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Abstract 

Sinkholes are one of the major causes of damage to roads, buildings, and other infrastructure 

throughout the US. Sinkholes near or on roads are especially costly and occasionally deadly. 

Knox County and much of East Tennessee are located within karst areas (comprised of porous 

and soluble limestone and dolomite), deeming it at risk for sinkholes. Currently, Knox County 

uses contour maps to manually identify sinkholes. Supported by a geographic information 

system (GIS), we developed a streamlined model to identify the locations and extents of 

potential sinkholes using 1-m resolution LiDAR (Light Detection and Ranging) data and applied 

it to the Dutchtown area of Knox County. This model consists of creating a Digital Elevation 

Model (DEM), filling the depressions in the DEM, extracting the depressions with a DEM 

difference, converting the depressions to a polygon shapefile, and analyzing the shape 

characteristics of the depressions. This work provides a pilot study for Knox County Stormwater 

Management in identifying potential sinkholes and has the potential to be used in other similar 

regions.  

  



 

 

Introduction 

A sinkhole is a depression in the ground that has no natural external surface drainage. It 

becomes dangerous when the geology of the area is made up of water absorbent rock, such as 

limestone and dolomite1. The water from rainfall moves down through the soil and begins to 

dissolve the rock, forming spaces and caverns underground. These spaces eventually 

compromise the support of the surface to the point where the surface collapses, forming a 

sinkhole. The collapse of sinkhole could cause severe damage to human properties and 

infrastructures2,3. Sinkholes near or on roads are especially costly and occasionally deadly. Over 

the last fifteen years, they have caused an average of 300 million dollars of damage per year 

nation-wide1.  

Much of East Tennessee contains porous, soluble limestone and dolomite, deeming it at 

risk for sinkholes4. Sinkholes in the Dutchtown Road and Cedar Bluff Road areas of Knoxville 

serve as the primary drainage feature for stormwater runoff. Over three square miles of 

residential and commercial property drain to a series of sinkholes in this area5. Sinkholes are 

hard to detect and trace due to the lack of data and effective methods in identifying sinkholes2,3. 

An accurate method of detecting and mapping potential sinkholes is of critical importance to 

help establish sinkhole inventory maps and understand geomorphic and hydrological processes 

related to the sinkhole development. This information is also important for companies, city and 

county officials, and homeowners to avoid constructions around sinkhole areas and prepare 

suitable techniques to mitigate sinkhole hazard. 

Traditional methods to identify sinkholes were mainly based on the visual interpretation 

of the topographic maps or aerial photos and followed by field validation2,3. These approaches 

are usually not efficient and labor-intensive. The availability of high-resolution digital elevation 



 

 

models (DEMs) have allowed for the detection of potential sinkholes using geographic 

information systems (GIS) and spatial analysis tools2,3, 6-10. In East Tennessee, the high-

resolution DEMs (about 1 meter) based on airborne LiDAR (Light Detection and Ranging) 

technology have been available recently11. This new dataset provides a potential to map potential 

sinkholes at a much finer scale. 

The primary objective of this project was to develop a streamlined workflow model using 

a geographic information system, ArcGIS12, to identify and map potential sinkholes and conduct 

a case study in the Dutchtown Road area of Knox County based on the recently available high-

resolution LiDAR digital elevation data (Figure 1). The project provided a pilot study for Knox 

County Stormwater Management and has the potential to be used to identify the potential 

sinkholes for the entire Knox County and other similar areas. 

 

Data and Methods 

Two datasets were used in this project: a LiDAR dataset consisting of 60 tiled point-

cloud LAS files and a geodatabase of Knox County drainage infrastructure. The former dataset 

was provided by the Knoxville, Knox County, Knoxville Utilities Board Geographic Information 

System (KGIS)13 and the latter by the Knox County Stormwater Management14. Knox County 

Stormwater Management also provided a shapefile of the study site.  

