

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Masters Theses

Graduate School

8-2018

The Ecological Benefits of Protected Areas in California Funded Through Local Direct Democracy

Chad Michael Stachowiak University of Tennessee, cstacho1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Stachowiak, Chad Michael, "The Ecological Benefits of Protected Areas in California Funded Through Local Direct Democracy. "Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5176

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by Chad Michael Stachowiak entitled "The Ecological Benefits of Protected Areas in California Funded Through Local Direct Democracy." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology.

Paul R. Armsworth, Major Professor

We have read this thesis and recommend its acceptance:

Charles Kwit, Michael L. McKinney

Accepted for the Council: Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

The Ecological Benefits of Protected Areas in California Funded Through Local Direct Democracy

> A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville

> > Chad Michael Stachowiak August 2018

ACKNOWLEDGEMENTS

First and foremost, I thank my advisor Paul Armsworth for his support while I completed the requirements of the graduate program that culminated in this thesis. Without an advisor and mentor of his caliber, I do not think I would have accomplished such a feat. His positivity in our meetings and how he managed to help me maintain sight of the big picture was always appreciated. I am especially thankful that he never lost confidence in me even though my self-confidence at times waivered.

Thank you to my committee members, Charlie Kwit and Mike McKinney, for your guidance and help in crafting my research. Your feedback and questions made me think harder about what I was doing.

Thank you to my labmates Christine Dumoulin, Diane Le Bouille, Rachel Fovargue, Amy Benefield, and Patrick McKenzie for your friendship, your feedback, and listening to me practice how to tell people about ballot protected areas.

Thank you to my project collaborators Benjamin Crain, Jim Sanchirico, and Kailin Kroetz for establishing the premises that my research was built on, sharing your data, and providing feedback that helped improve my work.

Thank you to Paulo Raposo and Nathan McKinney of the Department of Geography. Paulo without your help streamlining my Python code I would still be processing GIS data by hand. Nathan thank you for allowing me to take over 20 computers in one of the labs multiple nights in a row. I cannot express the gratitude for how much time the two of you saved me!

Thank you to 2015 Ecology and Evolutionary Biology department graduate student cohort: Athma, Chloe, Hailee, Harmony, Jess, Lucas, Miranda, Morgan, and Shelby. I am glad to call you my friends and am grateful for how you helped keep me sane.

Thank you to all of the conservation practitioners, biologists, environmental scientists, managers, and GIS analysts that answered all of my questions and provided me with data. The list is long, but my thesis would not be as rich without the help from those at: California Department of Fish and Wildlife Bay Delta, Central, and North Central

regions; the Administration Department for the City of San Luis Obispo, California; East Bay Regional Park District; Marin County Open Space District; Midpeninsula Regional Open Space District; Sonoma County Agricultural Preservation and Open Space District; the Bureau of Reclamation's Central California Lake Berryessa Field Office; the Bureau of Land Management's Ukiah Field Office; the Community Services/Parks & Recreation Department for the City of Healdsburg, CA; LandPaths; County of Santa Cruz [CA] Parks, Open Space & Cultural Services; Elkhorn Slough Foundation & National Estuarine Research Reserve; Napa County Regional Park & Open Space District; and Yolo County Flood Control and Water Conservation District.

I also gratefully acknowledge assistance with funding that helped me complete my thesis. Thank you to the National Science Foundation for funding (Award 1413990) through the project entitled, "CNH-Ex: Synergies and Feedbacks Between Local Direct Democracy and Large-Scale Biodiversity Conservation Efforts". Thank you also to the Ecology and Evolutionary Biology Department at the University of Tennessee, Knoxville for the departmental research grant.

Thank you to my parents, Brian and Donna, for all that you have done and continue you to do to support me in my life. I cannot express my thanks and love enough. Finally, but in no way the least, thank you to my partner Kathy Hixson for all of your support through this tough journey. Thank you for lifting my spirts even when they were buried under the mountain of stress that is graduate school. I look forward to living together again under the same roof and celebrating your accomplishment at completing your own graduate degree (which let it be known, you got first).

ABSTRACT

Recent research shows current conservation funding falls short of what is required to meet conservation targets. However the expansion of conventional funding sources to bridge this shortfall is not likely to occur. Conservation organizations may be able to leverage unconventional funding sources and protection mechanisms, such as protected areas (PAs) funded through the local ballot box, to fill the gap. However, there are concerns that such PAs may be biased in their protection. Additionally, before other forms of conservation can be included in planning, the quality of the benefit provided must be confirmed. In Chapter 1, we show how the protection of species and habitat types by ballot box PAs compares to two PA types funded by more conventional means in the state of California. We make these comparisons using two different data types for species and habitat types: presence and proportion of range covered. We find that ballot box PAs do not protect a different number of habitat types than would be expected from random nor do they represent habitat types disproportionally different than are found across the entire state of California. We find mixed results for species that are affected by the data type (presence vs. range) and species class (e.g. amphibian, bird, mammal, reptile). In Chapter 2, we show how the condition of PAs funded through action by local communities at the ballot box compares to protected areas funded by a state public agency as estimated by coverage by exotic species. We then show if properties of the PAs or human-mediated onsite disturbance are able to predict the coverage by exotic species. We find that exotic species coverage does not differ between PA types. In our sample, elevation was the only significant predictor of exotic species coverage. Our findings suggest that ballot box PAs protect representative habitat types, but may disproportionately protect more common species and that ballot PAs are in no poorer condition than a conventional PA type funded by a state public agency.

TABLE OF CONTENTS

INTRODUCTION	1
CHAPTER I A comparison of the distribution of habitats and species covered by	
protected area type	6
ABSTRACT	7
INTRODUCTION	8
METHODS	10
Study system	10
Data	12
Analyses	15
RESULTS	18
Land cover	18
Habitat types	21
Species	22
DISCUSSION	31
CHAPTER II The impact of recreational use and access on the ecological condition of	of
protected areas	35
ABSTRACT	
INTRODUCTION	
METHODS	40
Study system	40
Biotic disturbance	42
Abiotic disturbance	42
Covariates	44
Analysis	46
RESULTS	48
Biotic disturbance	48
Abiotic disturbance	49
Modeling biotic disturbance	49
DISCUSSION	51
CONCLUSION	54
LIST OF REFERENCES	57
APPENDIX	69
VITA	118

LIST OF TABLES

Table 1. Percentage coverage by protected area type for NLCD 2011 land cover	. 19
Table 2. Regression table by protected area type for NLCD 2011 log transformed perce	ent
coverage	.21
Table 3. Mann-Whitney-Wilcoxon rank test results for observed and expected habitat	
type protection in the ballot protected area network.	.23
Table 4. Regression table statistics by protected area type for CDFW CWHR habitat ty	pe
log transformed percent coverage.	.23
Table 5. Mann-Whitney-Wilcoxon rank test results for observed and expected species	
protection by class in all protected area networks	.26
Table 6. Regression table by vertebrate taxa class and protected area type for CDFW	
CWHR species ranges log transformed percent coverage	. 29
Table 7. Variation in model covariates.	.45
Table 8. Descriptive statistics of biotic and abiotic disturbance	.48
Table 9. Summary of model outputs.	. 50
Table 10. Description of NLCD 2011 land cover subclasses applicable to continental	
United States.	. 70
Table 11. Description of CDFW CWHR habitat types identified by numerical habitat	
code	.71
Table 12. Description of CDFW CWHR species identified by alphanumeric species code	de.
	.73
Table 13. Percentage coverage by protected area type for habitat types	.94
Table 14. Percentage coverage by protected area type for species	.96

LIST OF FIGURES

Figure 1. Distribution of three protected area types in California: one funded and
managed at the local level (Ballot) and two at the state level (CDFW, TNC)13
Figure 2. Schematic of different regression coefficients
Figure 3. Scatter plots of NLCD 2011 land cover percent coverage by protected area type.
Figure 4. Distribution of habitat type range size for observed and expected ballot
protected area networks
Figure 5. Scatter plots of CDFW CWHR habitat type percent coverage by protected area
type
Figure 6. Distribution of species range size by class for observed and expected protected
area networks
Figure 7. Scatter plots of CDFW CWHR habitat type percent coverage by protected area
type
Figure 8. Distribution of PA parcels among counties in area study

INTRODUCTION

The study of conservation biology is premised on preserving biodiversity (Soulé, 1985). The Convention on Biological Diversity defines biodiversity, or biological diversity, as *"the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems"* (CBD, 1992). When biodiversity is high in a biological system, the system is thought to have increased stability and productivity compared to a system with a low level of biodiversity (Tilman, Isbell, & Cowles, 2014). Biodiversity also contributes to many other ecosystem services (e.g. pollination and seed dispersal of agricultural crops, climate regulation, water filtration) that human society has come to rely on and perhaps has taken for granted (Millenium Ecosystem Assessment, 2005c). Losing biodiversity therefore stands to threaten the provisioning of those ecosystem services to society (Díaz, Fargione, Chapin III, & Tilman, 2006).

At the species level, biodiversity is presently being lost at rates much higher than estimated pre-human extinction rates (Pimm, Russell, Gittleman, & Brooks, 1995). Primary drivers of the increased global rates include habitat degradation/loss, climate change, invasive alien species, overexploitation of species, and pollution (Millenium Ecosystem Assessment, 2005b). Those same drivers have also been implicated in the loss of biodiversity in the United States (Stein & Kutner, 2000; Wilcove, Rothstein, Dubow, Phillips, & Losos, 1998). Climate change was inferred by authors in that study to be a threat to biodiversity in the United States, but it was not documented as such in the sources used for the analysis. Globally and in the United States, habitat loss and degradation is the most frequently cited driver threatening species. Globally this is evidenced by the substantial loss of natural land cover in 12 of 14 biomes from 1950 to 1990; with losses for four biomes being greater than 14% (Millenium Ecosystem Assessment, 2005a). A prominent example of widespread habitat loss in the United States

is that of wetland habitat. From the 1780s to 1980s, it sustained an estimated loss of over 47 million hectares or 53% of the historic habitat (Dahl, 1990).

A principal strategy for mitigating the effects of habitat loss is the preservation of land through the creation of protected areas (Chape, Spalding, & Jenkins, 2008). As defined by The International Union for Conservation of Nature (IUCN) at the 4th World Parks Congress, a protected area is "an area of land and/or sea especially dedicated to the protection and maintenance of biological diversity, and of natural and associated cultural resources, and managed through legal or other effective means." At the end of 2005, more than 19 million km² across the globe, equivalent to 12.9% of the Earth's land surface, was attributed to protected areas in the World Database on Protected Areas. The parties of the Convention on Biological Diversity established a goal to increase that level of protection to 17% of Earth's surface by 2020 (CBD, 2010). However, protected areas vary in all manner of respects, meaning they will have differing usefulness for conserving biodiversity (McDonald & Boucher, 2011). One common concern about our existing protected areas is that, historically, publicly protected areas disproportionately protected land that was not economically viable for extractive use (e.g. farming, forestry, mining), remote, uninhabitable, or some combination thereof (Joppa & Pfaff, 2009; Pressey, 1994). These biases lead to many biodiversity features being under-represented in protected areas (Stein & Kutner, 2000).

Even though protected areas are designated, there is evidence that many may not be adequately funded for effective management. Currently funding for allocated for protected areas also falls short of what would be needed to meet biodiversity conservation targets. A 2004 study found that funding to adequately manage existing protected area in developing countries was short USD\$1-1.7 billion (Bruner, Gullison, & Balmford, 2004). McCarthy et al. (2012) found that shortfalls in funding for effective management also applied to countries beyond those considered developing. Additionally, they showed that to secure global conservation targets of one group, birds, by securing all

identified areas of significance for their conservation, funding would need to be increased nearly 17 times the current rate. If funding for biodiversity conservation cannot be met with present sources, alternatives must be found.

Determining what is already protected is a principal step in systematic conservation planning (Margules & Pressey, 2000). To not do so invites inefficiency in the allocation of what funds are available. However our understanding of what has already been protected is often incomplete because we lack centralized resources describing the protection efforts from the many, often times small, conservation actors involved (Armsworth et al., 2012). The Protected Area Database of the United States (PAD-US) and the National Conservation Easement Database (NCED) are two examples of centralized databases providing boundaries of protected areas in the United States. However, both predominantly focus on state and federal land holdings (Aycrigg et al., 2013). Data completeness has been improving with updates to the databases, but it can still be harder for the smaller, more localized public and private actors to be found in these databases. Understanding more about these smaller actors could improve the efficacy of future conservation efforts, by reducing redundancies and highlighting opportunities for collaborations and partnerships.

Land preserved using funding set aside at the local level through ballot measures is a case that may partly address shortfalls in conservation funding. Generally speaking, the government structure at federal, state, and local levels in the United States is based upon a representative system of democracy whereby voters elect officials to represent them and decide upon policy. At the same time, in a number of states, voters can propose and vote on policies and initiatives themselves using ballot measures as a form of direct democracy (Graves, 2012). Ballot measures have commonly been used to conserve land for reasons such as open space preservation, groundwater protection, and recreation (Kroetz, Sanchirico, Armsworth, & Banzhaf, 2014). Although biodiversity conservation may often not be the primary objective of these open space protection ballot measures,

areas of habitat for species are nonetheless being conserved when open space is protected (Szabo, 2007). The protected areas funded by these ballot measures make promising candidates for examining potential biodiversity benefits because of the magnitude of funding involved. Over a 29 year period from 1988 to 2017, USD\$76.2 billion was set aside by ballot measures in 46 states for land acquisition and protection (Trust for Public Land, 2018). At an annualized rate of USD\$2.6 billion, this level of spending from ballot measures is comparable to the USD\$1.8 billion annualized rate of the Conservation Reserve Program, one of the largest federal land preservation programs that is authorized by the federal Farm Bill (Jordan et al., 2007).

Ballot protected areas reflect motivations stemming from localized pressures and incentives to meet the demands of the electorate in a given jurisdiction. For instance, a local land trust or community action group may use the ballot to secure the last remnants of greenspace that was susceptible to growing development pressure. In other words, these protection efforts are motivated from the bottom up. This bottom-up, grassroots activity is the opposite of a more top-down approach to conservation activity led by a centralized authority. An example of this more top-down approach would be when a government (e.g. state or federal) is legally obligated to secure the protection of a natural resource (e.g. species, vegetative community, ecosystem, etc.) held in the public trust. The objectives and outcomes of these "opposing" approaches to conservation may not necessarily align and often do not. However, in the cases where they have complemented one another, it has worked out well for conservation. For example, in an analysis of the Little Karoo region of South Africa, Gallo et al. (2009) demonstrated that top-down protected areas covered particular biomes and habitat well, but were subject to the historical biases previously described and were able to meet a limited number of conservation targets. When bottom-up protected areas were also counted towards delivering conservation targets, many more targets were met, additional habitats and biomes were protected and the total land conserved was almost doubled.

In Chapter 1 of this thesis, we examine the geographic characteristics of ballot protected areas in the state of California and what potential contribution these bottom-up actions could make towards the conservation of biodiversity. In Chapter 2, we restrict focus to the San Francisco Bay area of California to determine if ballot protected areas differ in ecological condition from protected areas established by top-down conservation actors.

CHAPTER I

A COMPARISON OF THE DISTRIBUTION OF HABITATS AND SPECIES COVERED BY PROTECTED AREA TYPE

A version of this chapter will be submitted for publication by Chad M. Stachowiak and Paul R. Armsworth:

Chad M. Stachowiak and Paul R. Armsworth (XXXX). A comparison of the distribution of habitats and species covered by protected area type. *Conservation Letters*.

Chad Stachowiak developed the idea for this manuscript, conducted the analysis, and wrote the manuscript. Paul Armsworth is a co-author of this work and was responsible for feedback at early stages of this manuscript's development and helping with editing.

ABSTRACT

Recent research shows current conservation funding falls short of what is required to meet conservation targets. However, the expansion of conventional funding sources to bridge this shortfall is not likely to occur. Unconventional funding sources and protection mechanisms, such as protected areas (PAs) funded through the local ballot box, may prove useful to fill the gap. However, there are concerns that such PAs may be biased in their protection. Here we show how the protection of species and habitat types by ballot box PAs compares to two PA types funded by more conventional means in the state of California. We make these comparisons using two different data types for habitat types and species: presence and proportion of range covered. We find that ballot box PAs do not protect a different number of habitat types than would be expected from random nor do they represent habitat types disproportionally different than are found across the entire state of California. We find mixed results for species that are affected by the data type (presence vs. range) and species class (e.g. amphibian, bird, mammal, reptile). This suggests that ballot box PAs protect representative habitat types, but may disproportionately protect more common species.

INTRODUCTION

Ballot protected areas, as a form of bottom-up conservation, are subject to the goals of the local communities involved in their protection. These goals are not necessarily subject to the same motivations driving the conservation of biological diversity. Also, the applicability of a ballot measure is subject to the jurisdiction in which it is passed (e.g. municipal, city/town, state). This limits how far the allocated funding can move thereby limiting it to the conservation of local biodiversity features. In contrast, top-down conservation actors can work at a larger spatial extent (e.g. state or national NGOs) and over larger jurisdiction (e.g. state or federal agencies). These top-down actors can make decisions explicitly based on maximizing the conservation of biological diversity and have the ability to allocate funding over that larger spatial extent.

A national analysis of the United States by Kroetz et al. (2014) found that local ballot measures were approved in counties with significantly more threatened and endangered species. Using a base budget scenario, Kroetz et al. (2014) also found that if local ballot measure funding and land preservation were accounted for by a top-down conservation planner working over national scales, the budget could be reduced by 45% to protect the same number of species or, alternatively, the same budget could protect 14% more species.

Although promising, it is important to understand that these conservation benefits of ballot protected areas were resolved to the county level, not individual protected areas in the Kroetz et al. (2014) study. At the county level an unrealistic assumption is made that all species in the county are protected by all local ballot protected areas within that county. The efficiency gains reported by Kroetz et al. (2014) assumes that the quality of ballot protected areas, and subsequently the benefit they provide, is equivalent to other types of protected areas (e.g., ecological reserves, wildlife management areas, wilderness areas, etc.). However, quality differences between protected area types can arise from the

unequal distribution of habitats and species across a county and also from characteristics specific to individual protected areas. These include physical characteristics (e.g., size, shape), proximity to other protected areas, management (allowed vs. prohibited uses, legal mandates), governance (i.e. public vs. private responsibility), and threats (both biological and anthropogenic) (Barnes, Craigie, Dudley, & Hockings, 2016).

This thesis presents the first parcel-grain analysis of the contribution of protected areas established through local ballots to biodiversity conservation. It compares the network of ballot protected areas to networks of protected areas established by other conservation actors to assess if ballot protected areas fill gaps in the protected lands space. This chapter focuses on locational characteristics of ballot protected areas. It answers the question: how well positioned geographically is the network of protected areas established through local ballot measures to provide protection to habitats and species when compared to a network of protected areas established by other conservation actors?

There are many ways by which protected areas can be evaluated (Gaston, Jackson, Cantu-Salazar, & Cruz-Pinon, 2008). Examining whether protected areas are located in places that would "cover" important biodiversity features like in this chapter is one common approach. This approach is often referred to as a gap analysis (Jennings, 2000; Scott et al., 1993) and assumes a minimal standard of protected area performance, basically that a protected area needs to be located somewhere near to a species or habitat if it is to protect it. The separate but important issue of whether sites are of a suitable quality to provide protection benefits is addressed in the next chapter. Interest in whether protected areas were geographically located in places that could provide protection to a representative sample of biodiversity stems from historical biases in where protected areas were sited. Representativeness can be taken to mean a few different things in the sense of conserving biodiversity (Kukkala & Moilanen, 2013), but here it is meant in the sense of Austin & Margules (1986) to be when a selection of protected areas contains the full variation of biota in a region or system. Historic ad hoc siting of protected areas

resulted in the protection of lands that "nobody wanted"; they were not of economic value (e.g. for farming, forestry, mining) or were remote from densely populated areas (Joppa & Pfaff, 2009; Pressey, 1994). The result was a protected area system that was not located in places that could provide protection to the full complement of species and habitats (Pressey, 1994).

Particularly relevant to the approach that we take in this chapter are studies that compare two different types of protected area in terms of how well they are located to provide benefits to biodiversity. Holmes (2013) provides examples of private protected areas being sited in places that allow them to offset biases in public protected areas. In one such example, Gallo et al. (2009) found an increase in conservation target achievement in the Little Karoo region of South Africa when accounting for both public and private protected areas, specifically for resources that are more endangered. Our emphasis here is not on public vs. private protected areas, but we take a similar approach in comparing how well protected areas established in different ways are located to provide benefits to different aspects of biodiversity.

METHODS

Study system

The analysis of the conservation benefits conferred by different types of protected area networks, hereafter PA networks, was restricted to all 58 counties in the state of California in the United States. California was selected as a case study because it supports a great number of imperiled and endemic species (Stein & Kutner, 2000), is a major area for conservation spending by different public and private actors (Fishburn, Boyer, Kareiva, Gaston, & Armsworth, 2013; Underwood, Klausmeyer, Morrison, Bode, & Shaw, 2009), and the prevalence (108 from 1988-2014 (Trust for Public Land, 2018)) and research of ballot measures in the state (Gerber & Phillips, 2005; Kahn & Matsusaka, 1997; Matsusaka, 2005). Ballot protected areas, the PA network type of interest, represent a large amount of funding cumulatively, but the area over which the funds can be used is restricted geographically to the political jurisdiction of the ballots themselves. From 1988-2014, over USD\$4 billion was allocated for conservation in 16 counties from county, municipal, and special district jurisdictions (Trust for Public Land, 2018). Ballot protected areas were compared to two other institutional conservation actors that are able to allocate funding widely across the entire state; one a public, state-level conservation agency and the other a private, state-level conservation organization.

The public agency used was the California Department of Fish and Wildlife (CDFW) whose mission "is to manage California's diverse fish, wildlife, and plant resources, and the habitats upon which they depend, for their ecological values and for their use and enjoyment by the public" (California Department of Fish and Wildlife, 2016b). As of July 2017, CDFW maintained 720 properties, including 103 designated wildlife areas and 87 designated ecological reserves, managing and administering a total of 459,395 hectares (California Department of Fish and Wildlife, 2017). From 1947-2007, CDFW spent approximately USD\$2.2 billion for the acquisition, restoration, and public access of over 600,000 hectares (Wildlife Conservation Board, 2008). Use on CDFW lands include hiking, camping, hunting of various game species, fishing, horseback riding, and bicycling (California Department of Fish and Wildlife, 2016a). Horseback riding is prohibited from some lands and minimally restricted on others. Bicycling on CDFW lands is restricted to nine wildlife areas, often to specific units and during specific portions of the calendar year.

