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ABSTRACT 

 

Demand for plant-derived materials has increased in recent years not only to boost the 

economics in US Agricultural and Forestry sectors, but also to address environmental 

concerns. Lignin, an aromatic polymer, extracted from biomass has the potential to be 

used for preparing innovative materials. Developing high-performance polymers from 

lignin is attractive, but often requires additional lignin modification and cost-intensive 

functionalization that creates chemical wastes. The overarching goal of this study was the 

development of sustainable high-performance alloys from thermoplastic and lignin 

without chemical modification using melt-blending technique, which is technically the 

most convenient and inexpensive method. Thus, the approach aimed to find value for 

lignin, a low-cost byproduct of modern biorefineries and woody biomass pulping industry. 

More specifically, we conducted comprehensive study on thermal, rheological, 

morphological, and structural properties of the thermoplastic-lignin blends together with 

lignin’s chemistry and thermal behavior to understand and improve the materials’ 

performance.  

The first part of the study involved exploiting lignin’s miscibility with polyethylene oxide 

(PEO) to enhance the compatibility between lignin and acrylonitrile-butadiene-styrene 

(ABS) polymer under reactive mixing conditions and develop a recyclable renewable 

matrix for sustainable composite applications.  

The second part consisted on manipulating the melt behavior of polyethylene 

terephthalate (PET) polyester from pre-consumer wastes using a renewable plasticizer 

tall oil fatty acid (TOFA). To avoid lignin degradation and devolatilization during 

amalgamation with plasticized PET we devised thermal treatment of lignin that not only 

improved the stability but also reduced dispersed lignin domains in the matrix. 

The last part was based on understanding the effect of source-dependent lignin chemistry 

on its compatibility with a renewable polyester. Organosolv lignin from oak, methanol 

fractionated Kraft pine lignin, and methanol fractionated acetic acid extracted wheat straw 

lignin give equivalent melt processability. Blends of these lignins with polylactic acid (PLA) 

were studied to understand the relationship between the lignin chemistry and resulting 

blends’ thermal stability, mechanical properties, and melt-rheology.  

This study answered questions on the role of lignin chemistry that affects the properties 

of thermoplastic/lignin blends and developed methods to modify melting behavior of both 

thermoplastic matrices and lignin without thermal degradation.  
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PREFACE 

 

This dissertation is structured to cover six main chapters. An overall introduction, four 

research articles, and an overall conclusion. This dissertation manuscript is prepared to 

cover the main research objective and the approach to answer the research questions. 

Chapter 1 covers the state of the art in lignin structure characterization and lignin-derived 

thermoplastics focusing primarily on the blends of lignin and thermoplastics. We used 

available background and literature to give readers detailed insight on lignin structure, 

biomass sources and extraction methods, and relate them to the structure and properties 

of thermoplastics-lignin blends. A quick overview was presented on the reactive aspect 

of producing polymeric materials from lignin. Finally, we discussed application and 

processing engineering of the thermoplastic-lignin blends. 

Chapter 2 is a version of an article published in “ACS sustainable chemistry and 

engineering”. It focuses on self-assembly of lignin in acrylonitrile-butadiene-styrene 

(ABS), a polymer heavily used in the automotive industry. Due to lack of miscibility 

between lignin and ABS, polyethylene oxide PEO was added. We evaluated the blends 

in term of mechanical properties, rheology and morphology. Composites produced from 

the high lignin content blends and carbon fibers have performance of the one used 

currently in 3 D applications.  

Chapter 3 and 4 are paired together. First, renewable plasticizer tall oil fatty acid (TOFA) 

was used to modify engineering polyethylene terephthalate (PET). We present detailed 

characterization of effects of different concentration of TOFA on PET structure, 

morphology and performance. Such modification reduced PET normal working 

temperature and viscosity, which allows to expand PET use to other applications, such 

as melt blending with thermally unstable lignin. In chapter 4, we controlled the dispersion 

in plasticized PET and characterized phase dispersion of lignin. Interfacial interactions 

between lignin and PET were assessed by evaluating the molecular dynamics around the 

glass transition.  

Chapter 5 addresses the influence of lignin from different biomass source and extraction 

methods on interactions with polylactic acid (PLA) matrix. Lignin complex chemical 

structure was characterized in detail to understand how their features are important to 

development of PLA/lignin blends.    

Chapter 6 comprises an overall conclusion related to lignin thermoplastic blends using 

different techniques and matrices and future research. 
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1.1. Lignin as a renewable macromolecule 

1.1.1. Lignin structure and chemistry. 

Lignin, the amorphous matrix of wood, is produced from lignocellulosic biomass as a 

byproduct of the paper industry in massive quantities [1]. The very complex structure of 

lignin is described as a highly irregular assembly of different building blocks, and it varies 

as a function of sources and extraction technologies. A typical model structure shows that 

lignin is a polyphenol dominated mostly by three types of phenylpropanoid monomer units 

connected to each other through various covalent bonds [2]. These monomers are also 

called monolignols and are classified as para-coumaryl alcohol (H-type), coniferyl alcohol 

(G-type) and sinapyl alcohol (S-type) (Figure 1-1). The p-coumaryl alcohol, which is low 

in hardwood and softwood lignin, is prevalent in lignin from grasses. Softwood lignin is 

almost exclusively comprised of coniferyl alcohol, and hardwood lignin is made of varying 

ratios of both coniferyl and sinapyl alcohol (Table 1-1). 

Researchers have relied heavily on analytical chemistry to elucidate the complex 

structure of lignin but to date the schematic formula has been limited to empirical model 

structures based on their findings and conclusions, but it should be noted that many 

structural questions remain. For instance, hardwood spruce lignin structure is presented 

in Figure 1-2. Adler [3] used dehydrogenation theory to construct lignin structure. His 

efforts generated one of the first generations of statistical lignin structures in which 

phenylpropanes units are linked together to form a macromolecule with random branching 

(Figure 1-2a). Gellerstedt [4], on the other hand, used size exclusion chromatography 

(SEC) to obtain an understanding of spruce lignin structure. His model suggested that the 

lignin structure contains a high proportion of S-type units which results in a high 

percentage of linear lignin (Figure 1-2b). Brunow [5] relied on oxidative coupling of phenol 

and lignin biosynthesis pathways to gain valuable knowledge about softwood lignin 

structure and chemistry. A combination of data from oxidative coupling experiments and 

2-D NMR spectroscopy helped to define a random branched structural unit model like the 

Adler model (Figure 1-2a). 

 

       Table 1-1. H/G/S ratio from various sources [6]. 

Sources H/G/S ratio 

Softwood 0-5/95-100/0 

Hardwood 0-8/25-50/46-75 

Grasses 5-33/33-80/20-54 
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Figure 1-1. Phenylpropanoid monomers of lignin: p-coumaryl, coniferyl, and sinapyl 

alcohols [7]. 

 
 

 

Figure 1-2. Empirical model structure of spruce lignin with two different structures: The 

random branching model (a), the linear lignin model (b) [3, 4]. 
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Today, new emerging chemical approaches are used to obtain information on the 

chemical structure of lignin. One of the methods is wet chemistry analysis. In summary, 

the wet chemistry method provides information about the structure but is deemed semi-

quantitative. In that scope, Erickson [8] pioneered oxidation with KMnO4-H2O2 method 

based on the oxidative elimination of side chains principle to generate a structural scheme 

of lignin. Also, approaches employing thioacidolysis [9] and acidolysis [10] both based on 

hydrolytic cleavage of ethers were used to analyze functional groups and linkage of the 

structural construction of lignin. Nuclear Magnetic resonance (NMR) has been used 

extensively to elucidate lignin structure. This method is proven to be more reliable than 

the wet chemistry methods. Gosselink [11] developed analytical protocols for 

characterization of sulfur-free lignin from five laboratories. The technique uses 

quantitative analysis of 13C NMR spectra to provide the number of distinct types of carbon 

atoms. The summary of the results helped to develop protocols that can be used for 

reproducible determination of the chemical composition and functional groups, such as 

phenolic hydroxyl and carboxyl groups of alkaline lignin from various sources. 

1.1.2. Extraction methods of lignin. 

Physical and chemical properties of lignin depend on the lignin extraction or isolation 

method. For example, lignin is isolated as the byproduct of the paper and pulping industry. 

During paper manufacturing, lignin is extracted and separated from the target cellulose 

pulps. To date, techniques involving alkali-based dissolution of lignin (soda or Kraft 

pulping), organic solvent-based extraction (organosolv pulping) and steam explosion 

along with a few new emerging techniques such as alcohol and organic acids extraction 

are used to produce lignin.  

The soda process, first patented in 1854, used an alkaline aqueous medium of sodium 

hydroxide to deprotonate the phenolic hydroxyl groups of lignin, leading to successive 

reactions and mostly cleavage of the α-O-4-ether and β-O-4-ether bonds [12]. The Kraft 

process is known as the most often used pulping method. The technique uses a 

combination of sodium hydroxide and sodium sulfide to accelerate the depolymerization 

reaction of lignin [13]. However, the technique does present a drawback to lignin 

availability on the market as most of the lignin produced is burnt and not offered 

commercially. Fortunately, there is the sulfite process that can generate up to 1 million 

tons/year of commercially offered lignin. The process depends on the change in pH to 

initiate the lignin depolymerization [14]. The main reaction recorded is the cleavage of the 

α-O-4-ether bonds resulting from sulfonation of the α-carbon atoms of lignin. It was 

reported that a minimal part of the β-O-4-ether bonds participate in the reaction compared 

to the soda and Kraft processes. The solvent extraction method or organosolv pulping 

[15-18] has gained attention at the laboratory level in recent years. Polar organic solvents 

are used for the extraction and the resulting lignin polarity, structure, and properties 

depend on the solvent type. The steam explosion method is yet another novel extraction 

method of lignin. Unlike the methods discussed above that are heavily used in pulping, 
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steam explosion is used in bioethanol production. Hot steam treatment coupled with 

explosive decompression followed by enzymatic treatment gives a slurry of sugar and 

lignin where the lignin can be filtered out with ease [19]. Innovations of the isolation 

process in recent days have produced lower molecular weight lignin with higher solubility 

to facilitate deconstruction of biomass components. 

1.1.3. Characterization of lignin. 

Characterization of lignin is important in terms of side groups arrangement, type, and the 

number of functional groups so a potential route can be established to take advantage of 

the groups to produce novel materials. Different methods have been used for quantitative 

determination of groups such as aromatic hydroxyl, total hydroxyl, methoxyl, carboxyl, 

carbonyl, and sulfonate. Granata [20] and Angyropoulos [21] used 31P NMR to determine 

aromatic hydroxyl groups of lignin. Granata carried out his experiment on six standard 

lignins by evaluating the effect of a reagent on the uncondensed and condensed phenolic 

moieties in lignins. Angyropoulos called his technique a new tool for lignin chemistry but 

used a relaxation reagent. Both techniques were simple and novel and provided 

information about soluble lignin sample.  Landucci [22] on other hand used 13C NMR to 

determine the aromatic hydroxyl group content of lignin. This method developed a rapid 

analysis of various peak clusters in 13C NMR spectra of lignin and established a procedure 

for reproducible analysis.  

Jakab [23] used thermogravimetry/mass spectrometry (TG-MS) to study lignin isolated 

from grasses, hardwoods and softwoods. The study evaluated the total hydroxyl, 

methoxyl and aromatic hydroxyl groups of the lignins. The samples were thermally 

decomposed in an inert atmosphere. By monitoring the weight loss and evolution of 

decomposition products, he assigned the gaseous products to functional groups. Faix 

[24] used a modified oximation and FTIR to determine the carbonyl group of lignin. The 

oximation reaction occurred at 80°C and helped to yield higher CO content compared to 

common oximation at 20°C. The oximation results were correlated to the total carbonyl 

region of the FTIR spectra to allow reproduction of the CO groups that were previously 

reported. The sulfonate group content of lignin has also been extensively researched. 

The most convenient method to procure direct measure of the sulfonate content is 

titrimetry [25]. The most proven, however, is the conductimetric titration where electrical 

conductivity of the solution is measured after successive additions of reagent.  

The available methods for characterization of lignin functional groups are improving. 

Beside the examples listed above, gas chromatography (GC) [26, 27], 1H NMR [28, 29], 

and ultraviolet-visible spectrophotometry (UV-VIS) [30, 31] were also reported as 

techniques used.  The complexity of lignin structure and its diverse sources affect, to 

some extent, the method to employ for chemical characterization. In addition, gel 

permeation chromatography (GPC) [32, 33] can be used to determine molecular weight 

distribution of lignin. The distribution is important for lignin usage as it affects 

physicochemical changes of lignin during processing. For example, conversion of lignin 
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to carbon fiber starts with melt-spinning of fibers, followed by oxidative 

thermostabilization, and later carbonization. High molecular weight lignin exhibiting high 

glass transition temperature is usually difficult to spin. Softwood and grasses derived 

lignins are denser and possess more crosslinked structures which impede their thermal 

mobility and spinnability. The hardwood lignin, on other hand, spins with ease due to the 

ethoxylation of its side chains but does not perform well during thermostabilization [34].  

1.2. Renewable blends of thermoplastic/lignin 

Extensive research is currently ongoing to utilize lignin as a renewable polymeric material 

component [35-37]. Lignin can be introduced as a filler or blend component into natural 

or synthetic polymers. Pristine or chemically modified lignins were subject to a vast 

number of studies but with a common goal to develop innovative technologies and 

manufacturing processes.  

1.2.1. Polyolefins. 

Lignin is an amphiphilic macromolecule with strong inter- and intramolecular interactions 

because of the functional OH group in the molecule. The polar character of lignin affects 

the selection of polymers that can be blended with the structure, and properties of the 

blends depend on it. For example, apolar polyethylene (PE) and polypropylene (PP) and 

their derivatives can only enter weak dispersion interaction with lignin. Mechanical 

performances of these blends are weak because they lack polar functional groups in 

polyolefins chains and high interfacial energy, but impressive aging resistance was 

reported.  Levon [38] reported enhancement of PE thermal stability when lignosulphonate 

was added. He also reported that a reaction occurred during mixing and identified a 

reaction temperature by analyzing the rheological properties of the blends. Gregorova 

[39] studied the free radical scavenging capability of lignin phenolic OH groups in both 

pristine and recycled resins. He evaluated the stabilization efficiency of lignin and 

compared it to commercial synthetic antioxidant. The results showed that lignin is a 

potential processing stabilizer for PP. Others evaluated lignin as UV protector of 

polyolefins [40, 41]. The conclusions were all supportive of the idea that lignin can act as 

a stabilizer against degradation mechanisms and prevent changes involving free radical-

based reactions during processing or end-use. Such reactivity subsequently improves the 

performance (e.g., light and thermal resistance) of the final product. In the scope of 

stabilization improvement, a very little amount of lignin was added. However, addition of 

substantial amounts of lignin to polyolefins, with hopes to modify mechanical properties, 

often leads to different observations.  Modulus is usually increased but strength and 

deformability often decrease. The improved modulus is related to the lignin stiffness, but 

other diminishing performances were attributed to the lack of homogenization and 

compatibility. Jeong [42] studied acetylated softwood Kraft lignin as a filler in synthetic 

polymers. A complete miscibility was claimed even though performances were retained 

only at 12.5 wt.% lignin content. Maldhure [43] used modified lignin to improve its solubility 
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and compatibility toward PP. The study also claimed success even though continuous 

deterioration of mechanical properties was detected up to 25 wt. %. The key here is that 

Jeong and Maldhure both used lignins that were chemically modified to gain these 

encouraging results. We will discuss chemical modification of lignin in a subsequent 

section.  

1.2.2. Polymers with aromatic rings. 

The approach of blending lignin with polymers with aromatic rings is plausible due to the 

stronger π stacking interactions between them. One would expect some degree of 

compatibility and better properties from such blends. However, the contribution of 

Barzegari [44] to the topic showed different observations. He blended polystyrene (PS), 

an aromatic polymer, with lignin and showed that flexural and torsional moduli both 

increased, while tensile properties decreased with increasing lignin content. The study 

indicates a weak interaction between lignin and PS as the basis for poor performances. 

Pacciarielo [40] also studied PS/lignin blends. The primary aim of this research was to 

develop thermoplastic material in which cost, and availability of lignin can provide less 

expensive materials in the field of packaging, health care products, agricultural films, and 

disposable household objects. The study evaluated a range of polymers, but the PS/lignin 

blends showed poor properties due to poor compatibility of the components. However, 

image analysis of different polymers, including PS, blended with lignin by Pouteau [45] 

produced contrasting results. They found that PS and lignin had the better compatibility 

compared to the rest of the polymers. The study suggested the existence of solubility and 

suspected some chemical reaction between PS and lignin.  

1.2.3. Other polymers. 

Other petroleum-based aliphatic polymers like polyvinyl chloride, engineered polymers 

like acrylonitrile butadiene styrene (ABS) resin, nitrile rubber, polyvinyl alcohol, and 

renewable bio-derived polyesters like polylactic acid (PLA) and poly(3-hydroxybutyrate) 

(PHB) have been blended with lignin. Some of these systems require modification of lignin 

or use of compatibilizer to improve interfacial adhesion. Gordobil [46] used commercial 

alkaline lignin and lignin derived from almond shells as PLA fillers. To address the 

absence of compatibility, acetylated lignins were used. The results showed an 

improvement in PLA thermal stability but a deficiency in the rate of crystallization. 

Nonetheless, the PLA /acetylated lignin blends maintained mechanical properties 

equivalent to neat PLA. Mousavion [47] successfully studied blends of PHB and soda 

lignin. The study claimed to achieve miscibility and suggested bonding between the 

carbonyl groups of the PHB and the OH groups of lignin. It also concluded that soda lignin 

enhanced PHB stability and increased the matrix decomposition temperatures. Tran [37] 

used a temperature-induced miscibility approach to develop a new green polymer from a 

blend of nitrile rubber and lignin. The excellent performance of the blend (yield stress 15-

45 MPa) and dispersion would not be achieved if some type of interfacial interaction did 
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not exist between nitrile rubber and the lignin. Most of these reported results show 

interaction between the host polymer and lignin. A group of researchers claimed partial 

compatibility between blend components, whereas some went further to conclude 

complete miscibility. The contradiction relates to the interpretation of the experimental 

results and a standard is yet to be established for lignin-based thermoplastic blend 

systems. Some of these results are based on the polymer type and available functional 

groups present on the macromolecule chains, lignin type, lignin modification, the extent 

of modification, and addition of compatibilizers.   

1.2.4. Polyesters. 

A wide array of polyesters was blended with lignin. Investigation of blends of organosolv 

lignin with poly (ethylene oxide) PEO by Kubo [48] showed solubility in all proportions. 

The study used unmodified lignin to obtain perfect homogeneity throughout. These results 

are further supported by a systematic study of the interaction between PEO and lignin in 

solution by Imel et al. [49]. This interaction is schematically represented in (Figure 1-3). It 

was concluded that the addition of PEO changed the local and global length scales of the 

lignin structure as well as the diameter of cylindrical building blocks. These changes 

resulted in anisotropic lengthening of the cylinders. The interaction between lignin and 

PEO is simply based on strong hydrogen bonding of the phenolic–OH group of lignin and 

PEO ether groups. These findings suggest the potential to strategic selection of an 

appropriate host matrix for efficient lignin dispersion.  

Blends of polyethylene terephthalate (PET) and lignin have attracted a good deal of 

attention. Kadla [50] analyzed the intermolecular interaction in lignin and synthetic 

polymers including PET. The study reported immiscibility between lignin and PET. The 

lack of hydrogen bonding in the PET/lignin blend [compared to a PEO/lignin blend] 

caused weak specific intermolecular interactions. Canneti [51] extensively examined 

PET/lignin blends in respect to morphology, thermal behavior and supramolecular 

structure. The study reported “good” dispersion of lignin in PET but did not report 

mechanical properties of the blends. Lignin addition to PET, in a different report by Jeong 

[42], suggests improved miscibility although the blends exhibit a diminishing trend of the 

tensile strength as a function of the amount of lignin loading. Jeong’s work also covered 

PS, PP and HDPE as host polymers for lignin. Figure 1-4 summarizes composition 

dependence of the tensile strength of all four polymers when lignin is added. It is also 

important to point out that the results reported in figure 1-4 were from lignin that was 

acetylated using the esterification reaction reported in figure 1-5. His work covered some 

polymers we discuss throughout the present review and can serve as a good summary.  
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Figure 1-3. Illustration of an extended straightening of a hardwood lignin molecule (top) 

and softwood lignin (bottom) in the presence of PEO [49]. 
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Figure 1-4. Tensile strength as a function of lignin content for PET, PS, PP, LDPE [42]. 
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1.3. Modification of lignin for improvement of interfacial interaction in blends 

Researchers have reported functionalization or modification of lignin, and addition of 

compatibilizers or plasticizers to improve lignin miscibility with the host thermoplastic 

matrices to tailor the morphology of the blends and to improve the properties of the 

blends. However, such approaches usually increase material cost and require use of 

chemicals and an associated need for waste disposal.  

