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Abstract: Science educators have begun to explore how students have opportunities to not only
view and manipulate simulations, but also to analyze the complex sources of data they generate.
While scholars have documented the characteristics and the effects of using simulations as a source
of data in face-to-face, K-12 classrooms, how simulations can be taken up and used in such a way
in fully-online classes is less-explored. In this study, we present results from our initial qualitative
investigation of students’ use of a simulation in such a way across three lessons in an online,
Advanced Placement high school physics class. In all, 13 students participated in the use of a
computational science simulation that we adapted to output quantitative data across the lesson
sequence. Students used the simulation and developed a class data set, which students then used to
understand, interpret, and model a thermodynamics-related concept and phenomenon. We explored
the progression of students’ conceptual understanding across the three lessons, students’ perceptions
of the strengths and weaknesses of the simulation, and how students balanced explaining variability
and being able to interpret their model of the class data set. Responses to embedded assessment
questions indicated that a few developed more sophisticated conceptual understanding of the particle
nature of matter and how it relates to diffusion, while others began the lesson sequence with an
already-sophisticated understanding, and a few did not demonstrate changes in their understanding.
Students reported that the simulation helped to make a complex idea more accessible and useful
and that the data generated by the simulation made it easier to understand what the simulation
was representing. When analyzing the class data set, some students focused on fitting the data,
not considering the interpretability of the model as much, whereas other students balanced model
fit with interpretability and usefulness. In all, findings suggest that the lesson sequence had
educational value, but that modifications to the design of the simulation and lesson sequence and
to the technologies used could enhance its impact. Implications and recommendations for future
research focus on the potential for simulations to be used to engage students in a variety of scientific
and engineering practices in online science classes.

Keywords: simulations; online learning; computational science; physics; thermodynamics;
virtual laboratory

1. Introduction

Recent science, technology, engineering, and mathematics (STEM) curriculum reform efforts
focus on engaging students in discipline-based practices. These practice standards shift educators’
focus from what students should know to what students should be doing. A practice standard that
cuts across STEM is making sense of data cuts across standards [1,2]. This practice is not only
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important for STEM disciplines, but also in our everyday lives. For instance, today, data are a powerful
tool for understanding and often explaining abstract ideas and concepts. These STEM practices
also include developing and using models, analyzing and interpreting data, obtaining, evaluating,
and communicating information, and using mathematics and computational thinking, each of which
presents an opportunity to begin uncovering practice-based overlap between STEM fields.

There are many implications of the focus on engaging students in practices for K-12 science and
STEM education. For example, by providing students with opportunities to think about and use data,
students will be able to question what data are and how they were collected. This provides students
with not only access to scientific knowledge but also the capacity to understand science by engaging
in the knowledge-building processes and practices used by scientists [3]. Moreover, by preparing
students to think about and with data, students can begin imagining the use of data to solve problems,
better understand phenomena, and answer questions that are relevant and interesting to them.

In science, it is quite possible for students to engage in work with data in any learning
environment—face-to-face, blended, or fully online. One affordance for engaging students in data
related practices in an online environment is that today’s digital tools can provide teachers and
students the ability to access, model, and create figures of data [4]. Building on this opportunity to
use digital tools that are already available to students in online classes, this paper describes our initial
investigation into preparing students to work with data through three lessons focused on the use of a
computational science simulation. In particular, the purpose of this paper is to explore how students
can not only use a simulation, but also analyze the complex data sources they generate.

2. Literature Review

For this study, we reviewed research on models and simulations in science education, the role of
working with data in the context of simulations, and their use in online science classes. We then propose
a novel framework for the use of a computational science simulation in online learning environments.

2.1. Models and Simulations in Science Education

Scientists often investigate very large, small, far away, or otherwise hard to study phenomena.
Many times, this requires students to explore stand-ins, or models, for the systems under
investigation [5,6]. In this study, we consider modeling in terms of constructing, evaluating,
and revising representations of scientific processes and mechanisms [1,7–9]. Additionally,
simulations have an extensive history in science education and have been found to support learners’
understanding of scientific ideas and the ability to engage in scientific practices [10–16]. As Honey
and Hilton report, simulations “enable learners to see and interact with representations of natural
phenomena that would otherwise be impossible to observe” [6] (p. 1).

Early research on simulations in science, often in physics and chemistry [15], focused on both
students’ conceptual understanding and their understanding of what underlies the models and
simulations [17]. Wider use of simulations in science has taken place along with more accessible
platforms and the availability of simulations in content areas beyond physics and chemistry. The PhET
simulations are an influential example of how developers are creating more realistic simulations and
models that extend beyond simplified, visual representations, and act “much as scientists view their
research experiments” [18] (p. 682).

