 2016] to make sure that the model representation of the watershed predicts relative source 

contributions that fall within ranges they are most probable to occur in, under different land 

cover and rainfall conditions.    

An overview of the modeling framework is illustrated in Figure 6.1.  The modeling 

framework employs both terrestrial and instream field observations at different spatial scales for 

calibrating and validating the coupled models.  It calibrates and validates fluxes at the plot scale, 

at the hillslope scale, at the interface between terrestrial and instream sources (i.e., at the banks), 

and at selected points within the channel network and the watershed outlet.  By doing so, it 

deviates from most frameworks that typically calibrate watershed models only at selected points 

within the channel network.  A further improvement is the use of observed tracer signatures of 

terrestrial sources, instream sources, and eroded material in an un-mixing model for calibrating 

and validating the predicted proportions of terrestrial and instream material (see the dashed, red 

box in Figure 6.1).  Although the issue of equifinality in model predictions of sediment fluxes 

pertaining to source contributions has been raised in the past [e.g., Belmont et al., 2014], this is 

the first time that an approach has been developed to directly address the issue.  

In addition to the comprehensive observational methodology used in the framework, the 

models employed also address critical watershed processes pertinent to intensively managed 

landscapes that are ignored or only partially addressed in other existing models.  At the plot 

scale, Abban et al. [2017] recently identified a threshold scale below which surface roughness 

would increase with raindrop impact.  A practical implication of the finding was that a rough 

surface manifesting decay in roughness with rainfall would approach a threshold roughness and 

not decay to smooth conditions.  In the study, the threshold was identified to be of an order 

around 5 mm.  Although roughness decay with cumulative rainfall is represented in a number of 

models, no official threshold has ever been established or formally specified based on 

experiments designed specifically for that purpose.  The enhanced WEPP model utilized in this 

study enforces the threshold over the course of a season as roughness decays. 
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Figure 6.1: Conceptual Modeling Framework 

 

 

The recent study by Papanicolaou et al. [2018] investigated the implications of the space 

and/or time invariant resistance assumption, commonly adopted in many terrestrial models, on 

runoff hydrographs at the hillslope scale.  Modeling runoff from a storm event on an intensively 

managed hillslope in Jasper County, IA, it was found that the assumption could lead to errors in 

runoff rate predictions, with the peak rate departing from the observed rate by as much as 60%.  

The investigated hillslope was spatially heterogeneous in terms of cover, with portions covered 

by isolated roughness and vegetated filter strips.  Although the assumption was found to be valid 

under some conditions for high magnitude events, only a space/time variant resistance 

representation was able to correctly replicate overland flow rates and runoff hydrographs at the 

hillslope outlet under all conditions.  Thus, the space/time variant resistance representation of 

surface roughness effects, presented by Papanicolaou et al. [2018] for intensively managed 

landscapes, is adopted herein for the enhanced WEPP model used in the framework. 

At the watershed scale, Abban et al. [2016] introduced an enhanced Bayesian sediment 

fingerprinting model for identifying sources of eroded material in intensively managed 

landscapes.  The approach incorporated two key parameters important for intensively managed 

landscapes, but ignored in other sediment sourcing models.  The two parameters,  and , 
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collectively accounted for the spatial origin attributes of sources and the travel history of eroded 

material delivered to the watershed collection point.  A crucial aspect of the representations of 

these two parameters was their ability to capture the effects of landscape heterogeneity on 

variabilities in source contributions, their pathways, delivery times and storage within the 

watershed.  Thus, by accounting for the two parameters, Abban et al. [2016] were able to capture 

the connectivities between the sediment sources and the watershed outlet at different times of the 

season and for different events.  The performance of the model was extensively tested in an 

intensively managed landscape in Clear Creek, IA.  The Abban et al. [2016] model is 

incorporated into the framework presented herein for ensuring that the connectivities between 

terrestrial and instream sources are adequately captured and that their relative contributions to 

the net fluxes from the watershed are correctly predicted. 

The description of the aforementioned models presented herein is brief to provide the 

reader with a general understanding of the important model components of the framework.  The 

reader is referred to the works by Papanicolaou et al. [2010], Abban et al. [2011], Papanicolaou 

et al. [2015], Abban et al. [2016], and Papanicolaou et al. [2018] for a more in-depth description 

of the models. 

 

6.3. Methodology 

6.3.1. Study Site 

The framework is developed and tested in the South Amana Sub-watershed (SASW), 

located in the headwaters of the Clear Creek Watershed in Southeastern Iowa, USA.  Clear 

Creek has recently become a U.S. National Science Foundation Intensively Managed 

Landscapes-Critical Zone Observatory (IML-CZO) [http://criticalzone.org/iml/].  SASW is a 26 

km² sub-watershed that contains 1st- and 2nd-order channels.  The terrestrial and instream 

contributions in SASW have been observed to vary over the course of a season in response to 

changing hydrologic forcing and land use/land cover [Abaci and Papanicolaou, 2009; Wilson et 

al., 2012].   The hillslope gradients range between 0.5% and 8% with an average of 4%.  The 

land use is predominantly row-crop agriculture with two-year corn-soybean rotations, and the 

dominant soil texture is silty clay loam [Abaci and Papanicolaou, 2009].  The average annual 

precipitation is ~890±220 mm/yr [Dermisis et al., 2010], with convective thunderstorms 

occurring between May and September with the peak month being June [Cruse et al., 2006].   
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6.3.2. Model Validation  

Data for the model validation was collected in 2014 and 2017 from a series of terrestrial 

and instream field campaigns.  This dataset was complemented with data from field studies 

undertaken in 2007 by Abaci and Papanicolaou [2009] and presented in Abban et al. [2016].  

Rainfall data corresponding to storm events that occurred during the monitoring periods were 

obtained from a digital rain gauge situated within the sub-watershed.  The datasets and the 

sampling methods are described below. 

 

6.3.2.1. Terrestrial Sampling & Experiments 

Plot scale experiments were performed in the summer of 2014 at selected sites located 

within established IML-CZO activity centers in the Clear Creek watershed.  The sites were 

selected to be representative of the land use in the region.  They were also selected to take 

advantage of other monitoring instruments in the watershed that were collecting continuous data 

on surface and subsurface flows.  Two of the activity centers are shown in Figure 6.2.  Table 6.1 

summarizes the locations and characteristics of the plots where the experiments were performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Activity Center where terrestrial experiments were performed 
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Table 6.1: Characteristics of plots where terrestrial experiments were performed 

Plot Coordinates Management Gradient Flow type Soil Series 

1 41.7374, -91.9439 Corn-Soybean Rotation 8.5% Rill-Interrill Tama 

2 41.7357, -91.9402 Corn-Soybean Rotation 2.5% Rill-Interrill Colo 

3 41.7296, -91.7373 Vegetation 15.4% Planar Fayette 

4 41.7359,- 91.9309 Bare 10% Planar Colo 

 

 

 

The experiment at each site was performed on a plot approximately 7 m long by 1.8 m 

wide.  Rainfall was applied to the plot using Norton Ladder Multiple Intensity Rainfall 

Simulators designed by the USDA-ARS National Soil Erosion Research Laboratory, IN. The 

setup is shown in Figure 6.3.  For each experiment, three rainfall simulators were mounted in 

series over the plot and approximately 2.5 m atop the plot surface in order to ensure that raindrop 

terminal velocity was reached. Water was continuously pumped from a water tank under 

controlled pressure, and uniform rainfall was applied through oscillating VeeJet nozzles which 

provided spherical drops with median diameters between 2.25-2.75 mm and an average rainfall 

intensity of 60 mm/hr. The distribution of raindrop sizes generated by the rainfall simulators was 

calibrated using a disdrometer and followed a Marshall-Palmer distribution [Elhakeem and 

Papanicolaou, 2009]. 