The private organization was The Nature Conservancy California (TNC) whose mission is "to conserve the lands and waters on which all life depends" (The Nature Conservancy, 2016). In the coterminous United States, TNC has protected an area of land equivalent to more than half of the area of the National Park system (Fishburn et al., 2013). Investments in land protection in California in recent decades have exceeded \$200 million, protecting over 100,000 hectares (Armsworth, unpublished data). The differences in distribution of the three PA network types can be seen in Figure 1.

Data

Protected area networks

Parcels preserved by funding from successful county, municipal, and special district ballot measures in California were identified by the respective jurisdictions. First, the jurisdictions with successful ballot measures were obtained from The Trust for Public Land's LandVote Database and Ballotpedia's database on local ballot measures (Ballotpedia, 2014; Trust for Public Land, 2016). Requests for data linking preserved parcels to specific ballot measures were made to the entities within those jurisdictions authorized to use the funds allocated by the successful measures. Of 16 counties that passed such measures between 1988 and 2014 (see Figure 1 inset), 10 predominantly coastal counties provided the requested data for a total of 730 parcels. Six counties that were contacted were unable and/or unwilling to provide the requested data, but presumably preserved land with funding from successful ballot measures. The CDFW PA network (n = 3303) was extracted as all parcels that attributed CDFW as the agency owning or managing a parcel from the California Protected Area Database (CPAD) version 2014a, and extends through 55 counties (GreenInfo Network, 2014). TNC provided GIS data for 444 parcels they had established in California (The Nature Conservancy, 2017). Prior to analysis, 143 parcels were removed from the TNC dataset because they were indicated to have been transferred and a small subset overlapped with CPAD CDFW parcels. The total number of TNC parcels used was 301.

Figure 1. Distribution of three protected area types in California: one funded and managed at the local level (Ballot) and two at the state level (CDFW, TNC).

Inset map highlights counties in which county, municipal, and/or special district ballot measures that allocated funds for conservation successfully passed.

Land cover and vegetated habitat types

Our coarsest biodiversity classification was of major land cover types; if some land cover type goes unprotected then any species restricted to that land cover type will also not receive protection. Land cover data used was from the 2011 National Land Cover Database (Homer et al., 2015). This categorically coarser data defines 16 land cover subclasses in eight broader cover classes (e.g., water, developed, barren, forest, shrub, herbaceous, planted/cultivated, wetlands) at 30-m resolution (Appendix Table 10).

We also examined how well the different types of protected area performed at providing protection to different vegetated habitat types, a more resolved classification. The vegetated habitat types, hereafter habitat types, dataset was the habitat categories CDFW developed for their California Wildlife Habitat Relationship (CWHR) model (California Department of Fish and Wildlife, 2014). It includes spatial data for 58 habitat types within six broad categories: tree dominated, shrub dominated, herbaceous dominated, aquatic, developed, and non-vegetated (Appendix Table 11) reported as range maps of potential occurrence within the state. The CWHR habitat categories were specifically developed for a predictive occurrence model of terrestrial vertebrate wildlife species in the state of California.

Species

To examine whether protected areas established in different ways are situated in locations where they can provide protection to species, we looked at overlap with species distributions. Species distribution data is from the same CDFW CWHR model. The dataset contains the range maps of 709 terrestrial, regularly occurring vertebrate species within four classes: 71 amphibians, 368 birds, 182 mammal, and 88 reptiles (Appendix Table 12). The version of the data accessed in March 2015 originally contained 710 species, but data attributed to gray wolf was determined erroneous from communication with CDFW Biogeographic Data Branch staff and removed prior to analysis (Melanie Gogol-Prokurat, personal communication, February 16, 2017).

Analyses

ArcMap 10.1 SP1 (ESRI, 2012) was used to overlay the land cover, habitat type, and species data (i.e. biodiversity features) with each PA network. The resulting clip by each PA network represented the total areal coverage of the biodiversity feature in each PA network. These areas were divided by the total area of each PA network and multiplied by 100 to give the percentage of a PA network that represents each land cover class, habitat type, and species range.

Prior to analysis, all percentages were natural log transformed to approximate normal distributions. For land cover, the land cover class perennial ice/snow had 0% coverage on all three PA networks and was corrected prior to transformation by adding a constant: 1/10 of the smallest non-zero value in each PA network.

Area-based statistics

The percent coverage of biodiversity features for each PA network was plotted against the statewide percent coverage. If the biodiversity features in a PA network are similar in proportion to how much is found in California (i.e. representative of land covers, habitat type, and species in the state), then a best fit line through the resulting data-points would be similar to a 1:1 line (Figure 2b). If a conservation organization is successfully targeting protection towards more geographically restricted species, habitats or land covers then the slope of a best fit line would be less steep than a 1:1 line (Figure 2a). If a conservation organization is protecting towards species having large geographic ranges, habitats or land covers then the slope of a best fine line would be steeper than a 1:1 line (Figure 2c). This logic provided our primary test statistic. A simple linear regression was used to determine the line of best fit for each PA network. Using the parametric, twotailed Wald test (Zuur, Ieno, & Smith, 2007), the slope of the line of best fit was tested for a difference from 1.

Figure 2. Schematic of different regression coefficients.

Regression line (solid, red) for different slope coefficients. Panel a) where $b_1 < 1$, shows rare features are overrepresented in the PA network. Panel b) where $b_1 = 1$, shows all features are represented equal to the statewide proportions. Panel C where $b_1 < 1$, shows common features are overrepresented in PA network. The 1:1 line (black, dashed) represents if the values for the PA network exactly matched the values over the entire state.

Occurrence-based statistics

While this regression approach provides our primary test statistic, some of the relevant datasets are characterized by a large number of zeroes (e.g., when one species range does not overlap a particular protected area type). Because of the number of zero values for habitat types and species ranges, the analysis of the data was partitioned instead of just adjusting the data by adding a small constant as was done for land cover. For habitat types, only the ballot protected network contained zeros whereas all PA networks contained some zeros in all vertebrate class species ranges. For each PA network, species ranges and habitat types were first scored as either being within the PA network (i.e. protected) or not being within the PA network (i.e. not protected). Hereafter common and rare will be used in place of geographically common and geographically rare.

For statistical testing, we needed a null model against which to compare coverage of species and habitats (somewhat akin to the use of the 1:1 line in the regression approach described earlier). To obtain a null expectation for how many species or habitats would be contained in a PA network of given size, we generated 100 random networks for each of the three PA types. Each random network was made of randomly sampled points within the bounds of California equal to the number of parcels within each observed PA network type. Random points were buffered with a randomly paired area from the parcel size distribution of each PA network and verified to not overlap with another buffered point nor the boundaries of California. Each random network was processed in ArcMap and each species range and habitat type were scored as being protected or not protected by the random PA network as described previously.

Because the data did not approximate a normal distribution, even after transforming, the non-parametric Mann-Whitney-Wilcoxon rank test (Mann & Whitney, 1947; Wilcoxon, 1945) in the statistical program R 3.5.0 (R Core Team, 2018) was used to test for a difference in the distributions of the expected and observed percent coverage of each PA network. All data met the assumption of equal variance between observed and expected with the exception of the amphibian species ranges for the ballot PA network (F = 1.885, $df_{num} = 24$, $df_{den} = 70$, p = 0.04271). Therefore, results pertaining to amphibian species for the ballot PA network should be interpreted with caution.

RESULTS

Land cover

Of the 16 possible subclasses, the three most abundant land covers in the state of California were shrub/scrub, evergreen forest, and grassland/herbaceous respectively (Table 1). Evergreen forest, grassland/herbaceous, and mixed forest were the classes most contained within the ballot PA network. Shrub/scrub, grassland/herbaceous, and emergent herbaceous wetlands were the most contained within the CDFW network. The most contained land cover classes in the TNC network were the same as for the entire state, but the ranks were not; grassland/herbaceous followed by shrub/scrub and evergreen forest. None of the PA networks examined contained the land cover class perennial ice/snow as that class was restricted to the high elevations of the Klamath Mountains and Cascade Range in the north as well as the high elevations of the central Sierra Nevada, and is likely well-covered by existing federal lands. None of the three PA networks examined protected land cover proportionally different than they occur across the entire state of California; i.e., the slopes of the relevant regression lines were not significantly different from 1 (Figure 3, Table 2). In other words, we did not find evidence that the ballot PA network was any less effective at covering land cover than the CDFW and TNC networks.

NLCD land					
cover	Land cover description	СА	Ballot	CDFW	TNC
subclass		U.I.	Duilot	CDI W	1110
value					
11	Open Water	1.24	0.38	4.83	0.40
12	Perennial Ice/Snow	0.01	0.00	0.00	0.00
21	Developed, Open Space	3.00	3.05	1.94	1.24
22	Developed, Low Intensity	1.57	0.39	0.53	0.10
23	Developed, Medium Intensity	1.73	0.10	0.15	0.02
24	Developed High Intensity	0.46	0.00	0.02	0.00
31	Barren Land (Rock/Sand/Clay)	4.97	0.04	3.26	0.44
41	Deciduous Forest	0.86	1.53	0.89	1.04
42	Evergreen Forest	20.01	33.55	5.58	12.30
43	Mixed Forest	2.46	17.73	1.21	6.38
52	Shrub/Scrub	39.99	17.27	42.93	23.99
71	Grassland/Herbaceous	12.85	22.48	20.66	47.35
81	Pasture/Hay	1.85	0.22	2.62	0.35
82	Cultivated Crops	8.15	2.57	6.15	5.03
90	Woody Wetlands	0.25	0.30	1.49	0.67
95	Emergent Herbaceous Wetlands	0.58	0.38	7.74	0.70

 Table 1. Percentage coverage by protected area type for NLCD 2011 land cover.

*Columns may not sum to 100% due to rounding.

Figure 3. Scatter plots of NLCD 2011 land cover percent coverage by protected area type.

Solid black line is line of best fit. Dashed line is the 1:1 line for reference. All values were natural log transformed.

PA type	r ²	b_1	$Pr(> t), b1 \neq 1$
Ballot	0.647	1.271	0.298
CDFW	0.657	1.070	0.741
TNC	0.680	1.402	0.140

Table 2. Regression table by protected area type for NLCD 2011 log transformedpercent coverage.

Habitat types

When moving to consider coverage of our more resolved vegetated habitat classes, seven habitat types had a range covering all of California and resulted in full coverage by all three PA networks: annual grassland, perennial grassland, fresh emergent wetland, riverine, lacustrine, urban, and barren (Appendix Table 13). Of the 39 habitat types protected in the ballot PA network, aside from those seven aforementioned, the three with the next highest coverage was for three tree dominated habitat types: valley foothills riparian, montane riparian, and coastal oak woodland. Valley foothill riparian, juniper (tree dominated), and mixed chaparral (shrub dominated) were the habitat types most covered by the CDFW network. For the TNC PA network, valley foothill riparian, mixed chaparral, and montane hardwood (tree dominated) were the most covered.

Because some habitat types were not protected in the ballot PA network, we first scored PA networks based only on the number of habitat types they contained and the number that they did not overlap at all. We compared the frequency of missing habitat types to what would be expected based on a network of randomly sited protected areas of the same overall area. Ballot protected areas contained as many habitat types as would be expected at random for a protected area network of their size (Figure 4, Table 3). In the

simulated PA networks for CDFW and TNC, all habitat types were present leading to no difference between observed and expected for those networks.

When focusing on the overall area of each habitat type being protected (and omitting those receiving no protection in the ballot PAs), none of the PA networks protect habitat types proportionally different than they occur across California (Figure 5, Table 4). Put another way, we did not find evidence that the ballot PA network was any less effective at covering habitat types than the CDFW and TNC networks.

Species

For species, as with habitat types, many were not protected in all of the PA networks. Again, we first scored the PA networks based only on if a species was contained or not contained within the PA networks. The frequency of species missing from each class of vertebrates was compared to what would be expected based on a similarly sized network of randomly sited protected areas. In the ballot PA network significantly more common bird, mammal, and reptile species were protected than would be expected in the random ballot PA network of the same overall area (Table 5). Significantly more common amphibians were protected by the TNC network. A significant difference was detected for more common amphibians in the ballot PA network, but those data did not meet the assumptions of the statistical test used. No difference was detected for the observed and expected levels of protection for species in any class in the CDFW PA network (Figure 6, Table 5).

Table 3. Mann-Whitney-Wilcoxon rank test results for observed and expectedhabitat type protection in the ballot protected area network.

PA type	㉠₀₀₅s	n _{obs}	ã% exp	n _{exp}	W	Р
Ballot	22.436	39	17.610	58	952.5	0.190

Table 4. Regression table statistics by protected area type for CDFW CWHRhabitat type log transformed percent coverage.

PA type	r^2	b 1	n	$Pr(> t), b1 \neq 1$
Ballot	0.284	1.086	39	0.763
CDFW	0.502	0.885	58	0.335
TNC	0.334	1.053	58	0.789
I				

Figure 4. Distribution of habitat type range size for observed and expected ballot protected area networks.

The distribution of habitat types within the observed ballot PA network (left), i.e. those protected, and those that would be expected to occur within a random ballot PA network (right) by the habitat types' range size in California.

Figure 5. Scatter plots of CDFW CWHR habitat type percent coverage by protected area type.

Solid black line is line of best fit. Dashed line is the 1:1 line for reference. All values were natural log transformed.

Taxa class		㉠₀₀ыs	n obs	ã% exp	n _{exp}	W	р
Amphibians							
	Ballot	14.266	25	2.042	71	411.5	7.19E-05***
	CDFW	2.546	62	2.042	71	1960	0.278
	TNC	5.446	44	2.042	71	1106	0.00876*
Birds		1					
	Ballot	45.163	281	31.267	366	42129.5	8.03E-05***
	CDFW	31.512	362	30.836	368	65565	0.714
	TNC	33.537	345	31.267	366	60307.5	0.302
Mammals		1					
	Ballot	33.973	96	15.659	182	5998	1.75E-05***
	CDFW	16.044	178	15.659	182	15893	0.0758
	TNC	20.520	151	15.731	182	11976.5	0.0525
Reptiles		1					
	Ballot	30.574	43	20.002	88	1265.5	0.00215*
	CDFW	21.452	85	20.002	88	3612.5	0.700
	TNC	24.311	71	20.002	88	2585.5	0.0623
		I					

Table 5. Mann-Whitney-Wilcoxon rank test results for observed and expected species protection by class in all protected area networks.

Figure 6. Distribution of species range size by class for observed and expected protected area networks.

The distribution of species within the observed PA network (left), i.e. those protected, and those that would be expected to occur within a random PA network (right) by the species' range size in California.
When we excluded species not protected in a PA network and shifted focus to the overall area of each species range being protected, we see differences in the proportional representation of species among networks. Of the species protected in the ballot PA network, rare mammals and common bird species are significantly overrepresented (Table 6). The ballot PA network covered nearly 53% of mammals and 76% of bird species. The CDFW PA network significantly overrepresented rare birds and common amphibian species with 98% of birds and 83% of amphibian species covered. No difference was detected for any class of species in the TNC PA network from the representation in California (i.e., the slope of the regression lines was not significantly different from 1). Additionally, no difference was detected in any PA network for reptile species. This means there was effectively no difference in the protection of the reptiles present in any of the PA networks from what would be expected at random (Figure 7, Table 6).

Taxa class		r ²	b_1	n	$Pr(> t), b1 \neq 1$
Amphibians					
	Ballot	0.400	1.177	25	0.562
	CDFW	0.781	1.444	62	3.19E-05***
	TNC	0.457	0.943	44	0.722
Birds	I				
	Ballot	0.628	1.354	281	3.47E-08***
	CDFW	0.880	0.849	362	4.95E-18***
	TNC	0.581	0.966	345	0.438
Mammals	I				
	Ballot	0.380	0.773	96	2.79E-02*
	CDFW	0.775	1.003	178	0.940
	TNC	0.511	1.024	151	0.767
Reptiles	I				
	Ballot	0.413	1.004	43	0.984
	CDFW	0.602	0.916	85	0.308
	TNC	0.465	1.179	71	0.243
	I				

Table 6. Regression table by vertebrate taxa class and protected area type for CDFW CWHR species ranges log transformed percent coverage.

Figure 7. Scatter plots of CDFW CWHR habitat type percent coverage by protected area type.

Solid black line is line of best fit. Dashed line is the 1:1 line for reference. All values were natural log transformed.

DISCUSSION

This paper presented the first parcel-grain analysis of conservation contribution from protected areas funded by local ballot measures. The network formed by this bottom-up conservation was compared to protected area networks established by two top-down conservation actors. The networks were evaluated for how well they represented biodiversity features in the state of California. We found that the ballot PA network performs comparably to the two top-down PA networks in terms of proportional representation of biodiversity features in California, while obviously being smaller in overall size. That being said, just how well each of the PA networks performs at representing biodiversity features depends on the particular biodiversity features examined.

The ballot PA network appears to contribute to biodiversity conservation despite its geographically restricted nature (Figure 1) when compared to the top-down networks of CDFW and TNC. For a network of its size, the ballot PA network appeared to perform as well as the top-down networks in representing land cover (Table 2) and habitat types, both when evaluating based on occurrence (Table 3) and area protected (Table 4). However, it is worth noting that none of the networks performed better at representing rare habitats and land cover types than would be expected based on random siting of protected areas. Our finding that none of the three protected area networks is preferentially protecting rarer habitats or land cover types matches findings from previous work evaluating the proportional representation in PA networks. For example, Kuempel, Chauvenet, & Possingham (2016) found that observed protection equality (see Barr et al., 2011) of ecoregions by protected areas within countries were no different than the protection equality from simulated random allocations of protected areas in the same countries.

Closer inspection of PA network coverage at the species level reveals that the ballot PA network protects more common species when assessed for species presence (Table 5). However, species protection assessed by range size for those species found somewhere within the PA network showed more nuanced results (Table 6). Specifically, the ballot PA network protected rarer mammals but more common bird species than would be expected based on randomly siting PAs. Therefore, what one would conclude about how effectively ballot PAs protect species would depend both on the taxonomic group considered and how protection is defined. The distinction being drawn here between scoring protection based on occurrences of species versus hectares of range protected reflects wider discussions in conservation planning writings over the importance of how protection goals are defined (see Cabeza & Moilanen (2001) for examples of different protection goal definitions and their outcomes for species coverage). More recent work by Di Fonzo et al. (2016) shows that variation in species protection exists along a spectrum of a single protection goal.

While not the primary goal of this analysis, it is also worth noting how well the two topdown networks perform in terms of contributing to the conservation of biodiversity. CDFW and TNC PA networks were both statistically no different in their protection of land cover and habitat types from what would be expected just based on the area of each habitat type found in the state (Table 2, Table 4). As with the ballot PA network, how well either top-down PA network performed at providing protection to species depended on the use of species presence or species ranges conditional on presence for scoring conservation performance and on the focal taxonomic group considered (Table 5, Table 6). A distinction is often drawn in the literature between private conservation actors and public agencies active in conservation. One of our top-down actors is private (TNC) and one is a public agency (CDFW). Yet we do not find a strong signal that either is doing lots better than the other or than would be expected based on random siting of protected areas in terms of representing species, habitats or different land covers. This contrasts with findings by Gallo et al. (2009) in the biodiversity hotspots of the Cape Floristic

Region in South Africa. Private conservation actors in that region better represented lower elevation and endangered habitats than the public conservation actors.

We obviously made various choices in how we designed our analyses, and while we feel these are justified, other assumptions would also have made sense. In addition, there are obvious important extensions of our work. For example, two of the three biodiversity related datasets used in this analysis came from the California Department of Fish & Wildlife California Wildlife Habitat Relationships model. Using this data while also evaluating the coverage of the CDFW PA network may have led to an increased coverage detected for the network. This may explain why across all vertebrate classes, the CDFW PA network had the fewest number of species missing from its network. Future development of this approach would be advantaged to use a dataset with a spatial coverage at a wider scale (e.g. NatureServe data for all of the United States). The uniformity of a national dataset would allow for comparison of ballot PA networks from different states (e.g. Florida, New Jersey) and determination of trends across bottom-up conservation. While the results of this GIS-based analysis suggests that the ballot PA network can make a meaningful contribution to biodiversity protection, it raises the question of quality differences between the sites that make up each network, providing an obvious extension of these results. Ecological condition is likely affected by site differences (e.g. allowed uses on site) that must be assessed to determine the degree to which contributions to biodiversity protection are realized. We begin to address this important extension in Chapter 2.

We have demonstrated that geographic constraints that necessarily apply to bottom-up conservation efforts, here exemplified by ballot protected areas, need not preclude these local efforts from doing as good of a job at representing biodiversity as protection efforts promoted by top-down conservation actors with more freedom to choose where to protect. Rather than duplicate efforts, top-down conservation actors should evaluate how

best to complement the efforts of local groups perhaps by prioritizing locations receiving less local support.

CHAPTER II

THE IMPACT OF RECREATIONAL USE AND ACCESS ON THE ECOLOGICAL CONDITION OF PROTECTED AREAS

A version of this chapter will be submitted for publication by Chad M. Stachowiak and Paul R. Armsworth:

Chad M. Stachowiak and Paul R. Armsworth (XXXX). The impact of recreational use and access on the ecological condition of protected areas. Conservation Biology xx: xxxxxx.

Chad Stachowiak developed the idea for this manuscript, conducted the analysis, and wrote the manuscript. Paul Armsworth is a co-author of this work and was responsible for feedback at early stages of this manuscript's development and helping with editing.

ABSTRACT

Because funding shortfalls prevent meeting conservation targets, one partial solution is for conservation organizations to account for other forms of conservation. However before other forms of conservation can be included, the quality of the benefit provided must be confirmed. Here, we show how the condition of protected areas funded through action by local communities at the ballot box compares to protected areas funded by a state public agency with respect to the coverage by exotic species in the state of California. We then show if properties of the protected areas or human-mediated onsite disturbance are able to predict the coverage by exotic species. We find that exotic species coverage does not differ between protected area types. In our sample, elevation was the only significant predictor of exotic species coverage. This suggests that ballot protected areas are in no lesser condition than a conventional protected area type funded by a state public agency.

INTRODUCTION

Results from Chapter 1 suggest that bottom-up conservation in the form of a ballot protected area (PA) network have the potential to make meaningful contributions to the protection of biodiversity. However what still remains to be answered is whether these sites are in a suitable ecological condition to secure these benefits. Ecological conditions on protected areas can vary greatly depending on how sites are used and managed. Are ballot protected areas in a comparable ecological condition to other types of PA or are they more degraded somehow? If a conservation planner is to account for a ballot PA network, they must understand the trade-offs in the conservation of biodiversity between PA types.