The research base around simulations and models in online science education is vibrant and
ever growing. Brinson ‘s [19] recent systematic review reported that virtual laboratories—including
simulations and take-home laboratories—generally led to as good or better learning outcomes
for students in relation to students’ conceptual understanding of scientific phenomena. Fan and
Geelan [20] paint a more complex portrait of simulation through their review of the effects of
simulations, concluding that online simulations will not likely replace teachers and traditional
laboratories and that it is the quality of simulations that ought to be an emphasis of new research into
their use.
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In addition to the quality of simulations in terms of their design, the quality of the pedagogical
approaches involved in their use also matter. Fan, Geelan, and Gillies [21] showed that when
simulations are used in a particular way—wherein students pose questions, make predictions,
use simulations to test ideas, and justify and critique the reasoning of others [22]—students
demonstrated significantly greater changes in their understanding and their capability to engage
in STEM-based practices. Such an approach to the use of simulation is similar to other inquiry-
and modeling-based pedagogical strategies (i.e., the Guided Inquiry and Modeling Instructional
Framework [23]).

Finally, there are now a number of online and digital platforms that provide access to science
simulations. For example, general platforms such as NetLogo [24], Gizmos [25], and Sage Modeler [26]
are widely used by those in education. There are also tools designed not as a platform but
for exploring a single idea, such as evolution by way of natural selection (e.g., Frog Pond).
These simulation tools—and associated pedagogical approaches—can help learners to develop many
of the capabilities recent science education reform efforts aim to promote, particularly students’
conceptual understanding, but also their motivation, and their engagement in scientific practices [6].
These ideas point to the potential for online learning environments to embrace virtual simulations as
a means to investigate phenomena, bringing our focus to understand better how to adapt existing
simulations together with the aim of enhancing student learning.

2.2. Work with Data in the Context of Simulations

Past research on work with data in science and mathematics classrooms indicates that doing so
is educationally powerful and valuable on its own, involving demanding (and engaging) reasoning
skills and engagement in practice [4,27]. In science education, however, opportunities for students
to analyze quantitative data in K-12 settings are often limited by the time it takes to engage in data
collection and analysis [4]. While mathematics is used in science, and scientific questions provide a
context for some problem-based work in mathematics, how to meaningfully learn both about and how
to do science and mathematics has been a challenge for us as educators and educational researchers.

When scientists use simulations, they interpret not only visual output, but also the quantitative
data that forms the basis for visualizations [5]. Scientists—and learners, too, “must apply all the
usual tools of experimental science for analyzing data: Visualization, statistics, data mining, and so
on” [28] (p. 33). One way to provide opportunities for students to work with data in the context
of simulations is for students to model and account for variability in data, as doing so can help
students understand individual-level behaviors as data-generating processes or mechanisms [29,30].
Recent empirical studies suggest our need to understand better how learners analyze and interpret
output from simulations, as part of back-and-forth reasoning between the learner, teacher, simulation,
and scientific ideas, and anticipate challenges in student understanding of the mathematical formalisms
underlying simulations’ output [28,31–33]. While scholars emphasize the importance of evaluating
data from simulations, more research is needed on how learners analyze and interpret their output,
as such evaluations are “typically of a qualitative rather than a quantitative nature” [34].

2.3. Using Simulations in Online Science Classes

One way that scholars have proposed for engaging students in science using digital tools is
through virtual laboratories. This work differs from face-to-face simulations as it aims to reproduce the
experience of doing a physical laboratory [35]. This is different from virtual laboratories, which proport
to expose students to phenomena so that they can approach their use like scientists approach their
research, as simulations add a greater focus on the construction of a simulation’s rules, its starting
values, and its processes [18].

Recent work has begun to address the question of what it means to do science in online
classes. One study surveyed 386 students enrolled in online, undergraduate science laboratory
classes in biology, chemistry, and physics, where students indicated using a mix of hands-on kits,
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virtual laboratories, and virtual simulations [36]. Overall, the authors reported that students perceived
that their online science laboratories are comparable or preferable to face-to-face courses. Moreover,
a majority of students who used both virtual and hands-on laboratories reported that they helped
them to understand better the lecture material and perceived their labs in online courses to be
lower-stress than face-to-face laboratories. Students felt they were better able to quickly iterate
between experimental parameters, focus more on the investigation, and move past logistic details such
as the gathering of equipment or clean-up.

This past research suggests that there are some benefits and affordances to students’ use of
simulations in online post-secondary science courses. However, the body of research on simulations
in K-12 science classes tends to focus on face-to-face learning environments rather than the growing
field of online K-12 science classes. Particularly, as recent reform efforts emphasize K-12 students
engagement in STEM practices [1,2], and the challenge of creating, modifying, and analyzing data
generated from simulations in online classes, it is important that we know more about how students
use simulations and model the data they generate in online learning environments.

2.4. Framework for Using a Computational Science Simulation

Drawing on research on modeling and simulations, we developed a conceptual framework for the
use of a computational science simulation (Figure 1) that considers simulations as being constructed
using what is known about a phenomenon based on prior research, experience, and model-building
principles [5,37]. To distinguish this type of simulation (that is based on physical rules and processes),
we use the term computational science simulation. This model is similar to (and draws closely from)
accounts of the use of simulation by practicing scientists [5,37,38]. It is also similar to accounts of
the use of simulations for teaching and learning, in particular, Xiang and Passmore’s [31] framework
for student’s construction use, and interpretation of agent-based models, yet differs by considering
analyzing simulation output not in terms of interpreting output with respect to the world, but rather
selecting and constructing measures, structuring and representing data, and considering the tradeoff
between bias and variance. One way this framework is different from accounts of building simulations
is its focus on the use of a simulation, rather than the construction of one. While the construction
of simulation rules and mechanisms is a powerful context to learn about scientific phenomena [39],
scientists often modify or use existing simulations [28], and so it may not necessarily be detrimental
for students to modify or use existing simulations (instead of constructing their own).
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to explain and predict phenomena.