Flow rate measurements were obtained at the plot outlet at regular time intervals using a 

20° v-notch weir.  Concurrently, samples for sediment concentration were taken via discrete 

sampling of runoff.  The measurements were taken during the rising limb phase of the 

hydrograph and at steady state.  Flow conditions at the weir were monitored continually until 

steady state conditions developed.  Then rhodamine dye was used to estimate the flow velocity 

from the top of the plot to the outlet following the approach of Abrahams et al. [1986].  The 

sediment concentration samples obtained in the field were processed in the lab after each 

experiment.  The mass of sediment within each sample was obtained via filtration and drying, 

and then used to estimate the sediment concentration corresponding to each flow rate 

measurement.  Pictures from the plot experiments are also shown in Figure 6.3.  
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Figure 6.3: Pictures from terrestrial field experiments performed in 2014 showing the experimental 

setup, various land covers examined, and sampling methods 
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Samples were also extracted from several terrestrial locations in 2007 for the sediment 

sourcing analyses.  Terrestrial soil samples were collected from five fields distributed within the 

watershed that were representative of the land uses, soil types, and topography [Abban et al., 

2016].  In each field, surface soil samples (0-5 cm) were collected along 75 to 100 m long planar 

transects located along the downslope to capture planar and downslope heterogeneity from the 

summit to the floodplain.  In all fields, three transects were located on the summit, backslope and 

toeslope, respectively, whilst two transects were located on the floodplain.  The upslope soil 

series are predominantly Tama, while the floodplain soil series are Colo.  The tracer signatures 

of the collected samples, i.e., the 


C and 
15

N signatures of the fine grained portion (<53 m) 

of each sample, were quantified using mass spectrometry [Fox and Papanicolaou, 2008]. 

 

6.3.2.2. Instream sampling & experiments 

Several instream flow rate and sediment concentration measurements were collected in 

the summers of 2014 and 2007 for model calibration and validation purposes.  Dye tracer 

experiments were also performed in summer of 2017 to determine the flow travel times and 

dispersive properties under different conditions.  The sampling locations, along with some of the 

instruments used for the various experiments, are shown in Figure 6.4 (see Figure 6.2 for the site 

coordinates).   

The flow rate measurements were obtained via two different approaches.  The first 

approach was based on USGS methods, and involved the use of a pressure transducer and an 

established stage-discharge relationship to provide continual measurements (~5 min intervals) of 

flow stage and discharge at the watershed outlet.  The pressure transducer was installed within a 

stilling basin to minimize the effects of waves on the measurements.  The second approach 

involved the use of the Flo-Mate2000
TM

 electromagnetic flow velocity meter and area-velocity 

method for flow discharge estimation.  The six-tenths method was used to obtain mean velocity 

measurements within each section with a wading rod.  This second approach was used at low 

flows and after storm events when conditions were deemed safe for wading. 

Suspended sediment concentrations were obtained using automated suspended sediment 

samplers and discrete sampling techniques.  The automated samplers were installed at three 

locations, one at the watershed outlet, and the other two at locations approximate 2 and 3 miles 

upstream of the outlet.  These samplers were triggered at the start or during an event, and were  
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Figure 6.4: Instream sampling locations and instrumentation 
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set to collect samples at intervals ranging from 5 to 15 mins.  Sampling tubes extended from the 

auto-samplers to inlet nozzles located in the flow at 10 and 70 cm above the bed [Edwards and 

Glysson, 1999].  In addition to the automated samplers, discrete samples were collected by 

lowering buckets into the center of the flow from bridges near the samplers.   

Dye tracer experiments were performed to measure travel time and dispersion in streams 

following the USGS established method [Hubbard et al., 1982].  For each experiment, pre-

determined, safe levels of dye were introduced at a bridge approximately 2 miles upstream of the 

sub-watershed outlet.  Then, at two separate locations downstream of the injection point (i.e., 

~1.7 and 3.8 km downstream), discrete samples were collected continually at intervals ranging 

from 5-10 mins by lowering buckets into the center of the flow from bridges.  The stream was 

monitored visually for passage of the dye, and sampling was continued for 30-45 mins after the 

dye could no longer be detected by the eye.  The dye concentration in the each sample was 

determined within 24 hours of the experiments using a Trilogy Laboratory Fluorometer. 

The tracer signatures of instream sediment sources (the 


C and 
15

N signatures of the 

fine grained portion) were characterized using discrete sediment samples collected during non-

flood flows following the Olley [2002] approach.  Concurrently, sampling of the total transported 

eroded material at the sub-watershed outlet was done using stream tubes, which are described in 

detail by Fox and Papanicolaou [2007].  Two to four stream tubes were placed close to the bed 

of the stream outlet to continuously capture suspended eroded material over periods of 

approximately one month each.  Stream conditions were such that the tubes primarily captured 

contributions from the storms that occurred during the period.   

Other measurements within the sub-watershed that were considered for the model 

validation were the bank erosion measurements by Sutarto et al. [2014], and tile flow 

measurements made during the summer of 2016.  The bank erosion measurements were used to 

provide bank erodibility values for the instream model.  The tile flow measurements were 

performed using a calibrated time-lapse camera, which produced the flow stage within the tile 

that was then used to estimate the discharge.  These data were used to assess the relative 

importance of tile flows to stream flow rates during storm events. 

Figure 6.5 presents pictures taken during various instream monitoring exercises and 

device installations. 
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Figure 6.5: Pictures taken during various instream monitoring exercises and device installations  
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6.3.3. Determination of Characteristic Scale Unit  

On validation of the modeling framework, a consistent methodology was used to examine 

the characteristic scale unit in the South Amana Sub-watershed for both flow and sediment for an 

ensemble of storm events, following the approach by Woods et al. [1995].  The approach defines 

the characteristic scale unit as the scale at which the average watershed response is invariant or 

varies only slowly with increasing watershed area.  In the approach, sub-catchment specific 

outputs are arranged in order of increasing sub-catchment area.  Then, a moving window that 

captures the sub-catchment specific outputs with area is considered.  The variance and the 

standard deviation of the outputs within each window are computed.  As the area of the sub-

catchments increases, the variance and standard deviation of the specific output decrease to a 

point where they do not change or change slowly – this point is the characteristic scale unit. 

This study considered a moving window whose size corresponded to the total area of five 

consecutive sub-catchments in the ordered list.  A step size of one was used.  Since all the 

predicted flow and sediment concentration values were the same order of magnitude, a threshold 

variance of 0.0005 (which was less than 1/1000 of the typical peak variance) was used to identify 

the characteristic scale unit for all cases.  Areas where the variance within the window fell below 

the threshold were considered to be larger than the characteristic scale unit. 

The characteristic scale unit was examined for an ensemble of storm events that occurred 

in South Amana over a period of 8 years, from 2007 to 2015, in the months of June and July.  A 

summary of the characteristics of these storms are presented in Table 6.2 – the data were 

obtained from the digital rain gauge located within the sub-watershed.  The months of June and 

July were selected to allow for the examination of the effects of both rainfall and land cover on 

the characteristic scale unit; differences in rainfall and land cover have been found to be 

statistically significant between the two months [Abban et al., 2016]. 

The land cover data corresponding to the months of June and July for the characteristic 

scale unit simulations were obtained from Enhanced Thematic Mapper satellite imagery (Landsat 

8; http://earthexplorer.usgs.gov/).  False color images from 2014 showing the extent and degree 

of vegetation cover around mid-June and mid-July in SASW, are presented in Figure 6.6. 