1.3.1. Chemical modification. 

A survey of chemical modification of lignin shows that lignin can be acetylated [46, 52], 

esterified with stearoyl chloride [53], phthalic and maleic anhydride [43, 54], arylated in 

chlorobenzene [55], reacted with propylene oxide [56, 57], and grafted with the host 

polymer matrices [58]. Not only is the modification aimed to improve the interaction 

between host polymer and lignin, but also, it must reduce the interaction between lignin 

molecules to be effective. Acetylation of lignin which is accomplished by reacting lignin 

with acetic anhydride/pyridine (1/1, v/v) at room temperature for at least 24 hours is the 

most used modification reported. The esterification reaction is presented in Figure 1-5. 

Monteil-Rivera [59] developed a greener way to acetylate lignin without solvent or 

catalyst. The process used a microwave to assist the reaction and reduced the time of 

reaction considerably. However, the lignin produced from the process was not blended 

with thermoplastics. Systematic studies related to different lignin modifications by 

Maldhure [43, 55] were aimed to optimize the interfacial energy and enhancement of 

lignin compatibility with PP. The study compared lignins that were arylated with 

chlorobenzene, alkylated with dichloroethane, dichloromethane and esterified with maleic 

anhydride, respectively. The intermolecular interaction between the PP matrix and the 

lignin improved regardless of the modification method. Nevertheless, some modifications 

were more pronounced than others in terms of thermal stability, melting characteristics 

and mechanical properties. The study, however, lacked a direct comparison between 

unmodified lignin and PP blends. 

 

  

 

              Figure 1-5 Chemical esterification of lignin by acetic anhydride. 
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1.3.2. Addition of compatibilizers. 

The cost associated with chemical functionalization of lignin has redirected researchers 

to evaluate newer and simpler approaches to improve interfacial interactions in 

thermoplastic/lignin blends. The addition of phase compatibilizers has significantly 

increased to address such issue. A report by Alexy [60] on the use of compatibilizers 

claimed a breakthrough in LDPE/lignin thermoplastic blend development. The addition of 

10 wt.% of ethylene-vinyl acetate (EVA) to LDPE/lignin at high lignin content doubled the 

tensile strength and showed 1300% increase in elongation at break.  In the same scope, 

Barzegari [44], used linear styrene-hydrogenated butylene-styrene block copolymer as a 

compatibilizer for PS/lignin system. The results showed an improvement of dispersion 

and performance when compared with blends without a compatibilizer.  

1.3.3. Plasticization route. 

Lignin is a rigid macromolecule by nature. That characteristic alone can make it difficult 

to blend with thermoplastics. One way to address such limitation is a thorough 

plasticization. Plasticization is accomplished by adding dispersant that helps increase 

plasticity or flow of a material. One can expect a decrease in intermolecular interactions 

between the lignin macromolecules by use of a plasticizer and it can lead to a fine 

dispersion of lignin in specific thermoplastic matrices. Some of the reported plasticizers 

for lignin include: water, ethylene carbonate, ethylene glycol, and glycerol. Rahman [61] 

used polyethylene glycol (PEG) to plasticize PLA/lignin blends. It used two binary systems 

of PLA/PEG and PLA/lignin as control to understand the effectiveness of the PEG in the 

ternary system of PLA/PEG/lignin. The study showed higher deformability of 

PLA/PEG/lignin system than the PLA/lignin system; thus, PEG increased the flexibility of 

the matrix molecules. Precise study by Feldan [62] addressed the efficiency of a 

plasticizer in thermoplastic lignin systems. An attempt to blend rigid polymer poly vinyl 

chloride (PVC) and lignin could only be possible at low loadings of lignin. Higher lignin 

loadings formed lignin agglomerates. By introducing a plasticizer to the system, the work 

showed an improved dispersion of lignin. Lignin particles were found to be finer after 

plasticization and the results were supported by the improved performance of the 

PVC/plasticizer/lignin blends. Still, the efficiency of a plasticizer remains unknown when 

sources of lignin and their isolation methods vary. 

1.4. Lignin as a reactive component for preparation of polymeric materials 

The reactive route is an important approach to exploit lignin’s functional groups to prepare 

new polymeric materials. The ideal situation for such application is to utilize unmodified 

lignin directly as a substitute in a resin system. Tachon [63] pioneered an approach to 

use organosolv wheat straw unmodified lignin as a substitute of phenol in phenol-

formaldehyde-resol system. The direct substitution is appealing due to lignin polyphenolic 

structure. The reported limit of substitution was 70% and the resulting resin met the 
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standard to be used in industrial scale to fabricate plywood panels. The drawback of lignin 

as a substitute in the phenol-formaldehyde system is that lignin only offers limited 

reactivate aromatic sites compared to phenol [64]. That often leads to weakening of 

properties proportionally to lignin content. Unmodified lignin was also used in other 

applications. For example, unmodified lignin was added as a third component in urea-

formaldehyde systems for its hydrophobic influence on the crosslinking reaction [65]. 

Other researchers contributed to the field by using unmodified lignin to prepare 

polyurethanes (PU) [66, 67], PU-urea [68], epoxy resins [69] and polyester [70] . However, 

the quality of the final product depends mostly on the reactivity of lignin.  

In order to prepare better products and extend the range of lignin as a reactive 

component, chemical modification is carried out in which phenolation, oxypropylation, and 

esterification, to name only a few, were used to improve the reactivity of lignin [71]. An 

investigation carried out by Bernadini [72], used oxypropylated lignin to prepare flexible 

polyurethane foam. The work was based on green synthetic pathways to produce the PU 

foam. The idea of using lignin to replace polyol in preparation of polyurethane was 

methodically studied by Xue [73]. The lignin-based polyurethane matrix was reinforced 

by cellulose nanocrystals to improve performance. The results showed the effect of lignin 

content on the films tensile properties, most importantly the effectiveness of altering the 

stoichiometry to control favorable films properties. In a different vein, chemical 

modification of lignin by attaching polymer chains and using the graft copolymer as a 

suitable polymerization monomer has been developed. Laurichesse [74] used ring 

opening polymerization to graft lignin to caprolactone by using hydroxyl functions of lignin. 

The resulting product was a long-branched polyester with OH groups that can be used 

for other applications. Liu [75] has also used similar polymerization routes to synthesis 

lignin graft poly (ɛ- caprolactone) copolymers. The graft copolymers were evaluated for 

UV absorption coating. 

1.5 Applications of lignin-based thermoplastics 

Lignin is a very versatile material with a lot of potential in preparation of bio-derived 

materials. Lignin finds applications in adhesives, production of chemicals, carbon fiber 

and carbonaceous materials for insulation and energy storage, and composites. Lignin 

as a precursor for carbon fiber production is a viable alternative to petroleum derived 

precursors in terms of cost, environmental protection and energy security [76-78]. At this 

time lignin-derived carbon fibers are continuous works and no structural carbon fiber 

derived from lignin is commercially available [76, 78].  

The recent industrial revolution along with high impact research create unprecedented 

opportunity for preparation of novel value-added polymeric materials based on lignin [36, 

37]. The goal is to produce thermoplastic/lignin blends that are processable with ease 

using available processing techniques such as injection molding, blow molding, 

compression and transfer molding and thermoforming and extrusion so they can be 

transformed and shaped into finished products with superior quality.  
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Thermoplastic/lignin can be used as antioxidant and stabilizer for most commodity 

polymers [41, 79]. The abundance of phenolic hydroxyl groups in lignin structure is the 

source of the radical scavenging and stabilization significance of lignin. Lignin was also 

blended with PEO to produce fibrous materials that can be used in energy storage and 

insulating materials [80]. This application is debatable in terms of thermoplastic lignin 

products as PEO was added to help with fiber spinning. Understanding of the interaction 

between components in such systems is important for research and development as the 

knowledge of the interfacial interaction can be translated to other systems. 

The field of thermoplastic lignin blends is still growing. Very little of these materials are 

commercially available. Tecnaro, a German company, has an engineered structural 

bioplastic available under trade mark Arboform. The bioplastic is reinforced with natural 

fibers to improve performance and expand its usage [81]. The company reports that it is 

thermally stable from 95°C to 105°C and moldable at temperatures below 160°C. 

Arboform is currently used in electronics, jewelry, furniture, musical instruments and 

construction applications. For thermoplastic lignin blends to rival the supremacies of oil-

based thermoplastics [82], the cost-performance index must be improved significantly. It 

is believed that once that threshold is achieved, the bioplastics can totally replace the 

petroleum-based counterparts and applications can be expanded from short-life and 

disposable products to long-life applications.  

1.6. Process engineering of thermoplastic/lignin blends 

Achieving improved mechanical properties in lignin-based thermoplastic blends requires 

efficient dispersion of lignin with reduced domain sizes of lignin macromolecules in the 

host polymer matrix [83]. To control the degree of dispersion of lignin, a significant 

enhancement in interfacial interaction between lignin and the soft matrices is desired. 

Interaction between lignin and polymers can be categorized by dipolar or ionic 

interactions, covalent or hydrogen bonding, and electron donor-acceptor complexes [62, 

84]. The presence of these chemical or physical interactions is an advantage as they can 

readily increase loading of lignin in the matrix with increased rigidity of the blend. The goal 

remains to accomplish these without compromising the blend’s ductility. Achieving higher 

mechanical stiffness without compromising the material’s ductility is a classical grand 

challenge in materials research. The approach must consider a precise ability to control 

lignin self-assembly in the host polymer matrix and a proficiency to tune parameters 

associated with process engineering. 

Blending of polymers at their molten state by mechanical mixing often requires proper 

selection of the process parameters. Since lignin is not miscible with most polymers, extra 

steps are often required to render it miscible, so that the thermodynamic condition ∆Gm ≤ 

0 is achieved [85]. The effect of mixing temperature, rheological properties and chemical 

reactions is important in terms of controlling and defining ideal morphology of the blend 

for enhanced performance. Often miscibility is increased by increasing melt temperature; 

however, this approach often causes lignin degradation during shear mixing.  Viscous 
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heating is another cause of lignin degradation during melt-mixing [86]. Thus, rheological 

behaviors of the components and the blends are important. Ultimately the process 

depends on the molecular structures of the components. Therefore, differences in lignin 

molecular structure are expected to affect rheological behaviors of the resulting polymer 

blends. The structural characteristics of lignin include: molecular weight, molecular weight 

distribution, monomer ratio, and associated thermal stability [87].  Although numerous 

lignin-based compositions have been studied, there is still a tremendous need for a low-

cost, commercially deployable high-performance lignin-based thermoplastic for our 

sustainable future.  

1.7. Motivation and Objectives 

Demand for plant-derived materials has increased in recent years not only to boost the 

economics in US Agricultural and Forestry sectors, but also to address environmental 

concerns. Particularly, forestry and agricultural residues such as bark, wood chips, corn 

stover, switchgrass, wheat straw and their derivatives need value-addition for 

supplementary revenue streams [88]. Lignin, an aromatic polymer, extracted from these 

sources has the potential to be used for preparing innovative materials.  

Recent technological innovations on usage of lignin create unparalleled opportunity for 

the preparation of novel polymeric materials [37, 82, 89, 90]. Lignin can be used as a filler 

macromonomer, as a diluent, or in more complex ways, as a reactive component because 

of the plentiful aliphatic and phenolic hydroxyl groups. The possibility to produce new 

polymer composites by either chemically or physically incorporating lignin in existing 

petroleum based or renewable thermoplastics addresses the need for environment-

friendly and cost-effective renewable materials. Most of the above-mentioned 

applications require some physical modification or chemical functionalization of lignin 

because of its lack of miscibility with common thermoplastics [91]. However, the additional 

functionalization steps increase cost and create need for disposal of chemical wastes. 

Amalgamation of lignin in blend formulations creates another challenge as most lignins 

are not thermally malleable and reprocessable, which limits melt mixing with 

thermoplastics. On the other hand, lignin is a mixture of heterogeneous polyaromatic 

molecules that also differ by source and isolation method [92]. Interaction and dispersion 

of lignin are in part governed by the chemical functionalities in sourced lignin.  

Systematic studies were done on the development of lignin/soft matrices, such as 

commodity rubber, to produce high performance elastomers to compete with petroleum-

derived materials [37, 83, 93]. In the automotive applications, they can only be used for 

interior applications mainly because of their low modulus and soft networked structure. 

Blending high melting thermoplastic matrices with lignin imposes additional process 

engineering issue. For instance, polyether ether ketone (PEEK), a thermoplastic with 

outstanding mechanical and chemical resistance, that melts at 343°C [94] cannot be used 

for lignin melt-blending because lignin significantly degrades above 240°C [95]. 
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The overarching goal of this study is the development of sustainable high-performance 

composites from thermoplastic blends of lignin without chemical modification. Thus, the 

approach aims to find value for lignin, a low-cost byproduct of woody biomass pulping 

industry. The research evaluates the physicochemical properties of lignin and helps 

establishing suitable processing conditions for blends preparation. This work 

analyzes lignin sourced from various biomass such as oak, pine, and wheat straw on the 

properties of commodity plastics. More specifically, we aim to address the following 

research questions:   

1- What are the thermoplastic matrices that can accommodate lignin without 

deleterious effect on properties? 

2- How can we manipulate melting behavior of thermoplastic matrices to mix lignin 

without thermal degradation and obtain controlled dispersed morphology? 

3- How does lignin chemistry affect the properties of thermoplastic/lignin blends? 

The above research questions will be answered in separate detailed chapters addressing 

specific aims that establish a common objective of lignin valorization to thermoplastic 

high-performance materials. 

Research aim #1: Reactive compatibilization of lignin in automotive thermoplastic 

matrix 

In chapter 2, our goal is to exploit lignin’s miscibility with polyethylene oxide (PEO) to 

enhance the compatibility between lignin and acrylonitrile-butadiene-styrene (ABS) 

polymer under reactive mixing conditions, and develop a melt-extrudable, recyclable, 

partially renewable matrix with relatively high lignin content for sustainable composite 

applications.  

Research aim #2: Modification of melting behaviors of engineered polymer to 

control dispersion of lignin phase without degradation 

This research is divided in two segments. First, we conduct modification of engineering 

polyethylene terephthalate (PET) polyester matrix through plasticization.  Chapter 3 

discusses the use of a renewable plasticizer tall oil fatty acid (TOFA) to reduce melting 

temperature and viscosity of a waste PET melt. This plasticization improves the 

processability of PET and broadens applications of PET scraps from the manufacturing 

floor. Then in Chapter 4 we explore controlling lignin phase dispersion and interfacial 

interactions in TOFA-plasticized recycled PET matrix using simple melt-blending 

techniques. To avoid lignin degradation and devolatilization during amalgamation, it was 

thermally treated; additionally, as-received lignin was used as reference. Structural 

transformation of lignin macromolecules during heat treatment improves lignin thermal 

stability. Interfacial interactions between lignin and PET were assessed from mechanical 

properties and thermal analyses.  

Research aim #3: Understanding the effect of source-dependent lignin chemistry 

on its compatibility with a renewable polyester 
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In Chapter 5, we study the interactions of three technical lignins with polylactic acid (PLA) 

matrix.  First, lignin molecular weight and softening points were normalized by adopting 

alcohol-based fractionation of soluble lignin streams from 3 technical sources. 

Organosolv lignin from oak, methanol fractionated Kraft pine lignin, and methanol 

fractionated acetic acid extracted wheat straw lignin give equivalent melt processability. 

Blends of these lignins with PLA are studied to understand effect of lignin chemistry on 

the blends’ thermal stability, mechanical properties, and melt-rheology. 

In summary, this study evaluates plasticization of host thermoplastic matrices and 

reactive extrusion of their blends with various lignins to produce renewable thermoplastic 

composites. Different thermoplastic matrices such as ABS, an engineered terpolymer, a 

recycled engineering polyester and a biodegradable PLA studied in this work address 

question 1. To undertake question 2, two different matrix systems are investigated. First, 

in chapter 2, we find PEO improves compatibility between the lignin and ABS. It also 

reduces the viscosity of the blends and improves dispersion of lignin in ABS matrix. 

Second in chapter 3, TOFA plasticizes PET to reduce melting temperatures for efficient 

amalgamation of lignin without thermal degradation. To address question 3, three 

technical lignins with different chemical profiles but of similar softening points and 

molecular weights are used in an aliphatic polyester (PLA) to produce high-strength 

thermoplastics. A series of sustainable lignin thermoplastics exhibiting superior 

performance compared to state-of-the-art copolymerized lignin derivatives were 

developed. 
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CHAPTER 2  

POLY(ETHYLENE OXIDE)-ASSISTED MACROMOLECULAR SELF-ASSEMBLY OF 

LIGNIN IN ABS MATRIX FOR SUSTAINABLE COMPOSITE APPLICATIONS 
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Abstract 

In this effort, we report the compatibilization of biomass-derived lignin polymer in 

acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical 

properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS 

was blended with lignin in different concentrations, and blends with 10 wt. % PEO (relative 

to lignin) were prepared. The relative tensile strength improved slightly at low lignin 

content but diminished rapidly as the lignin content was increased. However, the inclusion 

of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic 

mechanical analysis showed that PEO plasticized the hard phase and thus lowered the 

activation energy (Ea) for its relaxation but caused stiffening of the soft phase and 

increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical 

dispersion of discrete lignin domains (300−1000 nm) which, after PEO addition, were 

reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially 

renewable ABS resins showed shear-thinning behavior and reduced viscosity compared 

to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol. % chopped 

carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of 

reinforced ABS materials reportedly used in 3D printing applications. This approach could 

lower the cost of ABS while reducing its carbon footprint.  

 

KEYWORDS: lignin, self-assembly, renewable composites, sustainable materials, Shear 

thinning polymer 

2.1. Introduction 

Thermoplastic composites are useful lightweight engineered materials. Factors such as 

environmental issues, conservation of resources, and reduction of energy consumption 

during materials processing and reuse have made recyclable thermoplastic composites 

consisting of renewable components and readily available biomaterials with enhanced 

mechanical performance highly desirable. High performance composites containing 

renewable materials will find immediate applications in automotive, construction, and 

other emerging industries.  
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Outstanding impact resistance, high mechanical strength, good chemical resistance, and 

ease of extrusion and molding are characteristics that make acrylonitrile butadiene 

styrene (ABS) terpolymers widely used for polymer matrix composites [1-4].  ABS 

composites modified with natural fiber or renewable polymers have been successful both 

in terms of performance and carbon emission reduction [5, 6]. Even so, the association 

of Plastic Manufacturers of Europe has recommended that at high fiber loading of natural 

fibers  (>60 vol. %), such composites be used for limited roles such as automotive side 

panels as a result of their inferior reinforcing characteristics [7].  An efficient solution would 

be to use carbon fibers, instead, as the reinforcing agent. Carbon fiber at relatively smaller 

quantities would yield composite parts with superior mechanical properties at reduced 

mass and longer-term automotive fuel efficiency. Likewise, negative environmental 

impacts could be further minimized by using renewable carbon fibers, currently in 

development [8].  

Ongoing research on valorization of lignin [9-11], if successful, can make sustainable 

biomanufacturing initiatives a reality. Lignin-based thermoplastics can either be lignin–

polymer alloys [12-15], or functionalized lignin [16, 17],  or copolymers of lignin [18-22]. 