This framework guided the design of the simulation and lesson sequence used for this study by
focusing students’ use of a simulation on two processes. First, manipulating a simulation and analyzing
output [38]. Manipulating a simulation is a critical component of the use of simulations not only as
pedagogical tools but also for studying a target system or group of systems and consists of inspecting
the rules built during construction of the simulation, defining processes, and setting initial values.
Analyzing simulation output is essential because, without this component, simulations generate
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an abundance of raw data [5]. Analyzing output consists of selecting and constructing measures,
structuring and representing data, and considering the bias (use of a simpler model that does not
reflect the underlying patterns in the data) versus variance (use of a model that is fit very closely to its
underlying data but may not generalize to other datasets) tradeoff for fitting statistical models. Use of
simulations generates explanations and predictions about phenomena that are interpreted in light of
the construction of the simulation and its use [34].

3. Research Questions

To summarize, past research has documented the potential for simulations to help students to
develop their conceptual understanding of phenomena [6,19,20,22], especially when students can
use simulations as a part of a complete process of investigating a phenomenon [21]. Our first aim,
then, is to describe students’ conceptual understanding in order to provide information about the
effectiveness of the particular lesson sequence designed for the present study. Past research on the
use of simulations in online settings has shown that students report many benefits from their use [36],
but this work has been carried out at the post-secondary level. Accordingly, our second aim is
to understand students’ perceptions of the strengths and weaknesses of the simulation they used.
Finally, research has shown that students can analyze the data that computational science simulations
generate [31–33], though there is no research that we are aware of on using simulations in such a way
in online classes. Our third aim, then, is to explore students’ involvement in a key aspect of data
analysis: how students’ approach modeling variability in the data set they use. In light of these study
goals, the following research questions guided this study:

• RQ1: How do students’ explanations change over the course of three lessons that involve using a
simulation and modeling its output?

• RQ2: What do students perceive the strengths and weaknesses of using the simulation to be?
• RQ3: How do students approach modeling the classroom data set to account for its variability?

4. Methods

4.1. Participants and Context

The setting of the study was a college-level AP Physics 2 class. This class was offered for the first
time during the 2016–2017 academic year to junior and senior students through [school name blinded
for review], which provides individual online classes to [state-name blinded for peer review] public
school students. The school used the Blackboard Learning Management System as the platform for
students’ access to the course. Students enrolled in this class were not fully-online students, but instead
were taking one (or more) classes online in addition to the classes that they took at their local school.

The study participants consisted of 13 students enrolled in the course. The content of the unit
was thermodynamics, in particular, the particle theory of matter and diffusion. This study occurred
during the second unit of the class, with three lessons serving as a unit-long supplement to the existing
instruction. In this lesson sequence, all students were, as a class, required to complete the first two
lessons by a deadline. This allowed students in the class to develop a class dataset to be used in the
third lesson. Institutional Review Board (IRB) approval was obtained through the [University name
removed for peer review] IRB.

4.2. Simulation Design

To plan and design the simulation (and the lesson sequence), we worked closely with the instructor
of the course. The instructor had extensive expertise in the science content and the use of modeling and
simulations in science education. For the simulation, we used a Lab Interactive, which is described by
the Concord Consortium as the integration of “both simulations running in multiple modeling engines
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and data collection from sensors and probes” [XX]. In addition, the simulation used in this lesson
sequence was based on an underlying physics engine that is a part of the Lab Interactive platform.

Adapting and hosting the simulation was made possible by the Concord Consortium’s platform,
and the process involved making a number of changes, conceptually and technically, to an existing
simulation. In particular, to the existing simulation, adding quantitative output based on the
underlying Physics model for the a) temperature, b) volume of the container, c) pressure, and d) making
it possible to add multiple ‘smell’ molecules. The simulation can be found online (see Rosenberg,
2016) [40] and the code for the simulation and the underlying model can be found in Supplementary
Materials C1 and C2.

The target conceptual understanding for students’ understanding of the particle nature of
matter and diffusion was as follows: The kinetic energy of molecules is proportional to the average
temperature of the molecules [41]; gas molecules with higher kinetic energy and temperature collide
more frequently. Increased kinetic energy and temperature means molecules are colliding with the
walls of a container with greater speed, and, a greater pressure. If the pressure of a gas is in a
container that can expand and is at a high enough pressure, the volume of the container increases,
and pressure decreases.

