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System Architecture Design and Development  

of a Reusable Lunar Lander, aVOLlo 

 
Chad M. Batten1, Camille E. Bergin1, Aaron P. Crigger1, Darryl L. Harris1, Gillian S. McGlothin1 

The University of Tennessee, Knoxville, TN, 37916, USA 

To support NASA’s current goals for the Lunar Orbiting Platform – Gateway, a design 

for a reusable lunar lander was developed by a senior design team at the University of 

Tennessee Knoxville. Affectionately named aVOLlo, this lunar lander will operate between the 

Moon’s surface and the Gateway, which will be parked in a Near Rectilinear Halo Orbit about 

the Lagrange Point L2. The lander will be able to carry a minimum of 15,000 kg of payload to 

the Moon’s surface and 10,000 kg of payload back to the Gateway, in accordance with common 

NASA and AIAA reusable lunar lander design requirements. Furthermore, the lander will be 

capable of supporting a crew of up to four astronauts for a maximum of seven days on the 

surface of the Moon, with extended stays made possible by the future development of a lunar 

habitat. Throughout every stage of the study, efforts were made to optimize component 

choices, including their ability to be used in multiple subsystems across the lander. The 

technological readiness requirements were also considered to ensure that the components and 

overall design will be available for a launch time frame of 2030 atop the Space Launch System 

Block 1B configuration. Finally, in-situ resource utilization will be an integral part of the 

propellant resupply in order to promote sustainable lunar, and deep-space, exploration.  

I. Nomenclature 

A  = Cell area 

ΔV  = Velocity change 

F  =  Faraday’s constant 

I  = Current 

i  = Current density 

Isp  = Specific impulse 

λ  = Stoichiometry number 

MW = Molecular weight 

�̇�  = Substance production 

n  = Equivalent electrons per mole of reactant 

#cells = Number of cells in fuel cell stack 

#days = Number of days per mission 

P  = Power 

T/W = Thrust-to-weight ratio 

V  = Voltage 

II. Introduction 

A. Background 

Fifty years ago, this July, humans first stepped foot on the Moon. In the half-century that has followed, human 

presence past Low Earth Orbit (LEO) has been significantly neglected. Figure 1, below, details the history of 

significant space missions since the 1950’s. As can be seen, several notable accomplishments have occurred in the 

last 50 years, but humans are not mentioned onwards of 1969 [1]. In fact, the last time humans left LEO was December 

11, 1972 on Apollo 17, which also happened to be the last Moon landing [2]. In recent years, however, NASA has 

again set eyes on establishing a consistent human presence beyond LEO, specifically on and around the Moon. By 

utilizing the Moon as a stepping stone to train astronauts, test new technologies, and increase space-mission 
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experience, strides can be made towards the ultimate goal of sending a human to Mars. To facilitate these goals, NASA 

is working with industry partners to develop components for a crewed lunar-orbiting station called the Lunar Orbiting 

Platform – Gateway [3].  

 
Fig. 1 History of space exploration [1] 

B. The Gateway 

The Lunar Orbiting Platform - Gateway will serve as a docking station for Moon missions, complete with power 

and propulsion elements as well as habitation, logistics, and airlock capabilities. It will also provide a consistent 

presence in cislunar space in the coming years as NASA strives to explore the Moon and understand how to better 

utilize its resources. Figure 2 shows a conceptual design of the Gateway’s configuration plan and the industry partners 

that are working with NASA to make this vision a reality.  
 

 
Fig. 2 Gateway configuration conceptual design [4] 
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The Orion Multi-Purpose Crew Vehicle, currently being developed by Lockheed Martin Space, will serve as the 

primary transit vehicle from Earth to the Gateway. Orion, and all of the Gateway components, will launch on the 

newest and most powerful rocket, the Space Launch System (SLS), which is currently being developed by Boeing. 

Hopefully, Orion will fly its first un-crewed mission by 2020 and its first crewed mission by 2023. Construction of 

the Gateway is planned to begin in 2022 with the launch of the power and propulsion element, and habitation 

capabilities are planned to be added in 2024 [5]. 
The Gateway will operate in a Near-Rectilinear Halo Orbit (NRHO) about the Earth-Moon Lagrange Point L2, 

which can be seen in Fig. 3 below. This orbiting point is ideal as it provides convenient access to the surface of the 

Moon, specifically the poles, where a majority of the Moon’s water resources are located. Additionally, this orbit 

allows for constant communication with Earth as the Gateway never travels behind the Moon. The Gateway’s orbit 

will also allow scientists to better understand the harsh environment of deep space, but from the platform of a safer, 

and closer to Earth, location [3].  

 
Fig. 3 Earth-Moon system Lagrange points [6] 

C. Reusable Lunar Lander 

A component of the Gateway’s design is a reusable lunar lander that will provide continuous access to the lunar 

surface for payload delivery and return, as well as lunar exploration [3]. Though there are well-known differences 

between the lunar and Martian environments, returning to the surface of the Moon, and establishing a long-term 

presence there, will allow scientists and engineers to better understand the demands of the environment. This will 

ultimately pave the way for the innovations required to send humans to Mars. As can be seen in Fig. 1, sending humans 

to Mars is an active goal for the 2020-2030 timeframe.  

 
Figure 4. Boeing’s lunar lander concept [7]. 
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There are many current lunar lander studies as this is an engineering goal gaining much attention lately. Boeing’s 

concept, as one example, utilizes a two-stage configuration seen in Fig. 4, above. Like the Apollo missions, Boeing’s 

descent module will remain on the surface of the Moon while the ascent module is claimed to be fully reusable. 

Boeing’s propulsion design uses dinitrogen tetroxide (N2O4) and monomethylhydrazine (MMH), a fuel pairing used 

on many space missions due to its storability and high-performance characteristics [7].  
While this is only one company’s design, many other proposals incorporate a lot of the same design choices. 

However, there are several concerns with these choices. The first is that if the descent module is left on the surface of 

the Moon, more descent modules must be made and attached to the reusable ascent module. This closely resembles 

the Apollo-era practices of leaving the descent module on the surface of the Moon, and this renders the design less 

reusable than it potentially could be. The second concern is the choice of propellant. MMH/N2O4 cannot be made 

anywhere on the Moon, thus decreasing the sustainability of the overall mission. Though MMH/N2O4 is a highly 

desirable propellant for many orbiting satellites near Earth, if the primary goal of these missions is to prove reusability 

and sustainability for an eventual trip to Mars, the lander needs to incorporate propellants that can be made from the 

Moon’s resources. It would also be ideal for the fuel and oxidizer to be gases that are needed elsewhere in the lander 

as well for full system integration.  

 

D. Design Requirements 

This paper aims to develop a lunar lander, AVOLLO, that will have technologies capable of landing on the Moon 

in the 2030 timeframe, a decade that has been repeatedly mentioned by NASA and other agencies in discussions about 

returning humans to the Moon [8]. Though it would be ideal to develop a lander capable of landing on both the Moon 

and Mars sustainably with no design differences, there are considerable implications when designing for two 

drastically different (and far apart) celestial bodies. If a lunar lander was developed for eventual use on Mars, a lunar 

landing would take significantly longer to achieve, as the technologies to take humans to Mars safely don’t currently 

exist. Furthermore, waiting to land on the Moon until these technologies are available would arguably render a lunar 

landing unnecessary and a waste of time, resources, and money. Thus, this design will only consider what resources 

are available on the Moon, and what engineering already exists or will exist in the next decade. It will not include 

components that draw upon resources that are proposed to be available on the Martian surface, such as methane, nor 

will it use technologies that have been speculated to exist, but that will not have an acceptable technology readiness 

level in the required timeframe.  
Ultimately, sustainability and reusability will be key for a timely and cost-efficient mission back to the Moon. 