Most polymers are not miscible with lignin, and their blends usually exhibit deteriorated 

mechanical properties. Lignin does not typically form a compatible blend with ABS matrix 

without being modified or with the assistance of a compatibilizer. It has been reported that 

maleic anhydride grafted hydrogenated styrene-butadiene-styrene block copolymer can 

enhance the compatibility of lignin in ABS [12].  Instead of using a cost-intensive 

functionalized derivative of hydrogenated block copolymer, we have devised a simpler 

solution through self-assembly of a hydrogen bonded network of lignin with polyethylene 

oxide (PEO) [23] in ABS matrix (Figure 1-1) for improved ductility and strength compared 

to lignin-only-filled ABS matrix. In this work, our goal was to exploit lignin’s miscibility with 

PEO to enhance the compatibility between lignin and ABS, and develop a melt-

extrudable, recyclable, partially renewable matrix with relatively high lignin content for 

sustainable composite applications. These composites meet performance goals while 

achieving favorable environmental impacts at low carbon fiber loadings.  
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Figure 2-1. Schematic diagram of compositions of lignin-extended ABS resins and their 

fiber-reinforced composites created from a blend modified with poly(ethylene oxide). 
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2.2. Experimental section 

2.2.1. Materials.  

Commercial-grade Terluran GP-35 ABS was obtained from BASF. An easy-flow polymer 

designed for injection molding process, Terluran GP-35 has a melt volume flow rate of 

3.4 cc/min at 220°C and 10 kg-force applied load. An experimental organosolv 

fractionated softwood Kraft lignin (pine) was dried at 80C overnight and used. The Kraft 

softwood lignin was treated with methanol at room temperature to extract out the soluble 

fraction of lignin.  The detailed method for lignin extraction and characterization is 

reported elsewhere [24]. The lignin melts at 150C and flows at 160C. High-molecular-

weight (Mn = 5,000,000) PEO was obtained from Aldrich, USA. 

 2.2.2. Blend Preparation. 

ABS/lignin blends (with 10, 20, 30 wt. % lignin) and corresponding blends with 10 wt. % 

PEO (relative to lignin amounts) were prepared by melt mixing at 190C using a 

Brabender® polymer processing system equipped with a half-size mixer. The ABS pellets 

were introduced into the mixer bowls at 10 rpm and allowed to melt, followed by addition 

of lignin powder or lignin/PEO mixture (in the case of three-component blending) at 50 

rpm. To avoid lignin degradation during prolonged melt mixing, the blends were allowed 

to mix for 4 min after introducing lignin into the mixing chamber. Compression molding 

was used to fabricate rectangular test specimens at 190C. 

2.2.3. Thermal Analysis. 

 Dynamic mechanical thermal analysis of the blends was performed in an RSA (TA 

Instruments) using a three-point bending fixture. The specimen size was 34 mm × 9.35 

mm × 2.75 mm. The measurements were completed in the temperature range −100C to 

150C and at frequencies of 0.1, 1, and 10 Hz. The heating rate was 2C/min. Thermal 

degradation was evaluated by thermogravimetric analysis (TGA) using a TA Q500 from 

30°C to 800°C at a heating rate of 10°C/min under nitrogen flow. 

2.2.4. Tensile Testing and Morphology Analysis.  

Rectangular specimens for tensile testing were prepared by compression molding. The 

specimens were cut to dog-bone shape and tested on a TA tensile machine at a rate of 

0.001 in./s. The reported results are average data of six measurements.  The tensile and 

cryogenically fractured surfaces of specimens were evaluated by SEM (Hitachi S4800). 

The surfaces were coated with a thin carbon layer before SEM imaging. To characterize 

blend morphology, specimens were cut at −70°C with a Leica ultramicrotome equipped 

with a cryochamber and a diamond knife. The thin sections were picked up on lacey 

carbon copper grids (Electron Microscopy Science) and then analyzed by TEM (Zeiss 

Libra 120) at an operating voltage of 120 kV. 
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2.2.5. Rheological Properties.  

Melt viscosity was measured with a capillary rheometer (Instron CEASJ SR50) at 190°C, 

200C, and 210°C for neat ABS and all other blends over a range of shear rates. The L/D 

ratio of the 1 mm diameter die was 20. 

2.3. Results and discussion 

2.3.1. Tensile Properties. 

 Performance is important for a soft matrix and its filled derivatives. Empirically, the 

performance of filled materials is evaluated from the ratio of the mechanical properties 

[tensile strength (σ), modulus (E), elongation (ε)] of the derived compositions (c) to that 

of neat matrix (m). Figure 2-2 shows performance indices in terms of relative tensile 

strength (σc/σm), modulus (Ec/Em), and elongation at break (εc/εm) of the lignin-extended 

ABS prepared by melt mixing at different lignin concentrations. The performance index 

improves slightly at low lignin content but diminishes rapidly as the lignin content is 

increased.  Due to the poor interaction between the lignin molecules and ABS 

macromolecules, dispersed lignin domains coalesce at higher lignin concentrations to 

form large brittle inclusions. The deleterious effects of lignin loading in polyolefin matrix 

can be overcome by incorporating ethylene–vinyl acetate copolymer as a surfactant or 

an adhesion promoter [25]. In the present work, incorporation of high-molecular-weight 

PEO (at 10 wt. % loading of lignin content) in lignin/ABS blends has a pronounced effect 

on the mechanical properties and reduces the deleterious effects at high lignin loadings. 

Compared with lignin molecules, the PEO has 3 orders of magnitude higher molecular 

weight and can act as a tie molecule between the lignin droplets in the ABS matrix through 

hydrogen bonding between the phenolic and aliphatic hydroxyl groups (of lignin) and 

ether linkages in PEO. The presence of PEO at the interface of lignin domains prevents 

particle coalescence and allows higher extensibility or elongation at failure. The presence 

or absence of PEO has no effect on the tensile modulus of any composition. 

2.3.2. Morphology Analysis by SEM and TEM.  

The microstructures of the lignin-loaded ABS matrices as observed on scanning electron 

micrographs (SEM) of cryogenically fractured and tensile failed surfaces of the 

compositions (displayed in Figures A-1 and A-2, respectively, of Appendix A) indicate the 

role of PEO in improving interfacial adhesion between the ABS matrix and lignin particles. 

A representative SEM image of the cryofractured surface of the molded 70/30 

(ABS/lignin) composition is shown in Figure 2-3a, and the corresponding PEO-modified 

lignin formulation [i.e., 70/27/3 (ABS/lignin/PEO)] is shown in Figure 2-3b. The addition of 

PEO causes formation of coated lignin particles (Figure 2-3b), which improves failure 

stress in the ABS/lignin blends by inducing multiple crack lines and appreciable 

deformation of the matrix (compared to control sample). 
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Tensile deformation of ABS matrix leaves fibrillar structures on the failed surface, which 

is indicative of ductility. But incorporating lignin gradually changes the failure pattern from 

ductile failure (i.e., unidirectional extended fibrillar morphology containing microvoids or 

cavitation) to brittle failure (i.e., fast crack line propagation showing no appreciable 

deformation). Further incorporation of PEO in the ABS/lignin matrix, however, makes the 

tear paths wider with multiple non-coplanar failed surfaces (Figure A-2). 

The formation of clusters of interconnected lignin domains in the presence of high-

molecular-weight PEO molecules (at 10 wt. % loading of lignin) in ABS/lignin blends is 

evident from the transmission electron microscopy (TEM) images of the compositions 

(Figure 2-4). The neat ABS exhibits agglomerated irregularly shaped butadiene-

containing rubbery domains in the thermoplastic matrix of polystyrene-co-acrylonitrile 

(Figure 2-4a). Incorporation of lignin in ABS leads to the formation of statistical 

dispersions of discrete 300−1000 nm sized lignin domains (Figure 2-4b). Some of the 

lignin domains were dropped from the microtomed specimens, leaving voids. In fact, 

during cryo-microtoming of thin specimens of ABS/lignin blend, a significant quantity of 

lignin dust was produced. This also indicates poor adhesion between the lignin and the 

ABS matrix. The lignin domain sizes, however, are smaller when PEO is added to the 

composition. Further, the micrograph shows that hydrogen-bonded lignin–PEO phase 

[23] is linked with well-dispersed rubbery domains in the plastic matrix (Figure 2-4c). 

Inclusion of lignin–PEO in the rubbery domains reduces defects caused by the stand-

alone rigid lignin phase during tensile deformation [26]. 
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Figure 2-2. Ratios of tensile strength (a), tensile modulus (b), and ultimate elongation (c) 

of lignin-loaded matrices over those of neat ABS at different lignin concentrations. 
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In the presence of PEO, lignin domain sizes are reduced to 200–500 nm sized 

interconnected particles.  It may be noted here that the statistical root-mean-squared end-

to-end distances of PEO and ABS macromolecules are shorter than the dispersed lignin 

particles by at least an order of magnitude. In the absence of PEO, large neat lignin 

domains dispersed in ABS exhibit poor cohesive strength (due to the high brittleness of 

lignin oligomers) as well as poor adhesion to ABS, particularly at high lignin loadings. 

Thus, such a composition acts like an immiscible blend of lignin and ABS. Incorporation 

of PEO in such a blend allows PEO to increase the adhesion between lignin and ABS.  

Hydrogen bonding between (1) lignin and PEO, and (2) PEO and ABS (through 

interaction between nitrogen of the –CN group in ABS and the hydroxyl end group of 

PEO) allows improved adhesion between phases. Also, the interaction of PEO and lignin 

allows the formation of a ductile lignin phase which, under shear, forms smaller domains 

that are well adhered with ABS matrix. In other words, the interaction allows the formation 

of a self-assembly of lignin (in the matrix) assisted by the hydrogen bonding between 

PEO and the components at the interface and stabilizes lignin dispersion in the matrix. 

This unique morphology was further probed with dynamic mechanical analysis, and the 

results are discussed in a later section.     

 

 

Figure 2-3. Scanning electron micrographs of the cryofractured surface of molded 

ABS/lignin (70/30) (a) and the corresponding performance-enhanced blend of 

ABS/lignin/PEO (70/27/3) (b). 
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Figure 2-4. Transmission electron micrographs of neat ABS (a), ABS/lignin (70/30) (b), 

and ABS/lignin/PEO (70/27/3) (c) blends. 
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2.3.3. Capillary Rheology Study.  

The plasticization effect from PEO is evident in the melt capillary rheology data of the 

compositions shown in Figure 2-5. As expected, all compositions exhibit power law shear 

thinning behavior. The low-shear viscosity plateau (ηo) decreases with incorporation of 

the low-molecular-weight lignin component. However, ABS/lignin compositions tend to 

exhibit similar viscosity at very high shear rate regions (500−1000 s-1), changing the 

power law index (see Figure A-3). Incorporating PEO in the matrix helps to integrate lignin 

in the rubbery domains and ultimately in the thermoplastic matrix through self-assembly, 

as discussed earlier. The presence of PEO in ABS/lignin compositions lowers the matrix 

viscosity and enhances the melt-processability of the blends at lower temperature. 

10 100 1000
100

1000

 Neat ABS

 30% Lignin

 30% Lignin-PEO

V
is

c
o

s
it

y
a

p
(P

a
.s

)

Shear rate
ap

(s
-1
)

 

Figure 2-5. Capillary rheology data of neat ABS, its selected lignin-loaded compositions, 

and the corresponding PEO compatibilized formulation studied at 200°C. 
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2.3.4. Effect of PEO on Thermal Degradation.  

Another advantage associated with using PEO is the improvement of lignin’s thermal 

stability, through hydrogen bond formation. Lignin begins to decompose at 180°C, which 

is detrimental to the mixing step and processing with ABS resin at 190°C. The addition of 

PEO slightly elevates the temperature associated with early mass loss from the lignin 

phase. Early decomposition of lignin involves dehydration, which is retarded through use 

of PEO. Thermogravimetric analysis of neat lignin and the lignin/10 wt. % PEO mixture is 

shown in Figure A-4. The derivative weight curves show the degradation temperature 

rising from 346°C to 354°C in the presence of PEO. The decomposition temperature of 

PEO is higher than that of lignin, so the compounded material has a higher net 

degradation temperature. Thus, using PEO improves the potential recyclability of the 

compositions without significant thermal degradation of the lignin phase. 

2.3.5. Dynamic Mechanical Analysis.  

The loss tangent peaks associated with both soft and hard phases of the compositions 

studied at different frequencies are summarized in Table 2-1. The activation energies for 

relaxation of the phases were quantitatively evaluated by use of the Arrhenius equation 

[Eq. (1)].  

 

                                          log 𝑓 = − 𝐸𝑎 (2.303𝑅𝑇)⁄ + log 𝐾                                         (1)    

     

where T is the absolute temperature at which the loss maximum is observed at frequency 

f, R is the gas constant, K is an arbitrary constant, and Ea is activation energy. The 

temperature dependence of the loss tangent (tan δ) data was applied to the Arrhenius 

equation, and the activation energy for relaxation at the loss tangent was calculated for 

both hard and rubbery phases. Table 2-1 reveals that incorporation of lignin lowers the 

activation energy (Ea) associated with the relaxation of both hard and soft phases. The 

extent of reduction of Ea is greater at high lignin loadings. Incorporating PEO slightly 

increases the Ea associated with the rubbery phase and further lowers the Ea associated 

with the hard phase (compared to that of the corresponding ABS/lignin blends). This 

suggests that PEO (a soft linear macromolecule) enhances flexibility in the hard phase 

(consisting of styrene-acrylonitrile segments along with loaded lignin domains). 

Interestingly, PEO hinders flexibility in the soft rubbery segments of ABS/lignin blends 

due to the integration of lignin domains in the rubbery phase through the hydrogen-

bonded network of PEO as described earlier.  
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Table 2-1 Temperatures corresponding to the loss tangent peak (Tg) at different 

frequencies from the dynamic mechanical analysis, and the activation energy (Ea) 

associated with thermal relaxation at Tg. 

  Neat ABS 10% Lignin 
10% Lignin–

PEO 
30% Lignin 

30% Lignin–
PEO 

 
Logf 

(Hz) 

Tg 
(°C) 

Ea  
(KJ/mol) 

Tg 
(°C) 

Ea  
(KJ/mol) 

Tg 
(°C) 

Ea 
(KJ/mol) 

Tg 
(°C) 

Ea 
(KJ/mol) 

Tg 
(°C) 

Ea 
(KJ/mol) 

Hard  
phase 

-1 104  104  102  100  100  

0 108 543 108 466 106 449 106 422 106 396 

1 114  114  114  116  114  

Rubber
y 

phase 

-1 -82  -84  -82  -82  -82  

0 -80 234 -80 177 -78 182 -78 146 -78 180 

1 -76  -76  -74  -74  -74  

 

Representative temperature-dependent storage modulus data obtained from the dynamic 

mechanical analysis at 1 Hz frequency are shown in Figure 2-6. It is apparent that 

incorporating lignin increases the modulus at temperatures from 0 to 80°C.  Plasticization 

occurs when PEO is added to the composition, and the moduli are slightly lowered. Loss 

tangent peaks for the rubbery phase and the glassy plastic phase at 1 Hz frequency are 

shown in Figures 2-7a-b. Rubbery domains of neat ABS show a relaxation around −80°C 

(Figure 2-7a). Neat ABS also show a tiny broad peak around −40°C due to relaxation of 

the acrylonitrile-butadiene copolymer segments present in ABS; however, such relaxation 

disappears when different quantities of lignin are included in the matrix. This indicates a 

slight degree of interaction between lignin and ABS phases, which are mostly 

incompatible. Further, inclusion of PEO shifts the Tg of the rubbery phase slightly (from 

−80°C to −78°C at 10 wt. % lignin loading), indicating that the PEO phase assists in 

reducing the flexibility of rubbery domains through their ability to bridge both rubbery and 

lignin phases (see Figure 2-1 for hypothesized interaction between phases through PEO). 

However, such a shift in Tg was not discernible for high (30 wt. %) lignin loadings, where 

Tg of the rubbery phase was already shifted to a higher temperature (−74°C). 

Figure 2-7b shows the loss tangent spectra for the glassy phases of the compositions at 

1 Hz frequency.  The Tg of the neat ABS hard phase appears at 108°C.  Inclusion of 10 

wt. % lignin does not affect the Tg. However, addition of PEO in the 10 wt. % lignin lowers 

the Tg of the composition to 106°C.  This further supports the observation that PEO 

interacts with the hard phase of ABS (likely the styrene-acrylonitrile copolymer segment).  

At 30 wt. % lignin loadings, however, there is no further reduction in the Tg of the hard 

phase owing to PEO use.  Therefore, it must be noted that the compatibilization of the 

lignin and ABS by PEO is more pronounced at low to moderate lignin loadings. The 

plasticization effect of PEO on the overall compositions containing high lignin loading is 

demonstrated in the rheology data (Figure 2-5).   
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Therefore, on the basis of mechanical properties, TEM microscopy, rheology, and 

dynamic mechanical analysis, it is apparent that the ultrahigh-molecular-weight PEO 

assists solvent-extracted melt-processable lignin in dispersing well in both the hard and 

soft phases of the ABS matrix.  The hydroxyl end groups of PEO can form hydrogen 

bonds with the nitrile group of the ABS and the hydroxyl groups of the lignin. In the same 

way, oxygen-containing ether groups in PEO also facilitate hydrogen bonding with 

hydroxyl groups in the lignin.   

2.3.6. Carbon Fiber Composites.  

The ABS/lignin compositions and their PEO compatibilized derivatives were also used in 

carbon-fiber-reinforced composite fabrication and testing. The tensile results of 

composites containing 20 vol. % untreated carbon fibers of the formulation 

ABS/lignin/PEO (70/27/3) show slightly improved mechanical properties compared to the 

ABS/lignin (70/30) formulation because of enhanced ductility in the matrix. The reduced 

viscosity of ABS/lignin/PEO also led to less breakage of carbon fibers during shear mixing 

through the plasticization effect of PEO. The former and the latter composite materials 

exhibit tensile strength of 77–80 and 68–73 MPa, respectively, with nearly equivalent 

tensile modulus. Such properties have the potential to qualify these composites for use 

as automotive parts and for manufacturing by 3D printing [1]. 

Even though we have demonstrated that solvent-extracted fractions from Kraft lignin can 

be used to extend ABS matrix, its presence stimulates a strong olfactory response. This 

can be detrimental for commercial adoption of the approach.  Accordingly, we conducted 

similar experiments with organosolv (Alcell) lignin in ABS; in both the presence and 

absence of PEO, nearly identical trends in the mechanical properties of the compositions 

were observed. Details of these mechanical properties are shown in Appendix A (Figure 

A-5). Alcell lignins do not contain sulfur, which eliminates the unpleasant odor. 

Alternatively, one can use other types of lignin, such as organosolv lignin, soda pulped 

lignin, and lignins from biorefinery residues. All types of lignin containing hydroxyl groups 

and being melt-processable are expected to work in the proposed compositions.  
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Figure 2-6. Storage modulus data for neat ABS, ABS/lignin, and ABS/ (lignin/PEO) 

compositions at 1 Hz frequency (inset figure show expanded storage modulus axis). 
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Figure 2-7. Loss tangent peak of the rubbery phase (a) and of the hard phase (b) in 

different ABS compositions at 1 Hz frequency. 
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2.4. Conclusion 

We have successfully developed a path for loading a sustainable industrial co-product, 

lignin, to a high-performance engineering thermoplastic matrix without the usual 

deleterious effects on mechanical properties. A thermoplastic ABS resin containing nearly 

30 wt.% lignin was formulated to exhibit properties similar to those of neat resin by 

incorporating 10 wt.% PEO (with respect to lignin fractions). The ABS/lignin compositions 

exhibited poor interfacial adhesion; however, their counterparts containing PEO showed 

improved adhesion of lignin in both the rubbery domains and the thermoplastic matrix as 

shown by microscopy. The formulations reinforced with short carbon fiber (without 

pretreatment) showed outstanding mechanical properties that are acceptable for 

automotive use. 

The proposed solution of modifying industrial resin (ABS) and its composite products by 

incorporating a significant quantity of lignin offers to reduce the carbon footprint through 

the direct use of these partially renewable plastics and the production of lighter weight 

automotive materials for enhanced fuel economy. Therefore, the results shown here have 

significant potential for beneficial economic and societal impacts. 
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Figure A-1. Micrographs of tensile fractured surfaces; (a) neat ABS, (b) ABS/10% lignin, 

(c) ABS/10% lignin–PEO, (d) ABS/30% lignin, and (e) ABS/30% lignin–PEO. 