4.3. Lesson Sequence

Based on the instructor’s input, the activities were designed around the existing curriculum in
one of the first units of the year-long course. The primary goal of the activities was for students to
develop model-based explanations to answer the question: What affects the time it takes for a smell to
travel across the room? This question was the “driving question” for the activities and drew from the
goals of an existing unit from the Investigating and Questioning our World Through Science and Technology
Project (IQWST; [42]). This unit was designed around questions which “provide a context to motivate
and apply the science students learn” [8] (p. 639). Lessons 1 and 2 focus primarily on the ‘manipulation
a simulation’ part of their use and lessons 2 and 3 focus more on ‘analyzing simulation output’
(see Figure 1 for the framework for the use of a simulation used in the present study). The following
three lessons (see Supplementary Materials L1–L3) used materials that included the Lab Interactive
and Google Sheets accessed through activity sheets through Blackboard.

4.3.1. Lesson 1: Tinker with the Simulation

The aim of this activity was to provide the chance for students to be introduced to the simulation
and to have time to tinker with it. The phenomenon was introduced in the following way:

Think about when a classmate of yours peels an orange, or, in science class, when a yucky
smell is introduced or encountered in an investigation. Classmates who are close to the source
of this smell initially report its presence. Gradually, the smell makes its ways throughout the
room, and everyone has sensed it. What’s going on? How exactly does smell move through
the room? Can we describe these phenomena based on our prior experiences - or do we need
to conduct an experiment? Can the way that smell moves through the room be represented
in a graphical depiction or even a formula? Is there some “speed of smell?”

In this activity, students accessed the simulation (presented in Figure 2; see Rosenberg, 2016, [40] for a
link to the simulation).
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about the diffusion of molecules.

The simulation and the model it’s based on were described in the following way:

In our model, you are free to think of all molecules as solid billiard balls that can collide
with each other as they move randomly in straight lines through the room. The collisions
between the billiard balls are “elastic,” so the total velocity (and mass) of all of the molecules
is specified to be the same throughout the simulation remains the same, as well as the total
kinetic energy of all the molecules. The green billiard balls on the right represent the air
molecules throughout the room, the gray wall represents the closed perfume jar, and the
blue billiard balls on the left represent tiny molecules of perfume floating in the air which
(when the jar is opened, and the wall is removed) will eventually make their way toward the
“gas sensor” also known as your nose. All of the molecules have the same mass.

Students responded to questions that prompted them to generate ideas about what they understood
about how temperature, pressure, and volume are related and what they thought would happen in the
simulation both before and after tinkering with it.

4.3.2. Lesson 2: Collect Data from the Simulation

The aim of this activity was for students to generate a plan for collecting data and to collect the
data for a class dataset and to prompt students to think about the underlying model rules for the
simulation. The simulation was described in greater precision, as follows:

This simulation is not programmed with any gas laws or thermodynamic equations. It is
simply modeling the motion of gas particles as though they were rigid billiard balls colliding
with one another. Different pieces of information are available to us, from the total kinetic
energy, in electron volts, to the pressure, volume, and temperature. We could use this
simulation to examine the relationship between temperature and pressure. We could
also examine the relationship between kinetic energy and temperature; since the volume,
which here represents the volume of the container (including the volume behind the barrier);
to calculate the volume, a depth 1 molecule deep is used. This simulation could be much
more complex with greater depth!
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Students were prompted to answer questions about how they would collect the data
(what temperatures and what number of molecules needed to stop the detector they would specify and
how many runs of the simulation they would carry out). After collecting the data, students were asked
to share a Google Sheets file, with the sole requirement being that students collected (at a minimum)
information on the temperature and experiment time.

4.3.3. Lesson 3: Generate a Model-based Explanation Using a Class Dataset

The aim of this activity was to describe the idea of a statistical (or data model) and for students to
use the class dataset to generate a model of the data and a model-based explanation as an answer to
the driving question. Models of the data were introduced in terms of a simple model, as follows:

Imagine you want to “model” a relationship, such as how the number of likes of your photos
on your social network is related to the number of times you post each day. One way you
could do this is through a “line of best fit,” or a linear model. A line of best fit is a simple but
powerful model: This model is simply a straight line through a scatterplot of data. If you
look at the individual data points, you may notice that some are above the line, and some are
below it; overall, the distance from the line to each point above the line and the distance from
the line to each point below it will equal zero; as a result, if you have data points that are way
higher than the other points, or way lower, they can affect where the line is. Something we
can use to determine how well a line fits is called the coefficient of determination, or R2.
The closer R2 is to 1 (which means the lines fits perfectly through every point!), the better.
The R2 for the line above is 0.60.

Students were asked to explore the data in any way they like, such as through calculating
descriptive statistics for the data or creating figures. They were prompted to model the relationship
between temperature and experiment time using a scatter-plot and a line of best fit and to generate
an explanation for the relationship between the temperature and the experiment time in light of the
model they selected.

4.4. Data Sources and Collection

The data sources for this project included student responses to embedded assessment questions
in the lesson sequence. The embedded assessment questions appeared throughout the lesson sequence.
Table 1 summarizes the linking of the embedded assessment questions with the research questions
they are intended to collect data about. The data were obtained from students typed responses to the
questions embedded in Google Docs that students downloaded, entered their responses into, and then
submitted to the instructor of the course. Students’ responses were then transcribed into a spreadsheet
(see Supplementary Materials D1 for the anonymous embedded assessment responses).
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Table 1. Data sources for each research question.