Ballot PAs could differ in the quality because of both extrinsic and intrinsic factors of the PA. For instance, distance to the pool of users in the nearest population center and climate are examples of external factors that would likely influence PA quality. Internal factors include the size of the protected area and the management of the protected area. Specific to ballot PAs, aspects of management are often dictated in the language of the ballot measure that establishes funding for the PA. For example, in a 2008 ballot measure passed by 71% of voters in Alameda and Contra Costa counties, the managing authority, East Bay Regional Park District, is directed to acquire, develop, and improve trails and recreational facilities:

"To continue restoring urban creeks, protect wildlife, purchase/save open space, wetlands/shoreline, acquire/develop/improve local and regional parks, trails and recreational facilities, shall East Bay Regional Park District be authorized to issue up to \$500 million in general obligation bonds, provided repayment projections, verified by independent auditors, demonstrate that property tax rates will not increase beyond present rates of \$10 per year, per \$100,000 of assessed valuation?"

Ballot protected parcels are likely to see more recreational use than would a more isolated protected area and recreational use can impact ecological conditions on protected areas. Different forms of recreational activity have been documented modifying the habitat for flora and fauna on the lands that it occurs. Recreation in PAs is also thought to have an asymptotic curvilinear relationship with ecological condition (Hammitt, Cole, & Monz, 2015). In other words, the ecological impact per recreational visitor is greatest at lower levels of recreation but the overall ecological impact saturates at high visitation rates. Yet the relationship varies by the type of recreation and the specific conditions of the PA (Monz, Pickering, & Hadwen, 2013). Mixed results have been reported in studies examining the effect of hiking in PAs on different animal groups; reductions in the abundance of native mammalian carnivores (Reed & Merenlender, 2008, 2011), abundance of turtles (Garber & Burger, 2016), and density of ground-dwelling birds (Thompson, 2015) have been documented, but so have increases in the abundance of some amphibians (Davis, 2007; Fleming, Mills, Russell, Smith, & Rettig, 2011). Meanwhile Deluca & King (2014) found no effect on the abundance of some montane bird species.

Evidence of detrimental impacts of recreation on plant communities is clearer. Hiking, biking, and horse riding results in trampled vegetation, loss of vegetative cover, soil compaction, and increased soil erosion (Cole & Spildie, 1998; C. M. Pickering, Hill, Newsome, & Leung, 2010; Törn, Tolvanen, Norokorpi, Tervo, & Siikamäki, 2009). Biking trails proved linear features that reduces the barriers for dispersal of exotic species thereby facilitating their spread (Nemec et al., 2011). Likewise, hiking and horse riding can mediate dispersal of exotic species when their seeds are transported on clothing, in horse dung, or in the animals' fur (C. Pickering & Mount, 2010). In addition to the type of recreation, the amount of area exposed to recreation affects the magnitude of the impact. As a result of a scaling relationship, smaller PAs have higher trail density than larger PAs (McKinney, 2005) indicating that a larger proportion of smaller PAs are more accessible for recreation and potential disturbance.

There are many indicators one could use to examine the ecological condition of a protected area. Here I focus on the cover by exotic plant species. Exotic plant species that proliferate have significant impacts on native species and the communities and ecosystems that they invade (Vilà et al., 2011). Impacts include altered geomorphological, biogeochemical, and hydrological cycles (Carey, Blankinship, Eviner, Malmstrom, & Hart, 2017; Macdonald, Loope, Usher, & Hamann, 1989); changes to fire regime frequency and intensity (Macdonald et al., 1989; Pyšek et al., 2012); and reduction in native species (Barrows, Allen, Brooks, & Allen, 2009). However, the magnitude and direction of these impacts varies across studies (Vilà et al., 2011).

Importantly, the degree to which different protected areas are impacted by exotic plant species has been found to vary greatly (G. D. Iacona, Price, & Armsworth, 2014; G. Iacona, Price, & Armsworth, 2016). Various factors have been implicated in why some protected areas are impacted much more by invasive plants than others. For example Iacona et al. (2016) found the presence of invasive plants species in Florida tended to be best predicted by features related to PA ecological characteristics (e.g. elevation, 3-day frost interval) whereas the proportional cover of species tended to be better predicted by features that indicated human disturbance on a PA (e.g. area, density of nearby houses, road density). The direction and significance of the effect varied by species for both cover and presence. Furthermore, disturbance tends to favor the propagation of these species (Hobbs & Huenneke, 1992; Meiners & Pickett, 2013).

This chapter offers a first exploration of whether ballot protected areas are in a comparable ecological condition to protected areas established in other ways. We used cover of exotic plants as an indicator of ecological condition and compared how invaded ballot protected areas were to how invaded were protected areas established by one of the top-down conservation actors featured in Chapter 1. In doing so, we paid particular attention to reasons why ballot sites might differ in quality. Was it because of biophysical properties of sites protected through the ballot or differences in how ballot sites were

used for recreation? Specifically, we aim to answer, 1) is there a difference in exotic plant cover between the two PA types, 2) if so, what accounts for these differences, and 3) are measures of recreational use and disturbance in particular predictive of exotic plant cover?

METHODS

Study system

This analysis of the quality differences in PA parcels within ballot and CDFW networks was restricted to 15 counties in and around the San Francisco Bay area of California (Figure 8). This area represented a high density of ballot PAs, which had CDFW PAs located nearby (see Chapter 1 Figure 1).

Twenty-seven parcels of both networks type were visited for data collection. Ballot parcels were managed among 5 different institutions/agencies. CDFW parcels spanned 3 different management regions. Prior to analysis, 2 CDFW parcels were dropped after we learned from a site manager that the management of a parcel in Napa County ended months prior to field data collection and that management of a parcel in Sonoma County only consisted of organizing hunts. Two ballot parcels in San Luis Obispo County were also dropped prior to analysis; one because it was a conservation easement and the other because all required information needed for analysis could not be gather on the parcel. Parcel locations within the study area can be seen in Figure 8.

Figure 8. Distribution of PA parcels among counties in area study.

Biotic disturbance

For our indicator of biotic disturbance, we chose exotic plant cover. We focused on one habitat type common to all surveyed parcels: forested with canopy cover. At each parcel, 3 locations were visited for sampling and selected by identifying habitat patches within the parcel that were significantly large to contain three spatially separated sampling points. At each location a 1-meter by 1-meter plot with sides of the plot following cardinal directions was set up. At 100 points in a grid frame spaced 0.1-meters apart, herbaceous plants were identified to species and as native or exotic. The summed number of hits in the grid frame at each of the plots identified as exotic was the response variable for this analysis.

Abiotic disturbance

To determine if physical disturbance to the site impacts biotic disturbance, we chose to quantify two indicators of relative spatial variation in abiotic disturbance among protected areas by recreational users: trail density and the amount of trash found on site. To control for the effect of trails, a representative data layer of "official" recreation trails was compiled from data layers provided by each individual agency/institution and confirmed by managers of the individual parcels. All provided data layers were cross checked with publicly available access maps provided by the agency/institution. If data was not provided for a parcel and trails were present on a publicly available map, trails were digitized in ArcMap 10.1 SP1(ESRI, 2012) using U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) imagery from 2014 (USDA Farm Service Agency, 2014) at 1:2,500 scale.

For ballot parcels, recreation trails include those designated for hiking, bicycling, and horse riding as well as service and access roads that did not explicitly prohibit all of those uses and would reasonably be used for those purposes (e.g. a wide, dirt track designated as emergency vehicle access; a wide, dirt firebreak). The majority of trails on ballot parcels were multi-use, allowing all three uses, but a small fraction only permitted

hiking-only or hiking and horse riding only. These different use categories were not accounted for in the analysis.

The California Department of Fish and Wildlife employs a policy of diffuse natural resource management (Conrad Jones, personal communication, July 20, 2016) and does not have official recreation trails per se but does allow hiking and horse riding on parts of the land it manages. The only exception in the collection of parcels studied is one parcel owned and managed by CDFW and administered by the National Oceanic and Atmospheric Administration (NOAA), Elkhorn Slough Ecological Reserve/National Estuarine Research Reserve, which contains maintained hiking trails. Bicycling is restricted to a select number of PAs in the CDFW network, but none of the CDFW parcels sampled were within them (California Department of Fish and Wildlife, 2016a). For this analysis features managed and maintained by CDFW (e.g. administrative dirt or gravel service and access roads, firebreaks, fire roads) on parcels that could reasonably be used by stakeholders as trails were used included as trails. Note, this analysis does not include informal trails (see Wimpey & Marion 2011). Informal trail networks were observed on parcels, but there was not an accurate way to quantify them within the limited field window. In ArcMap 10.1 SP1 (ESRI, 2012), total trail length within parcels was determined by clipping the trail network layer with the same parcel boundaries described in the methods of Chapter 1 (see page 12) after it was overlaid. Trail length in meters within each parcel was divided by the parcel area in hectares to give the trail density within each parcel.

We were not able to quantify visitor use on all parcels using methods conventional to park managers in the limited field window (Cessford & Muhar, 2003) nor did we have that data for all parcels among the different managing agencies/institutions. Instead we chose to use the amount of trash found on parcels as a proxy for human use and disturbance. In a 10-meter by 10-meter plot extended from the 1-meter by 1-meter biotic

disturbance plot, we exhaustively visually surveyed for pieces of trash. Trash counts were averaged across the three sampling locations to determine the mean trash for the parcel.

Covariates

There are several reasons why parcels protected through the ballot process might differ in terms of biotic disturbance levels from those protected by CDFW. They might differ as an indirect result of being ballot parcels, because, for example, these tend to be smaller and closer to urban areas. Differences might also arise from how they are used and managed, independently of these other indirect factors. To evaluate whether any differences arise because of parcels being protected through the ballot per se or because of other direct and indirect factors, we repeated our analyses including various parcel descriptors as covariates (Table 7). Parcel area was calculated from the same parcel boundaries described in the methods of Chapter 1 and used as a covariate because smaller parcels are expected to have proportionally more area exposed to potential disturbance by trails (McKinney, 2005).

Parcel use, and the subsequent disturbance within them, was expected to negatively correlate with distance from larger populations of potential users in urban areas (Cordell, Betz, & Zarnoch, 2013). The 2014 U.S. Census Bureau TIGER/Line urban areas dataset was used to calculate the distance in meters from the boundary of each parcel to the boundary of the nearest of urban area or urban center. This gave the distance from a parcel to the nearest urban footprint (e.g. high population density urban land use).

	Ballot			CDFW			
Variable	1Q	Median	3Q	1Q	Median	3Q	
Parcel area (ha)	13.5	63.5	129.7	27.6	73.9	160.9	
Distance to urban (m)	0	267.2	1867.4	485.8	5627	10371.1	
Years since protection	17	20	29	17	22	31	
Mean elevation (m)	155.2	283.3	476.6	20.9	163.4	438.3	
Mean latitude (°)	37.3	37.7	38	37	38.2	38.6	

Table 7. Variation in model covariates.

Historical land use impacts the abundance of invasive species (Calinger et al., 2015; Dupouey, Dambrine, Laffite, & Moares, 2002; Lundgren, Small, & Dreyer, 2004), but documentation of historical land use for a selection of current protected areas is patchy at best. To partly control for differences in site history, we included time since protection from the year of field sampling, 2015 CE. Year of protection for parcels was determined after consulting agency websites and/or planning documents pertaining to the protected areas encompassing the parcels. For the eight parcels managed by the Midpeninsula Open Space District, the year of protection corresponded to the site at large and not the specific parcel because the latter could not be obtained.

The mean elevation and latitude among the three locations in each parcel were included because of the expected impact on vegetation composition as related to plant life history traits. Elevation was expected to act as an ecological filter on biotic disturbance (Alexander et al., 2011) and exotic species richness has been positively correlated with latitude (Lonsdale, 1999). The decimal degree coordinates and elevation in meters for the southwestern corner of each sampling location was recorded using a Garmin eTrex 20 handheld GPS unit set to the WGS 84 datum and spheroid. The elevation for one sample location in one parcel recorded was determined to be incorrect based on relative elevation to the other two sample locations and excluded prior to the elevation being averaged for the parcel.

Analysis

We used multiple regression with generalized linear models to examine variation in biotic disturbance. Prior to use in any of the models, the variables distance to urban area, parcel area, trail density, and trash were natural log transformed. Any zero values were adjusted by adding a constant prior to transformation. The constant was 1/10 of the smallest non-zero value for each PA type. When considering covariates, we did not consider interaction terms because we did not have an a priori reason to focus on a particular subset of interactions from among the many that are possible. Predictor variables were

tested for collinearity and all variance inflation factors (VIF) were within acceptable levels. No VIF exceeded 2 and were well below the conservative threshold of 3.3 (Kock & Lynn, 2012).

We used a generalized linear model with a negative binomial error structure with log-link function. This error structure was chosen because count data was used for the response variable and models with Poisson error structure were over-dispersed. Earlier models using proportion of biotic disturbance with a binomial error structure and logit-link function was also over-dispersed.

A set of models, from among the many possible, was chosen for comparison to highlight the specific questions motivating this study. For the first model, the only predictor used was a binary variable to represent if a parcel was a ballot parcel to see if the effect was strong in and of itself. Second, to reveal whether any differences were due to ballot protection per se or to other factors that tend to be associated with ballot protected parcels, the covariates parcel size, distance to urban, years since protection, elevation, and latitude were incorporated into a model to control for factors presumed to influence biotic disturbance. Lastly, to test whether the key driver of any differences in biotic disturbance levels were related to abiotic disturbances associated with increased recreational use, the predictors trash and trail density were added to the model to represent proxies for human site disturbance and mechanisms for exotic species introduction. Difference in the distributions of trash and trail density between ballot and CDFW parcels were checked with a Mann-Whitney-Wilcoxon test (Mann & Whitney, 1947; Wilcoxon, 1945) prior to the use of the predictors in the model. AIC (Akaike, 1974) was used to judge all three models and determine the most parsimonious explanation of variation in biotic disturbance. We report the explained deviance or pseudo r² value $(1 - \frac{\text{residual deviance}}{\text{null deviance}})$ as an indicator of the explanatory power of the models (Zuur, Ieno, Walker, Saveliev, & Smith, 2009).

RESULTS

Biotic disturbance

Biotic disturbance varied greatly among protected areas of both types (ballot and CDFW) (Table 8). The three most commonly encountered exotic species were the same regardless of PA type. The grasses *Avena fatua*, *Avena barbata*, and *Bromus diandrus* occurred at 6.2%, 4.2%, and 3.6% of all hits respectively on ballot parcels. On CDFW parcels they accounted for 4.1%, 7.6%, and 9.0% of all hits respectively. No exotic cover was detected only at two CDFW parcels: Quail Hollow Ecological Reserve and Bonny Doon Ecological Reserve. Exotic cover was found at all sampling locations for 18 CDFW parcels, but only 11 ballot parcels.

		Ballot			CDFW			
Variable	1Q	Median	3Q	1Q	Median	3Q		
<i>Biotic disturbance</i> # exotic hits (of 300)	20	89	145	60	144	197		
Abiotic disturbance								
Trail density (m/ha)	15.6	40.5	65.5	0	0	58.9		
Mean pieces of trash	0	1	2.7	0	0.7	1.7		

Table 8. Descriptive statistics of biotic and abiotic disturbance.

Abiotic disturbance

Indicators of abiotic disturbance levels also varied greatly among both ballot protected parcels and CDFW parcels. The highest trail densities were 597.7 m/ha for ballot and 353.6 m/ha for CDFW. Trails were absent in 5 ballot and 13 CDFW parcels. There was not a statistically detectable difference in the log trail density between parcel types (W = 355, p-value = 0.4108). However the assumption of equal variance for the Mann-Whitney Wilcoxon test was not met (F = 3.1168, $df_{num} = 24$, $df_{den} = 24$, p = 0.007204) and results should be interpreted carefully.

Most parcels had zero or low amounts of trash found during sampling. The highest amount of trash was found at CDFW's Laguna Wildlife Area outside of Sebastopol, CA. Mean trash was 48 pieces among the 3 parcels, but was influenced by 125 pieces found at one sampling location dominated mainly by glass shards. The highest amount of trash found on a ballot parcel was at Pulgas Ridge Open Space Preserve near San Carlos, CA with a mean of 30.3 pieces of trash. The mean on this parcel was also influenced by one sampling location that contained 87 pieces of trash. The results were not sensitive to either of these high count sampling locations. A comparable number of parcels of each type had no trash detected; 8 for ballot and 7 for CDFW. No statistical difference was detected for log mean trash on parcels (W = 332, p-value = 0.7079).

Modeling biotic disturbance

We first tried to explain variation in biotic disturbance by accounting only for the type of PA (ballot or CDFW). In that model the predictor was non-significant and the variation explained was low (Table 9).

We then added covariates to the model to control for other parcel characteristics. Mean elevation emerged as a significant predictor of biotic disturbance levels. As would be expected given that the two models are nested, this more complicated model also explained more of the variation than model 1. However, a comparison of the AIC values for models 1 and 2 indicates that the simpler model 1 performs better and the additional complexity of the larger model is not warranted.

The last model also included abiotic disturbance alongside the set of predictors already considered in model 2. Both abiotic disturbance variables were included. Elevation remained a significant predictor in the third model with a coefficient similar to that in model 2. Model 3 was able to explain slightly more variation than model 2. However, once again a comparison of AIC values indicated that the increased complexity of this model was not warranted.

Variable	Model 1		Model	2	Model 3	
	Estimate	Pr(> z)	Estimate	Pr(> z)	Estimate	Pr(> z)
Intercept	4.860 ± 0.201	***0.000	3.975 ± 5.544	0.473	6.520 ± 5.613	0.245
Ballot or not	$\textbf{-0.268} \pm 0.284$	0.345	0.018 ± 0.297	0.953	$\textbf{-0.085} \pm 0.294$	0.774
Log trail density	-	-	-	-	0.066 ± 0.057	0.249
Log mean trash	-	-	-	-	$\textbf{-}0.032\pm0.078$	0.687
Log parcel area	-	-	0.014 ± 0.075	0.858	$\textbf{-}0.044\pm0.080$	0.577
Log distance to	-	-	0.069 ± 0.040	0.087	0.071 ± 0.042	0.094
urban						
Years since	-	-	$\textbf{-}0.015\pm0.014$	0.290	$\textbf{-}0.018\pm0.017$	0.280
protection						
Mean elevation	-	-	$\textbf{-}0.002\pm0.001$	***0.000	$\textbf{-}0.002\pm0.001$	***0.000
Mean latitude	-	-	0.033 ± 0.145	0.819	$\textbf{-}0.029\pm0.147$	0.844
AIC		579.05		581.06		583.51
Variation		0.01		0.14		0.16
explained						

Table 9. Summary of model outputs.

Note: all models run with 50 observations (i.e. n = 50) *equally distributed between both PA types.*

DISCUSSION

This chapter presented a first exploration of whether ballot protected areas are in a comparable ecological condition to protected areas established in other ways. We used cover of exotic plants as an indicator of ecological condition and compared how invaded ballot protected areas were to how invaded were protected areas established by one of the top-down conservation actors featured in Chapter 1. We found that the ballot protected area parcels were in no worse condition than the protected area parcels of the top-down conservation actor CDFW.

Ballot parcels appear not to differ in the level of biotic disturbance when compared to CDFW parcels (Figure 8). We did not find the effect of having been protected through a local ballot initiative to be a significant predictor of biotic disturbance on a parcel in any of the three models tested (Table 9). That is to say we could not detect a difference in biotic disturbance on parcels when only controlling for the identity of the parcel (i.e. ballot or not), when also controlling for direct and indirect factors related to the parcels themselves, and lastly when also controlling for the level of human disturbance that is assumed to affect biotic disturbance. This finding suggests that ballot protected areas are in comparable ecological condition to protected areas established in other ways and could be expected to secure the benefits to the conservation of biodiversity described in Chapter 1.

Although the predictive capacity of the models was low, we were still able to identify significant predictors of variation in biotic disturbance when these were present. In terms of predictive capacity, none of the three models were able to explain more than 16% of the variation in biotic disturbance across protected areas. When elevation was included in model 2 and 3 it was a significant predictor of biotic disturbance levels that applied regardless of how sites were protected (Table 9). The back-transformed coefficient in both models indicates a decrease in biotic disturbance with increasing elevation.

Medvecká et al. (2014) also found a negative effect of elevation on exotic species cover, albeit the significance and direction of the relationship varied based on the habitat type and historical introduction time of the exotic species (i.e. pre- vs post-1500 CE).

There was no detectable difference in abiotic disturbance levels between ballot and CDFW parcels regardless of whether trail density or the amount of trash was used as an indicator of abiotic disturbance. Moreover, neither trail density nor trash were significant predictors of biotic disturbance (Table 9). These results refute the expectation that ballot parcels would be in worse ecological condition because of increased recreational impacts on these sites. The results also run counter to the common refrain that we heard when describing our work to other researchers; that ballot protected area are much more heavily impacted and therefore likely to be of more limited value for conservation. In this study at least, we found no evidence to support this perception.

That the nature of protection of sites was not significant does not mean parcels did not vary in biotic disturbance levels. To the contrary, we found a good deal of variation in the ecological condition of parcels as indicated by cover of exotic species (Table 8). Rather our results show that relative variation in condition is hard to predict using the variables that we considered here. In particular, our Results make clear that just how a parcel was protected on its own does not explain ecological condition. Indeed, the CDFW protected parcels themselves also varied greatly in exotic cover as well as in levels of abiotic disturbance, just as did the ballot sites.

The models presented here are but one of a set of possible combinations based on the assumptions we felt justified in making, however other assumptions would have made sense. For example, predictors in the models were resolved to the parcel level. However for two ballot parcels and six CDFW parcels, they constituted an entire preserve, ecological reserve, or wildlife area (i.e. management unit). Of the other 42 parcels, there was variation in their spatial relation to other unsampled component parcels of their

respective management unit. For instance, some sampled parcels were on the edge or interior of the management unit while in some cases all parcels in a management unit would be disjunct and effectively their own entity. While we did control for the effect of parcel size on protected area access and potential for disturbance (McKinney, 2005), we did not control for how the spatial arrangement of parcels within a management unit might also affect access. Our analysis also was limited to "official" recreation trails which are a subset of the amount of total trails on a site. Informal trails, those "that are not planned or constructed and that receive no maintenance" (Hammitt et al., 2015), can range from 0.3-3x the lineal extent of formal trails and have an impact on site condition (Wimpey & Marion, 2011). Extension of this analysis would benefit from the inclusion of informal trails as it would reflect a more accurate condition of recreation trail disturbance (see Marion & Leung (2011) for a discussion on methodology). A final extension of note for this analysis is the response variable. For this analysis we chose to model all exotic species in aggregate. Iacona, Price, & Armsworth (2016) demonstrated that the relationship between predictors and modeled exotic response can be species specific suggesting that our results may not be consistence if modeled for individual exotic species.