 

 

 

http://earthexplorer.usgs.gov/
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Table 6.2: Summary of storm events considered in characteristic scale unit analyses 

Month Event Year Peak Intensity (mm/hr) Total Duration Effective Peak Duration 

June 

1 2014 51.88 6.67 0.88 

2 2007 60.28 5.75 0.46 

3 2007 60.56 7.25 0.97 

4 2015 29.44 2.33 1.06 

5 2015 69.08 4.50 0.92 

6 2018 53.76 2.75 1.13 

July 

1 2014 62.84 2.75 0.70 

2 2014 56.56 2.82 0.40 

3 2007 22.08 7.25 1.41 

4 2013 46.24 6.25 0.86 

5 2008 26.20 8.75 1.66 

6 2015 51.80 2.67 0.55 

 

 

 

 

      

 

 

           

 

 

 

Figure 6.6: False color images of SASW using near infrared, red and green spectral bands mapped 

to RGB – this image shows the extent and degree of vegetation in a red tone, as vegetation reflects 

most light in the near infrared. 
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6.4. Results 

This section presents outcomes of the model validation exercises and the simulations 

used to examine the characteristic scale unit.  It is organized as follows.  It starts with the 

validation of the model’s ability to predict terrestrial fluxes and velocities of water and sediment 

for the different types of surfaces present in SASW.  It then presents outcomes from instream 

advection-dispersion validation exercises.  Thereafter, the model is used to simulate water and 

sediment fluxes at the watershed scale from past storm events in SASW.  For some of these 

events, the model’s ability to predict the correct proportions of terrestrial and instream 

contributions at the outlet is validated using sediment sourcing.  Finally, results from the 

simulations used to examine the characteristic scale unit are presented. 

  

6.4.1. Model Validation 

In each of the validation cases presented herein, the performance of the model is 

examined using the r
2
 value and/or the mean absolute error (   ).  Per convention, an r

2 
value 

of 1.0 corresponds to a perfect agreement between the observed and simulated fluxes whereas an 

r
2 

value of 0.0 shows no agreement.  The value indicates the proportion of the variability in 

observed fluxes that can be predicted with the model.   

The correlation coefficient, r, is determined herein as follows: 

 

   
∑ (    ̅)(    ̅)
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              (15) 

 

where j is a counter, n is the number of data points, O is the observed flux, S is the simulated 

flux, and  ̅ and  ̅ are the average observed and simulated fluxes of the event, respectively.   

The mean absolute error (MAE) is determined as: 

 

     
∑ |     |
 
   

 
           (16) 

 

A small value of     suggests a good correspondence between model prediction and observed 

fluxes, whereas a large value suggests poor correspondence. 
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6.4.1.1. Terrestrial Fluxes 

Figure 6.7 provides a comparison of measured and simulated runoff and sediment fluxes 

from experimental runs on three of the plots that were examined.  Other validation results from 

the exercises have also been presented in Abban et al. [2016].  A summary of the r
2
 and     

values in each case, along with the simulated times to runoff initiation, is presented in Table 6.3 

below. 

Overall, there was very good agreement between the observed and simulated runoff data, 

with r
2 

values ranging between 0.7-0.87.   Although the agreement between the observed and 

simulated sediment fluxes was not as good as that for runoff, it was generally acceptable, falling 

between 0.39-0.65.  The model performed best when predicting the variability in sediment fluxes 

on the rill-interrill plot with the steepest gradient, and poorest when predicting the variability in 

sediment fluxes on the vegetated plot.   On the contrary, the     was largest when predicting 

sediment fluxes on the rill-interrill plot with the steepest gradient, and smallest when predicting 

sediment fluxes on the vegetated plot.  The above trends are expected since the fluxes on the 

steep rill-interrill plot are two orders of magnitude larger than those on the vegetated plot (2×10
-3

 

kg/s vs. 2×10
-5

 kg/s, respectively).  Thus, one would expect stochastic effects relative to the 

mean flux to be more pronounced on the vegetated plot, but the magnitude of the deviation in 

fluxes to be less on the vegetated plot.  Since the model predicts mean trends and does not 

directly simulate stochastic effects, its ability to simulate the observed variance in fluxes is 

expected to be poorer for smaller fluxes, but the error is expected to be smaller, which is the case 

above. 

 

 

Table 6.3: Model validation results for terrestrial fluxes 

Plot 
r

2
     Time to runoff (mins) 

Runoff Sediment* Runoff Sediment* Observed Simulated 

1 0.87 0.65 1.25×10
-5

 0.55×10
-3

 1.8 3.7 

2 0.70 0.49 0.64×10
-5

 0.11×10
-3

 4.2 12.0 

3 0.82 0.39 0.73×10
-5

 0.01×10
-3

 3.0 8.4 

 

* r
2
 value was calculated excluding outlier shown in the plot. 
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Plot 1: Net fluxes on rill-interrill surface plot with residue at 8.5% slope  

   

 

Plot 2: Net fluxes on rill-interrill surface plot with residue at 2.5% slope 

   

 

Plot 3: Net fluxes on vegetated surface plot at 15.4% slope 

   

Figure 6.7:  Flow and sediment fluxes measured at plot outlet 
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A comparison between the modeled and simulated times to runoff suggests that the 

model tends to over-predict the time to runoff initiation by a factor of up to 3, although the 

differences are on the order of minutes.  This tendency of the model to over-predict the time to 

runoff initiation is attributed to a limitation in the WEPP model in the presence of surface 

roughness elements that prevents it from simulating runoff until all depression storage is filled.  

Since the depression storage is considered to be a function of both random roughness and 

hillslope gradient, this explains why the effects are more notable on plot 2 (milder gradient plot, 

more depression storage) compared to plot 1 (steeper gradient plot, less depression storage).  Due 

to the shorter travel times at the plot scale, the effects of the limitation are expected to be 

generally more notable when considering fluxes at that scale. 

The model’s ability to predict overland flow velocities was also assessed on the three 

plots under steady state conditions.  Figure 6.8 compares the simulated and observed velocities.  

The model performed well in all three cases, with percentage differences between the observed 

and simulated velocities of 21%, 4.6%, and 18% for plots 1, 2, and 3, respectively. 

 

6.4.1.2.Instream Fluxes 

The model’s ability to predict flow advection and dispersion within the stream network is 

examined in Figure 6.9, which compares measured and simulated dye tracer concentrations at 

different instream locations in SASW under different flow conditions.  For each case presented, 

the specified flow range reflects the natural increase in flow discharge from the dye injection 

point to the final sampling point (at the watershed outlet).  An average dispersion coefficient of  

 

 

 

Figure 6.8: Comparison between simulated and observed overland flow velocities  
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Case 1: Flow discharge range: 0.33-0.90 m³/s 

 

Case 2: Flow discharge range: 0.25-0.80 m³/s 

 

Case 3: Flow discharge range: 0.14-0.62 m³/s 

 

Figure 6.9: Comparison between measured and simulated dye tracer concentrations at different 

instream locations in SASW under different flow conditions 
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0.35 m²/s was found to be satisfactory for all the cases.  This value matched well with data from 

other studies within the same flow range (0.001-1 m²/s) [Shen et al., 2010].   

Table 6.4 below provides a summary of the r
2
 and     values from the comparison 

between simulated and measured concentrations.  The results suggest an excellent agreement 

between the predicted and measured concentrations, with r
2
 values ranging from 0.89 to 0.98 and 

    values ranging from 0.04 to 0.07.  Since over 90% of the normalized sediment 

concentrations fall between 0.1 and 1, the     values indicate minimal error in model 

predictions.  Furthermore, the performance of the model was consistent between the injection 

point and both of the downstream sampling locations, suggesting overall that the model is able to 

predict advective-dispersive flows with high confidence in space for the conditions considered. 