Research Questions and Sub Questions Embedded Assessment Questions (Lesson Collected)

RQ1: How do students’ explanations change over the
course of three lessons that involve using a
simulation and modeling its output?

When the temperature of the room is increased, the
perfume particles reach the gas sensor more quickly.
Explain why you think this happens. (Lesson 1)

Based on your observations of the simulation, explain
why the perfume particles reach the gas sensor more
quickly when the temperature of the room is increased.
(Lesson 1)

Earlier, we asked you why when the temperature of the
room is increased the perfume particles reach the gas
sensor more quickly. Please explain why this happens
now, knowing what you know from working through
data from the simulation. (Lesson 3)

RQ2: What do students perceive the strengths and
weaknesses of using the simulation to be?

What are some of the benefits of this model of a gas? And
what are some of its weaknesses? (Lesson 1)

How does your model of data help you explain what is
going on? Why? (Lesson 3)

RQ3: How do students approach modeling the
classroom data set to account for its variability?

Explain why you selected this mathematical model as the
best fit to the data. (Lesson 3)

4.5. Data Analysis

Students’ responses were transcribed and analyzed between students and across time in an
exploratory manner [43] to analyze the data. This focused the authors’ analysis around what parts of
the activities supported students’ conceptual understanding and understanding and experience in
relation to the online conceptual science simulation.

Initially, the data were coded independently by each author using structural and in vivo coding
frames [44]. After initial coding, the authors met to compare and discuss the data and then develop
pattern coding [44]. The pattern codes afforded the opportunity to summarize the data into a smaller
number of sets and themes. Additionally, meeting to discuss coding allowed the authors to ask
provocative questions each had not considered and work through various data analytic dilemmas
we faced.

In the end, the meetings and two rounds of coding led to a thematic analysis of the data,
where student responses were highlighted to explain the shorter codes.

5. Findings

In this section, we present findings for each of the RQs in relation to student responses to each of
their respective embedded assessment questions and subsequent qualitative analysis.

5.1. Findings for RQ1: Development of Student Responses Over the Course of the Lesson Sequence

The lesson sequence was designed to support student’s progression from an intuitive to a more
sophisticated understanding of the phenomenon. In our analysis of students’ responses to questions
designed to elicit their conceptual understanding (see the questions associated with RQ1 in Table 1),
we identified three groups of student responses: (1) Students who began with sophisticated conceptual
understandings (2) students who showed improvement in sophistication, and (3) students who showed
little improvement in sophistication. Representative responses for each of these groups is presented in
Table 2 and the three groups are described in the remainder of the section.
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Table 2. Representative student responses to content related questions regarding thermodynamics.

Time Collected Group 1 (Student 2) Group 2 (Student 7) Group 3 (Student 8)

Lesson 1: Before
exploring the simulation

This happens because a
higher temperature
means that the gas

particles vibrate more
quickly (have more

kinetic energy) so they
move faster and can get
across the room in less

time.

Temperature is directly
related to energy: as

temperature increases,
the energy of the system
increases. This results in

an increase in kinetic
energy, and since mass is

constant, the velocity
will increase throughout

the whole system,
reducing the time it takes

to travel across a fixed
distance.

I think that when the
temperature rises, the
molecules have more

energy and move faster,
hitting each other more

often.

Lesson 1: After the
exploring the simulation

This seems to be the case
because the molecules do
move less when they are

cold, so it takes longer
for the smell to work its
way across the chamber.
When they are hot the

move much more
quickly and are able to

bounce around from one
side of the room to the

other quite easily.

Higher temperature→
more energy→more
collisions in a given

amount of time→ gets
across the fixed distance

faster

When the temperature is
increased there is more
energy in the particles,

so they move faster and
hit each other and other
surfaces more often, so

the gas reaches the
sensor sooner.

Lesson 3: After
completing the lesson

sequence.

This happens because
the particles are

travelling at a greater
velocity. Since velocity is
distance over time, and
they have to cover the

same distance, the time
must decrease to factor

in this increased velocity.
Though there are

particles in the way of
the perfume and the

sensor, they are
physically able to travel
faster, so assuming the
bounces that they go

through are random in
each scenario, this
should slow each

temperature particles
equally, and so it comes
down to the velocity of

the particles.

The model shows us that
as temperature increases
the time for the particles

to reach the sensor
decreases. Not only does
this model show us this
visually, but it also gives
us an equation to predict
the time it would take a

particle to reach the
sensor given a

temperature. We know
that this equation fits our
data and model due to

the r squared value. The
R squared value is a sort
of measurement of the

accuracy of our equation
on a scale from 0-1. The
closer the r squared is to

one, the better our
equation.

I now know through the
simulation that the

particles move faster and
bump around more often

the higher the
temperature. The more
they bump around, the

faster particles travel and
take up more space.

5.1.1. Students Who Began with Sophisticated Conceptual Understanding

First, four of the students’ responses began and stayed sophisticated throughout the lesson
sequence. This level of student response is detailed by their formal use of scientific knowledge and
academic language. For instance, when first asked about the relationship between temperature and
smell molecules, Student 6 responded that:
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Because the temperature of a substance is proportional to its kinetic energy. Also, the kinetic
energy of a substance is proportional to its mass and velocity. And velocity is what we are
interested in if we want to know how quick a gas will reach another place. If the perfume
has a lower temperature, the air will transfer its temperature with collisions, causing the
perfume to go at a higher speed.

