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Abstract 

High energy irradiation can induce physical and chemical changes in nuclear materials, 

impacting their properties and performance in reactor systems. Of particular interest is the 

radiation response of actinide oxides, such as UO2 [Uranium Dioxide] and ThO2 [Thorium 

Dioxide], as well as analogue materials such as CeO2 [Cerium Dioxide]. During the course of 

reactor operations, these nuclear materials are exposed to high energy ionizing radiation in the 

form of nuclear fission fragments. This study simulates the extreme conditions found in a nuclear 

reactor by utilizing accelerated heavy ions with mass and kinetic energy comparable to fission 

fragments in order to examine the effects of microstructure and rare earth doping on the 

irradiation response of nuclear-fuel materials. Synchrotron X-ray diffraction experiments 

performed at the Advanced Photon Source and transmission electron microscopy were used to 

characterize the samples before and after ion irradiation. 

The effect of grain subdivision on radiation response at the outer rim of fuel pellets is 

simulated through the irradiation of oxide powders of ~20 nm grain size. Structural 

modifications were compared to the effect of the same irradiation of oxide powders of ~1 µm 

[micrometer] grain size. Samples of each grain size for three materials (UO2, ThO2, and CeO2) 

were irradiated with 945.6 MeV Au ions to fluence values ranging from 1×1011 [one times ten to 

the eleventh] – 3×1013 [three times ten to the thirteenth] ions/cm2 [ions per square centimeter]. 

The grain size was shown to have a considerable effect on the defect-induced unit-cell expansion 

with an increased radiation resistance of microcrystalline samples. The highly ionizing 

irradiation caused additional redox effects in CeO2 resulting in significant structural changes. 
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Compositional changes which occur during the course of reactor operation, due to the 

accumulation of heavy fission products, were simulated via swift heavy ion irradiation of UO2 

samples doped with an increasing amount of rare earth elements (La, Y, and Nd). These samples 

were irradiated along with undoped reference samples using 167 MeV Xe ions at fluences 

ranging from 1×1011– 5×1014 [five times ten to the fourteenth] ions/cm2. Initial results show that 

doping of rare earth elements up to 32.87 weight % does not significantly affect the radiation 

response as compared to undoped UO2. 
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1. Introduction 

Materials used in nuclear reactors are regularly exposed to extreme conditions, due to 

both high energy irradiation and high temperatures in the fuel assemblies. These extreme 

environments require the selection of fuel materials that are tolerant of such conditions, as the 

damage gradually induced in these materials by their environment limits the burnups that can be 

achieved in nuclear fuels, thus limiting the efficiency of reactor operations. Material selection is 

also important for the reliability and accident tolerance of reactors, as tolerance to extreme 

environments prevents the breakdown of materials. Knowledge of the responses of materials to 

extreme environments is necessary in order to perform this selection and design fuel materials1. 

 A consequence of particular interest regarding these extreme environments is the 

high-burnup structure in UO2, also known as the “rim effect”. This effect has been shown to be 

due to the electronic energy loss of fission fragments in UO2, and is characterized by 

accompanying microstructural modifications in the rim of fuel pellets as the grains in the rim 

subdivide and form nanometric grain boundaries1. In particular, two distinct types of grain 

shapes form in the rim of the fuel pellet, polyhedral and spherical. The high burnup structure is 

known to be the result of self-reorganization of the material in response to extreme conditions 

such as those incurred during reactor operation, and experimental data have shown that the 

formation of the high burnup structure is the result of energy minimization in the system1. This 

has been linked to the aggregation of defects forming a dislocation network in the material1. 

Despite knowing the mechanism of the formation of the high burnup structure, the effects of this 

structure on the irradiation response of UO2 and related oxides, and therefore the performance of 

those materials in fuel applications, is not well studied1.   
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The material responses to high energy irradiation is complex, with several types of 

radiation effects including point-defect formation2, 3, disordering4, phase transitions5, 6, 7, 8, and 

amorphization9, 10. Point-defect formation describes the process by which individual defects, in 

the form of self-interstitial atoms and vacancies, accumulate within the material. These defects 

are often created as Frenkel pairs, a paired self-interstitial and vacancy, or Schottky defects in 

which two paired vacancies form. Disordering occurs when irradiation induces a loss of the 

ordered structure in a material, and has been shown in irradiated complex metal oxides in the 

form of a phase transition from the ordered pyrochlore structure to the disordered defect fluorite 

structure. Phase transitions have been shown in many materials as an effect of irradiation, and 

consist of changes from one crystal structure to another. An example of this crystalline to 

crystalline phase transition is the transformation of a cubic to a monoclinic phase during 

irradiation as observed in Gd2O3 by Lang et al8. Lastly, amorphization occurs when the long-

range crystal structure is lost, with no crystalline phase remaining in the material. 

All three materials studied in the present work have the fluorite structure (Fm3̅m), which 

is described by a face centered cubic lattice with additional atoms located at positions at 

intermediate sites inside the FCC lattice. The first symbol refers to the FCC Bravais lattice type. 

The remaining symbols specify the point group of the system, in which m3̅m refers to two mirror 

planes, defined as being perpendicular to the face of the lattice, and a rotoinversion plane, 3̅, 

meaning a rotation of 
360˚

3
 combined with an inversion about the center. These planes are all that 

is necessary to describe fully the fluorite structure11. 

 Even considering only the fluorite-structured actinide dioxides, which are the most 

common current and proposed nuclear fuels, a wide variety of factors in both material 

composition and irradiation conditions can influence damage formation and the radiation 
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tolerance of the material (i.e. the ability of materials to retain their structures and properties 

under irradiation). Material-specific factors include bond covalency12, oxidation state13, 

susceptibility to disordering4, thermodynamic properties14, 15, and grain size8, 13, whereas 

irradiation condition factors include radiation type, irradiation energy spectrum, and irradiation 

temperature.  