 

6.4.1.3. Watershed Fluxes 

Figure 6.10 compares observed and predicted flow discharge rates at the outlet of SASW 

for four different rainfall events that took place in 2007 and 2014.  Collectively, these four cases 

represent different rainfall and land cover conditions in SASW.  A summary of the model 

performance in predicting flow discharge for these cases is presented in Table 6.5.   

The model performed very well overall, predicting the general observed trends with r
2
 

values between 0.52 and 0.87, and     values between 1.14 and 4.47.  As with the terrestrial 

fluxes, the larger     values at the watershed scale corresponded to the cases with higher flow 

discharges whereas the smaller     values corresponded to the cases with lower flow 

discharges.  Nonetheless, the     values in all cases were generally less than 15% of the peak 

flow discharge, and less than 40% of the average flow discharge.   

 

 

Table 6.4: Model validation results for instream advection-dispersion 

Case 

r
2
     

Sampling 

Point 1 

Sampling 

Point 2 

Sampling 

Point 1 

Sampling 

Point 2 

1 0.93 0.90 0.04 0.07 

2 0.96 0.97 0.05 0.05 

3 0.89 0.98 0.07 0.04 
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Figure 6.10: Comparison between observed and predicted flow discharge at the SASW outlet 

 

 

 

Table 6.5: Model validation results for watershed flow discharge 

Case r
2
     

1 0.52 3.15 

2 0.73 4.47 

3 0.87 1.14 

4 0.71 1.83 

 

 

 

 

 

Case 1: June 22, 2014 rainfall event 

 

Case 2: June 22, 2007 rainfall event 

Case 3: July 12, 2014 rainfall event Case 4: September 10, 2014 rainfall event 
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The model performed the poorest for Case 1, with an r
2
 value of 0.52 and an     of 

3.15, for a storm event that occurred on June 22, 2014.  As seen in Figure 6.10, the primary 

shortcoming in this case was the model’s ability to predict the time to peak of the hydrograph; it 

predicted a peak that occurred approximately 1 hr earlier than the observed peak.  This could be 

due to a number of factors, including the spatiotemporal distribution of rainfall within the 26 km² 

sub-watershed, which may not be always be sufficiently captured by the rain gauge.   

In contrast, there was near excellent agreement between the model predictions and the 

observed hydrograph for Case 3, which is an event that occurred on July 12, 2014.  The r
2
 and 

    values in this case were 0.87 and 1.14, respectively, suggesting that the model well 

replicated the rainfall and land use/land cover conditions for this scenario. 

The observed and predicted sediment concentrations for four scenarios are compared in 

Figure 6.11.  The first two cases consider sediment concentrations at the sub-watershed outlet for 

different storm events, while the last two cases consider sediment concentrations at two different 

locations within SASW for the same storm event.  The events and locations are clearly shown in 

the figure.  The model performance in these cases is also presented in Table 6.6. 

Overall, the model was able to capture well the general trends and magnitudes of 

sediment concentrations, with r
2
 values between 0.36 and 0.92, and     values between 0.22 

and 0.63.  Although the     values for the sediment concentration predictions were lower 

compared to values for the flow discharge predictions, the model performed better for the flow 

discharge predictions in relative terms.  This is readily seen in Figure 6.11, where the scatter and 

differences between the predicted and observed values are more notable compared to the flow 

discharge values in Figure 6.10.  Percentagewise, the sediment concentration     values were 

generally less than 30% of the peak sediment concentration, and also generally less than 56% of 

the average sediment concentration; these error thresholds are larger than the 15% and 40% 

noted respectively for the flow discharge. 

The least agreement between the predicted and observed concentrations was in Case 2 for 

fluxes from an event that occurred on July 12, 2014.  The r
2
 and     values for this event were 

0.36 and 0.22, respectively.  Figure 6.11 indicates that the model was unable to capture the 

scatter in the observed data, although the general predicted trends were good.  The scatter in the 

data could be due to processes not captured by the model, including local perturbations as a 

result of bioturbation and/or obstructions (e.g., logs) [Loperfido et al., 2010].   
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Case 3-3: July 12, 2014 rainfall event 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Comparison between observed and predicted sediment concentration within SASW 

(see Figure 6.4 for site locations) 

 

 

 

 

 

Table 6.6: Model validation results for sediment concentration 

Case r
2
     

1 0.60 0.63 

2 0.36 0.22 

3 0.92 0.48 

4 0.76 0.59 

 

 

 

 

 

Case 1: June 22, 2007 rainfall event, watershed 

outlet 

Case 2: July 12, 2014 rainfall event, watershed outlet 

Case 4: June 19, 2007 rainfall event, Church Site 

 
Case 3: June 19, 2007 rainfall event, Maas Site 
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Nevertheless, comparing the various cases, not only was the model able to capture the 

trends in sediment concentration at a single location (i.e. at the outlet) for different storm events 

(Case 1 vs Case 2), it was also able to capture well the trends at two different locations for the 

same event (Case 3 vs Case 4), where one location (i.e., the Maas site) was approximately 3.8 

km upstream from the other (i.e., the Church site) (these locations are shown on Figure 6.4).  

Thus, the results highlight the utility of the model for examining net fluxes of sediment (resulting 

from the processes it simulates) at different spatial locations and temporal moments in SASW. 

 

6.4.1.4. Watershed Source Contributions 

Probability density functions (pdfs) of terrestrial and instream sediment source 

contributions in SASW for June and July 2007, based on observed data, are presented in Figure 

6.12.  The pdfs were generated from sediment fingerprinting analyses using the Bayesian 

sourcing model and the tracer signatures of the field samples described in Section 6.3.2.  For 

comparison, model predicted terrestrial and instream contributions for storm events that occurred 

in June and July of 2007 and 2014 are also shown in Figure 6.12.    

 

 

  

   

Figure 6.12:  Comparison between predicted source contributions and field-based probability 

density functions of source contributions 
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As explained by Abban et al. [2016], the pdfs represent expected sediment source 

contributions taking into account uncertainty related various factors, including the origin, travel 

time, and delivery of material to the collection point (watershed outlet in this case).  Hence, for 

model validation, one would expect the predicted contributions from an event that yields 

significant erosion to fall within a region of the pdf where the area under the curve is greater than 

zero, i.e. p(x) > 0, where x is the source contribution.  To illustrate this, in Figure 6.12, the 

contribution, x, of terrestrial sources is expected to fall somewhere between 0.3 and 0.9 for all 

significant events in June of 2007 (see upper right plot). 

With the above explanation in mind, it is noted that the 2007 model simulations do 

indeed predict terrestrial and instream contributions that fall within the expected ranges for June 

and July 2007 based on the field-driven sediment fingerprinting analysis.  Further, the 2014 

simulations also seem to behave in a similar fashion as the 2007 simulations.  This is to be 

expected, since overall similar land management practices have been used within the watershed 

in both years, and the rainfall characteristics were similar for June and July of these two years.  

Also noteworthy in Figure 6.12 are the spreads of the pdfs and the spreads in predicted source 

contributions.  Abban et al. [2016] noted that source contribution pdfs in June in SASW tended 

to be narrower with higher peaks compared to source contribution pdfs in July, which were more 

spread out with lower peaks.  The narrower pdfs in June were attributed to greater connectivity 

between sources and the watershed outlet arising from less surface cover and higher storm 

magnitudes that led to more runoff and erosion, and subsequent delivery of material to the outlet.  