We have demonstrated that ballot protected areas, as an example of bottom-up conservation efforts, are in comparable ecological condition to protected areas established by a top-down conservation actor, as exemplified by the California Department of Fish and Wildlife. Evidence of comparable ecological condition suggests that top-down conservation actors can avoid duplicating efforts and exercise their freedom to choose where to protect by considering the benefits provided by the locally motivated land protection.

CONCLUSION

Protected areas secured with funding allocated from local ballots measures, as a form of bottom-up conservation, appeared to offer benefits for conservation, but some initial questions had not previously been addressed. In the first chapter we asked if geographical constraints limited the ability of ballot protected areas to provide benefits to conservation. In the second chapter we examined if the ecological condition of ballot protected areas was determined in part by the way they were created.

Ballot protected areas are sometimes assumed to be of lesser value for conservation than top-down created protected areas. Because their distribution appears geographically clumped, ballot protected areas might be assumed to have a bias in their protection of biodiversity resources. They may also be assumed to be in a more degraded condition because of a general emphasis on their use by the surrounding communities that had part in allocating the funding. We did not find evidence to support either of these assumptions. Overall, our geographic analysis did not reveal a substantial bias in what is protected areas. Our direct comparison of site condition did not reveal a difference when compared to one type of conventional top-down protected area. Given that ballot protected areas are not biased in what resources they protect and that those resources are not necessarily degraded, it then stands to reason that they should be accounted for when systematically planning future conservation investments. In so much as when considering what is already protected, ballot protected areas should be included in that accounting as well.

Institutional conservation actors (e.g. federal agencies, regional conservation partnerships) already realize the limit of current conservation funding. Alternative revenue streams and strategies are already being considered and explored by large conservation actors. The U.S. Forest Service in partnership with Blue Forest Conservation is currently in the pilot phase of the Forest Resilience Bond, a funding

instrument that leverages private capital markets for upfront costs of restoration on national forests to reduce wildlife risk and secure drinking water quality (Madeira & Gartner, 2018). In New England, collaborations among land trusts, municipal, state, and federal agencies, known as regional conservation partnerships are being used to strengthen local conservation actions that are integrated on a regional scale. Currently over 40 regional conservation partnerships involving 350 organizations cover over 60% of New England (Foster et al., 2017).

Because our results do not disqualify ballot protected areas from providing representative protection, they should be considered for similar implementation as one solution to bridging shortfalls in conservation funding and increases in land protection. It may be easier for an institutional conservation actor to plan within their single organization, to only consider the institution's past actions or actions of entities of similar or larger size (e.g. state or federal government/agencies), but to do so would offer a flawed and simplistic reflection of conservation activity. Although accounting for the actions of individual counties, municipalities, and special districts will likely increase the transaction costs of conservation for a larger institutional conservation actor, doing so offers a better chance of reducing redundancies of protection and increasing conservation target achievement through better planning. The higher transaction costs and increased effort required to accomplish getting a more accurate picture of the conservation landscape need not necessarily be thought of as a detraction. It may more accurately be considered front loading the cost during planning to save resources (e.g. time, effort, capital) on the back end and produce a better quality outcome for biodiversity. Albeit with broader assumptions than the analyses in this thesis, this has already been demonstrated by Kroetz et al. (2014) in an illustrative reserve site selection experiment. They demonstrated that by incorporating counties were ballot measures had been passed, an institutional conservation actor's expenditure to protect the same conservation target would be reduced or, alternatively, more targets could be met with the same budget.

How a protected area is created (e.g. through a ballot measure, by a state agency) may not be an important determinant in what benefits to biodiversity conservation are provided by a given protected area, at least when compared to other factors. The "identity" of a protected area may be a proximate factor at best while biophysical factors such as elevation, size, latitude, may be ultimate factors determining what benefits to biodiversity conservation are provided by a given protected area (Hanson, Rhodes, Riginos, & Fuller, 2017; Meiners & Pickett, 2013).

While this thesis is the first parcel-grain analysis evaluating benefits to biodiversity conservation by and condition of protected areas funded by local ballot measures, we realize that it was limited in scope to only one state. Future studies should maintain the parcel-grain scale, but in other systems (i.e. states) to determine if patterns hold. Any loss in benefits to biodiversity conservation may not necessarily devalue the net contribution of ballot protected areas. Future studies would be wise to also calculate the value of other ecosystem services in order to provide a better estimation of the total benefits provided by ballot protected areas. For instance, regulating services (e.g. local climate and air quality, carbon sequestration and storage) or cultural services (e.g. tourism, mental/physical health) when combined with biodiversity could result in a net benefit to both the local communities and wider region in which ballot protected areas occur.

LIST OF REFERENCES

- Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
- Alexander, J. M., Kueffer, C., Daehler, C. C., Edwards, P. J., Pauchard, A., & Seipel, T. (2011). Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. *Proceedings of the National Academy of Sciences*, 108(2), 656–661. https://doi.org/10.1073/pnas.1013136108
- Armsworth, P. R., Fishburn, I. S., Davies, Z. G., Gilbert, J., Leaver, N., & Gaston, K. J. (2012). The Size, Concentration, and Growth of Biodiversity-Conservation Nonprofits. *BioScience*, 62(3), 271–281. https://doi.org/10.1525/bio.2012.62.3.8
- Austin, M. P., & Margules, C. R. (1986). Assessing representativeness. In M. B. Usher (Ed.), Wildlife Conservation Evaluation (pp. 45–67). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-4091-8_2
- Aycrigg, J. L., Davidson, A., Svancara, L. K., Gergely, K. J., McKerrow, A., & Scott, M. J. (2013). Representation of ecological systems within the protected areas network of the continental United States. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0054689

- Barnes, M. D., Craigie, I. D., Dudley, N., & Hockings, M. (2016). Understanding localscale drivers of biodiversity outcomes in terrestrial protected areas. *Annals of the New York Academy of Sciences*, 1–19. https://doi.org/10.1111/nyas.13154
- Barr, L. M., Pressey, R. L., Fuller, R. A., Segan, D. B., McDonald-Madden, E., & Possingham, H. P. (2011). A New Way to Measure the World's Protected Area Coverage. *PLOS ONE*, 6(9), e24707. https://doi.org/10.1371/journal.pone.0024707
- Barrows, C. W., Allen, E. B., Brooks, M. L., & Allen, M. F. (2009). Effects of an invasive plant on a desert sand dune landscape. *Biological Invasions*, 11(3), 673– 686. https://doi.org/10.1007/s10530-008-9282-6
- Bruner, A. G., Gullison, R. E., & Balmford, A. (2004). Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. *BioScience*, 54(12), 1119–1126. https://doi.org/10.1641/0006-

Ballotpedia. (2014). Local ballot measures, California.

3568(2004)054[1119:fcasom]2.0.co;2

- Cabeza, M., & Moilanen, A. (2001). Design of reserve networks and the persistence of biodiversity. *Trends in Ecology & Evolution*, 16(5), 242–248. https://doi.org/http://dx.doi.org/10.1016/S0169-5347(01)02125-5
- California Department of Fish and Wildlife. (2014). CWHR GIS Data Species Ranges and Habitat Data. Retrieved March 30, 2015, from https://www.wildlife.ca.gov/data/cwhr
- California Department of Fish and Wildlife. (2016a). 2015-2016 Waterfowl and Upland Game Hunting & Department Lands Public Use Regulations. Sacramento, CA.
- California Department of Fish and Wildlife. (2016b). Explore CDFW. Retrieved July 7, 2016, from https://www.wildlife.ca.gov/Explore
- California Department of Fish and Wildlife. (2017). *DEPARTMENT OF FISH AND WILDLIFE BUDGET FACT BOOK FY 2017-2018 GOVERNOR'S ENACTED BUDGET*. Sacramento, CA.
- Calinger, K., Calhoon, E., Chang, H., Whitacre, J., Wenzel, J., Comita, L., & Queenborough, S. (2015). Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species. *PLOS ONE*, *10*(6), e0128161.
- Carey, C. J., Blankinship, J. C., Eviner, V. T., Malmstrom, C. M., & Hart, S. C. (2017). Invasive plants decrease microbial capacity to nitrify and denitrify compared to native California grassland communities. *Biological Invasions*, 19(10), 2941–2957. https://doi.org/10.1007/s10530-017-1497-y
- CBD. (1992). Convention on Biological Diversity. Retrieved from http://69.90.183.227/doc/legal/cbd-en.pdf%0A
- CBD. (2010). Decision X/2, The strategic plan for biodiversity 2011–2020 and the Aichi Biodiversity Targets, Nagoya, Japan, 18 to 29 October 2010. Retrieved from http://www.cbd.int/decision/cop/default.shtml?id=13164
- Cessford, G., & Muhar, A. (2003). Monitoring options for visitor numbers in national parks and natural areas. *Journal for Nature Conservation*, *11*(4), 240–250.

- Chape, S., Spalding, M., & Jenkins, M. D. (2008). *The World's Protected Areas*. Berkeley, USA: University of California Press.
- Cole, D. N., & Spildie, D. R. (1998). Hiker, horse and lama trampling effects on native vegetation in Montana. *Journal of Environmental Management1*, *53*(1), 61–71.
- Cordell, H. K., Betz, C. J., & Zarnoch, S. J. (2013). Recreation and Protected Land Resources in the United States: A Technical Document Supporting the Forest Service 2010 RPA Assessment. Asheville, NC.
- Dahl, T. E. (1990). Wetland loss since the revolution. National Wetlands Newsletter, 12(6), 16–17.
- Davis, A. K. (2007). Walking Trails in a Nature Preserve Alter Terrestrial Salamander Distributions. *Natural Areas Journal*, 27(4), 385–389. https://doi.org/10.3375/0885-8608(2007)27[385:WTIANP]2.0.CO;2
- Deluca, W. V., & King, D. I. (2014). Influence of hiking trails on montane birds. *Journal of Wildlife Management*, 78(3), 494–502. https://doi.org/10.1002/jwmg.675
- Di Fonzo, M. M. I., Possingham, H. P., Probert, W. J. M., Bennett, J. R., Joseph, L. N., Tulloch, A. I. T., ... Maloney, R. F. (2016). Evaluating Trade-Offs between Target Persistence Levels and Numbers of Species Conserved. *Conservation Letters*, 9(1), 51–57. https://doi.org/10.1111/conl.12179
- Díaz, S., Fargione, J., Chapin III, F. S., & Tilman, D. (2006). Biodiversity Loss Threatens Human Well-Being. *PLOS Biology*, 4(8), 1300–1305. https://doi.org/10.1371/journal.pbio.0040277
- Dupouey, J. L., Dambrine, E., Laffite, J. D., & Moares, C. (2002). IRREVERSIBLE IMPACT OF PAST LAND USE ON FOREST SOILS AND BIODIVERSITY. *Ecology*, 83(11), 2978–2984. https://doi.org/10.1890/0012-9658(2002)083[2978:IIOPLU]2.0.CO;2
- ESRI. (2012). ArcGIS Desktop: Release 10.1 SP1. Redlands, California: Environmental Systems Research Institute.
- Fishburn, I. S., Boyer, A. G., Kareiva, P., Gaston, K. J., & Armsworth, P. R. (2013). Changing spatial patterns of conservation investment by a major land trust.

Biological Conservation, 161, 223–229.

https://doi.org/10.1016/j.biocon.2013.02.007

- Fleming, M. M., Mills, L. B., Russell, J. K., Smith, G. R., & Rettig, J. E. (2011). Effects of Trails on Eastern Redback Salamander (Plethodon cinereus green). *Herpetology Notes*, 4(1), 229–232.
- Foster, D., Lambert, K. F., Kittredge, D., Donahue, B., Hart, C., Labich, W., ... Fahey, T. (2017). Wildlands and Woodlands, Farmlands and Communities: Broadening the Vision for New England. Petersham, Massachuesetts.
- Gallo, J. A., Pasquini, L., Reyers, B., & Cowling, R. M. (2009). The role of private conservation areas in biodiversity representation and target achievement within the Little Karoo region, South Africa. *Biological Conservation*, 142(2), 446–454. https://doi.org/10.1016/j.biocon.2008.10.025
- Garber, S. D., & Burger, J. (2016). A 20-Yr Study Documenting the Relationship Between Turtle Decline and Human Recreation Author (s): Steven D. Garber and Joanna Burger Published by : Wiley Stable URL : http://www.jstor.org/stable/2269362 Accessed : 20-05-2016 21 : 04 UTC Your use of th, 5(4), 1151–1162.
- Gaston, K. J., Jackson, S. E., Cantu-Salazar, L., & Cruz-Pinon, G. (2008). The Ecological Performance of Protected Areas. *Annual Review of Ecology Evolution and Systematics*, 39, 93–113. https://doi.org/10.1146/annurev.ecolsys.39.110707.173529
- Gerber, E. R., & Phillips, J. H. (2005). Evaluating the Effects of Direct Democracy on Public Policy: California's Urban Growth Boundaries. *American Politics Research*, 33(2), 310–330. https://doi.org/10.1177/1532673X04272428
- Graves, L. (2012). Local Ballot Initiatives: How citizens change laws with clipboards, conversations, and campaigns. Madison, WI.
- GreenInfo Network. (2014, March). CPAD 2014a (Mar 2014). Retrieved March 30, 2015, from www.calands.org
- Hammitt, W. E., Cole, D. N., & Monz, C. A. (2015). Wildland Recreation: Ecology and Management (3rd ed.). John Wiley & Sons.

- Hanson, J. O., Rhodes, J. R., Riginos, C., & Fuller, R. A. (2017). Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. *Proceedings of the National Academy of Sciences*, 114(48), 12755 LP-12760.
- Hobbs, R. J., & Huenneke, L. F. (1992). Disturbance, Diversity, and Invasion: Implications for Conservation. *Conservation Biology*, 6(3), 324–337.
- Holmes, G. (2013). What role do private protected areas have in conserving global biodiversity? *Sustainability Research Institute (SRI)*, (46), 1–26.
- Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G. G., ... Megown, K. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. *Photogrammetric Engineering & Remote Sensing*, *81*(5), 345–354.
- Iacona, G. D., Price, F. D., & Armsworth, P. R. (2014). Predicting the invadedness of protected areas. *Diversity and Distributions*, 20(4), 430–439. https://doi.org/10.1111/ddi.12171
- Iacona, G., Price, F. D., & Armsworth, P. R. (2016). Predicting the presence and cover of management relevant invasive plant species on protected areas. *Journal of Environmental Management*, 166, 537–543. https://doi.org/https://doi.org/10.1016/j.jenvman.2015.10.052
- Jennings, M. D. (2000). Gap analysis: concepts, methods, and recent results*. *Landscape Ecology*, *15*(1), 5–20. https://doi.org/10.1023/A:1008184408300
- Joppa, L. N., & Pfaff, A. (2009). High and Far: Biases in the Location of Protected Areas. *PLoS ONE*, 4(12), e8273. https://doi.org/10.1371/journal.pone.0008273
- Jordan, N., Boody, G., Broussard, W., Glover, J. D., Keeney, D., McCown, B. H., ... Wyse, D. (2007). Sustainable Development of the Agricultural Bio-Economy. *Science*, 316(5831), 1570–1571. https://doi.org/10.1126/science.1141700
- Kahn, M. E., & Matsusaka, J. G. (1997). Demand for Environmental Goods: Evidence from Voting Patterns on California Initiatives. *The Journal of Law & Economics*, 40(1), 137–174. https://doi.org/10.1086/467369

- Kock, N., & Lynn, G. S. (2012). Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations. *Journal of the Association for Information Systems*, 13(7), 546–580.
- Kroetz, K., Sanchirico, J. N., Armsworth, P. R., & Banzhaf, H. S. (2014). Benefits of the ballot box for species conservation. *Ecology Letters*, 17(3), 294–302. https://doi.org/10.1111/ele.12230
- Kuempel, C. D., Chauvenet, A. L. M., & Possingham, H. P. (2016). Equitable Representation of Ecoregions is Slowly Improving Despite Strategic Planning Shortfalls. *Conservation Letters*, 9(6), 422–428. https://doi.org/10.1111/conl.12298
- Kukkala, A. S., & Moilanen, A. (2013). Core concepts of spatial prioritisation in systematic conservation planning. *Biological Reviews*, 88(2), 443–464. https://doi.org/10.1111/brv.12008
- Lonsdale, W. M. (1999). GLOBAL PATTERNS OF PLANT INVASIONS AND THE CONCEPT OF INVASIBILITY. *Ecology*, *80*(5), 1522–1536. https://doi.org/10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2
- Lundgren, M. R., Small, C. J., & Dreyer, G. D. (2004). Influence of Land Use and Site Characteristics on Invasive Plant Abundance in the Quinebaug Highlands of Southern New England. *Northeastern Naturalist*, *11*(3), 313–332. https://doi.org/10.1656/1092-6194(2004)011[0313:IOLUAS]2.0.CO;2
- Macdonald, I. A. W., Loope, L. L., Usher, M. B., & Hamann, O. (1989). Wildlife conservation and the invasion of nature reserves by introduced species: a global perspective. In J. A. Drake & H. A. Mooney (Eds.), *Biological Invasions: a global perspective* (pp. 215–255). Chichester, UK: John Wiley.
- Madeira, L., & Gartner, T. (2018). Forest Resilience Bond Sparks Innovative
 Collaborations Between Water Utilities and Wide-Ranging Stakeholders. *Journal -American Water Works Association*, *110*(6), 42–49.
 https://doi.org/10.1002/awwa.1097
- Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. *The Annals of Mathematical*
Statistics, 18(1), 50-60. https://doi.org/10.1214/aoms/1177730491

- Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. *Nature*, 405, 243–253. https://doi.org/10.1038/35012251
- Marion, J., & Leung, Y.-F. (2011). Indicators and protocols for monitoring impacts of formal and informal trails in protected areas. *Journal of Tourism and Leisure Studies*, 17(2), 215–236.
- Matsusaka, J. G. (2005). Direct Democracy Works. *Journal of Economic Perspectives*, 19(2), 185–206. https://doi.org/10.1257/0895330054048713
- McCarthy, D. P., Donald, P. F., Scharlemann, J. P. W., Buchanan, G. M., Balmford, A., Green, J. M. H., ... Garnett, S. T. (2012). Financial costs of meeting global biodiversity conservation targets: Current spending and unmet needs. *Science*, 338(6109), 946–949. https://doi.org/10.1126/science.1229803
- McDonald, R. I., & Boucher, T. M. (2011). Global development and the future of the protected area strategy. *Biological Conservation*, 144(1), 383–392. https://doi.org/10.1016/j.biocon.2010.09.016
- McKinney, M. L. (2005). Scaling of park trail length and visitation with park area: conservation implications. *Animal Conservation*, 8(2), 135–141. https://doi.org/10.1017/S1367943005001939
- Medvecká, J., Jarolímek, I., Senko, D., & Svitok, M. (2014). Fifty years of plant invasion dynamics in Slovakia along a 2,500 m altitudinal gradient. *Biological Invasions*, 16(8), 1627–1638. https://doi.org/10.1007/s10530-013-0596-7
- Meiners, S. J., & Pickett, S. T. A. (2013). Plant Invasions in Protected Landscapes: Exception or Expectation? In L. C. Foxcroft, P. Pyšek, D. M. Richardson, & P. Genovesi (Eds.), *Plant Invasions in Protected Areas: Patterns, Problems and Challenges* (pp. 43–60). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-7750-7_3
- Millenium Ecosystem Assessment. (2005a). Biodiversity. In R. Hassan, R. Scholes, & N. Ash (Eds.), *Ecosystems and Human Well-being: Current State and Trends* (Vol. 1, pp. 77–122). Washington, DC: Island Press.

- Millenium Ecosystem Assessment. (2005b). Ecosystems and Human Well-being: Biodiversity Synthesis. Millenium Ecosystem Assessment. Washington, DC: World Resources Institute.
- Millenium Ecosystem Assessment. (2005c). *Ecosystems and human well-being*. *Millenium Ecosystem Assessment*. Washington, DC.: Island Press.
- Monz, C. A., Pickering, C. M., & Hadwen, W. L. (2013). Recent advances in recreation ecology and the implications of different relationships between recreation use and ecological impacts. *Frontiers in Ecology and the Environment*, 11(8), 441–446. https://doi.org/10.1890/120358
- Nemec, K. T., Allen, C. R., Alai, A., Clements, G., Kessler, A. C., Kinsell, T., ... Stephen, B. J. (2011). Woody Invasions of Urban Trails and the Changing Face of Urban Forests in the Great Plains, USA. *The American Midland Naturalist*, 165(2), 241–256. https://doi.org/10.1674/0003-0031-165.2.241
- Pickering, C. M., Hill, W., Newsome, D., & Leung, Y. F. (2010). Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. *Journal of Environmental Management*, 91(3), 551– 562. https://doi.org/10.1016/j.jenvman.2009.09.025
- Pickering, C., & Mount, A. (2010). Do tourists disperse weed seed? A global review of unintentional human-mediated terrestrial seed dispersal on clothing, vehicles and horses. *Journal of Sustainable Tourism*, 18(2), 239–256. https://doi.org/10.1080/09669580903406613
- Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The Future of Biodiversity. *Science*, 269(5222), 347 LP-350. https://doi.org/10.1126/science.269.5222.347
- Pressey, R. L. (1994). Ad Hoc Reservations: Forward or Backward Steps in Developing Representative Reserve Systems? *CONSERVATION BIOLOGY*, 8(3), 662–668.
- Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M.
 (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species'

traits and environment. *Global Change Biology*, *18*(5), 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

- R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- Reed, S. E., & Merenlender, A. M. (2008). Quiet, Nonconsumptive Recreation Reduces Protected Area Effectiveness. *Conservation Letters*, 1(3), 146–154. https://doi.org/10.1111/j.1755-263X.2008.00019.x
- Reed, S. E., & Merenlender, A. M. (2011). Effects of Management of Domestic Dogs and Recreation on Carnivores in Protected Areas in Northern California. *Conservation Biology*, 25(3), 504–513. https://doi.org/10.1111/j.1523-1739.2010.01641.x
- Scott, J. M., Davis, F., Csuti, B., Noss, R., Butterfield, B., Groves, C., ... Wright, R. G. (1993). Gap Analysis: A Geographic Approach to Protection of Biological Diversity. *Wildlife Monographs*, 29(123), 3–41.
- Soulé, M. E. (1985). What Is Conservation Biology? *BioScience*, *35*(11), 727–734. https://doi.org/10.2307/1310054
- Stein, B. A., & Kutner, L. S. (2000). Precious Heritage: The Status of Biodiversity in the United States: The Status of Biodiversity in the United States. Oxford University Press.
- Szabo, P. S. (2007). Noah at the Ballot Box: Status and Challenges. *BioScience*, 57(5), 424. https://doi.org/10.1641/B570508
- The Nature Conservancy. (2016). Vision & Mission | The Nature Conservancy. Retrieved July 20, 2016, from https://www.nature.org/about-us/vision-mission/index.htm
- The Nature Conservancy. (2017). TNC Lands. Retrieved from www.tnclands.tnc.org/
- Thompson, B. (2015). Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas. *Environmental Management*, 55(5), 1181–1190. https://doi.org/10.1007/s00267-015-0458-4
- Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics, 45(1), 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917

Törn, A., Tolvanen, A., Norokorpi, Y., Tervo, R., & Siikamäki, P. (2009). Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest. *Journal of Environmental Management*, 90(3), 1427–1434. https://doi.org/10.1016/j.jenvman.2008.08.014

Trust for Public Land. (2016). Landvote Database.