While the response of materials to radiation with low specific energy is relatively well-

understood1, 12, the effects of high specific energy irradiation are less well characterized. Ions 

travelling at low specific energy primarily scatter elastically on the target atoms (high nuclear 

stopping power), while ions with high specific energy primarily induce ionizations (high 

electronic stopping power). As such, the two produce fundamentally different effects in materials 

and both cannot be characterized by a single experiment. It is known that high specific energy 

fission fragment irradiation, consisting of particles with masses in the range of 118-160 amu and 

energies in the range of 170-190 MeV16, causes significant degradation in performance over the 

lifetime of nuclear fuel17. As such, a comprehensive simulation of high energy fission fragment 

irradiation in conditions likely to be encountered by materials in a reactor serves to enhance our 

understanding of nuclear materials on a fundamental level, allowing for more accurate 

predictions of the lifetime response of these materials to ionizing radiation. 

Fission fragment irradiation results in damage through the displacement of atoms in the 

material, which can result either in amorphization, phase transition, or the buildup of point-

defects, most commonly in the form of Frenkel pairs. Amorphization of materials under the 

effects of swift heavy ion irradiation has been observed in materials such as SiO2
41 and 

La2Ti2O7
10. The amorphization of these materials typically occur under the effects of extremely 

high energy irradiation, with La2Ti2O7 has been shown to amorphize under irradiation by 2.0 
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GeV 181Ta ions. Phase transitions due to swift heavy ion irradiation have been shown to occur in 

several oxide materials, such as Ln2O3
5. These materials exhibit a wide variety of phases, several 

of which can be induced through irradiation. For Ln2O3 the structure evolves from the cubic C-

type structure to a B-type polymorph, an X-type nonequilibrium phase, and an amorphous phase 

under the effects of irradiation.The buildup of point defects in materials often manifests as an 

increase of the unit cell parameter of the material, as observed for CeO2
2, 13 and ThO2

3, 13. In 

these materials, the build-up of damage follows a single-impact model, in which damage 

accumulates linearly until an overlap of damage tracks occurs, which is characterized by a 

saturation of the swelling of the unit cell parameter. In these materials, spectroscopic analysis has 

shown that these defects do not form complex clusters, and for ThO2 it has been shown that no 

change in cation valence occurs13. These defects cause structural distortion in the crystal, thus 

resulting in swelling in the material. 

The interactions between the incident particle and the target material under swift heavy 

ion irradiation are primarily inelastic, as the high energies of fission fragment irradiation result in 

a significantly higher cross section for electronic interactions as opposed to nuclear interactions. 

These interactions cause a large initial deposition of energy by the incident ion to the electrons of 

the target material, resulting in an area of increased electron temperature along the ion path. This 

energy is then transferred from the electrons to the atomic subsystem via electron-phonon 

coupling, such that the atomic temperature increases as the electronic temperature decreases18. 

This process drives the formation of defects and phase transformations through atomic 

displacements during the period of increased atomic temperature. The formation of ion tracks 

due to high energy fission fragment irradiation is illustrated in Figure 1. The structure and 

formation of these tracks has been studied both through both experiments and simulations23. It  
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Figure 1: Schematic of the time evolution of the formation of an ion track due to nanoscale 

processes occurring under swift heavy ion irradiation23. 
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was demonstrated that nonequilibrium phases are induced by the extreme environment created 

by relativistic ions within single tracks at nanometric length scales. Molecular dynamics 

simulations based on the thermal spike model have shown good agreement with experimental 

High-resolution transmission electron microscopy images of the morphology of ion tracks 

produced by 2.2 GeV Au ions in a variety of materials. This ion track behavior forms the basis 

for predictions regarding the radiation response of materials to high energy swift heavy ion 

irradiation.  

Previous studies of the effects of fission fragment irradiation on the common nuclear fuel 

UO2 by Nakae et al.19 and Hayashi et al.20, 21 have shown that defect production yields volume 

expansion, although this material retains its fluorite structure. Transmission electron microscopy 

(TEM) analysis was performed on these samples and confirmed an incidence region of ion 

implantation which was consistent with the morphological changes associated with melting, 

which supports the above description of energy deposition in the samples. The authors explained 

their findings to be largely the result of nuclear stopping at the end of the ion range. It was 

further shown that the volumetric expansion of the unit cell induced by irradiation was 

recoverable via thermal treatment with temperature ranges from 200-1000º C in three distinct 

steps. 

 More recent work by Tracy et al.12 and Palomares et al.22 used exposure of actinide 

dioxides and analogue materials to beams of swift heavy ions (SHI), which have specific energy 

in the range of that found for fission fragments such that electronic stopping dominates over 

nuclear stopping. As such, SHI were used in the current work to simulate the effects of fission 

fragments on the structural and chemical behavior of actinide oxides. Both unit cell expansion 

and phase transitions have been observed in these materials under irradiation12, but little work 
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had previously been done regarding the role of nanocrystallinity in irradiation response as 

compared to microcrystallinity. While grain boundaries have been shown to act as defect sinks, 

thus improving radiation tolerance of nanocrystalline samples in the nuclear stopping regime, 

studies have shown that nanocrystalline materials exhibit enhanced damage under SHI 

irradiation13, 41. Nanocrystalline materials have been proposed for use in nuclear fuel, and grain 

subdivision in the rim effect, in which grains of size on the order of 10 µm divide into sub-

micron grain1, can generate nanocrystalline regions in conventional fuel. The modified behavior 

of nanocrystalline materials in response to extreme environments may have implications for 

understanding the high burn-up structure in nuclear fuel, which is characterized in part by these 

grain subdivisions. As such, a study of nanocrystalline UO2 could provide insight into the effects 

of this grain subdivision on the radiation resistance of nuclear materials.  