Launching a coupled transit vehicle and lunar lander from Earth for each lunar mission, and leaving the one-use lander 

parked on the Moon afterwards, as was the practice during the Apollo era, is extremely costly. A much more cost- and 

time-effective method includes launching from and returning to Earth in the transit vehicle, Orion, utilizing the 

Gateway as a resupply platform and orbiting base, and operating the lander continuously between the Gateway and 

the Moon’s surface. This, in addition to in-situ resource utilization (ISRU), which is the harnessing of resources at the 

exploration site to decrease dependence on Earth-based resupplies, will allow astronauts, engineers, and other mission 

stakeholders more time to study the effects of long-term space travel and prepare for a trip to Mars [9].  
This paper will discuss the major components and operations associated with the development of a reusable lunar 

lander. The following will be discussed: orbital mechanics, in-situ resource utilization, power, propulsion, materials 

and structural analysis, and environmental control and life support. Primary design constraints include an ability to 

repeatedly descend from the Gateway in its NRHO to the surface of the Moon and back without having to return to 

Earth; the requirement to deliver 15,000 kg of payload to the surface and return 10,000 kg of payload back to the 

Gateway; and the necessity to land four astronauts on the surface and sustain them for the duration of the Gateway’s 

orbit, which is approximately six and a half days [10]. 
The motivation and thus basic requirements for this project came from a combination of NASA and AIAA design 

competitions found here:  
- NASA: http://rascal.nianet.org/themes 
- AIAA: https://www.aiaa.org/docs/default-source/uploadedfiles/education-and-careers/university-

students/design-competitions/undergraduate-team-space-systems-2018-2019.pdf?sfvrsn=9b9f6ea6_0 
A summary of NASA’s criteria is shown here: 

 

• Crew is delivered from Earth to the Gateway via NASA’s Space Launch System (SLS) and Orion 

• Crew returns to Earth from Gateway via Orion 

• A reusable ascent/descent cabin/vehicle is based at the Gateway, where it is resupplied and refueled 

between lunar missions 

http://rascal.nianet.org/themes
https://www.aiaa.org/docs/default-source/uploadedfiles/education-and-careers/university-students/design-c
https://www.aiaa.org/docs/default-source/uploadedfiles/education-and-careers/university-students/design-c
https://www.aiaa.org/docs/default-source/uploadedfiles/education-and-careers/university-students/design-competitions/undergraduate-team-space-systems-2018-2019.pdf?sfvrsn=9b9f6ea6_0
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• The lander must accommodate two mission modes (near polar location at a minimum): 

o 6 days on the surface with 2 crew and 500 kg of cargo – no pre-deployed support 

infrastructure 

o 2 days on the surface with 4 crew and 100 kg of cargo – longer stays enabled by pre-

deployed infrastructure (rovers, habitats, etc.) 

o Both above mission modes must also accommodate the crew during their transit to and 

from the lunar surface 

• Initial architecture and program model that is not “dead-ended” and facilitates evolution from initial 

capability to a model that leverages commercial services in order to reduce costs for sustained crew 

access to the lunar surface. 

• Open for trade: 

o Distribution, number, location, and staging of propulsive elements (single stage, braking 

stages, descent modules, ascent modules, etc.) 

o Types of propellant and propulsion systems 

o Propellant resupply strategy (anticipated launch vehicles, depots, etc.) 

o System procurement mechanisms 

o Evolution path of NASA and commercial capabilities 

• Considerations: 

o Impact of elements on the Gateway (controllability, power, thermal, etc.) 

o Number of SLS launches (ideal would be one per human lunar mission once the reusable 

ascent/descent vehicle is delivered to the Gateway with the remaining launches provided 

by commercial or international partners) 

o Technology readiness and cost to support a crewed lunar mission from the Gateway in 

2028 

 

It should be noted that originally the lander was designed based on the 2-day mission with 4 crew. Upon analysis 

of the Gateway’s orbit and the necessary trajectory to and from the Moon, it was decided that a 2-day mission was not 

possible. In fact, no less than a 6.5-day mission is possible, as that is the time it takes the Gateway to complete one 

orbit. Any other time before that is simply not feasible. 

 A summary of AIAA’s criteria is shown here: 

 

Design a reusable Lunar surface access vehicle 
• The vehicle should enable delivery of payload and/or crew to anywhere on the surface of the 

Moon from the Deep Space Gateway and back 
• The vehicle should be able to operate in either a crew delivery mode or cargo delivery mode. 

Design of the vehicle should allow for capability of switching between the two modes 
• In crew mode, the vehicle should support a crew of four (4) astronauts for the duration of the 

transit from the Deep Space Gateway to the lunar surface and should support the crew without 

resupply from surface assets for a minimum of 24 hours on the surface 
• In cargo mode, the vehicle should have a payload capacity of at least fifteen metric tons (15,000 

kg) to the surface of the Moon and can return at least ten metric tons (10,000 kg) of payload 

from the surface back to the Deep Space Gateway 
- Payload to the surface could include components for surface habitat, rovers, or crew 

supplies 
- Payload back to the Deep Space Gateway could include materials or resources that was 

mined from the lunar surface 
• The vehicle should be able to make multiple trips to the lunar surface and back to the Deep 

Space Gateway utilizing propellant resupply from the Deep Space Gateway 
 

Design and define the mission operations, including orbit transfer, station keeping, and other maneuvers 

necessary to deliver payload to/from the lunar surface 
• Assume the Deep Space Gateway is in a stable Near Rectilinear Halo Orbit 
• Determine the propulsive cost and time of flight of a range of landing sites from equatorial to 

polar 
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• Define the design requirements for trajectory and orbital maneuvers for both the crew and 

cargo mission modes and determine and describe the transit strategies for the both and discuss 

how each mode drives the design of the vehicle 
• Determine the station keeping, orbital phasing and rendezvous, and proximity operation for the 

vehicle, assuming the Deep Space Gateway is the passive vehicle in all docking sequence 
 

Partially due to the time and manpower limitations of our group, some of the AIAA criteria were removed. The 

lander will not be capable of landing anywhere on the Moon, as it was deemed infeasible during the calculation of the 

trajectory given that the Gateway’s orbit provides direct access to the South Pole. The lander will also not switch 

between crew and cargo mode - it will be able to deliver both simultaneously.  

 

III. In-Situ Resource Utilization 

The ability to harness resources at the landing site, ultimately decreasing dependence on additional resupply 

missions from Earth, will become extremely important on Mars for producing water, oxygen, propellants, and 

eventually food. Therefore, testing and verifying performance capabilities of reliable ISRU technology on the Moon 

is crucial. Despite the launch cost from Earth drastically diminishing for these Moon missions due to the reusability 

of the lander in conjunction with the Gateway and Orion, the launch cost will still be steep if all the propellant, water, 

and oxygen needed for each mission is always launched from Earth. Propellants comprise a significant amount of the 

weight, and therefore launch cost, on all spacecrafts, often accounting for 70% of the total mass, as on the Apollo 

spacecraft [11]. In addition, consumables such as water, oxygen, and hydrogen for any power supply and crew needs 

will also need to be resupplied for each mission, further adding to the cost if resupply is necessary using Earth’s 

resources. Therefore, ISRU will serve as the foundation of this lander design in order to promote sustainability and 

independence from Earth-based resource resupply. A comparison of the propulsion, life support, and power 

subsystems with and without ISRU integration is detailed in Table 1 to emphasize the importance of this foundational 

design consideration [12]. 

 
Table 1. Comparison of subsystems with and without ISRU integration [12] 

 
 

There are two studied approaches for obtaining the necessary resources for this mission via ISRU: mining iron-

oxide rich regolith, or mining water from the ice found at the poles of the Moon. Thanks to samples brought back 

from the Apollo missions, it is known that all lunar regolith contains approximately 45 wt% oxygen in the form of 

oxides [13]. It is possible to reduce these oxides to extract the oxygen through the hydrogen reduction process. The 

most promising oxide is iron oxide (FeO), and as seen in Fig. 5, it is found in abundance near the Moon’s equator 

[14]. 
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Figure 5. Iron-oxide concentration on the Moon (black markers indicate past landings) [14] 

 
The chemical equation for the hydrogen reduction process is: 

 
FeO + H2 -> Fe + H2O 

 
Therefore, by reacting hydrogen with the iron-oxide, the oxygen can be separated from the iron to form pure iron and 

water vapor. The water vapor can then be separated from any excess hydrogen and electrolyzed into oxygen and 

hydrogen. Ultimately, the oxygen and hydrogen can be condensed to liquid, cryogenically stored, and then used in 

various subsystems across the lander [13]. There are four different lunar samples that have been studied for this 

hydrogen reduction process ISRU technique: ilmenite, basalt, unprocessed soil, and volcanic glass. A summary of 

their respective oxygen yields can be seen in Table 2. Volcanic glass yields the highest mass of oxygen per mass of 

sample and is argued to be the optimum lunar rock material from which to extract oxygen [13].  
 

