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Abstract 

Feedstock-based renewable fuels, and ecosystem restoration practices such as afforestation are 

long-term solutions to mitigating greenhouse gas (GHG) emissions. This dissertation aligns with 

assessing the effects of policy supports and voluntary incentive programs on renewable fuel 

production and forest-based carbon sequestration. 

Higher investment risks and novelty of the feedstock-based conversion technologies 

hinder large-scale deployment of renewable fuels at present. In the first essay, a two-stage 

stochastic model is employed to evaluate the impact of federal subsidies in designing a 

switchgrass-based bioethanol supply chain in west Tennessee wherein decisions driven by 

minimized expected and Conditional Value-at-Risk of system cost reflected the risk-neutral and 

risk-averse perspective of the biofuel sector, respectively. Major contribution of this study is the 

impact assessment of Biomass Crop Assistance Program (BCAP) on investment decisions 

(including land allocation) of a risk-sensitive biofuel industry under feedstock supply 

uncertainty.  

In the second essay, impacts of renewable jet fuel (RJF) production from switchgrass on 

farmland allocation, processing facility configuration, and GHG emissions are estimated in 

response to fulfilling the RJF demand at the Memphis International Airport in Tennessee. 

Importantly, a potential carbon market is used to explore the impact of hypothetical carbon 

credits on the GHG emissions reduction and net supply-chain welfare while addressing the 

economic motives of the supply-chain participants. Considering the attention paid by the Unites 

States aviation sector with respect to GHG emissions, this study highlights the importance of 

Renewable Identification Number (RIN) credits and tradable carbon credits in achieving the 
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desired economic viability and emission abatement goals through a Stackelberg interaction 

between the feedstock suppliers and the feedstock processor. 

In the third essay, discriminatory-price auction and agent-based model are used to 

examine the cost-efficiency of cost-ranked and cost-benefit-ranked auction-based payment 

designs for forest-based carbon sequestration with varying degree of correlation between 

opportunity costs of afforestation and carbon sequestration capacities, when bidders learn in 

multi-round procurement auctions. Simulation outcomes are expected to guide decision makers 

in choosing an optimal payment design that ensures efficiency gains for auction-based payments 

compared to fixed-rate payments, and more importantly ensures minimal loss in cost-efficiency 

in a dynamic setting.  
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Anthropogenic climate change, a consequence of long-standing increment in atmospheric 

greenhouse gas (GHG) concentrations attributed to fossil fuels use, deforestation, intensive 

farming, and land deterioration, remains a major global issue. Combustion of fossil fuels has 

been the largest contributor of global GHG emissions followed by aggregated emissions from 

agriculture, deforestation, and other land-use changes (Boden et al., 2017). It is estimated that 

more than 9,800 million metric tons of carbon was released from fossil fuels use globally in the 

year 2014 (Boden et al., 2017). In the United States (U.S.) alone, the estimated net GHG 

emissions accounting for terrestrial sequestration has reached 5,828 million metric tons of CO2-

equivalents (CO2e) for the year 2015 (Environmental Protection Agency [EPA], 2017). For the 

same year, emissions from fossil fuels use in the transportation sector comprised of about 27 

percent of total U.S. GHG emissions, making it second largest contributor of U.S. GHG 

emissions after the electricity sector. Conversely, land-use, land-use change, and forestry sector 

(LULUCF) sequestered about 12 percent of total U.S. GHG emissions which mostly includes 

CO2 removed from the atmosphere (EPA, 2017). 

It is well understood that terrestrial carbon sequestration is one of the ways to mitigate 

future adverse consequences of climate change achieved either through reduced rate of release of 

GHG emissions in the atmosphere, or carbon captured through ecosystem restoration, and 

rehabilitation (McCarl & Schneider, 2000). Renewable energy produced from agricultural 

commodities such as biofuels, and atmospheric carbon captured from land management practices 

such as afforestation, reforestation are long-term solutions to mitigating GHG emissions (Weiss 

et al., 2007). Forests are the major sinks of CO2 emissions whereas biofuels can reduce 

substantial amount of emissions through substitution of fossil fuels (McCarl et al., 2005). Large-

scale users of fossil fuels, especially transportation including aviation, have either drawn 
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increasing attention or are pressurized in complying with national and global environmental 

regulations on specific GHG emission targets. Furthermore, possibility of increased cost of 

extraction because of depleting reserves, disruption in the supply due to natural disasters, etc. 

resulting in increased prices and decreased availability of fossil fuels has always been a 

foreseeable issue for the concerned stakeholders (Ladanai & Vinterbäck, 2010).  

Biofuels can either reduce or offset GHG emissions released into the atmosphere 

compared to fossil fuels (Johnson et al., 2007). They release lower net GHG emissions from 

combustion as the carbon accumulated in the biomass i.e. biogenic carbon, during the growth of 

feedstocks, is initially captured from the atmosphere (Wang et al., 2012). Reduced imports 

leading to sustainability and enhanced energy security along with regional economic expansion 

through increased labor demand for biofuel processing are some of the additional benefits 

(Demirbas, 2009). Large scale production of biofuels generated from non-edible feedstocks with 

less GHG emissions compared to fossil fuels, low-competition for resources with food crops, and 

socio-economic development of the rural community has been the focus of stakeholders involved 

in the research and development of biofuels. However, nascent nature of the feedstock-based 

conversion technologies along with investment risks hinder large-scale deployment of biofuels at 

present. 

Ecosystem restoration programs such as afforestation, avoided deforestation, 

reforestation, etc., can store a large amount of atmospheric CO2 into the soil, and standing trees 

(McCarl & Sands, 2007). These programs compensate landowners for their opportunity cost of 

providing ecosystem services, including carbon sequestration in the form of direct incentives, 

called payment for ecosystem services (PES). However, the most popular form of PES, fixed-

rate payment (Zandersen et al., 2009), does not address spatial heterogeneity in opportunity costs 
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of providing ecosystem services (ES) resulting in inefficient allocation of limited conservation 

funds. Conservation programs around the world are adopting competitive bidding mechanism in 

the form of conservation auction to overcome information asymmetry in securing cost-efficiency 

of the conservation programs (Brown et al., 2011; Connor et al., 2008; Stoneham et al., 2003). 

But, the efficiency gains of auction-based payments remain doubtful as landowners learn to 

extract higher information rents from the conservation agency under multiple rounds of 

procurement (Hailu & Schilizzi, 2004; Hailu & Thoyer, 2007; Lennox & Armsworth, 2013). 

Polices have been formulated stimulating production and consumption of renewable 

energy. In the U.S., Renewable Fuel Standard (RFS) proposed by EPA under the Energy 

Independence and Security Act (EISA) mandated 36 billion gallons of ethanol to be blended into 

gasoline and diesel by 2022, of which 16 billion gallons are from lignocellulosic biomass (EPA, 

2007). In an effort to promote robust supply of biomass feedstock for meeting mandated levels of 

feedstock-based biofuel production, the Conservation and Energy Act of 2008 initiated the 

Biomass Crop Assistance Program (BCAP) that provides subsidies in the form of establishment, 

annual, and matching payments for feedstock producers. Renewable Identification Numbers 

(RINs) issued by EPA, is another policy instrument created to incentivize biofuel production. It 

does not only provide tradable credits for processing facilities but also ensures the compliance of 

RFS mandates by registered blenders. In response to the global carbon abatement goals and to 

achieve an environment friendly sustainable growth in the U.S. aviation sector, U.S. Federal 

Aviation Administration (FAA) has set a voluntary target of 1 billion gallons of renewable jet 

fuel (RJF) production and consumption beginning 2018 which includes targets specific to the 

U.S. Air Force, the U.S. Navy and the commercial aviation (FAA, 2011). The RJFs can qualify 
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as advanced biofuels under the RFS, and thus become eligible for RIN credits even though there 

are no regulatory mandates on RJF blending as of today. 

As a potential means of reducing the buildup of GHG emissions in the atmosphere, 

forest-based carbon sequestration has been widely implemented which relies on incentive 

payments to landowners for achieving the desired goals. Cap-and-trade program adopted by 

California includes provision of emission offset credits to the landowners for forest-based carbon 

sequestration (National Conference of State Legislatures [NCSL], 2018). Forest projects that 

sequester CO2 are eligible for offset allowances through the Regional Greenhouse Gas Initiative 

(RGGI) program which covers states of Connecticut, Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, New York, Rhode Island, and Vermont (NCSL, 2018). Recent 

years has shown involvement of other U.S. states such as West Virginia, Tennessee, North 

Carolina, Pennsylvania, and Oregon for carbon sequestration through reforestation projects based 

on incentive payments for farmers (EPA, 2012). In many developing countries, Reducing 

Emissions from Deforestation and forest Degradation (REDD+) program has been adopted under 

the United Nations Framework Convention on Climate Change (UNFCCC) which provides 

financial incentives for enhancing carbon stocks through sustainable forest management 

practices (International Climate Initiative [IKI], 2017). 

This dissertation aims to assess the effect of policy supports and incentive programs on 

renewable fuel production and afforestation. Driven by the impacts of variation in biomass 

feedstock availability on the investment and operations of the biofuel industry, a growing 

number of studies have examined the optimization of biomass to biofuel supply chain 

considering the uncertainty related to feedstock supply (Chen & Fan, 2012; Gebreslassie et al., 

2012; Huang et al., 2014). These studies, however, do not address land use decision for feedstock 
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production which seeks special attention because of the non-existence of market for large scale 

supply of biomass. Other studies dealing with uncertainty in biomass-biofuel supply chains are 

based on impractical assumption of risk neutrality (Azadeh et al., 2014; Kim et al., 2011). 

Bioethanol from lignocellulosic feedstock, such as switchgrass, has potential to mitigate the 

indirect negative consequences of food-crop based ethanol production (Sivakumar et al., 2010). 

However, feedstock yield uncertainty and high production costs are significant barriers to invest 

in a switchgrass-based bioethanol (SB) supply chain for biofuel production (Schnepf, 2011). 

Importantly, uncertainty in biomass yield creates difficulties in the assessment of investment 

decisions such as land use for feedstock cultivation (Gouzaye & Epplin, 2016). Federal 

subsidies, on the other hand, can have varying degree of impacts on investment decisions 

consistent with risk perception of the biofuel industry under uncertain environment.  

The first essay evaluates impact of BCAP on optimal decisions of a bioethanol industry 

with different risk preferences in presence of feedstock yield uncertainty. A systematic approach 

to SB production is utilized wherein the impact of BCAP on optimal land-use and biorefinery 

configuration decisions are looked at while addressing yield uncertainty and the associated risk 

preferences of the biofuel sector. A two-stage stochastic mixed integer linear programming 

(MILP) model is developed initially to optimize the expected integrated cost of the supply chain 

based on the assumption of risk neutrality of the biofuel industry. The stochastic model is later 

expanded to a risk management model to incorporate the financial risk assuming the biofuel 

sector is risk averse. Conditional Value-at-Risk (CVaR) is optimized considering the risk 

associated with investment decisions under feedstock uncertainty. Applicability of the stochastic 

model is illustrated through a case study in west Tennessee. 
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Recent literature has also paid increasing attention to the techno-economic analysis of 

potential conversion technologies for RJF due to environmental regulations, increased demand 

for air traffic, and the instability of the energy prices (Diederichs et al., 2016; Mawhood et al., 

2014; Natelson et al., 2015; Tao et al., 2017; Yao et al., 2017). Some of the studies have 

primarily focused on economic assessment of the existing conversion technologies (Bann et al., 

2017; Reimer & Zheng, 2016), while others have assessed environmental performance alone (de 

Jong et al., 2017; Han et al., 2017). Few have attempted to combine life cycle analysis (LCA) 

with economic assessment in the evaluation of RJF (Staples et al., 2014; Winchester et al., 2015; 

Winchester et al., 2013). These studies, however, have generally neglected the economic 

interaction between the individual decision-makers, and thus have not paid attention to the 

welfare implication of RJF production. Net welfare analysis is specifically important in this 

context since reduction of aviation emissions is the primary goal of using RJF, and the GHG 

reductions achieved through large-scale RJF deployment with or without policy supports should 

justify the investments made in the RJF sector. 

The second essay determines economics, and welfare implications of RJF produced from 

a lignocellulosic feedstock while addressing the economic motives of the participating actors. 

Specifically, GHG emissions reduction and welfare implication of policy supports in the form of 

carbon credits, needed to promote large-scale production of RJF, is evaluated while internalizing 

environmental costs of aviation emissions. A bi-level game theoretic competition between the 

farmers and the processor is designed to address the economic and environmental viability of the 

RJF production. As a leader, the processor chooses a capacity and spatial configuration for the 

potential plant with a price offer to the farmers that minimizes its feedstock procurement and the 

processing costs while acknowledging the spatial distribution of the potential feedstock 
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suppliers, their opportunity costs of supplying feedstock, and the spatial yield variability. The 

mixed-integer non-linear bi-level model is solved by converting into a single-level problem by 

replacing the original constraints of the lower-level problem (farmer’s profit maximization) with 

its corresponding Karush-Kuhn-Tucker (KKT) conditions. Availability of RIN credits, and 

revenues from co-products are considered while analyzing the commercial feasibility of 

cellulosic RJF production. Applicability of the game-theoretic model is illustrated through a case 

study in west Tennessee.  

In the research of economic incentives for afforestation program, landowners’ 

willingness to accept for offering land into the program and the information on associated carbon 

gains of land use change are primarily focused in designing an optimal payment for forest-based 

carbon storage. However, commonly used fixed-rate system fails to address the information 

asymmetry between the conservation agency and the landowners with payments delivered far 

more than their opportunity costs (Ferraro, 2008; Persson & Alpízar, 2013) resulting in 

inefficient allocation of the limited conservation funds. Conservation auctions can reveal the 

approximate opportunity costs of land use change for the landowners which can then be 

effectively combined with the carbon sequestration benefits to design a cost-effective payment 

system. Furthermore, the degree of correlation between the opportunity costs and the 

environmental benefits shapes the relative gains of incorporating cost-benefit information in an 

optimally determined payment system (Babcock et al., 1997; Ferraro, 2003). Conclusions drawn 

from these studies that integrated cost and benefit are helpful in assisting conservation agencies 

for ensuring efficiency gain in a single-round conservation auction. However, the impact of 

integrating costs and benefits information on ensuring efficiency gain or ensuring minimal 
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efficiency loss in a multi-round conservation auction where landowners learn to extract 

information rents, has not been explored yet.  

The third essay determines cost-efficiency of voluntary incentive payments for forest-

based carbon sequestration when opportunity costs of land use change are correlated with carbon 

sequestration gains. Cost-efficiency of cost-ranked and cost-benefit-ranked auction-based 

payment designs is examined for forest-based carbon storage with varying degree of correlation 

between opportunity costs of afforestation and carbon sequestration capacities in a static as well 

as dynamic setting. Conservation auction is introduced to reveal the opportunity costs of 

conservation before ranking them, and then conceptualize the bid learning behavior of the 

participants in a multi-round conservation auction through an agent-based model. Bids are 

simulated using a stochastic term that denotes the amount of overbidding mimicking 

discriminatory-price auction. Based on whether the program is constrained by limited 

conservation fund or a specified conservation target, either budget-constrained (BC) or target-

constrained (TC) format of auction is designed. The outcomes from the models are analyzed for 

cost-efficiency gains against an equivalent fixed-rate payment, while estimating magnitude of 

efficiency losses when bidders learn in a dynamic setting.  
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Abstract  

The urgency to reduce dependence on fossil fuels and minimize green-house gas emissions has 

led to research on environment friendly as well as socio-economically sustainable renewable 

energy source. However, commercial level of production of bioenergy is severely constrained by 

investment risk and uncertainty. This study uses an integrated approach to evaluate the impacts 

of policy supports on the optimal supply chain decisions driven primarily by yield uncertainty 

and associated investment risk. As an instance of federal subsidies, the impact of Biomass Crop 

Assistance Program (BCAP) is evaluated under different risk preferences of the biofuel sector. A 

two-stage stochastic mixed integer linear programming is developed to model a risk neutral 

biofuel sector that minimizes the expected cost considering investment in switchgrass cultivation 

along with biorefinery establishment. Alternatively, the Conditional Value-at-Risk (CVaR) is 

optimized under the risk averse case considering the financial risk associated with investment 

decisions under feedstock yield uncertainty. Results of a case study in west Tennessee suggest 

that CVaR minimization case converts more land for switchgrass cultivation compared to the 

expected cost minimization to lower the high costs of low yield conditions. With the availability 

of BCAP payments, expected cost and investment risk are improved for both risk averse and risk 

neutral biofuel sector. However, both the expected cost and investment risk are reduced by a 

higher percent for the risk averse biofuel sector than the risk neutral one that optimizes expected 

cost. 

 

Keywords Risk-averse, risk-neutral, stochastic, two-stage, uncertainty 
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2.1. Introduction 

Growing concerns over future energy security and need for sustainable renewable energy source 

have directed formulation of government policies to stimulate production and consumption of 

biofuels. For instance, Renewable Fuel Standard (RFS) under the Energy Independence and 

Security Act (EISA) in 2007 mandated 36 billion gallons of ethanol to be blended into gasoline 

and diesel by 2022, of which 16 billion gallons are from lignocellulosic biomass (U.S. Congress, 

2007). Biofuel produced from lignocellulosic biomass (LCB) feedstock is suggested as a 

potential form of socio-economically sustainable renewable energy source (Dale et al., 2011).  

Amongst the LCB feedstock category, switchgrass has been considered as one of the most 

promising bioenergy crops given net negative life cycle greenhouse gas (GHG) emissions of 

switchgrass derived ethanol compared to gasoline (U.S. Department of Energy, 2010). In 

addition, switchgrass’ adaptability to the less fertile land could reduce resource competition 

against the food crops, hence lessen the “food vs fuel” debate (Carriquiry et al., 2011; Naik et al., 

2010; Sims et al., 2010; Sokhansanj et al., 2009). 

Considerable research effort has been made to explore the potentials of producing large 

scale biofuels derived from switchgrass (McLaughlin & Kszos, 2005; Perlack et al., 2011; 

Schmer et al., 2008; Schnepf, 2011; Wang et al., 2012; Wright, 2007). However, the commercial 

production of switchgrass-based biofuel (SB) remains moderate currently. One of the challenges 

in designing and implementing an efficient SB supply chain is the uncertainty associated with 

strategic and operational decisions of the biofuel industry. Strategic uncertainties are primarily 

related with climate and weather, technological innovation; whereas operational uncertainties 

typically involve variations in biofuel demand and prices. Variations in biomass availability due 

to diverse climatic conditions not only hinder the operations of the biofuel industry but also 
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create difficulties in the assessment of strategic investment decisions. Morrow et al. (2014) 

simulated the impact of droughts using climate models and suggested that yield reduction by 

drought could bring economic disruption to many biorefineries planned in the U.S. Thus, 

addressing feedstock supply uncertainty and associated investment risks is very crucial in 

determining SB supply chain for large scale biofuel production.  

To mitigate the impact of feedstock supply uncertainly on biofuel industry and expedite 

the path to reach the mandated biofuel level, the Conservation and Energy Act of 2008 initiated 

the Biomass Crop Assistance Program (BCAP) (USDA, 2015). The BCAP provides incentives 

for the supply of dedicated energy crops in the form of three different payments: establishment, 

annual (land rent) and matching payments. Recent studies have documented the impacts of 

BCAP and other insurance programs on investment risk associated with land use change into 

perennial energy crops (Dolginow et al., 2014; Larson, 2008; Luo & Miller, 2017; Skevas et al., 

2016). These studies evaluated BCAP subsidies with respect to improving profitability 

distribution of bioenergy crops for potential feedstock producers under uncertain yields and 

prices. In addition to enhancing individual farmer’s decision for feedstock production, BCAP 

presumably improves the economics as well as risk of biofuel supply chain since the biomass 

suppliers and conversion facility must meet the BCAP program objectives set by USDA to be 

eligible for specific payments (USDA, 2015). However, the potential impacts of BCAP subsidies 

in the design of a biofuel supply chain under feedstock yield uncertainty, is lacking in the 

literature. 

A large number of studies have attempted to determine the economic optimization of 

biofuel supply chain considering the uncertainty related to feedstock supply (Azadeh et al., 2014; 

Chen & Fan, 2012; Dal-Mas et al., 2011; Huang et al., 2014; Kim et al., 2011). A key 
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assumption made in these stochastic studies is that biomass feedstock with uncertain availability 

can be acquired from the markets. However, markets do not presently exist for large-scale use of 

the biomass feedstock and such assumption ignores the necessity to make a beforehand 

investment decision in the production of biomass. Except for Osmani and Zhang (2013), 

allocation of land for feedstock cultivation was excluded from strategic investment in previous 

studies. The land use choice for biomass feedstock production or supply considering the 

variation in the yield of feedstocks, especially perennial energy crops, should be included in the 

design of biomass-biofuel supply chain.  

The standard approach to address strategic uncertainties is to incorporate them in 

investment decisions by optimizing average economic performance under the probabilistic 

anticipation of future conditions. Expected economic optimization, which assumes risk-

neutrality, may fail to account for the risk minimizing behavior of biofuel sector under uncertain 

future. Instead of economic performance, implementing and optimizing risk measures provides 

effective risk mitigating strategies, particularly for the risk averse decision makers. A few studies 

have considered the financial risks associated with the operational level decisions in biofuel 

supply chain optimization (Dal-Mas et al., 2011; Gebreslassie et al., 2012; Giarola et al., 2013; 

Kazemzadeh & Hu, 2013; You et al., 2009). However, similar to the expected economic 

optimization studies, the uncertainty of feedstock supply and associated land use choice in the 

strategic level decisions while minimizing risk has not been addressed.   

The present study thus aims to enhance the existing literature of biofuel supply chain in 

two dimensions: first, it assesses the impacts of BCAP on SB supply chain in the presence of 

feedstock yield uncertainty. Presumably, such subsidies have different impacts on land use and 

biorefinery investment decisions in the supply chain subject to the risk preference of the biofuel 
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sector. Second, the land use choice and biorefinery facility location is added in investment 

decisions regarding the presence of feedstock yield variability in an optimal SB supply chain. A 

two-stage stochastic model is employed wherein investment decisions are driven by expected 

cost minimization (assuming risk neutral) and Conditional Value-at-Risk (CVaR) minimization 

(assuming risk averse) of the biofuel sector.  

2.2. Literature Review 

Few studies outside integrated biomass-biofuel supply chain optimization literature, but relevant 

to the individual farmer’s decision to switch to perennial bioenergy crops, have assessed the 

impacts of federally subsidized biomass programs while addressing the profitability requirements 

of the potential feedstock producers. Dolginow et al. (2014) compared the profitability range and 

associated investment risk of the bioenergy crops including switchgrass against the food-grain 

crops simultaneously incorporating the subsidies available from BCAP, and the uncertainty in 

prices and the yields of the bioenergy crops. Luo and Miller (2017) designed a model based on 

game-theoretic competition between the potential switchgrass producers to estimate the standard 

BCAP subsidies and the more efficient incentive levels required to realize the production of 

cellulosic biomass in view of meeting the RFS mandates. Skevas et al. (2016) incorporated the 

BCAP payments and a hypothetical revenue insurance program in modeling stochastic prices and 

yields of perennial cellulosic bioenergy crops to generate mean break-even levels, and the 

probability distribution of profitability while assuming different risk preferences of the farmers. 

Similarly, Larson (2008) evaluated the impact of BCAP as a risk management strategy where 

growth specific yields, weather influenced logistics, and inputs costs were identified as potential 

sources of risk determining the profitability distribution of switchgrass. 
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There is a rich literature on deterministic supply-chain optimization studies addressing 

economic costs as well as environmental objectives of GHG emission reduction. Akgul et al. 

(2012) designed an optimal hybrid first/second generation ethanol supply chain driven by the 

mechanism of total supply chain cost minimization. Zhang et al. (2013) implemented 

switchgrass-based supply chain optimization framework for integrated system cost reduction 

through a case study in North Dakota. A bicriterion feedstock cost and GHG emission 

minimization objective is considered in Yu et al. (2014) for determining optimal switchgrass 

supply system in Tennessee. Zhong et al. (2016) applied a multiobjective optimization model to 

determine the tradeoffs among the feedstock cost, GHG emission, and soil erosion minimization 

objectives in the design of a switchgrass-based supply chain in Tennessee. A multiobjective 

supply chain optimization extending to a dynamic planning horizon over a decade is developed 

in Huang and Xie (2015) to minimize the total system cost and GHG emission. Melo et al. 

(2006) proposed a dynamic facility location framework driven by cost minimization capturing 

essential strategic level supply chain decisions. You and Wang (2011) addressed the 

optimization of biomass to liquid supply chains from a life cycle perspective under a bicriterion 

objective of cost and GHG reduction. 

A growing number of stochastic studies have also examined the impact of feedstock 

supply related uncertainty on the optimal economic performance, and the associated financial 

risk of the integrated biofuel supply chains. Uncertainty related with demand of biofuel and 

supply of feedstock are considered by Chen and Fan (2012) in an expected system cost 

minimization framework. Optimization problem associated with hydrocarbon biorefinery supply 

chain under supply and demand uncertainties is addressed by Gebreslassie et al. (2012) where 

they simultaneously minimized the expected annualized cost and the financial risk. Seasonal 
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variations and uncertainties of feedstock supply are considered in designing an efficient supply 

chain system by Huang et al. (2014) where they proposed an algorithm based on scenario 

decomposition to minimize the expected supply chain cost. Kim et al. (2011) adopted combined 

scenarios using most influential parameters affecting profit into stochastic framework to 

maximize the expected profit of the supply chain. Kazemzadeh and Hu (2013) modeled supply 

chain uncertainties in fuel market price, feedstock supply, and logistic costs considering expected 

value of profit and CVaR of profit as optimization objectives. A multi-period optimization 

framework is used in Dal-Mas et al. (2011) where expected NPV and CVaR are considered for 

economic performance and risk measurement, respectively, under stochastic scenarios. 

2.3. Conceptual Framework 

In this section, specific conditions defining the range of lands in terms of opportunity costs for 

switchgrass cultivation are derived given BCAP subsidies while ensuring the expected system 

cost of the biofuel sector under feedstock yield uncertainty matches what it would have been 

before BCAP is introduced. The biofuel sector in this study refers to an autonomous decision 

maker consisting of two coordinating supply chain participants i.e. biomass producers and 

biofuel processors. Similarly, the costs associated with supply chain decisions from biomass 

cultivation through biofuel delivery to the blending facility are cumulatively defined as the 

system (integrated) cost.   

Consider a biomass and a biofuel producer decide on the optimal location of the 

biorefinery and the switchgrass draw area to achieve the minimum system cost under a biofuel 

contract with an exogenous biofuel price.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝜂 =  (𝛼 + 𝛽)𝑥 + 𝜑𝑞 + 𝜃𝑞 + 𝜌𝜎𝑞 + 𝜇 + 𝛺(𝐷 −  𝜎𝑞),                                       (2 − 1) 
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where 𝛼 denotes switchgrass establishment cost in $/hectare (ha), 𝛽 denotes opportunity cost in 

$/ha, x denotes hectares of switchgrass harvested, 𝜑 denotes switchgrass production cost in 

$/Mega gram (Mg), q denotes biomass production in Mg, θ denotes transportation cost between 

switchgrass harvest site and biorefinery in $/Mg, 𝜌 denotes production cost for biorefinery in 

$/Liter (L), μ denotes annualized investment cost for biorefinery in $, σ denotes the biomass-

biofuel conversion efficiency in L/Mg, D denotes the biofuel demand in liters by the blending 

facility, and 𝛺 denotes penalty cost when the contracted biofuel demand was not met in $/L. 

Let us introduce yield uncertainty: 𝑦1 > 𝑦 > 𝑦2 with corresponding production 

𝑞1 > 𝑞 > 𝑞2 where y Mg/ha be the real yield of switchgrass unknown at the time investment 

decisions are made. 

Then, the cost minimization problem becomes: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝜂 =   (𝛼 + 𝛽)𝑥 + 𝜑(𝜆𝑞 + (1 − 𝜆)𝑞2) + 𝜃(𝜆𝑞 + (1 − 𝜆)𝑞2) + 𝜌𝜎(𝜆𝑞 + (1 − 𝜆)𝑞2) 

+𝜇 +  𝛾𝜆(𝑞1 − 𝑞) + 𝛺𝜎(1 − 𝜆)(𝑞 − 𝑞2),                                                                                       (2 − 2) 

where 𝛾 denotes inventory associated cost in $/Mg, 𝜆 = 1 for 𝑦1 > 𝑦, and 𝜆 = 0 for 𝑦2 < 𝑦 

Under the assumption of risk neutrality, objective function in equation (2-2) can be written as: 

𝐸(𝜂) = 𝑃𝑟𝑜𝑏(𝑦1 > 𝑦)[(𝛼 + 𝛽)𝑥 + 𝜑𝑞 + 𝜃𝑞 + 𝜌𝜎𝑞 + 𝛾(𝑞1 − 𝑞) + 𝜇] 

+ 𝑃𝑟𝑜𝑏(𝑦2 < 𝑦)[(𝛼 + 𝛽)𝑥 + 𝜑𝑞2 + 𝜃𝑞2 + 𝜌𝜎𝑞2 + 𝛺𝜎(𝑞 − 𝑞2) + 𝜇],                                  (2 − 3) 

𝐸(𝜂) = 𝑃𝑟𝑜𝑏(𝑦1 > 𝑦)[(𝛼 + 𝛽)𝑥 + (𝜑 + 𝜃 + 𝜌𝜎)𝑦𝑥 + 𝛾(𝑦1 − 𝑦)𝑥 + 𝜇] 

+ 𝑃𝑟𝑜𝑏(𝑦2 < 𝑦)[(𝛼 + 𝛽)𝑥 + (𝜑 + 𝜃 + 𝜌𝜎)𝑦2𝑥 + (𝛼 + 𝛽)𝑥 + 𝛺𝜎(𝑦 − 𝑦2)𝑥 + 𝜇].           (2 − 4) 

Let us assume for simplicity: 𝑃𝑟𝑜𝑏(𝑦1 > 𝑦) = 𝑃𝑟𝑜𝑏(𝑦2 < 𝑦) = 1/2. 
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𝐸(𝜂) =
[(𝛼 + 𝛽)𝑥 + (𝜑 + 𝜃 + 𝜌𝜎)𝑦𝑥 + 𝛾(𝑦1 − 𝑦)𝑥 + 𝜇]

2
 

+ 
[(𝛼 + 𝛽)𝑥 + (𝜑 + 𝜃 + 𝜌𝜎)𝑦2𝑥 + 𝛺𝜎(𝑦 − 𝑦2)𝑥 + 𝜇]

2
,                                                           (2 − 5) 

𝐸(𝜂) =
(2(𝛼 + 𝛽) + (𝜑 + 𝜃 + 𝜌𝜎)(𝑦 + 𝑦2) + 𝛾𝑦1 − 𝛺𝜎𝑦2 + (𝛺𝜎 − 𝛾)𝑦)𝑥 + 2𝜇

2
.          (2 − 6) 

Let 𝑥∗ be the optimal land use that minimizes the expected system cost under yield uncertainty.  