The increased delivery of material from more widespread regions of the watershed resulted in 

less uncertainty in source contributions which was reflected in the spread of the pdfs.  In terms of 

modeling, the net effect would be less spread in the predicted contributions from different 

significant events in June (i.e., they would plot close together), and more spread in the predicted 

contributions from different significant events in July (i.e., they would plot farther apart).  This is 

what is seen in the plots in Figure 6.12.  Thus, not only was the model able to correctly predict 

the terrestrial and instream contributions, it also appeared to reflect observed trends in 

connectivity between the sources and watershed outlet in the months of June and July.  
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6.4.2. Characteristic Scale Unit 

The results of the characteristic scale unit analyses for both water and sediment fluxes are 

presented in Figure 6.13 and Figure 6.14 for the months of June and July, respectively, for the 

events presented in Table 6.2.  The plots in the figures show variations in the specific flow 

discharge and specific sediment concentration with area.  Estimated characteristic scale units for 

both flow and sediment are also shown with solid blue and red vertical lines, respectively.  The 

vertical axes have the same upper limits as the flow discharge and sediment concentrations are of 

the same order of magnitude.   

Distinct patterns in characteristic scale units are noted for June and July.  The results 

indicate that the characteristic scale unit is not static, but changes with event magnitude and land 

cover extent.  Generally, the characteristic scale units for the June events are larger (mostly > 6 

km²) than the characteristic scale units for the July events (mostly < 6 km²).  As seen in the plots, 

the flow discharge and sediment concentrations in June are overall higher compared to July due 

to the larger storm event magnitudes and relatively lower land cover (see Table 6.2 and Figure 

6.6). 

Overall, it is apparent from Figure 6.13 and Figure 6.14 that the characteristic scale units 

for flow discharge and sediment concentration can be different based on the approach adopted 

herein.  In June, the characteristic scale unit for sediment was larger than that for flow for five 

out of the six events that were examined.  On the contrary, the characteristic scale unit for 

sediment in July was smaller or equal to that for flow for five out of the six events that were 

examined.  This difference in trends between the two months is to be expected since flow and 

sediment responses in June and July are known to be different in SASW [Papanicolaou and 

Abaci, 2008; Abaci and Papanicolaou, 2009; Abban et al., 2016].  A further examination of the 

June trends indicates that the one event for which the characteristic scale unit for sediment was 

smaller than that for flow was an event whose magnitude was smaller than all the other events 

examined for that month (see Event 4 for June in Table 6.2).  Likewise, for July, the one event 

for which the characteristic scale unit for sediment was larger than that for flow was an event 

whose magnitude was larger than all the other events examined for that month (see Event 1 for 

July in Table 6.2). 
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Figure 6.13:  Plots of Specific Flow Discharge and Specific Sediment Discharge with Area for June 
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Figure 6.14:  Plots of Specific Flow Discharge and Specific Sediment Discharge with Area for July 
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An examination of the characteristics scale units for sediment in both months reveals an 

apparent correlation between the characteristic scale unit and the suspended sediment 

concentration.  Events that yielded higher sediment concentration had larger characteristics scale 

units, whereas events generating lower sediment concentrations had lower characteristic scale 

units.  This observation is true both within and between the two months, and appears to indicate 

that the combined effects of rainfall and land cover have an impact on the characteristic scale 

unit through their effects on the net sediment flux. 

The trends in characteristic scale unit shown in Figure 6.13 and Figure 6.14 are 

considered to represent two contrasting behaviors of watershed response in SASW.  As alluded 

to above, and reported by Abaci and Papanicolaou [2009] and Abban et al. [2016], water and 

sediment fluxes in SASW are generally highest in June when storm event magnitudes are high 

and the land surface is relatively uncovered. The fluxes in July, on the other hand, are generally 

low because of lower magnitude events and more extensive land cover that lead to less material 

transport.  These characteristics are known to have led to shifts in terrestrial and instream 

sediment flux interactions between two endpoints reflective of the sub-watershed dynamics, 

where terrestrial sources are dominant on one hand (June) and instream sources are dominant on 

the other (July)  [Wilson et al., 2012; Abban et al., 2016].  Consequently, flux behavior between 

the endpoints may be examined by considering typical conditions for the two months separately. 

 

6.5. Discussions and Conclusions  

A modeling framework to simulate water and sediment flux dynamics in intensively 

managed landscapes has been presented in this study.  The framework takes advantage of 

modeling advances from other studies related to simulating overland flows, coupling terrestrial 

and instream fluxes, and sediment fingerprinting in intensively managed landscapes.  An 

extensive field campaign was performed to gather data from terrestrial and instream sources at 

scales ranging from the plot to the watershed scale for the purposes of framework model 

validation.  The data collected included flow discharge and velocities, and suspended sediment 

fluxes.  Sediment source contribution estimates were also determined using the tracer signatures 

of insitu and eroded material sampled at the watershed outlet.  Model performance metrics such 

as the     and r
2
 values were used to assess the absolute error in model predictions and its 

ability to predict the variance in the observations, respectively.  The model performed well 
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overall for both water and sediment fluxes, though water predictions were generally better than 

sediment predictions.  The model also replicated well the source contributions at the outlet for 

the two different months examined (June and July), capturing both the relative proportions and 

range of expected proportions. 

The validated modeling framework was then used to examine the existence of a 

characteristic scale unit for sediment fluxes for typical rainfall and land cover conditions in 

SASW in the months of June and July.  For each month, an ensemble of six events selected from 

observed rainfall data between 2007 and 2015 were used for the analyses.  Characteristic scale 

units for sediment fluxes were observed for the cases examined.  The scale units were, however, 

not static but changed between events and the two months.  This change appeared to be 

influenced by storm magnitude and extent of land cover.  The influence of these parameters on 

the characteristic scale unit are attributed to their effects on net flow rates (transport) and 

concentration (amount) of sediment fluxes.  Higher flowrates and concentration of material 

corresponded to larger characteristic scale units, and vice versa. 

Considering the results from the event ensembles, in June, most characteristic scale units 

for sediment were larger than their corresponding scale units for flow except for one event 

(Event 4), which was the smallest event in terms of storm magnitude.  On the contrary, in July, 

most characteristic scale units for sediment were smaller than the corresponding scale units for 

flow except for one event (Event 1), which was the largest in magnitude.  To better understand 

why the smallest and largest magnitude events in June and July, respectively, displayed distinct 

behaviors from the other events in the respective months, the results were also compared against 

the relative source contributions estimates for each event.  These are summarized in Table 6.7 

below.  The comparison revealed a consistent trend across all the datasets for both months – the 

characteristic scale unit for sediment was larger than that for flow whenever terrestrial source 

contributions were dominant and the characteristic scale unit was smaller than that for flow 

whenever instream source contributions were dominant.  A further investigation revealed that the 

primary difference between fluxes from terrestrial sources and instream sources was the 

sediment size distribution.  As illustrated in Figure 6.15, instream contributions were generally 

coarser than terrestrial contributions suggesting that sediment size was an important factor 

affecting the characteristic scale unit for sediment. 
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Table 6.7: Relative source contributions from terrestrial and instream sources 

Event 

No 

June* July* 

Terrestrial Instream Terrestrial Instream 

1 0.61 0.39 0.53 0.47 

2 0.56 0.44 0.25 0.75 

3 0.52 0.48 0.25 0.75 

4 0.23 0.77 0.22 0.78 

5 0.72 0.28 0.03 0.97 

6 0.84 0.16 0.15 0.85 

*the relative contributions highlighted in red display different trends than the other events of the month  

 

 

 

 

 

Figure 6.15: Sample of sediment size distribution 

 

 

Finer 

Coarser 
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To ascertain the role of sediment size, the characteristic scale unit for sediments of 

different size classes were established and compared for the same storm event.  A summary of 

the findings is presented in Figure 6.16 below.  Finer fractions generally had larger characteristic 

scale units than coarser particles, with the 0.002 mm and 0.01 mm classes having larger 

characteristic scale units than the 0.044 mm, 0.2 mm, and 0.64 mm classes.  The influence of 

sediment concentration was however apparent in the figure.  For the coarser sediment sizes, the 

0.64 mm class had a larger characteristic scale unit than the 0.02 mm class, despite it being 

coarser.  This is attributed to the fact that the fraction (concentration) of the 0.64 mm class was 

larger than the fraction of the 0.02 mm class (see Figure 6.15).  Similarly, the 0.01 mm class had 

a larger characteristic scale unit than the 0.002 mm class despite its coarser size.  Again the 

fraction (concentration) of the 0.01 mm class was larger than the 0.002 mm class. 