- Trust for Public Land. (2018). Landvote Database. Retrieved from www.landvote.org
- Underwood, E. C., Klausmeyer, K. R., Morrison, S. A., Bode, M., & Shaw, M. R. (2009). Evaluating conservation spending for species return: A retrospective analysis in California. *Conservation Letters*, 2(3), 130–137. https://doi.org/10.1111/j.1755-263X.2008.00018.x
- USDA Farm Service Agency. (2014). National Agriculture Imagery Program. Retrieved December 14, 2016, from https://www.fsa.usda.gov/programs-and-services/aerialphotography/imagery-programs/naip-imagery/
- Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., ... Pyšek, P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. *Ecology Letters*, 14(7), 702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
- Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A., & Losos, E. (1998). Quantifying threats to imperiled species in the United States. *BioScience*, 48(8), 607–615. https://doi.org/10.2307/1313420
- Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. *Biometrics Bulletin*, 1(6), 80–83. https://doi.org/10.2307/3001968
- Wildlife Conservation Board. (2008). Wildlife Conservation Board: Celebrating 60 Years of Success 1947-2007. Sacramento, CA.
- Wimpey, J., & Marion, J. L. (2011). A spatial exploration of informal trail networks within Great Falls Park, VA. *Journal of Environmental Management*, 92(3), 1012– 1022. https://doi.org/10.1016/j.jenvman.2010.11.015
- Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing Ecological Data. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-45972-1

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-87458-6

APPENDIX

Value	Subclass	Class
11	Open Water	Water
12	Perennial Ice/Snow	Water
21	Developed, Open Space	Developed
22	Developed, Low Intensity	Developed
23	Developed, Medium Intensity	Developed
24	Developed, High Intensity	Developed
31	Barren Land (Rock/Sand/Clay)	Barren
41	Deciduous Forest	Forest
42	Evergreen Forest	Forest
43	Mixed Forest	Forest
52	Shrub/Scrub	Shrubland
71	Grassland/Herbaceous	Herbaceous
81	Pasture/Hay	Planted/Cultivated
82	Cultivated Crops	Planted/Cultivated
90	Wood Wetlands	Wetlands
95	Emergent Herbaceous Wetlands	Wetlands

Table 10. Description of NLCD 2011 land cover subclasses applicable to continentalUnited States.

Habitat code	Habitat type	Category
0	Subalpine Conifer	Tree dominated
1	Red Fir	Tree dominated
2	Lodgepole Pine	Tree dominated
3	Sierran Mixed Conifer	Tree dominated
4	White Fir	Tree dominated
5	Klamath Mixed Conifer	Tree dominated
6	Douglas Fir	Tree dominated
7	Jeffrey Pine	Tree dominated
8	Ponderosa Pine	Tree dominated
9	Eastside Pine	Tree dominated
10	Redwood	Tree dominated
11	Pinyon-Juniper	Tree dominated
12	Juniper	Tree dominated
13	Aspen	Tree dominated
14	Closed-Cone Pine-Cypress	Tree dominated
15	Montane Hardwood-Conifer	Tree dominated
16	Montane Hardwood	Tree dominated
17	Blue Oak Woodland	Tree dominated
18	Valley Oak Woodland	Tree dominated
19	Coastal Oak Woodland	Tree dominated
20	Blue Oak-Foothill Pine	Tree dominated
21	Eucalyptus	Tree dominated
22	Montane Riparian	Tree dominated
23	Valley Foothill Riparian	Tree dominated
24	Desert Riparian	Tree dominated
25	Palm Oasis	Tree dominated
26	Joshua Tree	Tree dominated
27	Alpine Dwarf-Shrub	Shrub dominated
28	Low Sage	Shrub dominated
29	Bitterbrush	Shrub dominated
30	Sagebrush	Shrub dominated
31	Montane Chaparral	Shrub dominated
32	Mixed Chaparral	Shrub dominated

Table 11. Description of CDFW CWHR habitat types identified by numericalhabitat code.

Habitat code	Habitat type	Category
33	Chamise-Redshank Chaparral	Shrub dominated
34	Coastal Scrub	Shrub dominated
35	Desert Succulent Shrub	Shrub dominated
36	Desert Wash	Shrub dominated
37	Desert Scrub	Shrub dominated
38	Alkali Desert Scrub	Shrub dominated
39	Annual Grassland	Herbaceous dominated
40	Perennial Grassland	Herbaceous dominated
41	Wet Meadow	Herbaceous dominated
42	Fresh Emergent Wetland	Herbaceous dominated
43	Saline Emergent Wetland	Herbaceous dominated
44	Pasture	Herbaceous dominated
45	Riverine	Aquatic
46	Lacustrine	Aquatic
47	Estuarine	Aquatic
50	Dryland Grain Crops	Developed
51	Irrigated Grain Crops	Developed
52	Irrigated Hayfield	Developed
53	Irrigated Row and Field Crops	Developed
54	Rice	Developed
56	Deciduous Orchard	Developed
57	Evergreen Orchard	Developed
58	Vineyard	Developed
59	Urban	Developed
60	Barren	Non-vegetated

Class	Species ID	Common name	Scientific name
Amphibia	a001	California Tiger Salamander	Ambystoma californiense
Amphibia	a002	Northwestern Salamander	Ambystoma gracile
Amphibia	a003	Long-toed Salamander	Ambystoma macrodactylum
Amphibia	a004	California Giant Salamander	Dicamptodon ensatus
Amphibia	a005	Southern Torrent Salamander	Rhyacotriton variegatus
Amphibia	a006	Rough-skinned Newt	Taricha granulosa
Amphibia	a007	California Newt	Taricha torosa
Amphibia	a008	Red-bellied Newt	Taricha rivularis
Amphibia	a009	Dunn's Salamander	Plethodon dunni
Amphibia	a010	Del Norte Salamander	Plethodon elongatus
Amphibia	a011	Siskiyou Mountains Salamander	Plethodon stormi
Amphibia	a012	Common Ensatina	Ensatina eschscholtzii
Amphibia	a013	Southern California Slender Salamander	Batrachoseps major
Amphibia	a014	California Slender Salamander	Batrachoseps attenuatus
Amphibia	a015	Black-bellied Slender Salamander	Batrachoseps nigriventris
Amphibia	a016	Channel Islands Slender Salamander	Batrachoseps pacificus
Amphibia	a017	Kern Canyon Slender Salamander	Batrachoseps simatus
Amphibia	a018	Tehachapi Slender Salamander	Batrachoseps stebbinsi
Amphibia	a019	Inyo Mountains Salamander	Batrachoseps campi
Amphibia	a020	Speckled Black Salamander	Aneides flavipunctatus
Amphibia	a021	Clouded Salamander	Aneides ferreus
Amphibia	a022	Arboreal Salamander	Aneides lugubris
Amphibia	a023	Mount Lyell Salamander	Hydromantes platycephalus
Amphibia	a024	Shasta Salamander	Hydromantes shastae
Amphibia	a025	Limestone Salamander	Hydromantes brunus
Amphibia	a026	Coastal Tailed Frog	Ascaphus truei
Amphibia	a027	Couch's Spadefoot	Scaphiopus couchii
Amphibia	a028	Western Spadefoot	Spea hammondii
Amphibia	a029	Great Basin Spadefoot	Spea intermontana
Amphibia	a030	Sonoran Desert Toad	Incilius alvarius
Amphibia	a031	Black Toad	Anaxyrus exsul
Amphibia	a032	Western Toad	Anaxyrus boreas
Amphibia	a033	Yosemite Toad	Anaxyrus canorus
Amphibia	a034	Woodhouse's Toad	Anaxyrus woodhousii

 Table 12. Description of CDFW CWHR species identified by alphanumeric species code.

Class	Species ID	Common name	Scientific name
Amphibia	a035	Arroyo Toad	Anaxyrus californicus
Amphibia	a036	Red-spotted Toad	Anaxyrus punctatus
Amphibia	a037	Great Plains Toad	Anaxyrus cognatus
Amphibia	a038	California Treefrog	Pseudacris cadaverina
Amphibia	a039	Pacific Treefrog	Pseudacris regilla
Amphibia	a040	Northern Red-legged Frog	Rana aurora
Amphibia	a041	Oregon Spotted Frog	Rana pretiosa
Amphibia	a042	Cascades Frog	Rana cascadae
Amphibia	a043	Foothill Yellow-legged Frog	Rana boylii
Amphibia	a044	Sierra Madre Yellow-legged Frog	Rana muscosa
Amphibia	a045	Northern Leopard Frog	Lithobates pipiens
Amphibia	a046	American Bullfrog	Lithobates catesbeianus
Amphibia	a047	Western Tiger Salamander	Ambystoma mavortium
Amphibia	a048	Pacific Giant Salamander	Dicamptodon tenebrosus
Amphibia	a049	Relictual Slender Salamander	Batrachoseps relictus
Amphibia	a050	Rio Grande Leopard Frog	Lithobates berlandieri
Amphibia	a053	San Gabriel Slender Salamander	Batrachoseps gabrieli
Amphibia	a056	Gabilan Mountains Slender Salamander	Batrachoseps gavilanensis
Amphibia	a057	Santa Lucia Slender Salamander	Batrachoseps luciae
Amphibia	a058	Lesser Slender Salamander	Batrachoseps minor
Amphibia	a059	San Simeon Slender Salamander	Batrachoseps incognitus
Amphibia	a060	Kings River Slender Salamander	Batrachoseps regius
Amphibia	a061	Sequoia Slender Salamander	Batrachoseps kawia
Amphibia	a062	Hell Hollow Slender Salamander	Batrachoseps diabolicus
Amphibia	a063	Kern Plateau Salamander	Batrachoseps robustus
Amphibia	a066	Large-blotched Ensatina	Ensatina klauberi
Amphibia	a067	Scott Bar Salamander	Plethodon asupak
Amphibia	a068	Wandering Salamander	Aneides vagrans
Amphibia	a070	Sierra Nevada Yellow-legged Frog	Rana sierrae
Amphibia	a071	California Red-legged Frog	Rana draytonii
Amphibia	a072	Santa Cruz Black Salamander	Aneides niger
Amphibia	a073	Fairview Slender Salamander	Batrachoseps bramei
Amphibia	a074	Greenhorn Mountains Slender Salamander	Batrachoseps altasierrae
Amphibia	a075	Sierra Newt	Taricha sierrae
Amphibia	a076	Baja California Treefrog	Pseudacris hypochondriaca

Class	Species ID	Common name	Scientific name
Amphibia	a077	Sierran Treefrog	Pseudacris sierra
Amphibia	a078	Columbia Spotted Frog	Rana luteiventris
Aves	b001	Red-throated Loon	Gavia stellata
Aves	b002	Pacific Loon	Gavia pacifica
Aves	b003	Common Loon	Gavia immer
Aves	b006	Pied-billed Grebe	Podilymbus podiceps
Aves	b007	Horned Grebe	Podiceps auritus
Aves	b008	Red-necked Grebe	Podiceps grisegena
Aves	b009	Eared Grebe	Podiceps nigricollis
Aves	b010	Western Grebe	Aechmophorus occidentalis
Aves	b042	American White Pelican	Pelecanus erythrorhynchos
Aves	b043	Brown Pelican	Pelecanus occidentalis
Aves	b044	Double-crested Cormorant	Phalacrocorax auritus
Aves	b046	Brandt's Cormorant	Phalacrocorax penicillatus
Aves	b047	Pelagic Cormorant	Phalacrocorax pelagicus
Aves	b049	American Bittern	Botaurus lentiginosus
Aves	b050	Least Bittern	Ixobrychus exilis
Aves	b051	Great Blue Heron	Ardea herodias
Aves	b052	Great Egret	Ardea alba
Aves	b053	Snowy Egret	Egretta thula
Aves	b057	Cattle Egret	Bubulcus ibis
Aves	b058	Green Heron	Butorides virescens
Aves	b059	Black-crowned Night Heron	Nycticorax nycticorax
Aves	b062	White-faced Ibis	Plegadis chihi
Aves	b065	Fulvous Whistling-Duck	Dendrocygna bicolor
Aves	b067	Tundra Swan	Cygnus columbianus
Aves	b070	Greater White-fronted Goose	Anser albifrons
Aves	b071	Snow Goose	Chen caerulescens
Aves	b072	Ross's Goose	Chen rossii
Aves	b074	Brant	Branta bernicla
Aves	b075	Canada Goose	Branta canadensis
Aves	b076	Wood Duck	Aix sponsa
Aves	b077	Green-winged Teal	Anas crecca
Aves	b079	Mallard	Anas platyrhynchos
Aves	b080	Northern Pintail	Anas acuta

Class	Species ID	Common name	Scientific name
Aves	b082	Blue-winged Teal	Anas discors
Aves	b083	Cinnamon Teal	Anas cyanoptera
Aves	b084	Northern Shoveler	Anas clypeata
Aves	b085	Gadwall	Anas strepera
Aves	b086	Eurasian Wigeon	Anas penelope
Aves	b087	American Wigeon	Anas americana
Aves	b089	Canvasback	Aythya valisineria
Aves	b090	Redhead	Aythya americana
Aves	b091	Ring-necked Duck	Aythya collaris
Aves	b093	Greater Scaup	Aythya marila
Aves	b094	Lesser Scaup	Aythya affinis
Aves	b096	Harlequin Duck	Histrionicus histrionicus
Aves	b097	Long-tailed Duck	Clangula hyemalis
Aves	b098	Black Scoter	Melanitta americana (nigra)
Aves	b099	Surf Scoter	Melanitta perspicillata
Aves	b100	White-winged Scoter	Melanitta fusca
Aves	b101	Common Goldeneye	Bucephala clangula
Aves	b102	Barrow's Goldeneye	Bucephala islandica
Aves	b103	Bufflehead	Bucephala albeola
Aves	b104	Hooded Merganser	Lophodytes cucullatus
Aves	b105	Common Merganser	Mergus merganser
Aves	b106	Red-breasted Merganser	Mergus serrator
Aves	b107	Ruddy Duck	Oxyura jamaicensis
Aves	b108	Turkey Vulture	Cathartes aura
Aves	b109	California Condor	Gymnogyps californianus
Aves	b110	Osprey	Pandion haliaetus
Aves	b111	White-tailed Kite	Elanus leucurus
Aves	b113	Bald Eagle	Haliaeetus leucocephalus
Aves	b114	Northern Harrier	Circus cyaneus
Aves	b115	Sharp-shinned Hawk	Accipiter striatus
Aves	b116	Cooper's Hawk	Accipiter cooperii
Aves	b117	Northern Goshawk	Accipiter gentilis
Aves	b119	Red-shouldered Hawk	Buteo lineatus
Aves	b121	Swainson's Hawk	Buteo swainsoni
Aves	b123	Red-tailed Hawk	Buteo jamaicensis

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b124	Ferruginous Hawk	Buteo regalis
Aves	b125	Rough-legged Hawk	Buteo lagopus
Aves	b126	Golden Eagle	Aquila chrysaetos
Aves	b127	American Kestrel	Falco sparverius
Aves	b128	Merlin	Falco columbarius
Aves	b129	Peregrine Falcon	Falco peregrinus
Aves	b131	Prairie Falcon	Falco mexicanus
Aves	b132	Chukar	Alectoris chukar
Aves	b133	Ring-necked Pheasant	Phasianus colchicus
Aves	b134	Sooty Grouse	Dendragapus fuliginosus
Aves	b135	White-tailed Ptarmigan	Lagopus leucura
Aves	b136	Ruffed Grouse	Bonasa umbellus
Aves	b137	Greater Sage-Grouse	Centrocercus urophasianus
Aves	b138	Wild Turkey	Meleagris gallopavo
Aves	b139	Gambel's Quail	Callipepla gambelii
Aves	b140	California Quail	Callipepla californica
Aves	b141	Mountain Quail	Oreortyx pictus
Aves	b143	Black Rail	Laterallus jamaicensis
Aves	b144	Clapper Rail	Rallus longirostris
Aves	b145	Virginia Rail	Rallus limicola
Aves	b146	Sora	Porzana carolina
Aves	b148	Common Gallinule	Gallinula galeata
Aves	b149	American Coot	Fulica americana
Aves	b150	Sandhill Crane	Grus canadensis
Aves	b151	Black-bellied Plover	Pluvialis squatarola
Aves	b154	Snowy Plover	Charadrius nivosus
Aves	b156	Semipalmated Plover	Charadrius semipalmatus
Aves	b158	Killdeer	Charadrius vociferus
Aves	b159	Mountain Plover	Charadrius montanus
Aves	b162	Black Oystercatcher	Haematopus bachmani
Aves	b163	Black-necked Stilt	Himantopus mexicanus
Aves	b164	American Avocet	Recurvirostra americana
Aves	b165	Greater Yellowlegs	Tringa melanoleuca
Aves	b166	Lesser Yellowlegs	Tringa flavipes
Aves	b168	Willet	Tringa semipalmata

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b169	Wandering Tattler	Tringa incana
Aves	b170	Spotted Sandpiper	Actitis macularius
Aves	b172	Whimbrel	Numenius phaeopus
Aves	b173	Long-billed Curlew	Numenius americanus
Aves	b176	Marbled Godwit	Limosa fedoa
Aves	b177	Ruddy Turnstone	Arenaria interpres
Aves	b178	Black Turnstone	Arenaria melanocephala
Aves	b179	Surfbird	Calidris virgata
Aves	b180	Red Knot	Calidris canutus
Aves	b181	Sanderling	Calidris alba
Aves	b183	Western Sandpiper	Calidris mauri
Aves	b185	Least Sandpiper	Calidris minutilla
Aves	b190	Rock Sandpiper	Calidris ptilocnemis
Aves	b191	Dunlin	Calidris alpina
Aves	b193	Stilt Sandpiper	Calidris himantopus
Aves	b196	Short-billed Dowitcher	Limnodromus griseus
Aves	b197	Long-billed Dowitcher	Limnodromus scolopaceus
Aves	b199	Wilson's Snipe	Gallinago delicata
Aves	b200	Wilson's Phalarope	Phalaropus tricolor
Aves	b211	Bonaparte's Gull	Chroicocephalus philadelphia
Aves	b212	Heermann's Gull	Larus heermanni
Aves	b213	Mew Gull	Larus canus
Aves	b214	Ring-billed Gull	Larus delawarensis
Aves	b215	California Gull	Larus californicus
Aves	b216	Herring Gull	Larus argentatus
Aves	b217	Thayer's Gull	Larus thayeri
Aves	b219	Yellow-footed Gull	Larus livens
Aves	b220	Western Gull	Larus occidentalis
Aves	b221	Glaucous-winged Gull	Larus glaucescens
Aves	b226	Gull-billed Tern	Gelochelidon nilotica
Aves	b227	Caspian Tern	Hydroprogne caspia
Aves	b228	Royal Tern	Thalasseus maximus
Aves	b229	Elegant Tern	Thalasseus elegans
Aves	b231	Common Tern	Sterna hirundo
Aves	b233	Forster's Tern	Sterna forsteri

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b234	Least Tern	Sternula antillarum
Aves	b235	Black Tern	Chlidonias niger
Aves	b236	Black Skimmer	Rynchops niger
Aves	b237	Common Murre	Uria aalge
Aves	b239	Pigeon Guillemot	Cepphus columba
Aves	b240	Marbled Murrelet	Brachyramphus marmoratus
Aves	b241	Scripps's Murrelet	Synthliboramphus scrippsi
Aves	b243	Ancient Murrelet	Synthliboramphus antiquus
Aves	b244	Cassin's Auklet	Ptychoramphus aleuticus
Aves	b247	Rhinoceros Auklet	Cerorhinca monocerata
Aves	b248	Tufted Puffin	Fratercula cirrhata
Aves	b250	Rock Pigeon	Columba livia
Aves	b251	Band-tailed Pigeon	Patagioenas fasciata
Aves	b252	Ringed Turtle-Dove	Streptopelia risoria
Aves	b253	Spotted Dove	Streptopelia chinensis
Aves	b254	White-winged Dove	Zenaida asiatica
Aves	b255	Mourning Dove	Zenaida macroura
Aves	b256	Inca Dove	Columbina inca
Aves	b257	Common Ground-Dove	Columbina passerina
Aves	b259	Yellow-billed Cuckoo	Coccyzus americanus
Aves	b260	Greater Roadrunner	Geococcyx californianus
Aves	b262	Barn Owl	Tyto alba
Aves	b263	Flammulated Owl	Psiloscops flammeolus
Aves	b264	Western Screech Owl	Megascops kennicottii
Aves	b265	Great Horned Owl	Bubo virginianus
Aves	b267	Northern Pygmy Owl	Glaucidium gnoma
Aves	b268	Elf Owl	Micrathene whitneyi
Aves	b269	Burrowing Owl	Athene cunicularia
Aves	b270	Spotted Owl	Strix occidentalis
Aves	b271	Great Gray Owl	Strix nebulosa
Aves	b272	Long-eared Owl	Asio otus
Aves	b273	Short-eared Owl	Asio flammeus
Aves	b274	Northern Saw-whet Owl	Aegolius acadicus
Aves	b275	Lesser Nighthawk	Chordeiles acutipennis
Aves	b276	Common Nighthawk	Chordeiles minor