𝐸(𝜂) =
(2(𝛼 + 𝛽) + (𝜑 + 𝜃 + 𝜌𝜎 + 𝛺𝜎 − 𝛾)𝑦 + (𝜑 + 𝜃 + 𝜌𝜎 − 𝛺𝜎)𝑦2 + 𝛾𝑦1)𝑥

∗ + 2𝜇

2
. 

(2 − 7) 

Under the condition of an optimal land use 𝑥∗, we obtain:  

(2(𝛼 + 𝛽) + (𝜑 + 𝜃 + 𝜌𝜎 + 𝛺𝜎 − 𝛾)𝑦 + (𝜑 + 𝜃 + 𝜌𝜎 − 𝛺𝜎)𝑦2 + 𝛾𝑦1) = 0,                    (2 − 8) 

𝑦 =
(𝛺𝜎 − 𝑔 − 𝜃 − 𝜌𝜎)𝑦2 − 2(𝛼 + 𝛽) − 𝛾𝑦1

(𝜑 + 𝜃 + 𝜌𝜎 + 𝛺𝜎 − 𝛾)
.                                                                            (2 − 9) 

𝜃 =
(𝛺𝜎 − 𝜑 − 𝜌𝜎)𝑦2 − 2(𝛼 + 𝛽) − (𝑔 + 𝜌𝜎 + 𝛺𝜎 − 𝛾) − 𝛾𝑦1

(𝑦 + 𝑦2)
.                                       (2 − 10) 

Assuming the optimal land used for switchgrass cultivation 𝑥∗remains the same with 

BCAP subsidies, which cut annualized establishment cost by 50%, i.e. 𝛼𝑏𝑐𝑎𝑝 =
𝛼

2
 , and lower 

annualized opportunity cost (land rent or profit of current agricultural practice) by 50%, i.e. 

𝛽𝑏𝑐𝑎𝑝 =
�̅�

2
, let us look at conditions defining the range of opportunity costs, i.e.  �̅� of available 

land that can be selected with BCAP subsidies while the expected system cost remains the same.  
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Case 1 

Let us assume the selected land for switchgrass production given BCAP subsidies has identical 

spatial yields but less proximity to biorefinery.  

𝜃′ < 𝜃 (𝑦′ = 𝑦, 𝑦2
′ = 𝑦2 & 𝑦1

′ = 𝑦1), 

(𝛺𝜎 − 𝜑 − 𝜌𝜎)𝑦2
′ − 2 (

𝛼
2 +

�̅�
2) −

(𝜑 + 𝜌𝜎 + 𝛺𝜎 − 𝛾) − 𝛾𝑦1
′

(𝑦′ + 𝑦2′)

<
(𝛺𝜎 − 𝜑 − 𝜌𝜎)𝑦2 − 2(𝛼 + 𝛽) − (𝜑 + 𝜌𝜎 + 𝛺𝜎 − 𝛾) − 𝛾𝑦1

(𝑦 + 𝑦2)
, 

�̅� > 𝛼 + 2𝛽. 

Case 2 

Let us assume the selected land for switchgrass production after BCAP subsidies has higher 

spatial yields but identical proximity to the biorefinery.  

𝑦′ > 𝑦 ( 𝜃′ = 𝜃, 𝑦2
′ > 𝑦2 & 𝑦1

′ > 𝑦1), 

(𝛺𝜎 − 𝜑 − 𝜃′ − 𝜌𝜎)𝑦2
′ − 2(

𝛼
2 +

�̅�
2) − 𝛾𝑦1

′

(𝜑 + 𝜃′ + 𝜌𝜎 + 𝛺𝜎 − 𝛾)
>
(𝛺𝜎 − 𝜑 − 𝜃 − 𝜌𝜎)𝑦2 − 2(𝛼 + 𝛽) − 𝛾𝑦1

(𝜑 + 𝜃 + 𝜌𝜎 + 𝛺𝜎 − 𝛾)
,  

�̅� < 𝛼 + 2𝛽 + (𝛺𝜎 − 𝜑 − 𝑡 − 𝜌𝜎)(𝑦2
′ − 𝑦2) − 𝛾(𝑦1

′ − 𝑦1). 

Under both the cases, farmers can select that range of high opportunity cost lands which facilitate 

the expected cost of the SB supply chain to be lesser than the one without the BCAP subsidies.  
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2.4. Analytical Methods 

2.4.1. Expected Cost Minimization Model (Model 1) 

A two-stage mixed integer linear programming (MILP) model is developed considering the yield 

uncertainty, and the computation of optimal first-stage (investment/strategic) and second-stage 

(operational) level variables is driven by the mechanism of the expected integrated cost 

minimization. Availability of secondary feedstock is not considered allowing biomass deficit, 

and any shortage in fulfilling the final demand is penalized which can be interpreted as cost of 

procuring biofuel from alternative sources to meet the contractual demand of the blending 

facility. Consequently, surplus production, if any is managed as an inventory for future incurring 

storage cost which can be regarded as the penalty for overproduction. Stochastic model used in 

this study is an extension of Yu et al. (2014). 

Total system cost minimization under yield uncertainty gives rise to a typical two-stage 

structure which minimizes the sum of scenario independent (first-stage) costs and expected value 

of scenario dependent (second-stage) costs (Ahmed, 2010; Shapiro & Philpott, 2007). Equation 

(2-11) represents the objective function of the expected cost minimization model (referred as 

Model 1 hereafter). All the identifiers, parameters and variables used in the stochastic model are 

defined in Table 2-A1.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐸(𝐶𝑜𝑠𝑡) = 𝐶𝑜𝑠𝑡1𝑠𝑡−𝑠𝑡𝑎𝑔𝑒 + 𝐸(𝐶𝑜𝑠𝑡2𝑛𝑑−𝑠𝑡𝑎𝑔𝑒).                                                   (2 − 11) 

Equation (2-12) presents the investment related costs which includes annualized 

investment cost of conversion facilities (𝐶𝑖𝑛𝑣
𝑓𝑎𝑐

) and annualized establishment cost of switchgrass 

(𝐶𝑒𝑠𝑡
𝑠𝑤𝑖). Similarly, opportunity cost of switchgrass (𝐶𝑜𝑝𝑐

𝑠𝑤𝑖) also enters the first-stage as it is 

proportional to switchgrass coverage. Computation of these investment cost components are 

expressed in equations (2-13)-(2-15).             
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𝐶𝑜𝑠𝑡1𝑠𝑡−𝑠𝑡𝑎𝑔𝑒 = 𝐶𝑖𝑛𝑣
𝑓𝑎𝑐

+ 𝐶𝑒𝑠𝑡
𝑠𝑤𝑖 + 𝐶𝑜𝑝𝑐

𝑠𝑤𝑖 .                                                                                          (2 − 12)          

𝐶𝑖𝑛𝑣
𝑓𝑎𝑐

=∑∑(𝜇𝑔 ×

𝑔∈𝐺

𝑧𝑗𝑔).

𝑗∈𝐽

                                                                                                               (2 − 13) 

𝐶𝑒𝑠𝑡
𝑠𝑤𝑖 =∑∑(𝛼

ℎ∈𝐻

× 𝑋𝑖ℎ)

𝑖∈𝐼

.                                                                                                                (2 − 14) 

𝐶𝑜𝑝𝑐
𝑠𝑤𝑖 =∑∑(𝛽𝑖ℎ

ℎ∈𝐻𝑖∈𝐼

× 𝑋𝑖ℎ),                                                                                                              (2 − 15) 

where 

𝛽𝑖ℎ = {
𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ      𝑖𝑓  (𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ) ≥ 𝑅𝑖ℎ 

 
𝑅𝑖ℎ                             𝑖𝑓  (𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ) < 𝑅𝑖ℎ 

}. 

 Operational cost depends upon the operational uncertainty induced by yield uncertainty 

and thus is the expected cost under all considered yield scenarios (equation (2-16)). Switchgrass 

production (𝐶𝑝𝑟𝑜
𝑠𝑤𝑖), switchgrass storage (𝐶𝑠𝑡𝑔

𝑠𝑤𝑖), switchgrass transportation (𝐶𝑡𝑟𝑎𝑛𝑠
𝑠𝑤𝑖 ), biofuel 

conversion (𝐶𝑐𝑜𝑛𝑣
𝑏𝑖𝑜 ), biofuel transportation (𝐶𝑡𝑟𝑎𝑛

𝑏𝑖𝑜 ) and biofuel shortage (𝐶𝑠ℎ𝑜𝑟𝑡
𝑏𝑖𝑜 ) costs all are 

defined under expectations. Each of these expected costs are calculated in equations (2-17)-(2-

22). 

𝐸(𝐶𝑜𝑠𝑡2𝑛𝑑−𝑠𝑡𝑎𝑔𝑒) = 𝐸(𝐶𝑝𝑟𝑜
𝑠𝑤𝑖) + 𝐸(𝐶𝑠𝑡𝑔

𝑠𝑤𝑖) + 𝐸(𝐶𝑡𝑟𝑎𝑛𝑠 
𝑠𝑤𝑖 ) + 𝐸(𝐶𝑐𝑜𝑛𝑣

𝑏𝑖𝑜 ) + 𝐸(𝐶𝑡𝑟𝑎𝑛𝑠
𝑏𝑖𝑜 ) +

𝐸(𝐶𝑠ℎ𝑜𝑟𝑡
𝑏𝑖𝑜 ).                                                                                                                                             (2 − 16)              

𝐸(𝐶𝑝𝑟𝑜
𝑠𝑤𝑖) =∑∑∑(𝐴𝑀 +𝜔) × 𝑋𝑖ℎ × 𝑝𝑟𝑜𝑏 (𝑠).

𝑠∈𝑆ℎ∈𝐻𝑖∈𝐼

                                                                (2 − 17) 

𝐸(𝐶𝑠𝑡𝑔
𝑠𝑤𝑖  ) =∑∑𝑋𝑆𝑖𝑠 

𝑠∈𝑆

× 𝛾 × 𝑝𝑟𝑜𝑏 (𝑠).

𝑖∈𝐼

                                                                                    (2 − 18) 
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𝐸(𝐶𝑡𝑟𝑎𝑛
𝑠𝑤𝑖  ) = ∑∑∑𝑋𝑄𝑚𝑖𝑠

𝑠∈𝑆

× 𝜃 × 𝑝𝑟𝑜𝑏 (𝑠)

𝑖∈𝐼

.

𝑚∈𝑀

                                                                       (2 − 19) 

𝐸(𝐶𝑐𝑜𝑛𝑣
𝑏𝑖𝑜 ) = ∑∑∑∑𝑋𝑂𝑚𝑗𝑏𝑠 × 𝜌 × 𝑝𝑟𝑜𝑏 (𝑠).

𝑠∈𝑆𝑏∈𝐵𝑗∈𝐽𝑚∈𝑀

                                                                     (2 − 20) 

𝐸(𝐶𝑡𝑟𝑎𝑛
𝑏𝑖𝑜 ) = ∑∑∑∑𝑋𝑂𝑚𝑗𝑏𝑠 × 𝛿 × 𝑝𝑟𝑜𝑏 (𝑠)

𝑠∈𝑆𝑏∈𝐵𝑗∈𝐽

.

𝑚∈𝑀

                                                                    (2 − 21) 

𝐸(𝐶𝑠ℎ𝑜𝑟𝑡
𝑏𝑖𝑜 ) = ∑∑𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑚𝑠 × 𝛺 × 𝑝𝑟𝑜𝑏 (𝑠).

𝑠∈𝑆𝑚∈𝑀

                                                                       (2 − 22) 

Equations (2-23)-(2-30) define the constraints imposed on the cost minimization 

problem. Equation (2-23) limits feedstock production in each spatial unit to the available 

agricultural land. Equation (2-24) assures that total biomass available in each site equals total 

biomass production in that site. Equations (2-25)-(2-28) are mass balance/flow constraints. 

Biomass produced is directly transported to biorefinery in harvest season and remaining is stored 

for off-harvest season (equation (2-25)). Equation (2-26) ensures cumulative switchgrass 

delivered to the facility plus the surplus feedstock at the end of the off-harvest period equals the 

total biomass stored at the harvest season. Equation (2-27) ensures that the amount of biomass 

transported during each season is all converted into ethanol by biorefinery. Equation (2-28) 

guarantees any shortage plus the bioethanol sent to blending facility each season equals the 

demand of biofuel by blending facility. Equation (2-29) limits the number of biorefinery at each 

site. Equation (2-30) denotes the domain of the binary decision variable. Non-negativity 

constraints imposed on the continuous decision variables are listed in equation (2-31). 

𝑋𝑖ℎ ≤ 𝐴𝑖ℎ  ∀ 𝑖, ℎ.                                                                                                                                 (2 − 23)                                                                                                      



 

30 
 

∑𝑌𝑖𝑥𝑠 × 𝑋𝑖ℎ  

ℎ∈𝐻

= 𝑋𝑁𝑆𝑖𝑠 + 𝑋𝑆𝑖𝑠   ∀ 𝑖, 𝑠.                                                                                         (2 − 24) 

𝑋𝑁𝑆𝑖𝑠 = ∑ ∑
𝑋𝑄𝑚𝑖𝑗𝑠

(1 − 𝐷𝑇)
𝑗∈𝐽𝑚∈𝑀𝑜𝑛

  ∀ , 𝑖, 𝑠.                                                                                           (2 − 25) 

𝑋𝑆𝑖𝑠 = ∑ ∑
𝑋𝑄𝑚𝑖𝑗𝑠

(1 − 𝐷𝑆) × (1 − 𝐷𝑇)
𝑗∈𝐽

+
 𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑖𝑠 
(1 − 𝐷𝑆)

𝑚∈𝑀𝑜𝑓𝑓

    ∀ 𝑖, 𝑠.                                            (2 − 26) 

𝜎∑∑𝑋𝑄𝑚𝑖𝑗𝑠
𝑗∈𝐽𝑖∈𝐼

 = ∑∑𝑋𝑂𝑚𝑗𝑏𝑠
𝑏∈𝐵𝑗∈𝐽

 ∀ 𝑚, 𝑠.                                                                                 (2 − 27) 

∑∑𝑋𝑂𝑚𝑗𝑏𝑠
𝑏∈𝐵𝑗∈𝐽

+ 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑚𝑠 = 𝐷𝑚  ∀ 𝑚, 𝑠.                                                                                (2 − 28) 

∑ 𝑧𝑗𝑔
𝑔∈𝐺

≤  1 ∀ 𝑗.                                                                                                                                   (2 − 29) 

𝑧𝑗𝑔 ∈ {0, 1}   ∀  𝑗, 𝑔.                                                                                                                            (2 − 30) 

𝑋, 𝑋𝑁𝑆, 𝑋𝑆, 𝑋𝑄, 𝑋𝑂, 𝑆𝑢𝑟𝑝𝑙𝑢𝑠, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 ≥ 0.                                                                            (2 − 31)   

 

2.4.2. CVaR Minimization Model (Model 2) 

Feedstock supply is a main source of uncertainty in the biofuel supply chain driven by the 

fluctuations in the yield, which is highly dependent on weather, disease and pest-incidence. 

Consequently, the system may not be able to meet the demand, or there might be excess 

production resulting in inventory accumulation. The associated risk can be quantified using 

standard stochastic procedure optimizing economic performance, but its management calls for 

integrating risk management metrics in the framework. 
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Value-at-Risk (VaR) and CVaR are commonly used risk aversion metrics in supply chain 

optimization under uncertainties. Within a given confidence interval 𝜗, 𝑉𝑎𝑅𝜗 of a random 

variable is defined as the lowest value t such that with probability 𝜗 the loss will not be greater 

than t (Rockafellar & Uryasev, 2000). Similarly, 𝐶𝑉𝑎𝑅𝜗 is the conditional expectation of the loss 

above the value t. In this study, random variable is replaced by integrated cost (Cost) and 𝑉𝑎𝑅𝜗 

is the minimum value t such that the cost is less or equal to t with probability 𝜗. 𝐶𝑉𝑎𝑅𝜗 is the 

conditional expectation of the integrated cost above the value t. For a discrete distribution of the 

costs under different yield scenarios, CVaR is more generally defined as the weighted average of 

the VaR and the costs strictly exceeding VaR (Krokhmal et al., 2002). 

𝐶𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡, 𝜗 ) =
∑ ∅(𝑠)𝑠∈𝑆 × 𝑝𝑟𝑜𝑏(𝑠)

1 − 𝜗
+ 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡). 

where 

𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡) = 𝐼𝑛𝑓𝑖𝑚𝑢𝑚{𝑡: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑜𝑠𝑡 ≤ 𝑡) ≥ 𝜗}, 

∅(𝑠) ≥ 𝐶𝑜𝑠𝑡(𝑠) − 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡), ∅(𝑠) ≥ 0, 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡) ≥ 0. 

The non-negativity constraint of ∅(𝑠) makes sure it is set to zero if  𝐶𝑜𝑠𝑡(𝑠) is below 

𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡) while computing 𝐶𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡, 𝜗). 

Certain undesirable mathematical properties make VaR a non-coherent measure of risk 

(Artzner et al., 1999; Rockafellar & Uryasev, 2000). In addition, VaR is often criticized for 

offering no information on the risks above the defined percentile (Kidd, 2012). Thus, CVaR is 

minimized with the defined ϑ in this study using the stochastic model developed in section 2.4.1. 

Equation (2-32) represents the objective function of the CVaR minimization model (referred as 

Model 2 hereafter).   
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡, 𝜗) =
∑ ∅(𝑠)𝑠∈𝑆 × 𝑝𝑟𝑜𝑏(𝑠)

1 − 𝜗
+ 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡).                                 (2 − 32) 

Subject to 

∅(𝑠) ≥ 𝐶𝑜𝑠𝑡(𝑠) − 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡), ∅(𝑠) ≥ 0, 𝑉𝑎𝑅𝜗(𝐶𝑜𝑠𝑡) ≥ 0.                                                (2 − 33)    

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2 − 23) − (2 − 31).                                                                                                  (2 − 34)    

General Algebraic Modeling System (GAMS) is used to solve two-stage stochastic MILP for 

two different objectives (Rosenthal, 2008).   

2.4.3. Estimating Impact of BCAP Subsidies    

The subsidies corresponding to 50% of amortized establishment costs and amortized value of 5-

year annual subsidies corresponding to land rents are introduced as offered in the BCAP. The 

matching payment is documented ineligible for switchgrass in the BCAP. Stochastic 

optimization outputs with and without BCAP are compared to see the effect of incentives on 

optimal land allocation and biorefinery configuration. A discount rate (𝑟1) of 15% for 

annualizing establishment cost (Yu et al., 2014), and another discount rate (𝑟2) of 7.5% for 

annualizing land rent payment (Dolginow et al., 2014) for a time-period (T) of 10 years is used. 

𝐴𝐸𝑃 =
1

2
[

𝐴 × 𝑟1
1 − [1 + 𝑟1]−𝑇

], 

where AEP is the annualized establishment payment, and A is the per hectare establishment cost.   

𝐴𝑅𝑃𝑖ℎ =
5 × 𝑅𝑖ℎ × 𝑟2
1 − [1 + 𝑟2]−𝑇

 , 

where 𝐴𝑅𝑃𝑖ℎ is the annualized land rent payment, and 𝑅𝑖ℎ is the per hectare land rent for land 

unit i with crop type h. 
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2.5. Data 

Optimization framework for establishing switchgrass-based bioethanol industry in west 

Tennessee uses high resolution 5 square mile level data showing considerable spatial variation in 

yield with uncertain feedstock yields. Table 2-A2 presents the sources of cost1 related data on 

switchgrass-based ethanol production in west Tennessee.  

The primary purpose of this study is to model yield variability in switchgrass 

corresponding to weather uncertainty. Statistical analysis of the field trial datasets suggests that 

there is considerable variability in switchgrass yields corresponding to variation in weather 

variables (Fike et al., 2006; Gunderson et al., 2008; Heaton et al., 2004; Jager et al., 2010; 

Thomson et al., 2009; Wullschleger et al., 2010). Matured yield of switchgrass from field trials 

between 2006 and 2011 at west Tennessee (Boyer et al., 2013; Boyer et al., 2012) is considered 

to generate yield uncertainty scenarios. Equally spaced yield intervals are created, and each 

interval is assumed a scenario with probability obtained from the frequency distribution of yield 

under that scenario. Taking each interval’s mean and standard deviation together with the 

truncation limits, yields are simulated assuming normal distribution to match the number of 

spatial units under each scenario. 

Fifteen different yield scenarios are used in optimization for each of the two-stage 

stochastic models (Table 2-A3). An increased number of scenarios (sample size) allows 

flexibility of choosing the risk-aversion parameter (𝜗-percentile) and improves reliability of the 

CVaR estimate as CVaR is more sensitive to estimation errors than the corresponding VaR 

(Yamai & Yoshiba, 2005).  

                                                           

1 All the monetary values are defined in 2015 U.S. dollars. 
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Spatial yield variation under each yield scenario is mapped per the simulated spatial 

variation in switchgrass yields across U.S. (Jager et al., 2010). Potential sites for biorefinery and 

switchgrass establishment are shown in Figure 2-A1. A total of 18 land resource units (industrial 

parks) are identified as candidates for establishing biorefineries. Each spatial unit can have a 

biorefinery with either 189 million liters per year (MLY) or 378 MLY capacity. Similarly, 1936 

spatial units (existing agricultural lands) are eligible for switchgrass cultivation replacing current 

crops. An annual demand of 1.1 billion L ethanol for west Tennessee is considered (Yu et al., 

2016). A biomass-to-ethanol conversion efficiency of 304 L/Mg for switchgrass is used in the 

analysis. Configuration of biorefinery with pre-determined capacity is the first-stage binary 

decision variable whereas amount of land required for switchgrass cultivation is the first-stage 

continuous decision variable in the model. All the first-stage (strategic) and second-stage 

(operational) decisions are driven by the biofuel demand constrained by yield uncertainty. 

2.6. Results and Discussions 

2.6.1. Influence of Risk Preference over Supply Chain Decisions 

Stochastic optimization incorporating feedstock yield uncertainty in terms of E(cost) 

minimization under the assumption of risk neutrality and CVaR(cost) minimization under the 

assumption of risk averse nature of biofuel industry are evaluated for the optimal supply chain 

decisions. The optimal costs and related yield uncertainty by scenario for both the models is 

presented in Table 2-A4. The lowest costs for the E(cost) minimization model (Model 1) 

correspond to yield scenarios with highest probabilities i.e. S5 and S6, as the investment 

decisions are based on risk neutrality assumption. On the other hand, scenarios with lower yields 

but higher costs in Model 1 i.e. S3 and S4, are prioritized in CVaR(cost) minimization model 

(Model 2) considering the cost risks associated with those scenarios (Table 2-A4).  
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The CVaR(Cost) minimization is implemented with 𝜗 equal to 95% where VaR(Cost) 

represents the value corresponding to 95th percentile of the cost distribution. The number of yield 

scenarios at and above VaR(Cost) of the cost distribution under Model 1 and Model 2 is three 

and seven, respectively (Figure 2-A2). The increased number of scenarios at and above the 95th 

percentile implies the risk associated with scenarios with high costs has been effectively reduced 

when the system risk is minimized in the stochastic model. Since Model 2 minimizes the 

weighted average of the cost at defined percentile and the expectation of the costs exceeding that 

percentile, VaR(Cost) is simultaneously determined in CVaR(Cost) minimization. In addition, 

several scenarios have identical optimal cost in Model 2 as it only minimizes the risk at and 

above VaR(Cost) with less control over the scenarios that fall below the 95th percentile of the 

distribution (Yamout et al., 2007).  

The E(Cost) from Model 1 is $1,124 million compared to $1,249 million from Model 2. 

The VaR(Cost) under Model 1 and Model 2 is $1,360 million and $1,243 million, respectively. 

Although the E(Cost) is higher in Model 2 but its VaR(Cost) is $117 million lesser than the same 

in Model 1 (see Figure 2-A2). Consequently, CVaR(Cost) is reduced to $1,358 million in Model 

2 through risk minimization compared to $1,441 million in Model 1. 

2.6.1.1. Optimal Investment Decisions in Models 1 and 2 

Optimal land allocation for switchgrass cultivation and configuration of biorefinery under 

E(Cost) and CVaR(Cost) minimization are shown in Figures 2-A3 and 2-A4, respectively. 

Considerable spatial variation in switchgrass yield appears across potential cultivation sites in all 

yield scenarios. Configuring biorefineries near the high yield sites reduces the biomass 

transportation cost but increases the biofuel transportation cost to blending facility which is one 
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of the plausible explanation for the observed optimal locations for the biorefineries under both 

the objectives.  

An important consideration in land selection is the opportunity cost of each crop which 

determines the specific area under each crop and pasture (or hay) land that goes into switchgrass 

cultivation. Selection of land under food crops entails higher opportunity costs compared to 

pasture which explains the reason behind both models selecting considerable hectares from 

pasture land. Land under proximal food crops is selected only after the difference in biomass 

transportation costs between distant pasture fields and proximal crop lands exceeds the 

opportunity costs difference between the crop and pasture land. 

Model 2 selected more land for switchgrass cultivation compared to Model 1 because 

CVaR(Cost) minimization reduces the risk associated with unfavorable scenarios (low yield 

scenarios in general). Land usage under crop lands increased from 14 to 43 thousand hectares 

whereas land usage under pasture lands increased from 265 to 324 thousand hectares after risk 

minimization. In other words, cost associated with low yield scenarios is minimized by lowering 

the penalty on biofuel shortage. Model 1, on the other hand, simply minimizes the cost on 

average given the yield scenarios and does not necessarily prioritize the unfavorable scenarios 

since the investment decisions are based on risk neutrality assumption.  

Since Model 2 tried to minimize the high supply-chain costs associated with low yield 

scenarios by allocating more land for feedstock production, it incurred higher opportunity, and 

maintenance costs proportional with higher establishment costs as well as higher expected 

harvest, and storage costs compared to Model 1 (Table 2-A5). However, Model 1 has higher 

expected biomass (and biofuel) transportation costs, grinding costs associated with feedstock 
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conversion, and biorefinery operation costs. Model 2 incurred larger expected penalty on biofuel 

shortage compared to Model 1.  

2.6.1.2. Optimal Operational Decisions in Models 1 and 2 

The model with the objective of CVaR(Cost) minimization reduced shortage associated with 

high costs corresponding to low yield scenarios (at and above 95th percentile cost distribution 

from E(Cost) minimization). Higher costs corresponding to larger shortages2 in Model 1 are 

lowered down considerably by CVaR(Cost) minimization in Model 2 (Figure 2-A5). To achieve 

these reductions, more hectares of switchgrass are cultivated as biofuel shortages correspond to 

lower feedstock yields. 

Land selection for switchgrass cultivation is a strategic level decision variable and more 

of it under Model 2 automatically increased storage costs and surpluses associated with 

individual scenarios except for the low yields (Figure 2-A6). Shortages or surpluses under 

alternate cost scenarios in Model 1 are mutually exclusive (see Figures 2-A5 and 2-A6), which 

however is not necessary under Model 2.    

2.6.2. Influence of BCAP Subsidies over Supply Chain Decisions  

2.6.2.1. Model 1 Output with and without BCAP Subsidies 

With BCAP subsidies in effect, E(Cost), VaR(Cost), and CVaR(Cost) in Model 1 decreased to 

$1,081 million, $1,318 million, and $1,399 million, respectively. Cost components affected by 

BCAP subsidies in E(Cost) minimization model are presented in Figure 2-A7. Gross3 

opportunity cost of land use increased from $20 million to $30 million under subsidies. A 

                                                           

2 A penalty of $1.32/L is applied on the biofuel shortage. This parameter is carefully chosen to avoid non-optimal 

outcomes such as no production or forced production. 
3 If opportunity cost has not been subsidized with annualized land rent payment from BCAP. 
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considerable drop is shown in expected biomass transportation cost, from $62 million to $56 

million, with a slight decrease in expected biofuel transportation cost with BCAP.  

The selection of biorefinery locations and land use in the strategic level decision varied 

with and without BCAP (Figure 2-A8 vs. Figure 2-A3). It is cost effective to select proximal 

crop lands if the difference between the opportunity cost from crop lands and the opportunity 

cost from pasture fields is smaller than the difference between biomass transportation cost from 

distant pasture fields and the biomass transportation cost from proximal crop lands. With 

BCAP’s annual land rent payments, the difference in the net4 opportunity costs became smaller 

than the difference in the opportunity costs without the BCAP subsidies. Consequently, more 

hectares under proximal crop lands with higher gross opportunity costs is selected (Figure 2-A8) 

which lowered E(Cost) primarily because of the reduced biomass transportation costs (Case 1 in 

conceptual framework). Land usage under crop lands increased from 14 to 73 thousand hectares 

whereas land usage under pasture lands decreased from 265 to 205 thousand hectares with BCAP 

subsidies. 