The effect of sediment size on the characteristic scale unit can be attributed to its effect 

on the lag or travel distance.  Particle sizes that can be transported over longer distances by the 

flow will require a longer distance to adjust to flow conditions once they are introduced into the 

flow (i.e. a longer distance for erosion and deposition processes to start balancing out).  On the 

other hand, particle sizes that can only be transported over shorter distances will require much 

shorter distances to adjust to the flow conditions.  The particle travel distance is inversely related 

to its fall velocity which a function of its weight [Wu, 2008].  Coarser, heavier particles will have 

shorter travel distances compared to finer, lighter particles.   

 

 

 

Figure 6.16: Characteristic scale units for different sediment size classes for a June event in SASW 
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The above effects can be readily inferred from the following steady-state sediment 

concentration relationship that incorporates spatial lag effects [Jain, 1992]: 

 

  

  
    (    )          (17) 

 

where   is the sediment concentration,   is the longitudinal direction,     is the transport 

capacity, and    is the spatial lag coefficient.  The difference (    ) on the right hand side 

represents the excess sediment concentration above the transport capacity, whereas the    

represents the rate, with respect to space, at which the sediment concentration approaches the 

transport capacity (i.e. equilibrium concentration at which erosion and deposition are balanced 

out).  Using the method of separation of variables and integrating to the location just before 

equilibrium conditions are attained, the distance to space-invariant conditions,   , can be 

expressed as: 
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where    is the initial sediment concentration and   is a short distance before equilibrium 

conditions are attained.     may be represented by the relationship [Chang, 2008],          , 

where   is a dimensionless coefficient known as the adaptation coefficient,    is the particle 

settling velocity, and   is the flow discharge per unit width.  Thus, Equation 19 may be written 

as follows: 
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Equation (20) shows that the distance to space-invariant conditions is inversely related to the 

particle fall velocity and directly related to the sediment concentration and flow discharge.  

Coarser, heavier particles have larger settling velocities and will, thus, adjust to space-invariant 
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conditions over shorter distances than finer, lighter particles with smaller settling velocities.  At a 

given flow rate, a higher concentration of particular sediment size class will attain space-

invariant conditions over a longer distance than a lower concentration of the size class.  

Likewise, a larger flow rate will lead to space-invariant conditions over a longer distance than a 

smaller flow rate for a given sediment size class and concentration (and transport capacity). 

Equation (20) provides an elementary understanding of how far sediment supply adjusts 

to space-invariant conditions within a watershed, and identifies basic factors that affect this 

distance.  Since the distance is proportional to the area, the factors identified in the equation also 

affect the sediment characteristic scale unit, which, as alluded to before, is considered as a 

representative area at which space-invariant conditions are applicable (statistically).  Although 

the steady state assumption precludes the effects of some factors such as landscape patchiness 

and unsteadiness of sediment supply that represent heterogeneity, the equation elucidates 

adjustments within homogeneous segments, which ultimately serve as a first order filter for 

interactions at larger scales with greater heterogeneity.  The factors it identifies are thus primary 

factors that further interact with landscape heterogeneity and connectivity to dictate the overall 

value of the characteristic scale unit. 

The basic factors identified in Equation (20) assume that sediment concentration 

introduced into the drainage network is initially larger than the transport capacity.  This 

assumption is valid for the conditions presented above.  However, this may not always be the 

case, and the vice versa (concentration less than the transport capacity) may be true.  In this case, 

the relationship between the distance to space-invariant conditions and sediment concentration 

will not be the same as above; a higher concentration is expected to yield a shorter distance, 

whereas a lower concentration is expected to yield a longer distance.  The relationship between 

the distance to space-invariant conditions, the particle settling velocity, and the flowrate, under 

this condition, however, are not affected and remain the same as above.  

The existence of a characteristic scale unit for sediment has two important practical 

benefits for studying watershed processes and flux responses to anthropogenic activities (as 

driven by the combined actions of rainfall and land cover).  These benefits are depicted in Figure 

6.17.  First, since statistical representations of landscape properties are valid beyond the 

characteristic scale unit, it can serve as a representative area that is used as a building block in 

models for simulating sediment fluxes at larger scales.  For a typical building block, one could  
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Figure 6.17: Depiction of characteristic scale unit for sediment fluxes and its benefits 

 

 

establish and utilize sediment flux laws that only rely on statistical properties (e.g., the mean and 

variance) of all the relevant factors to predict fluxes from the block.  Not only does this approach 

provide a scientifically sound method of accounting for the effects of local heterogeneity in 

landscape attributes on fluxes at larger scales, the simplification of landscape representation 

reduces computational requirements tremendously, thereby making it feasible to study flux 

responses in large-scale systems (watershed to basin scales), where detailed local-scale 

representations of the landscape would otherwise prohibit cross-scale flux simulations due to 

limited computational capacity. 

 The second practical benefit of the characteristic scale unit is that since it offers a scale 

at which specific sediment fluxes are not affected by local scale variabilities in landscape 

attributes, and, thus, flux laws can be established to represent mean landscape response, it 

provides a scale at which field observations should be made for an appropriate assessment of the 

net effects of anthropogenic activities on mean trends in sediment fluxes.  Thus, the 

characteristic scale unit must be the basic unit used by watershed management for field 

monitoring of fluxes, assessing best management practice (BMP) design alternatives, and for 

evaluating the performance of installed BMPs.  Since the characteristic scale unit has been found 

to vary with storm magnitude, land cover, and sediment characteristics, it will have to be 
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estimated separately for watersheds with different rainfall and landscape characteristics.  It must 

also be established taking into consideration the full range of land uses and design storms 

applicable to the watershed under consideration. 

For the analyses presented herein, the selection and use of typical rainfall and land cover 

conditions for June and July in SASW were based on the findings of Abban et al. [2016] to allow 

for the evaluation of two contrasting watershed responses covering the range of significant 

sediment flux dynamics within the watershed.  The range of characteristic scale units presented 

herein is, thus, considered to be representative of the range of event-based dynamics within 

SASW.  As noted above, however, the basic factors affecting the characteristic scale unit (i.e., 

flowrate, sediment concentration, sediment size characteristics) further interact with landscape 

heterogeneity and connectivity to ultimately dictate what the final size of the characteristic scale 

unit will be.  Landscape heterogeneity and connectivity (both structural and functional per the 

definition of Wainwright et al. [2011]) affect sediment travel pathways, modes and distances 

over the course of a season.  For example, in SASW, sediment can be transported in pulses over 

long distances at certain times of the year whereas at other times of the year, they are transported 

more intermittently over shorter distances [Abban et al., 2016].  The different pathways, modes 

and travel distances lead to memory effects, where sediment travel within the watershed to the 

outlet may occur over a series of storm events [Wilson et al., 2012], depending also on other 

factors such as the sediment size characteristics.  In this case, the characteristic scale unit will not 

be dictated by a single event, but rather a distinct series of events over a longer time period that 

also captures the cumulative effects of any changes in land cover that may occur.    