We developed a conceptual model to derive sinkhole-like depressions from the point 

cloud data collected using LiDAR (Figure 2). The model involved first creating a digital 

elevation model (DEM) from the LAS files, filling the DEM with ArcGIS hydrology tools, 

subtracting the two DEMs, converting the resulting layer to a polygon shapefile, and analyzing 



 

 

the shapefile to derive the potential sinkholes. Based on this conceptual model, we created a GIS 

model using ArcGIS model-builder12 to automate the processes. 

 

(1) Creating a DEM  

The LAS point cloud files were imported into Applied Imagery’s Quick Terrain Modeler 

image processing software (QT Modeler)15 as a gridded surface model (Figure 3). Only the 

classified bare ground points were chosen to generate a DEM. These points represent the surface 

topography and exclude other features such as buildings and vegetation. These files were then 

merged into one gridded surface model using QT Modeler’s Merge tool and exported as a 32 bit 

GeoTiff DEM. The DEM has horizontal resolution of 1.3 foot (Figure 4). It was loaded into 

ArcMap for further processing. 

 

(2) Fill the DEM  

The DEM was clipped using the study boundary shapefile. The Focal Median tool with a 

7x7 kernel was used to smooth the DEM and reduce the noise (Figure 5). The Fill tool was then 

used to fill all depressions in the DEM (Figure 6). This tool is usually used to remove erroneous 

depressions before running other hydrology tools, but it is used to identify possible sinkholes in 

this model. 

 

(3) Subtract the DEMs  

We subtracted the smoothed DEM from the filled DEM using the Minus tool. The result 

is a raster of all the potential depressions in the study area with depth values (Figure 7). This step 

removes all non-depression surfaces from the image because cells that are the same will result in 



 

 

a zero, whereas cell values that were changed by the fill tool will result in a positive value equal 

to the depth of the depression.  

 

(4) Convert to shapefile 

Several tools were used before the conversion: Set Null, Region Group, Zonal Statistics, 

and Greater Than tools. These tools were used to reduce the dominating number of spurious 

depressions that were created by the random errors of the DEMs, rather than the “real” 

depressions. The random errors of the DEMs are likely related to pre-processing of the original 

LiDAR data, such as the removal of individual trees or buildings. These errors are usually just a 

few pixels. We applied a threshold of <1 m2 (about 9 ft2) in area to filter the spurious 

depressions. The average spacing of the original LiDAR dataset we used is about 1/3 m and it is 

usually smoothed to 1-m DEM for terrain analysis (make sure each pixel of the DEM has 

representative LiDAR point measurement). The threshold of <1 m2 in area is the size of one 

pixel of the 1 m DEM, and most of them are likely caused by the random errors. After removing 

the spurious depressions, the Raster to Polygon tool was used with the “simplify polygons” 

option to convert the raster layer of depressions to a polygon shapefile (Figure 8). This step is 

necessary because many analyses may be performed on a shapefile that may not be performed on 

a raster file. 

 

(5) Analyze the shapefile 

The last process was to analyze the depression shapefile to eliminate depressions that 

were unlikely sinkholes based on two thresholds for the polygon circularity index and the 

polygon area. The circularity index was calculated using the equation 



 

 

𝐶𝐼 =
√4𝜋𝐴

𝑃
                                                                             (1) 

where CI is the circularity index, A is the area, and P is the perimeter of a polygon. The closer a 

circularity index is to 1, the more circular the polygon is, indicating it is more likely to be a 

sinkhole. Based on a similar study in Missouri6, a minimum circularity index of 0.85 and a 

minimum area of 50 ft2 were used as the thresholds to identify potential sinkholes. All polygons 

that did not meet these specifications were removed.  

 

(6) Refine the potential sinkhole layer  

We also compared the potential sinkholes with the Knox County drainage infrastructure 

layer. The Select by Location tool was used to select and remove all polygons that were 

intersected with the infrastructure because these depressions were likely man-made depressions 

or constructions (Figure 9). The resulting polygon layer represents the potential sinkholes for 

further analysis.  

We used ArcGIS model builder to streamline the whole processes, so that the users can 

use this model to conduct their own analysis (Figure 10). 