2.6.2.2. Model 2 Output with and without BCAP Subsidies 

The E(Cost), VaR(Cost), and CVaR(Cost) of Model 2 lowered to $1,181 million, $1,175 million, 

and $1,299 million, respectively, when BCAP subsides are incorporated in decision-making. The 

relevant cost components from CVaR(Cost) minimization under BCAP are summarized in 

Figure 2-A9. An increment in gross opportunity cost of land use from $31 million to $58 million 

is observed with BCAP subsidies. Expected biorefinery operation cost increased from $332 

million to $342 million with subsequent increase in expected biofuel transportation cost from 

                                                           

4 Difference between gross opportunity cost and annualized land rent payment. 
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$23 million to $30 million under BCAP. A major drop in the expected biofuel shortage cost from 

$153 million to $115 million is achieved through substantial reduction in biofuel shortage across 

the low-yield scenarios with BCAP subsidies. 

With the BCAP subsidies considered in strategic level decisions, biorefinery locations as 

well land use choice for feedstock cultivation appeared vastly different compared to the one 

without it (Figure 2-A10 vs. Figure 2-A4). The land use selection concentrated in the northern 

region with higher feedstock yields with a major increment in the crop land use under BCAP. An 

increment in crop land use from 43 to 152 thousand hectares is accompanied by a decrement in 

pasture land use from 324 to 208 thousand hectares with the BCAP subsidies. Since the higher 

feedstock yields correspond to higher gross opportunity cost lands (northern region of west 

Tennessee), Model 2 under BCAP subsidies facilitated land selection with higher yields even 

though they correspond to higher gross opportunity costs (Figure 2-A10). As the shortage 

associated with low yield scenarios is minimized by selecting land with higher yields, there is 

subsequent reduction in CVaR(Cost) which represents the expected cost at and above 95th 

percentile of distribution (Case 2 in conceptual framework). The tradeoff of the difference 

between biomass transportation costs and the difference between net opportunity costs amongst 

the crop and pasture lands is still relevant as in the case of Model 1.  

2.6.3. Comparison of Models with and without BCAP Subsidies 

Figure 2-A11 shows BCAP subsidies lowered E(Cost) by 3.86 and 5.41 percent in Models 1 and 

2, respectively. Similarly, CVaR(Cost) associated with Models 1 and 2 reduced by 2.89 and 4.36 

percent, respectively. Model 2 minimized the high costs associated with lower yield scenarios, 

which led to use of more land for feedstock cultivation. Additional land use in Model 2 ensured 

more establishment and annual land rent payments to the biofuel sector under BCAP. Thus, both 
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the E(Cost) and CVaR(Cost) are lowered by a higher percent in Model 2 compared to Model 1 

(Figure 2-A11).  

2.7. Conclusions 

This study evaluated impacts of federally subsidized BCAP on optimal decisions of a 

switchgrass-based biofuel sector under feedstock yield uncertainty while addressing both the risk 

neutral and more conventional risk averse nature in terms of supply-chain cost minimization. A 

two-stage stochastic MILP is developed to minimize the expected system cost which considers 

allocation of land for switchgrass cultivation together with biorefinery facility location in the 

strategic level investment decisions. Furthermore, the E(Cost) minimization model, which 

assumes risk neutrality, is extended to CVaR(Cost) minimization model considering the risk 

averse nature of the biofuel sector under uncertainty of high costs.  

Applicability of the stochastic model is illustrated through a case study in west 

Tennessee. The CVaR(Cost) minimization model selected more land for switchgrass cultivation 

compared to the E(Cost) minimization model as CVaR(Cost) minimization reduces the cost 

associated with unfavorable (low yield) scenarios. With the introduction of BCAP subsidies, 

crop land use increased whereas pasture land selection decreased. However, land selection is 

more responsive to BCAP subsidies in CVaR(Cost) minimization model compared to E(Cost) 

minimization model. The necessity to reduce shortage associated with high costs in CVaR(Cost) 

minimization model is favored by allowing land selection with higher spatial yields. 

Furthermore, higher spatial yields mostly correspond to lands with higher opportunity costs 

which are effectively reduced after BCAP land rent payments. More land usage for feedstock 

cultivation in CVaR(Cost) minimization model meant larger subsidies under BCAP. 
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Consequently, both the E(Cost) and CVaR(Cost) are reduced by a higher percent in CVaR(Cost) 

minimization model compared to E(Cost) minimization model with the BCAP subsidies. 

The expected costs of supplying biomass to the biorefinery are $80 and $102/Mg for 

E(Cost) and CVaR(Cost) minimization models, respectively, which are lowered down to $68 and 

$89/Mg, respectively, with the BCAP subsidies. From the supply-chain perspective, the expected 

costs of biofuel delivery to the blending facility are $1.02 and $1.13/L for E(Cost) and 

CVaR(Cost) minimization models, respectively. With the BCAP subsidies, the expected biofuel 

delivery costs reduced to $0.98 and $1.07/L for E(Cost) and CVaR(Cost) minimization models, 

respectively. The costs in this study are higher compared to the findings in other stochastic 

studies mainly because of the incorporated risk, feedstock type, storage (including surplus) cost 

and shortage penalty. For example, Huang et al. (2014) and Chen & Fan (2012) estimated 

expected delivery price of biofuel using corn stover (and forest residue) to be $2.05/gallon 

($0.54/L) and using cellulosic waste around $1.20/gallon ($0.32/L), respectively. 

In this study, BCAP subsidies induced crop land into feedstock cultivation improving 

both the economics and the associated risk of the biofuel sector. More importantly, the annual 

land rent payments sufficiently lowered the opportunity costs of crop land thus making its 

conversion economically feasible. One major environmental benefit of using crop land for 

switchgrass cultivation instead of pasture land is the reduced GHG emissions associated with net 

carbon sequestration (Yu et al., 2016; Zhong et al., 2016). However, one of the reasons for 

exploring switchgrass as a bioenergy source is its potential to adapt to less fertile soils with 

minimal competition with the food crops. The agricultural land used for switchgrass cultivation 

has its demerits with respect to resource competition and increased food prices as consistently 

raised in “food vs fuel” debates for crop-based energy production (Fargione et al., 2008; Mallory 
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et al., 2011; Searchinger et al., 2008). The crop land use decisions of the biofuel sector with the 

BCAP subsidies are amplified in this study which is a major unintended consequence of such 

policy supports. 

Considering the investment risk associated with switching well-established agricultural 

crops into perennial energy crops for achieving cellulosic biofuel mandates, this study provided 

economic assessment of the impacts of federally subsidized biomass programs on the investment 

decisions (including land allocation) of a risk-sensitive biofuel industry under feedstock supply 

uncertainty. One novel feature of this study is the use of experimental data collected from field 

trials in west Tennessee for generating probabilistic yield scenarios rather than assuming a 

random uniform distribution, common in stochastic optimization. However, field data has its 

caveat in limiting number of scenarios which is a compromise on the accuracy of decisions under 

Conditional Value-at-Risk minimization. On the other hand, computational complexity reduced 

the scope of the study to an annualized two-stage analysis i.e. perennial nature of the feedstock 

could not be modeled. A multi-stage expansion of the adopted modeling framework exploiting 

the dynamics of the logistic operations under uncertainties over a planning horizon capturing the 

entire life cycle of switchgrass will be an insightful improvement of this work. 
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Appendices 

Table 2-A 1: Definitions of identifiers, parameters and variables 

Category Unit Definition 

Identifiers    

i ϵ I  location of switchgrass production field 

j ϵ J   location of the biorefinery facility 

b ϵ B   location of the blending facility 

g ϵ G  annual capacity of conversion facility 

m ϵ M  season of the year 

Mon ϵ M  harvest season of the year 

Moff ϵ M  off-harvest season of the year 

h ϵ H  crop (pasture/hay, corn, soybean, wheat, sorghum, cotton) 

s ϵ S  uncertainty scenario for switchgrass yield 

x   switchgrass  

Parameters   

Pih $/Mg crop price  

Yih Mg/ha crop yield 

Cih $/ha production cost of crop 

Yixs Mg/ha yield of switchgrass in each hexagon 

Rih $/ha land rent of crop 

𝛼 $/ha amortized establishment cost of switchgrass field 

𝛽𝑖ℎ $/ha opportunity cost of switchgrass cultivation 

AM $/ha annual maintenance cost of switchgrass field 

𝜇g $/plant amortized investment cost of conversion facility 

𝜔 $/ha annual harvest cost for switchgrass 

𝛾  $/Mg cost per unit of storing switchgrass 

θ $/Mg cost per unit of transporting switchgrass 

𝜌 $/L biorefinery operation cost 

𝛿 $/L biofuel transportation cost 
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Table 2- A1 Continued 

Category Unit Definition 

DT % dry matter loss during transportation 

Aih ha cropland available in each hexagon for each crop 

DS % dry matter loss during storage 

𝜎 L/Mg switchgrass-ethanol conversion rate 

𝛥𝑚𝑗𝑔 L/season seasonal biofuel production capacity of biorefinery 

Dm L/season seasonal demand for ethanol 

Ω $/L penalty on biofuel shortage 

Prob(s)   probability associated with each yield scenario 

Variables   

zjg  binary variable: 1 for biorefinery selection, 0 otherwise 

Xih ha switchgrass area harvested during harvest season  

XNSis Mg switchgrass not stored at the harvest site after harvest 

XSis Mg switchgrass stored at the harvest site after harvest 

XOmijs Mg switchgrass delivered to the biorefinery each season 

Surplusis 

Shortagems  

Mg 

L   

switchgrass stored as harvest surplus after meeting demand 

demand shortage of biofuel in each season 

XOmjbs L fuel transported from biorefinery to blending facility 
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Table 2-A 2: Data source 

Category Source 

Land conversion to switchgrass  

Land rents USDA NASS (U.S. Department of Agriculture, 2013-2015) 

Crop yields USDA, SSURGO (U.S. Department of Agriculture Nature 

Resources Conservation Service, 2012) 

Crop price and area USDA NASS (U.S. Department of Agriculture, 2013-2015) 

Crop production cost 

 

Switchgrass yield 

USDA ERS (U.S. Department of Agriculture, 2015), 

POLYSIS (Ugarte & Ray, 2000) 

Boyer et al. (2013), Boyer et al. (2012), Jager et al. (2010) 

Switchgrass production and 

harvest cost 

Larson et al. (2010), University of Tennessee (2015) 

Production  

Establishment American Agricultural Economics Association (2000) 

Annual maintenance American Society of Agricultural and Biological Engineers 

(2006) 

Harvest  

Fuels and labors University of Tennessee (2015) 

Storage  

Covers and pallets University of Tennessee (2015) 

Transport  

Trailer, fuel and labor University of Tennessee (2015) 
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Table 2-A 3: Yield scenario generation  

Scenario Yield (Mg/ha) Prob. 

S1 2.22 ≤ ψ* < 4.67 0.005 

S2 4.67 ≤ ψ < 7.12 0.016 

S3 7.12 ≤ ψ < 9.59 0.067 

S4 9.59 ≤ ψ < 12.03 0.124 

S5 12.03 ≤ ψ < 14.48 0.159 

S6 14.48 ≤ ψ < 16.93 0.220 

S7 16.93 ≤ ψ < 19.37 0.183 

S8 19.37 ≤ ψ < 21.84 0.118 

S9 21.84 ≤ ψ < 24.29 0.063 

S10 24.29 ≤ ψ < 26.69 0.023 

S11 26.69 ≤ ψ < 29.16 0.009 

S12 29.16 ≤ ψ < 31.63 0.007 

S13 31.63 ≤ ψ < 34.10 0.002 

S14 34.10 ≤ ψ < 36.57 0.002 

S15 36.57 ≤ ψ ≤ 39.04 0.002 

*Denotes spatial yield.   
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Figure 2-A 1: Potential biorefinery location and feedstock cultivation site 

 

Table 2-A 4: Optimal costs in Models 1 and 2 

Cost* C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Model 1 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S4 S15 S3 S2 S1 

Model 2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S2 S1 

* Ranked in the ascending order. 

Note: Models 1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. 
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Figure 2-A 2: Cumulative density function (CDF) of optimal costs in Models 1 and 2 
Note: Cost1 and Cost2 denotes optimal costs associated with yield scenarios for the Models 1 and 2, respectively. 

CDF1 and CDF2 denotes cumulative density of the optimal costs for the Models 1 and 2, respectively where Models 

1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. 

 

 

Table 2-A 5: Annualized cost components in Models 1 and 2 

Annualized variables Unit Model 1 Model 2 

Biorefinery investment cost Million $ 326 326 

Feedstock establishment cost Million $ 49 64 

Opportunity cost Million $ 20 31 

Maintenance cost Million $ 36 47 

E(Harvest cost) Million $ 101 133 

E(Storage cost) Million $ 22 32 

E(Grinding cost) Million $ 49 47 

E(Biomass transportation cost) Million $ 62 61 

E(Biofuel transportation cost) Million $ 25 23 

E(Biorefinery operation cost) Million $ 350 332 

E(Shortage penalty cost) Million $ 85 153 

Note: Models 1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. E is the expectation 

operator. 

α=95%(CDF2) α=95%(CDF1)

VaR1=1360

VaR2=1243

0

250

500

750

1000

1250

1500

1750

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C
o

st
 (

M
il

li
o

n
 $

)

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y

Cost

CDF2 CDF1 Cost1 Cost2



 

57 
 

 

Figure 2-A 3: Optimal investment decisions in Model 1 
Note: Model 1 represents E(Cost) minimization model. 

 

 

Figure 2-A 4: Optimal investment decisions in Model 2 
Note: Model 2 represents CVaR(Cost) minimization model. 
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Figure 2-A 5: Shortage in Models 1 and 2 
Note: Small and large insets capture 95th percentile and above cost distribution for Models 1 and 2, respectively 

where Models 1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. 

 

 

 

Figure 2-A 6: Surplus in Models 1 and 2 
Note: Small and large insets capture 95th percentile and above cost distribution for Models 1 and 2, respectively 

where Models 1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. 
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Figure 2-A 7: Annualized cost components in Model 1 with and without BCAP 
Note: Gross opportunity and feedstock establishment costs refers to the costs if establishment and opportunity costs 

have not been subsidized with annual establishment and land rent payments, respectively, from BCAP. Model 1 

represents E(Cost) minimization model. E is the expectation operator. 

 

 

Figure 2-A 8: Optimal investment decisions in Model 1 with BCAP 
Note: Model 1 represents E(Cost) minimization model. 
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Figure 2-A 9: Annualized cost components in Model 2 with and without BCAP 
Note: Gross opportunity and feedstock establishment costs refers to the costs if establishment and opportunity costs 

have not been subsidized with annual establishment and land rent payments, respectively, from BCAP. Model 2 

represents CVaR(Cost) minimization model. E is the expectation operator. 

 

 

Figure 2-A 10: Optimal investment decisions in Model 2 with BCAP 
Note: Model 2 represents CVaR(Cost) minimization model. 
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Figure 2-A 11: Change in objective values with BCAP subsidies in Models 1 and 2 
Note: Models 1 and 2 represent E(Cost) and CVaR(Cost) minimization models, respectively. 
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Chapter III. Welfare Analysis of Carbon Credits to the Renewable Jet Fuel 

Sector: A Game-theoretic Perspective 
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Abstract  

Renewable jet fuel (RJF) has been considered as a potential approach to mitigate greenhouse gas 

(GHG) emissions from the aviation sector; however, development of a commercial scale RJF 

sector still needs more stimulus. Provision of tradable carbon credits could be one of the ways 

for promoting an emerging environment friendly product like RJF. This study presents economic 

and environmental analysis of commercial scale RJF production from switchgrass-based alcohol-

to-jet (ATJ) pathway in west Tennessee using a game-theoretic model that accounts for potential 

economic interaction between feedstock producers and RJF processor. Results indicate supplying 

136 million gallons of RJF to the Memphis International Airport annually can potentially reduce 

62.5% of GHG emissions compared to conventional jet fuel (CJF), with a net welfare of $4.3 

million. In addition, GHG emissions could be lowered by about 65% from displacing CJF given 

hypothetical carbon credits of $11.58 to 42.56 per ton of CO2-equivalent (CO2e), which 

generated an estimated net welfare ranging between $17 and 55 million. 

 

Keywords Carbon credit, GHG emissions, renewable jet fuel, Stackelberg, welfare 
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3.1. Introduction 

Increasing air transportation driven by globalization has led to substantial increase in aviation 

fuel consumption and subsequent GHG emissions (Singh & Sharma, 2015). The International 

Air Transport Association (IATA) (2017a) estimates that about 815 million tons of CO2e 

emissions were produced from global aviation in 2016 and predicts the passenger travel by air 

will double between 2016 and 2035. Given the continuously increasing consumption of jet fuel, 

the aviation industry is under political and public pressure to alleviate its GHG emissions. 

Therefore, IATA (2015) has set up clear aviation targets of carbon neutral growth by 2020 and 

reduction of GHG emissions by 50% by 2050 compared to the 2005 level. Members of the 

International Civil Aviation Organization (ICAO) have agreed to a new global market-based 

measure to achieve the short-term goals on carbon neutrality and the long-run goals of reduced 

global carbon emissions (Wyman, 2017). 

Among various potential approaches to mitigate GHG emissions from the aviation sector, 

utilization of RJFs produced from agricultural and forestry residues, energy crops, or municipal 

wastes has a crucial role in meeting the ambitious goal of GHG emissions reduction (Fellet, 

2016). The potentials of using RJF for GHG emissions mitigation have also been examined in 

various technical reports (Elgowainy et al., 2012; Wang et al., 2016). The “drop-in” nature of the 

RJF allows safe deployment with existing aircrafts without modifying engine designs or other 

engineering aspects (IATA, 2017b). In addition, Moore et al. (2017) showed that using jet 

biofuels can reduce the volatile and non-volatile particle number and mass emissions by 50-70% 

compared to CJF. Some commercial airlines have already adopted RJF in their flights and the 

volume of RJF purchased by the U.S. commercial aviation sector has increased from nearly none 

in 2015 to over a million gallons in 2016 (FAA, 2017).  
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Despite the potentials for GHG emissions reduction from adopting RJF, development of a 

commercial scale RJF sector still needs more stimulus to expedite the pace of abating GHG 

emissions from the aviation sector. Provision of tradable carbon credits could be one of the ways 

for promoting an emerging environment friendly product like RJF (Luo & Miller, 2013). Carbon 

credits can be allocated in ways similar to the emission offset credits issued by California Cap-

and-Trade program or the RIN credits provisioned by the U.S. EPA. Those carbon credits can 

work like the RIN credits that are bought by registered blenders to ensure the compliance of a 

target or mandates. Alternatively, the federal agency may issue GHG emission permits to the 

processors of RJF and those permits can be traded in the hypothetical carbon market to generate 

carbon credits.  

Current studies related to RJF have primarily focused on holistic approach of economic 

assessment of various conversion technologies of RJF (Bann et al., 2017; Diederichs et al., 2016; 

Mawhood et al., 2014; Natelson et al., 2015; Reimer & Zheng, 2016; Tao et al., 2017; Yao et al., 

2017). Several researches have examined the environmental metrics related to the life cycle of 

RJF (de Jong et al., 2017; Han, Tao, & Wang, 2017). Only a few have attempted to integrate life 

cycle analysis (LCA) with economic assessment in the evaluation of RJF (Staples et al., 2014; 

Winchester et al., 2015; Winchester et al., 2013). Except for Reimer and Zheng (2016), the 

impact of policy or provision, such as carbon credits, on GHG emissions and costs of RJF 

production have not been addressed in those studies. Understanding the economic and 

environmental impacts of carbon credits provide important insights of policy mechanism on 

aviation GHG emissions reduction. 

One key element that has been generally neglected in the previous economic or integrated 

analysis of RJF is the potential interaction between renewable feedstock producers and RJF 
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processors along with its welfare implication. The biomass feedstock, such as perennial grass, 

cover crops, or forest residues, are typically not traded in the market. Therefore, it is important to 

incorporate feedstock producers’ decision process in allocating their scarce resources, such as 

land, when assessing the economics of RJF. Economic objectives of individual feedstock 

suppliers determine the feedstock acquisition costs for the processor, which accounts for a large 

portion of processor’s variable cost of supplying RJF (Agusdinata et al., 2011). Eventually, the 

processor’s profitability shapes its decision to negotiate a price with the interested airlines before 

agreeing on the amount of RJF to be produced and delivered. As a result, the market price of RJF 

produced from a given feedstock-based conversion technology is a consequence of individual 

decisions and probable competition amongst the supply chain participants.  

Since the advent of RJF is primarily a response of the aviation industry to the goal of 

reduced GHG emissions, assessment of the welfare associated with RJF needs to account for the 

environmental benefits of reduced emissions. The feedstock and RJF prices, an outcome of 

economic motives and market interaction between decision-makers along the supply chain, is 

imperative in determining the welfare while internalizing the social costs of aviation GHG 

emissions (Reimer & Crandall, 2018). In addition, taking into account the spatial characteristics 

of the feedstock production and transportation is crucial to the estimation of GHG emissions as 

GHG footprint in the supply chain may vary greatly given different geographic conditions such 

as soil quality and road network (Jäppinen et al., 2011; Yu et al., 2016). Thus, incorporating high 

resolution spatial information for the RJF supply chain can better realize its environmental 

outcome and associated welfare. 

The objective of this study has three-folds: first, the impacts of the commercial-scale RJF 

production on farmland allocation, processing facility configuration, and GHG emissions is 
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determined considering competitive interaction among the feedstock producers and the RJF 

processors. Second, the welfare of a hypothetical carbon credit as a policy instrument for 

incentivizing the GHG emission reductions from the RJF section is identified. Third, the 

abatement cost of LCA-based GHG emissions from displacing CJF with RJF is assessed. This 

study improved on the relevant literature by estimating economic and environmental metrics of 

commercial-scale RJF production accounting for the potential economic interaction between the 

supply-chain participants. Furthermore, land allocation of the feedstock producers is explicitly 

evaluated by using a high spatial resolution data. The findings will provide researchers, the 

industry and policy makers more insights of the potential economic and environmental impacts 

of developing a commercial scale RJF for aviation industry. 

3.2. Literature Review 

Renewable jet fuel literature has primarily focused on assessing the economic performance of the 

conversion technologies while estimating the incentives required to make RJF cost-competitive 

with the CJF. The break-even price or minimum selling price (MSP) varies greatly given 

different conversion technologies. Using stochastic dominance approach, Yao et al. (2017) found 

the mean break-even prices of $3.65 to 5.21 per gallon from various feedstock using the ATJ 

pathway; whereas Tao et al. (2017) estimated the MSP of $4.20 to 6.14 per gallon of RJF 

associated with the ethanol-to-jet (ETJ) upgrading technique. Bann et al. (2017) calculated the 

MSPs of Hydro-processed Esters and Fatty Acids (HEFA) and Fischer-Tropsch (FT) conversion 

pathways, and determined the price ranging between $0.66 and 1.42 per liter ($2.50 and 5.38 per 

gallon) of RJF. Zhao, Brown, and Tyner (2015) applied stochastic dominance rank study to 

identify the lowest break-even price for RJF at $3.11 per gallon of gasoline equivalent. Reimer 

and Zheng (2016) evaluated potential policy mechanisms to make RJF price competitive with 
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CJF, and concluded that a 17% subsidy on RJF, a 20% tax on CJF, or a combined 9% subsidy on 

RJF and 9% tax on CJF would make RJF price equivalent to CJF. 

With regard to estimating the potential environmental gains of using RJF, other studies 

have used LCA methodology alone or in conjunction with economic analysis. Han et al. (2017) 

and de Jong et al. (2017) estimated the GHG reduction potential of various feedstock conversion 

pathways to be in the range of 16 to 80% compared to CJF. Staples et al. (2014) calculated GHG 

footprint of RJF produced from Advanced Fermentation (AF) pathway and suggested RJF’s 

GHG emissions in the range of -27.0 to 89.8 gCO2e/MJ given the MSPs of $0.61 to 6.30 per liter 

($2.31 to 23.85 per gallon) from different feedstocks, compared to 90.0 gCO2e/MJ of CJF. 

Winchester et al. (2013) and Winchester et al. (2015) assessed the implicit subsidy required for 

RJF production from oilseed rotation crops and perennial energy crops via HEFA and AF, 

respectively, and suggested the cost of aviation emission reduction ranging from $42 to 

652/tonCO2e. 

Although existing literature on renewable jet fuel has analyzed economic feasibility of 

RJF production along with emission abatement costs, possible economic interaction among the 

supply chain decision-makers and the related welfare has not been considered. The market-

oriented approach accounting for competitive interaction between the supply chain participants, 

however, has been applied to the literature of the supply chain optimization of biofuels (Bai, 

Ouyang, & Pang, 2012; Yue & You, 2014, 2017). In addition, few studies have analyzed the 

welfare implications of alternative government policies on biomass, biofuel and RIN markets 

accounting for probable interactions between the supply chain participants (Bai, Ouyang, & 

Pang, 2016; Wang et al., 2013). Those studies provided better insights on the economics of 

biofuels by addressing more realistic interactions of the supply-chain participants compared to 
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the integrated approach in the existing literature of biofuels. However, they did not consider the 

environmental performance of biofuels in terms of LCA-based GHG emissions estimation, 

which is crucial in justifying the use of biomass-based renewable energy. On the other hand, 

those studies primarily used aggregated geospatial data assuming counties as the individual 

decision makers supplying feedstock in response to the market prices. 

3.3. Conceptual Framework 

Assuming both feedstock producers (farmers) and the RJF processor aim to maximize their 

respective profits in a non-cooperative manner, the RJF processer decides on the optimal number 

and configuration of the processing facilities considering the profit maximizing behavior of the 

spatially distributed farmers. This leads to a non-cooperative Stackelberg game (bi-level profit 

maximization) where the processer acts as a leader with farmers as multiple followers. The 

underlying assumption of the leader-follower game is that the processor anticipates that the 

farmers act rationally, implying each farmer maximizes its profits in response to the feedstock 

prices offered at the processing facilities while anticipating similar responses of other farmers.  

Considering a lignocellulosic feedstock without a well-established market (switchgrass in 

this study), the profit maximization problem of the farmers is formulated as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒:⏟      
𝒙𝒊=[𝑥ℎ𝑖]ℎ∈𝐻

𝒒𝒊=[𝑞𝑖𝑗𝑚]𝑗∈𝐽𝑚∈𝑀

𝜋𝑖 = ∑ ∑ (𝑝𝑗 − 𝜑𝑖 − 𝜃𝑖𝑗) 𝑞𝑖𝑗𝑚𝑚∈𝑀𝑗∈𝐽 − ∑ (𝛼 + 𝛽ℎ𝑖)𝑥ℎ𝑖ℎ∈𝐻 .                          (3 − 1)  

Subject to 

𝑥ℎ𝑖 ≤  𝑓ℎ𝑖  ∀  ℎ, 𝑖,                                                                                                                                    (3 − 2) 

∑ ∑  𝑞𝑖𝑗𝑚𝑚∈𝑀𝑗∈𝐽 = 𝑦𝑖 ∑  𝑥ℎ𝑖ℎ∈𝐻  ∀  𝑖,                                                                                               (3 − 3)  

𝜎(𝑞𝑖𝑗𝑚 + 𝑄−𝑖𝑗𝑚) ≤  𝛥𝑗𝑚  𝑧𝑗  ∀  𝑗, 𝑚,                                                                                                  (3 − 4) 



 

70 
 

where 𝑝𝑗  denotes feedstock price ($/ton) offered at the processing facility j , 𝜑𝑖 denotes feedstock 

production cost ($/ton) at site i, 𝜃𝑖𝑗 denotes transportation cost ($/ton) between i and j, 𝑞𝑖𝑗𝑚  

denotes feedstock supply quantity (tons) from i to j at time m, 𝛼 denotes annualized feedstock 

establishment cost ($/acre), 𝑥ℎ𝑖 denotes acreage of harvested feedstock from replacing existing 

crop h at site i, 𝛽ℎ𝑖  denotes opportunity cost ($/acre) for land use h at site i 𝑓ℎ𝑖 denotes available 

acreage under existing crop h at site i, 𝑦𝑖  denotes spatial feedstock yield (ton/acre) at site i, 𝜎 

denotes the feedstock-RJF conversion efficiency (gallon/ton), and 𝛥𝑗𝑚  denotes production 

capacity (gallons) of the processing facility j at time m. 

Similarly, the profit maximization problem of the processor is solved by determining 

feedstock procurement price and configuration of the processing facility. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⏟      
𝒑𝒋=[𝑝𝑗]𝑗∈𝐽
𝒛𝒋=[𝑧𝑗]𝑗∈𝐽

: 𝛱 = ∑ (∑ ∑ ((𝑝𝑘 − 𝛿𝑗𝑘)𝜎 ∑ 𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽 )𝑘∈𝐾 − ∑ ∑ (𝑝𝑗 ∑  𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽   

− 𝜌𝜎 ∑ ∑ (∑  𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽 − ∑ 𝑧𝑗𝜇𝑗.𝑗∈𝐽                                                                                      (3 − 5)  

Subject to 

𝑧𝑗 ∈ {0, 1} ∀  𝑗,                                                                                                                                       (3 − 6) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3 − 1) 𝑡𝑜 (3 − 4) ∀  𝑖,                                                                                                 (3 − 7) 

where 𝑝𝑘  denotes the RJF price ($/gallon) the processor received at airport k, 𝛿𝑗𝑘 denotes 

transportation cost ($/gallon) between j and k, 𝜌 denotes production cost ($/gallon) for 

processing facility, 𝑧𝑗 denotes binary variable of processing facility establishment at j, and 𝜇𝑗 

denotes amortized investment cost for processing facility j. 

