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Appendices

A Appendix A: Encounter model derivation

Here, we outline in detail the assumptions of our biophysical model of encounter, in Equations

5 and 6 in the main text.

A.1 Encounter by swimming

We assume that encounter depends on predator detection radius (rdetect) and prey particle radius

rprey, as well as the average swimming velocity of predators and their prey (upred and uprey,

respectively). The modeled encounter kernel, following Evans (1989), is:

ρz = π(rdetect + rprey)
2(u2

pred + u2
prey)

1/2. (S1)

Intuition for the functional form in Equation S1 is gained by first considering the special case

when prey are stationary, and uprey = 0:

π(rdetect + rprey)
2upred. (S2)

In Equation S2, we assume the detection area for predators to encounter their prey is simply a

circle with radius rdetect+rprey. The volume of water swept by the predator per unit time is the

detection area, multiplied by the predator swimming speed, upred (Kiørboe, 2008).

The form allowing for prey swimming (Equation S1) assumes predators and prey are clouds

of particles moving in random directions, with Gaussian velocity distributions. The relative

velocities also follow a Gaussian distribution with modal velocity (u2
pred + u2

prey)
1/2 (Evans 1989).

A.2 Encounter by diffusion

Consider predator and prey particles with radius rpred and rprey, respectively. If predator and

prey have diffusivity Dpred and Dprey, respectively, then the encounter due to both predator and
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prey diffusion, is:

ρv = 4π(Dpred + Dprey)(rpred + rprey). (S3)

Equation S3 is a classic result derived by Smoluchowski (1917) and Chandrasekhar (1943), and

has been used in ecology to understand predator-prey interactions (Weitz and Levin, 2006).

To intuit the mechanism underlying diffusive predator-prey encounter, consider first the spe-

cial case when the prey are stationary, with Dprey = 0. We assume that the flow of non-motile

predators, Pd, toward the static host cell follows Fick’s first law of diffusion. The total flow, F, is

equal to the diffusive flux, D dPd
dr , multiplied by the surface area of the host (Kiørboe, 2008):

F = D
dPd

dr
4πr2

prey, (S4)

where Dpred is the predator diffusivity constant. By rearranging Equation S4 and integrating

from the surface (r0) of the sphere to infinity

F
∫ ∞

r0

1
r2 dr =

∫ Pd,∞

Pd,0

4πDdPd, (S5)

we find that the flow of predators toward the cell surface is equal to the concentration gradient

of predators far from the cell, Pd,∞, and the cell surface Pd,0, multiplied by the cell surface area,

and the size-dependent diffusivity constant, D:

F = 4πDpredrprey(Pd,∞ − Pd,0). (S6)

If we assume that the predator concentration at the surface of the sphere is approximately 0, then

the flow is simply (Murray and Jackson, 1992):

4πDpredrpreyPd,∞. (S7)

The predator diffusivity Dpred is a function of its size, rpred, and is related to temperature in

Kelvin T, medium viscosity ψ, and the Boltzmann constant K (Einstein, 1905):
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Dpred =
KT

6πψrpred
. (S8)

We see from Equation S8 that molecular diffusivity declines asymptotically to zero for larger

predators. Thus, larger predators should have increasingly diminished encounter with host cells.

B Appendix B: Sensitivity studies

Here, we explore the general behaviour of the model in Equations 5 and 6 paying close attention

to assumptions regarding prey size and effects of Brownian motion, predator and prey motility,

and predator detection volume.

B.1 Sensitivity to prey size

In Figure S1, we show the size dependence of Brownian motion and motility, accounting also for

the effects of prey size. Prey size has contrasting effects on encounter kernel of motile and diffu-

sive predators, but does not change meaningfully the prediction that per-capita encounter kernel

of diffusive predators decreases with size, and per-capita encounter kernel of motile predators

increases with size. The lighter dashed line in Figure S1 is encounter kernel with a 0.5µm equiv-

alent spherical radius prey, which falls toward the lower limit of bacterial size range (Figure

1a). The lighter solid line is for a prey item with a 2µm equivalent spherical radius, which falls

toward the upper limit of bacteria in Figure 1a. The difference between the lighter dashed and

solid line suggests that predators that depend on diffusive transport are likely to have a higher

rate of encounter with large prey than with small prey. Larger prey present a larger target area

for predators following a random walk, which is reflected in the linear dependence of Equation