Additionally, Student 2 (Table 2) is an example of a student who began with what we think
was a sophisticated understanding of the target phenomenon. This student wrote that the perfume
moved more quickly because, “... higher temperature means that the gas particles vibrate more
quickly (have more kinetic energy) so they move faster and can get across the room in less time.”
Later, Student 2 develops a response that highlights an understanding of how this happens in terms of
collisions between molecules and providing a more illustrative than descriptive response. Student 2
and 6 are representative of this group of students who began and continued writing responses that
indicate a high level of academic language and scientific knowledge.

5.1.2. Students Who Showed Improvement in Sophistication

Two students showed some progress in developing sophisticated responses. For instance, as these
students began working with the content through the lesson sequence, they also started to provide
responses that indicate a more concise and clearer understanding of thermodynamics, often using
mathematical functions. This is exemplified by the sequence of responses by Student 7 (Table 2). In their
responses, Student 7 demonstrated growth in sophistication as intended. Initially, Student 7 wrote
responses that focused on what happened: “Temperature is directly related to energy: as temperature
increases, the energy of the system increases.” This response represents as a relatively simple account:
higher temperature implies higher kinetic energy. The student then shifts to writing responses that
indicate a level of understanding of how something happened: “Higher temperature→more energy
→more collisions in a given amount of time→ gets across the fixed distance faster.”

5.1.3. Students Who Showed Little Improvement in the Sophistication of Their Responses

The use or development of formal academic language with a scientific understanding was not
the case for all students. Two students did not gain in their sophistication over the course of the
lesson sequence and continued in the what phase of understanding. These students’ responses stayed
descriptive, focusing on the what of the question at hand rather than the how and why (e.g., Student 8
in Table 2).

5.2. Findings for RQ2: Strengths and Weaknesses of the Computational Science Simulation

The students indicated the benefits of using the simulation and their data models that were
created as a product of the simulation. A common response from students was that the simulation
made a complex phenomenon more accessible in an online learning environment. As Student 2
wrote, “The major benefit of this model is that it is easy to see what is going on and to understand
how the molecules propagate through the room.” However, this benefit was not without some cost.
Among some others, Student 1 indicated that the model could over-simplify complex concepts and
miss providing an authentic representation of what is happening. Other students also hinted at this by
hoping for more “realistic” representations, while some still enjoyed having to take the simulation and
map it to the world around them.
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Another benefit students described went beyond simplifying a complex phenomenon to being
able to use the simulation to make predictions. For example, Student 3 wrote “This model of gas
makes it much easier to calculate and make predictions on how the gas will behave. By making all
collisions elastic and having all particles being the same mass, it is much easier to calculate the resulting
velocities of collisions between gas particles.” This idea suggests that some students experienced the
computational science simulation as a tool that could be used, much like physical experimental tools,
to generate data that can be used to understand a real-world phenomenon. In contrast, Student 2
wrote that the model, “isn’t accurate for real life [sic] gas behavior and can’t be used to directly model
how the world really works.” Student 7 echoed this comment by noting that, “this model does not
give any definite numbers, meaning the accuracy of the diagram may not be as reliable as needed in a
science experiment.”

Finally, students saw the data they were able to generate as a benefit of the simulation. As Student
8 indicates, “I can have quantitative data to provide the speed of the molecules . . . [and] if I were to put
the data points on a graph, I could analyze its relationship.” Other students reported that the data were
helpful because their mathematical nature is precise, while others described the importance of being
able to graph the data and to interpret the graph to understand better what the simulation represented.

5.3. Findings for RQ3: How Students Approached Modeling the Data to Account for its Variability

Overall, students struggled with combining the principles of modeling with their understanding
of statistical rules. This was noteworthy in how students approached modeling the classroom data
set while accounting for variability, where we often found students relying on the strict definition of
r-squared in relation to function fitting, consistently attempting to fit the data maximally. For example,
Student 2 responded by saying, “I selected this model to show the line of best fit since it was closest to
one on R2. I used the 6th degree of the polynomial function, this is the most accurate for the scatter
plot since a polynomial of the 6th degree is more ‘flexible’ than other functions.”

However, other students showed an understanding that balanced the concept of over- and
under-fitting models to data. Student 2 provides an example of a more flexible understanding of the
principles of modeling data. They wrote:

I used this 4th power polynomial function because it had a much higher R2 value than the
linear, exponential, and lower degree functions. Though some of the higher degree functions
had better R2 values, it only increased from 0.809 to 0.815 which is pretty insignificant.
Any degree function lower than 4 and the R2 values began to drop significantly, close to
around 0.7 and below. Having a polynomial function with a higher degree of 4 makes it
really laborious to manipulate and use to predict values.