The break-even cost for the farmer i delivering feedstock to processing facility j is: 
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𝑝𝑖𝑗
𝐵𝐸 =

∑ (𝜑𝑖 + 𝜃𝑖)𝑞𝑖𝑚
∗

𝑚∈𝑀 +∑ (𝛼 + 𝛽ℎ𝑖)𝑥ℎ𝑖
∗

ℎ∈𝐻

∑ 𝑞𝑖𝑚
∗

𝑚∈𝑀
. 

Assuming the farmer i supplies feedstock only if the profit is at least 𝑟1 % greater than 

either net returns from existing land use, or land rent, whichever is higher (i.e. opportunity cost), 

the price offered by the processing facility j that satisfies ith profit-maximizing farmer is: 

𝑝𝑗
∗ ≥

∑ (𝜑𝑖 + 𝜃𝑖)𝑞𝑖𝑚
∗

𝑚∈𝑀 + 𝛼∑ 𝑥ℎ𝑖
∗

ℎ∈𝐻 + (1 + 𝑟1)∑ 𝛽ℎ𝑖𝑥ℎ𝑖
∗

ℎ∈𝐻

∑ 𝑞𝑖𝑚
∗

𝑚∈𝑀
.                                            (3 − 8) 

Consequently, the break-even price for processing facility j delivering RJF to airport k is: 

𝑝𝑗𝑘
𝐵𝐸 =

 
𝑝𝑗
∗∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼𝑚∈𝑀 + 𝜌𝜎∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼 + 𝛿𝑗𝜎 ∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼𝑚∈𝑀 + 𝑧𝑗

∗𝜇𝑗𝑚∈𝑀

𝜎 ∑ ∑ 𝑞𝑖𝑚
∗

𝑖∈𝐼𝑚∈𝑀
.                    (3 − 9) 

Let us further assume that the processing facility j produces RJF only if the price received 

from the airlines includes a premium at least $ 𝑟2 above the break-even. Given the price-offer 

satisfies the processor’s profit margins, the net welfare is then determined as follows while 

internalizing environmental costs of GHG emissions based on LCA methodology:  

𝑊𝑒𝑙𝑓𝑎𝑟𝑒 = 𝐶𝑆𝐹𝑆 + 𝑃𝑆𝐹𝑆 + 𝐶𝑆𝑅𝐽𝐹 + 𝑃𝑆𝑅𝐽𝐹 − 𝑐𝑒𝐸𝐿𝐶𝐴,                                                             (3 − 10) 

where 𝑐𝑒 is the environmental cost of emission in $/tonCO2e, and 𝐸𝐿𝐶𝐴 denotes field to wake 

emission from RJF in tonCO2e. 𝑃𝑆𝐹𝑆 and 𝑃𝑆𝑅𝐽𝐹  are surpluses of feedstock (FS) producer and 

RJF processor whereas 𝐶𝑆𝐹𝑆 and 𝐶𝑆𝑅𝐽𝐹 are surpluses of FS and RJF consumers respectively. 

The impacts of processor-based carbon credit can be further evaluated based on the 

processor’s updated profit objective: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝛱 = ∑ (∑ ∑ ((𝑝𝑘 − 𝛿𝑗𝑘)𝜎 ∑ 𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽 )𝑘∈𝐾 −∑ ∑ (𝑝𝑗 ∑  𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽   
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−𝜌𝜎∑ ∑ (∑  𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽 − ∑ 𝑧𝑗𝜇𝑗 𝑗∈𝐽 + 𝑝𝑒(𝛷𝐿𝐶𝐴𝜎∑ ∑ (∑  𝑞𝑖𝑗𝑚𝑖∈𝐼 )𝑚∈𝑀𝑗∈𝐽 – 𝐸𝐿𝐶𝐴
𝐶𝐶 ),         

(3 − 5.1)  

where 𝑝𝑒 is the carbon credit in $/tonCO2e, 𝛷𝐿𝐶𝐴 denotes well-to-wake (WTW) emission from 

energy-equivalent CJF in tonCO2e/gallon, and 𝐸𝐿𝐶𝐴
𝐶𝐶  denotes total field-to-wake (FTW) emission 

from RJF in tonCO2e as a result of processor’s optimal decisions under carbon credit (CC) 

scenario.  

The total carbon credit is proportional to the GHG emission reductions achieved 

compared to equivalent CJF based on the LCA methodology. A higher carbon credit encourages 

the processor for greater reduction in GHG emissions. Consequently, the break-even price for 

processing facility j delivering RJF to airport k is reduced: 

𝑝𝑗𝑘
𝐵𝐸𝐶𝐶 =

 
𝑝𝑗
∗∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼𝑚∈𝑀 + 𝜌𝜎∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼 + 𝛿𝑗𝜎 ∑ ∑ 𝑞𝑖𝑚

∗
𝑖∈𝐼𝑚∈𝑀 + 𝑧𝑗

∗𝜇𝑗𝑚∈𝑀

− 𝑝𝑒(𝛷𝐿𝐶𝐴(𝜎 ∑ ∑ 𝑞𝑖𝑚
∗

𝑖∈𝐼𝑚∈𝑀 )– 𝐸𝐿𝐶𝐴
𝐶𝐶 )

𝜎 ∑ ∑ 𝑞𝑖𝑚
∗

𝑖∈𝐼𝑚∈𝑀
.             (3 − 11) 

Stackelberg nature of the game allows processor to influence the optimal decisions of the 

farmers through its own decisions under carbon credit, which will change the net welfare of the 

RJF market. 

𝑊𝑒𝑙𝑓𝑎𝑟𝑒𝐶𝐶 = 𝐶𝑆𝐹𝑆
𝐶𝐶 + 𝑃𝑆𝐹𝑆

𝐶𝐶 + 𝐶𝑆𝑅𝐽𝐹
𝐶𝐶 + 𝑃𝑆𝑅𝐽𝐹

𝐶𝐶 − 𝑐𝑒𝐸𝐿𝐶𝐴
𝐶𝐶 ,                                                        (3 − 12) 

where 𝑃𝑆𝐹𝑆
𝐶𝐶 and 𝑃𝑆𝑅𝐽𝐹

𝐶𝐶  are surpluses of feedstock producer and RJF processor, respectively, 

while 𝐶𝑆𝐹𝑆
𝐶𝐶 and 𝐶𝑆𝑅𝐽𝐹

𝐶𝐶  are respective surpluses of feedstock and RJF consumers, under the 

carbon credit scenario. The total carbon credit given by 𝑝𝑒(𝛷𝐿𝐶𝐴(𝜎∑ ∑ 𝑞𝑖𝑚
∗

𝑖∈𝐼𝑚∈𝑀 )– 𝐸𝐿𝐶𝐴
𝐶𝐶 ), 

lowers the break-even for the processor, and the subsequent contract price between the airlines 
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and the processor for the RJF production resulting in changes in the welfare. Similarly, the net 

welfare changes as the total environmental costs are lowered through reduced GHG emissions. 

3.4. Analytical Methods 

A supply chain framework entailing game-theoretic competition between the farmers and the 

RJF processor is designed to analyze the economic feasibility of the RJF supply chain. The 

famers maximize their individual profits competing amongst each other in fulfilling the derived 

demand (the demand for feedstock is proportional to the RJF demand faced by the processer). 

The feedstock processor, on the other hand, maximizes its profits nesting the profit maximizing 

behavior of the individual farmers, and thus acts as a leader which is modeled as a sequential 

single leader-multiple follower Stackelberg game.  

The individual farmers are assumed profit-maximizing rational agents who will take the 

risk of growing lignocellulosic energy crops such as switchgrass if they are likely to receive a 

better payoff compared to what they are getting under current crop production. A potential 

investor interested in RJF processing determines the break-even price level for the negotiated 

product delivery to foresee its profits before accepting the airlines’ offered price leading to an 

offtake agreement5. The RJF processor decides the price offered to the farmers, and the farmer’s 

decision is whether to accept the offered price or not. The processor does not price discriminate 

and offers all farmers in the region the same price. An individual farmer’s decision to land use 

change and feedstock supply is shaped by whether the offered price meets its minimal profits 

expectation or not. Essentially, the processor chooses a processing capacity for the potential 

                                                           

5 Offtake agreements are contracts between fuel consumers and producers specifying the procurement of specified 

fuel volumes for a period, and have recently been agreed upon with several airlines (Commercial Aviation 

Alternative Fuels Initiative [CAAFI], 2016). 
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plant with its spatial configuration along with a price offered to the farmers that minimizes its 

feedstock procurement and the RJF processing costs. Finally, a premium above the break-even 

price obtained from the processor’s bi-level optimization is used as the contract price between 

airlines and RJF processor to satisfy the profitability of the processor. 

3.4.1. Farmer’s Profit Maximization 

Switchgrass producer (farmer) decides on biomass supply quantities to maximize its profits 

considering feedstock price offered at the processing facility subject to land availability and the 

processing facility capacity constraints. Feedstock price is exogenous to the farmers and is 

endogenously determined by the processor. The definition for variables, notations and 

parameters for equations (3-13)-(3-35) is presented in Table 3-A1. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒:⏟      
𝑿𝒊=[𝑋𝑖ℎ]ℎ∈𝐻

𝑿𝑸𝒊=[𝑋𝑄𝑚𝑖𝑗]𝑚∈𝑀,𝑗∈𝐽

𝜋𝑖 =∑ ∑ (𝑃𝑗 − 𝜃) ×  𝑋𝑄𝑚𝑖𝑗
𝑚∈𝑀𝑜𝑛𝑗∈𝐽

+∑ ∑ (𝑃𝑗 − 𝛾 − 𝜃) ×  𝑋𝑄𝑚𝑖𝑗
𝑚∈𝑀𝑜𝑓𝑓𝑗∈𝐽

 

−∑(𝛼 + 𝜔 + 𝐴𝑀 + 𝛽𝑖ℎ) × 𝑋𝑖ℎ.

ℎ∈𝐻

                                                                                                 (3 − 13) 

Subject to 

 𝑋𝑖ℎ ≤  𝐴𝑖ℎ ∀  𝑖, ℎ,                                                                                                                               (3 − 14) 

∑(𝑋𝑁𝑆𝑖𝑗 + 𝑋𝑆𝑖𝑗)

𝑗∈𝐽

= 𝑌𝑖𝑥 ×∑  𝑋𝑖ℎ
ℎ∈𝐻

 ∀  𝑖,                                                                                    (3 − 15) 

𝜎 × (𝑋𝑄𝑚𝑖𝑗 +∑𝑋𝑄𝑚𝑖𝑗 
−𝑖

) ≤  𝛥𝑚𝑗𝑔 × 𝑧𝑗𝑔 ∀  𝑚, 𝑗,                                                                   (3 − 16) 

𝑋𝑁𝑆𝑖𝑗 = ∑
𝑋𝑄𝑚𝑖𝑗

(1 − 𝐷𝑇)
𝑚∈𝑀𝑜𝑛

  ∀ 𝑖, 𝑗,                                                                                                    (3 − 17) 
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𝑋𝑆𝑖𝑗 = ∑
𝑋𝑄𝑚𝑖𝑗

(1 − 𝐷𝑆) × (1 − 𝐷𝑇)
𝑚∈𝑀𝑜𝑓𝑓

    ∀ 𝑖, 𝑗,                                                                             (3 − 18) 

 𝑋𝑖ℎ ∈ ℝ 
+    ∀  𝑖, ℎ,                                                                                                                             (3 − 19) 

𝑋𝑄𝑚𝑖𝑗 ∈ ℝ 
+   ∀  𝑚, 𝑖, 𝑗,                                                                                                                    (3 − 20)   

Equation (3-13) defines the profit maximization problem of the individual farmer where 

the first summation term presents the difference between revenues from feedstock supply and 

transportation costs incurred during harvest season, while the second term represents the profit 

subtracting feedstock transportation and storage costs at off-harvest. The third component sums 

up annualized feedstock establishment, harvest, maintenance, and the opportunity costs of land 

use change. Opportunity cost is defined as either net returns from existing land use, or land rent, 

whichever is higher: 

𝛽𝑖ℎ = {
𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ            𝑖𝑓  (𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ) ≥ 𝑅𝑖ℎ 

 
𝑅𝑖ℎ                                   𝑖𝑓  (𝑃𝑖ℎ × 𝑌𝑖ℎ − 𝐶𝑖ℎ) < 𝑅𝑖ℎ 

} . 

 

Equations (3-14)-(3-20) define the constraints imposed on the profit maximization 

problem. Equation (3-14) limits feedstock production area to the available agricultural land. 

Equation (3-15) assures that total biomass available to each farmer equals the total biomass 

production. Equation (3-16) allows the competitive relationship between the individual farmers. 

It assures that total biomass supplied by the profit maximizing farmer and all other farmers does 

not exceed the production capacity of the processing facility. Equations (3-17)-(3-18) are mass 

balance/flow constraints accounting for the dry matter loss during harvest, storage, and 

transportation. Equations (3-19)-(3-20) are the non-negativity constraints imposed on the 

continuous decision variables. 
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3.4.2. Processor’s Profit Maximization (A Bi-level Optimization Problem) 

Since the RJF market price is assumed as a contract between the processor and the airlines once 

the RJF processor identifies its break-even price, the processor’s profit maximization is 

essentially a cost minimization problem. Thus, the RJF processor decides on biomass 

procurement price and the configuration of facilities to minimize its costs subject to the 

anticipated optimal behavior of the farmers.   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:⏟      
𝑿𝑶=[𝑋𝑂𝑚𝑗]𝑚∈𝑀,𝑗∈𝐽

𝑷=[𝑃𝑗]𝑗∈𝐽
𝒁=[𝑧𝑗𝑔]𝑗∈𝐽,𝑔 𝜖 𝐺

ƞ =∑ ∑(𝜌 + 𝛿)

𝑚∈𝑀

×

𝑗∈𝐽

𝑋𝑂𝑚𝑗 +∑∑(𝜇𝑔 ×

𝑔∈𝐺

𝑧𝑗𝑔)

𝑗∈𝐽

 

+∑ ∑ (𝑃𝑗 ×∑𝑋𝑄𝑚𝑖𝑗
𝑖∈𝐼

)

𝑚∈𝑀𝑗∈𝐽

.                                                                                                          (3 − 21) 

Subject to 

𝑋𝑂𝑚𝑗 = 𝜎 ×∑𝑋𝑄𝑚𝑖𝑗
𝑖∈𝐼

∀ 𝑚, 𝑗,                                                                                                        (3 − 22) 

∑𝑋𝑂𝑚𝑗
𝑗∈𝐽

= 𝐷𝑚  ∀ 𝑚,                                                                                                                          (3 − 23) 

∑ 𝑧𝑗𝑔
𝑔∈𝐺

≤  1 ∀ 𝑗,                                                                                                                                   (3 − 24) 

𝑧𝑗𝑔 ∈ {0, 1}   ∀  𝑗, 𝑔,                                                                                                                            (3 − 25) 

 𝑋𝑂𝑚𝑗 ∈ ℝ 
+    ∀  𝑚, 𝑗,                                                                                                                       (3 − 26) 

𝜋𝑖 ≥  𝑟1 ×∑𝛽𝑖ℎ
ℎ∈𝐻

× 𝑋𝑖ℎ ∀  𝑖,                                                                                                           (3 − 27) 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3 − 13) to (3 − 20) ∀  𝑖,                                                                                          (3 − 28) 

Equation (3-21) defines the cost minimization problem of the processor where the first 

component denotes the total of feedstock-to-RJF conversion and RJF transportation costs. The 

second term presents the annualized investment costs of processing facilities, whereas the last 

component counts the feedstock procurement costs of the RJF processor. Equations (3-22)-(3-28) 

define the constraints imposed on its cost minimization problem. Equation (3-22) ensures that the 

amount of biomass transported during each season is all converted into RJF by processing 

facility. Equation (3-23) guarantees RJF sent to airport at each season meets the seasonal demand 

of RJF. Equation (3-24) limits the number of processing plants at each site. Equations (3-25) and 

(3-26) denote the domains of the binary and continuous decision variables. Equation (3-27) is an 

important constraint which assures that profit of individual farmer remains at least  𝑟1 % greater 

than the opportunity costs. A minimum margin equal to 10% (𝑟1) is assumed in this study to 

fulfill the profitability expectations of the potential feedstock suppliers. Finally, equation (3-28) 

guarantees that the objective function and all the constraints corresponding to individual farmer’s 

profit maximization problem are satisfied.  

3.4.3. Solution Approach 

The profit maximization problem of the individual farmer is essentially a lower-level problem in 

this bi-level optimization given the sequential nature of the game with the RJF processor acting 

as a leader (upper-level problem). Since the lower-level problem is linear, the bi-level 

optimization can be solved by converting it into a single-level optimization replacing the original 

objective function and constraints of the lower-level by its corresponding Karush-Kuhn-Tucker 

(KKT) conditions. The KKT conditions guarantee the stationarity, primal-feasibility, dual-

feasibility, and the complementary slackness of the lower-level problem.  
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0 ≤  𝑋𝑖ℎ ⊥ −(𝛼 + 𝜔 + 𝐴𝑀 + 𝛽𝑖ℎ) − 𝜆𝑖ℎ
1 + 𝑌𝑖𝑥 × 𝜆𝑖

4 ≥ 0 ∀  𝑖, ℎ.                                        (3 − 13.1) 

0 ≤  𝑋𝑄𝑚𝑖𝑗 ⊥ (𝑃𝑗 − 𝜃) − 𝜎 × 𝜆𝑚𝑗
2 +

𝜆𝑖𝑗
5

(1 − 𝐷𝑇)
≥ 0 ∀  𝑖, 𝑗, 𝑚 ∈ 𝑀𝑜𝑛.                               (3 − 13.2) 

0 ≤  𝑋𝑄𝑚𝑖𝑗 ⊥ (𝑃𝑗 − 𝛾 − 𝜃) − 𝜎 × 𝜆𝑚𝑗
3 +

𝜆𝑖𝑗
6

(1−𝐷𝑆)×(1−𝐷𝑇)
≥ 0 ∀  𝑖, 𝑗, 𝑚 ∈ 𝑀𝑜𝑓𝑓 .              (3 − 13.3)  

0 ≤ 𝜆𝑖ℎ
1 ⊥ ( 𝐴𝑖ℎ −  𝑋𝑖ℎ) ≥ 0 ∀  𝑖, ℎ.                                                                                            (3 − 14.1) 

0 ≤ 𝜆𝑚𝑗
2 ⊥ [𝛥𝑚𝑗𝑔 × 𝑧𝑗𝑔 − 𝜎 × (𝑋𝑄𝑚𝑖𝑗 +∑𝑋𝑄𝑚𝑖𝑗 

−𝑖

)] ≥ 0 ∀  𝑗,𝑚 ∈ 𝑀𝑜𝑛.                   (3 − 16.1) 

0 ≤ 𝜆𝑚𝑗
3 ⊥ [𝛥𝑚𝑗𝑔 × 𝑧𝑗𝑔 − 𝜎 × (𝑋𝑄𝑚𝑖𝑗 +∑𝑋𝑄𝑚𝑖𝑗 

−𝑖

)] ≥ 0 ∀  𝑗,𝑚 ∈ 𝑀𝑜𝑓𝑓 .                 (3 − 16.2) 

𝜆𝑖ℎ
1 , 𝜆𝑚𝑗

2 , 𝜆𝑚𝑗
3  ∈ ℝ +  ∀  𝑖, ℎ, 𝑗.                                                                                                          (3 − 29) 

𝜆𝑖
4 , 𝜆𝑖𝑗

5 , 𝜆𝑖𝑗
6  ∈ ℝ ∀  𝑖, 𝑗.                                                                                                                       (3 − 30) 

Equations (3-14)-(3-20), the primal feasibility constraints of the lower-level problem, 

remain unchanged. Similarly, equations (3-21)-(3-27), the cost minimization problem of the 

processor, remain the same. Those equations are thus not shown in the KKT transformation. 

Equations (3-13.1)-(3-13.3) are the stationarity constraints of the lower-level problem. Equation 

(3-14.1) presents the complementary condition of the inequality constraint (3-14) whereas 

equations (3-16.1) and (3-16.2) are the complementary conditions to the inequality constraint (3-

16) of the lower-level problem. 𝜆𝑖ℎ
1 , 𝜆𝑚𝑗

2 , and 𝜆𝑚𝑗
3  are the Lagrange multipliers for the inequality 

constraints (3-14) and (3-16) whereas 𝜆𝑖
4, 𝜆𝑖𝑗

5 , and 𝜆𝑖𝑗
6  are the Lagrange multipliers for the 
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equality constraints (3-15), (3-17), and (3-18) respectively. The domains of the introduced 

Lagrange multipliers are shown in equations (3-29) and (3-30). 

The KKT transformation presented above, because of the introduction of stationarity 

conditions and non-linear complementary constraints, is a non-convex non-linear problem which 

is often difficult to solve (Gümüş & Floudas, 2005). These constraints are reformulated as 

disjunctions with the introduction of slack variables, and converted into mixed-integer 

constraints using Big-M and binary variables (Garcia-Herreros et al., 2016; Gümüş & Floudas, 

2005). The resulting problem is solved using the CPLEX solver of the General Algebraic 

Modeling System (GAMS) (Rosenthal, 2008). 

3.4.4. Calculation of LCA-based GHG Emissions  

LCA-based GHG emissions from RJF6 used in determining environmental viability of RJF, is 

shown in equation (3-31). 

𝐸𝐿𝐶𝐴 = (𝐸𝑙𝑢𝑐 + 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑐𝑜𝑛𝑣)/1000.                                                                   (3 − 31) 

𝐸𝑙𝑢𝑐 =∑∑(𝛥𝐸ℎ𝑁2𝑂 + 𝛥𝐸ℎ𝐶𝑂2 + 𝛥𝐸ℎ𝐶𝐻4) × 𝑋𝑖ℎ.

ℎ∈𝐻𝑖∈𝐼

                                                               (3 − 32) 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =∑∑(𝑃𝑟𝑜𝐸 + 𝐻𝑎𝑟𝐸) × 𝑋𝑖ℎ
ℎ∈𝐻𝑖∈𝐼

+ ∑ ∑∑ 𝑋𝑄𝑚𝑖𝑗 × 𝑆𝑡𝑜𝑟𝐸

𝑗∈𝐽𝑖∈𝐼

.

𝑚∈𝑀𝑜𝑓𝑓

                   (3 − 33) 

𝐸𝑡𝑟𝑎𝑛𝑠 = (∑ ∑∑𝑋𝑄𝑚𝑖𝑗 

𝑗∈𝐽𝑖∈𝐼𝑚∈𝑀

/𝐿𝑜𝑎𝑑𝐹𝑆 + ∑ ∑𝑋𝑂𝑚𝑗
𝑗∈𝐽𝑚∈𝑀

/𝐿𝑜𝑎𝑑𝑅𝐽𝐹) × 𝑇𝑟𝑎𝑛𝑠𝐸.             (3 − 34) 

                                                           

6 The GHG emissions from feedstock production through RJF delivery to the airport is considered as the LCA-based 

emission since GHG emission from burning biomass-based renewable fuel is almost equal to the amount of CO2 

sequestered by the biomass during its growth i.e. biogenic carbon (Elgowainy et al., 2012; Wang et al., 2012). 
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𝐸𝑐𝑜𝑛𝑣 = ∑ ∑𝑋𝑂𝑚𝑗 × 𝑂𝑝𝑒𝑟𝐸.

𝑗∈𝐽𝑚∈𝑀

                                                                                                  (3 − 35) 

Three categories of GHG emissions from land use change (𝐸𝑙𝑢𝑐) which depend on 

different types of existing land converted into switchgrass, namely CO2 (𝛥𝐸ℎ𝐶𝑂2), 

N2O (𝛥𝐸ℎ𝑁2𝑂), and CH4 (𝛥𝐸ℎ𝐶𝐻4) are included (equation (3-32))7. Similarly, energy 

consumption emissions (𝐸𝑒𝑛𝑒𝑟𝑔𝑦) included emissions from switchgrass production (𝑃𝑟𝑜𝐸), 

harvest (𝐻𝑎𝑟𝐸), and storage (𝑆𝑡𝑜𝑟𝐸). GHG emissions from energy consumption for production 

and harvest are based on per acre of switchgrass produced and GHG emissions from storage are 

based on per ton of switchgrass stored (equation (3-33)). GHG emissions from energy 

consumption during transportation (𝐸𝑡𝑟𝑎𝑛𝑠) of biomass from field to processing facility and of 

RJF from facility to airport (equation (3-34)) is calculated using the emission factor (𝑇𝑟𝑎𝑛𝑠𝐸). 

Amount of produced RJF is used for calculating the emissions related with feedstock grinding 

and conversion (𝐸𝑐𝑜𝑛𝑣) in equation (3-35). 

3.4.5. RJF Co-products and RIN Credits 

The technical uncertainty related with a specific conversion pathway brings considerable 

variations in the amount of co-products (Yao et al., 2017). Since the ATJ pathway produces other 

hydrocarbon fuels as co-products in addition to the RJF, estimation of LCA-based GHG 

emission for the main-product should account for the contribution of its co-products (Wang, 

Huo, & Arora, 2011). GHG emissions from the co-products are calculated using allocation 

method based on their approximately equal energy contents (Han, Tao, & Wang, 2017). On the 

                                                           

7 Each GHG is converted into carbon dioxide-equivalent (CO2e) based on its global warming potential (GWP) i.e. 

releasing each ton of methane (CH4), and nitrous oxide (N2O) is equivalent to releasing 25 tons, and 298 tons of 

CO2, respectively into the atmosphere.  
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other hand, the co-products themselves are handled using displacement method generating 

additional revenue while displacing the energy products at their market prices. Thus, revenues 

and GHG emission reductions from co-products are included in estimating the economic, 

environmental, and welfare impacts of RJF.   

The RFS established in the Energy Policy Act of 2005 is a market-based compliance 

system that utilizes RIN credits as a mechanism to trace if biofuel refiners or terminal operators 

produce the mandated level of biofuels under the Energy Act. Two different RIN credits for 

cellulosic biofuel i.e. based on average price for 2016 (2016-A), and 2017 (2017-A) are 

considered to examine its impacts on economic feasibility of RJF. Specific RIN credits for each 

of the energy products are generated based on the total LCA-based GHG emission reductions 

(using allocation method) compared to their fossil fuel counterparts. The impact of revenues 

from ATJ co-products as well RIN credits is exogenous since they are taken as additional 

economic incentives for supporting RJF production. 

3.4.6. Welfare Analysis of RJF 

The RJF processor is the consumer of feedstock whereas airlines purchasing the RJF from the 

processor are considered as the primary consumers of the RJF. It is assumed that the airlines can 

effectively transfer their cost burden to air-passengers considering their willingness to bear the 

economic burden if they perceive environmental benefits associated with flying in a renewable 

fuel propelled aircraft. Given the price assumptions used in satisfying the economic objectives of 

the supply-chain participants, surpluses for feedstock producers and the RJF processor are equal 

to the total famer profit and processor’s profit, respectively given by: 

𝑃𝑆𝐹𝑆 = ∑ 𝜋𝑖𝑖∈𝐼 . 

𝑃𝑆𝑅𝐽𝐹 = 𝑟2 × ∑ 𝐷𝑚𝑚∈𝑀 . 
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 A $0.10/gallon (𝑟2) is assumed as the markup adding to the break-even price that could 

satisfy the profitability requirements of the RJF processor. There is no surplus for the feedstock 

consumer i.e. RJF processor since the processor pays what is required to satisfy the profit 

margins of the feedstock suppliers. Similarly, the consumer in the RJF market i.e. airlines have 

zero surplus assuming they are price taker based on the margin that satisfies the processor’s 

profits. Finally, the net welfare associated with RJF market is assessed while internalizing the 

environmental (social) costs of aviation emissions based on the social cost of carbon. 

3.4.7. Carbon Credits Scenarios  

To estimate the economic, environmental and welfare implication of the hypothetical carbon 

credits on the RJF supply-chain, the system in equations (3-21)-(3-28) is defined as the reference 

(Baseline hereafter). The objective function of RJF processor in equation (3-21) is augmented as 

follows when carbon credits become available:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⏟      :
𝑿𝑶=[𝑋𝑂𝑚𝑗]𝑚∈𝑀,𝑗∈𝐽

𝑷=[𝑃𝑗]𝑗∈𝐽
𝒁=[𝑧𝑗𝑔]𝑗∈𝐽,𝑔 𝜖 𝐺

ƞ =∑ ∑(𝜌 + 𝛿)

𝑚∈𝑀

×

𝑗∈𝐽

𝑋𝑂𝑚𝑗 +∑∑(𝜇𝑔 ×

𝑔∈𝐺

𝑧𝑗𝑔)

𝑗∈𝐽

+∑ ∑ (𝑃𝑗 ×∑𝑋𝑄𝑚𝑖𝑗
𝑖∈𝐼

)

𝑚∈𝑀𝑗∈𝐽

 

−  𝑝𝑒 (𝛷𝐿𝐶𝐴 × (∑ ∑ 𝑋𝑂𝑚𝑗
𝑚∈𝑀𝑗∈𝐽

)– 𝐸𝐿𝐶𝐴
𝐶𝐶 ).                                                                              (3 − 21.1) 

Three different carbon credit scenarios corresponding to historical low and high carbon 

prices in the California Cap-and-Trade program (CalCaT-L and CalCaT-H respectively), and 

historical high carbon price in the European Union Emission Trading System (EUETS-H) are 

used to evaluate the impact of potential carbon markets in GHG emissions reduction and supply-

chain welfare. These scenarios are intentionally selected to reflect the ranges of the U.S. as well 

as the global carbon prices in the emission trading market. For the scenarios considered, a 𝑟3 % 
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of the total carbon credits per gallon of RJF is used as an additional margin in determining the 

RJF contract price. A 10% (𝑟3) of the total carbon credits per gallon of RJF is assumed in 

addition to the $0.10/gallon markup above the break-even for the Baseline in determining the 

RJF contract price across the carbon credit scenarios. 