Evaluation of the longer term effect of a series of storm events on the characteristic scale 

unit must necessarily follow an approach that combines field-based observations with a model 

that has been well-validated for capturing structural and functional connectivity on the landscape 

over the course of a season and from season to season.   In addition to the methods proposed 

herein, the model validation must incorporate the use of high resolution land surface data, and 

physical experiments involving tagged sediments of different size classes to determine their 

travel pathway and distance distributions under different storm event sequences and land cover 

conditions.  The findings from the evaluation of the long-term sediment characteristic scale unit 

should be used in conjunction with the findings from this study to develop, if possible, a holistic 
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means of determining the characteristic scale unit for different watershed types – for 

management purposes – that accounts for uncertainty in its estimate. 
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Chapter 7 

Conclusions and Future Work 
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7.1. Conclusions 

This study has developed and validated a modeling framework for simulating event-

based flow and sediment dynamics in intensively managed landscapes.  The model has been 

applied to the South Amana Sub-watershed, IA, to establish the existence of a characteristic scale 

unit at which the specific sediment discharge is not significantly affected by local-scale 

variability in landscape attributes.  The study has also identified three basic factors that affect the 

characteristic scale unit, namely the flow rate, sediment concentration, and sediment size.  To 

achieve the overarching goals, several specific objectives were undertaken from the plot to the 

sub-watershed scale with significant outcomes.  These outcomes are summarized as follows: 

• Plot Scale. The study findings suggest that landscape surfaces with microroughness less 

than 5 mm can undergo an increase in roughness when subject to rainfall action.  Further, 

a surface undergoing roughness increase or decrease under rainfall action will approach a 

limiting threshold where the surface roughness ceases to change significantly.  This 

threshold needs to be incorporated in existing models.  The findings are illustrated in 

Figure 7.1, which plots the ratio of the final to initial random roughness against the initial 

random roughness for selected studies in intensively managed landscapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Trends in surface roughness evolution from various studies  
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• Hillslope Scale.  The study results highlight weaknesses of the space/time-invariant flow 

resistance assumption used in many existing models, and demonstrate that assumptions 

on landscape terrain characteristics exert a strong control on the shape and magnitude of 

hydrographs, with deviations reaching 65% in the peak runoff when space/time-variant 

resistance effects are ignored in some cases.  An examination of the influence of particle 

grains, isolated roughness elements, and vegetation on overland flow revealed the 

existence of threshold storm magnitudes and hillslope gradients beyond which the 

resistance effects of these landscape attributes on the peak stream power were negligible.  

The threshold can be used as practical means for determining the effective length of best 

management practices such as grassed water ways.  The threshold can also be used as a 

guide for determining appropriate model complexity when simulating fluxes. This is 

depicted in Figure 7.2 using two zones.  Below the threshold (Zone I) space-time variant 

(dynamic) resistance representation of landscape attributes is needed for simulations and 

above the threshold (Zone II) the space-time invariant resistance assumption can be used.    

Other findings from the study for the examined site suggest that changes in land cover 

from vegetation to a bare surface has a larger impact on overland flow than profile 

curvature effects, with estimated increases in peak runoff rates of up to 133% due to land 

cover change compared to 16% due to profile curvature change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Conceptual representation of roughness effects 
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• Sub-watershed Scale.   Two key stochastic parameters,  and , were introduced into a 

Bayesian sediment fingerprinting model to reflect the spatial origin attributes of sources 

and the time history of eroded material delivered to the watershed outlet.  Together, these 

two parameters account for landscape heterogeneity effects in intensively managed 

landscapes by accounting for variabilities in source contributions, their pathways, 

delivery times and storage within the watershed.  By incorporating the parameters, the 

fingerprinting model was able to capture important trends in sediment flux behavior over 

the course of a typical growing season at the study site.  The study revealed that 

terrestrial sources tend to contribute the most eroded material in the months of May and 

June, whereas instream sources tend to contribute the most from July onwards.  Further, 

the model showed that in June, high hydrologic forcing combined with lower cover 

creates a “piston” effect where action (flow) creates reaction (transported fluxes) with 

minimal delay and less intermittency in transported material to the watershed outlet.  On 

the contrary, in July, a lower storm magnitude and greater protection of the surface by 

vegetation cover leads to less mobilization of material.  The resistance offered by the 

vegetation promotes more deposition and reduces sediment transport times/delivery rates 

to the watershed outlet.  The two months thus represent contrasting watershed behavior 

that stems from the combined action of rainfall and land use (see Figure 7.3 below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Intra-seasonal changes in sediment source contributions in South Amana, IA. 
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The study performed herein was premised on two hypotheses.  The first hypothesis was 

that continued human modification of the landscape has affected the connectivity between 

terrestrial and instream domains, significantly altering (in a non-linear fashion) the travel times 

and net fluxes of water and sediment through the drainage network compared to undisturbed 

conditions.  It was hypothesized that continued modification is maintaining the system in a state 

of disequilibrium with intra-seasonal patterns in fluxes that are regulated by the collective action 

of land use and rainfall; patterns that would otherwise be absent without human intervention.  

The findings presented in Chapters 2 to 6, and summarized above, confirm the notion that human 

action has significantly altered material travel times and net flux amounts, and is maintaining the 

system in a state where human-induced intra-seasonal patterns in fluxes exist, regulated by the 

collective action of land use and rainfall. 

The second hypothesis was that there exists a characteristic scale unit where the specific 

sediment discharge is not significantly affected by local-scale variability in landscape and 

hydrologic properties, and at which statistical representations of watershed properties may be 

used to predict sediment fluxes.  This characteristic scale unit for sediment was hypothesized to 

differ from that for specific flow discharge due to differences in travel times and processes 

involved.  The findings in Chapter 6 confirm the existence of the characteristic scale unit for the 

specific sediment discharge described above.  The results also confirm that the scale unit can 

indeed be different from that for the specific flow discharge. For the study conditions examined, 

the specific sediment discharge scale unit tended to be larger than that for specific flow discharge 

whenever finer, lighter material was being transported material.  On the other hand, it tended to 

be smaller whenever coarser, heavier material was being transported.  Overall, three important 

factors that were found to affect the characteristic scale unit was the sediment size, sediment 

concentration, and the flow rate.  The effects of these factors are depicted in Figure 7.4. 

Two practical benefits of the characteristic scale unit have also been identified and 

illustrated in Figure 7.4.  The first practical benefit is that it can serve as a representative area 

that is used as a building block in models for simulating sediment fluxes at larger scales.  Spatial 

averaging of landscape attribute effects is permissible within this building block such that the 

attributes may be represented using statistical distributions.  The second benefit is that it provides 

a watershed monitoring scale at which field observations can be made to reliably assess the net 

effects of anthropogenic activities, and mitigation measures such as BMPs, on sediment fluxes.  
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Figure 7.4: Depiction of characteristic scale unit for sediment fluxes and its benefits 

 

 

7.2. Future Work 

A modeling framework for simulating water and sediment fluxes on an event basis has 

been developed and presented in this dissertation.  The development of the framework 

considered processes at plot, hillslope, and sub-watershed scales.  Whilst advances were made at 

each of these scales to enable the development and use of the framework to establish the 

existence of the characteristic scale unit for sediment fluxes, the study only provides an 

assessment of the characteristic scale unit on an event basis and its behavior under conditions 

that are considered to reflect end members of the combined action of land use and rainfall.  