Table 2. Oxygen yields for each class of lunar sample studied 

Rock Type Oxygen Yields 

Ilmenite 2-2.5 wt% 

Basalt 2.93 wt% 

Unprocessed Soil 0.5 wt% - 4.5 wt% depending on the soil composition 

Volcanic glass 5 wt% 

 

 
Figure 6. Distribution of water ice found on the lunar South Pole (left) and North Pole (right) [15] 
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 The other mining technique is mining the water ice from the poles of the Moon. It is known, thanks to NASA’s 

Mineralogy Mapper that flew aboard India’s Chandrayaan-1 lunar probe, that there are large quantities of ice near the 

lunar poles, specifically in the shaded craters [15]. The total ice water between 87.5°S to 90°S (South Pole latitudes) 

is estimated to be 135 – 240 million MT compared to an estimated 62 million MT from 87.5°N to 90°N (North Pole 

latitudes) [16]. Figure 6, above, shows the distribution of water ice on the lunar South Pole (left) and North Pole 

(right).  
Though mining iron-oxide rich volcanic glass regolith has been more heavily studied and proposed than mining 

water ice to yield oxygen and hydrogen, the Gateway provides direct access to the lunar South Pole. Because the South 

Pole contains an abundant amount of ice water to electrolyze into oxygen and hydrogen, this lander will depend on 

this ISRU technique. If the Gateway provided access to the equatorial region, the regolith mining would have been a 

better choice. With this in mind, it was then necessary to determine how AVOLLO would acquire the necessary 

resources. During the preliminary design phase, the lander was originally planned to have its own excavation, 

electrolysis, and storage capabilities. However, it was decided that the power and mass requirements of such a process 

far exceeded the capabilities of a single lander. Fortunately though, several companies have preliminary plans for 

establishing ISRU manufacturing plants on the lunar poles, and propellant depots in Low Lunar Orbit (LLO) (Bigelow, 

Shackleton Energy Company, and United Launch Alliance to name a few) [17,18]. AVOLLO was designed based on 

the assumption that at least one of these companies will have ISRU manufacturing operations underway in the desired 

timeframe, based on their current claims [18]. By utilizing South Pole manufacturing sites and LLO depots, 

AVOLLO’s propellant, water, hydrogen, and oxygen needs will be resupplied in the vicinity of the Moon without the 

dependency on Earth’s resources, including time and money. 
One of the most important benefits of ISRU for the AVOLLO missions revolves around the choice of liquid 

hydrogen (LH2) as the fuel, which will be discussed more in-depth in the propulsion section below. LH2 experiences 

a high boil-off rate, rendering its use as a propellant almost impossible without the ability to transfer it to the lander 

very soon before ascent or descent. Though work is being done to mitigate the boil-off effects through the use of 

newer materials and thicker insulations, those technologies are not currently at the desired technology readiness level 

[19]. Relying on the manufacturing proposals of other companies will enable AVOLLO to use LH2 as a fuel with less 

of a concern for the fuel boiling off before being used. AVOLLO will obtain the necessary LH2 and liquid oxygen 

(LOX) while docked to the Gateway from a commercial propellant depot, assuming that the depot will have 

compatibility with the Gateway. After the surface mission is completed, AVOLLO will resupply LH2/LOX from the 

commercial manufacturing site and return to the Gateway. Further analysis regarding the propellant trade study is 

detailed in the following section. 
 

IV. Propulsion 

A. Propellant Selection 

The primary concern for the propulsion system was choosing the type of propellants that would be used throughout 

the course of the mission. Liquid propellants are better for restart capabilities but have challenges when it comes to 

storing them. Solid propellants can only be ignited once, and once ignited, there is no way to stop the initial burn. This 

renders solid propellants unsuitable for outer space excursions such as this where there are prolonged coasting periods 

when the engine is not being used at all. Hybrid propellants have the start and stop capabilities of liquid propellants 

but cannot be refueled due to the depletion of the solid propellant portion of the rocket [20]. Ion thrusters are an 

unreasonable option due to the fact that they have high specific impulses but very low thrust applications, which is a 

critical factor in this mission [20]. Considering all of the objectives and goals required of the lander, liquid propellants 

were the clear choice. 
After selecting a viable propellant type, further specifications had to be made. The most commonly used propellant 

combinations for similar missions, and the ones researched in this analysis, include  liquid oxygen and liquid hydrogen 

(LOX/LH2), liquid oxygen and liquid methane (LOX/LCH4), a liquid fluorine and liquid oxygen mixture (FLOX), 

and nitrogen tetroxide and monomethyl hydrazine (NTO/MMH). There were many different parameters considered 

in the analysis process, including toxicity, technology readiness, storability, and boil-off rates. The outlined parameters 

are discussed below in a more detailed propellant trade study analysis.  
Liquid oxygen and liquid methane (LOX/LCH4) is a viable combination for a lander on Mars due to the immense 

amount of methane that resides on and below the Martian surface. It performs better than most storable propellants 

and does not require a high-volume storage tank like liquid hydrogen. It has a clean burn and is non-toxic, which is 

important for crew member safety. It also has a lower mass than common hypergolic propellants. However, of the 

fuels listed, it is the least advanced in terms of technology readiness. Because Mars is the ultimate goal for future 
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crewed space exploration, there are still some developments that need to occur before technology that can operate on 

LOX/LCH4 can be successfully implemented. There is no history or background on using this propellant in previous 

flights and there is limited ground test history as well. Further testing and prolonged use analysis would be necessary 

before this combination could be used on a crewed flight mission [21]. 
A liquid fluorine and liquid oxygen mixture (FLOX) is a reasonable choice if considering only engine performance. 

The addition of fluorine results in a 5% increase in rotor motor efficiency than LOX alone, and produces a 15% better 

specific impulse in comparison to LOX. However, this combination is extremely toxic and can harm the crew members 

if leaked into the cabin. This super-oxidizer reacts violently with nearly everything, except nitrogen, lighter noble 

gases, and substances that have already been fluorinated. Taking this into consideration, this combination is not a valid 

option due to the nature of a long duration mission such as this one [21, 22]. 
Nitrogen tetroxide and monomethylhydrazine (NTO/MMH) have been used consistently throughout spaceflight 

history and, therefore, have a strong research and testing background for comparison. This hypergolic propellant’s 

technology readiness is the highest in comparison to the other considered propellants, but has problematic 

characteristics that outweigh the benefits associated with its lengthy history. It has easy start and restart capabilities 

which is very important for the mission objectives. However, it is highly toxic and can harm the crew members if 

contact occurs. The primary issue with this propellant combination is that it cannot be used with a common bulkhead 

as the risk of cracking is substantial and could cause an explosion large enough to destroy the entire lander [21, 22]. 
A liquid oxygen and liquid hydrogen (LOX/LH2) combination is a reasonable choice for a lunar lander due to the 

fact that is contains the highest specific impulse, Isp, out of the considered propellants. It has a 30-40% higher Isp than 

most other fuels which is great for storage because rockets that have high specific impulses produce more force without 

using as much fuel as rockets that have lower specific impulses [23]. However, LH2 is a cryogenic liquid, which means 

it requires a greater effort to keep it from boiling off. This is due to the fact that cryogenic fluids need to be stored at 

extremely low temperatures, meaning that boil-off is highly likely as the required storage temperatures are well below 

that of the ambient environment. Along with the boil-off challenge, liquid hydrogen is difficult to store due to its very 

low density of 70.8 kg/m3 (which is small in comparison to water at 997 kg/m3). With such a low density, the propellant 

tanks would have to be enlarged in order to accommodate a large volume of the liquid propellants [21, 22]. Despite 

the difficulties associated with these propellants, LOX and LH2 were chosen based on evidence confirming the 

presence of lunar water under the surface of the Moon. This water, if extracted, could be converted into liquid hydrogen 

and liquid oxygen, allowing for consistent refueling capabilities throughout the duration of the mission, as discussed 

in the ISRU development section [24]. Figure 7, below, shows a miniature radio frequency (Mini-RF) image of the 

lunar South Pole, further confirming the presence of ice-rich craters which could be harnessed for this mission. 