The leader-follower nature of the game merits the processor in a way that impacts the 

optimal land use decisions of the feedstock suppliers through its facility location decisions under 

carbon credits. The processor is able to simultaneously lower the break-even RJF price and GHG 

emissions since the total carbon credits is proportional to the GHG emission reductions 

compared to equivalent CJF. This results in changes in net welfare primarily through changes in 

the surpluses for feedstock suppliers, the processor, and the airlines, respectively given by: 

𝑃𝑆𝐹𝑆
𝐶𝐶 = ∑ 𝜋𝑖

𝐶𝐶
𝑖∈𝐼 .  

𝑃𝑆𝑅𝐽𝐹
𝐶𝐶 = (𝑟2 + 𝑟3 ×

𝑝𝑒(𝛷𝐿𝐶𝐴 ∑ 𝐷𝑚𝑚∈𝑀 – 𝐸𝐿𝐶𝐴
𝐶𝐶 )

∑ 𝐷𝑚𝑚∈𝑀
) × ∑ 𝐷𝑚𝑚∈𝑀 . 

𝐶𝑆𝑅𝐽𝐹
𝐶𝐶 = {(𝑝𝑘

𝐵𝐸 + 𝑟2) − (𝑝𝑘
𝐵𝐸𝐶𝐶 + 𝑟2 + 𝑟3 ×

𝑝𝑒(𝛷𝐿𝐶𝐴∑ 𝐷𝑚𝑚∈𝑀 – 𝐸𝐿𝐶𝐴
𝐶𝐶 )

∑ 𝐷𝑚𝑚∈𝑀
)} × ∑ 𝐷𝑚𝑚∈𝑀 .  

 

3.5. Data 

The data used for cellulosic ATJ conversion pathway is categorized into two groups: feedstock-

based ethanol production data, and the data on potential conversion technology of ethanol to 

RJF. Table 3-A2 presents the sources of cost related data on feedstock-based ethanol production, 

while Table 3-A3 summarizes the data sources and models used to estimate GHG emissions of 

feedstock-based ethanol production. Table 3-A4 contains the sources of cost, yields including co-

products, and GHG emissions corresponding to ethanol-to-RJF conversion, primarily based on 

recent techno-economic analysis of feedstock-based ATJ or ETJ conversion pathways. These 
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parameters are augmented with relevant feedstock-based ethanol production data in estimating 

the feedstock-to-RJF conversion parameters.  

Data from switchgrass field trials between 2006 and 2011 at west Tennessee (Boyer et 

al., 2013; Boyer et al., 2012) is used to simulate feedstock yields across 5 sq. mile spatial units 

on existing agricultural lands. Mean yields obtained from normally distributed simulations are 

matched to the number of potential farmers supplying feedstock. Spatial yield variation is 

mapped following the simulated spatial variation in switchgrass yields in the region (Jager et al., 

2010). Simulated yield and potential sites for processing facility and feedstock cultivation are 

shown in Figure 3-A1. A total of 18 industrial parks are identified as candidates for establishing 

processing facilities. Each location can have at most one facility with the capacity of either 50 

million gallons per year (MGY) or 100 MGY. Similarly, 1936 spatial units are taken as potential 

feedstock suppliers opting to cultivate switchgrass replacing current crops. An annual RJF 

demand of 136 million gallons for the Memphis International Airport (MEM) is assumed which 

replaces 50% of the total jet fuel consumption for flights departing from the MEM airport in 

20168. The feedstock price offered to the suppliers for the entire region is assumed to be $75/ton 

following the simulated farm gate price of $60/ton for biomass feedstock in Perlack et al. (2011) 

and an average transportation cost in west Tennessee (Yu et al., 2016). 

Table 3-A5 presents key conversion parameters used in the analysis including co-

products i.e. cellulosic-gasoline and cellulosic-diesel. Conversion cost and GHG emission in the 

table refers to the parameters associated with feedstock-to-RJF conversion excluding feedstock 

                                                           

8 Total jet fuel consumption in Tennessee (TN) for the year 2016 was around 13.5 million barrels (U.S. EIA, 2016). 

Jet fuel consumption at the MEM airport is calculated based on the proportion of departing flights at the MEM 

airport to the total number of departing flights from seven major TN airports (BTS, 2016a). RJF demand equal to 

50% of the total jet fuel consumption reflects the current statutory blending limit for RJF. 
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grinding. The cost and GHG emission parameters on feedstock grinding are taken into account 

separately based on Yu et al. (2016). The LCA-based GHG emissions of displaced conventional 

energy products (fossil fuels) are shown in Table 3-A6. The market prices of fossil fuels 

displaced by corresponding ATJ products are also included in Table 3-A6. Finally, Table 3-A7 

shows the levels of RIN credits used and carbon credits considered for specific carbon credit 

scenarios. The social cost of carbon at $33.70/tonCO2e of GHG emissions is adapted from 

Nordhaus (2017). 

3.6. Results and Discussions 

3.6.1. Solutions of the Baseline Stackelberg Model 

3.6.1.1. Supply-chain Economic and GHG Emissions Outputs 

The overall cost accrued by the RJF processor from the optimal game-theoretic model is $1,155 

million per year. The aggregate profit of individual farmers is around $16.88 million. Optimal 

land use decisions for the individual feedstock producers, and the facility location decision for 

the feedstock processor are shown in Figure 3-A2. An important factor in farmers’ decision on 

converting their land to a new operation is the opportunity cost of land use change. Selection of 

land for food crops entailed higher opportunity costs compared to pasture land. In addition to 

varying opportunity costs of supplying feedstock across the existing land uses, spatial variation 

in switchgrass yields across west Tennessee created comparative advantage to some of the 

potential feedstock suppliers. A total of 657 thousand acres of farmland is used for feedstock 

cultivation with 382 thousand acres converting from pasture land. Among converted crop land, 

soybeans and corn acreages are the primary source for switchgrass production.  

Feedstock procurement decisions of the processor depended on rational expectation of 

the behavior of the profit maximizing farmers in responding to the offered feedstock price. As 
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such, the processor’s facility configuration decisions are influenced by the spatial distribution of 

the potential feedstock suppliers, their opportunity costs of supplying feedstock, and the spatial 

yield variability. The processor decided on a larger processing facility i.e. of 100 MGY capacity 

with concentrated feedstock suppliers owning agricultural lands operating at low opportunity 

costs. On the other hand, feedstock suppliers with higher yields are pivotal in determining the 

location for the 50 MGY facility simultaneously securing their profit margins.  

The margin over the opportunity cost gained by farmers from supplying feedstock in the 

study area is shown in the Figure 3-A3. Most of the feedstock suppliers (more than 57%) 

received a margin up to 47 % over their opportunity cost of converting the land, whereas a few 

feedstock producers secured substantial margins up to 658%. The observed gains are primarily 

dictated by the types of land used for feedstock cultivation. In general, the margin is higher for 

feedstock producers converting pasture land only; whereas less margin is acquired for the ones 

using either crop land alone or a mix of the pasture and crop land because of the increased 

opportunity costs of crop land use.  

Figure 3-A4 depicts a negative relationship between feedstock suppliers’ margin and 

their break-even costs. The break-even costs are influenced by spatial yield variations, and the 

proximity of the processing facility locations in addition to the opportunity costs of land use 

change. Higher break-even costs resulted in lower margin given the exogenous feedstock price 

($75/ton) offered by the facilities.    

The aggregate annualized costs and GHG emissions by operation in the bi-level supply-

chain optimization for the Baseline are summarized in Table 3-A8. As expected, the largest 

contributor to the processor’s economic feasibility is RJF conversion, with a cost of around $515 

million. Similarly, feedstock procurement (approximately $382 million) consists of a sizeable 
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portion of the processor’s cost. Given the conversion factor of 26.72 gallons per ton, a total of 

5.09 million tons of feedstock is procured for fulfilling the RJF demand at the MEM airport. 

Feedstock harvest cost of nearly $114 million, followed by feedstock transportation cost of 

around $107 million, are the highest costs incurred by the feedstock suppliers in aggregate.  

The RJF conversion has the highest GHG emissions, above 380 thousand tons of CO2e 

with feedstock harvest producing around 265 thousand tons of CO2e emissions. Land use change 

resulted in sequestration of around 57 thousand tons of CO2e emissions primarily achieved when 

crop lands are used for switchgrass cultivation because of net carbon sequestration in the soil.  

3.6.1.2. Supply-chain Welfare Analysis 

The net welfare of RJF production for the Baseline is shown in Table 3-A9. The surpluses for 

feedstock producers (PS-FS) and the RJF processor (PS-RJF) are equal to the total famer profit 

and processor’ profit, respectively, whereas there are no economic surpluses for both the 

feedstock (CS-FS) and RJF (CS-RJF) consumers. The feedstock suppliers’ economic surplus is 

about $16.88 million with the RJF processor securing a surplus of $13.60 million. Internalized 

environmental costs of aviation GHG emissions of around $26.20 million resulted in net supply-

chain welfare of approximately $4.29 million for the Baseline9.  

3.6.2. Comparison of Carbon Credit Scenarios with the Baseline 

3.6.2.1. Change in Optimal Solutions for the Bi-level Objectives 

The impact of carbon credits in terms of the change in objective solutions associated with carbon 

credit scenarios against the Baseline is shown in Figure 3-A5. Processor’s cost declined along 

                                                           

9 This study assumed that airlines agree to purchase the RJF from the feedstock processor at the price that satisfies 

processor’s profit margins inclusive of RIN credits, whether 2016-A or 2017-A, which means the welfare estimates 

are insensitive to the levels of RIN credits used. 
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with the level of carbon credits, mainly because of the lessened GHG emissions. Given the 

availability of carbon credits, the processor’ s cost decreased by $17.65, 32.57, and 59.50 million 

under the CalCaT-L, CalCaT-H, and EUETS-H scenarios, respectively, compared to the 

Baseline.  

The difference in relevant variables between carbon scenarios and the Baseline is 

summarized in Table 3-A10. Total farmer profit declined by $5.88, 5.90, and 10.45 million for 

the CalCaT-L, CalCaT-H, and EUETS-H scenarios, respectively, compared to the Baseline level 

as the opportunity costs of land use increased along with the growth in crop land conversion (see 

Figure 3-A6). In addition, the processor chose to locate the facility more close to the MEM 

airport to reduce RJF transportation emissions in response to carbon credits. As a result, the 

processor’s cost also declined as the RJF transportation distance decreased from the facility to 

the MEM airport. Thus, higher carbon credit i.e. EUETS-H scenario, triggered major changes in 

land use and facility location resulting in larger changes in objective variables compared to the 

Baseline. Similarly, increased crop land use in response to proximity of the facility reduced the 

feedstock transportation costs by $1.72, 1.70, and 2.98 million for the CalCaT-L, CalCaT-H, and 

EUETS-H scenarios, respectively.  

Major GHG emission reductions for the all carbon credit scenarios from the Baseline is 

associated with land use change. There are minor reductions in GHG emissions associated with 

feedstock and RJF transportation following the reductions in distance travelled. For the CalCaT-

L and CalCaT-H scenarios, the changes in costs and GHG emissions are almost identical since 

the level of carbon credits do not vary by much between these two scenarios. 
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3.6.2.2. Change in Welfare Compared to the Baseline 

The difference in net welfare for different carbon credit scenarios against the Baseline is 

illustrated in Figure 3-A7. With higher carbon credits, there is subsequent decrease in the RJF 

processor’s break-even price. The RJF price, based on the profitability assumption under carbon 

credits, increased the surplus for the processor compared to the Baseline. Similarly, the RJF price 

at each carbon credit scenario is lower than the Baseline thus increasing the surplus for the RJF 

consumers i.e. airlines. The surplus for the feedstock producers, i.e. farmers, decreased as more 

crop land is converted to feedstock production due to carbon credits. The processor, as a leader 

in the supply-chain, influenced the optimal land use change decisions for the individual farmers 

through facility location and procurement contracts.  

Subsequent abatements in the GHG emissions associated with higher carbon credits 

reduced the social cost of emissions compared to the Baseline in each carbon credit scenario. The 

net welfare increased largely across the carbon credit scenarios compared to the Baseline mainly 

because of the increment in the consumer surplus of the airlines. The net supply-chain welfare 

increased by $12.71, 27.61, and 50.62 million corresponding to the $16.12, 29.55, and 53.79 

million increments in the airlines’ surpluses for the CalCaT-L, CalCaT-H, and EUETS-H 

scenarios, respectively, compared to the Baseline. The welfare gains across scenarios are based 

on the existence of a potential carbon trading market with assumed carbon prices.   

3.6.3. Costs of GHG Emission Abatement with RJF Use 

The inclusion of cellulosic RIN credits has substantial impact in lowering the break-even RJF 

price as well as the cost of aviation emission abatement. Figure 3-A8 depicts the break-even 
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prices10 for the RJF considering two levels of cellulosic RIN credits (2016-A and 2017-A) along 

with revenues from the co-products in the Baseline and three carbon credit scenarios. With the 

2017-A RIN credit ($2.69/RIN), the feedstock processor’s break-even for the RJF ($1.65/gallon) 

is lower than the market price of the CJF ($1.76/gallon) regardless of the availability of carbon 

credits. The RJF remained price-competitive with 2017-A RIN credits after implementing the 

markup of $0.10/gallon. If the RIN credit remained at the level 2016-A ($1.85/RIN), the break-

even price of RJF for the Baseline and three carbon credit scenarios is higher than CJF. 

The differences in GHG emissions between the energy products from the ATJ-pathway 

(RJF, cellulosic-diesel and cellulosic-gasoline) and the displaced fossil fuels (CJF, diesel and 

gasoline) in the Baseline and all carbon credit scenarios are estimated to evaluate the 

environmental benefits of ATJ products. For the Baseline, the total LCA-based GHG emission 

reduction through displacement of the fossil fuels with the ATJ products is 62.5% which lies 

within the range of 16 to 80% estimated in Han et al. (2017) and de Jong et al. (2017) for various 

feedstock conversion pathways. With carbon credits, the total GHG emission reduction from 

using RJF and its co-products is 64% for the CalCaT-L and CalCaT-H scenarios, and 65% for 

the EUETS-H scenario, compared to the CJF and the displaced fuels.  

Cost associated with the LCA-based GHG emissions reduction using RJF including the 

ATJ co-products varied across the Baseline and carbon credit scenarios. With 2017-A RIN 

credit, the RJF price ($1.75/gallon) is lower than the market price of the CJF even without the 

carbon credits, thus no additional cost of GHG emission abatement. However, if the RIN credit 

                                                           

10 The RJF break-even price level without the RIN credits remained above $7.5/gallon which is generally higher 

compared to the ones estimated in the recent RJF studies (e.g. Yao et al., 2017; Tao et al., 2017) as the minimal 

profitability expectation of the individual feedstock suppliers are satisfied given the game-theoretic interaction 

between the feedstock suppliers and the processor. 
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remained at 2016-A, the implicit subsidy from the airlines to the processor is $1.89/gallon for the 

Baseline which decreased to $1.77, $1.67, and $1.49/gallon for the CalCaT-L, CalCaT-H, and 

EUETS-H scenarios, respectively (Table 3-A11).  

Table 3-A11 provides the estimates of GHG emission abatement costs incurred by the 

airlines under various carbon credit scenarios for the 2016-A RIN credit. The abatement costs 

correspond to total LCA-based GHG emission reductions from RJF including the ATJ co-

products compared to the LCA-based GHG emissions from the displaced CJF. The implicit cost 

of abatement for the airlines is $198/tonCO2e for the Baseline, which falls in between $42 to 

652/tonCO2e estimated in Winchester et al. (2013) and Winchester et al. (2015) for RJF 

produced from oilseed rotation crops and perennial energy crops. The estimate for the abatement 

costs further decreased to $182, $172, and $151/tonCO2e for the CalCaT-L, CalCaT-H, and 

EUETS-H scenarios, respectively. 

3.7. Conclusions 

This study presents economic and environmental analysis of commercial-scale RJF production 

using ATJ technology capturing possible interaction amongst the market participants. Impacts of 

RJF production from switchgrass on farmland allocation, processing facility configuration, and 

GHG emissions are estimated assuming a bi-level Stackelberg interaction between the feedstock 

suppliers and the processor in response to fulfilling the RJF demand at the MEM airport in west 

Tennessee. As a market-based incentive approach to promote RJF production, potential impacts 

of hypothetical carbon credits on the optimal decisions of the feedstock suppliers and the 

processor are evaluated primarily in terms of changes in the LCA-based GHG emissions and net 

supply-chain welfare implications. 
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The feedstock suppliers’ economic surplus is about $16.88 million for the Baseline with 

the majority of the feedstock suppliers receiving a margin up to 47 % over their opportunity costs 

of land conversion. Given the availability of carbon credits, the processor’s cost decreased by 

$17.65 to 59.50 million compared to the Baseline. A large portion of the GHG emission 

reductions, for the processor is achieved when switchgrass is cultivated replacing the crop land 

because of net carbon sequestration. Consequently, feedstock suppliers having crop lands with 

high opportunity costs are induced into feedstock production. As a leader of the supply-chain, the 

processor influenced the land use decisions of the individual farmers through its facility location 

decisions resulting in a surplus decline of $5.88 to 10.45 million for the feedstock suppliers, 

compared to the Baseline. The additional markup increased the surplus for the processor 

compared to the Baseline with increasing carbon credits. On the other hand, airlines secured 

economic surplus as RJF price decreased when the carbon trading price increased in the 

hypothetical carbon market. The net supply-chain welfare increased by $12.71 to 50.62 million 

corresponding to the $16.12 to 53.79 million increments in the airlines’ surpluses for the 

increasing carbon credit scenarios, compared to the Baseline. 

Broader environmental impacts of the ATJ products include a 62.5 to 65% LCA-based 

GHG emission reductions through displacement of the fossil fuels. With the 2017-averaged 

cellulosic RIN credits, the RJF processor could break-even at lower than the CJF price even for 

the Baseline. If 2016-averaged cellulosic RIN credits are assumed, the break-even price for the 

RJF processor is high enough to be price-competitive against the CJF irrespective of the 

availability of hypothetical carbon credits. Satisfying the assumed profit margins of the processor 

needed an implicit subsidy from the airlines, of $1.49 to $1.89/gallon if the cellulosic RIN credits 
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remain at 2016 average. These subsidies are equivalent to GHG emission abatement costs of 

$151 to 198/tonCO2e for the airlines.  

This study provided useful insights into economic and environmental impacts of large-

scale RJF production in context to the increasing interest shown by the U.S. aviation sector with 

respect to achieving GHG emissions reduction goals. As a market-based incentive approach, 

carbon credits are found influential in reducing aviation GHG emissions while simultaneously 

improving net welfare of RJF sector whereas RIN credits largely determined the economic 

feasibility. The major limitation of this study is that RJF prices used in the welfare analysis are 

based on the margins above the break-even prices assumed to satisfy the processor’s profits. 

Similarly, air-passengers are assumed to bear the economic burden of increased airfare 

conditional on their higher willingness to pay if they perceive environmental benefits from RJF 

propelled flights. Land use for feedstock cultivation and feedstock processing costs are highly 

sensitive to the variation in feedstock yield and conversion technology. An improvement in the 

feedstock yield along with conversion efficiency not only lowers the break-even prices but also 

reduces the GHG emissions. Future research can focus on incorporating these strategic 

uncertainties in decision-making process for the development of feedstock-based RJFs while 

simultaneously addressing the economic motives of the market participants. 
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Appendices 

Table 3-A 1: Definitions of identifiers, parameters and variables 

Category Unit Definition 

Identifiers    

i ϵ I  spatial unit for switchgrass production (farmer) 

j ϵ J   spatial location for facility establishment 

k ϵ K  spatial location of RJF delivery (airport) 

g ϵ G  annual capacity of processing facility  

m ϵ M  season of the year 

Mon ϵ M  on-harvest season of the year 

Moff ϵ M  off-harvest season of the year 

h ϵ H  crop (pasture/hay, corn, soybean, wheat, sorghum, cotton) 

x  switchgrass 

Parameters 

Pj $/ton feedstock price offered at the facility  

Pih $/ton crop price  

Yih ton/acre crop yield 

Cih $/acre production cost of crop 

Yix ton/acre yield of switchgrass in each spatial unit 

Rih $/acre land rent of crop 

𝛼 $/acre amortized establishment cost of switchgrass field 

𝛽𝑖ℎ $/acre opportunity cost of switchgrass cultivation 

AM $/acre annual maintenance cost of switchgrass field 

𝜇g $/plant amortized investment cost of facility 

𝜔 $/acre annual harvest cost for switchgrass 

𝛾 $/ton cost per unit of storing switchgrass 

θ $/ton cost per unit of transporting switchgrass 

𝜌 $/gallon facility operation cost 

𝛿 $/gallon RJF transportation cost 

DT % dry matter loss during transportation 
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Table 3- A1 Continued 

Category Unit Definition 

Aih acre cropland available in each spatial unit for each crop 

DS % dry matter loss during storage 

𝜎 

𝛥𝑚𝑗𝑔 

gallon/ton 

gallon/season 

switchgrass-RJF conversion rate (ATJ pathway) 

seasonal RJF production capacity of facility 

LoadFS ton/truck amount of switchgrass delivered per truck 

LoadRJF gallon/truck amount of RJF delivered per truck 

𝛥EhCO2 kgCO2e/acre CO2 emission from land conversion of crop to switchgrass 

𝛥EhN2O kgCO2e/acre N2O emission from land conversion of crop to switchgrass 

𝛥EhCH4 kgCO2e/acre CH4 emission from land conversion of crop to switchgrass 

ProE kgCO2e/acre GHG emissions factor from energy use during production 

HarE kgCO2e/acre GHG emissions factor from energy use during harvest 

StorE kgCO2e/ton GHG emissions factor from energy use during storage 

TransE 
kgCO2e 

/truck/route 
GHG emissions from energy use during transportation 

OperE 
kgCO2e 

/gallon 
GHG emissions from processing facility operations 

Variables   

𝑧𝑗𝑔  binary variable: 1 for facility selection, 0 otherwise 

𝑋𝑖ℎ acre switchgrass acreage harvested during harvest season  

𝑋𝑁𝑆𝑖𝑗  ton switchgrass not stored at the harvest site after harvest 

𝑋𝑆𝑖𝑗  ton switchgrass stored at the harvest site after harvest 

𝑋𝑄𝑚𝑖𝑗 ton switchgrass transported to the facility each season 

𝑋𝑂𝑚𝑗 gallon RJF transported from facility to airport each season 

  

 

 

 



 

105 
 

Table 3-A 2: Data source for feedstock-based ethanol production costs  

Category  Source 

Land conversion to 

switchgrass 

 

 

 

 

 

 

 

 

 

 

 

 

Production 

 

 

Harvest 

Storage 

Transport 

Opportunity cost 

Land rents: USDA NASS (U.S. Department of Agriculture, 2013-

2015) 

Crop yields: USDA, SSURGO (U.S. Department of Agriculture 

Nature Resources Conservation Service, 2012) 

Crop price and acreage: USDA NASS (U.S. Department of 

Agriculture, 2013-2015) 

Crop production cost: USDA ERS (U.S. Department of Agriculture, 

2015), POLYSIS (Ugarte & Ray, 2000) 

Switchgrass plantation 

Switchgrass yield: Boyer et al. (2013), Boyer et al. (2012), Jager et al. 

(2010)  

Production and harvest cost: Larson et al. (2010), University of 

Tennessee (2015) 

Establishment: American Agricultural Economics Association (2000) 

Annual maintenance: American Society of Agricultural and 

Biological Engineers (2006) 

Fuels and labors: University of Tennessee (2015) 

Covers and pallets: University of Tennessee (2015) 

Trailer, fuel and labor: University of Tennessee (2015) 
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Table 3-A 3: Data source for feedstock-based ethanol production emissions  

Category  Source 

Land conversion to switchgrass 

 

Land use change: DayCent (Schimel et al., 2001) 

Weather data: DayMET 

Soil texture: USDA SSURGO (U.S. Department of 

Agriculture Nature Resources Conservation Service, 2012) 

Management practice for food crops: UT extension budget 

(University of Tennessee, 2015) 

Management practice for pasture/hay: Bowling, McKinley, 

and Rawls (2006), Fribourg and Loveland (1978)  

Management practice for switchgrass: Muir et al. (2001) 

Production Fuel usage: GREET (Argone National Laboratory, 2013) 

Harvest Fuel usage: GREET (Argone National Laboratory, 2013) 

Storage Fuel usage: GREET (Argone National Laboratory, 2013) 

Transport Fuel usage: MOVES (U.S. EPA, 2012) 

 

Table 3-A 4: Data source for ethanol-to-RJF conversion 

Category  Source 

Conversion efficiency 

Conversion costs 

GHG emission factors 

 

Co-products yields 

Han et al. (2017), Yao et al. (2017)11 

Tao et al. (2017), Yao et al. (2017) 

Elgowainy et al. (2012), Han et al. (2017), Wang et al. 

(2016) 

Han et al. (2017), Yao et al. (2017) 

 

                                                           

11 The conversion efficiency from Yao et al. (2017) refers to feedstock-to-ethanol conversion for switchgrass which 

was consistently used in estimating feedstock-to-RJF conversion costs and GHG emissions. 



 

107 
 

 

Figure 3-A 1: Potential facility locations and feedstock supply area 

 

Table 3-A 5: Parametric assumptions for cellulosic ATJ conversion12 pathway 

ATJ product Conversion yield Unit  Source 

RJF 26.72 gallon/ton Han et al. (2017), Yao et al. (2017)  

Cellulosic-gasoline 5.65 gallon/ton Han et al. (2017), Yao et al. (2017)  

Cellulosic-diesel 2.93 gallon/ton Han et al. (2017), Yao et al. (2017)  

ATJ product Conversion cost* Unit Source 

RJF 1.89 $/gallon Tao et al. (2017), Yao et al. (2017), 

Yu et al. (2016) 

ATJ product Conversion GHG Unit Source 

RJF 2.80 kgCO2e/gallon Argonne National Laboratory 

(2017), Yao et al. (2017), Yu et al. 

(2016) 

* All the monetary terms are in 2015 U.S. dollar values. 

 

                                                           

12 The parameters for ATJ pathway originally available in energy (mega joule-MJ) units, were converted into 

volumetric (gallon) units based on energy-equivalence. 
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Table 3-A 6: Parameters on energy-equivalent substitutes to ATJ products 

Fossil fuel Emission Unit Source 

CJF 11.2893 kgCO2e/gallon Wang et al. (2016) 

Gasoline 12.2578 kgCO2e/gallon Elgowainy et al. (2012) 

Diesel 12.4956 kgCO2e/gallon Elgowainy et al. (2012) 

Fossil fuel Price* Unit Source 

CJF 2.4077 $/gallon  BTS (2016b) 

Gasoline 2.6688 $/gallon AFDC (2017) 

Diesel 1.7598 $/gallon AFDC (2017) 

* All the monetary terms are in 2015 U.S. dollar values. 

 

Table 3-A 7: RIN credits13 and parameters for CC scenarios 

RIN price* Unit  Level Source 

2016-A $/RIN  1.85 RFA (2017) 

2017-A $/RIN  2.69 RFA (2017) 

Carbon credit* Unit  Level Source 

CalCaT-L $/tonCO2e  11.58 California Carbon Dashboard (2018) 

CalCaT-H $/tonCO2e  22.85 California Carbon Dashboard (2018) 

EUETS-H $/tonCO2e  42.56 Luo and Miller (2013) 

* All the monetary terms are in 2015 U.S. dollar values. 

Note: 2016-A and 2017-A denote RIN credits for cellulosic biofuel based on average price for 2016 and 2017, 

respectively. CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-and-Trade 

program, highest carbon price in the California Cap-and-Trade program and highest carbon price in the European 

Union Emission Trading System, respectively.  

 

 

 

                                                           

13 Advanced biofuels such as biomass-based biodiesel (BBD) counts as 1.5 or 1.7 RINS (depending on fuel type) to 

reflect its higher energy content compared to ethanol (Congressional Research Service, 2013). The available RIN 

prices on cellulosic ethanol were multiplied by a factor of 1.7 for generating cellulosic RJF-based RIN credits. 
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Figure 3-A 2: Optimal land use and facility locations 

 

 

 

Figure 3-A 3: Margins of individual feedstock suppliers 
Note: Number in the parenthesis refers the amount of feedstock suppliers   
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Figure 3-A 4: Feedstock suppliers’ break-even costs and margins 
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Table 3-A 8: Annualized variables for the baseline  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-A 9: Welfare for the baseline 

Concept Unit Level 

PS-FS Million dollars 16. 88 

PS-RJF Million dollars 13. 60 

Social cost Million dollars 26.20 

Net welfare Million dollars 4.29 

Note: PS-FS and PS-RJF denote surplus for feedstock and RJF producer, respectively. 

Annualized bi-level cost Unit Level 

RJF facility investment cost Million dollars             175.32  

Feedstock establishment cost Million dollars               46.26  

Land use opportunity cost Million dollars 39.88 

Feedstock maintenance cost Million dollars               34.35  

Feedstock harvest cost Million dollars             113.65  

Feedstock storage cost Million dollars               23.97  

Feedstock grinding cost Million dollars               73.75  

Feedstock transportation cost Million dollars             106.73  

Feedstock procurement cost Million dollars 381.72 

RJF transportation cost Million dollars                 9.60  

RJF conversion cost Million dollars             514.95  

Annualized GHG emission Unit Level 

Land use emission tonCO2e           (57,299) 

Feedstock harvest emission tonCO2e           265,319  

Feedstock storage emission tonCO2e               5,086  

Feedstock establishment emission tonCO2e             17,773  

Feedstock transportation emission tonCO2e             26,466  

RJF transportation emission tonCO2e               3,374  

RJF conversion emission tonCO2e           380,297  

Feedstock grinding emission tonCO2e           136,298  
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Figure 3-A 5: Reduction in objectives solutions between carbon credit scenarios and the Baseline 
Note: CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-and-Trade program, 

highest carbon price in the California Cap-and-Trade program and highest carbon price in the European Union 

Emission Trading System, respectively.  