 

Results 

The difference between the original and filled DEMs produced a new raster image 

(Figure 7) in which all pixels with a value greater than 0 were contained in a depression. After 

removing the spurious depressions using the threshold of <1 m2 in area, we converted 72,324 

depressions to a shapefile using the simplify polygons option. The number of depressions was 

subsequently reduced to about 5000 after applying the thresholds of the circularity index of 0.85 

and the minimum polygon area of 50 ft2. We also overlaid the depressions with the Knox County 



 

 

drainage infrastructure dataset and eliminated the depressions contained by the infrastructure. 

This step further reduced the number of depressions to 3,724. Figure 11 displays the spatial 

distribution of the final 3,724 depressions (potential sinkholes), ranging in area from 50 to 62881 

ft2. Note that many small depressions are spatially clustered together and appeared as larger 

polygons in this figure. We recommend government officials and homeowners to check these 

large spatial clusters first to evaluate the potential risk of sinkhole hazard in these regions and 

them move to check other small and isolated depressions. 

 

Discussion and Conclusions 

The primary goal of this work is to develop a method for identifying sinkhole locations 

from LiDAR data. We accomplished this goal and identified over 3,700 possible sinkholes in the 

Dutchtown Road Area. These potential sinkholes can be used by Knox County Stormwater 

Management to field-check and locate potential sinkholes. The refined sinkhole maps can help 

government officials and homeowners to assess the risk of sinkhole hazard, avoid constructions 

around sinkhole areas, and mitigate potential sinkhole collapses using suitable treatments. 

One main challenge in this work was the size of the dataset. For example, we spent an 

immense amount of time attempting to create the DEM with ArcGIS and were unable to produce 

a usable DEM. We then used QT Modeler to create the DEM. The subsequent steps for mapping 

sinkholes were relatively straightforward in ArcGIS. This learning process helped us understand 

the pros and cons of different software packages and provided a useful guidance for future data 

processing associated with LiDAR-related datasets. 

Due to limited time, we did not conduct field tests to validate the identified sinkholes and 

assess the accuracy of the derived map. It is important to note that the identified sinkholes layer 



 

 

does not necessarily represent the “real” sinkhole locations. They cannot be interpreted to real-

world sinkholes until field validation is conducted. Another way to test the accuracy is to 

compare the map with maps of known sinkhole locations in Tennessee. If no current sinkhole 

maps are available at a fine scale, our method could also be applied to an area where maps of 

known sinkholes do exist. The model-identified results could be compared against those maps to 

assess the accuracy of the potential sinkholes mapped using our model.   

Further work needs to explore additional methods to separate sinkholes from non-

sinkhole depressions. The qualifications and thresholds used in this study were subjective and 

mainly based on our intuition since no metrics were provided. More research is needed to 

determine what size and circularity index level should be used as thresholds and if there are other 

variables that can be used to identify “real” sinkholes.  
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Figure 1. The study site of the Dutchtown Road area in Knox County. 

 

  



 

 

 

 
Figure 2. The conceptual model of the proposed sinkhole identification method. 

 

 

  



 

 

 

 
Figure 3. An example of a gridded surface model in Quick Terrain Modeler. 

 

  



 

 

 

 
Figure 4. Clipped DEM of the study area. 

 

  



 

 

 

 
Figure 5. Smoothed DEM using the Focal Median tool in ArcGIS. 

 

  



 

 

 

 
Figure 6. Filled DEM using the Fill tool in ArcGIS. 

 

  



 

 

 

 
Figure 7. The difference between the original and filled DEMs using the Minus tool in ArcGIS. 

 

  



 

 

 

Figure 8. The map of depression polygons after converting the depression raster (DEM 

difference) to a shapefile. 

 

  



 

 

 

Figure 9. Overlapping Knox County Drainage infrastructure over the depression polygon layer to 

remove the man-made depressions. 

 

  



 

 

 

 
 

Figure 10. The ArcGIS Model to automate the whole analysis. 

 

 

  



 

 

 

Figure 11. The distribution of predicted sinkholes after using the circularity index and polygon 

area thresholds and the removal of likely infrastructure depressions. 
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