Scientists have analyzed the Mini-RF images for areas of varying reflectivity and discovered that there is ice on the 

floor of the Cabeus crater and Shackleton crater (not shown on image). The formations of ice appear as radar-

transparent material, or the very white areas viewed on the image.  

 
Figure 7. A Mini-RF image of the Lunar South Pole [24] 
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B. Propellant Feed System 

With the propellant chosen, the next step was to develop the propellant feeding method. Two main methods were 

analyzed: a pressure-fed system and a pump-fed system. A pressure feeding system uses the pressure induced by 

helium or nitrogen to push the propellant down to the combustion chamber, where it is ignited and exhausted. These 

types of systems are very reliable for small changes in velocity (ΔV’s) due to the simplicity of the design; however, 

they require thick walls to accommodate for the extremely high pressures which would, in turn, cause the lander to be 

more massive [25, 26]. Additionally, the lander would require refueling of both the propellant and the pressurized 

gases, which adds to the overall complexity of the system. A pump-fed system, on the other hand, operates at lower 

pressures, allows for thin-walled designs, and has a lighter mass. They are preferred when considering high-thrust and 

long-burn maneuvers [26]. Figure 8 shows a simplified version of a pressure-fed system and a type of pump-fed 

system called an expander cycle. The pump-fed system was chosen for the lander as it satisfies the design requirements 

and is less massive and costly.  

  

Figure 8. Pressure-fed system (left) and an expander cycle pump-fed system (right) [27, 28] 

 

C. Engine Selection 

After selecting the propellants and feeding system, an engine had to be chosen that operated under such conditions, 

offered long-term durability, and provided the necessary thrust determined by the overall weight of the lander. Based 

on the engine selections of similar past missions, as well as related lunar lander proposals, engine considerations were 

narrowed to two options: Pratt & Whitney’s RL10 CECE (Common Extensible Cryogenic Engine) and Northrop 

Grumman’s TR202. Both of these engines are expander cycle engines that operate on liquid oxygen and liquid 

hydrogen, they are both used for ascent and descent stages for current or proposed landers, and they both have wide 

throttling ranges. However, the RL10 CECE has much more available data and a broader range of testing than the 

TR202. Table 3 details an engine trade study performed to compare the primary characteristics of both engines.  
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Table 3. RL10 CECE and TR202 engine trade study [29] 
 

 RL10 CECE               TR 202 

Designer/ 

Manufacturer 
Pratt & Whitney 

Northrop 

Grumman 

Current Status In production Cancelled program 

Propellant  LOX/LH2  LOX/LH2 

Thrust 67 kN 38.8 kN 

Isp 445 seconds 436-453 seconds 

Thrust-to-weight (T/W) 

ratio 
0.39 – 0.26 0.31 

Length 1.53m 2.24m 

Used on 
Centaur, S-IV, 

DCSS 
--- 

Weight ~160 kg ~127 kg 

 
As can be seen in the table, the TR202, seen in Fig. 9, is a Northrop Grumman rocket engine that has a maximum 

thrust of 38.8 kN and a mass of 127 kg. It was designed for a lunar lander as part of the Constellation Project before 

its cancellation in 2009. For this reason, much less data exists for this engine in comparison to the RL10 CECE. The 

throttling range for this engine is 18.8:1, which is excellent as it allows for increased maneuverability. Additionally, 

the TR202 showed high consistency in testing when throttling down to 10% due to the variable area pintle injector 

which allows for more control of the propellant injection. This injector was also noted to prevent chugging issues 

throughout the entire range of its throttling capabilities [29]. Chugging is best described as an unsteady flow of 

propellant to the combustion chamber. It causes oscillations in the mass flow rate which causes pulsations in the 

chamber pressure, making the chamber pressure inconsistent. There have been a few tests that aimed to validate the 

thermal integrity of the hardware, but as it has not been used in missions before, the long-term integrity cannot be 

verified [30]. 

   

Figure 9. TR202 engine mock-up [30] 
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The RL10 CECE, in comparison, is a Pratt & Whitney rocket engine that has a thrust of 67 kN and a mass of      

160 kg. The throttling range for this engine is 10:1, but it lacks consistency in the 16-20% range. Previous testing has 

shown that lower power chugging oscillations have occurred when throttling in this range due to vapor formations in 

the injector oxygen manifold [31]. However, later tests and developments were able to fix these occurrences. The 

gimbal capability of this engine is 4°. This is significant as it helps with thrust vectoring in the case of an engine-out, 

in which case the remaining engines have to take over the added weight. Additionally, it is rated as having 50 in-space 

starts and a service life of 10,000 seconds [32]. Trajectory analysis iterations for this mission, which will be further 

detailed in the Orbital Mechanics section, determined that the engine will burn for a total of 49 seconds during descent 

and approximately 25 seconds during ascent before rendezvous begins with the Gateway. Assuming that the service 

life of the RL10 CECE is truly limited to 10,000 seconds, this mission could be repeated 135 times, which would be 

more than adequate for the overall goals of this lunar lander mission. Figure 10 shows an image of the RL10 CECE 

engine. 
 

   
 

Figure 10. RL10 CECE rocket engine throttling from 10:1 [33] 

A significant factor in the engine selection process was determining the overall mass of the lander and the required 

thrust-to-weight (T/W) ratio necessary to support the required mass. The total system mass was calculated, gravity 

losses were incorporated, and an appropriate T/W ratio was chosen. Apollo’s Lunar Module (LM) T/W ratios during 

the initial takeoff for both the descent and ascent trajectories were 1.63 and 1.78, respectively [34]. These values were 

chosen as a baseline for this mission. Table 4 tabulates these T/W values as well as the various mass values necessary 

for the thrust calculations. The initial mass values include estimates for all subsystems and the required payloads. The 

propellant masses were determined using ascent and descent ΔV requirements, which will be discussed further in the 

Orbital Mechanics section.  
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Table 4. Mass and T/W approximations 

 Descent Ascent 

Required Payload (kg) 15,000 10,000 

Departure Mass (kg) 56,329 46,886 

Arrival Mass (kg) 29,308 24,308 

Propellant Mass (kg) 27,019 22,578 

Takeoff T/W 1.63 1.78 

Max Thrust (kN) 148.7 135.2 

 
Using these mass estimates and T/W ratios, the maximum thrust required for AVOLLO was determined to be 

approximately 148.7 kN. Based on an analysis of similar projects and landers, a four-engine configuration was chosen 

to provide the necessary thrust as well as engine-out survival capabilities. As such, the RL10 was chosen for the 

AVOLLO lunar lander. With the lower thrust of the TR202, a fifth engine would be required were an engine-out to 

occur, consequently increasing the weight of the lander. Overall, the RL10 CECE has all the characteristics necessary 

to meet mission requirements including high thrust capabilities, a large gimbaling range, excellent throttle control, 

long-term durability, and proven reusability [27]. 

 

 

V. Orbital Mechanics 

The Gateway’s orbit is one of the family of L2 halo orbits in the Earth-Moon system as seen in Fig. 11 [10]. These 

orbits utilize the mathematical model of the Lagrange point to achieve unique orbit characteristics. At the L2 point, 

the gravitational pull of both the Earth and the Moon are equal to each other which allows an object at this point to 

orbit the Earth with the same orbital period as the Moon. This location, however, is unstable and any perturbations 

with the orbit will cause the object to fall out of the L2 orbit [35]. The family of orbits in Fig. 11 build off the base L2 

point to create the family of orbits that all have the similar characteristics [10]. 

 

Figure 11. Family of L2 Halo Orbits with NRHO on the far left [10] 

The NRHO chosen by NASA engineers as the parking orbit for the Gateway can be seen in Fig. 12 from a Moon-

centered/Moon-fixed reference frame. The NRHO was chosen for many reasons including the ease of access to the 

lunar surface due to its periapsis proximity to the South Pole and constant communication with Earth since the orbit 
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never travels behind the far side of the Moon [3]. Through an analysis of the most stable and cost-effective orbit, the 

Gateway’s NRHO will have a periapsis and apoapsis of 3,233 km and 71,733 km, respectively [10]. This analysis 

compared the required ΔV to maintain a stable orbit with the required ΔV for descent and ascent to and from the 

Moon. More emphasis was placed on the ΔV of the ascent and descent because these values changed more drastically 

with different orbits [3]. One prominent downside of the chosen orbit is the instability caused by the high apoapsis 

that ventures outside of the Moon’s sphere of influence. Without minor adjustments on a weekly basis, the Gateway 

would eventually fall out of orbit due to the stronger pull of Earth’s gravity near the apoapsis. These minor velocity 

adjustments would amount to a mean annual ΔV of 7.79 m/s [10].  