 

Table 3-A 10: Difference in annualized variables for carbon credit scenarios compared to 

Baseline 

Annualized bi-level cost Unit CalCaT-L CalCaT-H EUETS-H 

Feedstock establishment cost Million $ 0.90 0.90 0.57 

Land use opportunity cost Million $ 5.64 5.65 12.20 

Feedstock maintenance cost Million $ 0.67 0.67 0.42 

Feedstock harvest cost Million $ 0.39 0.39 0.24 

Feedstock transportation cost Million $ (1.72) (1.70) (2.98) 

RJF transportation cost Million $ (2.31) (2.31) (2.34) 

Annualized GHG emission Unit CalCaT-L CalCaT-H EUETS-H 

Land use change emission tonCO2e (31,145) (31,158) (47,400) 

Feedstock harvest emission tonCO2e 5,145 5,145 3,242 

Feedstock establishment emission tonCO2e 345 345 217 

Feedstock transportation emission tonCO2e (879) (865) (1,369) 

RJF transportation emission tonCO2e (1,200) (1,200) (1,292) 

Note: CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-and-Trade program, 

highest carbon price in the California Cap-and-Trade program and highest carbon price in the European Union 

Emission Trading System, respectively.  
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Figure 3-A 6: Difference in land use for carbon credit scenarios compared to Baseline 
Note: CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-and-Trade program, 

highest carbon price in the California Cap-and-Trade program and highest carbon price in the European Union 

Emission Trading System, respectively.  

 

 

Figure 3-A 7: Difference in net welfare for carbon credit scenarios compared to Baseline 
Note: PS-FS, PS-RJF and CS-RJF denote surplus for feedstock producer, surplus for RJF producer and surplus for 

RJF consumer, respectively. CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-

and-Trade program, highest carbon price in the California Cap-and-Trade program and highest carbon price in the 

European Union Emission Trading System, respectively.  
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Figure 3-A 8: RJF break-even prices with RIN credits and revenues of co-products 
Note: 2016-A and 2017-A denote RIN credits for cellulosic biofuel based on average price for 2016 and 2017, 

respectively. CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California Cap-and-Trade 

program, highest carbon price in the California Cap-and-Trade program and highest carbon price in the European 

Union Emission Trading System, respectively.  

 

Table 3-A 11: GHG emission abatement costs with 2016-A RIN credit 

Variable Unit Baseline CalCaT-L CalCaT-H EUETS-H 

 RJF price  $/gallon          3.6478       3.5293       3.4306       3.2523  

 Implicit subsidy  $/gallon          1.8880       1.7695       1.6708       1.4925  

 Abatement cost  $/tonCO2e          198.05       181.73       171.59       151.13  

Note: 2016-A denote RIN credit for cellulosic biofuel based on average price for 2016. CalCaT-L, CalCaT-H and 

EUETS-H denote lowest carbon price in the California Cap-and-Trade program, highest carbon price in the 

California Cap-and-Trade program and highest carbon price in the European Union Emission Trading System, 

respectively.  
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Chapter IV. Designing Cost-effective Payments for Forest-based Carbon 

Sequestration: An Auction-based Modeling Approach 
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Abstract  

Conservation auctions can reveal information about the opportunity costs of afforestation, which 

can be combined with the carbon sequestration benefits of land-use changes to design cost-

effective payment systems. Furthermore, the impact of integrating cost-benefit information to 

ensure efficiency gains or to ensure minimal efficiency losses in multi-round conservation 

auctions, where landowners learn to extract information rents, depends on the level of correlation 

between costs and benefits. Incorporating discriminatory-price auction theory, and an agent-

based model, simulated data is used to examine the cost-efficiency of cost-ranked and cost-

benefit-ranked auction-based payment designs for forest-based carbon storage for varying levels 

of correlation between afforestation opportunity costs and carbon sequestration capacities in 

static as well as dynamic settings. Results show that the cost-benefit-ranked design is more cost-

efficient than the cost-ranked design in a static setting even though the relative spatial 

heterogeneities of costs and benefits are identical. More importantly, the cost-efficiency of the 

cost-benefit-ranked design is generally robust to deterioration, when bidders learn over repeated 

auction rounds, compared with the cost-ranked design, and more resistant to deterioration for 

some levels of correlation.  

 

Keywords Carbon sequestration, conservation auction, correlation, cost-efficiency, 

opportunity costs 
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4.1. Introduction 

Payment for ecosystem services (PES), which compensates landowners for the opportunity cost 

of conservation, is gaining popularity as a policy instrument for environmental conservation 

because it is more cost-efficient than other indirect approaches (Ferraro & Kiss, 2002; Ferraro & 

Simpson, 2002; Jack et al., 2008). In general, PES is defined as a voluntary transaction between 

ecosystem service (ES) users and providers, where the service providers are compensated for an 

agreed upon bid amount by the users, typically represented by governments or conservation 

agencies (Wunder, 2005, 2015). The bid amount converges to equilibrium, where the bid equals 

landowners’ opportunity costs of providing ES by overcoming asymmetric information between 

landowners and conservation agencies seeking to purchase ES (Latacz-Lohmann & Van der 

Hamsvoort, 1997; Schilizzi & Latacz-Lohmann, 2007; Stoneham et al., 2003). A fixed-rate 

payment, the most popular form of PES (Zandersen et al., 2009), does not accommodate 

asymmetric information. Failing to at least partially resolve this asymmetry results in some 

landowners receiving payments far in excess of their opportunity costs (Ferraro, 2008; Persson & 

Alpízar, 2013) and large reductions in social welfare arising from the inefficient allocation of 

payments.  

Information asymmetry provides an opportunity to design a PES approach that achieves 

optimal provision of ES with spatially dependent costs and benefits through a competitive 

bidding mechanism (Polasky et al., 2014). Conservation agencies around the world are 

increasingly turning to auctions (hereafter referred to as “conservation auctions”) to overcome 

information asymmetry (Brown et al., 2011; Connor et al., 2008; Stoneham et al., 2003). 

Standard auction theory primarily uses the independent private values model, where bidders 

compete for a single indivisible object in a simultaneous non-cooperative game (Milgrom & 
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Weber, 1982) based on a set of benchmark assumptions: (i) bidders are risk neutral; (ii) bidders 

have independent private values; (iii) symmetry exists among bidders; (iv) the payment is a 

function of the bid alone; and (v) the absence of transaction costs (McAfee & McMillan, 1987; 

Milgrom & Weber, 1982). Although these assumptions are essential in the theoretical design of 

auctions, they provide little guidance for implementing and analyzing conservation auctions in 

which multiple landowners with heterogeneous opportunity costs bid for one conservation 

agency’s order in multiple rounds (synonymously referred as “conservation procurement 

auctions”) (Rothkopf & Harstad, 1994; Schilizzi & Latacz-Lohmann, 2007). 

Because of the deficit in standard auction theory, few researchers have tried to link 

standard auction theory to conservation procurement auctions using economic experiments 

(Cason & Gangadharan, 2004; Cason et al., 2003; Schilizzi & Latacz-Lohmann, 2007) or 

hypothetical field experiments (Latacz-Lohmann & Van der Hamsvoort, 1997). Nevertheless, the 

agent-based model, which incorporates the agent’s bid-learning behavior, has been applied in 

multiple-round conservation procurement auctions (Hailu & Schilizzi, 2004; Hailu & Thoyer, 

2007; Lennox & Armsworth, 2013). These studies found that conservation auctions are more 

cost-effective than fixed-rate payment approaches with limited conservation budgets given 

bidders with heterogeneous opportunity costs. However, the advantage of conservation auctions 

erodes quickly when bidders learn in successive auction rounds. In general, conservation 

procurement auctions are substantially more cost-effective than fixed-rate payment approaches, 

given multiple landowners with heterogeneous opportunity costs of providing ES (Latacz-

Lohmann & Schilizzi, 2005).  

The cost-efficiency of conservation programs can be enhanced by integrating cost and 

benefit information into program design. The efficiency gain from integration depends on the 
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spatial variability of the opportunity costs relative to the environmental benefits. Furthermore, 

the correlation between the opportunity costs and environmental benefits, along with the 

landowners’ capacities to provide ES, determine the relative gains from incorporating cost-

benefit information into an optimal payment system. Although opportunity costs are the most 

important consideration in devising an optimal conservation payment system, failure to 

incorporate information about environmental benefits may undermine the cost-efficiency of a 

conservation program. Even though the costs and benefits of ES have been explored in designing 

conservation procurement auctions to improve cost-efficiency over fixed-rate systems (Duke et 

al., 2014; Fooks et al., 2015), limited knowledge is available about how the distributional 

parameters of costs and benefits impact the cost-efficiency of those auctions. Independent to 

conservation procurement auction studies, correlation between and variability in the costs and 

benefits of ES have been analyzed to determine their optimal integration for ensuring a cost-

efficient conservation program (Babcock et al., 1997; Ferraro, 2003). Conclusions from these 

studies, when integrated with insights from auction-based economic experiments, prove useful to 

conservation agencies in designing a single-round conservation auction (static setting). However, 

the impact of integrating cost-benefit information to ensure efficiency gains or to ensure minimal 

efficiency losses in a multi-round conservation auction (dynamic setting), where landowners 

learn to extract information rents, has not been explored. In addition, knowledge about the 

impacts of alternative levels of correlation between costs and benefits can help to guide 

policymakers in choosing an optimal information strategy that ensures the cost-efficiency of a 

conservation program in a dynamic setting. This study enhances the literature on auction-based 

economic experiments by estimating the impacts on the cost-efficiency of varying the level of 
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correlation between opportunity costs and environmental services in multi-round cost-ranked14 

(considers opportunity costs only) and cost-benefit-ranked15 (considers opportunity costs as well 

as environmental benefits) conservation auctions.  

 Ecosystem services received in the form of carbon sequestration from afforestation 

projects is one way to mitigate the anthropogenic consequences of climate change. Landowners’ 

willingness to accept payment for offering land into an afforestation program and information 

about the increase in carbon storage from that land are pivotal in designing an optimal payment 

program for forest-based carbon storage. Conservation auctions can reveal information about the 

opportunity costs of land-use changes, which can be combined with the carbon sequestration 

benefits to design a cost-effective payment system. The overall objective of this research is to 

examine the cost-efficiency of cost-ranked and cost-benefit-ranked auction-based payment 

designs for forest-based carbon storage for varying levels of correlation between afforestation 

opportunity costs and carbon sequestration capacities in static as well as dynamic settings. The 

overarching objective is achieved by simultaneously answering two questions: (1) What are the 

cost-efficiency gains of cost- and cost-benefit-ranked auction-based payment systems compared 

to fixed-rate payments under single- and multi-round auctions, and (2) What are the cost-

efficiency differences between target-constrained16 (the conservation or government agency has 

a fixed conservation target to be achieved) and budget-constrained (the conservation or the 

government agency has a limited conservation fund to be allocated) models of cost- and cost-

benefit-ranked auction-based payment systems under single and multi-round auctions.  

                                                           

14 Equivalent term in the literature is cost-targeting. 
15 Equivalent term in the literature is cost-benefit targeting. 
16 Target refers to hectares of land acquired for afforestation and metric tons of carbon stored in cost-ranked and 

cost-benefit-ranked designs, respectively. 
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The study starts with a conceptual framework showing the relationship between 

conservation payments and correlation between costs and benefits of ES, which in turn 

determines the efficiency gains/losses under cost-ranked or cost-benefit-ranked auction-based 

designs. The overbidding inherent in the discriminatory-price auction, which essentially guides 

the bid simulation for a multi-unit conservation auction, is depicted through theoretically derived 

Nash-equilibrium bids. The overbidding mechanism, where landowners extract information rents 

from the conservation agency, determines the gains in efficiency from the auction-based 

payment designs compared with fixed-rate payments. Using the correlation-driven relationship 

and discriminatory-price auction theory, an empirical procedure is described that determines the 

magnitudes of the efficiency gains/losses under alternate payment designs.  

To answer the single-round portion of questions (1) and (2), a discriminatory-price 

auction with a budget constraint is implemented. A discriminatory-price auction is theoretically 

the multi-unit analogy of the first-price auction (Hailu et al., 2005), where every potential seller 

in the auction offers a sealed-bid to the buyer and the buyer pays each winning seller an amount 

equal to the submitted bid. A fixed-rate payment is then selected using the same budget as the 

auction budget. Equivalently, the land acquired for afforestation using a budget-constrained 

auction is used as the target in selecting a target-constrained fixed-rate payment. The land 

acquired for afforestation, or the carbon stored, using the budget-constrained auction is set as the 

target to be achieved in the target-constrained auction. With opportunity costs arranged in 

ascending order, the last opportunity cost that exhausts the budget or achieves the target is 

selected as the fixed-rate payment (Schilizzi & Latacz-Lohmann, 2007).  

In answering the multi-round portions of questions (1) and (2), two types of bid-learning 

algorithms are utilized. These algorithms assume risk-neutrality of the landowners and allow 
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them to adjust bids in successive rounds based on either the success/failure of their bids alone 

(referred as L1 type hereafter), or the success/failure of their bids and closest neighbors’ bids in 

the immediately preceding round (referred as L2 type hereafter). Inferences from Nash equilibria 

optimal bids obtained from the theoretical models are captured in simulating the optimal bids, 

i.e. submitted bids are an additive combination of land-use opportunity costs and a random 

stochastic term that captures the overbid amount. 

Estimating the impact of varying levels of correlation between costs and benefits is 

expected to guide policymakers in choosing an optimal information strategy for ensuring the 

cost-efficiency of a conservation program in a static setting and for ensuring a minimal loss in 

efficiency under a dynamic setting, regardless of whether the conservation program is budget or 

target constrained. 

4.2. Literature Review 

Empirical assessment of real-world conservation contracts provides valuable insights in 

designing and implementing effective auctions. In the literature on the effective design and 

implementation of multi-unit, multi-round conservation procurement auctions, few studies have 

linked existing conservation auction theory with auction-based economic experiments, which 

include controlled laboratory experiments, hypothetical field experiments, and agent-based 

models. Auction-based payment systems evaluated in the literature outperform fixed-rate 

systems in achieving cost-efficiency (Cason & Gangadharan, 2004; Hailu & Schilizzi, 2004; 

Schilizzi & Latacz-Lohmann, 2007; Stoneham et al., 2003). Similarly, the budget-constrained 

model is more cost-effective than the target-constrained model when bidders learn to extract 

information rents from the conservation agency in multiple auction rounds (Schilizzi & Latacz-

Lohmann, 2007). Additionally, improved cost-efficiency has been found in payment systems that 
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integrate information on conservation costs and environmental benefits (Babcock et al., 1997; 

Duke et al., 2014; Ferraro, 2003; Fooks et al., 2015). Few studies have shown the impact of 

correlation between conservation costs and benefits, and their relative spatial variability in 

ensuring efficiency gains in information-optimal payment systems (Babcock et al., 1997; 

Ferraro, 2003). 

Related to question (1), the literature shows auction-based payments are more cost-

efficient than fixed-rate payments, but the advantage erodes quickly under repetition of the 

conservation auction (Cason & Gangadharan, 2004; Hailu & Schilizzi, 2004; Schilizzi & Latacz-

Lohmann, 2007; Stoneham et al., 2003). The efficiency reduction in succeeding rounds stems 

from bid-learning behavior as participants adjusted bids to extract higher information rents from 

the conservation agency. The Conservation Reserve Program (CRP), implemented by the U.S. 

Department of Agriculture (USDA), is the world’s largest practical application of a multi-round 

conservation auction (Hellerstein et al., 2015). The cost-efficiency of the CRP gradually 

decreased with the beneficiaries learning to extract information rents from the government with 

multiple rounds of contracting (Reichelderfer & Boggess, 1988). Latacz-Lohmann and Van der 

Hamsvoort (1997) are the first to use auction theory to derive an optimal bidding strategy for a 

budget-constrained procurement auction and apply it to a hypothetical conservation auction. 

They showed auctions are generally superior to a fixed-rate payment system because they 

introduce an element of competition between landowners. Stoneham et al. (2003)’s empirical 

analysis of a discriminatory-price auction for procuring ES (Victoria’s Bush Tender Australia) 

suggested that, when landholders have heterogeneous non-standard environmental benefits, the 

auction reduces costs by as much as seven times compared to fixed-price systems to achieve the 

same conservation benefits. Hailu and Schilizzi (2004) presented an agent-based model to obtain 
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optimal bids using a discriminatory sealed-bid auction in which submitted bids are ranked by 

benefit-cost ratios. They showed that the relative advantage of the discriminatory auction over a 

fixed-payment system deteriorates when bidders learn in a dynamic setting. They also 

demonstrated that the advantage of the auction over fixed-rate payments is larger for higher 

fixed-payment levels. 

Related to question (2), the literature shows that, though there is no difference in cost-

efficiency for an auction constrained by a conservation fund or a target in a single-round, the 

cost-efficiency of the target-constrained model degrades more quickly than the cost-efficiency of 

the budget-constrained model under multiple rounds (Schilizzi & Latacz-Lohmann, 2007). This 

result is attributed to the design of the target-constrained auction itself, because the target must 

be achieved regardless of budgetary requirement. Schilizzi and Latacz-Lohmann (2007) used 

controlled laboratory experiments to investigate the budgetary performance of procurement 

auctions against an equivalent fixed-rate payment. They showed that both the target- and budget-

constrained models achieve greater cost-efficiency than the fixed-rate payment program, but that 

their advantages deteriorate quickly under auction repetition as bidders learn. They also found 

that the target-constrained auction is more vulnerable to repetition than the budget-constrained 

auction because the conservation target is unyielding.  

 Regarding the general question of whether the cost-ranked or cost-benefit-ranked 

designs perform better in ensuring cost-efficiency gains from competitive bidding, the literature 

suggests that payment designs based solely on conservation costs or environmental benefits 

suffer from efficiency losses compared to designs based on cost-benefit ratios (Babcock et al., 

1997; Duke et al., 2014; Ferraro, 2003; Fooks et al., 2015). Connor et al. (2008) provided an 

empirical assessment of the cost-effectiveness of the discriminatory auction (Catchment Care 



 

125 
 

Auction Australia), and found that the advantage of the discriminatory auction over the uniform 

payment system depends primarily on cost-benefit prioritization rather than the opportunity cost-

revealing mechanism inherent in the auction design. They showed that the transaction and 

administration costs of auction implementation further reduce the auction’s advantage over 

uniform payments. Glebe (2013) derived theoretical conditions under which concealing or 

revealing information about site-specific environmental benefits improves auction performance; 

however, a hypothetical conservation auction provided no guidance for optimal information 

policy. Duke et al. (2014) provided empirical evidence for the superiority of binary optimization 

and benefit-cost targeting over sole benefit- or cost-targeting strategies for defining payments 

under a constrained conservation fund. Fooks et al. (2015) used experimental techniques to 

explore how endogenous entry in dynamic setting affects auction performance for participants 

competing solely on costs or cost-benefit ratios for contracting farmland into the CRP. They 

found cost-efficiency gains for the cost-benefit-ranked auction over the cost-ranked auction from 

5% to 15%.  

Efficiency gains for cost-benefit-ranked designs over cost-ranked designs are primarily 

determined by the correlation between conservation costs and benefits and their relative 

variability (Babcock et al., 1997; Ferraro, 2003). Babcock et al. (1997) found that efficiency 

losses resulting from targeting low opportunity cost lands or high environmental benefit lands 

compared to benefit-cost targeting depend on the joint spatial distribution of costs and benefits, 

i.e. relative variability and the level of correlation between them. Ferraro (2003) described the 

policy-level implications of integrating cost and benefit information in designing conservation 

payments considering different levels of relative spatial variability and correlation across 

conservation costs and benefits. These studies are based on rankings of the conservation costs 
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and/or benefits with no information on cost-revealing mechanisms, and are primarily focused on 

a static environment with conservation costs remaining stationary. This study augments the 

literature by introducing a conservation auction that reveals the opportunity costs of conservation 

before ranking them, and then conceptualizes the bid-learning behavior of participants in a multi-

round conservation auction through an agent-based model. Thus, main objective of this study is 

to estimate the impacts of integrating cost and benefit information into payment designs to 

ensure efficiency gains, or minimal efficiency losses, in a multi-round conservation auction 

where landowners learn to extract information rents. This study improves upon the existing 

literature by estimating the impacts on the cost-efficiency of single and multi-round cost-ranked 

and cost-benefit-ranked conservation auctions. The impacts of varying the level of correlation 

between conservation costs and environmental benefits on the cost-efficiency of procurement 

auctions in a dynamic setting are yet to be explored. This study contributes to the literature of 

auction-based economic experiments by estimating the impacts of different levels of correlation 

between opportunity costs and environmental services on the cost-efficiencies of the cost-ranked 

and cost-benefit-ranked, multi-round conservation auctions. The resulting impacts will help 

guide policymakers in choosing optimal information strategies to ensure the cost-efficiency of 

conservation programs in static and dynamic settings. 

4.3. Conceptual Framework 

The most commonly used reverse auction in conservation programs, i.e. the discriminatory-price 

auction is defined, and then the overbidding inherent in the auction through theoretically derived 

Nash-equilibrium bids is explored (see Proposition 1 below). The overbidding mechanism used 

by landowners to extract information rent from the conservation agency largely determines the 

gains in efficiency of auction-based payments compared with uniform payments. The answers to 
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questions (1) and (2) depend on Proposition 1 (see below), which guides the bid simulation for 

multi-unit conservation auctions. Polasky et al. (2014) demonstrated that landowners will bid 

truthfully, assuming the conservation agency has an ex-ante commitment to conservation 

payments based on the ES social benefits rather than the submitted bids. As such, the payment 

for each unit of ES will be uniform for all landowners, ruling out price discrimination. 

Nevertheless, this study uses a discriminatory-price auction to design payments based either 

explicitly or implicitly on opportunity costs (with inherent overbids), and the associated ES 

benefits.  

 Then, the relationship between conservation payments and correlation is described, 

which determines cost-efficiency17 gains or losses under cost-ranked or cost-benefit-ranked price 

discrimination auction-based designs (see Proposition 2 below). The overall objective of 

estimating cost-efficiencies across different levels of correlation under cost-ranked and cost-

benefit-ranked designs is influenced by Proposition 2 (see below). Following discriminatory-

price auction theory and the correlation between costs and benefits, this study provides an 

empirical procedure that determines the efficiency gains or losses under alternate payment 

designs with respect to answering questions (1) and (2). In answering these questions relevant to 

multi-round auctions, two bid-learning algorithms are utilized. These algorithms assume 

landowners are risk-neutral and allow landowners to adjust bids in successive rounds based on 

the success/failure of their bids alone or the combined knowledge of their bids and nearest 

neighbors’ bids in the immediately preceding round. 

                                                           

17 Unless otherwise stated cost-efficiency refers to dollar value corresponding to one additional metric ton of carbon 

sequestered in this study. 
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4.3.1. Discriminatory-price Auction  

When there are multiple sellers and a single buyer of a good, a reverse auction is implemented. 

Under a first-price reverse auction, each potential seller offers a private bid (sealed-bid) to the 

buyer. The buyer selects the seller with the lowest bid and pays their bid for the good. However, 

a first-price reverse auction is designed to sell/buy a single unit of a good. In the case of multiple 

units of a good or service being sold, as in the case of allocating multiple land parcels owned by 

numerous landowners for carbon sequestration through afforestation, discriminatory-price or 

uniform-price reverse auctions are used (Hellerstein et al., 2015; Latacz-Lohmann & Schilizzi, 

2005). 

The discriminatory-price auction is theoretically analogous to the multi-unit, first-price 

auction. In the discriminatory-price auction, multiple sellers can be winners based on the bids 

they offer, subject to the quantity desired or the budgetary constraint of the buyer. Every 

potential seller in the auction offers a sealed-bid to the buyer. The buyer sorts bids from lowest to 

highest and pays the bid amounts to the lowest bidders until the desired quantity has been 

purchased or the allocated budget has been spent. Since the discriminatory-price auction allows 

bidders to determine their payment bids, their bids and conjectures about the highest bid 

acceptable to the seller determine their probabilities of winning. Consequently, bidders can 

extract information rent by bidding higher than their actual opportunity costs. That being said, 

overbidding is higher for lower-cost bidders and lower for higher-cost bidders (Latacz-Lohmann 

& Schilizzi, 2005; Latacz-Lohmann & Van der Hamsvoort, 1997; Schilizzi & Latacz-Lohmann, 

2007; Schilizzi & Latacz‐Lohmann, 2013). 

An approximate cap can be imposed to manage overbidding. Setting a reserve price or 

bid cap becomes more essential for multi-round auctions as bidders learn optimal bidding 
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strategies in succeeding rounds (Latacz-Lohmann & Schilizzi, 2005; Stoneham et al., 2003). 

However, providing a bid cap is not as important in discriminatory auctions involving a limited 

budget since the budget constraint itself serves as an implicit bid cap (Latacz-Lohmann & 

Schilizzi, 2005; Schilizzi & Latacz‐Lohmann, 2013; Stoneham et al., 2003). This study starts 

with the Nash-equilibrium bidding strategy in a reverse-auction setting for a single good (see 

section 4-B1 of Appendix 4-B) and then moves to optimal bids in a more complex multi-unit 

conservation auction constrained by a conservation budget or a target ES amount. The impact on 

bidding behavior under an implicit bid cap in a budget-constrained model and a bid-cap free 

target-constrained model is explored in sections 4-B2 and 4-B3 of Appendix 4-B, respectively. 

Proposition 1. Overbidding is the dominant strategy in the discriminatory-price auction, and 

overbidding is higher for bidders with lower opportunity costs than for bidders with higher 

opportunity costs regardless of whether the conservation auction is constrained by a budget or a 

target. (See Appendix 4-B for the proof) 

4.3.2. Correlation and Payment Design 

In this section, an expression for the efficiency response from integrating cost and benefit 

information into the design of conservation payments is derived, which is central to the overall 

objective of estimating cost-efficiencies across different levels of correlation under cost-ranked 

and cost-benefit-ranked designs. The expression relates cost-efficiency to the correlation 

coefficient between costs and benefits, assuming all other distributional parameters involving 

opportunity costs and conservation benefits are constant. This relationship guides the efficiency 

impacts of various levels of correlation between conservation costs and environmental benefits 

for cost-ranked and cost-benefit-ranked auctions that determine payments for forest-based carbon 
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storage. The expression that follows depends only on the linear relationship between two 

variables irrespective of their distributions. 

Assuming timber harvesting and going back to the original land use are restricted, a 

landowner facing the decision to change parcel i of non-forestland category g (e.g., grassland, 

pastureland, cropland) to forestland f has an opportunity cost18 of afforestation 𝑐𝑖𝑔𝑓, expressed 

as: 

𝑐𝑖𝑔𝑓 = 𝑛𝑟𝑖𝑔 + 𝑓𝑐𝑓 + 𝑣𝑐𝑓 ,                                                                                                                  (4 − 1) 

where 𝑛𝑟𝑖𝑔 is the expected net return from g for parcel i, 𝑓𝑐𝑓 is the annuity value of the 

investment cost in dollars per hectare associated with changing the parcel from its current land 

use to forest, and 𝑣𝑐𝑓 is the management cost of established forest in dollars per hectare.  

Following Proposition 1, the Nash-equilibrium bid ($/hectare) for a discriminatory-price 

auction is: 

𝑏𝑖𝑔𝑓 = 𝑐𝑖𝑔𝑓 + 휀𝑖𝑔𝑓 ,                                                                                                                               (4 − 2) 

where 휀𝑖𝑔𝑓 is the overbid amount ($/hectare) inherent in the discriminatory-price auction. Let 𝜌𝑐𝑒 

be the correlation between the opportunity costs and environmental benefits: 

𝜌𝑐𝑒 =
𝐶𝑜𝑣(𝑐𝑒)

√𝑉𝑎𝑟(𝑐)√𝑉𝑎𝑟(𝑒)
=
∑ 𝑐𝑖𝑔𝑓𝑒𝑖𝑔𝑓 − 𝑛𝜇𝑐𝜇𝑒𝑖∈𝐼

𝜎𝑐𝜎𝑒
,                                                                    (4 − 3) 

𝜌𝑐𝑒𝜎𝑐𝜎𝑒 = 𝑐𝑖𝑔𝑓𝑒𝑖𝑔𝑓 +∑ 𝑐−𝑖𝑔𝑓𝑒−𝑖𝑔𝑓
−𝑖∈𝐼

− 𝑛𝜇𝑐𝜇𝑒 ,                                                                      (4 − 4) 

                                                           

18 Opportunity cost is assumed an aggregate of costs related to participation and complying with the afforestation 

program conditions i.e. foregone expected net returns from the current land use, annualized forest investment costs, 

and forest maintenance costs; of which later two are assumed independent of landowner and current land use. 
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𝑐𝑖𝑔𝑓 = 
𝜌𝑐𝑒𝜎𝑐𝜎𝑒 + 𝑛𝜇𝑐𝜇𝑒 − ∑ 𝑐−𝑖𝑔𝑓𝑒−𝑖𝑔𝑓−𝑖∈𝐼

𝑒𝑖𝑔𝑓
,                                                                               (4 − 5) 

where 𝜎𝑐 and 𝜎𝑒 are standard deviations of the opportunity cost and environmental benefit 

distributions, respectively, with  𝜇𝑐 and 𝜇𝑒 denoting the means of the corresponding 

distributions. Equation (4-5) relates the opportunity cost of land use change to the correlation 

between the opportunity costs and environmental benefits of afforestation. 