The work done by Tracy et al.13 demonstrated the effects of two important material-

dependent factors on the irradiation response of CeO2 and ThO2, the grain size and the valence of 

the cation. This study showed modified electronic structure in CeO2 under the effects of swift 

heavy ion irradiation with 950 MeV 197Au and 167 MeV 132Xe. Supported by the research of 

Takaki et al.24, whose TEM examination of ion tracks in CeO2 demonstrated that the O anion 

sublattice is preferentially distorted. The authors concluded that the irradiation response of CeO2 

is primarily driven by the redox response of the Ce cation through the formation of regions of 

Ce3+, which have a lower oxygen coordination than Ce4+.This maintains charge neutrality under 

ion irradiation. This led to an examination of nanocrystalline CeO2, as it would be expected that 

redox effects would be enhanced by a reduction in grain size. In nanocrystalline CeO2, an ion-

beam induced phase transition was detected, with the initial phase no longer observed at a 

fluence of 5x1013 ion cm-2. This new phase retains the fluorite structure, but has a significantly  
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 Figure 2: XRD pattern of nanocrystalline CeO2 as a function of ion fluence. With increasing 

fluence, the initial peaks decrease in intensity. At the highest fluence achieved, the initial peaks 

are no longer observed, indicating a complete phase transition to a new fluorite material13. 
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increased unit cell parameter. Similar redox effects were not observed for ThO2, as this material 

has only one available valence state and does not undergo reduction13. This study provided 

important insight that the redox behavior and grain size of materials can significantly alter their 

irradiation response, and raises concerns regarding the use of CeO2 as a surrogate material for the 

study of other actinide materials due to the specificity of the redox behavior of CeO2. 

To clarify the influence of grain size and nanocrystallinity on the response of fluorite-

structured actinide dioxides to high-energy, heavy ion irradiation, the responses of 

microcrystalline and nanocrystalline UO2, ThO2, and CeO2 to swift heavy ion irradiation have 

been measured by means of X-ray diffraction (XRD). This is motivated by the need to examine 

the differences in the effects of redox behavior and grain size among nuclear materials, in 

particular examining the response of UO2 as compared to the behavior observed in CeO2. 

Further, in order to truly simulate the extreme conditions encountered by materials in a 

reactor, the effects of doping on the radiation response of UO2 was considered. This is due to the 

implantation of fission products in nuclear fuels due to self-irradiation during the course of 

reactor operations. The effects of doping on actinide materials has been previously studied25, and 

it was shown that doping UO2 with oxide additives such as Cr2O3 and TiO2 result in an increase 

in the grain size of UO2, which is expected to increase the accident tolerance of the materials via 

increased fission product retention. The effect of certain dopants on the irradiation response of 

UO2 has also been studied for Mg doped UO2, Mg-Nb doped UO2, and Ti doped UO2
26. These 

materials were irradiated to a burnup ranging from 19-94 GWd/tU at temperatures of 550-930º 

C. While this study directly examined the effects of these dopants on the behavior of fuel pellets 

under irradiation, and demonstrates the swelling of both doped and undoped fuel pellets by  
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irradiation, further study is required in order to determine the systematic effects of doping on 

nuclear materials. As such,microcrystalline UO2 doped with Y, Nd, and La were subjected to 

swift heavy ion irradiation and their radiation response has been measured and compared. 

Lastly, the annealing of damage caused by radiation in nuclear materials has been 

previously studied19, 22, and it has been shown that increased temperature can cause annealing of 

the defects produced in irradiated UO2. However, the conditions encountered by fuel in a reactor 

are not limited to exposure to heat after irradiation. Rather, nuclear fuel is exposed high 

temperature and irradiation at the same time during the course of reactor operations. In order to 

study this, samples of microcrystalline and nanocrystalline CeO2, ThO2, and UO2 were irradiated 

at high temperature, and their radiation response is currently being measured and evaluated. 
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2. Experimental 

2.1 Sample Preparation 

Microcrystalline powders of UO2, CeO2, and ThO2 were acquired from commercial 

vendors. UO2 and ThO2 were acquired from Ion Beam Applications Worldwide, and CeO2 was 

acquired from Alfa Aesar. Nanocrystalline powders of UO2, CeO2, and ThO2 were prepared by 

the high energy ball milling method. High energy ball milling is a widely used technique in the 

preparation of nanocrystalline samples, and is feasible for large-scale nanoparticle production. It 

is popular both due to its scalability and its low cost. High energy ball milling also leaves little 

residue, resulting in a high sample purity27. For the first sample set, both micro- and 

nanocrystalline powders were uniaxially pressed into holes of 100 μm diameter that were drilled 

into molybdenum sheets of 50 μm thickness, serving as sample holders for ion irradiation and 

synchrotron characterization. In general, the thickness of the molybdenum foils for this type of 

sample preparation can vary in size from 12.5 to 50 µm, depending on the energy of the ions 

used. This thickness of molybdenum foil is chosen to match the ion beam energy to allow for the 

beam to fully penetrate the sample pellets and inducing a homogenous energy loss.  

In the case of swift heavy ions, energies of 1, 5, and 10 MeV/u correspond to sample 

thicknesses of 12.5, 25, and 50 µm, respectively. In order to drill these holes, a tabletop 

discharge machining device from Hylozoic Micro EDM System was used. This system is 

equipped with a 100 µm copper wire tip. Once the holes have been drilled, the molybdenum foils 

are cleaned in an ultrasonic bath with acetone in order to remove any debris from the drilling 

process. The powder samples are then placed over the holes and pressed between two steel dies 

using a hydraulic laboratory press using loads of ~9 tons. Following the pressing of samples, 

excess material is removed from the sample chamber using a scalpel under a microscope in order 
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to ensure that the dimensions of the pellet are as accurate and well defined as possible. For this 

sample set, as is typical of the preparation method, seven holes were drilled and pressed per 

sample material per fluence. The use of multiple pellets of sample for each fluence 

accommodates any potential loss of sample during irradiation and handling, such that even the 

loss of several pellets of sample is inconsequential to the measurement of data. For a standard 

beam spot size of ~1 cm2 the holders can be prepared such that three molybdenum strips with 

loaded pellets can be simultaneously placed in front of the beam, such that they are all irradiated 

to the same fluence under the same conditions. To accomplish this, the molybdenum strips are 

affixed using two-sided tape to onto a larger metal plate which serves as a sample holder during 

the irradiation, or alternately the strips can be affixed to smaller aluminum frames, which are 

then mounted on the larger plate. The latter method provides the advantage of permanently 

fixing the strips, as the aluminum frames can be moved. Further, these aluminum frames can be 

individually wrapped with thin aluminum foil in order to prevent inadvertent beamline 

contamination due to sample loss resulting from ion-beam induced sample fragmentation27. The 

resulting sample compacts were of ~50% theoretical density, as is typical of this preparation 

method13, 29.  