. 
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Figure A-2. Micrographs of cryofractured surfaces; (a) neat ABS, (b) ABS/10% lignin, (c) 

ABS/10% lignin–PEO, (d) ABS/20% lignin, (e) ABS/20% lignin–PEO, (f) ABS/30% lignin, 

and (g) ABS/30% lignin–PEO. 
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Figure A-3. Capillary rheology data of the neat ABS, its selected lignin-loaded 

compositions [10% (a), 20% (b), and 30% (c) lignin loadings], and corresponding PEO 

compatibilized formulation studied at 200°C. 
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Figure A-4. Thermogravimetric analysis data of neat lignin and lignin–PEO (10 wt. % 

PEO) mix. 
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Figure A-5. Ratio of tensile strength (a), tensile modulus (b), and ultimate elongation (c) 

of organosolv Alcell lignin-loaded matrices over those of neat ABS at different lignin 

concentrations. 
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CHAPTER 3  

RECYCLING WASTE POLYESTER VIA MODIFICATION WITH A RENEWABLE 

FATTY ACID FOR ENHANCED PROCESSABILITY 
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Abstract 

Polyethylene terephthalate (PET) waste often contains a larger amount of thermally 

unstable contaminants and additives that negatively impacts processing. A reduced 

processing temperature is desired. In this work, we report using a renewably sourced tall 

oil fatty acid (TOFA) as a modifier for recycled PET. To that end, PET was compounded 

with TOFA at different concentrations and extruded at 240°C. Phase transition behaviors 

characterized by thermal and dynamic mechanical analyses exhibit shifts in melting and 

recrystallization temperatures of PET to lower temperatures and depression of glass 

transition temperature from 91°C to 65°C. Addition of TOFA also creates crystal phase 

imperfection that slows recrystallization, an important processing parameter. Changes in 

morphology of plasticized PET reduces and stabilizes the melt viscosity at 240°C and 

250°C. Melt-spun, undrawn continuous filaments of diameter 36-46 micrometers made 

from these low-melting PET exhibit 29 –38 MPa tensile strength, 2.7–2.8 GPa tensile 

modulus and 20-36 % elongation. These results suggest a potential path for reusing 

waste PET as high performance polymeric fibers.  

 

KEYWORD: recycled PET, renewable plasticizer, crystallization rate, rheology, tall oil 

fatty acid 

 

3.1. Introduction 

Polyethylene terephthalate (PET) is a semi-crystalline commodity thermoplastic polyester 

broadly used in the packaging and apparel industries. It is estimated that 485 billion 

individual PET bottles were produced globally in 2016, and the number is forecasted to 

grow over the next 5 years [1]. Production of beverage bottles comes at a price as 

generated waste must be dealt with continually. Post-industrial and post-consumer PET 

waste often goes to landfills and creates environmental hazards because of the lack of 

biodegradation of PET [2]. To address the environmental issues and create potential new 

revenue streams for these wastes, it is logical to recycle the wastes into reusable polymer 

systems for a variety of end uses.  

Recycling can expand spent PET to novel applications [3], but the cost to performance 

ratio must be reasonable. For example, the toughness can be improved by successful 
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modification and/or plasticization to reduce the melting point of the crystalline phase and 

decrease the glass temperature Tg of the amorphous phase [4]. PET can be blended with 

thermally unstable materials such as polyacrylonitrile (PAN), acrylonitrile butadiene 

styrene (ABS), poly vinyl chloride (PVC), phenolic resin, and lignin, and then to achieve 

success with those compositions, PET needs to be softened and melted at lower 

temperature. The reduction in these transition temperatures via changes in molecular 

dynamics require careful selection of the plasticizer. The possibility of enhanced chain 

mobility and depressing Tg of PET has been well studied. In fact, small amounts of codiols 

or long diols as comonomers were used to plasticized PET [5, 6]. Gowd used two distinct 

types of polyethylene glycol (PEG) and a solid-state polymerization route to plasticized 

PET [7]. The results showed that the Tg and crystallization rate were affected by the PEG 

nature. A systematic investigation of CO2-induced crystallization of PET by Mizoguchi 

showed that sorbed CO2 is in fact an effective plasticizer for PET [8].  The evaluation of 

the plasticizing ability of CO2 as reported in a different study was based mostly on the 

mobility of the polymer segment and the reduction of Tg measured which in part is due to 

the high solubility of CO2 in PET [9].   

In the specific instance of choosing a plasticizer for polymer systems, renewable 

plasticizers are preferred as alternatives to their petroleum-based counterparts, in part 

because of environmental issues, renewability, and cost-effectiveness [10, 11]. Some 

reported renewable plasticizers include: soybean oil fatty acid methyl ester [12] and 

Benzyl ester of dehydrated castor oil fatty acid [13]. An example of a renewable plasticizer 

and polymer system was reported by Wang [14]. The work evaluated palm oil as a 

plasticizer for ethylene propylene diene monomer (EPDM) rubber. When added to EPDM, 

palm oil acts like paraffin oil, a conventional petroleum-derived plasticizer, by reducing 

viscosity to improve processability.  PVC has been recently plasticized with novel 

soybean oil-based polyol ester [15]. The plasticizing effect of the polyol ester was very 

pronounced and effective when compared with some conventional plasticizers for PVC. 

Additionally, an improvement in thermal stability was reported.  

The success of different renewable based plasticizers for polymeric systems addresses 

many environmental issues and is a path towards sustainable development. To this end, 

we have identified tall oil fatty acid (TOFA) as a potential renewable plasticizer for post-

industrial PET resin. TOFA is a by-product of the Kraft paper making industry that uses 

pine trees [16]. It mainly consists of oleic acid and is cost-effective. The goal here is to 

use the renewable plasticizer to reduce viscosity and improve processing characteristics. 

This will broaden end-use applications of post-industrial PET scraps from resin 

manufacturers, bottle manufacturing facilities, and post-consumer wastes. Continuous 

fibers were also spun using the plasticized matrices to demonstrate favorable 

processability. Using TOFA in combination with the post-industrial PET waste gave a 

modified PET suitable to expand the application horizon where lower melting 

temperatures of PET is desired.  
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3.2. Experimental section 

3.2.1. Materials. 

Thermoplastic polyester PET was received from Eastman Chemicals USA. It is scrap 

from the resin manufacturing facility and supplied as white powder. Melt flow rate (MFR) 

measured in our laboratory was 55g/10 min (2.16Kg at 280°C).  The PET was dried under 

vacuum at 130°C for 8 hours to avoid hydrolytic degradation during melt processing. The 

tall oil fatty acid (TOFA) was acquired from Westvaco Chemicals, Charleston SC. It is 

Westvaco L-5 Tall oil fatty acid [CAS # 61790-12-3]. The specifications of the TOFA were 

reported as: Acid number (min 190), rosin acids (max 5%) and color or Gardner (max 7). 

3.2.2. Blending of Post-industrial Polyester and TOFA. 

Dried polyester PET and TOFA were melt mixed at 240°C in a Haake MiniLab co-rotating 

twin-screw extruder (Thermo Scientific). TOFA was added in 3 different wt. % (10, 20 and 

30). The extruder has one zone heated with screws length of 110 mm. The blends were 

processed at a screw rotation speed of 30 rpm. The extrudates were collected for further 

analysis. The extruder was then fitted with a die (0.5 mm) to produce monofilaments. 

3.2.3. Blends Characterization. 

The three different extrudates were named PR10, PR20 and PR30 respectively in 

accordance to the wt. % of TOFA added (10, 20 and 30). A Differential scanning 

calorimeter (DSC Q2000, TA Instruments) was used to determine the thermal 

characteristics of the as received PET and the plasticized PET samples. Samples with 

mass of approximatively 3-4 mg each were loaded in hermetic pans for measurements. 

A cycle of heating-cooling-heating from -50°C to 300°C at 10°C/min and an isothermal of 

2 min after first heating were used. The degree of crystallization was computed from 

Equation 1. The melting enthalpy ΔHm was obtained from the second heating curve. W f 

is the PET weight fraction in each composition and ΔH100 is the theoretical fusion enthalpy 

of 100% crystalline PET (140 J/g) [17].  

 

                                                    𝜒𝑐 =
𝛥𝐻𝑚

𝑊𝑓 × 𝛥𝐻100
 ×  100%                                               (1)   

                                                                           

The same setup of DSC was used but at different ramping rates (2, 5, 10, 20, and 

30°C/min) to study the crystallization rate of as-received PET and plasticized PET resins. 

Dynamic mechanical thermal analysis of the blends was performed using a TA Q800 (TA 

Instruments) in tension mode. Monofilaments of diameters varying from 0.20 to 0.45 mm 

generated from each sample were used for testing. The measurements were conducted 

in the temperature range 30C to 150C and at frequencies of 1Hz and 0.01% strain. The 

heating rate was 3C/min. Cryogenically fractured surfaces of extrudates were evaluated 

by SEM (Zeiss EVO MA 15). The samples were also analyzed by Fourier transform 
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infrared spectroscopy (PerkinElmer Frontier). A total of 32 scans were obtained in 

Attenuated Total Reflectance mode. Average spectra with 4 cm-1 resolution were 

obtained for all samples. The rheological properties were evaluated using the Discovery 

Hybrid rheometer (DHR-2, TA instruments). All measurements were carried out at 3 % 

strain, which is in the linear region as determined by a strain sweep in an inert atmosphere 

of nitrogen. Frequency sweeps from 100 to 1 rad/s at different temperatures were 

performed.  

3.2.4. Fiber Melt-spinning and Characterization. 

The twin screw extruder was also used to generate continuous single fibers from all three 

plasticized PETs with TOFA. A 200 μm spinneret was attached for fiber forming as the 

extrudate is forced through the orifice. A 76 mm rotating drum was used to collect 

continuous single fibers. Single fibers were isolated for mechanical testing. They were 

glued onto a paper tab using an adhesive. The tabs were mounted into a set of pneumatic 

grips, and the sides are cut at mid-gauge before load application. The gauge length was 

25.4 mm. The tabs enable consistent and proper mounting of fiber specimens. An Instron 

5943 equipped with Bluehill3 software was used for the mechanical testing at crosshead 

speed of 15 mm/min. The mean of 13 specimens is reported. The fibers were also 

characterized by DSC based on sample preparation and experimental conditions 

described above. SEM micrographs of the fiber lateral surface were also obtained. 

3.3. Results and discussion 

3.3.1. Thermal characteristics. 

Polymeric materials are macromolecules with intramolecular cohesive forces among 

them. When heat is applied, the macromolecules become soft and flexible and easy to 

process. Low-molecular weight plasticizers are often added to increase the flexibility at 

room temperature and to improve processing. Evidence of the plasticizing effect of TOFA 

is shown in Figure 3-1a. DSC thermograms depict that as the amount of TOFA renewable 

plasticizer increases, the PET melting peak shifts toward lower temperature. Neat PET is 

an heterogeneous polyester with both amorphous and crystalline domains. Its 

thermogram shows a large endotherm with a peak temperature at ~248°C corresponding 

to melting of crystals. The low-molecular weight renewable plasticizer TOFA inserts its 

molecules between the crystalline domains of the PET allowing for softening and 

increased flexibility. The depression of melting temperatures Tm1 and Tm2 reduces the 

processing temperature of PET. In parallel, incorporation of TOFA shifts the 

recrystallization Trec to lower temperatures (Figure 3-1b) because of the TOFA-induced 

PET chain flexibility that alters crystallization kinetics discussed in detail later. 

The change in crystallization behavior was evaluated and reported in Table 3-1 using the 

thermodynamic melting enthalpy from the DSC thermograms in Equation 1. The neat PET 

ΔHm is 48.6 J/g which is lower than 100% crystalline PET (140 J/g) thus a degree of 
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crystallinity of 34.7 %.   The degree of crystallinity (XC) of TOFA plasticized PET are all 

higher than the as-received PET except PR10. It is apparent that addition of TOFA favors 

segmental molecular mobility of PET which affects the crystallinity. Although the presence 

of TOFA increases PET crystallinity, it is obvious that the modified PET crystals are low-

melting and imperfect. 

The storage modulus E’, related to the material stiffness, decreased with addition of 

plasticizer because of changes in the phase structure (Figure 3-1c). The sharp drop of E’ 

for all samples as the temperature increases signals that glass transition events are 

occurring in the amorphous phase. Like most polymers, PET undergoes thermophysical 

transitions around its glass transition temperature Tg. Tg is known as the temperature at 

which binding forces between polymer chains are relaxed to initiate large-scale molecular 

movements. Tg is considered as an essential processing parameter as it helps to define 

the state of polymers at their service temperatures. Here, the Tg, as reported in Table 3-

1, are the maximum peak of the loss factor Tan δ (Figure 3-1d). The as-received PET has 

a Tg of 91°C.  As expected, addition of the renewable plasticizer decreases Tg. TOFA 

addition depresses PET’s Tg by up to 25°C at 30 wt. % addition, which is evidence of 

pronounced plasticization. TOFA presence allowed the PET matrix to become less dense 

and facilitate motion of the PET molecular segments to start at lower temperature.  

 

 

Table 3-1.  Thermal and crystalline properties of neat PET and its plasticized derivatives. 

Samples T
m1 

(°C) a T
m2 

(°C) a ∆H
m 

(J/g) a T
rec 

(°C) ∆H
rec 

(J/g) χ
c 
(%) a (T

g
) (°C) b 

Neat PET 237.3 247.9 48.6 209.1 55.8 34.7 91 

PR10 222.8 238.3 42.8 198.9 52.1 33.9 69 

PR20 220.2 236.8 41.9 196.4 54.5 37.4 67 

PR30 222.6 238.1 40.3 197.1 64.9 41.1 66 

  
a Values obtained from second heating curve of DSC 
b Tg reported from Tan δ peak 
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Figure 3-1. Thermal characterization of as-received recycled PET and its plasticized 

derivatives. (a) DSC second heating thermograms, (b) DSC cooling thermograms, (C) 

DMA storage modulus E’ and (d) DMA loss factor Tan δ.
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3.3.2. Crystallization behavior. 

The recrystallization temperatures (Trec) and enthalpy (ΔHrec) of neat PET decrease as 

the cooling rate increases (Figure 3-2). Plasticization is observed as the PET crystalizes 

faster than the plasticized PET resins at lower cooling rates, but the difference in Trec is 

minimal at 30°C/min rate. Trec is critical in polymer processing, especially for a semi-

crystalline polymer like PET. It is measured as the solidification temperature. The fact that 

the neat PET and the TOFA plasticized PET display Trec values close to each other at 

high cooling rates suggests that the crystallization mechanism is not much affected by 

the addition of TOFA. This is beneficial for a process like extrusion where high cooling 

rates are desired. ΔHrec of plasticized resins diminish as the TOFA amount increases 

(Figure 3-2b). Nevertheless, it increases as the cooling rate increases which is different 

to the neat PET. Crystallization temperatures shift to lower temperatures with the addition 

of TOFA renewable plasticizer. Such reduction can be explained by two interconnected 

facts. First, TOFA addition depresses Tg and increases chain mobility, and second, TOFA 

addition decreases PET’s melting point, which also retards crystal growth. Furthermore, 

the slopes of the Trec vs. log cooling rate curves suggest that the excess TOFA reduces 

the crystallization rate because a steeper slope (neat PET) means faster crystallization 

compared to gentle slope (30 wt. % for example).  

 

 

 

 
 

Figure 3-2. (a) Crystallization peak temperatures Trec and (b) crystallization enthalpy 

ΔHrec as a function of log cooling rate. 
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3.3.3. Flow characteristics. 

Oscillatory frequency sweeps were used to evaluate the as-received PET and TOFA 

plasticized PET resins flow characteristics. The angular frequency (ω) dependence of the 

complex viscosity (ƞ*) and the storage modulus (G’) in the linear region have a more 

developed sensitivity to structural variation than the power-law region (Figure 3-3). At 

240°C (Figure 3-3a), the neat PET shows a Newtonian behavior at very low frequency 

followed by normal shear thinning behavior where the complex viscosity starts to 

decrease with increasing angular frequency. The viscosity is high and decreases 

progressively because the data are collected in the linear region and the temperature is 

below the melting temperature recorded by DSC (248°C). It is anticipated that chain 

disentanglement and mobility limited due to lack of energy to disrupt them. The plasticized 

PET resins, however, show a similar decrease of viscosity with increasing frequency, but 

the slopes of the flow curves are sharper. Also, PR10 and PR20 show high viscosity at 

low frequency compared to neat PET. The effect of the plasticizer is evident for all three 

plasticized PET resins at 250°C (Figure 3-3b). The plasticization effect becomes more 

pronounced as the viscosity decreases with increasing plasticizer amount and the slopes 

of all the curves are steadier. The flow behavior shows that changes are occurring in the 

molecular structure of plasticized PET due to the addition of TOFA as a softening agent. 

The TOFA can interact with the PET amorphous segment and end groups through 

hydrogen bonding and can undergo covalent esterification reaction with hydroxyl end 

groups leading to changes in the structure of modified PET. Such interaction is typical for 

excellent plasticizers as they decrease viscosity and hence improve the processing 

properties of PET. The master curves at Tref =240°C in Figure 3-3c shows that the storage 

modulus G’ is increasing with increasing ω. A sharp increase in G’ is observed in neat 

PET, but for all three plasticized PET resins, the rise is progressive. Also, all three 

plasticized resins have higher G’ values at low frequency and G’ for PR10 and PR20 

continues to be higher than that of neat PET at below 10 rad/s. The master curves at 

Tref=250°C in figure 3-3d shows that neat PET has the highest G’ over the whole 

frequency range indicating the highest rigidity. The slopes are different, but all storage 

moduli increase with increasing angular frequency. The TOFA modified resins’ G’ values 

decrease with increasing plasticizer loading amounts over the entire frequency range. 

This suggests that the plasticizer is lubricating the PET chains, and the plasticization 

effect is not only favoring change in morphology and increased chain mobility but also 

strongly affects the moduli of the modified resins. This is a strong indication of improved 

processing characteristics of the modified PET.   

3.3.4. Morphological evaluation. 

Representative SEM micrographs of cryofractured surfaces of the as-received waste 

polyester and the TOFA plasticized matrices are represented in Figure 3-4. The as-
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received PET surface shows a relatively smooth fracture surface with residual 

morphology left by the fracture path (Figure 3-4a).  

 

 

 

 

 
 
Figure 3-3. Frequency-dependent complex viscosity ƞ* at Tref = 240°C (a) and 250°C (b) 

and Frequency-dependent storage modulus G’ at Tref = 240°C (c) and 250°C (d) of 

recycled PET and its TOFA plasticized derivatives.                    
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The plasticized PET samples, however, exhibit completely different topography of the 

fractured surface. The surfaces have cavities created by the addition of TOFA that are 

very well statistically dispersed and around 0.2 to 1 μm in size (Figure 3-4b, c, and d). For 

the 30 wt. % plasticized resin, the cavities are larger in size due to coalescence of the 

extra amount of TOFA during melt mixing which creates large agglomeration. The 

observations clearly show that the TOFA is acting as a lubricant by inserting itself in the 

polyester matrix and favoring chain motion and slippage of molecular constituents. This 

in turn introduces the thermophysical changes detected by thermal and dynamic 

mechanical analysis (Figure 3-1). FTIR spectra show (Appendix B, Figure B-1) that 

changes occurred with addition of TOFA. The insert from 1600 to 1700 cm-1 shows the 

carbonyl group (C=O) peak of both the TOFA and the PET. Addition of TOFA shifts the 

peak toward lower values meaning a stronger interaction between the PET and the TOFA.  

 

 
 

Figure 3-4. Micrographs of cryofractured surfaces; (a) neat PET, (b) PET/10% TOFA, (c) 

PET/20% TOFA, (d) PET/30% TOFA. 

2μm 2μm 

2μm 2μm 

(a) (b) 

(d) (c) 
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3.3.5. Properties of fibers spun from plasticized polyester resins. 

The TOFA plasticized matrices were melt-spun to produce continous filaments using the 

benchtop extruder previously used for blending. The extruder and attached spinneret 

temperatures were set to 240°C and 245°C respectively for all samples, which is well 

below the neat PET working temperatures (~270-285°C). The 30 wt% plasticezed matrix 

spun the best out of all formulations. This can be explained by the pronounced effect the 

plasticizer has on lowering the viscosity at the spinning temperatures as shown in flow 

characterization (Figure 3-3). Fibers from all matrices were collected continously on a 

spool. The winding speed needed to be adjusted based on the material viscosity.  For 

instance, 30 wt. % plasticized PET was collected at 130 meter/min compared to 10 wt. % 

plasticized matrix at 80 meter/min. These parameters will affect the mechanical 

performance of the fibers. 