This response indicates that the student balanced between modeling as much of the variability as
possible (using a 4th-degree polynomial function), but still considered the practicality of their model in
terms of being able to make meaningful predictions about phenomena (either phenomena represented
within the simulation or the wider world outside of the simulation). Student 8 demonstrated through
the creation of their model (see Figure 3) a similar consideration between modeling the variability in
the data and choosing a model that was interpretable in light of the data.
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This student reported that they selected their model on the basis of both the R2 value relative
to other candidate models and how well it visually fit the data. This student wrote, “I chose the
exponential function because it had the second closest R2,” explaining, “I didn’t choose the first
highest, the polynomial function, because the trend line started dipping up in the end and the data
points didn’t follow the trend.”

6. Discussion

In this study, we sought to understand how students in online science classes can take up the use
of a simulation to develop their conceptual understanding of a phenomena and to serve as a context
for analyzing a complex, quantitative source of data. Drawing upon past research on the impacts of
students’ use of simulations, their use in (post-secondary) online settings, and working with data in the
context of simulations, we sought to understand how students’ conceptual understanding developed,
what they perceived to be the affordances and constraints of the simulation, and how they approached
modeling variability as a key aspect of working with data.

The data collected indicated that the lesson sequence could serve as a starting point for affording
opportunities for students to explore the mechanism and develop topic related knowledge about
thermodynamics. While two students did not develop in their conceptual understanding, and four
students began the activity with what we interpreted as an already-sophisticated understanding
of the particle nature of matter and how it applies to diffusion, we noted two students whose
explanations became more sophisticated over the course of the lesson sequence. For one student,
this progression took the form of an explanation which initially described what was happening with
respect to the phenomenon, and then later explained how the phenomenon worked. This progression
could be interpreted in terms of the students’ response becoming more mechanistic. Mechanism is an
idea from science—and the philosophy of science—that contends that phenomena can be explained
in terms of physical interactions (however complex) between physical matter [45]. Russ, Scherr,
and Hammer [46] advanced an influential framework for understanding how mechanistic students’
discourse is. Other scholars have used—or adapted—this framework for understanding interview
data [47] as well as for embedded assessment data [3,47] in science education.

More mechanistic explanations move from descriptive to causal accounts that include details
about how and why a phenomenon behaves the way it does [3]. While we can begin to interpret
how students’ understanding may have changed over the lesson sequence in terms of mechanistic
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reasoning, past research suggests that while students showed improvements, their response could be
even more sophisticated. For example, student 7 explained how higher temperatures led to higher
energy and therefore molecules crossing the container more quickly; additional opportunities for
students to consider why higher energy molecules move more quickly.

Findings with respect to the strengths and weaknesses of simulations speak to this goal and add
to the research base on the use of simulations in online classes and virtual laboratories. Of note is
that the students’ perceptions of the strengths of simulations aligned with Rowe et al.’s [36] survey
results, indicating that students found the simulations to ease access to scientific ideas. We believe that
by designing opportunities to initially “tinker” with the simulation, before adding formal structure
around its use, allowed students to make sense of the ideas gradually and supported their “ease”
of understanding.

With respect to work with data, we found that students were able to effectively use a class data
set in a data model—one that contained more observations and variability than the data any one
student collected on their own. This activity, and particularly students’ choices with respect to how
simple or complex a data model to fit, elicited different student work and provided insight to how
well students understand not only the scientific ideas but the underlying mathematical principles.
Some students chose to explain the maximal amount of variability (leading to a model that was hard
to interpret), whereas others balanced how well the model fit with their capability to use the model
to explain the relationship between temperature and time. We think these findings are notable as
some of the first to begin to explore the sophistication of the models that K-12 students generate
in both mathematics and science courses. Past research has shown that opportunities to model
phenomena with complex, highly-variable data is educationally valuable [48,49]. These findings
suggest that when it is possible for students to use more complex models that they are given guidance
on considering how complex their model should be. This consideration is important because, by their
nature, models and simulations simplify the phenomena and students’ responses about their strengths
and weaknesses generally reflect this while also noting that models can diminish the complexity of
the world. However, not having a teacher present when the student is working on the simulation,
or the ability to work with a peer, limits our chance to facilitate and guide student thinking about
data modeling in-the-moment. Thus, this study highlights that there is a tradeoff between modeling
the data students generate between two or more variables and exposing students to the actual work
carried out by STEM professionals.

6.1. Limitations

We anticipated some of the challenges in taking an idea of a computational science simulation to
an online environment but did not anticipate the challenges of doing so for the first time and working
with a class of students. For instance, the virtual school that we worked with took their charter to
teach students very seriously and were cautious about turning their online classes into research sites if
doing so had any detrimental effects on student learning. Thus, we found that an initial limitation to
the study was cooperative buy-in from the site and research team. However, as the relationship was
cultivated mutual agendas were being met.

There were not many students in the class—even though the class was offered by a state-wide
provider serving many students. Because of this, the findings should be considered with the small
number of students (and the qualitative data and analysis) that they were based on. We suggest that
scholars interpret these findings as one step toward understanding how students use simulations
in online science classes—a context that may grow in importance, but, apart from Rowe et al.’s [36]
investigation at the post-secondary level, is one that has not yet been an emphasis of past research.