 

Figure 12. NRHO depicted in a Moon-centered, Moon-fixed reference frame with Earth in the foreground  

The lunar lander will utilize a two-burn maneuver for both its descent and ascent trajectories, which can be seen 

in Fig. 13. A two-burn maneuver was chosen in order to eliminate the abundance of variables associated with multi-

burn maneuvers, such as multiple engine starts and stops. To land on the Moon, the lander will execute a short duration 

burn near the Gateway to take the lander out of the parking orbit. This burn puts the lander on a path towards the 

desired landing location with the burn solely in the direction opposite of the current velocity to minimize fuel 

expenditure while efficiently slowing it down. After the initial burn, the lander will coast for an extended period and 

then fire its engines a second time for the landing burn.  

 

Figure 13. Trajectory visualization from the NRHO (green) to the Moon for both descent (red) and ascent 

(blue), with engine firings (white) noted  
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After successive iterations to find the necessary altitude for the start of the landing burn, the landing burn was 

determined to fire at an altitude of 1,845 km. This will ensure the lander reaches a velocity of 1 m/s at an altitude of 

50 meters [36]. This is done to account for variations in the topography of the lunar surface, so the lander will not 

crash on the moon. The lander will then throttle down its thrust to allow for a constant velocity burn to the surface of 

the moon. Figure 14 shows these velocity changes in relation to increasing/decreasing altitude for both the ascent and 

descent of the lander, respectively.  

 

 
Figure 14. Velocity versus altitude for the descent and ascent 

 

 
Figure 15. Required Delta-V vs Starting Radius for Burn 1  
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To optimize the descent and ascent trajectories there were four different variables that affected the required 

trajectory ΔV’s. These four variables are the starting altitude of both burns and burn duration of both burns. The 

starting altitude and burn duration of the second burn was constrained as the lander needed to reach the surface with 

no velocity. This meant that only the starting altitude and burn duration of the first burn could affect the required ΔV. 

With a landing spot on the South Pole, the simulation was designed to automatically target this area. This was done 

by testing a range of different starting altitudes and having the simulation determine the required burn duration for 

both burns and the starting altitude for the second burn. With the initial input of the starting burn altitude, the 

simulation would iteratively increase the duration of the burn until the lander successfully landed at the South Pole. 

The results can be seen in Fig. 15, above, for the total ΔV for each required iteration and these values were compared 

to determine the optimal starting radius for the first burn. After the successive iterations, an optimal starting radius of 

14,000 km and a burn duration of 25 seconds was found to optimally reduce the ΔV for the descent to 2.77 km/s. 

Similar processes were conducted for the ascent burns. 
After successful touchdown, the lander will sit idle for approximately six and a half days while the Gateway 

completes one orbit around the Moon and the astronauts perform the mission requirements. Once the Gateway comes 

back in the vicinity of the South Pole, the lander will launch and complete a two-burn maneuver to rendezvous back 

with the Gateway. Due to a lower payload mass for the ascent, the lander will be able to rendezvous with the Gateway 

more efficiently by reducing gravity drag, requiring a ΔV of only 2.68 km/s for the ascent. The mission timeline can 

be seen in Fig. 16.   

 

 
 

Figure 16. Timeline of descent and ascent beginning with undocking from Gateway 
 

 
VI. Power 

Conventionally, space vehicles are known to use either radioisotope thermoelectric generators (RTG), batteries, 

solar panels, or fuel cells to provide adequate electric power to the system. Considerations when choosing the power 

source include physical characteristics of the landing site including sun exposure and topography, complexity of the 

power system, safety for crew members, lifespan of the components, and overall mass penalties that stem from the 

source’s energy and power density. Table 5, below, shows a brief qualitative analysis of each power source considered 

during this design. 
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Table 5. Trade study of each power source 

Power Source Advantages Disadvantages 

RTGs 

No moving parts that can fail or wear, highly reliable, 

extensively used, can operate with or without an 

atmosphere, provides heat to warm the rest of the 

spacecraft’s electronics, extensive lifespan 

Radiation exposure possible for the 

crew, expensive, inefficient heat 

conversion 

Batteries 

Not very complex, can be lightweight for shorter 

missions not requiring a lot of power, many different 

kinds of batteries depending on mission requirements, 

area of high developmental research attention 

Can’t be recharged if they are used 

as primary power source, become 

heavier and volumetrically larger 

for longer missions and more 

power demands 

Batteries + 

Solar Panels 
Battery can be recharged if used in conjunction with 

photovoltaic energy 

Lack of sun exposure and difficult 

topography could hinder the 

expansion of the solar panels 

Fuel Cells 

No need to recharge, only produce water and heat due to 

their high efficiency operation, no mass penalties 

associated for longer missions because they are energy 

conversion (not storage) devices, no moving parts, 

operation is silent, can operate even when the ambient 

temperature is less than the fuel cell operating 

temperature 

Regenerative fuel cells desired for 

Mars missions but technical 

readiness is still low, electrolyte 

membrane will degrade over time 

 

A. Radioisotope Thermoelectric Generators (RTGs) 

RTGs operate based on the fact that radioactive materials, specifically plutonium-238 in this case, generate heat 

as they decay. Thermocouples then convert this heat into electricity for the spacecraft [37]. Figure 17 shows an 

expanded view of the current RTG model called the Multi-Mission Radioisotope Thermoelectric Generator 

(MMRTG), which was used on the two Viking landers as well as the Pioneer 10 and 11 spacecraft. This RTG can be 

used either on a planet with an atmosphere or in the vacuum of space, hence the Multi-Mission naming convention. 

Furthermore, the excess heat produced is beneficial in maintaining a proper operating temperature for the entire 

spacecraft [38]. The MMRTG is designed to provide 120 W of electrical power for at least 14 years [39]. 

 

Figure 17. Expanded view of the current Multi-Mission RTG [38] 
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RTGs have been used on spacecraft for a combined time of over 300 years, and because they have no moving parts 

that can fail or wear, the thermocouples used to convert the heat into electricity have never once stopped providing 

power. As such, RTGs are considered a highly reliable and attractive option for many space missions, especially long-

term, deep-space probes that have one chance of performing their mission and no chance of being repaired [38]. An 

added benefit to long-term missions is that because plutonium-238 has a half-life of 87 years, even after five years, 

the heat resulting from the decay is still outputting at 96% of the original heat output. The power output curve for 

plutonium-328 is seen in Fig. 18 [40]. Additionally, many deep-space probes, such as Voyager and Cassini, use RTGs 

for power also because their power generation is independent of solar flux, as will be a factor for the solar panel option.  

 

Figure 18. Power output over time for plutonium-238 [40] 

Despite these benefits, RTGs are currently expensive and inefficient [41]. The thermocouples have a relatively low 

energy conversion efficiency, typically in the range of only 5-9% conversion of the heat generated by the radioactive 

decay [42]. Furthermore, because they generate power from radioactive isotopes, the safety of the crew becomes an 

issue as shielding them from extra radiation becomes an imperative design consideration. Though RTGs have a long 

list of advantages, the disadvantages associated with their use are substantial enough concerns, and therefore RTGs 

were not chosen. 