Proposition 2. The level of correlation between opportunity costs and environmental benefits 

determines the cost-efficiency of auction-based conservation payments. Additionally, the 

marginal impact of correlation on cost-efficiency depends not only on the ES-supplying capacity 

of the selected parcels but also on the spatial distributions, or the spatial heterogeneities, of the 

opportunity costs and environmental benefits. (See sections 4.3.2.1, and 4.3.2.2 below for the 

proof)  

4.3.2.1. Correlation and Cost-ranked Design 

Assuming the winners are selected based on the cost rankings of the submitted bids 𝑏𝑖𝑔𝑓  

(obviously these bids are greater than the opportunity costs), the conservation agency maximizes 

land acquisition for afforestation irrespective of the carbon sequestering benefits 𝑒𝑖𝑔𝑓. As such, 

the correlation has no impact on land acquisition since the environmental benefits are not 

considered in selecting parcels, resulting in no change in the efficiency of the land selected i.e. 

procurement-efficiency in $/hectare. Nevertheless, total benefits in terms of carbon stored 

depend on the carbon storage capacities of the land corresponding to cost-ranked bids. Thus, 

correlation has implicit cost-efficiency consequences.  

Let 𝑠𝑖𝑔𝑓   be the hectares of g selected for conversion to f with CE denoting the cost-

efficiency of the conservation auction. Dividing total conservation costs by the total amount of 
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carbon sequestered, provides the cost-efficiency of the payment in dollar per metric ton of 

carbon stored: 

𝐶𝐸 =
∑ 𝑏𝑖𝑔𝑓𝑖∈𝐼 𝑠𝑖𝑔𝑓
∑ 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓𝑖∈𝐼

,                                                                                                                             (4 − 6) 

𝐶𝐸 =
∑ (𝑐𝑖𝑔𝑓 + 휀𝑖𝑔𝑓)𝑖∈𝐼 𝑠𝑖𝑔𝑓

∑ 𝑠𝑖𝑔𝑓𝑖∈𝐼 𝑒𝑖𝑔𝑓
,                                                                                                             (4 − 7) 

𝐶𝐸 =

∑ (
𝜌𝑐𝑒𝜎𝑐𝜎𝑒 + 𝑛𝜇𝑐𝜇𝑒 −∑ 𝑐−𝑖𝑔𝑓𝑒−𝑖𝑔𝑓−𝑖∈𝐼

𝑒𝑖𝑔𝑓
+ 휀𝑖𝑔𝑓)𝑖∈𝐼 𝑠𝑖𝑔𝑓

∑ 𝑠𝑖𝑔𝑓𝑖∈𝐼 𝑒𝑖𝑔𝑓
,                                                 (4 − 8) 

where all terms are defined earlier. 

Equation (4-8) shows that, even though the environmental benefits are irrelevant in the 

selection of winning bids, correlation has implicit consequences with respect to the cost-

efficiency of the cost-ranked design through the environmental benefits associated with the 

selected parcels.  

Equation (4-9) demonstrates how the implicitly determined cost-efficiency of the cost-

ranked conservation auction responds to change in correlation: 

∂𝐶𝐸

∂𝜌𝑐𝑒
=

∑ (
𝜎𝑐𝜎𝑒
𝑒𝑖𝑔𝑓

)𝑖∈𝐼 𝑠𝑖𝑔𝑓

∑ 𝑠𝑖𝑔𝑓𝑖∈𝐼 𝑒𝑖𝑔𝑓
,                                                                                                                      (4 − 9) 

where 
∂𝐶𝐸

∂𝜌𝑐𝑒
 is the marginal impact on cost-efficiency for a given change in correlation. 

4.3.2.2. Correlation and Cost-benefit-ranked Design  

In this section, the relationship between cost-efficiency and correlation is developed when bids 

are selected based on cost-benefit rankings. Assuming the winners are decided by the cost-

benefit rankings obtained by dividing the submitted bids 𝑏𝑖𝑔𝑓, defined in equation (4-2), by the 
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respective gains in carbon storage 𝑒𝑖𝑔𝑓
′  from changing a non-forest land category g to forestland 

f, the optimal bids for the conservation agency are: 

𝑑𝑖𝑔𝑓 =
𝑏𝑖𝑔𝑓

𝑒𝑖𝑔𝑓
′ =

𝑐𝑖𝑔𝑓 + 휀𝑖𝑔𝑓

𝑒𝑖𝑔𝑓
′ ,                                                                                                             (4 − 10) 

where 𝑑𝑖𝑔𝑓 is the optimal bid in $/ton of carbon sequestered. 

Equation (4-10) shows that, when the conservation agency maximizes the amount of 

carbon sequestered, correlation has an indirect impact on parcel selection since selection is based 

on the rankings of both opportunity costs and environmental benefits, resulting in changes in 

procurement-efficiency. 

Since parcels are selected based on both the opportunity costs and carbon storage 

capacities of the parcels, correlation directly influences the cost-efficiency of the cost-benefit-

ranked design. Let 𝑠𝑖𝑔𝑓   be the hectares of g selected for conversion to f with 𝐶𝐸′ denoting the 

cost efficiency of the cost-benefit-ranked conservation auction. The cost-efficiency of the 

payment in $/ton of carbon stored is obtained by dividing total conservation cost by total tons of 

carbon sequestered: 

𝐶𝐸′ =
∑ 𝑑𝑖𝑔𝑓𝑖∈𝐼 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓

′

∑ 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓
′

𝑖∈𝐼
,                                                                                                                 (4 − 11) 

𝐶𝐸′ =

∑ (
𝑐𝑖𝑔𝑓 + 휀𝑖𝑔𝑓

𝑒𝑖𝑔𝑓
′ )𝑖∈𝐼 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓

′

∑ 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓
′

𝑖∈𝐼
,                                                                                                 (4 − 12) 

𝐶𝐸′ =

∑ (
𝜌𝑐𝑒𝜎𝑐𝜎𝑒 + 𝑛𝜇𝑐𝜇𝑒 − ∑ 𝑐−𝑖𝑔𝑓𝑒−𝑖𝑔𝑓−𝑖∈𝐼

𝑒𝑖𝑔𝑓
+ 휀𝑖𝑔𝑓)𝑖∈𝐼 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓

′

∑ 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓
′

𝑖∈𝐼
.                                     (4 − 13) 

Thus, correlation determines cost-efficiency, which is a direct consequence of the carbon 

storage capacities corresponding to the parcels selected based on cost-benefit-ranked bids. The 



 

134 
 

cost-efficiency of the cost-benefit-ranked conservation auction responds to changes in 

correlation: 

∂𝐶𝐸′

∂𝜌𝑐𝑒
=

∑ (
𝜎𝑐𝜎𝑒
𝑒𝑖𝑔𝑓

)𝑖∈𝐼 𝑠𝑖𝑔𝑓

∑ 𝑠𝑖𝑔𝑓𝑒𝑖𝑔𝑓
′

𝑖∈𝐼
.                                                                                                                  (4 − 14) 

From equations (4-8) and (4-13), we see that correlation has implicit or explicit impacts 

on cost-efficiency through the environmental benefits of the selected parcels. Additionally, 

variability in the cost and benefit distributions directly impacts the cost-efficiency of payment 

designs.  

From equations (4-9) and (4-14), we see that the marginal impact of correlation on cost-

efficiency depends not only on the ES-supplying capacity of the selected parcels but also on the 

spatial distributions, or the spatial heterogeneities, of the opportunity costs and environmental 

benefits. 

The influence of correlation alone in determining the cost-efficiencies of auction-based 

payment designs can be estimated by holding the variability in opportunity costs and 

environmental benefits constant. 

Assuming 𝑒𝑖𝑔𝑓
′ > 𝑒𝑖𝑔𝑓, the relationship between equations (4-8) and (4-13) is: 

𝐶𝐸′ ≤ 𝐶𝐸.                                                                                                                                            (4 − 15) 

Similarly, the relationship between equations (4-9) and (4-14) is: 

∂𝐶𝐸′

∂𝜌𝑐𝑒
≤
∂𝐶𝐸

∂𝜌𝑐𝑒
.                                                                                                                                      (4 − 16) 

If the conservation agency selected parcels with equal opportunity costs and areas, the 

cost-efficiency of the conservation program for a given degree of correlation and the change in 

cost-efficiency with respect to a change in correlation would depend on the carbon storage 

benefits associated with the selected parcels. Since the parcels selected by the cost-benefit-
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ranked design are generally expected to have greater environmental benefits than those selected 

by the cost-ranked design, the cost-benefit-ranked design is expected to be more cost-effective 

than the cost-ranked design for a given level of correlation (equation (4-15)), and the reduction in 

cost-efficiency is expected to be lower for the cost-benefit-ranked design than for the cost-ranked 

design for a given increase in correlation (equation (4-16)). 

The conceptual framework described above explores the Nash-equilibrium bids for a 

multi-unit conservation auction, i.e. a discriminatory-price auction, given a limited budget or a 

minimal conservation target, revealing the overbidding mechanism that allows landowners to 

extract information rents from the conservation agency in the form of overbids (Proposition 1). 

Furthermore, it shows that landowners with lower opportunity costs overbid more than 

landowners with higher opportunity costs. Similarly, it explains the relationship between 

conservation payments and correlation, which in turn determines cost-efficiency gains/losses 

under cost-ranked or cost-benefit-ranked auction-based designs (Proposition 2).  

4.4. Empirical Methods 

Empirical analysis, for a given level of correlation, estimates the efficiency of the conservation 

auction where Proposition 1 guides the simulation of the overbids inherent in the discriminatory-

price auction, whereas the magnitudes of the efficiency gains/losses under alternate payment 

designs is determined by Proposition 2. To reveal the opportunity costs of conservation, a 

discriminatory-price auction is implemented. The submitted bids are either cost ranked or cost-

benefit ranked to determine the winners. Based on whether the payment program is constrained 

by a limited conservation fund or a specified conservation target, either budget-constrained (BC) 

or target-constrained (TC) models are used. The cost-efficiency outcomes from the models are 

compared against the fixed-rate payment system. Subsequently, the efficiency losses, when 



 

136 
 

bidders learn in a dynamic setting, are compared across the models. The efficiencies of the cost-

ranked and cost-benefit-ranked designs are compared across five levels of correlation between 

opportunity costs and conservation benefits. 

With respect to evaluating the effect of correlation on efficiency, bids are formed using a 

stochastic term for overbidding, mimicking a discriminatory-price auction. In the dynamic 

setting, a simple repetitive bid-learning algorithm is utilized (see section 4.4.1 below for details). 

The winning bids are then chosen using binary linear optimization under budget and target 

constraints (see section 4.4.2 below for details). Cost-efficiencies of the payments selected using 

discriminatory-price auctions with budget and target constraints are compared with an equivalent 

fixed-rate payment system.  

4.4.1. Bid Simulation and Learning 

Bids are simulated for the initial auction round using a random term that denotes the amount of 

overbidding (see equation (4-2)). The overbid 휀𝑖𝑔𝑓 is managed following Proposition 1, such that 

the overbid is highest for the lowest opportunity-cost landowner and decreased as the 

opportunity cost increased. To model the bid-learning behavior in multiple auction rounds, a 

simplistic version of the agent-based model is implemented, which simulates bids as information 

unfolds in subsequent rounds. 

4.4.1.1. Type L1 Bidders 

This bid-learning algorithm uses the immediately preceding outcome of the individual bidder. If 

the landowner’s bid is accepted in any round n, the bidder either maintains the bid or increases it 

by 10% in the next round (Lennox & Armsworth, 2013). If the landowner’s bid is rejected in any 

round n, the bidder either decreases the bid by 10% or maintains the bid in the next round 
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(Lennox & Armsworth, 2013). A bid below the opportunity cost is avoided by either decreasing 

the bid by 10% or decreasing it to the opportunity cost, whichever is higher.  

Assuming the bidder is risk neutral, equal probability is assigned to choosing each option 

for each outcome, and the bid in the (𝑛 + 1)𝑡ℎ round is: 

𝑏𝑖𝑔𝑓
(𝑛+1)

= 

{
 
 

 
 
[𝑏𝑖𝑔𝑓
𝑛 + 1.1(𝑏𝑖𝑔𝑓

𝑛 )]

2
                                                         𝑖𝑓 𝑞𝑖𝑔𝑓

𝑛 = 1 
 

[𝑀𝑎𝑥{0.9(𝑏𝑖𝑔𝑓
𝑛 ), 𝑐𝑖𝑔𝑓 } + 𝑏𝑖𝑔𝑓

𝑛 ]

2
                                  𝑖𝑓 𝑞𝑖𝑔𝑓

𝑛 = 0 }
 
 

 
 

,                   (4 − 17) 

where 𝑞𝑖𝑔𝑓 is a binary variable equal to 1 if parcel i in land-use g is selected for change to forest 

f, 0 otherwise. 

4.4.1.2. Type L2 Bidders 

This bid-learning algorithm uses the immediately preceding outcomes of the individual bidder 

and the nearest-neighborhood bidder. If the landowner’s and the neighbor’s bids are accepted in 

any round n, conditional on the latter’s bid being higher than the former’s bid, the former would 

submit a bid in the next round equal to the mean of what each of them would have submitted 

independently if they had won. If the landowner’s bid is accepted and the neighbor’s bid is 

rejected in any round n, conditional on the latter’s bid being higher than the former’s bid, the 

former would submit a bid in the next round equal to the mean of their bids.  

If the landowner’s bid is accepted and the neighbor’s bid is rejected in any round n, 

conditional on the latter’s bid being lower than the former’s bid, the former would submit a bid 

in the next round exactly equal to what the former would have submitted independently if the 

former had won. If the landowner’s bid is rejected in any round n, irrespective of the neighbor’s 

bid, the former would submit a bid in the next round exactly equal to what the former would 
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have submitted independently if the former had lost. For each combination, the bid in the 

(𝑛 + 1)𝑡ℎ round is: 

𝑏𝑖𝑔𝑓
(𝑛+1) = 

{
 
 
 
 

 
 
 
 
[1.05(𝑏𝑖𝑔𝑓

𝑛 ) + 1.05(�̅�𝑖𝑔𝑓
𝑛 )]

2
              𝑖𝑓  𝑞𝑖𝑔𝑓

𝑛 = �̅�𝑖𝑔𝑓
𝑛 = 1, 𝑎𝑛𝑑  �̅�𝑖𝑔𝑓

𝑛 > 𝑏𝑖𝑔𝑓
𝑛  

 
[𝑏𝑖𝑔𝑓
𝑛 + �̅�𝑖𝑔𝑓

𝑛 ]

2
                                     𝑖𝑓 𝑞𝑖𝑔𝑓

𝑛 = 1, �̅�𝑖𝑔𝑓
𝑛 = 0, 𝑎𝑛𝑑  �̅�𝑖𝑔𝑓

𝑛 > 𝑏𝑖𝑔𝑓
𝑛

[𝑏𝑖𝑔𝑓
𝑛 + 1.1(𝑏𝑖𝑔𝑓

𝑛 )]

2
                          𝑖𝑓  𝑞𝑖𝑔𝑓

𝑛 = 1, �̅�𝑖𝑔𝑓
𝑛 = 0, 𝑎𝑛𝑑  �̅�𝑖𝑔𝑓

𝑛 < 𝑏𝑖𝑔𝑓
𝑛

[𝑀𝑎𝑥{0.9(𝑏𝑖𝑔𝑓
𝑛 ), 𝑐𝑖𝑔𝑓 } + 𝑏𝑖𝑔𝑓

𝑛 ]

2
                                                      𝑖𝑓  𝑞𝑖𝑔𝑓

𝑛 = 0}
 
 
 
 

 
 
 
 

, 

(4 − 18) 

where �̅�𝑖𝑔𝑓 and  �̅�𝑖𝑔𝑓 are the submitted bid and a binary variable for parcel selection, 

respectively, for the nearest neighbor. 

The simulations are extended for 10 bidding rounds for each type of bidder. The winning 

bids are selected at each auction round using binary linear optimization. 

4.4.2. Binary Linear Optimization 

4.4.2.1. Cost-ranked Design 

The conservation agency ranks the submitted bids 𝑏𝑖𝑔𝑓 in ascending order and selects bids from 

the lowest toward the highest until the budget is exhausted (BC model). To ensure maximum 

land acquisition, the binary linear optimization model is:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝜋 =∑∑𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓 
𝑔∈𝐺𝑖∈𝐼

.                                                                                            (4 − 19) 

Subject to 

∑∑𝑏𝑖𝑔𝑓 × 𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓
𝑔∈𝐺𝑖∈𝐼

≤ 𝜃.                                                                                                       (4 − 20) 
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The maximum land 𝜋 that could be changed to forest is obtained by solving the above 

binary linear optimization, where 𝜃 denotes the conservation agency’s budget constraint. The 

model implicitly determines the amount of carbon sequestered when land-use g is changed to 

forest.  

Suppose the conservation agency sets a conservation target equal to the maximum land 

achieved in the BC model and achieves that target at minimal cost (TC model). This assumption 

is made so the BC and TC models could be compared on a level playing field, especially in the 

multi-round auction. The binary linear optimization model is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝜃 =∑∑𝑏𝑖𝑔𝑓 × 𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓 
𝑔∈𝐺𝑖∈𝐼

.                                                                                (4 − 21) 

Subject to 

∑∑𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓 
𝑔∈𝐺𝑖∈𝐼

≥ 𝜋.                                                                                                                   (4 − 22) 

The minimum budget 𝜃 required to change a targeted amount of land to forest is obtained 

by solving the above binary linear optimization, where 𝜋 denotes the targeted amount of land-use 

g changed to forest. 

4.4.2.2. Cost-benefit-ranked Design 

The conservation agency ranks the bids 𝑑𝑖𝑔𝑓 in ascending order and selects from the lowest 

toward the highest until the budget is exhausted (BC model). To ensure maximum carbon 

storage, the binary linear optimization model is:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝜋 =∑∑𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓
𝑔∈𝐺𝑖∈𝐼

× 𝑒𝑖𝑔𝑓 .                                                                                 (4 − 23) 

Subject to 
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∑∑𝑑𝑖𝑔𝑓 × 𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓 × 𝑒𝑖𝑔𝑓
𝑔∈𝐺𝑖∈𝐼

≤ 𝜃.                                                                                          (4 − 24) 

The maximum carbon that could be sequestered 𝜋 by changing eligible land into forest is 

obtained by solving the above binary linear optimization, where 𝜃 denotes the budget constraint 

of the conservation agency. The model determines the amount of land-use g for change to forest. 

Suppose the conservation agency sets the conservation target equal to the maximum 

carbon sequestered in the BC model and minimizes the cost of achieving that target (TC model). 

Again, this assumption allowed comparison of the BC and TC models on a common footing, 

especially in multi-round auction. The binary linear optimization model is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝜃 =∑∑𝑑𝑖𝑔𝑓 × 𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓 × 𝑒𝑖𝑔𝑓
𝑔∈𝐺𝑖∈𝐼

.                                                                    (4 − 25) 

Subject to 

∑∑𝑞𝑖𝑔𝑓 × 𝑠𝑖𝑔𝑓
𝑔∈𝐺𝑖∈𝐼

× 𝑒𝑖𝑔𝑓 ≥ 𝜋.                                                                                                       (4 − 26) 

The optimization model estimates the minimum budget 𝜃 required to sequester the 

targeted amount of carbon, where 𝜋 denotes the targeted amount of carbon sequestered.  

4.5. Data 

Simulated data representing 100 bidders/landowners/parcels is used to compare the cost-

efficiencies of cost-ranked and cost-benefit-ranked auction designs against fixed-rate payments, 

in the presence of variation in correlation between opportunity costs and environmental benefits. 

Because the spatial heterogeneities in opportunity costs and benefits influence the cost-

efficiencies of the conservation auction designs, this study focuses on varying the level of 

correlation between costs and benefits, assuming constant and approximately equal relative 
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spatial variability (coefficient of variation, i.e. CV) of the cost and benefit distributions. 

Landowner-specific opportunity cost of afforestation i.e. net return from a parcel’s current land 

use (primarily) in $/hectare, area under the current land use in hectares, net gain in carbon 

sequestration from afforestation of the parcel in ton/hectare, and error term capturing the overbid 

in $/hectare are all simulated in R using the following random uniform distributions: 

100 ≤ 𝑐𝑖𝑔𝑓 ≤ 1000, 50 ≤ 𝑠𝑖𝑔𝑓 ≤ 500, 5 ≤ 𝑒𝑖𝑔𝑓 ≤ 45, 5 ≤ 휀𝑖𝑔𝑓 ≤ 15. 

After fixing the opportunity cost and the area under the current land use for each parcel, 

the net gain in carbon sequestration is assigned to each parcel so that the correlation between the 

opportunity costs and the carbon net gains varied to produce datasets with five different 

correlations between the opportunity costs and the environmental benefits: 

𝜌𝑐𝑒 ∈ {−1,−0.5,0,0.5,1}. 

A hypothetical budget outlay of $5 million is used in the BC model. The CVs of 

simulated cost and benefit distributions are approximately equal to 0.45. Though not necessarily 

a requirement for this study, the simulated opportunity cost of afforestation i.e. net return from a 

parcel’s current land use (primarily), and the net gains in carbon sequestration from afforestation 

are within the range used in existing literature (Nielsen et al., 2014; Smith et al., 2006; Stavins & 

Richards, 2005). The amounts of overbidding, however, are simulated to closely mimic the 

Nash-equilibria bids for the corresponding opportunity costs.  

4.6. Results and Discussions 

4.6.1. Fixed-rate Payment and Discriminatory-price Auction in a Static Setting 

This section shows the advantages in cost-efficiency of cost-ranked and cost-benefit-ranked 

discriminatory-price auctions compared with an equivalent fixed-rate payment under budget and 
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target constraints in a static setting with varying levels of correlation between opportunity costs 

and carbon storage benefits. 

Figures 4-A1 and 4-A2 show the cost-efficiencies of the fixed-rate payments and the 

cost-ranked and cost-benefit-ranked auction payments for the budget- and target-constrained 

models respectively. The cost-efficiency of the fixed-rate payment changed across the 

correlations as well as between the BC and TC models. The cost-efficiencies of the auction-

based payments changed across the correlations but are identical for the BC and TC models. The 

auctions have gains in cost-efficiency compared with fixed-rate payments, which are more 

prominent for the TC model. Across all payment designs, the most cost-efficient scenario 

occurred with perfect negative correlation between costs and benefits, whereas the least cost-

efficiency occurred with perfect positive correlation between costs and benefits.  

4.6.2. BC and TC Discriminatory-price Auctions in a Dynamic Setting 

In this section, cost-efficiencies of the two discriminatory-price auction designs is compared 

under the assumption that bidders learn with repeated rounds to extract information rents from 

the conservation agency. The efficiency deterioration for the BC and TC models is evaluated.  

4.6.2.1. Type L1 Bidders 

Figures 4-A3 and 4-A4 show the cost-efficiency losses when the BC cost-ranked and cost-

benefit-ranked designs continue for 10 successive rounds. The efficiency losses for the cost-

ranked design are 21% (𝜌𝑐𝑒 = −1), 20% (𝜌𝑐𝑒 = −0.5), 26% (𝜌𝑐𝑒 = 0), 46% (𝜌𝑐𝑒 = 0.5), and 

34% (𝜌𝑐𝑒 = 1) (Figure 4-A3), whereas the efficiency losses for the cost-benefit-ranked design 

remained 22% (𝜌𝑐𝑒 = −1), 25% (𝜌𝑐𝑒 = −0.5), 24% (𝜌𝑐𝑒 = 0), 29% (𝜌𝑐𝑒 = 0.5), and 5% (𝜌𝑐𝑒 =

1) (Figure 4-A4).  
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Figures 4-A5 and 4-A6 show the cost-efficiency losses when the TC cost-ranked and 

cost-benefit-ranked auction designs continue for 10 consecutive rounds. The efficiency losses for 

the cost-ranked design are 44% (𝜌𝑐𝑒 = −1), 39% (𝜌𝑐𝑒 = −0.5), 44% (𝜌𝑐𝑒 = 0), 50% (𝜌𝑐𝑒 =

0.5), and 32% (𝜌𝑐𝑒 = 1) (Figure 4-A5), whereas the efficiency losses for the cost-benefit-ranked 

design remained 47% (𝜌𝑐𝑒 = −1) 46% (𝜌𝑐𝑒 = −0.5), 42% (𝜌𝑐𝑒 = 0), 38% (𝜌𝑐𝑒 = 0.5), and 6% 

(𝜌𝑐𝑒 = 1) (Figure 4-A6). 

For a given level of correlation between the opportunity costs and carbon storage 

capacities, the BC model suffered a lower loss in cost-efficiency than the TC model. However, 

the efficiency differences between the BC and TC models are larger for the cost-ranked design 

compared to the cost-benefit-ranked design. 

4.6.2.2. Type L2 Bidders 

Figures 4-A7 and 4-A8 show the cost-efficiency losses when the BC cost-ranked and cost-

benefit-ranked designs continue for 10 successive rounds. The efficiency losses for the cost-

ranked design are 26% (𝜌𝑐𝑒 = −1), 31% (𝜌𝑐𝑒 = −0.5), 39% (𝜌𝑐𝑒 = 0), 39% (𝜌𝑐𝑒 = 0.5), and 

44% (𝜌𝑐𝑒 = 1) (Figure 4-A7), whereas those of cost-benefit-ranked design remained 30% (𝜌𝑐𝑒 =

−1), 29% (𝜌𝑐𝑒 = −0.5), 27% (𝜌𝑐𝑒 = 0), 28% (𝜌𝑐𝑒 = 0.5), and 5% (𝜌𝑐𝑒 = 1) (Figure 4-A8). 

Figures 4-A9 and 4-A10 show the cost-efficiency losses when the TC cost-ranked and 

cost-benefit-ranked auction designs continue for 10 successive rounds. The efficiency losses for 

the cost-ranked design are 52% (𝜌𝑐𝑒 = −1), 49% (𝜌𝑐𝑒 = −0.5), 41% (𝜌𝑐𝑒 = 0), 57% (𝜌𝑐𝑒 =

0.5), and 38% (𝜌𝑐𝑒 = 1) (Figure 4-A9), whereas those for the cost-benefit-ranked design 

remained 60% (𝜌𝑐𝑒 = −1), 48% (𝜌𝑐𝑒 = −0.5), 41% (𝜌𝑐𝑒 = 0), 35% (𝜌𝑐𝑒 = 0.5), and 1% (𝜌𝑐𝑒 =

1) (Figure 4-A10). 
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Contrary to L1 bidders, no obvious cost-efficiency differences existed between BC and 

TC models for the cost-ranked design for L2 bidders compared to the cost-benefit-ranked design 

for a given level of correlation, but the losses in cost-efficiency are higher for L2 bidders for 

cost-ranked designs compared to L1 bidders.  

For perfectly positive correlation between opportunity costs and environmental benefits, 

the cost-benefit-ranked design suffered lower cost-efficiency losses under repeated rounds than 

the cost-ranked design whether for L1 or L2 type bidders. Although the cost-efficiency gains 

from repeated auction rounds are highest for both the cost- and cost-benefit-ranked designs with 

perfectly negative correlation in a static setting, their efficiency losses are highest in the dynamic 

setting for both designs if the conservation program has a strict conservation target. In general, 

the efficiency losses are higher for cost-ranked designs for L2 compared to L1 bidders, whereas 

the losses remained almost similar for cost-benefit-ranked designs across L1 and L2 bidders. 

4.6.3. Fixed-rate Payment and Discriminatory-price Auction in a Dynamic Setting  

To see whether the inclusion of spatial information on both costs and benefits, i.e. the cost-

benefit-ranked design, improved the cost-efficiency of forest-based carbon sequestration 

payments compared with the fixed-payment design in a static setting, and whether this 

information helped in minimizing the efficiency losses when bidders learn to extract information 

rents in a dynamic setting, the losses or gains in efficiency is compared under the assumption of 

a strictly limited conservation fund of $5 million.  

The differences in cost-efficiency between designs at each level of correlation are 

influenced by the relative spatial variabilities in the opportunity costs and carbon storage 

capacities (environmental benefits). The simulated data on opportunity costs (net returns, 

primarily) and carbon storage capacities have almost identical relative spatial variabilities. Had 
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there been a greater CV for benefits compared with costs, the cost-benefit-ranked design might 

have been more cost-efficient than the cost-ranked design. This analysis, however, focused on 

estimating the efficiency losses or gains of these two designs by controlling for the distribution 

parameters of costs and benefits and allowing for different levels of correlations between costs 

and benefits.  

Compared with the auction-equivalent, fixed-rate payment under a budget constraint in a 

static setting, the cost-efficiency gains for the cost-ranked design are 16% (𝜌𝑐𝑒 = −1), 16% ( 

𝜌𝑐𝑒 = −0.5), 26% ( 𝜌𝑐𝑒 = 0), 31% ( 𝜌𝑐𝑒 = 0.5), and 36% (𝜌𝑐𝑒 = 1) (Figure 4-A11), whereas the 

efficiency gains for the cost-benefit-ranked design are 17% (𝜌𝑐𝑒 = −1), 25% ( 𝜌𝑐𝑒 = −0.5), 

35% ( 𝜌𝑐𝑒 = 0), 39% ( 𝜌𝑐𝑒 = 0.5), and 40% (𝜌𝑐𝑒 = 1) (Figure 4-A12).  

In the case of L1 bidders, after 10 auction rounds, the cost-efficiency gains for the cost-

ranked design are -1% (𝜌𝑐𝑒 = −1), 0% ( 𝜌𝑐𝑒 = −0.5), 7% ( 𝜌𝑐𝑒 = 0), -1% ( 𝜌𝑐𝑒 = 0.5), and 14% 

(𝜌𝑐𝑒 = 1) (Figure 4-A11), whereas for the cost-benefit-ranked design they are -1% (𝜌𝑐𝑒 = −1), 

7% ( 𝜌𝑐𝑒 = −0.5), 19% ( 𝜌𝑐𝑒 = 0), 21% ( 𝜌𝑐𝑒 = 0.5), and 37% (𝜌𝑐𝑒 = 1) (Figure 4-A12). 