The second sample set consisted of UO2 powder samples doped with varying amounts of 

Y, La, and Nd, as well as powder samples of UC and un-doped UO2. For the doped powders, the 

specific stoichiometry of the powders are as follows: La0.206U0.794O2.158, La0.465U0.535O2.1155, 

Y0.194U0.806O2.215, Y0.472U0.528O2.038, Nd0.196U0.804O2.285, and Nd0.507U0.493O2.0015. These doped 

samples were synthesized by Lei Zhang and Alexandra Navrotsky at UC Davis. The synthesis of 

these samples was performed using a coprecipitation method, as decribed for the production of  
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Figure 3. (a) Photograph of irradiation holder with five sets of samples for exposure to fluences 

from 7x1011 to 8x1012 ions cm-2. Each set consists of three molybdenum strips, each with two 

sets of seven pellets, which are simultaneously irradiated. The inset shows the symmetrical 

arrangement of pellets. (b) Samples covered with thin aluminum foil in order to prevent 

beamline contamination. (c) Samples covered with Kapton foil for synchrotron x-ray 

measurements28. 

 

 

 

 

 

 

 

 

 



 

14 
 

lanthanide doped urania solid solutions. Uranium nitrate and rare earth nitrate hexahydrate were 

mixed and dissolved in deionized water. After the dissolution, NH4OH was added to the solution 

in order to reach a pH of 9-10 such that a precipitate forms. 

This mixture was then stirred and heated via hot plate at ~80º C for several days to 

decrease the solutions volume. The remainder of the solution was then transferred into a 

platinum crucible and placed in a furnace to dry in air at 150º C overnight, followed by 

calcination in air at 600º C for 6 hours. The powder was ground in an agate mortar and pressed 

into pellets of 5 mm diameter, then sintered in alumina crucibles at temperatures ranging from 

1100-1450 º C for 24-36 hours in a reducing atmosphere30. These samples were then 

characterized using XRD and electron probe microanalysis with wavelength dispersive 

spectroscopy as described in the relevant literature30. These samples were loaded into 

molybdenum strips of thickness 12.5 µm as per the procedure described above. 

The third sample set consisted of the same batch of powder samples acquired for use in 

the first sample set, but were prepared for irradiation at high temperatures. After loading into 

molybdenum strips of thickness 12.5 µm, the strips were affixed in groups of three to tungsten 

plates using an adhesive graphite paste, as shown in figure 4. Two sets of samples were provided 

for each irradiation temperature, such that the second set could be heated to the same 

temperatures used during irradiation, but not irradiated for use as a reference sample. 

2.2 Irradiation 

The first set of samples was irradiated in vacuum and at room temperature at the GSI 

Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany using 950 MeV 197Au ions 

from the M2 beamline of the UNILAC accelerator. Samples were irradiated to ion fluences 

ranging from 1 x 1011 ions cm-2 to 3 x 1013 ions cm-2. The ion beam flux was limited to  
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Figure 4. Three sets of three molybdenum strips each affixed to tungsten plates for high 

temperature irradiation. Bottom: Sample to be irradiated at room temperature. Top left: Sample 

to be heated to 200º C for reference. Top right: Sample to be irradiated at 200º C. 
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~109 ions cm-2 s-1 in order to avoid excessive heating of the samples. The high energy of the ion 

beam, 

combined with the micrometer-scale thickness of the samples, ensured that ion irradiations 

resulted in (a) a uniform damage profile throughout the depth of the sample, (b) no ion 

implantation within the samples, and (c) dominant inelastic ion-matter interactions within the 

sample, as the electronic energy loss is significantly larger than the nuclear energy loss for the 

majority of the ion trajectory in the materials. The stopping power and ranges of Au ions in the 

material were calculated using SRIM31 including corrections for the lower density of the 

samples23. The projected range of the ion beam was greater than the sample thickness of all the 

samples, such that all ions pass completely through the sample and the energy loss of the ions is 

nearly constant throughout the sample thickness. The range of the gold ions in each material is 

70 µm in CeO2 and ThO2, and 64 µm in UO2. 

The second set of samples was irradiated in vacuum at room temperature using 167 MeV 

132Xe ions at the IC-100 cyclotron at the Joint Institute for Nuclear Research in Dubna, Russia. 

This sample set was irradiated to fluences ranging from 5x1011 ions cm-2
 up to 5x1014 ions cm-2. 

Once again, SRIM calculations were performed on the samples, all of which had projected 

ranges which were larger than the thickness of the sample (12.5 µm), such that the ions pass 

completely through the sample and no ion implantation occurs. 

The third sample set was irradiated at varying temperatures to a fluence of 1.45x1013 ions cm-2 

using 198 MeV 132Xe on Cyclotron DC-60 at the Astana branch of the Institute of Nuclear 

Physics in Kazakhstan. The samples were divided into two groups, irradiation samples and 

reference samples. The irradiation samples group consisted of 4 holders irradiated at room 

temperature, 200º C, 400º C, and 600º C, respectively. For each sample in the irradiation group, 
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with the exclusion of the room temperature holder, the time that the sample was heated during 

irradiation was recorded. The corresponding reference sample was heated to the same 

temperature for the same amount of time under the same conditions, but not irradiated. This 

allows for a comprehensive analysis of the effects of combined heating and irradiation as 

compared to the isolated effects of heating the samples, which could potentially induce changes 

in the redox behavior.  