B. Batteries and Solar Panels 

Batteries offer a minimal-complexity, inexpensive, and safe option for spacecraft power. There are two 

classifications of battery usage - primary or secondary usage. Primary batteries are used instead of any solar power, 

but without the harnessing of solar energy, these batteries cannot be recharged [43]. Typically, batteries as a primary 

source of power are seen on short-duration, minimal-power missions. Because this mission requires large amounts of 

power and will need to support humans on the Moon for up to seven days at a time, batteries as a primary and sole 

source of power were not an ideal choice, and were therefore not analyzed any further.  
On the other hand, secondary batteries are used in conjunction with a photovoltaic system. The solar array will 

provide the main source of power, but during the times that the sun’s energy is not available to the spacecraft, the 

battery will take over. When the solar cells are in use, they are also used to recharge any energy depletion in the battery 

[43]. Though this combination is more suited for longer-duration missions such as this one, there are a few 

complications associated with it. Because batteries are energy storage devices, the more energy the spacecraft needs, 

the larger the battery must be to accommodate the storage demands. While batteries used on short-duration and lower-

power missions are relatively light, for a mission such as this one, the battery storage demands would add considerable 

mass to the lander [44]. Furthermore, the topography of the landing site adds concerns to the choice of expansive solar 

panels. First, though the South Pole landing site experiences the greatest amount of direct sunlight, there are areas of 

the South Pole that are potentially void of direct sunlight, specifically in the craterous areas that have the most water 

ice for the ISRU benefits [45]. Second, if the lander were to land in a crater, the solar panels could potentially have 

issues expanding. As such, the battery and solar panel option was eliminated from consideration. 
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C. Fuel Cells 

Fuel cells, unlike batteries, are not energy storage devices, but rather energy conversion devices. Polymer 

electrolyte membrane (PEM) fuel cells draw upon oxygen and hydrogen (either pure or from another hydrogen source 

like liquid methanol) to produce an electrical current and a pure water byproduct, as seen in Fig. 19 [40]. The oxygen 

is supplied to the cathode and the hydrogen is supplied to the anode. The hydrogen protons are separated from the 

electrons at the anode, and the protons continue towards the electrolyte while the electrons travel through a circuit to 

produce a current and heat. At the cathode, the hydrogen protons combine with the oxygen molecules and the electrons 

to form pure water [46]. 

 

Figure 19. Fuel cell operational diagram [40] 

Fuel cells have an extensive list of advantages. First and foremost, the fuel and oxidizer used in a hydrogen fuel 

cell (hydrogen and oxygen, respectively) can be obtained from the Moon’s resources via the ISRU integration serving 

as the foundation of this mission. That means that even though fuel cells require constant resupply of these gaseous 

consumables, using a hydrogen fuel cell will allow resupply to come directly from the Moon. In addition, because fuel 

cells are simply converting chemical energy into thermal-electric energy, they do not require recharge. Hence, they 

can operate without additional sources of power, and longer-duration missions don’t require additional storage 

requirements and thus mass penalties. Next, fuel cells have no moving parts. Even though they are complex pieces of 

engineering, the absence of moving parts means quiet operation and reliable, long-term use. Fuel cells can also operate 

under ambient conditions where the temperature is less than the operating temperature, meaning they can even operate 

in the harshly cold vacuum of space [46]. Finally, as the only byproduct of a fuel cell’s operation is pure water, the 

fuel cells can serve as the primary source of water for the crew’s needs. In contrast to the wide array of advantages, 

fuel cells arguably only have one major disadvantage - the electrolyte membrane will degrade over time and will 

eventually need replaced [47]. However, not much information is known currently about specifically how long the 

membrane will last, and this topic will need to be researched more in the future to obtain a full understanding of the 

lifespan of this lander.  

Recently, regenerative fuel cells (RFC) have gained attention for use in long-duration space missions due to their 

sustainability. RFCs operate in both forward-operation and reverse-operation. During forward-operation these fuel 

cells perform exactly as normal fuel cells do. However, the sustainability comes into play during reverse-operation 

when a current is supplied from a solar cell to electrolyze the water byproduct back into hydrogen and oxygen for 

future forward-operation [45]. RFCs are gaining a lot of attention recently because they offer a recyclable alternative 

to a standard fuel cell that will become important for missions to Mars. However, due to this lack of technology 

readiness by the 2030 timeframe, and because these require an additional source of power from solar panels, which 

have already been removed from consideration, a standard PEM fuel cell will power AVOLLO without the 

regenerative capabilities. This also allows AVOLLO to draw all of the necessary water from the fuel cells without the 

need for external water supplies. 
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D. Fuel Cell Design 

A simplified schematic of the power system is shown in Fig. 20. The hydrogen and oxygen will be drawn from 

the common hydrogen and oxygen storage tanks that will also feed the propulsion and life support systems. The water 

byproduct will be directly fed into the life support system for all human water needs. 

 

Figure 20. Simplified power system schematic 

 In order to design the fuel cell system, the lunar lander from the Constellation Project, Altair, was studied. Altair 

was proposed to require a maximum of 6 kW of power, as seen in Fig. 21 as the lunar descent power requirement [48]. 

Since Altair was roughly on the same scale as AVOLLO with the same mission requirements, AVOLLO’s power 

requirement was modeled after this one.  

 

Figure 21. Altair power requirements for different phases of the mission [48] 

Based on the Department of Energy’s goals for fuel cell operations by 2020, the specific power of this fuel cell 

will be 2,000 W/kg and the power density will be 2,250 W/L [49]. As such, the fuel cell will weigh 3 kg (~6.5 lbs) 

and its volume will be 0.0026 m^3 (2.6 L). Because fuel cells are scalable, multiple cells can be stacked together in 

series or parallel to achieve the required power. Our design was based on the assumption that the stack would be 

arranged in series. Hence, each cell would experience the same current flow and the stack would experience the 

summation of all the voltage drops across each cell, where it is assumed each cell experiences the same voltage drog. 

With this in mind, Eq. (1) was used to determine how many cells needed to be stacked. The total power required, P, 

is equal to the total current, I, multiplied by the total voltage, V. Fuel cell calculations normally involve a current 
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density, i, given in units of amperes per cubic centimeter (A/cm2). Therefore, the total power is equivalent to the 

current density multiplied by the cell’s area, A, the voltage per cell, V, and the number of cells aligned in series, #cells. 

Table 6 details the design parameters, including common values for the current density, voltage output, and cell area 

[50]. 

 

𝑃 = 𝐼𝑉 = 𝑖𝐴𝑉#𝑐𝑒𝑙𝑙𝑠                                                                                (1) 

Table 6. Fuel cell design parameters 

Power required (P) 6 kW 

Current density (i) 0.7 A/cm^2 

Cell area (A) 100 cm^2 

Voltage per cell (V) 0.75 V 

Number of cells required (#cells) 115 

 

  
As the fuel cell will be the primary source of water throughout the mission, it was necessary to verify how much 

water this fuel cell would produce per day. To do this, Eq. (2) was used where �̇�𝐻2𝑂 is the amount of water produced 

per day, n is the equivalent electrons per mole of reactant, F is Faraday’s constant, and 𝑀𝑊𝐻2𝑂 is the molecular weight 

of water. Using the values tabulated in Table 7, the water production per day will be approximately 65 kg. It should 

be noted that fuel cell water management is a concern, as this is more than enough water per day (specific water needs 

will be discussed further in the Environmental Control and Life Support System section). There are some excess water 

mitigation techniques available including raising the operating temperature to allow some of the water to evaporate, 

or it could be collected in backup water storage.  

 

�̇�𝐻2𝑂 = #𝑐𝑒𝑙𝑙𝑠

𝑖𝐴

𝑛𝐹
𝑀𝑊𝐻2𝑂                                                                            (2) 

 

Table 7. Variables affecting water production rate 

Equivalent electrons (n) 2 eq e-/mol 

Faraday’s constant (F) 96,485 C/eq e- 

Molecular weight (MWH2O) 18 g/mol 

Water production (�̇�𝑯𝟐𝑶) 65 kg/day 

 

 
 Finally, Eqs. (3) and (4) were used to determine the overall oxygen and hydrogen requirements for this mission. 

The anode and cathode stoichiometry numbers, λa and λc, respectively, are based on efficiency and are defined as the 

actual rate of fuel/oxidizer delivered to the anode/cathode divided by the theoretical rate of fuel/oxidizer delivered. 

An optimistic efficiency of 60% was used, so that the stoichiometry numbers were both equal to 1.67 [50]. Ultimately, 

the hydrogen and oxygen requirements for a seven-day mission will be approximately 84 kg and 674 kg, respectively. 

Table 8 tabulates the required values used in these equations. 