Thermal analysis by DSC (Appendix B, Figure B-2) shows interesting thermal behavior 

of the fibers. The first heating thermogram (Figure B-2a) shows early relaxation around 

50°C for all samples that started at lower temperature for the 30 wt. % TOFA content PET 

fibers. The relaxation was followed by a cold crystallization around 100°C and melting 

behavior at 240°C. Melt-spinning process may have induced meta-order structure 

because of high chain alignment. In Figure B-2 b and c, the fibers behave more like their 

starting matrices showing recrystallization and melting peaks and similar shifts in their 

peak temperatures as reported in Figure 3-1 a and b.  

The single fibers were isolated for tensile testing. The results are reported in Table 3-2. 

All fiber groups showed adequate tensile performances (tensile strength of 29-38 MPa, 

Tensile modulus 2.7-2.8 GPa and elongation at break of 20-36 %). It is important to recall 

that a limitation of our setup and the  viscosity difference between the matrices made it 

impossible to produce the fibers using the same processing conditions, which affected 

the tensile properties of the fiber generated. For example, attempt was made to collect 

the filaments at a higher speed as possible which is critical to alignment of the polymer 

chains in the fibers and influences the strength of the fibers.  However, PR30, which was 

collected at higher speed, did not have the highest tensile strenght. Defects created by 

large amount of TOFA could be the reason for the weaker tensile strenght. Also PR30 did 

not have the smallest fiber diameter. This suggests that a lower recrystallization 

temperature is affecting the 30 wt. % plasticized matrix overall fiber diameter. The 

performance of fibers displayed here could have improved if annealled at lower 

temperature before mechanical testing.  Morphological evaluation of the fiber using SEM 

(Figure 3-5) shows longitudinal surface of the fibers. It is evident that the 10 wt. % TOFA 

plasticized PET has a small fiber diameter and very fine fibers were observed. The fibers’ 

surfaces were not smooth and uniform as desired, which could be caused by the die 

capillary or temperature set up.   
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Table 3-2. Mechanical properties of the plasticized fibers. 1 

 

1 Standard deviations are shown in parenthesis 

 

 

 

 

Figure 3-5. SEM micrographs of fibers from (a) Recycled PET/10 wt.% TOFA, (b) 

Recycled PET/20 wt.% TOFA and (c) Recycled PET/30 wt.% TOFA. 

 

 

 

Composition (wt. %) Properties 

PET TOFA 

Fiber 

diameter 

(micron) 

Tensile 

strength 

(MPa) 

Modulus 

(GPa) 

Elongation 

(%) 

90 10 36 (3.5) 38 (6.3) 2.7 (0.4) 20 (4) 

80 20 46 (9.1) 29 (2.9) 2.8 (0.6) 36 (6) 

70 30 42 (5.3) 32 (3.4) 2.7 (0.5) 32 (12) 



62 
 

3.4. Conclusion 

We have identified renewable tall oil fatty acid, a by-product of the Kraft paper making 

industry that uses pine trees, to plasticize polyester waste that would have ended up in 

landfill and caused an environmental hazard. The addition of TOFA induced changes in 

structure and morphology of the post-industrial PET. The melting temperature, 

recrystallization temperature, and Tg were shifted to lower temperatures because of 

increased chain mobility demonstrated by thermal and rheology analysis.  The polymer 

blends were used to generate continuous fibers with acceptable tensile properties 

regardless of the processing set-up. For example, a 10 wt.% TOFA-loaded PET (the least 

plasticized one) could be spun into filaments with higher strength; however, these 

filaments made from the most plasticized compositions (20 and 30 wt.% TOFA), 

crystallized quickly and formed the largest diameter filaments. The developed blends 

obtained from manufacturing waste showed thermal and flow behaviors that can expand 

their end use applications and create revenue from waste materials. In summary, TOFA 

shows a potential as a renewable and cost-effective plasticizer for post-industrial PET 

wastes.  
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Figure B-1. FTIR spectra of TOFA, neat PET and their blends with different renewable 

plasticizer content (from 10 wt.% to 30 wt.%). 

 
 
 
 

 

Figure B-2. DSC thermograms of the fibers spun from plasticized PET matrices. (a) The 

first heating cycle, (b) the consequent cooling cycle, and (c) the second heating cycle 

indicating similar characteristics of the bulk samples. 
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CHAPTER 4  

CONTROLLING LIGNIN DISPERSION AND INTERFACIAL INTERACTIONS IN 

RECYCLED POLYESTER RENEWABLE COMPOSITES 
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Abstract 

Brittle lignin oligomers, isolated from plant biomass, need a low-melting tough host 

polymer matrix to form a rigid and high-performance renewable material. In this work, we 

demonstrate controlling lignin phase dispersion and interfacial interactions in softened 

recycled polyethylene terephthalate (PET), a polyester matrix, using a simple melt-

blending technique. To avoid lignin degradation and devolatilization during 

amalgamation, it was thermally treated. Tall oil fatty acid was used to enable PET 

processability at low enough temperature to accommodate lignin without charring. 

Chemical analysis reveals reduction of aliphatic hydroxyl content from 2 mmol/g to 1.63 

mmol/g and an increase of total phenolic hydroxyl moieties from 5.86 to 6.64 mmol/g, and 

cleavage of β-O-4 ether linkages due to thermal treatment. Structural transformation of 

lignin macromolecules during heat treatment was further confirmed by an increase in 

molar mass and improved thermal stability. Interfacial interactions between lignin and 

PET were assessed from mechanical properties and thermal analyses. Thermal 

treatment not only helps to improve the stability of lignin but also reduces dispersed lignin 

domains via favored interfacial interactions with PET matrix. 

 

KEYWORDS: renewable polymer, recycled PET, thermal treatment of lignin, interfacial 

interactions 

4.1. Introduction 

Conservation of petrochemicals and utilization of wastes and renewable materials are 

essential to avoid industrial pollution [1]. Proposed reliable solutions include usage of 

materials made from renewable sources and development of value-added products from 

wastes [2]. In this perspective we propose intermingling of post-consumer polyethylene 

terephthalate (PET) waste and lignin, currently considered as waste or cheap power 

source, to produce a new class of sustainable polymeric materials.  This creates a win-

win solution by adding value to renewable resources, spent and recycled materials, and 

curtailing environmental concerns.   

PET is a semi-crystalline thermoplastic polyester broadly used in packaging industries. 

Wastes generated during manufacturing and consumption of PET are detrimental to the 
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environment because PET lacks biodegradability [3]. Thus, recycling these wastes is 

desired for environmental protection and to generate additional revenue streams. 

Recycled waste PET is used in construction, packaging, and composite applications. For 

example, recycled PET is used readily in structural concrete reinforcement, where crack 

control and enhancement of ductility are valuable [4, 5]. Recycled PET is also used to 

develop new materials through blending with other polymers [6-9]. Most blends are 

immiscible at molecular levels due to unfavorable interfacial tension between the 

components and often require the addition of a compatibilizer. 

Blends of PET and lignin were evaluated as an alternate route in the efforts of lignin 

valorization to derive thermoplastic/lignin alloys [10-16]. Unfortunately, only moderate 

interactions and a downward trend of the tensile strength as a function of the amount of 

lignin loading were observed. Therefore, in most cases, lignin was modified to introduce 

functional moieties that favor strong interactions between the components. Typically, 

properly tailored interfacial interactions, either by chemical route or by addition of 

compatibilizer, drastically improve the dispersion of fine homogenous lignin domains that 

is valuable for performance enhancement of the blends. In that regard, esterification is 

often used as a lignin modification route [17, 18]. The additional step increases cost and 

creates a need for chemical disposal, which constitutes an inherent disadvantage for the 

new polyester-lignin blends for industrial adoption. 

Most of the above reports on PET-lignin blends claim full miscibility, partial miscibility or 

total immiscibility between lignin and the host matrix with widespread variations in 

structures and properties based on microscopy, differential scanning calorimetry (DSC), 

and Fourier transformed infrared (FTIR) spectroscopy. Yet very little information is 

available on process engineering of the blends. Due to the high melting temperature 

(~260°C) of PET, choosing appropriate blending temperatures for PET/lignin blends is 

important to avoid lignin degradation during mechanical blending. Jeong  [14] reported 

mixing temperature of 170°C for blends of lignin and synthetic polymers including PET, 

which is nearly impossible in the case of PET. Temperature setup as high as 265°C were 

used elsewhere [10]. In general, the rheology of the blend components impacts 

processing and phase behavior of the resulting PET/lignin blends. 

The scope of this study lies within usage of melt-based blending techniques to develop 

partially renewable polymer blends of post-manufacturing PET waste and an organosolv 

lignin, a low-priced natural polymer obtained from biomass without chemical modification. 

In general, normal processing temperatures (270°C to 280°C) of post-manufacturing PET 

are deemed detrimental for lignin amalgamation. For this reason, lignin can be thermally 

treated to remove low molecular weight volatile materials and improve its heat resistance 

during blending. It also helps to avoid devolatilization that negatively impacts the blend 

morphology (by creating porosity) and properties. Based on our previous experience 

(Chapter 3), a renewable plasticizer (Tall oil fatty acid - TOFA) at 10 wt. % relative to PET 

was added to help soften PET chains and to reduce its melting temperatures. TOFA is 
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another co-product of paper industry and plant-derivatives used here in combination with 

the recycled PET and lignin for preparation of lignin thermoplastic alloys that are 

malleable and reprocessable. Combining thermal treatment with plasticizing permits 

appropriate choices in mixing temperature, to control dispersion of lignin, and associated 

promotion of interfacial adhesion that are necessary to create higher performance 

sustainable composites of lignin. In summary, this study involves adept characterization 

of lignin, its structural transformation during thermal treatment followed by an assessment 

of interfacial interactions of lignin in PET matrix, and subsequent correlation to 

morphology and mechanical properties of partially renewable PET/lignin blends.

4.2. Experimental section 

4.2.1 Materials. 

Thermoplastic polyester PET was received from Eastman Chemical USA. It is scrap from 

the resin manufacturing facility and supplied as white ground plastic. Melt flow rate (MFR) 

measured in our laboratory is 55g/10 min at 280°C at 2.16Kg applied force. The PET was 

dried under vacuum at 130°C for 12 hours to avoid hydrolytic degradation during melt 

processing. Organosolv hardwood lignin (L) was provided by Lignol Innovations, Canada. 

The lignin melts fully at 147°C and flows at 163°C (Fisher Scientific melting point tester). 

The lignin was dried at 60°C for 8 hours. The tall oil fatty acid (TOFA) was acquired from 

Westvaco Chemicals, Charleston SC. It is a Westvaco L-5 Tall oil fatty acid. The 

specifications of the TOFA were reported as: Acid number (min 190), rosin acids (max 

5%) and color or Gardner (max 7). 

4.2.2. Lignin thermal treatment and characterization. 

The lignin (L) was thermally treated in a vacuum oven at 200°C for 60 minutes to improve 

its thermal stability. The thermally treated lignin is identified as LHT. Both as-received L 

and LHT, were characterized using Gel permeation chromatography (GPC) to evaluate 

molecular weight and molecular weight distribution (see Appendix C).  Functional features 

were characterized and quantified by 31P NMR and 2D 1H−13C HSQC NMR spectroscopy 

using preparation and analysis methods previously reported [19-21]. Thermogravimetric 

analysis was used to study thermal stability of the lignin in a nitrogen atmosphere from 

100°C to 800°C at 10°C/min after a drying step at 100°C for 20 min. 

4.2.3. Blend preparation. 

Blends of recycled PET and lignin at 10, 20 and 30 wt. % lignin loading of both as-received 

lignin (L) and thermally treated lignin (LHT) were prepared respectively, with 10 wt.% of 

renewable plasticizer relative to the PET weight at 240°C. A Haake MiniLab co-rotating 

twin extruder (Thermo Scientific) with screw length of 110 mm was used at screw rotation 

speed of 30 rpm. In a different setup, the extruder was fitted with a die to generate 

monofilament of 0.20 to 0.40 mm diameter. The partially renewable blends are identified 
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as PETPL/10L, where 10 wt.% L was added and PETPL/30LHT, where 30 wt. % LHT were 

added respectively. All neat PET filaments used in this study were generated at 280°C 

and used as reference.  

4.2.4. Thermal analysis.  

A differential scanning calorimeter (DSC Q2000, TA Instruments) was used to determine 

the thermal transitions of the control PET and its lignin-derived blends. Samples with 

mass of approximatively 3-4 mg each were loaded in hermetic pans for measurements. 

A cycle of heating-cooling-heating from -50°C to 300°C at 10°C/min and an isothermal of 

2 min after first heating were used. Thermal decomposition of the blends was evaluated 

using thermogravimetric analyzer (TGA Q50, TA Instruments) under oxidative 

atmosphere from 100°C to 600°C at 20°C/min after a short drying step.  

4.2.5. Scanning electron microscopy and morphology analysis. 

A Zeiss EVO MA 15 electron scanning microscope was used to obtain micrographs of the 

cryo-fractured surfaces of the blends. The samples were kept in 1M NaOH solution for 20 

min at 80°C after cryofracture before SEM analysis to remove lignin phases from the 

surface. Washed and dried samples were coated with gold to avoid charging when 

images were collected. Images were collected at an operating voltage of 20 KV.  

4.2.6 Tensile and dynamic mechanical testing. 

Monofilaments of control PET and its lignin-derived blends were tested using an Instron 

5943 equipped with Bluehill3 software and pneumatic side action grip. The crosshead 

speed was to 15mm/min and the filaments cross-sectional diameters were used for 

calculation of cross-sectional area and applied stress. Dynamic mechanical analysis 

(DMA) measurements were carried out on the monofilaments (diameter 0.20 - 0.40 mm 

depending on the sample) at 0.1% strain rate, discrete frequencies of 1, 10, and 100Hz, 

and between 30°C and 150°C temperature window scanned at 3°C/min.  

4.2.7 Rheological evaluation. 

The rheological properties were analyzed using the Discovery Hybrid rheometer (DHR-2, 

TA instruments). All measurements were carried in the linear regions at 3% strain in 

nitrogen atmosphere. Frequency sweeps from 100 to 1 rad/s at different temperatures 

were used to generate master curves at 240°C and 250°C reference temperatures. 

4.3. Results and discussion 

4.3.1. Lignin structural transformation. 

Lignin has gained valuable importance recently in preparation of a new class of renewable 

thermoplastic elastomeric materials [22, 23]. Lignin is an excellent renewable feedstock 

for manufacturing of environment-friendly materials because of its multifunctional nature 
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and associated chemistries. Here, lignin was thermally treated at 200°C under vacuum 

for 60 minutes to avoid thermal decomposition during blending with recycled PET. 

Detailed insight into the microstructural transformation induced by thermal treatment is 

important for the final properties of the manufactured blends. 31P NMR and 2D HSQC 

NMR were used to identify and quantify the chemical group profiles of both the as-

received and thermally treated lignins.  

Phosphorylation of OH groups in lignin allows quantification of different OH moieties of 

lignin by 31P NMR analysis. The 31P NMR spectra with chemical shifts and microstructural 

assignments are shown in Figure 4-1, whereas the amount of OH groups determined from 

the spectra is summarized in Table 4-1. Thermal treatment decreased the aliphatic OH 

content of lignin. L has the higher amount of aliphatic hydroxyl (2.01 mmol/g) compared 

to LHT (1.63 mmol/g). This indicates that during thermal treatment, structural 

transformation of lignin starts with dehydration which eliminates the side chain OH groups 

[24]. The total amount of phenolic OH increased after thermal treatment, however, the 

carboxylic group content remained the same. L is an organosolv-extracted hardwood 

lignin and is expected to have phenolic syringyl (S-OH) and guaiacyl (G-OH) with little to 

no p-hydroxyphenol (H-OH) [19, 25]. The results are in accordance as these two groups 

are higher than the H-OH groups. However, thermal treatment introduced an increase of 

S-OH, G-OH, and H-OH groups. For LHT, the condensed and noncondensed phenol 

content increased as well. Possible cleavage of β-O-4 linkage associated with S and G 

occurred during heat treatment.  

Two regions of the 2D HSQC NMR spectra analyzed are shown in Figure 4-2. Cross peak 

assignments and corresponding inter-unit linkages are available in Figure C-1 and Table 

C-1 (Appendix C). The regions possess similarities between the spectra except for a few 

signals. The cross peaks corresponding to Cα-Hα in β-O-4’ substructures δC/δH 71.9/4.9 

and Cβ-Hβ in β-aryl ether (β-O-4) substructures δC/δH 86.3/4.15 in syryngyl units were 

significantly reduced or disappeared after thermal treatment. The C5-H5 and C6-H6 in 

guaiacyl units were also reduced. This indicates that β-O-4’ and β-O-4 aryl ether bonds 

cleaved during at the thermal treatment and confirms the 31P NMR results discussed 

above. The β-O-4 linkages are easily altered by heat [26] as discussed. The expectation 

is that ether radicals and phenolic radicals will result from these cleavages and react 

among themselves to initiate crosslinking reactions (condensation) or remain available 

for further interactions during melt blending of lignin with the engineered polyester. 

However, phenolic hydroxyls are free radical scavengers and are susceptible to find these 

radicals for reactions among the lignin. The possibility of condensation reactions 

occurring among the lignin free radicals generated during thermal treatment explains the 

increase of S-OH, G-OH, and H-OH groups after thermal treatment in LHT.  

Molecular mass and its distribution for both lignins obtained by GPC indicate the effect of 

thermal treatment at 200°C on structural transformation of lignin. GPC results show 

increase in Mn, Mw and Mw/Mn after thermal treatment. L was found to have Mn = 890, 
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Mw = 1486, and Mw/Mn = 1.67, while LHT had Mn = 1103, Mw = 1924, and Mw/Mn = 1.75. 

The increased of average molecular weight is the result of condensation reactions that 

occurred during thermal treatment. Evidence of the reactions are found in products 

features detected by 31P NMR and 2D HSQC NMR. Thermal behaviors analysis by DSC 

agrees with these findings as glass transition temperature of lignin increased from 86°C 

to 97°C after thermal treatment (Appendix C Figure C-2). The degree of crosslinking was 

mild; otherwise, pronounced crosslinking would have enlarged the macromolecules to 

higher range. For example, LHT would have had higher molecular weight and reduced 

viscosity. The fact that LHT still flows at ~ 165°C is an evidence of mild crosslinking.  This 

also suggests that oxidation was avoided in vacuum. A treatment duration of 60 minutes 

should have been enough to advance the condensation reactions when conducted in an 

oxidative atmosphere [27]. 

Thermal treatment improved thermal stability of the lignin through removal of volatiles, 

dehydration, crosslinking in aromatic structures and increasing the degree of 

condensation [24]. As-received lignin started to degrade at 185°C. Thermal treatment 

shifted the onset of degradation to higher temperatures to accommodate melt mixing with 

PET at 240°C. TGA thermograms of L and LHT are shown in Figure C-3 (Appendix C). 

Weight reduction temperatures recorded at 5% weight loss was 247°C for L compared to 

265°C for LHT. The derivative weight thermogram of as-received lignin has a shoulder 

from 143°C to 258°C that disappeared after thermal treatment by removing low molecular 

weight volatiles and cleaving thermal liable ether bonds. Overall, thermal treatment under 

vacuum only changed lignin structure slightly to improve its thermal stability. This avoids 

significant oxidative degradation reactions that are detrimental to keeping the lignin 

malleable. In addition, the soak time of 60 minutes was good enough to generate lignin 

that is thermally stable and malleable for amalgamation in engineered polymer matrices.     

 

Table 4-1. Functional groups of the L lignin and thermally treated lignin (LHT) as 

determined by the quantitative 31P NMR method (mmol/g). 

 syringyl OH guaiacyl OH  

Samples 
aliphatic 

OH 
Ca NCb Ca NCb 

p-hydroxy 

phenol OH 

total phenolic 

OH 

Carboxylic 

group 

L 2.01 0.39 2.46 0.80 1.79 0.42 5.86 0.45 

LHT 1.63 0.35 2.73 0.96 2.04 0.56 6.64 0.46 

     a Condensed. b Noncondensed 
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Figure 4-1. Functional groups identified by quantitative 31P NMR measurements after 

phosphorylation of lignins L and LHT. 
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Figure 4-2. Two-dimensional 2D NMR heteronuclear single quantum coherence (HSQC) 

spectra of both L and LHT lignins. The top two images are the aliphatic oxygenated side 

chain region (δC/δH 90-150/2.5-6) and the bottom two images represent the 

aromatic/unsaturated region (δC/δH 90-150/5-8). 
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4.3.2. Thermal and morphological properties of the compositions. 