2.3 Characterization 

After irradiation, each holder was examined using an optical microscope in order to 

insure that radiation induced changes to the volume of the pellet or sample fragmentation have 

not resulted in sample loss. Once it was confirmed that there is still remaining sample material in 

the holders, synchrotron x-ray analysis was performed. The structure of the initial and irradiated 

samples was characterized using angle-dispersive X-ray diffraction (XRD) performed at the 

HPCAT 16BM-D beamline of the Advanced Photon Source at Argonne National Laboratory for 

all sample sets. At this beamline, a monochromatic x-ray beam can be configured using an 

adjustable Si(111) double-crystal monochromator operating in pseudo channel-cut mode. The 

incident beam size prior to the monochromator is 1.5 mm with a beam slit location of ~42 m 

from the source, resulting in an energy resolution of about ΔE/E = 5x10-4 at E = 25.000 keV. The 

beam is further focused using asymmetrical mirrors and constrained by a cleanup pinhole of 35 

µm diameter. This results in an intensity on the sample of 5x108 photons/s28. A monochromatic 

beam of 29.2 keV (λ=0.4976 Å) photons with a flux of ~109 s-1 was used in transmission 

geometry for sample set one, while a beam of 25 keV (λ=0.495672  Å) was used for sample set 

two (add set three after APS). In order to collect XRD data, Debye-Scherrer rings are collected  
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Figure 5. Energy loss of Ion Beams in CeO2 (a) Energy loss curve for an example case of 50 µm 

thick CeO2 exposed to 2.2 GeV Au ions, showing constant energy loss throughout the sample of 

47 ± 1 keV nm-1. (b) Energy loss curve for 12.5 µm thick CeO2 exposed to 167 MeV Xe ions, 

showing larger variation in energy loss of 18 ± 10 keV nm-1. (c) Schematic illustration of ion 

irradiation of samples and synchrotron XRD analysis. Ions completely penetrate the powder 

sample. The ion beam and x-rays are collinear, but the spot size of the x-ray beam is significantly 

smaller than that of the ion beam. (d) Two dimensional x-ray scans are used to image the sample 

pellets in the molybdenum foil and align the x-ray beam to find sample positions. The absorption 

of sample pellets is lower than that of the molybdenum strips28. 
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using a MAR345 Image Plate detector, typically located 320 mm behind the sample. The 

detector geometry is then calibrated using a National Institute of Standards and Technology 

CeO2 powder28. This geometry allows for the entirety of the ion tracks in a sample to be probed 

simultaneously, such that the resulting signal is averaged over the entire depth of the sample and 

is representative of the total damage caused by the irradiation of the samples. Debye-Scherrer 

rings were recorded using a MAR345 image plate detector with a collection time of 300 seconds. 

Dioptas32 software was used to convert the diffraction images into X-ray diffractograms 

according to the calibration files provided by APS, and unit cell parameters were determined via 

Rietveld refinement using the Fullprof33 software.  

The average grain sizes of the unirradiated microcrystalline and nanocrystalline CeO2 

samples were determined by imaging of dispersed powders with transmission electron 

microscopy (TEM). Using the measured grain size and XRD patterns, the grain sizes of 

unirradiated nanocrystalline ThO2 and UO2 were calculated. The typical grain sizes of the 

unirradiated samples were ~1-5 μm and ~20 nm for the microcrystalline samples and 

nanocrystalline samples, respectively. Changes of the grain sizes in irradiated samples were 

determined using XRD together with calculations using the Scherrer equation34, correcting for 

the initial grain size values from the TEM measurements. 
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3. Results and Discussion 

3.1 Results 

 Fig. 6 shows selected XRD patterns of all measured samples at various fluences. All 

patterns were refined with the fluorite structure. Qualitatively, it can be seen that for all 

irradiated samples a peak shift to lower 2θ values occurs, indicating an expansion of the unit cell 

parameter, with the exception of microcrystalline UO2. This peak shift is of a greater magnitude 

in the nanocrystalline samples. Further, it can be seen that nanocrystalline CeO2 exhibits growth 

of a second set of peaks at high fluence values starting at 5x1012 ions/cm2, indicating the 

production of a second phase under SHI irradiation. Fig. 7 shows TEM taken for unirradiated 

nanocrystalline CeO2. This was used to determine the initial grain size for all nanocrystalline 

samples, which was measured to be 20.5±1.5 nm. 

 Fig. 8 shows a comparison of the change in lattice parameter among microcrystalline 

samples from Rietveld refinement. UO2 demonstrates the least change in unit cell parameter 

among these samples, ThO2 exhibits moderate change in unit cell parameter, and CeO2 

demonstrates the largest change in unit cell parameter. Both ThO2 and CeO2 follow a single 

impact model of damage accumulation, with saturation values of .1% and .2% change in unit cell 

parameter, respectively. The change in the unit cell parameter of UO2 is too small to 

conclusively state that any change is occurring, as the final and initial values of unit cell 

parameter are within error of one another. Fig. 9 shows a similar comparison among 

nanocrystalline samples. From this figure it can be seen that among nanocrystalline samples, 

ThO2 undergoes the lowest unit cell expansion, followed by phase 1 of CeO2, UO2, and finally 

phase 2 of CeO2. Two notable changes occur in the nanocrystalline samples as compared to the 

microcrystalline samples. First, UO2 is seen to have significant expansion of the unit cell 

parameter for nanocrystalline samples, as opposed to no measureable change for microcrystalline 
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grain size. Second, CeO2 exhibits the growth of a second phase with increasing fluence which 

retains the fluorite structure, but undergoes a significant alteration in unit cell parameter, 

indicating much larger volumetric swelling. 