 

𝑚𝐻2
= #𝑐𝑒𝑙𝑙𝑠#𝑑𝑎𝑦𝑠𝜆𝑎

𝑖𝐴

𝑛𝐹
𝑀𝑊𝐻2

                                                                      (3) 

 

𝑚𝑂2
= #𝑐𝑒𝑙𝑙𝑠#𝑑𝑎𝑦𝑠𝜆𝑐

𝑖𝐴

𝑛𝐹
𝑀𝑊𝑂2

                                                                       (4) 
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Table 8. Variables affecting total hydrogen and oxygen consumption 
 

Variable Hydrogen Oxygen 

Stoichiometry number (λ) 1.67 1.67 

Molecular weight (MW) 2 g/mol 32 g/mol 

Equivalent electrons (n) 2 eq e-/mol 4 eq e-/mol 

Total mass produced (m) 84 kg 674 kg 

 
  

Finally, after knowing the power requirements of the mission, the graph in Fig. 22 was considered to verify the 

choice of fuel cells for a 6 kW and 7-day mission. As is indicated by the red marker, a fuel cell is a sufficient choice 

to meet the requirements. 

 

 

 
Figure 22. Applicability of various power sources depending mission length and power requirements [40] 
 

VII. Structure and Material Selection 

Some common problems associated with space travel include thermal cycling (repeatedly moving into and out of 

the sun’s path), outgassing (the removal of trapped gases from a material due to the extreme vacuum of space), and 

life limitations due to ultraviolet radiation and exposure to a wide temperature gradient [51]. The material and 

structural decisions made for this lunar lander were based on these issues as well as the load bearing capabilities 

dictated by the propulsion system. Table 9 details some of the material options that were analyzed for use on the lunar 

lander.  
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Table 9. Material choice trade study 

Component Material Advantages Disadvantages 

Main body + 

Crew 

compartment 
Aluminum alloy composite 

Lightweight, durable, 

pressure capable 
Expensive thermal processing 

required 

Main body + 

Crew 

compartment 
Titanium 

High strength, durable, 

long-lasting 
Very heavy compared to 

other options 

Footings 

Aluminum honeycomb 

(sandwiched between 

aluminum alloy composite of 

main body) 

Lightweight, high stiffness, 

fire resistant, compression 

and shear resistant 

Historically only used for one 

descent journey 

Footings Aluminum alloy composite 
Lightweight, durable, 

pressure capable 

Will require reinforcements 

at joints to support long term 

durability and reusability 

Propellant tanks 
Fluoropolymer composite 

material 

Oxygen compatible, usable 

at cryogenic temperatures, 

lightweight, low CTE 

Newly developed (2005). 

initially prone to 

microcracking under thermal 

cycling 

Propellant tanks Kevlar and epoxy 

Commonly used in 

composite overwrapped 

pressure vessels (COPVs) 

for space missions 

Prone to buckling in the inner 

liner; new methodologies 

working to combat this 

 
For the mainframe of the structure, it was decided that a 10mm-thick aluminum alloy would be the best option as 

it is relatively lightweight, but still provides the structural rigidity necessary for long term use. Basic aluminum alloys 

have been used on similar spacecraft, as it provides a reasonable balance between performance, cost, and availability 

[11]. The benefit of using a metal like aluminum is that it is extremely malleable, but when alloyed, has a much greater 

strength and is therefore commonly used in the construction and transportation industries. The only drawback to using 

metal alloys is that the production process can require a great deal of thermal processing, but because aluminum is 

inexpensive and weak on its own, alloying has multifaceted benefits [52]. Additionally, while aluminum is an excellent 

compromise between weight and strength when alloyed, it is sometimes insufficient for areas of extremely high loads. 

In these areas (mainly joints and local load concentrations), titanium will be used. Using titanium only at the essential 

points will minimize weight additions and allow for wider margins of the structure’s weight bearing capabilities.  
The first non-mainframe, but equally essential, components that were studied were the propellant tanks. Propellant 

tanks are typically either spherical, cylindrical, or a combination thereof. Spherical tanks were chosen for this mission 

because they occupy a lesser volume, can bear greater force as stress is evenly distributed across the surface, and 

weigh less overall [53]. Figure 23 shows the stress forces across a cylindrical and a spherical pressure vessel. As can 

be seen from the stress diagrams, the cylindrical pressure vessel has both tangential and axial stresses, while the 

spherical vessel has only a singular membrane stress that is uniform across the entire body [54]. For systems that will 

require high pressurization of propellants, as well as the ability to withstand the extreme vacuum of space, spherical 

pressure vessels offer a stronger, more reliable storage option for a long-duration mission.  

 

 
Figure 23. Stress comparison for cylindrical versus spherical pressure vessels [54] 
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These propellant tanks, which need to be capable of carrying LH2 and LOX, require specialized materials 

developed for handling high pressure gases in the vacuum of space. In a majority of recent space missions, propellant 

tanks have been composite overwrapped pressure vessels (COPVs) [55]. COPVs consist of two main parts: a 

composite overwrap and a metallic inner liner. The purpose of this dual-material tank is to contain substances under 

high pressure and prevent corrosion should the substance be highly toxic [56]. The material typically used in COPVs, 

as can be seen in Table 9, is Kevlar 49/epoxy, a heat resistant, extremely strong synthetic fiber. The total thickness of 

these tanks is consistently less than 20mm [57]; while this decreased thickness can increase the risk of crack formation, 

the pressure capabilities of the tank provide minimal risk [58]. Currently, there is a risk of the inner lining buckling 

due to weak adhesion or lack of proper bonding, which can increase the risk of cracking in the liner; however, new 

methodologies are being developed to prevent this that should make this problem almost entirely avoidable by 2030 

[58]. 
Next, buckling and stress analysis was performed on the struts attached to the landing gear. There are multiple 

parameters to take into consideration when designing struts, such as the type of material (modulus of elasticity), length 

of the strut, and the cross-section geometry. Knowing the approximate maximum mass of 56,000 kg (noted in Table 

4 as the descent mass), simulations were performed in SolidWorks to ensure failure did not occur while maintaining 

a lightweight structure. Originally the legs were to be machined out of a titanium alloy because of the higher modulus 

of elasticity compared to an aluminum alloy. After running the simulations based on a lunar environment (lunar gravity 

and maximum assumed temperatures), the aluminum alloy was proven to sufficiently handle the estimated load and 

stresses while maintaining a factor of safety of 8. Once aluminum was verified to be a strong enough material to 

support the lander, another consideration involved creating an aluminum honeycomb structure for the legs, as detailed 

in Table 9. This type of material has been utilized in several space missions including Apollo 11 [59]. Figure 24 

presents a basic mock-up of the internal structure of the landing strut used on Apollo 11. 

 

 
Figure 24. Landing gear primary strut for Apollo 11, with aluminum honeycomb design [59] 

 
The benefit of this honeycomb design is that it allows for compressibility in the landing strut to add ease to the 

landing maneuver and decrease the resulting forces on the struts. While this design was met with great success on the 

Apollo 11 mission, it was found unsuitable for this mission as it does not allow for reusability; once the honeycomb 

is compressed, it has essentially lost all structural integrity and wouldn’t serve its purpose a second time. The final 
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decision regarding struts was determining how many legs should be used for optimal support. Though three legs are 

sufficient to keep a structure balanced, AVOLLO will have four legs to further reduce the force and stress on each leg.  
The housing structure was designed last to ensure all equipment and components could fit inside, while still being 

mindful of protecting the crew from the harsh lunar environment. The primary constraints for the housing structure 

were ensuring that it physically fit within the launch vehicle’s payload bay, and that its weight was within the launch 

vehicle’s capabilities. As mentioned before, this lander will need to launch atop an SLS like the rest of the Gateway 

components including Orion. Specifically, AVOLLO was designed to launch on an SLS Block 1B configuration that 

is proposed to be available by the mid-2020s [60]. Though an SLS Block 2 is proposed by the 2030’s and will be even 

more powerful than the Block 1B, it is unclear when in the 2030’s it will be available, and as such was not a viable 

candidate [60]. The SLS Block 1B is the required launch vehicle because it is the only launch vehicle capable of 

sending Orion and the Gateway components to the Moon. Figure 25 shows the SLS Block 1B payload capacity 

compared to other vehicles, emphasizing the importance of its development.  