However, in the case of L2 bidders, the cost-efficiency gains for the cost-ranked design are -6% 

(𝜌𝑐𝑒 = −1), -10% ( 𝜌𝑐𝑒 = −0.5), -3% ( 𝜌𝑐𝑒 = 0), 4% ( 𝜌𝑐𝑒 = 0.5), and 8% (𝜌𝑐𝑒 = 1) (Figure 4-

A11), whereas for the cost-benefit-ranked design they are -8% (𝜌𝑐𝑒 = −1), 3% ( 𝜌𝑐𝑒 = −0.5), 

17% ( 𝜌𝑐𝑒 = 0), 22% ( 𝜌𝑐𝑒 = 0.5), and 37% (𝜌𝑐𝑒 = 1) (Figure 4-A12). 

Thus, the gain in cost-efficiency deteriorated more noticeably for the cost-ranked design 

in a dynamic context than for the cost-benefit-ranked design at each level of correlation whether 

the bidders were of L1 or L2 type. Furthermore, the difference in efficiency losses between L1 

and L2 type bidders is higher for the cost-ranked design, with L2 bidders suffering greater 
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deterioration in cost-efficiency. However, the efficiency loss is almost stable across L1 and L2 

type bidders in the case of the cost-benefit-ranked design. 

Even though the relative spatial heterogeneities of costs and benefits are almost identical, 

the advantages of cost-benefit-ranked, auction-based payment designs over cost-ranked designs 

are evident in a dynamic setting, especially for strong positive correlation between costs and 

benefits. Conversely, when costs and benefits has strong negative correlation, cost-benefit ranked 

designs lose their advantage over fixed-rate payment designs rather quickly when bidders learn, 

because the low opportunity cost bidders extract maximum information rent by bidding higher 

while still being selected because of higher environmental benefits.  

To summarize, the cost-benefit-ranked design is more cost-efficient than the cost-ranked 

design in a static setting even though the relative spatial heterogeneities are almost identical. 

More importantly, the cost-efficiency of the cost-benefit-ranked design is generally more robust 

to deterioration when bidders learn in different ways over repeated auction rounds and more 

resistant to erosion for certain levels of correlation compared to the cost-ranked design.   

4.7. Conclusions 

The existing literature on auction-based economic experiments has contributed to answering 

questions related to the cost-efficiency of different designs and types of conservation auctions. 

This study expands the literature by estimating the impact of correlation between conservation 

costs and environmental benefits on the cost-efficiency of conservation auctions in a dynamic 

setting. Specifically, the impact on cost-efficiency of cost-ranked and cost-benefit-ranked multi-

round conservation auctions is estimated. The impact of correlation is estimated while 

controlling for the relative spatial variability between costs and benefits in a dynamic setting 

when bidders learn to extract information rents.  
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Using simulated data, this study showed that the auctions have efficiency gains compared 

to a fixed-rate payment design, and the efficiency gains are more prominent for the TC model 

compared to the BC model. The cost-efficiency of fixed-rate payment changed across 

correlations as well as the BC and TC models, which however, differed with the auction designs. 

The cost-efficiencies of the auction-based payment designs changed as the correlation between 

costs and benefits changed, but remained identical between the BC and TC models. Across both 

the fixed-rate and auction-based payment designs, cost-efficiency is highest for perfect negative 

correlation between costs and benefits, whereas it is lowest when correlation approaches 

perfectly positive. Another important feature common to both the cost- and cost-benefit-ranked 

designs is that the BC and TC models yield the same cost-efficiency in a static setting even 

though they differ across spatial correlations.  

In a dynamic setting where bidders extract information rents through learning, holding 

correlation between costs and benefits constant, the BC model suffered less deterioration in 

efficiency, compared to the corresponding TC model. In addition, the efficiency difference 

between BC and TC models increased in subsequent rounds when correlation between costs and 

benefits became more negative. However, the efficiency losses are greater for cost-ranked design 

compared to the cost-benefit-ranked design, especially when bidders learned through their own 

and their neighbor’s experience. For perfect positive correlation between environmental benefits 

and opportunity costs, the cost-benefit-ranked design suffered the smallest efficiency losses 

under repeated auction rounds. Although efficiency gains are highest for both the cost- and cost-

benefit-ranked designs with perfect negative correlation between costs and benefits in a static 

setting, efficiency losses are highest for both designs in a dynamic setting when the conservation 

program had a fixed target to achieve.  
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Considering the potential impacts of correlation in determining an optimal information 

strategy for designing a cost-efficient payment for forest-based carbon sequestration under multi-

round conservation auctions, this study examined the cost-efficiency of cost-ranked and cost-

benefit-ranked auction-based payment designs for forest-based carbon storage for varying levels 

of correlation between afforestation opportunity costs and carbon sequestration capacities in 

static as well as dynamic settings. One limitation of this study is that the costs of administering 

the auction-based conservation programs are not addressed which might impact the cost-

efficiency of the auction-based payments. Furthermore, opportunity costs are uniformly 

distributed guaranteeing high spatial correlation. However, a random distribution of opportunity 

costs in a landscape with low spatial correlation might influence bid-learning behavior 

differently, and thus influence cost-efficiency differently. Future research can focus on designing 

laboratory experiments taking current framework as a benchmark, to estimate the cost-efficiency 

of multi-round auction-based payments while taking into account administrative costs of 

program implementation, and spatial dependence among landowner opportunity costs. 
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Appendices 

Appendix 4-A. Tables and Figures 

 

 

Figure 4-A 1: Cost-efficiencies of the payment designs for the BC model 

 

 

Figure 4-A 2: Cost-efficiencies of the payment designs for the TC model 
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Figure 4-A 3: Cost-efficiencies of the cost-ranked BC auction under multiple rounds (L1) 
Note: BC refers to budget-constrained auction with given correlation.  

 

 

Figure 4-A 4: Cost-efficiencies of the cost-benefit-ranked BC auction under multiple rounds (L1) 
Note: BC refers to budget-constrained auction with given correlation.  
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Figure 4-A 5: Cost-efficiencies of the cost-ranked TC auction under multiple rounds (L1) 
Note: TC refers to target-constrained auction with given correlation.  

 

 

Figure 4-A 6: Cost-efficiencies of the cost-benefit-ranked TC auction under multiple rounds (L1) 
Note: TC refers to target-constrained auction with given correlation.  
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Figure 4-A 7: Cost-efficiencies of cost-ranked BC auction under multiple rounds (L2) 
Note: BC refers to budget-constrained auction with given correlation.  

 

 

Figure 4-A 8: Cost-efficiencies of cost-benefit-ranked BC auction under multiple rounds (L2) 
Note: BC refers to budget-constrained auction with given correlation.  
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Figure 4-A 9: Cost-efficiencies of cost-ranked TC auction under multiple rounds (L2) 
Note: TC refers to target-constrained auction with given correlation.  

 

 

Figure 4-A 10: Cost-efficiencies of cost-benefit-ranked TC auction under multiple rounds (L2) 
Note: TC refers to target-constrained auction with given correlation.  
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Figure 4-A 11: Cost-efficiency gains of cost-ranked BC auctions with L1 and L2 bidders 
Note: L1 and L2 refer to types of bid learning behaviors. 

 

 

Figure 4-A 12: Cost-efficiency gains of cost-benefit-ranked BC auctions with L1 and L2 bidders 
Note: L1 and L2 refer to types of bid learning behaviors. 
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Appendix 4-B. Nash-equilibria Bids in Reverse Auctions 

This proof is a re-derivation and confirmation of the theoretical results of Harris and Raviv 

(1981), Latacz-Lohmann and Van der Hamsvoort (1997), and Hailu et al. (2005) with minor 

extensions. 

4-B1. Nash-equilibrium Bid in a Single-unit First-price Reverse Auction 

The independent private-values model for selling a single indivisible good has been well 

evaluated in the auction literature (McAfee & McMillan, 1987; Milgrom & Weber, 1982; Riley 

& Samuelson, 1981). The Nash equilibrium bidding strategy corresponding to the first-price 

sealed-bid auction provides an analogous framework for a single-unit reverse/procurement 

auction (Hailu et al., 2005). 

 Let the opportunity cost of a land-use change for bidder/landowner i be 𝑐𝑖, the bidding 

function for bidder i be 𝑏𝑖(𝑐𝑖), and F be the distribution function for the opportunity costs of the 

bidders. Assume potential sellers have private opportunity costs drawn from the same 

distribution, and further assume that the bidders are risk neutral and maximize expected payoffs.   

Bidder i will win if all other bidders have a higher opportunity cost than i, the probability of 

which is: 

𝑃𝑟 (𝑐𝑖 < 𝑐𝑗) = [1 − 𝐹 (𝑐𝑖)]
𝑛−1 ∀ 𝑗 ≠ 𝑖.                                                                                      (4 − 𝐵1)  

The Nash-equilibrium bidding strategy is: 

𝐵(𝑐) = 𝑏 → 𝑐 = 𝐵−1(𝑏).                                                                                                                 (4 − 𝐵2) 

Each bidder tries to maximize the expected payoff: 

𝑀𝑎𝑥: 𝜋(𝑏, 𝑐) =  (𝑏 − 𝑐)[1 − 𝐹 (𝐵−1(𝑏))]𝑛−1.                                                                           (4 − 𝐵3) 

The first-order condition for maximization, with respect to 𝑏∗(𝑐) is: 
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(𝑛 − 1)(𝑏∗(𝑐) − 𝑐)[1 − 𝐹(𝐵−1(𝑏∗(𝑐)))]𝑛−2𝑓(𝐵−1(𝑏∗(𝑐)))
1

𝐵′(𝐵−1(𝑏∗(𝑐)))
+ [1 −

𝐹(𝐵−1(𝑏∗(𝑐)))]𝑛−1 = 0,                                                                                                                  (4 − 𝐵4)  

where f(c) and F(c) denote the density and distribution functions of the opportunity costs 

respectively. 

At symmetric equilibrium: 

𝐵(𝑐) = 𝑏∗(𝑐),                                                                                                                                     (4 − 𝐵5) 

(𝑛 − 1)(𝐵(𝑐) − 𝑐)[1 − 𝐹(𝑐)]𝑛−2𝑓(𝑐) + [1 − 𝐹(𝑐)]𝑛−1𝐵′(𝑐) = 0.                                     (4 − 𝐵6)  

Integrating both sides of equation (4-B6) with respect to c, and rearranging we have: 

𝑏∗(𝑐) = 𝑐 +
∫ [1 − 𝐹(𝑢)](𝑛−1)
𝑧

𝑐
𝑑𝑢

[1 − 𝐹(𝑐)](𝑛−1)
.                                                                                              (4 − 𝐵7) 

Suppose the opportunity costs of the bidders are independently and identically distributed 

and distributed uniformly within the range of x and z. The optimal bid becomes: 

𝑏∗(𝑐) = 𝑐 +
1

𝑛
(𝑧 − 𝑐).                                                                                                                     (4 − 𝐵8) 

We see that overbidding is the dominant strategy in the first-price sealed-bid reverse auction, and 

the amount of the overbid 휀𝑖 is: 

휀𝑖 = 𝑏𝑖
∗ − 𝑐𝑖 =

1

𝑛
(𝑧 − 𝑐𝑖).                                                                                                                (4 − 𝐵9) 

Let 𝑏1 and 𝑏2 be the optimal bids for bidders with opportunity costs 𝑐1 and 𝑐2 respectively with 

휀1 and 휀2 being deviations from the opportunity costs: 

휀1 = 𝑏1 − 𝑐1 =
1

𝑛
(𝑧 − 𝑐1),                                                                                                            (4 − 𝐵10) 

휀2 = 𝑏2 − 𝑐2 =
1

𝑛
(𝑧 − 𝑐2).                                                                                                           (4 − 𝐵11) 
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Since 𝑐2 > 𝑐1, 휀1 > 휀2, which shows that overbidding is higher for bidders with lower 

opportunity costs compared to bidders with higher opportunity costs. 

4-B2. Nash-equilibrium Bid in a Multi-unit Budget-constrained Auction 

When the conservation agency reveals to the bidders a limited budget for procuring 

environmental services, bidders form expectations for the implicit bid cap and try to maximize 

expected payoffs (Latacz-Lohmann & Van der Hamsvoort, 1997). Let 𝑏𝑖𝑔𝑓  denote the bid 

submitted for changing land-use g to forest f in dollar per hectare. The probability that the 

bid 𝑏𝑖𝑔𝑓  is accepted depends upon the implicit bid cap h: 

𝑃𝑟(𝑏𝑖𝑔𝑓  < ℎ) = ∫ 𝑔(𝑏𝑖𝑔𝑓 )𝑑𝑏
𝛽

𝑏

= [1 − 𝐺(𝑏𝑖𝑔𝑓 )],                                                               (4 − 𝐵12) 

where the density function 𝑔(𝑏𝑖𝑔𝑓) and the distribution function 𝐺(𝑏𝑖𝑔𝑓) characterize the bidder’s 

expectations for the bid cap h.  

Assuming risk neutral behavior of the bidder, each bidder tries to maximize expected profit: 

𝑀𝑎𝑥 𝐸(𝜋(𝑏𝑖𝑔𝑓)) =  (𝜋𝑓 + 𝑏𝑖𝑔𝑓) Pr (𝑏𝑖𝑔𝑓 < ℎ) + 𝜋𝑖𝑔[1 − 𝑃𝑟(𝑏𝑖𝑔𝑓 < ℎ)],                     (4 − 𝐵13) 

where 𝜋𝑖𝑔 denotes profit under the current land use and 𝜋𝑓 denotes profit from forest under a 

conservation contract had there been no conservation payment.  

The first-order condition, with respect to 𝑏𝑖𝑔𝑓
∗

 is: 

(𝜋𝑓 + 𝑏𝑖𝑔𝑓
∗  )[−𝑔(𝑏𝑖𝑔𝑓

∗ )] + [1 − 𝐺(𝑏𝑖𝑔𝑓
∗ )] + 𝜋𝑖𝑔𝑔(𝑏𝑖𝑔𝑓

∗ ) = 0,                                              (4 − 𝐵14) 

giving: 

𝑏∗ = (𝜋𝑖𝑔 − 𝜋𝑓) +
[1 − 𝐺 (𝑏𝑖𝑔𝑓

∗ )]

𝑔(𝑏𝑖𝑔𝑓
∗ )

.                                                                                            (4 − 𝐵15) 
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The term (𝜋𝑖𝑔 − 𝜋𝑓) is essentially the opportunity cost of participating in the conservation 

program. With 𝜋𝑖𝑔 = 𝑛𝑟𝑖𝑔 and 𝜋𝑓 = −(𝑓𝑐𝑓 + 𝑣𝑐𝑓) , the optimal bid is: 

𝑏𝑖𝑔𝑓
∗ = 𝑛𝑟𝑖𝑔 + 𝑓𝑐𝑓 + 𝑣𝑐𝑓 +

[1 − 𝐺 (𝑏𝑖𝑔𝑓
∗ )]

𝑔(𝑏𝑖𝑔𝑓
∗ )

,                                                                            (4 − 𝐵16) 

𝑏𝑖𝑔𝑓
∗ = 𝑐𝑖𝑔𝑓 +

[1 − 𝐺 (𝑏𝑖𝑔𝑓
∗ )]

𝑔(𝑏𝑖𝑔𝑓
∗ )

.                                                                                                      (4 − 𝐵17) 

Assuming the bidder’s expectation of the bid cap is uniformly distributed between 𝛼 and 

𝛽 such that the probability of the bid being accepted is unity for expectations below or equal to α 

and zero for bid expectations equal or above 𝛽, the optimal bid is: 

𝑏𝑖𝑔𝑓
∗ = 𝑐𝑖𝑔𝑓 +

𝛽 − 𝑐𝑖𝑔𝑓

2
.                                                                                                                 (4 − 𝐵18) 

We can see that overbidding is the dominant strategy in the budget-constrained discriminatory-

price auction, and the amount of the overbid 휀𝑖𝑔𝑓 is: 

휀𝑖𝑔𝑓 = 𝑏𝑖𝑔𝑓
∗ − 𝑐𝑖𝑔𝑓 =

𝛽 − 𝑐𝑖𝑔𝑓

2
.                                                                                                    (4 − 𝐵19) 

Let 𝑏𝑖𝑔𝑓
1  and 𝑏𝑖𝑔𝑓

2  be the optimal bids for bidders with opportunity costs 𝑐𝑖𝑔𝑓
1 and 𝑐𝑖𝑔𝑓

2  

respectively with 휀𝑖𝑔𝑓
1  and 휀𝑖𝑔𝑓

2  being the overbids: 

휀𝑖𝑔𝑓
1 = 𝑏𝑖𝑔𝑓

1 − 𝑐𝑖𝑔𝑓
1 =

𝛽 − 𝑐𝑖𝑔𝑓
1

2
,                                                                                                    (4 − 𝐵20) 

휀𝑖𝑔𝑓
2 = 𝑏𝑖𝑔𝑓

2 − 𝑐𝑖𝑔𝑓
2 =

𝛽 − 𝑐𝑖𝑔𝑓
2

2
.                                                                                                    (4 − 𝐵21) 
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Since 𝑐𝑖𝑔𝑓
2 > 𝑐𝑖𝑔𝑓

1 , 휀𝑖𝑔𝑓
1 > 휀𝑖𝑔𝑓

2 , which shows that overbidding is higher for bidders with lower 

opportunity costs than for bidders with higher opportunity costs.  

4-B3. Nash-equilibrium Bid in a Multi-unit Target-constrained Auction 

Assume n bidders trying to sell at most one unit of the good, where the conservation agency has 

an overall demand for m units of that good. Bidder i wins if at least (n-m) bidders have higher 

opportunity costs than i. The probability that the bid 𝑏𝑖 is accepted is equivalent to the 

probability that 𝑐𝑖 is lower than the mth order statistic among the (n-1) rival opportunity costs 

(Harris & Raviv, 1981): 

𝐺(𝑐) =
(𝑛 − 1)!

[(𝑛 − 𝑚 − 1)! (𝑚 − 1)!]
∫ [𝐹(𝑢)](𝑚−1)[1 − 𝐹(𝑢)](𝑛−𝑚−1)𝑓(𝑢)
𝑧

𝑐

𝑑𝑢,                (4 − 𝐵22) 

where f(c) and F(c) denote the density and distribution functions of the opportunity costs, 

respectively, with z being the upper limit of the distribution. 

The Nash-equilibrium bidding strategy is: 

𝐵(𝑐) = 𝑏 → 𝑐 = 𝐵−1(𝑏).                                                                                                              (4 − 𝐵23) 

And, each bidder tries to maximize the expected payoff: 

𝑀𝑎𝑥: 𝜋(𝑏, 𝑐) =  (𝑏 − 𝑐)𝐺(𝐵−1(𝑏)).                                                                                           (4 − 𝐵24) 

The first-order condition, with respect to 𝑏∗(𝑐) is: 

𝐺(𝐵−1(𝑏∗(𝑐))) + (𝑏∗(𝑐) − 𝑐)𝐺′(𝐵−1(𝑏∗(𝑐)))
𝑑(𝐵−1(𝑏∗(𝑐)))

𝑑(𝑏∗(𝑐))
= 0.                                 (4 − 𝐵25) 

Recalling the property: 

𝑑(𝐵−1(𝑏∗(𝑐)))

𝑑(𝑏∗(𝑐))
=

1

𝐵′(𝐵−1(𝑏∗(𝑐)))
,                                                                                           (4 − 𝐵26) 

equation (4-B25) simplifies to: 
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𝐺(𝐵−1(𝑏∗(𝑐))) + (𝑏∗(𝑐) − 𝑐)𝐺′(𝐵−1(𝑏∗(𝑐)))
1

𝐵′(𝐵−1(𝑏∗(𝑐)))
= 0.                                (4 − 𝐵27) 

At symmetric equilibrium, we have: 

𝐵(𝑐) = 𝑏∗(𝑐),                                                                                                                                  (4 − 𝐵28 ) 

𝐺(𝑐) + (𝐵(𝑐) − 𝑐)
𝐺′(𝑐)

𝐵′(𝑐)
= 0,                                                                                                     (4 − 𝐵29) 

𝐺(𝑐)𝐵′(𝑐) + 𝐵(𝑐)𝐺′(𝑐) = 𝑐𝐺′(𝑐).                                                                                             (4 − 𝐵30) 

Integrating both sides of equation (4-B30) with respect to c, we get:  

𝐺(𝑐)𝐵(𝑐) = ∫ 𝑐𝐺′(𝑢)𝑑𝑢
𝑧

𝑐

,                                                                                                           (4 − 𝐵31) 

𝑏∗(𝑐) =
∫ 𝑐𝐺′(𝑢)𝑑𝑢
𝑧

𝑐

∫ 𝐺(𝑢)𝑑𝑢
𝑧

𝑐

.                                                                                                                   (4 − 𝐵32) 

From equation (4-B22), for a uniform distribution between 0 and 1, we have: 

𝐺(𝑐) =
(𝑛 − 1)!

[(𝑛 − 𝑚 − 1)! (𝑚 − 1)!]
∫ 𝑢(𝑚−1)[1 − 𝑢](𝑛−𝑚−1)
1

𝑐

𝑑𝑢.                                          (4 − 𝐴33) 

Subsequently,  

𝐺′(𝑐) =
(𝑛 − 1)!

[(𝑛 − 𝑚 − 1)! (𝑚 − 1)!]
𝑢(𝑚−1)[1 − 𝑢](𝑛−𝑚−1).                                                    (4 − 𝐴34) 

Substituting into equation (4-B32), the optimal bid becomes: 

𝑏∗(𝑐) =
∫ 𝑢𝑚[1 − 𝑢](𝑛−𝑚−1)
1

𝑐
𝑑𝑢

∫ 𝑢(𝑚−1)[1 − 𝑢](𝑛−𝑚−1)
1

𝑐
𝑑𝑢
.                                                                                      (4 − 𝐵35) 

Plugging in some values for n, m, and c, it is not hard to see that overbidding is the dominant 

strategy in the target-constrained discriminatory-price auction, and overbidding is higher for 

bidders with lower opportunity costs than for bidders with higher opportunity costs. 
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Terrestrial carbon sequestration is one of the ways to mitigate future adverse consequences of 

climate change. Reduced rate of release of greenhouse gas (GHG) emissions using feedstock-

based renewable fuels, and atmospheric carbon captured from ecosystem restoration practices 

such as afforestation are long-term solutions to mitigating GHG emissions. This dissertation 

assessed the effects of policy supports and voluntary incentive programs on renewable fuel 

production and forest-based carbon sequestration. 

Large scale production of biofuels from non-edible feedstocks with substantially less 

GHG emissions compared to fossil fuels, and socio-economic development of the rural 

community has been the focus of stakeholders involved in the research and development of 

biofuels. However, higher costs of feedstock production and biofuel processing, along with 

investment risks hinder large-scale deployment of biofuels at present.  

In the first essay, an integrated approach to switchgrass-based bioethanol production is 

employed to evaluate the impacts of policy supports on supply chain decisions driven primarily 

by yield uncertainty and the associated investment risk. Specifically, impacts of federally 

subsidized Biomass Crop Assistance Program (BCAP) on optimal land use and biorefinery 

location decisions are evaluated in presence of feedstock yield uncertainty while addressing risk 

preferences of the biofuel sector in terms of supply-chain cost. A two-stage stochastic mixed 

integer linear programming (MILP) is employed to design an optimal supply-chain while 

minimizing the expected system cost under feedstock yield uncertainty. Furthermore, the 

expected cost minimization model, which assumes risk-neutrality in the biofuel production is 

later extended to Conditional Value-at-Risk (CVaR) minimization model considering the risk-

averse nature of the biofuel sector under uncertainty of high costs. Applicability of the stochastic 

model is illustrated through a case study in west Tennessee.  
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Results indicated that BCAP subsidies are more encouraging to the risk-averse biofuel 

industry compared to the risk-neutral biofuel sector. CVaR minimization model in general 

selected more land for switchgrass cultivation compared to the expected cost minimization 

model in an effort to reduce the high costs of low yield scenarios. More land for feedstock 

cultivation in CVaR minimization model meant larger subsidies in terms of both the 

establishment and land rent (annual) payments under BCAP. With subsidies, crop land selection 

increased with corresponding decrease in pasture land use irrespective of the risk attitude of the 

biofuel industry. Biofuel shortage associated with high costs in risk management model is 

reduced by favoring land selection with higher spatial yields with BCAP subsidies. Furthermore, 

higher spatial yields mostly correspond to lands with higher opportunity costs which are 

effectively reduced after BCAP land rent payments. Consequently, both the expected cost and 

risk are reduced by a higher percent for a risk-averse biofuel sector compared to a risk-neutral 

one with the BCAP subsidies.  

Major contribution of this study is the impact assessment of federally subsidized biomass 

programs on the investment decisions (including land allocation) of a risk-sensitive biofuel 

industry under feedstock supply uncertainty. From methodological perspective, risk-optimal 

designs emerged from integrated supply-chain optimization can serve as guidelines in decision-

making process for large-scale biofuel production under strategic uncertainties.  

Considered as a potential approach to mitigate GHG emissions from the aviation sector, 

renewable jet fuel (RJF) production remains negligible, mainly because of the novelty of the 

feedstock-based conversion technologies and the associated costs. The second essay presented 

economic and environmental analysis of commercial-scale RJF production using switchgrass-

based alcohol-to-jet (ATJ) technology using a game-theoretic model that accounts for potential 
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economic interaction between feedstock producers and the RJF processor. Specifically, impacts 

of RJF production from switchgrass on farmland allocation, processing facility configuration, 

and GHG emissions are estimated in response to fulfilling the RJF demand at the Memphis 

International Airport in west Tennessee. A potential carbon market is used to explore the impact 

of hypothetical carbon credits on the optimal decisions of the participants leading to changes in 

the GHG emissions, economic surpluses, and net supply-chain welfare.  

The results indicated that feedstock suppliers’ aggregate economic surplus is about 

$16.88 million without the provision of tradable carbon credits (Baseline) while majority of them 

received a margin up to 47 % over their opportunity costs of land conversion. Given the 

Stackelberg nature of the game, the processor (leader) influenced the land use decisions of the 

competing farmers (followers) through its facility location decisions under carbon credits. The 

processor’s cost decreased by $17.65 to 59.50 million simultaneously resulting in a surplus 

decline of $5.88 to 10.45 million for the feedstock suppliers, compared to the Baseline, given the 

availability of carbon credits. As the RJF price decreased with higher carbon credits, the net 

supply-chain welfare increased by $12.71 to 50.62 million corresponding to the $16.12 to 53.79 

million increments in the airlines’ surpluses, compared to the Baseline. The ATJ products 

achieved a 62.5 to 65% life-cycle analysis (LCA)-based GHG emission reduction through 

displacement of the fossil fuels. Availability of renewable identification number (RIN) credits in 

addition to the revenues from co-products, largely determined the processor break-even prices 

and the subsequent RJF prices. Satisfying the assumed profit margins of the processor needed an 

implicit subsidy from the airlines, of $1.49 to $1.89/gallon if the cellulosic RIN credits remained 

at 2016 average, which are equivalent to GHG emission abatement costs of $151 to 198/tonCO2e 

for the airlines.   
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Considering the attention paid by the U.S. aviation sector with respect to GHG emissions, 

this study provided useful insights into economic and environmental impacts of large-scale RJF 

production. Specifically, the importance of market-based instrument in the form of tradable 

carbon credits along with RIN credits to achieve the desired economic viability and emission 

abatement goals is made explicit through a Stackelberg interaction between the supply-chain 

participants.  

Conservation programs such as afforestation which can sequester a large amount of 

atmospheric CO2, are adopting competitive bidding in the form of conservation auction to 

overcome information asymmetry in securing cost-efficiency. But, the efficiency gains of 

auction-based payments remain doubtful as landowners learn to extract higher information rents 

from the conservation agency under multiple rounds of procurement. The cost-efficiency of 

multi-round auction-based payments can be enhanced by integrating cost and benefit information 

into program design, which further depends on the correlation between the opportunity costs and 

environmental benefits of conservation.  

In the third essay, the cost-efficiency of cost-ranked and cost-benefit-ranked auction-

based payment designs is examined for forest-based carbon storage with varying degree of 

correlation between opportunity costs of afforestation and carbon sequestration capacities in a 

static as well as dynamic setting. Bids (opportunity costs of afforestation inclusive of overbids) 

are simulated following discriminatory-price auction, and the bid learning behavior of the 

landowners in multiple rounds is conceptualized through an agent-based model. The outcomes 

from the models are analyzed for cost-efficiency gains against an equivalent fixed-rate payment, 

while estimating magnitude of efficiency losses when bidders learn in subsequent rounds. 
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Simulation results indicated that auctions have efficiency gains compared to a fixed-rate 

payment design, which are larger for the target-constrained model compared to the budget-

constrained model. Although efficiency gains are highest for both the cost- and cost-benefit-

ranked designs with perfect negative correlation between costs and benefits in a static setting, 

efficiency losses are highest for both designs in a dynamic setting when the conservation 

program has a fixed target to achieve. The decrease in efficiency gains are greater for cost-

ranked design compared to the cost-benefit-ranked design, especially when bidders learned 

through their own and their neighbor’s experience. For perfect positive correlation between 

environmental benefits and opportunity costs, the cost-benefit-ranked design suffered the 

smallest efficiency losses under repeated auction rounds. More importantly, the cost-efficiency 

of the cost-benefit-ranked design is generally more robust to deterioration when bidders learn in 

different ways over repeated auction rounds and more resistant to erosion for certain levels of 

correlation compared to the cost-ranked design.  

Given the empirical limitation of real world conservation auctions, this study provided 

insights on information optimal strategies for designing conservation payments through auction-

based simulation experiment simultaneously capturing bid learning behavior of the landowners 

in multi-round procurement auctions through an agent-based model. With primary focus on 

estimating potential impacts of correlation in deciding an optimal information strategy for 

achieving cost-efficiency of conservation payments, outcomes from this study are expected to 

guide decision makers in choosing an optimal payment design that ensures efficiency gains for 

auction-based payments compared to fixed-rate payments, and more importantly ensures 

minimal loss in cost-efficiency in a dynamic setting.  
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