S3 on prey radius. In Figure S1, the darker dashed and solid lines are encounter kernels of

individual swimming predators for 0.5µm and 2µm prey items, respectively. When swimming

predators are small, the dark solid-green line is higher than the dashed line, and predators are

predicted to encounter more large prey than small prey. Our model (Equation S2) assumes en-
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counter kernel scales with the square of both the predator and the prey radius. For this reason,

as motile predators become significantly larger than their prey, the effect of prey size diminishes.
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Figure S1: Theoretical encounter parameterizations for predators that move by Brownian motion

and swimming. Equations S9 and S10 were used to predict encounter, separating effects of

swimming (ρz, light green lines) from Brownian motion (ρv, dark green lines). Prey motion was

neglected by setting uprey and Dprey equal to zero in all cases. Dashed and solid lines are for

0.5 and 2 µm prey, respectively. For Brownian motion there is a sharp decline with predator

radius due to diminishing effect of diffusion with size. Swimming has the opposite relation to

predator size, with large motile predators expected to encounter more prey because they sweep a

larger volume of water and swim faster (Table 2, main text). The vertical red line demarcates two

domains: a small size domain where predator movement by Brownian motion is most effective,

and a large size domain where and movement by swimming is most effective.
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B.2 Sensitivity to prey motion

We now explore the generality of our predictions. We ask specifically: Does the predator size

threshold, marked by the vertical red line in Figure S1, vary significantly if we also account

for effects of prey motility and diffusion? We return to the full parameterizations presented in

Equation 4, separating out encounter by a purely diffusive predator (ρv) from encounter by a

predator that only swims for prey (ρz):

ρz = π(rprey + rdetect)
2(u2

pred + u2
prey)

1/2︸ ︷︷ ︸
predator and prey swimming

+ 4πDprey(rpred + rprey)︸ ︷︷ ︸
prey diffusion

(S9)

ρv = π(rprey + rpred)
2uprey︸ ︷︷ ︸

prey swimming

+ 4π(Dpred + Dprey)(rpred + rprey)︸ ︷︷ ︸
predator and prey diffusion

. (S10)

Note that Equations S9 and S10 are identical to Equations 5 and 6 in the main text, and are

repeated here for convenience. Figure S2a shows encouner kernel predictions of Equations S9

and S10, allowing prey swimming velocity to vary over the range 1-100µm s−1 (Milo and Phillips

2016). The blue lines show encounter kernel prediction for motile predators, and the red lines

show encounter kernel of predators transported via Brownian motion. For smaller predators,

encounter due to Brownian motion is higher than encounter due to swimming, but for larger

predators, the opposite is true. Thus, when prey swimming is accounted for with Equations S9

and S10, smaller predators should still diffuse, and larger predators should still swim.

In Figure S2a, darker shades correspond to faster prey swimming, which enhances encounter

kernel for predators that transport via both swimming, and Brownian motion. For each separate

prey swimming velocity, the curves in Figure S2a have a unique predator size at which they

intersect. By visual inspection, we see that the family of curves intersect approximately within

the size range 0.04-0.2µm; a range toward the large end of known marine viruses (Figure 1a).

Thus, even when we allow prey to swim, smaller predators have higher encounter rates from

diffusion, and larger predators have higher encounter rates from swimming. The boundary

marking the size at which predators should transition from Brownian motion to swimming,
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coincides with the size of the largest (currently) known viruses. Does this size range change

when we also account for prey diffusion? Effects of prey diffusion can be explored in a realistic

range, by altering prey size in Equations S9 and S10, and assuming the same size dependence of

diffusion as in Equation S8.

We determined the predator size when encounter by Brownian motion is equal to encounter

by swimming, for many combinations of prey swimming velocity, and size. The prey size range

explored (0.3-2 µm equivalent spherical radius) corresponds approximately to the bacteria size

range depicted in Figure 1. For each prey size and swimming velocity, the predator size at

which encounter by Brownian motion matches encounter by motility is shown in Figure S2b.

In general, the cutoff is pushed toward smaller predator sizes for faster prey swimming, and

larger sizes. The threshold predator radius contoured in Figure S2b varies approximately within

the range 0.03-0.2µm, still qualitatively consistent with the size range of the largest (currently)

known viruses, shown in Figure 1a. The prediction of a biophysical limit on encounter kernels

of microbial predators does not change substantially when we also consider prey motility and

Brownian motion.

B.2.1 Predator swimming and detection distance

The relations in Figure 2 in the main text make assumptions about the dependence of predator

detection distance and swimming speed on predator size. Specifically, both detection distance

and swimming speed were assumed to scale linearly with predator radius (Table 2, main text).