Further studies are needed to examine the evolution of the sediment characteristic scale unit over 

longer time periods as dictated by the interplay between event-based dynamics and seasonal 

dynamics.  These studies should follow the approach of Papanicolaou et al. [2015] in simulating 

the trajectory of fluxes as affected by the different modes of sediment transport, storage, and 

delivery to the watershed outlet.  The evaluation of longer term sediment flux dynamics using the 

model presented herein will require further validation of its ability to represent sediment flux 

pathways and connectivities on the seasonal scale.  This should involve the use field experiments 

to establish high resolution land surface digital elevation models of the study area from which 

flow pathway distributions can be developed.  The flow pathway distributions should then be 
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used as the basis for field connectivity and travel time/distance experiments, involving the use of 

tagged sediments of different size classes, to monitor sediment travel and resting times for 

sequences of storm events over the course of a season and from season to season (see virtual 

velocity concept by Papanicolaou et al. [2002]).  The field observations should then be used to 

validate the model’s ability to replicate terrestrial and instream travel and resting time 

distributions over the course of a season and from season to season. 

Longer term simulations may also require further modeling advances at different scales.  

At the plot scale, studies are needed for developing a model for surface roughness evolution that 

can predict both increase and decrease in surface roughness depending on the initial conditions.  

For this, the exact mechanisms leading to increase in roughness under smooth surface condition 

need to be established.  The studies must also consider the implications of sealing and soil water 

retention characteristics of the soils under sealing to the evolution [Saxton and Rawls, 2006].  In 

addition, they must consider the role of successive storm events on the evolution.   Physical 

processes that have to be examined include compression and drag forces from the raindrop 

impact on the soil, angular displacement due to rainsplash, aggregate fragmentation, and 

differential swelling [Warrington et al., 2009; Rosa et al., 2012; Fu et al., 2016].   

At the sub-watershed scale, it was determined that the role of tiles on fluxes during a 

storm event was relatively minimal compared to mean flow discharges, even though roughly 94 

tile outlets were present in the sub-watershed.  Field observations of tile flows at the study site 

suggested peak flow rates on the order of 0.01 m³/s per tile (on average).  Thus, the net tile flow 

rates were generally less than 5% of the peak event flow discharges along the channel network.   

However, for long term seasonal fluxes, the role of tiles may be more important as they are 

known to maintain continuous flow discharge over the course of a season.  Water and sediment 

flux analyses over seasonal time frames should therefore take tile contributions into account.  

  

  



213 

 

References 

Fu, Y., Li, G., T. Zheng, B. Li, and T. Zhang (2016), Impact of raindrop characteristics on the 

selective detachment and transport of aggregate fragments in the Loess Plateau of China, Soil 

Science Society of America Journal, 80, 1071, doi:10.2136/sssaj2016.03.0084. 

Papanicolaou, A. N., D. Knapp, and K. Strom (2002), Bedload Predictions by Using the Concept 

of Particle Velocity: Applications, Hydraulic Measurements and Experimental Methods 

Specialty Conference (HMEM), Estes Park, Colorado, United States. 

Papanicolaou, A. N., K. M. Wacha, B. K. Abban, C. G. Wilson, J. L. Hatfield, C. O. Stanier, and 

T. R. Filley (2015), From soilscapes to landscapes: A landscape-oriented approach to simulate 

soil organic carbon dynamics in intensively managed landscapes, Journal of Geophysical 

Research: Biogeosciences, 120, 2375–2401, doi:10.1002/2015JG003078, 2015b. 

Paz-Ferreiro, J., I. Bertol, and E. V. Vázquez (2008), Quantification of tillage, plant cover, and 

cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal 

indices, Nonlinear Processes in Geophysics, 15, 575–590. doi:10.5194/npg-15-575-2008. 

Rosa, J. D., M. Cooper, F. Darboux, and J.C. Medeiros (2012), Soil roughness evolution in 

different tillage systems under simulated rainfall using a semivariogram-based index, Soil and 

Tillage Research, 124, 226–232, doi:10.1016/j.still.2012.06.001. 

Saxton, K. E. and W. J. Rawls (2006), Soil water characteristic estimates by texture and organic 

matter for hydrologic solutions, Soil Science Society of America Journal, 70, 1569, 

doi:10.2136/sssaj2005.0117. 

Vázquez, E. V., R. G. Moreno, J. G. V. Miranda, M. C. Díaz, A. S. Requejo, J. Paz-Ferreiro, and 

A. M. Tarquis (2008), Assessing soil surface roughness decay during simulated rainfall by 

multifractal analysis, Nonlinear Processes in Geophysics, 15, 457–468, doi:10.5194/npg-15-457-

2008. 

Vermang, J., L. D. Norton, J. M. Baetens, C. Huang, W. M. Cornelis, and D. Gabriels (2013), 

Quantification of soil surface roughness evolution under simulated rainfall, Transactions of the 

ASABE, 56, 505–514, doi:10.13031/2013.42670. 

Warrington, D. N., A. I. Mamedov, A. K. Bhardwaj, and G. J. Levy (2009), Primary particle size 

distribution of eroded material affected by degree of aggregate slaking and seal development, 

European Journal of Soil Science, 60, 84–93, doi:10.1111/j.1365-2389.2008.01090.x. 

Zheng, Z. C., S. Q. He, and F. Wu (2014), Changes of soil surface roughness under water erosion 

process: Soil surface roughness under water erosion, Hydrological Processes, 28, 3919–3929, 

doi:10.1002/hyp.9939. 

 



214 

 

Vita 
 

Benjamin Abban was born in Accra, Ghana, to James and Cecilia Abban.  He received 

his elementary education from the Christ the King International School and Maseru English 

Medium Preparatory School in Ghana and Lesotho, respectively.  He attended high school at the 

St. Peters Senior High School in Nkwatia, Ghana, and on completion was adjudged the overall 

best student and best science student in the country in the Senior Secondary School Certificate 

Examination by the West African Examination council.  He represented his high school in the 

National Science and Math Quiz and was a quarter finalist.  He received B.Sc. and M.Sc. degrees 

in Civil Engineering from the Kwame Nkrumah University of Science and Technology 

(KNUST), Ghana, and the University of Cape Town, South Africa, respectively. He was honored 

with the Unilever Best Engineering Student Award for graduating at the top of his class in the 

College of Engineering at KNUST.  Prior to pursuing his PhD degree, he worked for four years 

as a consulting engineer for Aurecon in South Africa, where he performed hydrologic and 

hydraulic analyses of riverine flows and hydraulic structures, as well as the design of water 

supply and drainage systems.  He was also involved in the design and development of several 

water resources software, one of which was for managing environmental flow releases from the 

Berg River Dam.  His research interests include upland erosion processes, watershed dynamics 

and scaling laws, knickpoint development and migration, and local scour around bridge piers and 

abutments.  He is also interested in computational modeling of river networks, as well as the use 

of various sensor technologies such as Radio Frequency IDs for monitoring land surfaces 

changes and sediment fluxes.  He is a National Science Foundation IGERT Fellow and has a 

Graduate Certificate in Geoinformatics from the University of Iowa.  He has received several 

other scholarships and awards, including the NASA Iowa Space Grant Consortium Scholarship 

and the University of Tennessee’s Chancellor’s Citation for Extraordinary Professional Promise.  

He is a member of the American Geophysical Union, the American Society of Civil Engineers, 

the International Association of Hydro-Environment Engineering and Research, and the 

American Water Resources Association. 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2018

	Capturing the role of the co-play of land use and rainfall on water and sediment flux dynamics across different spatiotemporal scales in intensively managed landscapes
	Benjamin Kobina Abban
	Recommended Citation


	tmp.1543871590.pdf.IXwPH