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b277	Common Poorwill	Phalaenoptilus nuttallii
Aves	b278	Eastern Whip-poor-will	Antrostomus vociferus
Aves	b279	Black Swift	Cypseloides niger
Aves	b281	Vaux's Swift	Chaetura vauxi
Aves	b282	White-throated Swift	Aeronautes saxatalis
Aves	b286	Black-chinned Hummingbird	Archilochus alexandri
Aves	b287	Anna's Hummingbird	Calypte anna
Aves	b288	Costa's Hummingbird	Calypte costae
Aves	b289	Calliope Hummingbird	Selasphorus calliope
Aves	b290	Broad-tailed Hummingbird	Selasphorus platycercus
Aves	b291	Rufous Hummingbird	Selasphorus rufus
Aves	b292	Allen's Hummingbird	Selasphorus sasin
Aves	b293	Belted Kingfisher	Megaceryle alcyon
Aves	b294	Lewis's Woodpecker	Melanerpes lewis
Aves	b296	Acorn Woodpecker	Melanerpes formicivorus
Aves	b297	Gila Woodpecker	Melanerpes uropygialis
Aves	b298	Red-naped Sapsucker	Sphyrapicus nuchalis
Aves	b299	Red-breasted Sapsucker	Sphyrapicus ruber
Aves	b300	Williamson's Sapsucker	Sphyrapicus thyroideus
Aves	b301	Ladder-backed Woodpecker	Picoides scalaris
Aves	b302	Nuttall's Woodpecker	Picoides nuttallii
Aves	b303	Downy Woodpecker	Picoides pubescens
Aves	b304	Hairy Woodpecker	Picoides villosus
Aves	b305	White-headed Woodpecker	Picoides albolarvatus
Aves	b306	Black-backed Woodpecker	Picoides arcticus
Aves	b307	Northern Flicker	Colaptes auratus
Aves	b308	Pileated Woodpecker	Dryocopus pileatus
Aves	b309	Olive-sided Flycatcher	Contopus cooperi
Aves	b311	Western Wood-Pewee	Contopus sordidulus
Aves	b315	Willow Flycatcher	Empidonax traillii
Aves	b317	Hammond's Flycatcher	Empidonax hammondii
Aves	b318	Dusky Flycatcher	Empidonax oberholseri
Aves	b319	Gray Flycatcher	Empidonax wrightii
Aves	b320	Pacific-slope Flycatcher	Empidonax difficilis
Aves	b321	Black Phoebe	Sayornis nigricans

Class	Species ID	Common name	Scientific name
Aves	b323	Say's Phoebe	Sayornis saya
Aves	b324	Vermilion Flycatcher	Pyrocephalus rubinus
Aves	b326	Ash-throated Flycatcher	Myiarchus cinerascens
Aves	b328	Brown-crested Flycatcher	Myiarchus tyrannulus
Aves	b331	Cassin's Kingbird	Tyrannus vociferans
Aves	b333	Western Kingbird	Tyrannus verticalis
Aves	b334	Eastern Kingbird	Tyrannus tyrannus
Aves	b337	Horned Lark	Eremophila alpestris
Aves	b338	Purple Martin	Progne subis
Aves	b339	Tree Swallow	Tachycineta bicolor
Aves	b340	Violet-green Swallow	Tachycineta thalassina
Aves	b341	Northern Rough-winged Swallow	Stelgidopteryx serripennis
Aves	b342	Bank Swallow	Riparia riparia
Aves	b343	Cliff Swallow	Petrochelidon pyrrhonota
Aves	b344	Barn Swallow	Hirundo rustica
Aves	b345	Gray Jay	Perisoreus canadensis
Aves	b346	Steller's Jay	Cyanocitta stelleri
Aves	b348	Western Scrub-Jay	Aphelocoma californica
Aves	b349	Pinyon Jay	Gymnorhinus cyanocephalus
Aves	b350	Clark's Nutcracker	Nucifraga columbiana
Aves	b351	Black-billed Magpie	Pica hudsonia
Aves	b352	Yellow-billed Magpie	Pica nuttalli
Aves	b353	American Crow	Corvus brachyrhynchos
Aves	b354	Common Raven	Corvus corax
Aves	b355	Black-capped Chickadee	Poecile atricapillus
Aves	b356	Mountain Chickadee	Poecile gambeli
Aves	b357	Chestnut-backed Chickadee	Poecile rufescens
Aves	b358	Oak Titmouse	Baeolophus inornatus
Aves	b359	Verdin	Auriparus flaviceps
Aves	b360	Bushtit	Psaltriparus minimus
Aves	b361	Red-breasted Nuthatch	Sitta canadensis
Aves	b362	White-breasted Nuthatch	Sitta carolinensis
Aves	b363	Pygmy Nuthatch	Sitta pygmaea
Aves	b364	Brown Creeper	Certhia americana
Aves	b365	Cactus Wren	Campylorhynchus brunneicapillus

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b366	Rock Wren	Salpinctes obsoletus
Aves	b367	Canyon Wren	Catherpes mexicanus
Aves	b368	Bewick's Wren	Thryomanes bewickii
Aves	b369	House Wren	Troglodytes aedon
Aves	b370	Pacific Wren	Troglodytes pacificus
Aves	b372	Marsh Wren	Cistothorus palustris
Aves	b373	American Dipper	Cinclus mexicanus
Aves	b375	Golden-crowned Kinglet	Regulus satrapa
Aves	b376	Ruby-crowned Kinglet	Regulus calendula
Aves	b377	Blue-gray Gnatcatcher	Polioptila caerulea
Aves	b378	Black-tailed Gnatcatcher	Polioptila melanura
Aves	b380	Western Bluebird	Sialia mexicana
Aves	b381	Mountain Bluebird	Sialia currucoides
Aves	b382	Townsend's Solitaire	Myadestes townsendi
Aves	b385	Swainson's Thrush	Catharus ustulatus
Aves	b386	Hermit Thrush	Catharus guttatus
Aves	b389	American Robin	Turdus migratorius
Aves	b390	Varied Thrush	Ixoreus naevius
Aves	b391	Wrentit	Chamaea fasciata
Aves	b393	Northern Mockingbird	Mimus polyglottos
Aves	b394	Sage Thrasher	Oreoscoptes montanus
Aves	b396	Bendire's Thrasher	Toxostoma bendirei
Aves	b398	California Thrasher	Toxostoma redivivum
Aves	b399	Crissal Thrasher	Toxostoma crissale
Aves	b400	Le Conte's Thrasher	Toxostoma lecontei
Aves	b404	American Pipit	Anthus rubrescens
Aves	b407	Cedar Waxwing	Bombycilla cedrorum
Aves	b408	Phainopepla	Phainopepla nitens
Aves	b409	Northern Shrike	Lanius excubitor
Aves	b410	Loggerhead Shrike	Lanius ludovicianus
Aves	b411	European Starling	Sturnus vulgaris
Aves	b413	Bell's Vireo	Vireo bellii
Aves	b414	Gray Vireo	Vireo vicinior
Aves	b415	Cassin's Vireo	Vireo cassinii
Aves	b417	Hutton's Vireo	Vireo huttoni

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b418	Warbling Vireo	Vireo gilvus
Aves	b425	Orange-crowned Warbler	Oreothlypis celata
Aves	b426	Nashville Warbler	Oreothlypis ruficapilla
Aves	b427	Virginia's Warbler	Oreothlypis virginiae
Aves	b428	Lucy's Warbler	Oreothlypis luciae
Aves	b430	Yellow Warbler	Setophaga petechia
Aves	b435	Yellow-rumped Warbler	Setophaga coronata
Aves	b436	Black-throated Gray Warbler	Setophaga nigrescens
Aves	b437	Townsend's Warbler	Setophaga townsendi
Aves	b438	Hermit Warbler	Setophaga occidentalis
Aves	b460	Macgillivray's Warbler	Geothlypis tolmiei
Aves	b461	Common Yellowthroat	Geothlypis trichas
Aves	b463	Wilson's Warbler	Cardellina pusilla
Aves	b467	Yellow-breasted Chat	Icteria virens
Aves	b469	Summer Tanager	Piranga rubra
Aves	b471	Western Tanager	Piranga ludoviciana
Aves	b475	Black-headed Grosbeak	Pheucticus melanocephalus
Aves	b476	Blue Grosbeak	Passerina caerulea
Aves	b477	Lazuli Bunting	Passerina amoena
Aves	b482	Green-tailed Towhee	Pipilo chlorurus
Aves	b483	Spotted Towhee	Pipilo maculatus
Aves	b484	California Towhee	Pipilo crissalis
Aves	b485	Abert's Towhee	Melozone aberti
Aves	b487	Rufous-crowned Sparrow	Aimophila ruficeps
Aves	b489	Chipping Sparrow	Spizella passerina
Aves	b491	Brewer's Sparrow	Spizella breweri
Aves	b493	Black-chinned Sparrow	Spizella atrogularis
Aves	b494	Vesper Sparrow	Pooecetes gramineus
Aves	b495	Lark Sparrow	Chondestes grammacus
Aves	b496	Black-throated Sparrow	Amphispiza bilineata
Aves	b497	Sage (Bell's) Sparrow	Artemisiospiza belli
Aves	b499	Savannah Sparrow	Passerculus sandwichensis
Aves	b501	Grasshopper Sparrow	Ammodramus savannarum
Aves	b504	Fox Sparrow	Passerella iliaca
Aves	b505	Song Sparrow	Melospiza melodia

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Aves	b506	Lincoln's Sparrow	Melospiza lincolnii
Aves	b509	Golden-crowned Sparrow	Zonotrichia atricapilla
Aves	b510	White-crowned Sparrow	Zonotrichia leucophrys
Aves	b512	Dark-eyed Junco	Junco hyemalis
Aves	b514	Lapland Longspur	Calcarius lapponicus
Aves	b519	Red-winged Blackbird	Agelaius phoeniceus
Aves	b520	Tricolored Blackbird	Agelaius tricolor
Aves	b521	Western Meadowlark	Sturnella neglecta
Aves	b522	Yellow-headed Blackbird	Xanthocephalus xanthocephalus
Aves	b524	Brewer's Blackbird	Euphagus cyanocephalus
Aves	b525	Great-tailed Grackle	Quiscalus mexicanus
Aves	b527	Bronzed Cowbird	Molothrus aeneus
Aves	b528	Brown-headed Cowbird	Molothrus ater
Aves	b530	Hooded Oriole	Icterus cucullatus
Aves	b532	Bullock's Oriole	Icterus bullockii
Aves	b533	Scott's Oriole	Icterus parisorum
Aves	b534	Gray-crowned Rosy-Finch	Leucosticte tephrocotis
Aves	b535	Pine Grosbeak	Pinicola enucleator
Aves	b536	Purple Finch	Haemorhous purpureus
Aves	b537	Cassin's Finch	Haemorhous cassinii
Aves	b538	House Finch	Haemorhous mexicanus
Aves	b539	Red Crossbill	Loxia curvirostra
Aves	b542	Pine Siskin	Spinus pinus
Aves	b543	Lesser Goldfinch	Spinus psaltria
Aves	b544	Lawrence's Goldfinch	Spinus lawrencei
Aves	b545	American Goldfinch	Spinus tristis
Aves	b546	Evening Grosbeak	Coccothraustes vespertinus
Aves	b547	House Sparrow	Passer domesticus
Aves	b548	Clark's Grebe	Aechmophorus clarkii
Aves	b549	Gilded Flicker	Colaptes chrysoides
Aves	b550	Cordilleran Flycatcher	Empidonax occidentalis
Aves	b551	Island Scrub-Jay	Aphelocoma insularis
Aves	b552	Juniper Titmouse	Baeolophus ridgewayi
Aves	b553	California Gnatcatcher	Polioptila californica
Aves	b554	Plumbeous Vireo	Vireo plumbeus

Class	Species ID	Common name	Scientific name
Aves	b579	Fork-tailed Storm-Petrel	Oceanodroma furcata
Aves	b580	Leach's Storm-Petrel	Oceanodroma leucorhoa
Aves	b581	Ashy Storm-Petrel	Oceanodroma homochroa
Aves	b584	Black Storm-Petrel	Oceanodroma melania
Aves	b603	Wood Stork	Mycteria americana
Aves	b620	Harris's Hawk	Parabuteo unicinctus
Aves	b629	Pacific Golden-Plover	Pluvialis fulva
Aves	b634	American Oystercatcher	Haematopus palliatus
Aves	b648	Baird's Sandpiper	Calidris bairdii
Aves	b649	Pectoral Sandpiper	Calidris melanotos
Aves	b655	Red-necked Phalarope	Phalaropus lobatus
Aves	b656	Red Phalarope	Phalaropus fulicarius
Aves	b699	Barred Owl	Strix varia
Aves	b702	Chimney Swift	Chaetura pelagica
Aves	b773	American Redstart	Setophaga ruticilla
Aves	b798	White-throated Sparrow	Zonotrichia albicollis
Aves	b799	Harris's Sparrow	Zonotrichia querula
Aves	b806	Northern Cardinal	Cardinalis cardinalis
Aves	b809	Indigo Bunting	Passerina cyanea
Aves	b864	Cackling Goose	Branta hutchinsii
Mammalia	m001	Virginia Opossum	Didelphis virginiana
Mammalia	m002	Mt. Lyell Shrew	Sorex lyelli
Mammalia	m003	Vagrant Shrew	Sorex vagrans
Mammalia	m004	Montane Shrew	Sorex monticolus
Mammalia	m005	Fog Shrew	Sorex sonomae
Mammalia	m006	Ornate Shrew	Sorex ornatus
Mammalia	m008	Inyo Shrew	Sorex tenellus
Mammalia	m010	Water Shrew	Sorex palustris
Mammalia	m011	Marsh Shrew	Sorex bendirii
Mammalia	m012	Trowbridge's Shrew	Sorex trowbridgii
Mammalia	m013	Merriam's Shrew	Sorex merriami
Mammalia	m014	Desert Shrew	Notiosorex crawfordi
Mammalia	m015	Shrew-Mole	Neurotrichus gibbsii
Mammalia	m016	Townsend's Mole	Scapanus townsendii
Mammalia	m017	Coast Mole	Scapanus orarius

Class	Species ID	Common name	Scientific name
Mammalia	m018	Broad-footed Mole	Scapanus latimanus
Mammalia	m019	California Leaf-nosed Bat	Macrotus californicus
Mammalia	m020	Hog-nosed Bat	Choeronycteris mexicana
Mammalia	m021	Little Brown Bat	Myotis lucifugus
Mammalia	m022	Arizona Myotis	Myotis occultus
Mammalia	m023	Yuma Myotis	Myotis yumanensis
Mammalia	m024	Cave Myotis	Myotis velifer
Mammalia	m025	Long-eared Myotis	Myotis evotis
Mammalia	m026	Fringed Myotis	Myotis thysanodes
Mammalia	m027	Long-legged Myotis	Myotis volans
Mammalia	m028	California Myotis	Myotis californicus
Mammalia	m029	Small-footed Myotis	Myotis ciliolabrum
Mammalia	m030	Silver-haired Bat	Lasionycteris noctivagans
Mammalia	m031	Canyon Bat	Parastrelluss hesperus
Mammalia	m032	Big Brown Bat	Eptesicus fuscus
Mammalia	m033	Western Red Bat	Lasiurus blossevillii
Mammalia	m034	Hoary Bat	Lasiurus cinereus
Mammalia	m035	Western Yellow Bat	Lasiurus xanthinus
Mammalia	m036	Spotted Bat	Euderma maculatum
Mammalia	m037	Townsend's Big-eared Bat	Corynorhinus townsendii
Mammalia	m038	Pallid Bat	Antrozous pallidus
Mammalia	m039	Brazilian Free-tailed Bat	Tadarida brasiliensis
Mammalia	m040	Pocketed Free-tailed Bat	Nyctinomops femorosaccus
Mammalia	m041	Big Free-tailed Bat	Nyctinomops macrotis
Mammalia	m042	Western Mastiff Bat	Eumops perotis
Mammalia	m043	American Pika	Ochotona princeps
Mammalia	m044	Pygmy Rabbit	Brachylagus idahoensis
Mammalia	m045	Brush Rabbit	Sylvilagus bachmani
Mammalia	m046	Nuttall's Cottontail	Sylvilagus nuttallii
Mammalia	m047	Audubon's Cottontail	Sylvilagus audubonii
Mammalia	m049	Snowshoe Hare	Lepus americanus
Mammalia	m050	White-tailed Jackrabbit	Lepus townsendii
Mammalia	m051	Black-tailed Jackrabbit	Lepus californicus
Mammalia	m052	Mountain Beaver	Aplodontia rufa
Mammalia	m053	Alpine Chipmunk	Tamias alpinus

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Mammalia	m054	Least Chipmunk	Tamias minimus
Mammalia	m055	Yellow-pine Chipmunk	Tamias amoenus
Mammalia	m056	Redwood Chipmunk	Tamias ochrogenys
Mammalia	m057	Shadow Chipmunk	Tamias senex
Mammalia	m058	Siskiyou Chipmunk	Tamias siskiyou
Mammalia	m059	Sonoma Chipmunk	Tamias sonomae
Mammalia	m060	Merriam's Chipmunk	Tamias merriami
Mammalia	m061	Chaparral Chipmunk	Tamias obscurus
Mammalia	m062	Long-eared Chipmunk	Tamias quadrimaculatus
Mammalia	m063	Lodgepole Chipmunk	Tamias speciosus
Mammalia	m064	Panamint Chipmunk	Tamias panamintinus
Mammalia	m065	Uinta Chipmunk	Tamias umbrinus
Mammalia	m066	Yellow-bellied Marmot	Marmota flaviventris
Mammalia	m067	White-tailed Antelope Ground Squirrel	Ammospermophilus leucurus
Mammalia	m068	Nelson's Antelope Ground Squirrel	Ammospermophilus nelsoni
Mammalia	m069	Piute Ground Squirrel	Urocitellus mollis
Mammalia	m070	Belding's Ground Squirrel	Urocitellus beldingi
Mammalia	m071	Rock Squirrel	Ostospermophilus variegatus
Mammalia	m072	California Ground Squirrel	Ostospermophilus beecheyi
Mammalia	m073	Mohave Ground Squirrel	Xerospermophilus mohavensis
Mammalia	m074	Round-tailed Ground Squirrel	Xerospermophilus tereticaudus
Mammalia	m075	Golden-mantled Ground Squirrel	Callospermophilus lateralis
Mammalia	m076	Eastern Gray Squirrel	Sciurus carolinensis
Mammalia	m077	Western Gray Squirrel	Sciurus griseus
Mammalia	m078	Eastern Fox Squirrel	Sciurus niger
Mammalia	m079	Douglas' Squirrel	Tamiasciurus douglasii
Mammalia	m080	Northern Flying Squirrel	Glaucomys sabrinus
Mammalia	m081	Botta's Pocket Gopher	Thomomys bottae
Mammalia	m082	Townsend's Pocket Gopher	Thomomys townsendii
Mammalia	m083	Northern Pocket Gopher	Thomomys talpoides
Mammalia	m084	Mazama Pocket Gopher	Thomomys mazama
Mammalia	m085	Mountain Pocket Gopher	Thomomys monticola
Mammalia	m086	Little Pocket Mouse	Perognathus longimembris
Mammalia	m087	San Joaquin Pocket Mouse	Perognathus inornatus
Mammalia	m088	Great Basin Pocket Mouse	Perognathus parvus

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Mammalia	m089	White-eared Pocket Mouse	Perognathus alticolus
Mammalia	m091	Long-tailed Pocket Mouse	Chaetodipus formosus
Mammalia	m092	Bailey's Pocket Mouse	Chaetodipus rudinoris
Mammalia	m093	Desert Pocket Mouse	Chaetodipus penicillatus
Mammalia	m094	San Diego Pocket Mouse	Chaetodipus fallax
Mammalia	m095	California Pocket Mouse	Chaetodipus californicus
Mammalia	m096	Spiny Pocket Mouse	Chaetodipus spinatus
Mammalia	m097	Dark Kangaroo Mouse	Microdipodops megacephalus
Mammalia	m098	Pale Kangaroo Mouse	Microdipodops pallidus
Mammalia	m099	Ord's Kangaroo Rat	Dipodomys ordii
Mammalia	m100	Chisel-toothed Kangaroo Rat	Dipodomys microps
Mammalia	m102	Narrow-faced Kangaroo Rat	Dipodomys venustus
Mammalia	m103	Agile Kangaroo Rat	Dipodomys agilis
Mammalia	m104	Heermann's Kangaroo Rat	Dipodomys heermanni
Mammalia	m105	California Kangaroo Rat	Dipodomys californicus
Mammalia	m106	Giant Kangaroo Rat	Dipodomys ingens
Mammalia	m107	Panamint Kangaroo Rat	Dipodomys panamintinus
Mammalia	m108	Stephens' Kangaroo Rat	Dipodomys stephensi
Mammalia	m109	Desert Kangaroo Rat	Dipodomys deserti
Mammalia	m110	Merriam's Kangaroo Rat	Dipodomys merriami
Mammalia	m111	Fresno Kangaroo Rat	Dipodomys nitratoides
Mammalia	m112	American Beaver	Castor canadensis
Mammalia	m113	Western Harvest Mouse	Reithrodontomys megalotis
Mammalia	m114	Salt-marsh Harvest Mouse	Reithrodontomys raviventris
Mammalia	m115	Cactus Mouse	Peromyscus eremicus
Mammalia	m116	California Mouse	Peromyscus californicus
Mammalia	m117	Deer Mouse	Peromyscus maniculatus
Mammalia	m118	Canyon Mouse	Peromyscus crinitus
Mammalia	m119	Brush Mouse	Peromyscus boylii
Mammalia	m120	Pinyon Mouse	Peromyscus truei
Mammalia	m121	Northern Grasshopper Mouse	Onychomys leucogaster
Mammalia	m122	Southern Grasshopper Mouse	Onychomys torridus
Mammalia	m123	Hispid Cotton Rat	Sigmodon hispidus
Mammalia	m124	Arizona Cotton Rat	Sigmodon arizonae
Mammalia	m125	White-throated Woodrat	Neotoma albigula

Class	Species ID	Common name	Scientific name
Mammalia	m126	Desert Woodrat	Neotoma lepida
Mammalia	m127	Dusky-footed Woodrat	Neotoma fuscipes
Mammalia	m128	Bushy-tailed Woodrat	Neotoma cinerea
Mammalia	m129	California Red-backed Vole	Myodes californicus
Mammalia	m130	Heather Vole	Phenacomys intermedius
Mammalia	m131	White-footed Vole	Arborimus albipes
Mammalia	m132	Sonoma Tree Vole	Arborimus pomo
Mammalia	m133	Montane Vole	Microtus montanus
Mammalia	m134	California Vole	Microtus californicus
Mammalia	m135	Townsend's Vole	Microtus townsendii
Mammalia	m136	Long-tailed Vole	Microtus longicaudus
Mammalia	m137	Creeping Vole	Microtus oregoni
Mammalia	m138	Sagebrush Vole	Lemmiscus curtatus
Mammalia	m139	Common Muskrat	Ondatra zibethicus
Mammalia	m140	Black Rat	Rattus rattus
Mammalia	m141	Norway Rat	Rattus norvegicus
Mammalia	m142	House Mouse	Mus musculus
Mammalia	m143	Western Jumping Mouse	Zapus princeps
Mammalia	m144	Pacific Jumping Mouse	Zapus trinotatus
Mammalia	m145	Common Porcupine	Erethizon dorsatum
Mammalia	m146	Coyote	Canis latrans
Mammalia	m147	Red Fox	Vulpes vulpes
Mammalia	m148	Kit Fox	Vulpes macrotis
Mammalia	m149	Gray Fox	Urocyon cinereoargenteus
Mammalia	m150	Island Gray Fox	Urocyon littoralis
Mammalia	m151	Black Bear	Ursus americanus
Mammalia	m152	Ringtail	Bassariscus astutus
Mammalia	m153	Raccoon	Procyon lotor
Mammalia	m154	Marten	Martes caurina
Mammalia	m155	Fisher	Pekania pennanti
Mammalia	m156	Ermine	Mustela erminea
Mammalia	m157	Long-tailed Weasel	Mustela frenata
Mammalia	m158	American Mink	Mustela vison
Mammalia	m159	Wolverine	Gulo gulo
Mammalia	m160	American Badger	Taxidea taxus