 A comparison of microcrystalline and nanocrystalline ThO2 is shown in Fig. 10. It can be 

clearly seen that both samples of ThO2 are damaged by the ions following a single impact model. 

Nanocrystalline ThO2 demonstrates enhanced unit cell parameter expansion when compared to 

microcrystalline ThO2. Fig. 11 shows a comparison of microcrystalline and nanocrystalline UO2. 

While microcrystalline UO2 undergoes no measurable change in unit cell parameter, it is shown 

that nanocrystalline UO2 undergoes damage accumulation and saturation consistent with the 

single impact model. A comparison of microcrystalline and nanocrystalline CeO2 is shown in 

Fig. 12. While it is shown that nanocrystalline CeO2 undergoes greater unit cell expansion 

compared to microcrystalline CeO2, it is also shown that nanocrystalline CeO2 undergoes the 

growth of a second phase beginning at a fluence of 5 x 1012 ions cm-2, which exhibits a 

significantly increased unit cell parameter as compared to the initial value. Lastly, the average of 

the fits for both phases of nanocrystalline CeO2 is shown. 

 Fig. 13 shows the grain size as a function of fluence for nanocrystalline UO2 and ThO2. 

Both materials show monotonic growth of grain size with increasing fluence. Plotted lines are 

intended to guide the eye, and are not intended to represent a true fit to the data. Fig. 14 shows 

the grain size as a function of fluence for nanocrystalline CeO2. Unlike UO2 and ThO2, CeO2 

undergoes a monotonic reduction of grain size as a function of increasing fluence. Again, the line 

is representative of the trend in the data. 

 Fig. 15 shows a comparison of the XRD patterns of the unirradiated doped oxide samples 

with the highest dopant concentrations. It can be seen that dopant has a significant effect on the 
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initial peak positions, which corresponds to a change in the unit cell parameter dependent on the 

dopant in the sample. It can be seen that for samples doped with Y and Nd, the peak shift is to 

larger 2θ values, indicating a decrease in unit cell parameter, while for samples doped with La 

the peak shift is to smaller 2θ values, indicating an increase in unit cell parameter. 

 Fig. 16 shows a comparison of low and high dopant concentration samples for both La-

doped and Nd-doped UO2. Here, it can be seen that the concentration of dopant directly 

influences the extent of peak-position change, such that higher dopant concentration results in a 

greater magnitude of peak shift relative to undoped UO2. The same effect can be seen in the 

comparison of low and high dopant concentration Y-doped samples in Fig. 17, in which the peak 

shift occurs in the opposite direction. This demonstrates that an increase in dopant concentration 

increases the magnitude of the peak shift, while the type of dopant determines the direction of 

the peak shift. 

Fig. 18 shows a plot of the unit cell parameter of doped samples as a function of the 

crystalline ionic radius of the dopant for high-doping samples. It can be seen that there is a 

monotonic increase in unit cell parameter with increasing crystalline ionic radius of the dopant.   

Figures 19-22 show comparisons of the change in lattice parameter of samples irradiated 

to fluences of 7.5x1013, 1x1014, 2.5x1014, and 5x1014 ions cm-2, respectively. The data allow no 

conclusive assessment of the effect of lanthanide doping on the radiation response of UO2. 

3.2 Discussion 

 Microcrystalline CeO2, ThO2, and UO2 have been previously measured13, and were 

expected to undergo an increase in unit cell parameter corresponding with a single impact model 

of damage accumulation, with the exception of UO2, which has been shown to be extremely 

tolerant to ionizing radiation up to very high fluences35. The contribution of the present work was 
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to perform a systematic, comparative study of the radiation response of corresponding 

nanocrystalline samples. The present data show that nanocrystalline ThO2 undergoes an 

enhanced damage accumulation as compared to microcrystalline samples. This behavior was also 

observed in nanocrystalline CeO2 and UO2, but with a much more significant change of their 

irradiation response as compared to microcrystalline samples, with the formation of a second 

fluorite phase for CeO2 and the observed damage accumulation for nanocrystalline UO2. 

 The increased resistance to unit cell expansion under the effect of irradiation in 

microcrystalline samples as compared to nanocrystalline samples can has been previously 

demonstrated22, 23, 41, and can be explained using the thermal spike model. In this model, the 

damage track is formed via localized melting in the radius of the ion track, which occurs on the 

scale of a few nanometers in length. Nanocrystalline samples are more intensely effected by this 

damage mechanism due to the fact that the length scale of the melting event is the same as the 

scale of the grain size. As such, the entire grain can be melted, rather than allowing the energy to 

disperse through the material, as it does in microcrystalline grains. 

 Comparison of microcrystalline CeO2 and ThO2 shows that CeO2 undergoes a larger unit 

cell expansion than CeO2. As proposed in the study conducted by Tracy et al.13, this is likely due 

to redox effects which can only occur in CeO2. This explanation, which is supported by TEM 

measurements performed by Takaki et al.24, states that regions of Ce+3 form in the material. As 

Ce+3 has a larger ionic radius than Ce+4, volumetric swelling occurs due to the change in cation 

valence. This effect can be seen much more clearly in nanocrystalline CeO2, in which the 

magnified redox effects result in the creation of a second fluorite phase. Nanocrystalline samples 

exhibit a more efficient loss of oxygen under SHI irradiation13, resulting in local regions of 

CeO2+x
 and CeO2-x. Previous research has shown via TEM measurements that the oxygen 
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sublattice is preferentially distorted in CeO2 with grain size of ~16 nm24, which is comparable to 

the grain sizes examined in the current work.  

 The formation of the second phase of CeO2 is driven by an enhanced redox behavior in 

nanocrystalline samples. Specifically, one potential explanation for this behavior is the 

displacement of oxygen from the region of the ion track, leading to an oxygen deficient core and 

an oxygen rich outer region. Since this new phase retains the fluorite structure, rather than 

undergoing a transition to the hexagonal structure indicative of Ce2O3, it is believed that these 

regions are composed of CeO2+x and CeO2-x, resulting in a region of large unit cell expansion and 

a region or normal unit cell expansion due to irradiation. 