Thermal transition temperatures, calorimetric values, and degree of crystallinity computed 

from cooling and second heating of DSC thermograms are shown in Appendix C (Table 

C-3). The results suggest that addition of TOFA plasticizer reduces the melting 

temperature of the neat PET. The melting temperature of PET shifted from 247°C to 

239°C in presence of 10 wt.% TOFA. Plasticizers are small molecular weight materials 

that are added to help soften the rigid amorphous phase of polymer. It enhances 

segmental mobility by depressing the glass transition temperature (Tg) of the amorphous 

phase of the host polymers. The effect of the plasticizer on recrystallization during cooling 

is observed as the recrystallization temperature shifts from 208°C to 202°C. 

Addition of lignins (L and LHT) in all compositions further reduces the melting temperatures 

and decreases the heat of fusion. This is evidence for reduction in crystallite sizes in PET 

with incorporation of lignin in the blends. Also, the difference between the behavior of L 

series alloys compared to LHT series alloys suggests variance in the degree of interactions 

between the lignins and PET. In theory, the addition of oligomeric lignin increases the free 

volume in the PET matrix which led to the plasticization effect. Additionally, lignin addition 

shifts the recrystallization temperature (Trec) of PET to lower temperatures. Shift of Trec 

and ΔHrec suggests that lignin is decelerating the recrystallization and crystal growth 

during cooling. Conclusions from these results show that interactions exist between both 

lignins and PET. These interactions could be the hydrogen bonding and π electron 

interactions. The degree of crystallinity (χc) was computed using Equation S1 (Appendix 

C) and first heating curve calorimetric values. Increasing lignin content increases χc in the 

L series but it decreases with increases in the LHT content. It implies that different degrees 

of interactions occur between the PET and the as-received lignin versus the PET and the 

thermally treated lignin. 

Microscopic analysis of cryo-fractured surfaces of the blends (Figure 4-3) shows that the 

morphologies depend on the nature of lignin at 30 wt. % lignin contents in the blends. The 

samples were etched in 1 M solution of NaOH to dissolve lignin from the cryofractured 

surface before SEM imaging. In Figure 4-3a, the blend of PET and as-received lignin (L) 

appears as less concentrated but larger lignin droplets in PET matrix. Lignin droplet sizes 

vary from 1 to 2 micrometers. However, the thermally treated lignin-derived PET blend 

shows formation of homogenously dispersed cavities after removal of lignin 

macromolecules (0.2 to 2 micrometer). Controlling lignin-lignin intermolecular interaction 

through thermal treatment by decreasing aliphatic hydroxyl helps avoid coalescence of 

the lignin phase during mixing in the engineered polyester matrix. It has been reported 

that controlling microstructure and dispersion of lignin in thermoplastic blends is important 

for improved performance [28].  
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Figure 4-3. Scanning electron micrographs of cryo-fractured and NaOH etched surfaces 

of PETPL/30L (a) and PETPL/30LHT (b) blends. 

 

4.3.3. Interfacial interactions-performance relationships.  

Mechanical properties. Amalgamation of lignin in thermoplastics often reduces tensile 

strength. This is primarily because the lignin forms large domains in thermoplastic 

matrices causing defect centers. However, lignin was reported to impart rigidity and 

stiffness in some systems [22]. Improving overall performance of the blends relies on the 

level of interactions between the lignin and the host polymer molecules. Figure 4-4a 

illustrates the relationship between the tensile strength presented as a ratio of tensile 

strength of the lignin-derived composites over the tensile strength of the matrix (σc/σm) as 

a function of weight fraction of lignin in the blends. The (σc/σm) diminishes with increasing 

lignin amount. Obviously, weak interactions between the PET and lignin generate large 

lignin domains in the blends (Figure 4-3a) that affect performance of the blends 

negatively. Also, there is a possibility of thermal degradation of lignin during mixing at 

240°C leading to inferior performance. In this study, we find that the thermal pre-treatment 
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improves lignin stability and helps to improve lignin dispersion in the PET matrix and, 

thus, the mechanical properties. Although thermal treatment increases the molar mass of 

LHT, mechanical shear during blending helps to break the aggregates of lignin 

macromolecules into finer droplets compared to the system consisting of original lignin, 

L. Complete performance indices of tensile modulus (EC/Em), elongation (ɛc/ɛm) and 

(σc/σm) are shown in Appendix C (Figure C-4). The addition of lignin increased the 

modulus as expected in filled materials due to the natural rigidity of lignin 

macromolecules, however, elongation was reduced because of the inherent brittleness 

of the added lignin. Nonetheless, low lignin-loaded compositions show slightly improved 

performance of the PET matrix combined with LHT compared to its control counterparts. 

The composition dependence of the mechanical properties somehow limits our ability to 

draw a definitive conclusion on the interactions in each blend. We observe, however, that 

better interactions exist between the LHT and the PET compared to L blends. 

Nevertheless, the results of L series imply that some level of interactions is also occurring 

between L and PET, possibly competing hydrogen bonding between the lignin OH and 

PET end groups (ester and ethylene groups) and π-π interaction between aromatic 

groups of lignin and PET.  

Figure 4-4b shows natural logarithm of reduced tensile strength as a function of volume 

fraction of lignin. The reduced tensile strength is described by Equation (1) [29]. The plot 

is used for quantitative estimation of interaction using the composition dependence of 

strength model. The model relates the interfacial interactions, structure and the 

mechanical properties of the blends. It is expressed to reflect the effect of volume fraction 

(φ) of the dispersed component, and the load bearing capacity of the dispersed lignin 

constituent (B), which is dependent on interfacial adhesion [30, 31].  

 

                                              𝜎𝑇𝑟𝑒𝑑 =  𝜎𝑇
1+2.5𝜑

1−𝜑
  =  𝜎𝑇0 exp (𝐵𝜑)                                   (1)   

                                                                              

Where σTred is the reduced tensile strength of the blend, σT and σT0 are the tensile strength 

of the blends and the matrix, respectively.  

The results are summarized in Table 4-2. It reveals that parameter B, which is the slope 

of the linear correlation applied to the data, increased from 0.79 to 1.21 when the 

thermally treated lignin LHT was used instead of L highlighting divergent interfacial 

adhesion.  Thermal treatment was beneficial to improve thermal stability, control lignin-

lignin intermolecular interactions and to control lignin-PET interaction likely through a 

combination of hydrogen bonding and π electron interactions that is clearly different in 

the composites based on as-received lignin (L). Calculated tensile stress of the matrix 

(σT0) for both cases (L and LHT series) agrees well with the measured value.  

 

 

 



79 
 

 

 
 

 
 

Figure 4-4. Ratios of tensile strength of lignin-loaded matrices over those of neat PET at 

different lignin weight fraction (a), and the natural logarithm of reduced tensile strength as 

a function of volume fraction of lignin (b). 

 
 
 

Table 4-2. Quantitative estimation of interactions computed from mechanical properties 

of the blends.  

Lignin  σT0 (MPa)   

 Treatment Measured Calculated b B R2 

L As-received 

54.19 (3.58) a 

54.46 0.79 0.978 

LHT Heat treated 54.91 1.21 0.981 

           a standard deviation is shown in parenthesis. 
               b Computed from the y-intercept of lnσTred vs. volume fraction of lignin plots. 
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Dynamic mechanical analysis. Loss tangent (tan δ) peaks for PET and its lignin-based 

alloys at 10 Hz frequency are shown in Figure 4-5. Neat PET shows a narrow tan δ peak 

representative of its glass transition temperature Tg at 101°C. This shift is likely attributed 

to the presence of TOFA at 10 wt. % of PET in each blend. The tan δ peaks became 

broader in the presence of lignin in PET matrix and increase in lignin content increases 

the Tg. When lignin L is used, moderate interactions with PET matrix are expected. The 

Tg is 86°C for a 10 wt.% lignin loading in plasticized PET; use of LHT makes better 

dispersion and interactions with PET matrix and thus, a slight increase in Tg is observed 

(89°C). Similar observations were made in the case of higher lignin loading (30 wt.%) in 

blends.  

The loss tangent data represents the energy dissipated by the materials under cyclic load. 

Application of the Arrhenius equation to the loss factor (tan δ) peak temperature as a 

function of frequency data provides quantitative evaluation for the relaxation behavior of 

PET phase in the blends. In this instance, the Arrhenius equation can be expressed in 

the following form: 

 

                                       log 𝑓 =
−𝐸𝑎

(2.303𝑅𝑇)
+ log 𝐾                                                  (2) 

 

here T is the absolute temperature at which the loss maximum is observed at frequency 

f, R is the gas constant, K is an arbitrary constant, and Ea is activation energy associated 

with glassy to rubber transition or relaxation. Table 4-3 shows computed Ea data for neat 

PET (479 KJ/mol). Addition of TOFA reduced the activation energy in PET. However, the 

thermally treated lignin alloys have higher Ea compared to the as-received lignin 

compositions in TOFA plasticized PET; although, the increase in Ea becomes marginal at 

high LHT content in the blend. Two phenomena are occurring simultaneously. First, the 

plasticizer is helping to depress Tg while rigid lignin hinders segmental motion of PET. 

Treated lignin LHT has a higher degree of interaction with PET matrix and thus restrains 

the flexibility of the PET phase. At high LHT loading, however, the advantageous effect of 

improved dispersion on relaxation of PET matrix diminishes. 

4.3.4. Processing engineering and degradation parameters of partially renewable blends. 

PET is a semi-crystalline polymer. Its normal processing temperatures is between 270°C 

to 280°C. Amalgamation of lignin with PET requires manipulating the PET thermal 

behavior to prevent degradation of lignin. Our approach to address this involves using a 

renewable plasticizer to soften PET matrix. In practice, low molecular weight plasticizers 

are often added to increase the flexibility at room temperature and to improve processing. 

All blends studied in this report were mixed at 240°C, a processing of PET that was 

enabled by the addition of plasticizer. 
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Figure 4-5. Loss tangent peak of PET, plasticized PET and its derived blends with L and 

LHT at in different compositions at 10 Hz frequency. 

 
 
 
Table 4-3. Temperatures corresponding to the loss tangent peak (Tg) at different 

frequencies from the dynamic mechanical analysis, and the activation energy (Ea) 

associated with thermal relaxation at Tg.  

 

 Neat PET PETPL PETPL/10L PETPL/10LHT PETPL/30L PETPL/30LHT 

log 
f 

(Hz) 

Tg 

(°C) 
Ea 

(KJ/mol) 
Tg 

(°C) 
Ea 

(KJ/mol) 
Tg 

(°C) 
Ea 

(KJ/mol) 
Tg 

(°C) 
Ea 

(KJ/mol) 
Tg 

(°C) 
Ea 

(KJ/mol) 
Tg 

(°C) 
Ea 

(KJ/mol) 

0 92  70  71  74  80  83  

1 101 404 81 270 86 180 89 200 98 195 101 198 

2 104  87  98  98  104  107  
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In thermoplastic matrix-lignin systems, compatibility and dispersion of lignin are desired 

for enhanced mechanical properties [32]. Often, partial or full miscibility help improve the 

properties of the blends. Our results show some level of affinity between the L lignin and 

PET. However, such interactions are improved when LHT is used. Miscibility could have 

been increased by raising the melt-mixing temperature, but that approach would degrade 

the lignin, cause its charring and subsequent phase separation during shear mixing. 

Viscous heating is another cause of lignin degradation during melt-mixing. Thus, 

rheological behaviors of the components and the blends are important. Ultimately, the 

process depends on the molecular structures of the components. Therefore, differences 

in lignin molecular structure are expected to affect rheological behaviors of the resulting 

polymer blends.  

Influence of lignin molar structure on flow characteristics of the PET blends is illustrated 

in Figure 4-6. The angular frequency (ω) dependence of the complex viscosity (ƞ*) and 

the storage modulus (G’) were used to study flow characteristics of neat PET, its 

plasticized blend at 10 wt. % plasticizer amount (PETPL), and its lignin derived blends at 

high-lignin-loading (30 wt. %) at reference temperatures of 240°C and 250°C. 

Plasticization outcome is clear as the viscosity decreased at both temperatures with 

increasing frequency. The materials stiffness at 240°C is higher compared to its stiffness 

at 250°C (Figure 4-6c and d). Addition of lignin further decreases the viscosity and the 

storage modulus at both reference temperatures, suggesting a role of viscous oligomeric 

lignin on plasticization of the PET.  Interestingly, the blend with thermally treated lignin 

(PETPL/30LHT) has higher viscosity and storage modulus than the as-received lignin blend 

(PETPL/30L). As discussed earlier, this is due to the homogenous dispersion of LHT in PET 

(as shown by microscopy), and possible enhanced interfacial interactions through 

combination of hydrogen bonding and - interaction of lignin with PET chains and 

restrained chain disentanglement along with retardation of segmental relaxation (in 

accordance to DMA data around the glass transition temperature Tg of the blends). 

Thermogravimetric analysis was used to evaluate thermal degradation behavior of the 

blends in oxidative atmosphere. Mass loss data collected at 20°C/min scanning rate are 

shown in Figure C-5 in Appendix C. The results are summarized in Table 4-4. Addition of 

lignin reduces the temperature corresponding to 5% mass loss (Ti) and the onset 

temperature (Td) but increases the derivative weight peak temperature. Addition of lignin 

improves net degradation of the blends and confirms the effect of thermal treatment of 

lignin on the thermal stability of the blends. LHT blend is marginally more stable at higher 

temperatures than the L blend. Additionally, mass at 500°C increased with the addition of 

lignin showing the protective effect of lignin at higher temperatures. 
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Figure 4-6. Frequency-dependent complex viscosity (ƞ*) at Tref = 240°C (a) and 250°C 

(b) and Frequency-dependent storage modulus (G’) at Tref = 240°C (c) and 250°C (d) of 

recycled PET, its plasticized resin (PETPL), and its lignin-derived blends (PETPL/30L and 

PETPL/30LHT). 

 
 

Table 4-4. Thermal degradation parameters of neat PET, PETPL/30L and PETPL/30 LHT. 

 PET PETPL/30L PETPL/30LHT 

5% weight loss Temp. Ti (°C) 391 290 303 

Onset temperature Td (°C) 400 388 390 

DTG peak temperature (°C) 436 438 440 

Mass at 300°C (%) 99.9 93.9 95.3 

Mass at 500°C (%) 14.3 27.1 27.6 
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4.4. Conclusion 

We have successfully demonstrated that lignin dispersion and interfacial interaction can 

be controlled in recycled PET/lignin alloys through thermal pretreatment of lignin. The 

addition of renewable plasticizer at 10 wt.% relative to PET helped to soften PET below 

it normal processing temperature to avoid further degradation of lignin during mixing. 

Thermal treatment of lignin decreases the aliphatic hydroxyl group, minimizes lignin-lignin 

intermolecular interactions and improves lignin thermal stability. Relative tensile failure 

stress of lignin-PET alloys with respect to that of the PET matrix (σc/σm) improves by 15% 

(from 0.49 to 0.56) by thermal pretreatment of lignin for the composition with 30 wt. % 

lignin. Computed interfacial interaction of the dispersed lignin with the PET matrix 

improves significantly from 0.79 to 1.21 when thermally pretreated lignin is used.  This 

clearly shows that combined interactions (hydrogen bonding and π electron interactions) 

are enhanced after heat treatment of lignin. Dynamic mechanical analysis and rheology 

study confirm balanced interactions between the PET and heat-treated lignin as 

oligomeric lignin is known to enhance chain disentanglement (shear thinning) and restrain 

segmental motion resulting increased Tg. Our formulations use lignin, a low-cost 

renewable resource, post-industrial PET waste destined for landfills, and renewable 

plasticizer TOFA, a low-priced byproduct from pulping industries to develop a renewable 

alloy with well dispersed lignin domain and moderate mechanical performance. This work 

highlights development of renewable thermoplastics based on lignin and sustainable 

industrial waste PET, offering a path for high-volume utilization of lignin in a value-added 

form.  
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Detailed GPC Analysis 

GPC was performed for both L and LHT lignins using a Tosoh EcoSEC gel permeation 

chromatography (GPC) system with a refractive index (RI) detector equipped with a flow 

reference cell. Prior to measurements, lignin was dissolved in THF at a concentration of 

1 mg/mL and filtered using a 0.22 μm membrane. The instrument and reference cell flow 

rates were set to 0.35 mL/min and the analysis was performed at 40 °C. Sample injections 

of 10 μL were separated using two consecutive Tosoh TSKgel SuperMultiporeHZ-M 

analytical columns (4.6 mm I.D., 150 mm length, 5 μm particle size) and a TSKgel 

SuperMultiporeHZ-M guard column using a total run time of 15 min. Evaluation of the 

number-average molecular weight (Mn), weight-average molecular weight (Mw) and their 

ratio (PDI) was complete using in-house polystyrene standard curves in the range of 600-

7.5×106 Da. 

 
31PMNR  

                               

  

               Table C-1 Assignment of hydroxyl groups peaks in 31P NMR spectroscopy. 

Sample name/ mmol per g lignin Assignments, δ (ppm) 

Aliphatic OH 150-146 

S-OH condensed 144.5-143.5 

S-OH non-condensed 143.5-142.25 

G-OH condensed 142.25-141 

G-OH non-condensed 141-138.5 

H-OH 138.5-136.5 

COOH 136-133.5 
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2D 1H−13C HSQC NMR 
 
 
 

 

Figure C-1. Lignin substructures detected by 2D HSQC NMR. (A) β-O-4’; (B) β-5’ 

(phenylcoumaran structure); (C) β-β’ (resinol structures); (G) guaiacylpropane unit; (S) 

syringyl propane unit; (S’) syringyl propane unit with carbonyl at Cα; (H) p-

hydroxyphenolpropane unit [1]. 
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Table C-2. 13C and 1H assignments of the lignin signals in 2D HSQC spectra [2]. 

Label δC/δH (ppm) Assignment 

Bβ 53.1/3.4 Cβ−Hβ in phenylcoumaran substructures (B) 

Cβ 53.5/3.1 Cβ−Hβ in β−β′ resinol substructures (C) 

−OCH3 55.6/3.73 C−H in methoxyls 

Aγ 59.4/3.4 and 3.7 Cγ−Hγ in γ− hydroxylated β-O- 4′ substructures (A) 

Iγ 61/4.1 Cγ−Hγ in cinnamyl alcohol end-groups (I) 

Bγ 63.4/3.6 Cγ−Hγ in phenylcoumaran substructures (B) 

Hkγ 67.5/4.2 Cγ−Hγ in Hibbert ketone structuresb 

Cγ 71.2/4.2 Cγ−Hγ in β−β′ resinol substructures (C)b 

Aα 71.9/4.9 Cα−Hα in β-O-4′ substructures (A) 

X2 73/3.1 C2−H2 in xylan substructures (X) 

X3 74/3.3 C3−H3 in xylan substructures (X) 

X4 75.7/3.5 C4−H4 in xylan substructures (X) 

Aβ 
80.4/4.5, 84.4/4.4 
and 85.6/4.2 

Cβ−Hβ in β-O-4’ substructures (A) 

Aoxβ 83/5.2 Cβ−Hβ in α-oxidized β-O-4′ substructures (Aox) 

Cα 85.5/4.6 Cα−Hα in β−β′ resinol substructures (C) 

Bα 87.7/5.5 Cα−Hα in phenylcoumaran substructures (B) 

T8 94.4/6.6 C8−H8 in tricin units (T) 

T6 99.5/66.2 C6−H6 in tricin units (T) 

T2,6 104.5/7.4 C2−H2 and C6-H6 in tricin units (T) 

S2,6 104.2/6.7 C2−H2 and C6−H6 in syringyl units (S) 

T3 107/7.2 C3−H3 in tricin units (T) 

S’2,6 107.4/7.4 
C2−H2 and C6−H6 in syringyl units with α 
oxidization(S’) 

G2 110.2/6.9 C2−H2 in guaiacyl units (G) 

Fa2 111.5/7.3 C2−H2 in ferulate (Fa) 

G5/G6 
115/6.7 and 
119.7/6.8 

C5−H5 and C6−H6 in guaiacyl units (G) 

Fa6 123.1/7.1 C6−H6 in ferulate (Fa) 

HMF 123.6/7.5 C3− H3 in 5-O-substituted furfurals -like units 

Stα,β 126.6/6.9 Cα−Hα and Cβ−Hβ in stilbene structures (St) 

H2,6 128.2/7.2 C2,6−H2,6 in p-hydroxyphenyl units (H) 

Iα 130.6/6.3 Cα−Hα in cinnamyl alcohol end-groups (I) 

Pca2,6 130.1/7.5 C2−H2 and C6−H6 in p-coumarate (Pca) 

Pb2,6 131.6/7.7 C2−H2 and C6−H6 in p-benzoate (Pb) 

HMF 179/9.6 Cα−Hα in 5-O-substituted furfurals -like units 
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Figure C-2 DSC thermograms of L and LHT in nitrogen atmosphere showing the glass 

transition temperatures Tg. 