Relatedly, we note that the measures used to collect data were not as strong as we would have
liked. We analyzed students’ embedded assessment responses—around a half-dozen per student
at each time point—using qualitative methods. Other data sources would help us to gain more
insight about students’ use of the simulation and what they learned from using it. Part of the
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challenge of collecting other data sources is due to the fact that obtaining parental consent for data-rich
interviews was discouraged by the stakeholders at the research site. Instead, together with the
stakeholders, we decided to modify an existing unit with the permission of the instructor of the course
and the administration—and to primarily use data from embedded assessments with our Institutional
Review Board and the virtual school agreeing for us to use an informed consent agreement given the
anonymous nature of the data and the minimal risk involved in using students’ responses. This made
it a challenge to say more about, for example, students’ understanding of the mechanism underlying
particle nature of matter and the process of diffusion. This is one of the challenges of doing research in
online courses: other scholars have also found that despite the promise of doing research in online
classes, it is also hard—especially in public schools.

6.2. Recommendations for Future Research

First, we recommend that science education researchers consider the use of simulations in
fully-online classes. Such classes present both opportunities and challenges in terms of engaging
students in the types of scientific and engineering practices called for in recent reform efforts. While this
study was an initial attempt at expanding the way in which simulations are used, more research and
development in the online setting is needed in order to ensure that students in these classes have
access to high-quality activities.

With respect to the use of simulations in particular, we defined the use of a simulation as
manipulating a simulation and analyzing simulation output. While students did not themselves
construct the rules comprising the simulation, opportunities for learners to reflect on them may
help them to understand how they compare to how they might think to construct a simulation [14].
Therefore, we suggest that future research explore how learners see and understand model rules may
support understanding phenomena in terms of individual-level molecular behaviors.

More generally, we recommend that researchers, instructional designers, and teachers consider
tools for analyzing data that are seamless—or easily connected to—the simulation used. We chose to
use Google Sheets because students were familiar with it; however, the Lab Interactive simulation we
designed integrates with the Common Online Data Analysis Platform (CODAP), a tool for learners to
analyze data. In particular, for Lab Interactives, data can stream directly from the simulation into data
tables—which can then be plotted. This presents a potentially powerful context for reasoning about
how the simulation creates data, which can then be represented through figures. The decision to use
Google Sheets made it possible for students to quickly begin to work with the data and to choose not
to use a tool which students might only use for one lesson sequence is understandable. In any case,
using tools more sophisticated than Google Sheets—such as CODAP—may have had some benefits to
learners. Moreover, the use of tools that allow students to collaborate around collecting and analyzing
data may be especially useful in online classes.

Advanced students such as those involved in this study may be able to move from “what”
mechanistic accounts to “how and why” accounts quickly; or, they may already possess sophisticated
accounts. We suggest that scholars continue to examine how students who are not already interested
in a discipline—like many of the students in this study—because of the potential for simulations to
motivate students to learn. Games with science content (and scientific practices) embedded within
them may be especially motivating for students who may not think of themselves as being interested
in science [6].

Finally, we recommend that scholars explore how tools other than simulations might support
engaging students in scientific and engineering practices in online classes. To engage students
in working with data, how students can use, for example, virtual reality tools to observe
phenomena [48,49] How such tools are used to support not only making observations but also as a
context to create and to even model data, may support students’ ability to think of and with data.
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6.3. Implications for Practice

First, we see the use of larger, even “messy” sources of data as having benefits to students’
learning. While it is important to weigh the benefits for students of the use of more complex data
with how practical it is to collect and model these sources of data, it may be important for students
to make decisions about how to model the type of data encountered in advanced coursework (and
many occupations).

In terms of working with data, we suggest that instructional designers and teachers use a
combination of general (i.e., Google Sheets) and specialized (i.e., the Common Online Data Analysis
Platform) tools when appropriate to engage students in modeling data from simulations. Tools that are
specially-designed as educational tools for data analysis, such as the Common Online Data Analysis
Platform (CODAP), can connect directly to sources of data (such as the Lab Interactive simulation we
used) and make it even more intuitive for students to model and create graphs from data.

Finally, when simulations are used, we point out that having students “tinker” with them first may
have benefits. While “tinkering” or playing with a science simulation takes time, these opportunities
can provide students with a chance to start to generate ideas about how the simulation works.
Many times, students set the simulation to its limits (i.e., to the lowest or highest temperature for the
simulation we used) to “break it.” However, this can (potentially) support students’ effort to understand
how well the simulation corresponds to the real-world in both every day and extreme situations.

7. Conclusions

Being able to think of and with data is a powerful capability, not only in science but also in other
areas of study and many occupations. We view student work with data, particularly collecting and
modeling data, as a means to connect many of the scientific and engineering practices described in
recent curriculum reform efforts. Taken together, the findings from this study suggest that the lesson
sequence had educational value, but that modifications to the design of the simulation and lesson
sequence and to the technologies used could enhance its impact. As students increasingly learn science
and explore science topics in online and other technology-supported contexts, we expect that science
educators will increasingly bring ambitious learning activities to online classes—and may, in the future,
even create activities in online classes that they choose to bring to face-to-face classes, too.
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