 As ThO2 is only stable in the tetravalent state, it is unable to undergo irradiation induced 

redox behavior, and so exhibits only the enhanced damage associated with nanocrystalline 

materials. The behavior of nanocrystalline UO2 cannot presently be explained. U has more 

available oxidation states than the other materials examined, which may play a key role in the 

radiation response of nanocrystalline materials. 

 Measurements of the changes in grain size in the nanocrystalline samples of each 

material provide further insight into the irradiation response of these materials under high 

fluences. Once again, CeO2 is shown to behave uniquely relative to ThO2 and UO2.  The growth 

of grains in nanocrystalline materials has been previously observed, and so the results for ThO2 

and UO2 are to be expected. While CeO2 has also been shown to undergo irradiation induced 

grain growth36, the degree of disorder in the material has been shown to depend on electronic 

energy loss. Previous studies have shown grain growth occurring under irradiation36. The 

mechanism proposed for this grain growth is the joining of separate grains via the formation of a 
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dislocation network. It is likely that the increased damage and oxygen loss caused by the 

reduction of CeO2 results in fragmentation of grains. 

 While doped UO2 has been previously studied, these studies focus primarily on the 

effects of dopants on the thermal properties of the materials, as well as the use of dopants used in 

fuel pellets, as opposed to the studied samples which were selected to simulate the doping which 

could occur in the material as a result of fission products produced during the course of reactor 

operations37, 38, 39. 

 Measurements of the initial lattice parameter of unirradiated doped UO2 samples 

demonstrate that the expansion or contraction of the lattice as a result of doping is directly 

dependent on the crystalline ionic radius of the dopant, as calculated by Shannon40, such that 

dopants with an ionic radius greater than that of Uranium in UO2 result in an expansion of the 

lattice and vice versa. Further, it is shown that the difference in ionic radius between Uranium 

and the dopant determines the magnitude of the expansion or contraction of the lattice. Thus, the 

unit cell parameter of the UO2 lattice can be modified in a predictable fashion via doping with 

elements of various ionic radii.  

 This insight is furthered by the examination of the effects of dopant concentration on the 

peak shift in unirradiated samples. It is shown that the concentration of dopants in the sample 

directly influences the magnitude of the change in the unit cell parameter of the samples, 

implying that dopant-based control of the size of the lattice can be further tailored via 

manipulation of the concentration of dopants in the material. Further research in this area is 

warranted in order to determine the specifics of the mechanism for these modifications, as the 

small sample size limits the potential development of a rigorous model depicting the numeric 

change in lattice parameter as a function of ionic radius of the dopant and dopant concentration. 
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It appears, however, that the relationship between unirradiated lattice parameter and ionic radius 

is a linear relationship. 

 The examination of the change in unit cell parameter for the doped samples at high 

fluences demonstrated some fluctuation, but no consistent conclusions can be drawn regarding 

systematic effects of dopant on the radiation response of UO2 even at the highest fluences 

measured. It is, therefore, clear that the level of doping examined in the current work has no 

significant impact on the irradiation response of microcrystalline UO2. 
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4. Conclusions and Outlook 

The irradiation responses of actinide dioxides and analogue materials have been shown to 

depend strongly on their grain sizes. Microcrystalline materials were shown to be uniformly 

more resistant to unit cell expansion due to irradiation than their nanocrystalline counterparts. 

CeO2 exhibits unique phase behavior, involving the loss of the initial phase and the growth of a 

new fluorite phase with a larger unit cell parameter. This may be due to irradiation induced 

reduction in the material, causing grain fragmentation and the formation of a CeO2-x phase in the 

nanocrystalline samples. The ThO2 samples exhibited behavior consistent with previous work, 

demonstrating damage accumulation consistent with a single-impact model in both 

microcrystalline and nanocrystalline samples, as well as enhanced damage in nanocrystalline 

samples as compared to microcrystalline samples. Microcrystalline UO2 was found to exhibit a 

high degree of resistance to irradiation damage up to the measured fluences, but nanocrystalline 

UO2 exhibits a great degree of unit cell expansion, which may be related to local 

nonstoichiometry within the material due to the many available oxidation states.  

The behavior of the UO2 lattice in response to doping was determined to depend both on 

the ionic radius of the dopant and on the concentration of the dopant in the material. It was 

shown that whether the unit cell expands or contracts depends on if the dopant has a higher or 

lower ionic radius than UO2, respectively. Further, it was shown that the magnitude of this 

expansion or contraction is determined by the concentration of dopants in the material. The 

irradiation response of doped UO2 was shown not to be significantly impacted by the presence of 

dopants. The effect of dopant type and concentration on the relative change in unit cell parameter 

was inconclusive, and the difference in the lattice parameter of doped and undoped UO2 at high 

fluences is dominated by the effect of the dopants rather than the effects of irradiation.  
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The results of the grain size data set are potentially applicable to the performance of 

nuclear fuel pellets within reactors, particularly that of advanced nanocrystalline fuels or 

conventional fuels which have undergone grain subdivision in the rim region (the “rim effect”). 

Further, the results of the doping data set have potential applications for the performance of 

advanced doped fuels, as well as the stability of doped UO2 during reactor operations. A set of 

micro- and nanocrystalline materials have been irradiated at high temperature and are currently 

being measured at the Advanced Photon Source in order to more accurately represent the 

conditions present within a reactor, as reactor temperatures are far in excess of room 

temperature, at which the materials studied were irradiated. Further research is required to form a 

more robust simulation of the conditions within a reactor, as all of the effects studied occur 

simultaneously within a reactor. Further recommended experiments on this topic would include 

the measurement of nanocrystalline doped UO2, the effects of high temperature on doped oxides, 

and the combination of all three effects in a single irradiation experiment. Further, examination 

of a larger doped oxide sample set with regard to dopant type and concentration would 

potentially allow for the development of a robust, mathematical model for the relationship 

between ionic radius of dopant, dopant concentration, and unit cell parameter. 
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Figure 6: X-ray diffractograms of micro- (a) and nanocrystalline (b) CeO2 (1), ThO2 (2), and UO2 (3)irradiated with 950 MeV 197Au 

ions as a function of fluence. All materials exhibit fluorite structure, with peaks increasing in width and shifting to lower 2θ values 

with increasing fluence. This indicates unit cell expansion in the materials. Further, nanocrystalline CeO2 exhibits the formation of a 

second set of fluorite-structure peaks at high fluence
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Figure 7: TEM image of nanocrystalline CeO2 was used to determine grain size. The measured 

grain sizes were on the order of 20 nm, which matches the value given in the prepared samples. 