Class	Species ID	Common name	Scientific name
Mammalia	m161	Western Spotted Skunk	Spilogale gracilis
Mammalia	m162	Striped Skunk	Mephitis mephitis
Mammalia	m163	Northern River Otter	Lontra canadensis
Mammalia	m164	Sea Otter	Enhydra lutris
Mammalia	m165	Mountain Lion	Puma concolor
Mammalia	m166	Bobcat	Lynx rufus
Mammalia	m167	Northern Fur-Seal	Callorhinus ursinus
Mammalia	m168	Guadalupe Fur-Seal	Arctocephalus townsendi
Mammalia	m169	Northern (Steller) Sea-Lion	Eumetopias jubatus
Mammalia	m170	California Sea-Lion	Zalophus californianus
Mammalia	m171	Harbor Seal	Phoca vitulina
Mammalia	m173	Northern Elephant Seal	Mirounga angustirostris
Mammalia	m174	Feral Horse	Equus caballus
Mammalia	m175	Feral Ass	Equus asinus
Mammalia	m176	Wild Pig	Sus scrofa
Mammalia	m177	Elk	Cervus elaphus
Mammalia	m178	Fallow Deer	Dama dama
Mammalia	m179	Sambar Deer	Cervus unicolor
Mammalia	m180	Axis Deer	Axis axis
Mammalia	m181	Mule Deer	Odocoileus hemionus
Mammalia	m182	Pronghorn	Antilocapra americana
Mammalia	m183	Bighorn Sheep	Ovis canadensis
Mammalia	m184	Barbary Sheep	Ammotragus lervia
Mammalia	m185	Himalayan Tahr	Hemitragus jemlahicus
Mammalia	m186	Feral Goat	Capra hircus
Mammalia	m233	Big-eared Woodrat	Neotoma macrotis
Mammalia	m234	Baja Mouse	Peromyscus fraterculus
Reptilia	r002	Sonoran Mud Turtle	Kinosternon sonoriense
Reptilia	r003	Pond Slider	Trachemys scripta
Reptilia	r004	Western Pond Turtle	Actinemys marmorata
Reptilia	r005	Desert Tortoise	Gopherus agassizii
Reptilia	r006	Spiny Softshell	Apalone spinifera
Reptilia	r007	Switak's Banded Gecko	Coleonyx switaki
Reptilia	r008	Western Banded Gecko	Coleonyx variegatus
Reptilia	r009	Peninsular Leaf-toed Gecko	Phyllodactylus nocticolus

Class	Species ID	Common name	Scientific name
Reptilia	r010	Desert Iguana	Dipsosaurus dorsalis
Reptilia	r011	Common Chuckwalla	Sauromalus ater
Reptilia	r012	Zebra-tailed Lizard	Callisaurus draconoides
Reptilia	r013	Colorado Desert Fringe-toed Lizard	Uma notata
Reptilia	r014	Coachella Fringe-toed Lizard	Uma inornata
Reptilia	r015	Mojave Fringe-toed Lizard	Uma scoparia
Reptilia	r017	Great Basin Collared Lizard	Crotaphytus bicinctores
Reptilia	r018	Long-nosed Leopard Lizard	Gambelia wislizenii
Reptilia	r019	Blunt-nosed Leopard Lizard	Gambelia sila
Reptilia	r020	Desert Spiny Lizard	Sceloporus magister
Reptilia	r021	Granite Spiny Lizard	Sceloporus orcutti
Reptilia	r022	Western Fence Lizard	Sceloporus occidentalis
Reptilia	r023	Common Sagebrush Lizard	Sceloporus graciosus
Reptilia	r024	Common Side-blotched Lizard	Uta stansburiana
Reptilia	r025	Long-tailed Brush Lizard	Urosaurus graciosus
Reptilia	r026	Ornate Tree Lizard	Urosaurus ornatus
Reptilia	r027	Baja California Brush Lizard	Urosaurus nigricaudus
Reptilia	r028	Mearns' Rock Lizard	Petrosaurus mearnsi
Reptilia	r029	Blainville's Horned Lizard	Phrynosoma blainvillii
Reptilia	r030	Desert Horned Lizard	Phrynosoma platyrhinos
Reptilia	r031	Pygmy Short-horned Lizard	Phrynosoma douglassii
Reptilia	r032	Flat-tailed Horned Lizard	Phrynosoma mcallii
Reptilia	r033	Henshaw's Night Lizard	Xantusia henshawi
Reptilia	r034	Desert Night Lizard	Xantusia vigilis
Reptilia	r035	Island Night Lizard	Xantusia riversiana
Reptilia	r036	Western Skink	Plestiodon skiltonianus
Reptilia	r037	Gilbert's Skink	Plestiodon gilberti
Reptilia	r038	Orange-throated Whiptail	Aspidoscelis hyperythra
Reptilia	r039	Tiger Whiptail	Aspidoscelis tigris
Reptilia	r040	Southern Alligator Lizard	Elgaria multicarinata
Reptilia	r041	Panamint Alligator Lizard	Elgaria panamintina
Reptilia	r042	Northern Alligator Lizard	Elgaria coerulea
Reptilia	r043	California Legless Lizard	Anniella pulchra
Reptilia	r044	Gila Monster	Heloderma suspectum
Reptilia	r045	Western Threadsnake	Rena humilis

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Reptilia	r046	Northern Rubber Boa	Charina bottae
Reptilia	r047	Rosy Boa	Lithanura trivirgata
Reptilia	r048	Ring-necked Snake	Diadophis punctatus
Reptilia	r049	Common Sharp-tailed Snake	Contia tenuis
Reptilia	r050	Spotted Leaf-nosed Snake	Phyllorhynchus decurtatus
Reptilia	r051	North American Racer	Coluber constrictor
Reptilia	r052	Coachwhip	Coluber flagellum
Reptilia	r053	Striped Racer	Coluber lateralis
Reptilia	r054	Striped Whipsnake	Coluber taeniatus
Reptilia	r055	Western Patch-nosed Snake	Salvadora hexalepis
Reptilia	r056	Glossy Snake	Arizona elegans
Reptilia	r057	Gophersnake	Pituophis catenifer
Reptilia	r058	Eastern Kingsnake	Lampropeltis getula
Reptilia	r059	California Mountain Kingsnake	Lampropeltis zonata
Reptilia	r060	Long-Nosed Snake	Rhinocheilus lecontei
Reptilia	r061	Common Gartersnake	Thamnophis sirtalis
Reptilia	r062	Terrestrial Gartersnake	Thamnophis elegans
Reptilia	r063	Western Aquatic Garter Snake	Thamnophis couchii
Reptilia	r064	Northwestern Gartersnake	Thamnophis ordinoides
Reptilia	r065	Checkered Gartersnake	Thamnophis marcianus
Reptilia	r066	Western Groundsnake	Sonora semiannulata
Reptilia	r067	Western Shovel-nosed Snake	Chionactis occipitalis
Reptilia	r068	Western Black-headed Snake	Tantilla planiceps
Reptilia	r069	Smith's Black-headed Snake	Tantilla hobartsmithi
Reptilia	r070	Sonoran Lyresnake	Trimorphodon lambda
Reptilia	r071	Desert Nightsnake	Hypsiglena chlorophaea
Reptilia	r072	Western Diamond-backed Rattlesnake	Crotalus atrox
Reptilia	r073	Red Diamond Rattlesnake	Crotalus ruber
Reptilia	r074	Speckled Rattlesnake	Crotalus mitchellii
Reptilia	r075	Sidewinder	Crotalus cerastes
Reptilia	r076	Western Rattlesnake	Crotalus oreganus
Reptilia	r077	Mojave Rattlesnake	Crotalus scutulatus
Reptilia	r078	Aquatic Gartersnake	Thamnophis atratus
Reptilia	r079	Giant Gartersnake	Thamnophis gigas
Reptilia	r080	Two-striped Gartersnake	Thamnophis hammondii

Table 12 (continued).

Class	Species ID	Common name	Scientific name
Reptilia	r093	Baja Black-collared Lizard	Crotaphytus vestigium
Reptilia	r094	Sandstone Night Lizard	Xantusia gracilis
Reptilia	r095	Southern Rubber Boa	Charina umbratica
Reptilia	r096	Cope's Leopard Lizard	Gambelia copeii
Reptilia	r098	Baja California Coachwhip	Coluber fuliginosus
Reptilia	r099	Sierra Night Lizard	Xantusia sierrae
Reptilia	r100	Panamint Rattlesnake	Crotalus stephensi
Reptilia	r101	Forest Sharp-tailed Snake	Contia longicauda
Reptilia	r102	California Lyresnake	Trimorphodon lyrophanes
Reptilia	r105	Northern Three-lined Boa	Lichanura orcutti
Reptilia	r106	Coast Nightsnake	Hypsiglena ochrorhyncha
Reptilia	r107	Yellow-backed Spiny Lizard	Sceloporus uniformis
Reptilia	r108	Wiggins' Night Lizard	Xantusia wigginsi

Habitat code	Habitat category	СА	Ballot	CDFW	TNC
0	Tree Dominated	12.55	0.00	8.91	1.70
1	Tree Dominated	12.39	0.00	3.81	1.68
2	Tree Dominated	12.00	0.00	3.67	1.45
3	Tree Dominated	21.48	1.48	11.25	17.63
4	Tree Dominated	21.42	0.00	5.32	5.11
5	Tree Dominated	5.60	0.00	0.09	0.43
6	Tree Dominated	17.62	45.94	5.10	10.47
7	Tree Dominated	18.37	0.00	8.33	5.35
8	Tree Dominated	16.08	30.63	2.79	8.93
9	Tree Dominated	7.54	0.00	4.14	3.10
10	Tree Dominated	4.90	68.95	3.90	10.06
11	Tree Dominated	11.14	0.00	19.29	3.65
12	Tree Dominated	48.70	1.06	61.78	43.25
13	Tree Dominated	18.87	0.00	8.02	1.71
14	Tree Dominated	12.03	39.57	5.33	13.57
15	Tree Dominated	30.55	69.41	20.06	38.45
16	Tree Dominated	30.26	78.99	19.49	52.92
17	Tree Dominated	14.86	14.83	18.45	51.64
18	Tree Dominated	20.52	42.98	23.12	50.21
19	Tree Dominated	16.76	87.00	17.00	32.97
20	Tree Dominated	16.00	13.20	14.85	47.33
21	Tree Dominated	22.44	55.14	26.97	35.85
22	Tree Dominated	44.92	92.00	41.35	20.77
23	Tree Dominated	43.87	99.85	68.28	81.77
24	Tree Dominated	26.70	0.00	14.99	0.56
25	Tree Dominated	3.35	0.00	2.40	0.36
26	Tree Dominated	15.01	0.00	9.78	0.21
27	Shrub Dominated	7.31	0.00	3.11	0.69
28	Shrub Dominated	14.93	0.00	15.92	3.37
29	Shrub Dominated	12.00	0.00	13.28	3.37
30	Shrub Dominated	14.93	0.00	15.92	3.37
31	Shrub Dominated	29.10	36.29	17.82	28.85
32	Shrub Dominated	35.80	64.91	43.21	58.38
33	Shrub Dominated	27.84	58.66	33.84	34.98

Table 13. Percentage coverage by protected area type for habitat types.

Habitat code	Habitat category	СА	Ballot	CDFW	TNC
34	Shrub Dominated	15.90	43.90	15.72	28.89
35	Shrub Dominated	11.23	0.00	17.60	0.21
36	Shrub Dominated	25.15	0.00	24.38	0.61
37	Shrub Dominated	25.82	0.55	29.33	8.79
38	Shrub Dominated	26.18	0.00	22.87	0.73
39	Herbaceous Dominated	99.69	99.85	98.30	99.96
40	Herbaceous Dominated	99.69	99.85	98.30	99.96
41	Herbaceous Dominated	40.55	57.68	25.63	20.98
42	Herbaceous Dominated	99.69	99.85	98.30	99.96
43	Herbaceous Dominated	0.95	1.43	8.26	1.98
44	Herbaceous Dominated	27.13	16.51	40.51	32.03
45	Aquatic	99.69	99.85	98.30	99.96
46	Aquatic	99.69	99.85	98.30	99.96
47	Aquatic	1.08	1.43	8.26	7.07
50	Developed	17.60	2.77	24.54	32.22
51	Developed	13.06	0.09	18.95	25.98
52	Developed	15.63	0.09	27.19	20.71
53	Developed	23.37	10.60	28.88	26.70
54	Developed	5.24	0.04	12.03	9.28
56	Developed	12.32	6.92	15.63	25.39
57	Developed	9.67	2.70	16.51	11.85
58	Developed	15.46	32.13	22.90	26.79
59	Developed	99.69	99.85	98.30	99.96
60	Non-vegetated	99.69	99.85	98.30	99.96

Species ID	СА	Ballot	CDFW	TNC
a001	15.05	27.32	14.02	39.14
a002	3.96	0.13	2.99	1.13
a003	5.41	0.00	1.17	1.49
a004	2.56	71.50	4.87	3.62
a005	3.84	0.00	2.47	0.93
a006	16.20	93.53	13.07	28.71
a007	14.27	46.83	14.15	32.05
a008	1.93	25.98	1.12	8.89
a009	0.10	0.00	0.00	0.00
a010	2.11	0.00	0.97	0.00
a011	0.24	0.00	0.02	0.00
a012	40.52	97.31	29.28	57.82
a013	3.99	2.70	7.01	3.46
a014	15.71	96.34	16.10	37.29
a015	8.37	0.81	8.08	15.03
a016	0.12	0.00	0.00	10.72
a017	0.19	0.00	0.00	0.00
a018	0.32	0.00	0.00	1.22
a019	0.23	0.00	0.00	0.00
a020	12.00	37.70	7.14	10.13
a021	1.07	0.00	0.74	0.00
a022	21.46	99.76	18.51	40.11
a023	4.37	0.00	0.18	0.00
a024	0.78	0.00	0.00	0.43
a025	0.13	0.00	0.01	0.00
a026	8.65	0.00	2.32	1.55
a027	2.04	0.00	0.50	0.00
a028	24.02	4.12	34.49	37.20
a029	7.59	0.00	8.48	0.00
a030	0.95	0.00	1.09	0.00
a031	0.07	0.00	0.08	0.00
a032	77.52	99.85	78.37	88.70
a033	2.26	0.00	0.21	0.00

Table 14. Percentage coverage by protected area type for species.

Species ID	СА	Ballot	CDFW	TNC
a034	1.25	0	2.15	0.44
a035	5.48	1.72	6.51	1.04
a036	23.56	0	25.13	0.77
a037	1.84	0	2.4	0.36
a038	8.63	2.22	21.14	3.81
a039	1.13	0	0.74	0
a040	2.08	0	2.9	1.11
a041	0.61	0	0.54	0
a042	1.94	0	0.21	0.53
a043	29.7	79.51	19.63	60.43
a044	2.71	0	0.23	0.03
a045	1.63	0	2.84	0.08
a046	57.02	99.85	73.56	80.37
a047	1.38	0	1.99	7.02
a048	11.38	18.76	3.96	10.1
a049	0.38	0	0	0
a050	1.54	0	0.95	0.16
a053	0.37	0	0.01	0
a054	0.01	0	0	0
a056	2.53	0	0.48	4.23
a057	1.25	0.48	0.77	1.33
a058	0.06	0	0	0
a059	0.18	0	0	0.27
a060	1.54	0	0.18	0
a061	0.18	0	0.02	0
a062	1.35	0	0.1	0
a063	0.72	0	0.03	0
a066	2.04	0.51	2.65	0.77
a067	0.11	0	0	0
a068	4.12	18.96	3.02	9.65
a070	6.9	0	0.66	0.76
a071	22.89	82.35	26.44	70.61
a073	0.11	0	0	0

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
a074	0.34	0	0	0
a075	8.31	0	6.21	18.7
a076	15.83	2.7	24.7	22.82
a077	60.35	97.15	60.91	76.8
a078	0.22	0	0.05	0
b001	0.24	0	0.22	10.72
b002	0.24	0	0.22	10.72
b003	4.34	0.22	5.46	14.13
b006	81.08	74.13	95.23	89.44
b007	1.84	0.09	4.19	10.73
b008	0.31	0.09	1.49	0.02
b009	78.03	99.85	81.32	84.68
b010	51.69	97.32	58.12	73.6
b042	45.57	61.06	64.71	42.79
b043	1.38	0	2.32	11.08
b044	33.54	84.97	43.8	67.77
b046	0.24	0	0.22	10.72
b047	0.24	0	0.22	10.72
b049	59.7	75.72	66.87	59.19
b050	8.56	2.47	16.59	5.31
b051	95.47	99.95	96.45	99.97
b052	34.82	58.65	43.78	45.92
b053	36.88	50.04	47.05	66.65
b057	29.09	50.5	39.83	58.17
b058	70.84	99.85	71.53	84.14
b059	66.26	99.85	79.5	74.77
b062	2.56	0	6.17	7.42
b065	1.02	0	0.85	0
b067	25.71	14.83	40.68	39.51
b070	21.02	0.09	28.98	20.37
b071	18.69	46.63	29.38	17.04
b072	14.31	29.23	26.58	22.38
b074	0	0	0.2	0

Species ID	СА	Ballot	CDFW	TNC
b075	49.45	86.46	74.89	71.85
b076	61.14	99.34	60.84	97.92
b077	83.4	99.85	95.88	87.34
b079	98.53	99.85	98.3	99.98
b080	85.05	99.85	93.14	98
b082	32.86	40.11	37.16	21.86
b083	63.53	85.97	71.88	59.23
b084	74.56	62.27	84.82	74.14
b085	75.39	54.04	87.27	74.19
b086	19.48	59.66	32.41	35.63
b087	50.42	85.97	64.77	60.86
b089	46.05	62.27	62.73	85.52
b090	22.78	13.46	39.93	12.94
b091	98.27	99.85	98.3	89.26
b093	4.6	0.09	7.37	2.11
b094	88.31	99.85	93.73	94.9
b096	2.61	0	0.69	0
b097	2.55	9.08	6.21	1.22
b098	0.26	0.09	1.51	0.02
b099	0.26	0.09	1.51	0.02
b100	0.48	0.09	1.51	0.02
b101	40.14	57.99	44.32	49.57
b102	4.54	56.66	7.41	1.9
b103	75.78	99.85	87.08	99.78
b104	54.08	98.75	48.3	77.23
b105	64.31	99.3	69.97	76.18
b106	7.45	0.04	10.35	16.3
b107	69.55	99.85	82.94	94.66
b108	90.28	99.85	94.03	84.71
b109	5.34	0	6.27	7.71
b110	60.69	97.74	57.06	68.61
b111	46.94	99.85	60.43	81.88
b113	74.13	99.85	74.2	99.37

Table 14 (continued).
Species ID	СА	Ballot	CDFW	TNC
b114	77.84	95.87	95.1	87.16
b115	94.1	99.85	96.76	85.82
b116	97.73	99.85	98.04	99.95
b117	33.94	3.97	22.36	4.89
b119	60.69	98.32	74.8	64.41
b121	21.45	0.09	27.35	32.27
b123	99.73	99.85	98.5	99.98
b124	74.17	61.06	80.45	66.16
b125	64.76	87.99	83.54	94.68
b126	98.07	99.85	96.67	89.23
b127	98.49	99.85	98.3	99.98
b128	91.12	99.85	96.62	99.44
b129	74.76	99.85	74.94	99.54
b131	81.02	74.67	90.1	74.53
b132	26.84	0	23.75	7.95
b133	20.48	13.6	32.08	49.7
b134	24.94	22.24	7.23	11.71
b135	0.47	0	0.05	0
b136	6.6	0	2.91	0
b137	3.37	0	6.35	0
b138	23.35	79.96	25.01	52.12
b139	18.45	0	15.23	0.5
b140	72.42	99.85	85.04	97.71
b141	43.25	53.25	34.09	36.24
b143	1.93	3.44	5.81	2.99
b144	2.3	2.74	5.7	0.42
b145	45.22	69.27	57.19	60.96
b146	42.61	64.26	70.55	78.3
b148	42.93	68.94	58.13	75.04
b149	99.98	99.95	99.78	100
b150	22.07	0.04	29.05	20.3
b151	11.06	1.94	17.85	29.91
b154	10.36	44.44	16.23	23.52

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
b156	3.5	17.77	4.94	1.63
b158	97.34	99.95	99.23	99.85
b159	7.61	0.26	13.7	3.61
b162	0.01	0	0.2	0
b163	23.03	18.02	36.22	22.12
b164	27.11	36.99	39.38	28.77
b165	21.96	35.6	38.61	57.54
b166	2.08	0.76	6.69	0.12
b168	13.5	22.77	24.11	16.21
b169	3.93	19.9	3.98	18.08
b170	63.95	96.57	63.91	66.11
b172	0.68	0.3	1.67	10.83
b173	24.47	58	35.36	28.51
b176	3.79	17.16	8.39	1.28
b177	0.58	0.55	2.09	10.82
b178	0.48	0.09	1.49	10.73
b179	0.25	0	0.27	10.72
b180	0.81	0.41	2.22	0.78
b181	1.23	0.51	3.13	11.05
b183	9.1	15.02	17.69	19.67
b185	62.41	99.95	80.68	95.24
b190	0	0	0.06	0
b191	16.77	19.06	27.78	45.77
b193	0.17	0	0.67	0
b196	1.21	0.86	3.89	0.17
b197	23.81	31.76	38.03	45.15
b199	71.01	99.95	77.21	88.63
b200	9.23	0.04	10.25	1.91
b211	3.6	38.6	10	4.73
b212	2.95	8.74	2.41	12.12
b213	8.36	62.36	17.71	27.63
b214	46.89	99.88	59.66	62.7
b215	40.47	77.04	54.16	75.29