 
 

 

Figure C-3. TGA and derivative weight thermograms of L and LHT in nitrogen atmosphere 

showing the effect of thermal treatment on lignin thermal stability. 
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Table C-3 Thermal behavior temperatures, calorimetric values, and degree of crystallinity 

of PET and it lignin derived blends. 

Samples Tm (°C) a ΔHm (J/g) a Trec (°C) ΔHrec (J/g) Χc (%) b 

PET 247 46 208 53 57 

PETPL 239 41 202 49 23 

 

PETPL/10L 237 33 209 44 23 

PETPL/20L 232 32 203 39 31 

PETPL/30L 229 29 198 33 30 

 

PETPL/10LHT 236 36 208 41 30 

PETPL/20LHT 233 29 203 38 23 

PETPL/30LHT 231 24 199 32 20 
a Values obtained from second heating curves   b Computed using first heating curves 

 
 
The degree of crystallinity (χc) was computed using the first heating curves information 

and applying the following equation. 

 

                                                    𝜒𝑐 =
𝛥𝐻𝑚

𝑊𝑓 × 𝛥𝐻100
 ×  100%                                 (S1) 

 

where ΔHm is the melting enthalpy from the first heating curve, Wf is the PET weight 

fraction in each composition and ΔH100 is the theoretical fusion enthalpy of 100% 

crystalline PET (140 J/g) [3] 
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Figure C-4. Ratios of tensile strength (a), tensile modulus (b), and ultimate elongation (c) 

of lignin-loaded matrices over those of neat PET at different lignin concentrations. 

 

 

Figure C-5. Thermal decomposition of PET and it lignin derived blends at 30 wt.% lignin 

contents in oxidative atmosphere at 20°C/min. 
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Abstract 

Lignin structure is highly dependent on its botanical source and isolation methodology. 

Selecting an appropriate lignin structure and functionality for a preferred host matrix 

remains a significant challenge in designing thermoplastic-lignin alloys with superior 

performance. Properties of the blends strongly depend on the interactions between the 

components. Herein, we aim to understand the effect of source-dependent complex lignin 

structure on the molecular interactions and relaxation dynamics in a biodegradable 

polyester, polylactic acid (PLA) matrix. Three lignins isolated from oak, pine, and wheat 

exhibit their signature chemical profiles and compositions. The results show that the 

lignins are different in term of molar mass, purity, thermal stability and composition. Their 

PLA-derived blends’ properties correlate to the lignin features. Hardwood lignin, with the 

highest purity and the lowest aliphatic hydroxyl content, when blended with PLA at 30 

wt.% lignin exhibits tensile strength of 43 MPa and stain at break of 5%, a respective net 

retention of 67% and 74% of neat PLA performance. The performance deteriorates 

significantly when thermally least stable wheat straw lignin was used with PLA for thermal 

shear mixing.  Dynamic mechanical analysis showed that the glass transition behavior 

and activation energy Ea of the blend are mostly dependent on the Tg of the used lignin.  

 

KEYWORDS: lignin chemistry, PLA, thermal stability, chain dynamics, renewable 

polymer blends 

5.1. Introduction

New value-added polymeric materials are being formulated from blends of renewable-

sourced lignin and existing thermoplastics (either biodegradable or not) to compete with 

petroleum-derivative counterparts. It is envisaged that the renewable plastics would 

replace fossil fuel-derived materials in all application fields [1]. Desired amalgamation of 

lignin in the blend formulations has so far been a challenge as most systems show 

diminishing trend in tensile properties as function of lignin loading due to lack of 

compatibility and poor dispersion [2].  
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To overcome the drawback, fundamental researches has been focused on modifying the 

lignin-polymer interface through chemical alteration [3] or assistance of compatibilizers 

[4, 5] to promote interchain interactions and thus to improve adhesion and dispersion.  

The extra step is cost-intensive and creates chemical wastes. In parallel, low-loading of 

lignin is often used (less than 20 wt. %) in the systems [6]. Lignin is known as a renewable, 

low-cost by-product of pulp and biofuel production.  High-volume loading of lignin is 

desired to widen the commercials applications of the new blends and surge widespread 

valorization of lignin, which is still considered as a waste or cheap source for power for 

the industries that extract it.  

The most significant problem that hampers tailoring new class thermoplastic-lignin 

materials is related to lack of homogeneity in accessible (industrial or technical) lignins 

and the complexity of lignin chemistry. Lignin is a “class” or “group” of polyaromatic 

molecules with functionalities that differ by biomass source and isolation method [7, 8]. 

An example of lignin’s variability was highlighted in a recent study where the severity of 

fractionation changed the architectural and physicochemical properties of lignin from the 

same botanical source [9]. In parallel, lignin’s complex chemical structure is also a 

significant bottleneck in the preparation of polymer/lignin blends; additionally, it is difficult 

to predict the properties of the blends. Structural units found in various lignin botanical 

sources are shown in Figure 5-1. For instance, the p-coumaryl alcohol, which is low in 

hardwood and softwood lignin, is chiefly present in lignin from herbaceous crops, such as 

straws and grasses. Softwood lignin from gymnosperms, is almost exclusively comprised 

of coniferyl alcohol, and hardwood lignin from angiosperms is made of varying ratios of 

both coniferyl and sinapyl alcohol. Adding to this variation and complexity, functional units 

such as hydroxyl, methoxyl and carbonyl, arrangement balances lignin’s polarity [10]. 

Therefore, understanding the functional group profile from each biomass species or 

introduced by the separation method is critical for industrialization of new thermoplastic-

lignin materials. 

Success in development of new polymeric materials that are cost-effective and readily 

accessible to all industries, not only relies on lignin chemistry but also on choice of 

polymer host matrices. The goal is to develop thermoplastics for rigid applications. Soft 

rubber matrix [11-13], acrylonitrile butadiene styrene (ABS) [5], polyethylene [14, 15], and 

polystyrene [16] have all been extensively evaluated in that regard. Polyamides and 

polyesters were reported to be more compatible with lignin because they can have 

hydrogen bonding with lignin hydroxyl groups [6]. This motivates us to choose polylactic 

acid (PLA) for this study as PLA is a polyester derived from renewable resources.  PLA 

use in industrial applications has grown recently as it is easy to process, full 

biodegradable and biocompatible, and possesses a combination of high tensile strength 

and modulus [17]. Numerous studies of PLA/lignin blends have been reported. The 

results were mixed as some researchers claimed immiscibility [18, 19] while other 

reported homogenous single-phase blends [20]. Technical lignins used in these reports 
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are Kraft softwood that was methanol fractionated, Indulin AT pine Kraft lignin, and 

cellulolytic enzyme lignin. It is evident that the results were affected by the variability of  

 

Figure 5-1 . Phenylpropanoid monomers of lignin: p-coumaryl (H-type), coniferyl (G-type), 

and sinapyl (S-type) alcohols [11].  

 

the lignin and likelihood that each has distinct chemical functionality that participates in 

the molecular interactions with the host matrix. Lignin functional groups were mentioned 

or discussed in these systems but barely investigated in detail and quantified.  

The goal of this work was to study the molecular interactions in blends of PLA and three 

technical lignins from different botanical sources and means of extraction. To meet this 

goal blends at high-lignin-loading (30 wt. %) were prepared to understand lignin’s 

chemical profiles and their effect on the proprieties of the blends. Organosolv lignin from 

hardwood (OLH), methanol fractionated Kraft softwood lignin (MKS) and methanol 

fractionated organic acid fractionated wheat straw lignin (MOW) were used in this study. 

These fractionated lignins are also melt processable. The functional groups composition 

was characterized by 31P and 2D 1H−13C heteronuclear single quantum coherence 

(HSQC) NMR for each lignin. The results help to elucidate structural features of each 

lignin and the potential of molecular interaction with the PLA matrix.  

5.2. Experimental section 

5.2.1. Materials. 

General purpose PLA 4043D was obtained from NatureWork LLC, USA. It has a melt flow 

rate of 6g/10 min at 210 °C at 2.16 kg applied force. Its relative viscosity measured at 1.0 

g/dL in chloroform at 30°C is 4. The PLA was dried in vacuum at 80C for 4 hours. 

Experimental Alcell hardwood lignin (OLH) produced by organosolv extraction was used. 

Experimental grades of Kraft softwood lignin and organic acid pulped wheat straw lignin 

were further modified with methanol fractionation in this study [21]. Only the methanol 

soluble fractions of the Kraft softwood lignin (MKS) and the organic wheat straw lignin 

(MOW) were used. The lignins were dried at 60°C overnight under vacuum before 

blending with PLA. 

p-coumaryl alcohol  Coniferyl alcohol Sinapyl alcohol  
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5.2.2 Lignin characterization. 

All three lignins (OLH, MKS, and MOW) were characterized using Gel permeation 

chromatography (GPC) to evaluate molecular weight and molecular weight distribution. 

Small fractions of the lignin were dissolved in THF for the analysis. Details of the analysis 

are reported in Appendix D. Functional groups were characterized and quantified by 31P 

and 2D 1H−13C HSQC NMR spectroscopy using preparation and analysis methods 

previously reported [9, 22, 23]. The degree of lignin purity was obtained as the sum of 

acid soluble lignin constituent and Klason lignin which represent the acid-insoluble 

content. The detail of this procedure is reported somewhere else.[24]. 

5.2.3 Blend preparation and compression molding. 

PLA and each technical lignin were melt-mixed at 30 wt. % lignin loading at 180°C. A 

Haake MiniLab co-rotating twin extruder (Thermo Scientific) with screw length of 110 mm 

was used at screw rotation speed of 30 rpm. The extrudates were compression molded 

in rectangular mold using a Carver Hydraulic press at 180°C. Predetermined amount of 

the extrudate was placed in a rectangular mold and pressed for 5 minutes before cooling 

at 10°C/minute.  

5.2.4. Thermal analyses. 

A Differential scanning calorimeter (DSC Q2000, TA Instruments) was used to determine 

the thermal properties of the samples. Samples with mass of approximatively 3-4 mg each 

were loaded in hermetically sealed pans for measurements. A cycle of heating-cooling-

heating from -80°C to 300°C at 10°C/min and an isothermal of 2 min after first heating 

were used. Thermogravimetry was used to study degradation of the lignin under oxidative 

atmosphere from room temperature to 800°C after a short drying step. Dynamic 

mechanical thermal analysis of the blends was performed in an Pyris Diamond DMA 

(Perkin Elmer) using a three-point bending fixture at 2°C/min and amplitude set to 10 

micrometers. The specimen size was 34 mm × 9.35 mm × 2.75 mm. 

5.2.5. Tensile testing and morphology analysis. 

Rectangular specimens for tensile testing were prepared by compression molding. The 

specimens were cut to dog-bone shape based on ASTM D 638 type V and tested on an 

Instron 5567 coupled with Bluehill software. The strain rate was 1 mm/min. The reported 

results are average data of six measurements.  The tensile and cryogenically fractured 

surfaces of the specimens were evaluated by Zeiss EVO MA 15 scanning electron 

microscope.  The surfaces were coated with a thin gold layer before SEM imaging and 

images were acquired at 20 KV. 
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5.3. Results and discussion 

5.3.1. Survey of lignins variability.  

The characteristics of the organosolv hardwood lignin (OLH) and the two-alcohol 

fractionated lignins (MKS, and MOW) are reported in Table 5-1. The results show 

distinctive architectural and physicochemical properties that are direct consequences of 

the pulping method and wood species. For example, OLH produced from organosolv 

pulping process without addition of catalyst, has the highest purity between the three 

lignins.  Extraction method is known to significantly alter the chemical structure of lignin 

mainly due to the differential degrees of cleavage of β-O-4 linkages present in lignin [25, 

26]. It is suggested that lignin purity, structural features, thermal behavior, and molar 

mass distribution are valuable for choosing a lignin suitable for melt-blending with 

thermoplastics, in this case PLA. 2D 1H-13C heteronuclear single quantum coherence 

(HSQC) has been used recently to elucidate ether linkages units and aromatic 

substructures that are helpful for evaluation of processability and degradability of lignin. 

2D NMR spectra of the lignins used in this present work are shown in Figure 5-2. The 

spectra were divided into two regions: an aliphatic oxygenated side chain region (δC/δH 

50-90/2.5-6) and an aromatic region (δC/δH 90-145/6-8). Peaks assignments and 

substructures are summarized in Appendix D (Table D-2 and Figure D-3). The purity of 

the lignin was all higher than 97% except MOW due to the presence of low molecular 

weight insoluble moieties such as sugars.  The aliphatic hydroxyl and carboxylic acid 

contents in MOW are significantly higher than the other samples. Their values were 3.19 

mmol/g and 1.47 mmol/g, respectively.  

5.3.2 Thermal stability.  

Thermal stability of lignin is very important for incorporation in thermoplastics to avoid 

lignin charring during blend preparation.  Additionally, lignin must exhibit melt-

processability or malleability for efficient dispersion in a blend. In Figure 5-3, there is a 

slight weight loss for all lignins up to 180°C due to slow evaporation of moistures or 

residual solvents. Decomposition of lignin starts with dehydration which eliminates the 

side chain OH groups. The main mass loss starts at 200°C with MOW dropping at faster 

rate with a large shoulder. This can be reconciled with the abundance of aliphatic groups 

and carboxylic acids in MOW and potential sugars. It is reported that early decomposition 

in lignin is due to decay of aliphatic groups, carboxylic acids, and volatilization of low-

molecular weight phenols [27, 28].  

2D HSQC NMR spectra reveal difference in chemical features of all three lignins (Figure 

5-2). The results are in accordance to the lignin biomass sources as the hardwood lignin 

OLH is expected to have abundant S G groups. For example, S units are observed at 

cross-peaks corresponding to C2,6-H2,6 correlations in Cα-oxidized S’ units at δC/δH 

107.4/7.4 (S’2,6) and C2,6-H2,6 correlations in S units at δC/δH 104.2/6.7 (S2,6). The G units 

are observed at cross-peaks corresponding to C2-H2 correlations in guaiacyl units at δC/δH 
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110.2/6.9 (G2); C5-H5 correlations at δC/δH 115/6.7 (G5) and C6-H6 correlations at δC/δH 

119.7/6.8 (G6), respectively. Softwood lignin MKS has G units mainly and wheat straw 

lignin MOW has cross-peaks corresponding to S and G and H units. MOW has signature 

units such as C2,6-H2,6 correlations in p-coumarate acid at δC/δH 130.1/7.5 (PCA2,6) and at 

δC/δH 128.2/7.2 (PCAα) that are not present in the other two lignins. The spectra reveal 

substantial number of methylene-bridged subunits connected via β-O-4, β-β, β-5 and 

other linkages that are bridged in the α, β, and γ sites. Quick reduction of mass for MOW 

at ~ 200°C can be associated with the H unit (δC/δH 130.1/7.5) representing esterified 

hydroxymethyl groups decomposition. The MOW could have a higher content of less 

thermally stable compounds, which explain its broad first derivative (DTG) thermogram 

peak. Above 300°C, decomposition is marked by fragmentation of interunit linkages, 

condensation of aromatic rings and charring. Additionally, MKS has large amount of G 

unit (Figure 5-2d) that are susceptible to condense during thermal degradation [27]. That 

explains the high peak DTG thermogram at 378°C.  In all three lignins, MOW is the least 

stable followed by MKS and OLH. 

 

Table 5-1. Isolation method, content in hydroxyl groups quantified by 31P NMR, Average 

molar mass indexes measured by GPC of the lignins used for blending with PLA. 

  Hardwood (OLH) Softwood (MKS) Wheat straw (MOW) 

Isolation method  Organosolv process 
Kraft process /Solvation 

in MeOH a 

Organic acid 

process/solvation in MeOH 
a 

Purity (%)  98.3 97.2 84.1 

Tg (°C) b  86 97 81 

Tflow (°C) c  163 176  

31P NMR (mmol g-1) 

Aliphatic -OH  2 2.85 3.19 

S-OH 
C 0.39 0.89 0.58 

NC 2.46 0.69 0.92 

G-OH 
C 0.8 1.41 0.41 

NC 1.79 3.68 1.58 

H-OH  0.42 0.45 0.58 

Total phenolic-OH  5.86 7.12 4.07 

Total -OH group  7.86 9.97 7.26 

Carboxylic acids  0.45 1.05 1.47 

GPC indexes (g mol-1) 

Mn  890 810 972 

Mw  1486 1082 1236 

PDI  1.67 1.34 1.27 

ash content (%)  0.3 0.3 0.3 
a Solvation in methanol processed in our laboratory     b Tg computed by DSC measurements   

 c Measured from melting point tester 
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Figure 5-2. Oxygenated Aliphatic side chain (δC/δH = 50-90/2.5-6) and aromatic (δC/δH = 

100-145/6-8) regions of 2D NMR heteronuclear single quantum coherence HSQC spectra 

of OLH, MKS, MOW lignins. 
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Figure 5-3. TGA and derivative weight change (DTG) thermograms in nitrogen 

atmosphere of OLH, MKS, MOW lignins. 

 
 

The data in Appendix D (Figure D-4) show TGA and first derivative (DTG) thermograms 

of PLA, each lignin and their blends. PLA has the highest degradation temperature. 

Addition of lignin reduced the degradation temperature. As expected PLA-MOW was the 

least thermally stable. Weight reduction temperatures recorded at 5% weight loss (T5%) 

were: PLA 320°C, PLA-OLH 300°C, PLA-MKS 303°C, and PLA-MOW 280°C. T5% was 

higher for PLA-MKS blend due to the high phenolic OH content (MKS > OLH > MOW) 

compared to the other two PLA-lignin blends. This demonstrates the thermal stabilization 

attributes of MKS due to the scavenging nature of abundant phenolic groups.  

As discussed earlier, abundance of aliphatic OH and carboxylic acids and their early 

decomposition products lead to unstable MOW lignin. During melt-blending, MOW 

released volatiles due to the high impurity content and created large pores throughout the 

extrudates. Thermal degradation of the blends can be correlated to hydrogen bonding 

interactions between the PLA and each lignin. Superior interaction through hydrogen 

bonding and fine dispersion of lignin domain could help with thermal stabilization. For 

example, Kraft lignin has been reported to improve thermal stability of PLA. In that scope, 

blend containing acetylated lignin exhibited enhanced interfacial bonding due to reduction 

of hydroxyl groups during esterification. The overall thermal stability of the PLA and 

acetylated lignin was better that the unmodified lignin blend [29]. Surprisingly, PLA-MOW 

showed the opposite, and this is mainly due to purity issue and thermal instability of the 

MOW. MOW has the lowest total phenolic-OH (4.07 mmol.g-1) and total-OH group (7.26 

mmol.g-1) content between all 3 lignins.    
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5.3.3. Mechanical properties.  

Amalgamation of lignin in thermoplastic often results in poor mechanical properties. This 

is due to poor dispersion and poor interaction between the lignin and the host matrix. 

Tensile properties of PLA were measured as, tensile strength = 63 MPa, tensile modulus 

= 1.1 GPa, and elongation = 6.9, which decreased with lignin addition in all cases (Figure 

5-4). The tensile modulus does not change significantly with addition of lignin and is not 

shown in Figure 5-2, (values are reported in Appendix D Tables D-3). Failure strength 

decreases with addition of lignin at 30 wt. % but the PLA-OLH blend show better property 

followed by PLA-MKS, and PLA-MOW, which has the least failure strength (24 MPa). 