This allows for the determination of grain growth or subdivision in irradiated samples. 
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Figure 8: Change in lattice parameter relative to initial value as a function of fluence for all 

microcrystalline samples. UO2 exhibits no measureable damage accumulation, while CeO2 

exhibits the most damage accumulation.  
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Figure 9: Change in lattice parameter as a function of fluence for all nanocrystalline samples. 

Comparison of nanocrystalline samples shows that UO2, which showed the lowest increase in 

lattice parameter among microcrystalline samples, exhibits damage accumulation in exess of 

both ThO2 and the first phase of CeO2. The second phase of CeO2 exhibits the most change in 

lattice parameter, while ThO2 now shows the least lattice parameter expansion among all three 

materials. 
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Figure 10: Change in lattice parameter relative to initial value as a function of fluence in micro- 

and nanocrystalline ThO2. Both grain sizes exhibit single-impact behavior, with nanocrystalline 

ThO2 being more susceptible to damage. ThO2 demonstrates the smallest difference in the 

irradiation response between micro- and nanocrystalline samples. 
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Figure 11: Change in lattice parameter relative to initial value as a function of fluence in micro- 

and nanocrystalline UO2. Microcrystalline UO2 exhibits no measureable change in lattice 

parameter up to the highest measured fluence, which is consistent with previous work on 

microcrystalline UO2. Nanocrystalline UO2 exhibits a significant increase in damage 

susceptibility over microcrystalline UO2, constituting the greatest difference between grain sizes 

excluding the new phase which forms in CeO2. 
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Figure 12: Change in lattice parameter relative to initial value as a function of fluence in micro- 

and nanocrystalline CeO2. Both grain sizes of CeO2 exhibit single-impact model behavior, with 

accumulation of damage followed by a saturation value. Nanocrystalline CeO2 is less resistant to 

damage than microcrystalline CeO2. Further, a second fluorite structured phase appears in 

nanocrystalline CeO2, with a much higher relative change in lattice parameter. The average value 

of the fit to the two nanocrystalline phases is shown, and this value matches values measured in 

previous work on nanocrystalline CeO2. 
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Figure 13: Grain size as a function of fluence for ThO2 (a) and UO2 (b). Both samples exhibit monotonic grain size growth under 

irradiation. This is consistent with other work examining nanocrystalline materials. Fits are designed to demonstrate monotonic 

growth, and are not representative of a linear data fit. The uncertainties in the grain sizes determined from the TEM measurements are 

the standard deviations of the grain ensembles that were counted
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Figure 14:  Grain size as a function of fluence for CeO2. In contrast to UO2 and ThO2, CeO2 

exhibits monotonic decrease in grain size with increasing fluence. The formation of a second 

CeO2 phase due to oxygen loss likely causes grain subdivision in CeO2. The uncertainties in the 

grain sizes determined from the TEM measurements are the standard deviations of the grain 

ensembles that were counted. 
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Figure 15: Comparison of XRD patterns for unirradiated samples containing high-concentration 

of dopants with that of unirradiated undoped UO2. Peak shift in the XRD pattern can be seen to 

be heavily influenced by the type of dopant in the sample, with Y causing a shift to the right, Nd 

causing little change, and La causing significant shift to the left. 
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Figure 16: Comparison of XRD patterns for various dopant concentrations of Nd and La doped 

UO2 with undoped UO2. It can be seen that peak shift is directly dependent on dopant 

concentration. 
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Figure 17: Comparison of XRD patterns for various dopant concentrations of Y doped UO2 with 

undoped UO2. Once again, it can be seen that magnitude of peak shift is directly dependent on 

concentration of dopant. When considered along with Fig. 16, it can be seen that the direction of 

peak shift, and to some extent magnitude, is directly dependent on the type of dopant. 
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Figure 18: Change in lattice parameter of high concentration unirradiated doped UO2 relative to 

the lattice parameter of undoped unirradiated UO2 as a function of the ionic radius of the dopant. 

It can be seen that the change in lattice parameter is directly correlated with the ionic radius of 

the dopant as it compares to the ionic radius of Uranium, such that a lower ionic radius results in 

lower lattice parameter. 
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Figure 19: Change in lattice parameter as a function of ionic radius of dopant and doping 

concentration for doped UO2 samples irradiated at 7.5x1013 ion cm-2. 
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Figure 20: Change in lattice parameter as a function of ionic radius of dopant and doping 

concentration for doped UO2 samples irradiated at 1x1014 ion cm-2. 
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Figure 21: Change in lattice parameter as a function of ionic radius of dopant and doping 

concentration for doped UO2 samples irradiated at 2.5x1014 ion cm-2. 
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Figure 22: Change in lattice parameter as a function of ionic radius of dopant and doping 

concentration for doped UO2 samples irradiated at 5x1014 ion cm-2. It can be seen that higher 

dopant concentration consistently results in higher change in lattice parameter, though in 

irradiated samples there is little correlation of values for change in lattice parameter among the 

different dopants as a function of ionic radius. This potentially indicates that the mechanism for 

expansion of lattice parameter in doped irradiated samples is dependent on a more complex 

mechanism than the expansion of lattice parameter in undoped irradiated samples. 
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