Does the biophysical prediction of a limit on the size of microbial predators change substantially

if we explore an uncertainty range in these paramerizations?

In Figure S2c, we show encounter kernel predictions of Equation S9 (blue lines), and S10 (red

lines) when the predator detection factor (number of predator body lengths sensed), is varied

within the range 2-30. Darker shades correspond to higher detection factors, and predictably,

greater detection distance tends to enhance encounter kernels for all motile predators. Once

again, smaller predators should still diffuse, and larger predators should still swim. This time
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the family of curves intersect approximately within the predator size range 0.03-0.1µm, again

similar to the largest known viruses (Figure 1a). What if uncertainty in the size dependence of

swimming speed is also accounted for?

In Figure S2d, we show the predator size at which the encounter kernels predicted by Equa-

tions S9 and S10 intersect, allowing a wide range of both detection, and swimming speed scaling

factors. The swimming uncertainty range covers a 95% confidence interval provided by linear

regression of predator swimming speed with predator radius (Hansen et al., 1997, Table 2, main

text). Due to the quadratic scaling with predator size, there is a stronger effect of detection

scaling factor than swimming detection factor, with steeper scaling between size and detection

distance pushing the predator size threshold toward smaller sizes (Figure S2c). In general, the

range of size thresholds predicted by the theory is qualitatively consistent with the size range

of the largest viruses shown in Figure 1a. Biophysical limits on microbial predator encounter

kernels do not vary significantly when uncertainty in predator swimming and detection distance

are accounted for.

9



Figure S2: Size dependence of predator encounter kernels when prey motility and Brownian

motion are also considered, and parameter uncertainty is explored. Equations S9 and S10 were

used to predict encounter kernels for motile predators (blue lines), and diffusive predators (red

lines), respectively. a) The relationship of encounter kernel with predator size; different lines cor-

respond to prey swimming at speeds evenly spaced within the range 1-100µm s−1, and darker

shades correspond to faster prey swimming. b) Predator size at which the family of curves in

panel (a) intersect, this time exploring a range in both predator size and swimming speed. c)

Each line allows a different predator detection distance, spread evenly in the range 2-20 body

lengths per individual predator. Darker shades correspond to greater predator detection factor.

d) Predator size at which the family of curves in panel (c) intersect, this time exploring sensi-

tivity to predator detection factor, and the size dependence of swimming velocity. The predator

size marking the boundary between effective transport by diffusion and Brownian motion con-

sistently falls within a size range slightly less than the largest viruses (∼0.2-0.7µm equivalent

spherical radius, Figure 1).
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C Appendix C: Adsorption dataset

A literature search was conducted to collate adsorption data that could be compared to bio-

physical estimates. The search was made by searching for adsorption and bacterial host names.

Information on host sizes, virus sizes and adsorption parameters was collected. However, not

all information was necessarily available in the primary literature. In some cases the adsorption

rate was not directly stated in the primary literature, but an adsorption curve was plotted. We

digitized these curves to calculate slopes and divided these by the initial concentrations of bacte-

ria to calculate adsorption rates. In cases where the viral size was not available we first searched

the online Phages catalogue collated by the Félix d’Hérelle Reference Centre for Bacterial Viruses

( https://www.phage.ulaval.ca/en/phages-catalog/ ) and where possible estimated virus size

from electron microscopy images. If no image was available we attempted to find a reference

genome size for the virus and used the following empirical formula to estimate viral radius:

log10 (Viral radius (nm) ) = [1.01219± 0.03928]+ [0.27173± 0.02231]log10 (Viral genome length (kbp))

(S11)

where ± is the reported standard error. This empirical relationship was derived from 39 observa-

tions within our dataset where both viral radius and genome size were available. This relation-

ship has an adjusted R2 = 0.795 and p-value < 1.635 × 10−14. Previous work has suggested a

strong relationship between genome size and physical size in viruses with similar scaling factors

(Cui et al., 2014, Jover et al., 2014).

In total our dataset collation from the literature includes 90 measured adsorption rates. We

were able to estimate viral radius for 76/90 adsorption rates and both viral and host radius for

74/90 adsorption rates.

Literature Cited

Chandrasekhar, S., 1943. Statistical problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89.

11



Cui, J., Schlub, T. E., Holmes, E. C., 2014. An allometric relationship between the genome length

and virion volume of viruses. J. Virol. 88, 6403–6410.
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