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
b216	18.81	29.43	28.26	41.28
b217	7.24	14.8	16.49	24.33
b219	0.48	0	0.88	0.15
b220	5.14	26.87	8.66	18.01
b221	12.29	60.39	25.24	59.11
b226	0.06	0	0	0
b227	9.44	2.22	10.51	8.07
b228	0.23	0	0.3	10.72
b229	0.01	0	0.19	0
b231	2.48	0.84	4.57	0.28
b233	21.52	29.34	38.33	11.27
b234	0.92	0.53	1.52	0.22
b235	10.57	0	20.81	1.46
b236	0.07	0	0.36	0
b237	1.06	0.8	3.8	10.86
b239	0.13	0	0.2	10.72
b240	0.01	0	0.2	0
b241	0.22	0	0	10.72
b243	0.01	0	0.2	0
b244	0.24	0	0.22	10.72
b247	0.24	0	0.22	10.72
b248	0.12	0	0.2	10.72
b250	73.77	99.85	88.5	88.55
b251	52.77	98.27	53.26	64.92
b252	0.59	1.06	2.12	0.14
b253	7.27	2.69	7.28	5.04
b254	6.59	0	15.26	0.38
b255	91.43	99.85	98.37	88.3
b256	0.38	0	0.2	0
b257	3.19	0.98	3.63	2.79
b259	1.83	0.49	3.89	2.9
b260	62.16	33.81	73.05	71.06
b262	81.01	99.85	86.59	88.19

Species ID	СА	Ballot	CDFW	TNC
b263	28.43	0	11.09	2.34
b264	66.42	99.85	76.81	87.9
b265	97.5	99.85	98.3	89.26
b267	50.84	95.7	33.63	56.42
b268	0.03	0	0	0
b269	68.34	53.58	80.33	73.87
b270	27.2	38.14	6.42	12.48
b271	10.28	0	2.17	1.68
b272	85.21	99.76	81.94	81.77
b273	31.86	40.44	45.61	48.4
b274	67.73	99.21	40.06	49.46
b275	43.17	1.58	53.85	47.37
b276	31.27	27.31	20.32	14.17
b277	90.79	73.53	93.96	79.6
b278	0.37	0	0.12	0.01
b279	4.21	0.86	1.4	0.02
b281	26.35	59.75	10.82	12.33
b282	61.45	78.49	61.03	47
b286	35.04	8.88	41.76	69.36
b287	67.9	99.85	76.11	98.63
b288	32.88	21.42	31.38	17.1
b289	22.73	0	19.5	3.15
b290	2.97	0	0.23	0
b291	13.1	23.43	3.83	9.92
b292	9.73	84.71	9.55	23.27
b293	64.35	99.85	62.36	82.39
b294	56.19	57.79	69	65.08
b296	47.64	97.35	57.9	92.67
b297	2.14	0	0.72	0
b298	32.95	2.7	35.9	4.25
b299	72.26	99.85	82.69	88.7
b300	12.98	0	14.61	5.07
b301	23.37	0	28.14	0.91

Species ID	СА	Ballot	CDFW	TNC
b302	46.53	85.59	59.8	76.8
b303	60.86	98.17	63.48	78.98
b304	51.18	96.97	51.07	47.49
b305	25.01	0	17.28	3.48
b306	19.26	0	10.01	3.1
b307	98.6	99.85	98.5	99.98
b308	26.36	75.38	11.13	14.12
b309	39.7	84.24	17.98	33.76
b311	57.39	98.49	45.83	64.87
b315	6.46	0.23	3.61	2.4
b317	20.79	0	6.99	2.19
b318	27.29	0	16.89	5.15
b319	10.48	0	15.94	1.7
b320	35.07	99.49	32.36	51.61
b321	59.12	99.85	71.75	96.32
b323	72.8	93.08	84.07	95.9
b324	0.82	0.19	0.65	0.29
b326	75.56	68.3	82.61	81.39
b328	0.47	0	1.03	0.36
b331	13.78	2.7	18.93	22.84
b333	72.16	63.78	83.22	76.93
b334	0.59	0	1.9	1.42
b337	73.98	87.99	84.2	98.97
b338	29.08	77.62	11.86	19.68
b339	52.9	94.71	48.84	60.84
b340	67.59	97.84	68.29	74.33
b341	63.67	99.85	70.87	87.54
b342	1.81	0	3.98	2.1
b343	71.76	99.85	86.38	88.52
b344	56	97.28	59.75	93.3
b345	6.06	0	3.39	0.73
b346	40.64	84.53	29.21	48.57
b348	59.69	99.85	74.55	87.5

Species ID	СА	Ballot	CDFW	TNC
b349	14	0	22.79	1.87
b350	15.52	0	7.62	0.82
b351	10.37	0	13.74	2.37
b352	16.35	21.05	29.43	57.67
b353	50.81	98.32	54	78.19
b354	81.47	98.59	78.12	75.79
b355	3.07	0	1.87	1.42
b356	40.88	1.3	30.39	17.16
b357	19.44	81.65	7.47	18.47
b358	45.41	66.57	53.61	70.81
b359	18.19	0	16.63	0.56
b360	66.27	99.85	72.01	97.95
b361	54.61	96.85	45.21	63.75
b362	52.28	76.47	50.26	67
b363	22.48	62.62	17.8	11.76
b364	57.43	83.65	59.41	74.13
b365	27.95	2.7	23.36	5.05
b366	67.24	77.39	65.67	59.25
b367	41.92	50.93	41.64	56.32
b368	76.47	99.85	79.78	98.19
b369	67.25	99.85	69.03	98.15
b370	44.31	95.12	40.73	42.58
b372	48.43	99.85	61.12	85.45
b373	39.17	57.07	34.33	40.52
b375	63.6	99.53	61.85	85.92
b376	98.71	99.85	98.26	99.98
b377	54.88	47.74	60.13	53.59
b378	12.53	0	14.36	0.43
b380	64.18	99.85	68.97	87.57
b381	49.81	2.62	56.71	71.71
b382	40.36	7.39	37.02	19.11
b385	37.67	96.42	23.54	20.16
b386	65.91	99.85	59.49	98.89

Species ID	СА	Ballot	CDFW	TNC
b389	99.73	99.85	98.5	99.98
b390	52.28	99.85	59.01	90.05
b391	54.17	99.81	59.01	77.34
b393	45.16	78.32	55.06	54.8
b394	12.71	0	14.95	0.36
b396	3.76	0	4.92	0.23
b398	36.57	99.16	43.99	68.29
b399	7.92	0	3.05	0.5
b400	24.52	0	25.63	0.89
b404	93.87	99.85	97.98	88.73
b407	66.94	99.85	78.02	98.66
b408	46.29	15.31	53.04	44.8
b409	11.83	0	18.38	14.64
b410	78.82	76.19	90.98	88.66
b411	93.69	99.85	98.06	99.45
b413	2.27	1.6	3.26	0.35
b414	1.48	0	1.93	0.08
b415	34.59	68.87	21.92	25.18
b417	39.3	97.83	43.53	70.9
b418	47.53	96.02	35.15	63.59
b425	65.41	99.85	67.02	98.24
b426	26.57	0.04	12.48	6.97
b427	2.48	0	0.45	0
b428	0.15	0	0.1	0.17
b430	57.68	98.36	57.71	73.69
b435	96.39	99.85	96.28	99.98
b436	40.37	78.9	24.17	28.29
b437	23.73	98.16	21.28	37.36
b438	33.01	75.68	19.29	17.73
b460	30.41	65.9	15.34	16.59
b461	58.92	99.85	74.14	97
b463	35.42	97.49	18.48	25.32
b467	33.25	60.92	40.21	63.67

Species ID	СА	Ballot	CDFW	TNC
b469	0.67	0	1.2	0.28
b471	40.29	51.15	33.08	17.4
b475	67.57	99.85	69.85	98.38
b476	23.38	3.25	33.14	38.36
b477	69.53	99.85	70.78	88.14
b482	33.74	0.29	20.87	2.9
b483	73.18	99.85	77.2	99.58
b484	42.68	99.81	51.76	74.55
b485	1.87	0	1.02	0
b487	22.7	71.59	23.76	57.12
b489	83.93	99.14	92.5	98.69
b491	28.21	0	36.38	1.79
b493	18.57	9.04	15.45	23.39
b494	20.65	2.7	32.46	10.65
b495	51.75	75.18	69.72	97.72
b496	31.56	0	30.44	0.94
b497	55.9	47.01	63.36	22.94
b499	81.79	99.85	97.39	99.53
b501	31.26	88.38	43.64	81.67
b504	70.93	99.85	74.81	99.21
b505	79.02	99.85	88.05	99.75
b506	66.43	99.85	77.61	99.19
b509	63.22	99.85	73.54	98.37
b510	91.33	99.85	98.09	99.9
b512	99.27	99.85	98.5	99.98
b514	7.56	0	15.46	2.59
b519	94.38	99.85	98.37	89.26
b520	37.61	62.14	57.63	72.62
b521	89.2	99.85	97.77	88.46
b522	31.46	1.1	39.56	22.15
b524	98.44	99.85	98.5	99.98
b525	2.16	0	1.35	0.15
b527	0.12	0	0.04	0

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
b528	78.03	99.85	75.91	86.77
b530	40.17	15.1	52.3	30.81
b532	85.41	91.65	96.45	85.47
b533	5.11	0	2.2	0.28
b534	4.34	0	0.8	0
b535	6.58	0	1.25	0.77
b536	50.6	98.59	41.37	56.91
b537	23.56	0	12.49	2.31
b538	85.53	99.85	95.81	98.26
b539	27.33	47.76	10.04	11.98
b542	65.27	97.15	59.36	87.21
b543	75.02	99.85	85.15	99.23
b544	21.99	5.3	30.53	45.91
b545	78.82	99.85	86.62	86.15
b546	37.16	58.97	31.65	36.21
b547	87.02	99.85	96.5	88.44
b548	72.05	99.85	84	88.11
b549	1.92	0	0.48	0
b550	2.09	0	2.39	0
b551	0.06	0	0	10.72
b552	8.87	0	7.17	0
b553	2.35	2.7	6.16	0.78
b554	2.53	0	2.27	0
b579	0.24	0	0.22	10.72
b580	0.12	0	0.22	0.04
b581	0.24	0	0.19	10.72
b584	0.24	0	0.19	10.72
b603	0.04	0	0	0
b620	2.23	0	2.42	0.36
b629	2.96	2.55	7.85	11.27
b634	0.74	0.03	0.45	10.82
b648	32.14	0.18	30.6	19.94
b649	19.16	0.18	24.21	29.7

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
b655	1.23	0.1	1.75	0.06
b656	4.76	0.1	3.65	0.06
b699	10.17	16.35	3.51	9.77
b702	8.51	57.1	6.65	15.04
b773	36.98	85.53	35.67	45.13
b798	64.58	99.85	77.17	86.98
b799	80.92	97.99	89.45	83.12
b806	0.03	0	0	0
b809	69.03	97.94	69.28	69.44
b864	0.76	1.49	4.82	0.04
m001	46.69	99.85	52.31	92.24
m002	1.1	0	0.54	0
m003	18.82	38.9	17.11	11.35
m004	4.35	0	0.19	0.03
m005	4.98	25.92	3.14	9.81
m006	35.52	97.8	46.7	48.82
m008	3.33	0	0.81	0
m010	21.32	0	5.06	2.11
m011	3.19	25.84	3.04	9.65
m012	25.32	49.41	10.72	12.96
m013	5.97	0	6.81	0
m014	32.5	2.7	34.87	4.99
m015	17.41	80.43	9.23	12.5
m016	1.03	0	2.71	0
m017	2.89	0	2.95	1.12
m018	60.22	98.67	62.55	73.16
m019	13.57	0	12.94	0.44
m020	0.48	1.7	1.32	0.03
m021	33.59	53.8	20.94	13.49
m022	2.3	0	0.51	0
m023	75.9	99.85	78.5	88.7
m024	1.57	0	0.33	0
m025	56.05	98.27	57.68	58.21

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
m026	64.72	99.76	54.23	59.86
m027	69.39	94.18	69.16	50.67
m028	99.68	99.85	98.3	99.98
m029	40.11	3.76	43.58	24.75
m030	42.78	32.35	41.98	28.13
m031	69.96	28.06	77.65	74.96
m032	99.53	99.85	98.3	99.98
m033	43.85	99.85	53.23	94.77
m034	75.14	99.85	82.18	99.4
m035	12	2.7	24.26	4.03
m036	60.55	2.7	57.52	27.94
m037	96.67	99.85	97.68	99.98
m038	99.23	99.85	98.3	99.98
m039	98.62	99.85	98.27	99.98
m040	9.24	2.7	21.48	3.97
m041	0.24	1.19	0.09	0
m042	59.86	39.98	60.71	72.85
m043	15.23	0	9.54	1.68
m044	4.38	0	5.17	0
m045	42.96	99.76	52.5	68.22
m046	13.04	0	13.47	2.56
m047	63.31	40.88	75.64	75.7
m049	13.83	0	3.45	3.6
m050	11.89	0	11.89	1.15
m051	92.64	99.85	96.2	88.21
m052	15.73	0	7.98	1.3
m053	1.53	0	0	0
m054	7.58	0	8.56	0
m055	18.81	0	10.45	3.53
m056	2.01	28.8	0.35	9.65
m057	20.91	0	9.05	3.53
m058	1.36	0	1.3	0
m059	9.42	11.94	4.85	0.64

Species ID	СА	Ballot	CDFW	TNC
m060	15.49	22.27	10.36	18.47
m061	2.11	0	10.99	0.24
m062	7.98	0	3.6	1.15
m063	8.21	0	3.58	1.59
m064	4.42	0	0.35	0
m065	4.24	0	0.76	0
m066	18.86	0	13.23	1.68
m067	29.88	0	32.18	1.05
m068	4.04	0	9.11	0.01
m069	2.9	0	5.85	0
m070	19.39	0	9.87	1.68
m071	0.63	0	0	0
m072	69	99.85	82.16	88.7
m073	7.25	0	4.25	0.28
m074	16.09	0	12.61	0.65
m075	27.76	0	12.77	3.55
m076	1.15	21.89	1.72	0
m077	46.43	92.12	55.29	48.25
m078	7.68	56.03	8.8	7.36
m079	31.73	49.72	15.57	13.35
m080	24.46	0	10.74	3.24
m081	85.62	99.85	90.51	87.59
m082	0.7	0	2.97	0
m083	6.9	0	10.24	0
m084	6.49	0	2.75	1.82
m085	9.54	0	3.72	1.68
m086	30.25	1.7	32.62	3.46
m087	18.62	3.25	23.8	33.83
m088	12.32	0	12.38	1.78
m089	0.66	0	0.05	0.03
m091	26.01	0	28.1	0.56
m092	2.07	0	1.72	0
m093	8.65	0	14.16	0.36

Species ID	СА	Ballot	CDFW	TNC
m094	7.9	2.7	21.4	3.65
m095	24.29	34.94	33.92	38.23
m096	7.47	0	14.73	0.36
m097	1.73	0	4.4	0
m098	0.09	0	0.08	0
m099	2.26	0	4.06	0
m100	14.67	0	6.83	0.41
m102	3.36	29.62	1.98	20.2
m103	11.02	2.7	23.18	7.62
m104	19.12	15.79	18.04	37.62
m105	17.56	33.13	19.47	25.46
m106	4.16	0	8.06	0.01
m107	7.45	0	6.22	0.28
m108	2.85	1.16	5.75	3.17
m109	24.81	0	13.65	0.56
m110	28.24	0	22.94	1.21
m111	5.7	0	6.76	0.01
m112	26.59	0.03	36.39	35.01
m113	99.69	99.85	98.3	99.96
m114	0.62	1.4	5.02	0.14
m115	32.54	2.7	38.92	4.99
m116	15.99	38.77	12.96	24.57
m117	99.98	99.95	99.78	100
m118	32.99	0	40.6	1.06
m119	49.1	15.37	55.49	35.78
m120	58.27	97.57	64.68	66.62
m121	6.38	0	10.33	0
m122	42.83	2.7	46.94	12.55
m123	1.72	0	1.17	0.16
m124	0.83	0	0.26	0
m125	6.57	0	14.73	0.36
m126	45.49	5.53	48.6	38.11
m127	32.17	96.26	33.27	53.92

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
m128	22.71	0	13.74	3.1
m129	13.18	49.65	6.28	11.69
m130	4.37	0	2.16	0.73
m131	0.99	0	2.73	0
m132	6.26	40.65	4.25	9.67
m133	17.4	0	15.06	3.1
m134	51.19	99.85	67.49	85.67
m135	0.75	0	2.26	0
m136	30.58	0	16.59	8.08
m137	8.45	0	3.36	1.12
m138	5.52	0	6.19	0
m139	23.26	16.79	34.23	33.55
m140	23.72	11.54	39.38	52.89
m141	19.09	61.99	24.05	23.25
m142	99.46	99.85	98.3	89.26
m143	22.15	0	8.16	3.53
m144	3.18	15.01	3.17	9.7
m145	48.24	59.24	41.17	49.53
m146	99.46	99.85	98.3	89.26
m147	15.59	1.48	16.83	20.6
m148	34.36	2.51	27.4	15.27
m149	94.87	99.85	92.7	99.98
m150	0.22	0	0	10.69
m151	38.53	57.59	22.23	24.02
m152	85.34	99.85	82.66	86.31
m153	75.38	99.85	86.27	99.75
m154	20.52	0	6.96	2.64
m155	24.95	28.57	8.7	11.62
m156	25.62	37.7	8.35	11.82
m157	75.06	99.85	85.02	99.39
m158	41.4	59.01	42.85	49.33
m159	13.16	0	4.43	1.76
m160	99.22	99.85	97.43	99.98

Species ID	СА	Ballot	CDFW	TNC
m161	81.8	99.85	87.96	99.4
m162	74.95	99.85	86.19	99.58
m163	25.38	31.89	30.68	41.82
m164	0	0	0.14	0
m165	66.42	99.8	67.69	70.46
m166	99.46	99.85	98.3	89.26
m167	0.07	0	0.2	0
m168	0.23	0	0.19	10.72
m169	0.02	0	0.2	0
m170	0.53	0.1	1.7	10.73
m171	0.53	0.1	1.7	10.73
m173	0.24	0	0.22	10.72
m174	2.7	0	0.47	0
m175	5.56	0	1.01	0.21
m176	19.49	95.15	23.51	65.42
m177	13.8	1.64	13.98	15.21
m178	0.29	4.25	0.01	0.38
m179	0.12	0	0.01	0.33
m180	0.06	0	0	0.05
m181	68.93	99.8	74.52	79.3
m182	6.9	0	8.65	0
m183	33.32	0	34.82	2.6
m184	0.12	0	0.01	0.33
m185	0.12	0	0.01	0.33
m186	0.05	0	0	0
m233	18.28	3.51	25.38	14.34
m234	9.42	2.7	25.64	4.42
r002	0.05	0	0	0
r003	0.88	1.51	2.39	2.54
r004	52.98	99.85	62.39	86.1
r005	21.45	0	12.24	0.61
r006	0.74	0	0.45	0
r007	0.4	0	1.3	0

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
r008	28.19	1.58	23.77	3.31
r009	0.67	0	12.89	0
r010	24.18	0	25.21	0.77
r011	22.77	0	23.5	0.4
r012	25.79	0	26.24	1.05
r013	1.83	0	1.02	0
r014	0.4	0	1.85	0.2
r015	8.02	0	7.32	0
r017	24.31	0	15.11	0.61
r018	32.69	0	36.36	4.18
r019	4.8	0	10.4	0.49
r020	7.66	0	16.51	0.57
r021	3.4	0.51	19.24	1.79
r022	69.99	99.85	77.34	98.88
r023	41.42	48.14	25.63	16.92
r024	54.39	5.07	57.32	38.3
r025	16.14	0	22.98	0.45
r026	0.68	0	0.25	0
r027	0.72	0	2.13	0.08
r028	1.02	0	13.41	0
r029	23.35	33.82	34.96	38.41
r030	27.64	0	31.78	1.05
r031	2.83	0	2.72	1.42
r032	2.02	0	1.53	0.36
r033	2.78	1.57	18.3	0.8
r034	25.77	0	29.96	8.02
r035	0.05	0	0	0
r036	52.31	99.76	65.03	62.74
r037	26.49	3.47	21.84	41.93
r038	2.94	2.7	7.08	3.24
r039	62.36	17.82	69.62	56.82
r040	47.81	99.81	57.74	85.55
r041	1.37	0	0	0

Table 14 (continued).

Species ID	CA	Ballot	CDFW	TNC
r042	30.57	85.39	15.88	18.06
r043	19.62	5.55	19.53	37.75
r044	1.11	0	0.02	0
r045	33.65	2.7	34.93	4.99
r046	34.73	82.13	16.87	28.32
r047	0.18	0.36	1.45	0
r048	44.15	99.81	53.41	61.96
r049	28.63	95.57	23.07	61.29
r050	23.52	0	25.52	0.81
r051	56.87	99.85	62.54	95.31
r052	41.37	4.37	44.91	32.05
r053	34.23	60.69	33.57	56.92
r054	15.06	0	11.55	1.62
r055	35.68	2.19	43.08	6.56
r056	33.61	4.15	41.24	20.59
r057	96.07	99.85	97.25	99.98
r058	83.58	99.85	86.08	87.59
r059	27.47	34.6	11.8	14.21
r060	42.72	4.26	50.68	32.3
r061	65.54	98.5	64.42	87.57
r062	48.07	97.07	41.08	62.26
r063	17.71	0	14.06	32.46
r064	0.3	0	0.72	0
r065	0.5	0	0.25	0
r066	25.45	0	25.27	0.77
r067	24.94	0	25.21	0.77
r068	14.77	4.72	29.76	27.81
r069	5.64	0	0.4	7.41
r070	10.03	0	7.38	0.21
r071	27.1	0	16.48	3.97
r072	6.89	0	3.49	0.36
r073	4.02	2.7	19.59	3.48
r074	16.39	2.22	28.42	3.79

Table 14 (continued).

Species ID	СА	Ballot	CDFW	TNC
r075	23.97	0	25.19	0.77
r076	72.68	99.85	84.94	88.7
r077	12.82	0	10.27	0
r078	20.39	96.98	15.52	37.86
r079	6.95	0.09	12.42	13.11
r080	14.77	3.51	26.15	9.31
r093	2.84	0	16.24	0.41
r094	0.01	0	0	0
r095	0.41	0	0.07	0.03
r100	12.62	0	3.41	0.21
r101	5.03	47.79	3.26	9.65
r102	12.47	0.51	21.49	1.37
r105	25.94	2.34	31.57	4.12
r106	28.88	52.34	42.73	54.39
r107	22.53	0	11.96	0.69
r108	0.54	0	3.15	0

Table 14 (continued).

VITA

Chad M. Stachowiak was born in Baltimore, Maryland and grew up in Baltimore County, Maryland for most of his formative years. In 2005, he graduated from Amherst County High School in Virginia. He graduated *summa cum laude* with a Bachelors of Science degree in Wildlife Science from Virginia Polytechnic Institute and State University (Virginia Tech) in 2011. After graduation he worked on numerous research projects as a research technician that took him to numerous states like Texas, California, Wyoming, Alabama, New Hampshire, and even across the globe to Australia. In August 2015, he entered the Graduate School and the University of Tennessee, Knoxville and joined the Armsworth lab.