Lignin features, quantitatively shown in Table 5-1 and associated degradation and 

porosity in the composition appears to be responsible for the reduction of the tensile 

properties.  

OLH has higher polydispersity index PDI = 1.67. Number average molecular weights in 

three lignin are comparable; however, Mw value follows the following trend: OLH > MOW 

> MKS. We can conclude that MeOH solvation process extracts soluble low-molecular 

weight fractions present in MKS and MOW and these 100% MeOH soluble fractions and 

are of difference sizes compared to the original lignins. Same observations of low 

molecular weight were reported by Saito [21]. The effect of molecular weight is expected 

to be minimal as all three lignins have Mn in the same range. Solubility of lignin in THF, 

solvent used for GPC, is limited which could have affected our results. Recommendation 

suggests that acetylated lignin dissolves entirely in THF and will provide results that 

represent the complete molar mass distribution profile of the samples. For these reason, 

the reduction in mechanical properties cannot be correlated with the molar mass 

distribution. Nonetheless, use of low molecular weight lignin is important for its effective 

dispersion in PLA matrix.   

Mechanical properties can, however, be reconciled with the aliphatic hydroxyl group 

content. Tensile strength and elongation decreased with increasing aliphatic OH. The 31P 

NMR spectra of the lignin are shown in figure D-2 (Appendix D). From table 5-1, OLH has 

the lowest amount of OH (2 mmol g-1) compared to the other lignins and it has better 

mechanical properties in all the PLA-lignin blends. Aliphatic -OH groups are known for 

thermal dehydration and thus its minimal presence helps to avoid lignin degradation 

during melt-mixing. A comparison of the ratio of phenolic OH to aliphatic OH obtained by 
31P NMR (Table 5-1), indicates highest ratio for OLH. Additionally, phenolic ether linkages 

remain thermally stable although it gets involved with thermal stabilization reactions. 

Nonetheless, the higher aliphatic OH in MOW can be correlated to poor mechanical 

properties of its blend with PLA. Also, high content of aliphatic OH translates to strong 

lignin-lignin intermolecular interactions which makes MOW unstable, difficult to disperse. 

Lignin intermolecular interactions compete with PLA and MOW interactions and strongly 

affect the blend properties. The lignin-lignin intermolecular hydrogen bonding needs to be 
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controlled to enhance the interfacial interactions between PLA and leading to fine 

dispersion of lignin phase and production of blends without deteriorating performances.  

Microscopy analysis of tensile fracture surfaces reveals that overall the lignins were well 

dispersed throughout the blends creating a single-phase material through hydrogen 

bonding of lignin OH and PLA ester group (Figure 5-5). However, there is evidence of 

random areas that contained large lignin agglomeration (Appendix D Figure D-5) that 

could have affected mechanical performance of the blends. The size of the aggregates 

varies from 1 to 30 microns depending on the lignin. This agglomeration is due to poor 

mixing, and the fact that short mixing time was preferred to avoid lignin degradation. OLH 

blend exhibit the largest lignin agglomerations. Mechanical shear during melt-blending 

may have helped to break the lignin macromolecules down; hence, smaller particles were 

observed for MOW in comparison to PLA-OLH and PLA-MKS blends. SEM reveals that 

MOW particles are on the surface as the other two lignin particles are embedded in the 

matrices. 

Porosity in PLA-MOW are also believed to affect the mechanical properties. MOW was 

found to have the highest carboxylic acid content (MOW > MKS > OLH) and its blend has 

large pores from volatile degassing. During compression molding, volatiles evolved from 

decarboxylation of carboxylic acids and units associated with H group representing 

esterified hydroxymethyl groups decomposition as confirmed in TGA results (large 

shoulder of DTG starting around ~ 170°C).  This effectively forms a foam structure in the 

PLA-MOW blends that further degrades material strength. Residual sugar can also be 

suspected for such low temperature unstable characteristic. 

 

 

 



106 
 

 

Figure 5-4. Bar chart shows the tensile strength and elongation at break of PLA and its 

lignin derived blends. 

 

 

Figure 5-5. Micrographs of tensile fractured surfaces the samples. (a) PLA, (b)PLA-OLH, 

(c) PLA-MKS and (d) PLA-MOW showing the samples fracture pattern and single-phase 

blends. 
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5.3.4. Glass transition behavior and activation energy for thermal relaxation. 

Glass transition temperature Tg is a very important parameter in processing of materials. 

From Table 5-1, MOW had the lowest glass transition determined by DSC (81°C). Tg of 

the as-received lignin was found to 172°C [12]. Methanol fractionation reduced Tg of lignin 

that were methanol extracted (MKS and MOW). High glass transition temperature in the 

as-received lignin is due to condensed rigid phenolic moieties and strong lignin-lignin 

intermolecular interactions. Same observation was made for MKS as the methanol 

soluble fraction MKS has Tg =97°C. MKS is found to have the highest condensed S and 

G units in the lignin which explains the high Tg observed even after fractionation.  

In thermoplastic/lignin blend, glass transition temperatures are profoundly influenced by 

polymer-lignin interactions. Figure 5-6 depicts the loss factor (tan δ) as a function of 

temperature. Addition of lignin shifts Tg (peak maximum) to lower temperature but only 

one Tg was observed for all 3 lignins blends suggesting intermolecular hydrogen bonding 

between PLA ester and lignin OH potentially lead to coupling of motion at the molecular 

level which lead to single Tg and lone segmental (α) relaxation. Neat PLA Tg was found 

to be 66°C, however, it decreased to 59°C with addition of MOW. The storage modulus 

E and loss modulus E” as function of temperature are shown in Appendix D (Figure D-6). 

The modulus at low temperature is high for PLA-OLH compared to other blends. PLA-

MOW has the lowest modulus. In fact, attempt to anneal the blends at 80°C in vacuum 

before DMA measurements shows foaming of PLA-MOW. The sample was needed to be 

pressed again. As discussed earlier MOW has low molecular weight thermally unstable 

moieties that were volatilizing at temperatures just above Tg of the matrix.  

The loss factor data was linearly fitted with the following Arrhenius equation to evaluate 

the activation energy Ea associated with the α-relaxation in the blends using the absolute 

temperature (T) at which the loss maximum is observed at frequency (f), the gas constant 

(R), and an arbitrary constant (K).  

 

                                                   log 𝑓 =
−𝐸𝑎

(2.303𝑅𝑇)
+ log 𝐾                                               (1) 

                                                                             

Results in Table 5-2 show that the activation energy is dependent of the lignin used for 

the blend. Depending on the lignin type, Ea either increased or decreased. PLA-OLH has 

the lower activation energy for relaxation compared to neat PLA suggesting plasticization 

effect.  PLA-MOW has comparable activation energy to that of neat PLA. Surprisingly, 

PLA-MKS show an increase of Ea and had the highest Tg. MKS lignin may be hindering 

chain mobility around Tg thus increase in Ea. MKS has high noncondensed G units in the 

lignin which indicate less steric hindrance around the phenolic hydroxyl and higher 

reactivity. This could suggest that it can interact and couple with PLA chains and reduce 

mobility around Tg.  
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Figure 5-6.The loss factor tan δ of PLA and its lignin derived blends at 1 Hz in the α-

relaxation region. 

 

 

Table D-2. Temperatures corresponding to the loss tangent peak (Tg) at different 

frequencies from the dynamic mechanical analysis, and the activation energy (Ea) 

associated with thermal relaxation at Tg. 

 PLA PLA-OLH PLA-MKS PLA_MOW 

log f Tg (°C) 
Ea 

(KJ/mol) 
Tg (°C) 

Ea 

(KJ/mol) 
Tg (°C) 

Ea 

(KJ/mol) 
Tg (°C) 

Ea 

(KJ/mol) 

1.3 72.1  69.2  70.8  64.9  

1.0 70.3  68.0  69.0  63.4  

0.6 68.8 499 66.5 478 67.2 520 61.3 495.0 

0.3 67.2  64.9  66.0  60.4  

0.0 66.4  63.7  64.7  59.4  
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5.4. Conclusion 

We studied the interactions of three technical lignins with polylactic acid (PLA) matrix.  

First, lignin molecular weight and softening points were normalized by adopting alcohol-

based fractionation of soluble lignin stream from two technical sources. Aliphatic and 

carboxylic acid groups decomposition affect thermal stability of the PLA-lignin blends. 

Mechanical properties were reduced from neat PLA. PLA-MOW had the lowest properties 

due to foam structures it developed during compression molding from decomposition of 

carboxylic acid and H units around the mixing temperatures. Microscopy analysis 

revealed that PLA and the lignins developed single-phase blends through hydrogen 

bonding, but random areas of large lignin agglomeration were observed due to poor 

mixing and short mixing time. These areas reduced mechanical properties of the blends 

as well.  Other characteristics such as purity, foaming due to thermally unstable low 

molecular weight content created defects that affected the properties of the blends. This 

study can help to establish a library of available lignin and work with lignin manufacturers 

to deliver homogeneous consistent lignin for thermoplastic-lignin development toward 

lignin valorization.  
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Detailed GPC Analysis 

GPC was performed on all 3 lignins using a Tosoh EcoSEC gel permeation 

chromatography (GPC) system with a refractive index (RI) detector equipped with a flow 

reference cell. Prior to measurements, lignin was dissolved in THF at a concentration of 

1 mg/mL and filtered using a 0.22 μm membrane. The instrument and reference cell flow 

rates were set to 0.35 mL/min and the analysis was performed at 40 °C. Sample injections 

of 10 μL were separated using two consecutive Tosoh TSKgel SuperMultiporeHZ-M 

analytical columns (4.6 mm I.D., 150 mm length, 5 μm particle size) and a TSKgel 

SuperMultiporeHZ-M guard column using a total run time of 15 min. Evaluation of the 

number-average molecular weight (Mn), weight-average molecular weight (Mw) and their 

ratio (PDI) was complete using in-house polystyrene standard curves in the range of 600-

7.5×106 Da. 

 
 

Table D-1. The extraction method, biomass type, melting temperature (Tm) and flow 

temperature (Tflow) determined by hot stage. 

 

Sample ID Extraction and biomass Tm (°C) Tflow (°C) 

OLH Organosolv Hardwood mix 157 163 

MKS Kraft Softwood pine/ MeOH extraction 168 176 

MOW 
Organic acid Wheat straw/ MeOH 

solvation 
111 121 
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Figure D-1. Molecular weight distribution OLH, MKS and MOW dissolved in THF. 

 
 

 

Figure D-2. Functional groups identified by quantitative 31P NMR measurements after 
phosphorylation the lignins studied. 
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Table D-2. 13C and 1H assignments of the lignin signals in 2D HSQC spectra. 

Label δC/δH (ppm) Assignment 

Bβ 53.1/3.4 Cβ−Hβ in phenylcoumaran substructures (B) 

Cβ 53.5/3.1 Cβ−Hβ in β−β′ resinol substructures (C) 

−OCH3 55.6/3.73 C−H in methoxyls 

Aγ 59.4/3.4 and 3.7 
Cγ−Hγ in γ− hydroxylated β-O- 4′ substructures 

(A) 

Iγ 61/4.1 Cγ−Hγ in cinnamyl alcohol end-groups (I) 

Bγ 63.4/3.6 Cγ−Hγ in phenylcoumaran substructures (B) 

Hkγ 67.5/4.2 Cγ−Hγ in Hibbert ketone structuresb 

Cγ 71.2/4.2 Cγ−Hγ in β−β′ resinol substructures (C)b 

Aα 71.9/4.9 Cα−Hα in β-O-4′ substructures (A) 

X2 73/3.1 C2−H2 in xylan substructures (X) 

X3 74/3.3 C3−H3 in xylan substructures (X) 

X4 75.7/3.5 C4−H4 in xylan substructures (X) 

Aβ 
80.4/4.5, 84.4/4.4 

and 85.6/4.2 
Cβ−Hβ in β-O-4’ substructures (A) 

Aoxβ 83/5.2 Cβ−Hβ in α-oxidized β-O-4′ substructures (Aox) 

Cα 85.5/4.6 Cα−Hα in β−β′ resinol substructures (C) 

Bα 87.7/5.5 Cα−Hα in phenylcoumaran substructures (B) 

T8 94.4/6.6 C8−H8 in tricin units (T) 

T6 99.5/66.2 C6−H6 in tricin units (T) 

T2,6 104.5/7.4 C2−H2 and C6-H6 in tricin units (T) 

S2,6 104.2/6.7 C2−H2 and C6−H6 in syringyl units (S) 

T3 107/7.2 C3−H3 in tricin units (T) 

S’2,6 107.4/7.4 
C2−H2 and C6−H6 in syringyl units with α 

oxidization(S’) 

G2 110.2/6.9 C2−H2 in guaiacyl units (G) 

Fa2 111.5/7.3 C2−H2 in ferulate (Fa) 

G5/G6 
115/6.7 and 
119.7/6.8 

C5−H5 and C6−H6 in guaiacyl units (G) 

Fa6 123.1/7.1 C6−H6 in ferulate (Fa) 

HMF 123.6/7.5 C3− H3 in 5-O-substituted furfurals -like units 

Stα,β 126.6/6.9 Cα−Hα and Cβ−Hβ in stilbene structures (St) 

H2,6 128.2/7.2 C2,6−H2,6 in p-hydroxyphenyl units (H) 

Iα 130.6/6.3 Cα−Hα in cinnamyl alcohol end-groups (I) 

Pca2,6 130.1/7.5 C2−H2 and C6−H6 in p-coumarate (Pca) 

Pb2,6 131.6/7.7 C2−H2 and C6−H6 in p-benzoate (Pb) 

HMF 179/9.6 Cα−Hα in 5-O-substituted furfurals -like units 
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Figure D-3. Major lignin substructures detected by 2D HSQC NMR. 
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Figure D-4. TGA and DTG of PLA, lignin and PLA-lignin blend of OLH, MKS and MOW 
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Table D-3. Tensile properties of PLA and its lignin derived blends at 30 wt. % lignin 

contents a. 

Sample 
Tensile 

Strength 
(MPa) 

Modulus 
(GPa) 

Strain at 
break (%) 

PLA 63 (1.18) 1.1 (0.02) 6.9 (0.11) 

PLA-OLH 43 (1.26) 1.1 (0.03) 5.1 (0.36) 

PLA-MKS 35 (0.34) 1.2 (0.02) 3.5 (0.10) 

PLA-MOW 24 (0.71) 1.1 (0.04) 2.7 (0.31) 

                          a Standard deviation in parenthesis 
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Figure D-5. Micrographs of tensile fractured surfaces the samples. (a) PLA, (b)PLA-

OLH, (c) PLA-MKS and (d) PLA-MOW showing aggregates of lignin in random 

locations. 
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Figure D-6. Storage modulus E and loss modulus E” data for neat PLA and PLA-lignin 
derived blends at 1 Hz. 
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CHAPTER 6  

CONCLUSION 
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6.1. Conclusions 

Lignin is the second most abundant organic material from plant biomass and is relatively 

inexpensive. Using lignin as a low-cost feedstock in renewable polymeric blends provides 

an important near-term boost to the economics of biomass processing industries. 

Developing high-performance polymers from lignin is attractive, but often requires 

additional lignin purification and significant functionalization followed by copolymerization. 

Often, the additional processing steps do not offer favorable cost-to-performance ratio of 

the lignin-derivatives. This work analyzed lignin sourced from various biomass such as 

oak, pine, and wheat straw and studied the effects of these lignin chemistries on the 

properties of commodity plastics such as ABS, recycled PET, and bio-derived PLA. The 

goal of this study was the development of sustainable high-performance plastics from 

thermoplastic blends of lignin without chemical modification. 

In chapter 2, we have discussed successful development of a path for loading lignin to a 

high-performance engineering thermoplastic matrix (ABS) without the usual deleterious 

effects on mechanical properties under reactive condition. A thermoplastic ABS resin 

containing nearly 30 wt.% lignin was formulated to exhibit properties like those of neat 

resin by incorporating 10 wt.% PEO (with respect to lignin fractions). The developed 

partial renewable polymer showed excellent properties when reinforced with short carbon 

fibers at 20 volume % and meets performance criteria as lightweight automotive materials 

for enhanced fuel economy. 

In chapter 3, we have presented modification of engineering polyethylene terephthalate 

(PET) polyester matrix waste through plasticization with renewable tall oil fatty acid 

(TOFA). This plasticization improves the processability of PET and broadens applications 

of PET scraps from the manufacturing floor. We accomplished a reduction of PET 

processing temperature from 270-285°C to 240°C. This helps to improve the recycling of 

the waste and enable the processing of PET With biopolymers (i.e. lignin). This is an 

alternative way to recycle polyester waste that would have ended up in landfill and caused 

environmental hazard.  

In chapter 4, we demonstrate that lignin dispersion and interfacial interaction can be 

controlled in recycled PET/lignin alloys through thermal pretreatment of lignin. Addition of 

renewable plasticizer at 10 wt.% relative to PET helped to soften PET below its normal 

processing temperature to avoid further degradation of lignin during mixing. Thermal 

treatment of lignin decreases aliphatic hydroxyl group, minimizes lignin-lignin 

intermolecular interactions and improves lignin thermal stability. Relative tensile failure 

stress of lignin-PET alloys with respect to that of the PET matrix improves by 15 % by 

thermal pretreatment of lignin for the composition with 30 wt. % lignin.  

In chapter 5, we summarize specific interactions of three technical lignins with polylactic 

acid (PLA) matrix. Lignin functionalities were analyzed and its effects on the blend 

properties were assessed. For example, aliphatic hydroxyl and carboxylic acid groups’ 

decomposition affect thermal stability of the PLA-lignin blends. Other factors such as 
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lignin purity, poor dispersion of lignin during mixing, foaming of materials were found to 

impact the blends properties as well.  

In summary, we addressed our principal goal by evaluating diverse ways to develop 

thermoplastic-lignin blends. We added compatibilizer to help with dispersion. The 

proposed solution of modifying industrial resin (ABS) and its composite products by 

incorporating a significant quantity of lignin offers to reduce the carbon footprint through 

the direct use of these partially renewable plastics and the production of lighter weight 

automotive materials for enhanced fuel economy. Therefore, the results shown here have 

significant potential for beneficial economic and societal impacts. We also used 

processing aid to reduce processing temperature to avoid lignin degradation. TOFA 

shows a potential as a renewable and cost-effective plasticizer for post-industrial PET 

wastes. Our formulations use lignin, a low-cost renewable resource, post-industrial PET 

waste destined for landfills, and renewable plasticizer TOFA, a low-priced byproduct from 

pulping industries to develop a renewable alloy with well dispersed lignin domain and 

moderate mechanical performance. This work highlights development of renewable 

thermoplastics based on lignin and sustainable industrial waste PET, offering a path for 

high-volume utilization of lignin in a value-added form. Finally, we evaluated different 

lignin to elucidate how lignin source and chemistry are important in the performance of 

the blends. This study can help to establish a library of available lignin and work with 

lignin manufacturers to deliver homogeneous consistent lignin for thermoplastic-lignin 

development toward lignin valorization. Overall, this research provides an economic way 

to valorize lignin and address environmental benefits. This work will lead to future 

publications.   

6.2. Future research 

The idea to use unmodified lignin as a feedstock for polymeric materials is attractive for 

economic reasons. This work shows that different polymers can be used in the 

development of thermoplastic-lignin alloys. There are several areas that open the 

opportunities for future research and pave the way for industrial production of the 

thermoplastic-lignin materials. 

We need to continue screening of the lignins for its best compatibility with a preferred host 

matrix and finding lignin source that is homogenous and structurally consistent by working 

with lignin manufacturing companies. Lignin purity will be another area to expand on as it 

could be a deciding factor to improve thermal stability of lignin and subsequent blends by 

removing low molecular weight unstable compounds during processing of lignin. 

Current state-of-the-art high-performance polymers from lignin requires additional lignin 

modification that is cost intensive. One can investigate if lignin modification can be made 

economically viable and scalable to deliver low-cost lignin derivatives. Additionally, one 

can explore 3D printing of the lignin-thermoplastic blends as additive manufacturing is 

gaining momentum and industrial interest. Developing renewable polymeric materials that 

are readily printable will be beneficial to commercial applications.  
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Last but not the least, a cost model for different lignin and suitable matrix system for target 

application can establish pathway for commercialization and large-scale manufacturing. 

The model must include costs associated with lignin isolation, matrix modification, if any, 

and reactive processing of thermoplastic-lignin blends. 
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