 

 

 
Figure 25. Launch vehicle comparison for lunar payload delivery [60] 

 

 
As can be seen from Fig. 25, the SLS Block 1B can lift up to 44 mt (44,000 kg) to the Moon [60]. A detailed mass 

breakdown of AVOLLO is shown in Table 10, which shows that after all of the subsystems were incorporated (except 

for an accurate mass estimate for the life support system due to complications in accurately quantifying that mass), 

the total maximum mass is greater than the SLS launch capability, even without accounting for any margins. However, 

if the lander is launched from Earth to the Gateway with no oxygen or hydrogen for the propulsion or life support 

systems on board, it would only weigh approximately 29,000 kg, which is plenty within the SLS’s launch capability. 

The lander will be launched with the power system’s necessary hydrogen and oxygen so that once the lander reaches 

the Gateway, it will be capable of docking. It will then receive the necessary consumables from the on-orbit propellant 

depots before being home to the four crew members for their seven-day journey to the surface. 
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Table 10. Mass breakdown of AVOLLO’s components and subsystems 

Component Mass (kg) 

Engines (x4) 640 

Oxygen - Propulsion 23,159 

Oxygen - Power 671 

Oxygen - Life Support 24 

Total Oxygen 23,853 

Hydrogen - Propulsion 3,860 

Hydrogen - Power 84 

Total Hydrogen 3,944 

Nitrogen - Life Support 30 

Fuel Cell 3 

Navigation 10 

Structure  

Kevlar LH2 Tank (x4) 2,348 

Kevlar LOX Tank (x2) 972 

Landing Gear (x4) 2,238 

Outer Structure 3,077 

Reaction Control System (x4) 136 

Ladder 99 

Chairs (x4) 307 

Control Panels 2,144 

Windows (x5) 34 

Miscellaneous 2,271 

Total Structure 13,627 

Max Payload (Descent) 15,000 

Overall 56,329 
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Furthermore, the physical dimensions of the lander must fit within the payload bay of the SLS Block 1B, 

visualized in Fig. 26. The largest version of the Block 1B payload fairing has an internal diameter of 7.5 meters, and 

a height of approximately 27 meters [60]. AVOLLO, which is seen in Fig. 27, has a diameter of 7.4 meters with the 

struts in the stored position, and a height of 8 meters. Future iterations of the CAD design should take into account the 

necessary safety margins such that the diameter of 7.4 meters is slightly reduced to allow adequate room on all sides 

for vibrations during launch. 
 

 
Figure 26. SLS Block 1B payload size constraint visualization [60] 

 

 
 

Figure 27. CAD design of AVOLLO 
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VIII. Environmental Control and Life Support System 

The environmental control and life support system (ECLSS) for AVOLLO was designed with the same sustainability 

goals as the rest of the subsystems. By depending on ISRU for the oxygen and hydrogen resupply and the fuel cell for 

the primary source of water, the only consumable that will need replenished from Earth is nitrogen, which for the 

entire mission is only approximately 30 kg. Basic requirements for ECLSS designs include atmosphere supply, 

control, and revitalization; carbon dioxide and trace contaminant removal; a potable water supply; waste management; 

temperature and humidity control; fire detection and suppression; and extra-vehicular activity (EVA) capabilities 

including suit connections and an airlock. The three primary systems will be discussed further in this paper: 

atmosphere supply, control, revitalization, contaminant control, and water supply. 

A. Atmosphere Supply, Control, and Revitalization 

In compliance with recommendations from NASA’s Exploration Atmospheres Working Group (EAWG) for a 

lunar lander, the main cabin will have the capability to pressurize to either 8.0 psia / 32% O2 or 10.2 psi / 26.5% O2. 

These requirements are based on human physiology needs as well as the compatibility with the Crew Exploration 

Vehicle (CEV), Orion. Furthermore, these atmospheres were determined to be the most desirable for this type of 

mission to promote efficient EVA preparation. EVA preparation includes the need to pre-breathe oxygen, where pre-

breathing is defined as the time in the EVA suit after purge and leak-check until the absolute pressure on the body is 

4.3 psia. Pre-breathing oxygen decreases the risk of decompression sickness, and is partially dependent on what the 

cabin atmosphere is. Certain atmospheres lend themselves to having shorter pre-breathe time requirements, and these 

two atmospheres were determined by the EAWG to be adequate and ideal for shorter duration lunar landing missions 

with high-frequency EVA excursions [61]. 
The remaining gas percentage will be comprised of nitrogen. A nitrogen/oxygen simplified model of Earth’s 

atmosphere will provide a comfortable environment for the astronauts while also simplifying design parameters and 

minimizing the possibility of hypoxia, decompression sickness, or cabin fires. These two gases, however, will need to 

be resupplied into the atmosphere at different rates due to a variety of factors, including human consumption and 

spacecraft leakages. This was taken into consideration when determining how to store the oxygen and nitrogen before 

they are fed into the cabin. The gases could be stored separately or as a mixture. Storing them as a mixture not only 

decreases the required tanks and therefore volume and mass, but it also yields a less complicated design with less parts 

because there is no need for a mixing device. However, if stored as a mixture, the mixture would have to be resupplied 

from Earth. On the other hand, if stored separately, and if the oxygen is retrieved from the common LOX tanks used 

to supply the propulsion and power systems, the life support system could also benefit from the ISRU integration. 

Furthermore, because oxygen is consumed by humans at the rate of 0.84 kg per day, and because nitrogen often leaks 

through the walls of spacecraft structures, storing the gases separately is beneficial for needing to resupply these at 

different rates [62, 63]. The nitrogen and oxygen will flow from their respective tanks into a mixing chamber, where 

it will then be released into the cabin atmosphere. Portable fans will be stored onboard at various places throughout 

the cabin to ensure that the air is properly mixed at all locations; this will eliminate pure oxygen pockets that could 

cause fires and pure nitrogen pockets that could cause asphyxiation. 

 

B. Contaminant Control 

Unwanted contaminants, including carbon dioxide (CO2), microbes, and dust, will inevitably build up if not 

carefully monitored and removed due to the lack of interaction with an outside environment. As such, there are three 

primary components to a contaminant management system: trace contaminant removal, CO2 removal, and high-

efficiency particulate air (HEPA) filters. The trace contaminant control system (TCCS) for AVOLLO will mimic that 

of the ISS, consisting of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, as seen in Fig. 

28 [64]. Most contaminants will physically adsorb onto the charcoal bed, but those that aren’t easily adsorbed will 

pass through the catalytic oxidizer. Through thermal catalytic oxidation, the contaminants will be oxidized to carbon 

dioxide and water. The oxidation products will then pass through a lithium hydroxide post-sorbent bed where they 

will be adsorbed along with any unwanted acids produced during oxidation [64]. Outside of the TCCS, dust particles, 

aerosols, and allergens will be removed by HEPA filters in the return air ducts. 
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Figure 28. Trace Contaminant Control System used on the ISS [64] 

The third contaminant management system is the carbon-dioxide removal system. As with any engineering system, 

especially those used in space applications, no perfect CO2 removal system exists. Ideally, future Mars spacecrafts 

will solely rely on the Sabatier process where CO2 is reacted with hydrogen (H2) to produce methane (CH4) and water 

(H2O). The methane could then be used as a propellant (especially because methane is obtainable through Martian 

ISRU processes), and the water could be split into oxygen and hydrogen atoms for other uses [65]. Unless the methane 

is also decomposed, this process results in a net loss of hydrogen, therefore requiring resupply [66]. In consideration 

of the reusability goals for this lander, as well as the technical readiness level desired by 2030, the Sabatier reaction 

was not chosen as the CO2 removal system. Instead, and though it comes with flaws of its own, AVOLLO will use an 

appropriately sized version of the regenerable Carbon Dioxide Removal Assembly (CDRA) that is currently onboard 

the ISS. The CDRA on the ISS is a four-bed molecular-sieve system that not only adsorbs CO2 and vents it overboard, 

but also collects excess water molecules from the air to serve as humidity control, which can be fed into the water 

supply system [67]. 

C. Water Supply 

As noted above, one of the main reasons for choosing fuel cells as AVOLLO’s power source was the added benefit 

that their only byproduct is water. Thus, the primary source of water will come from the fuel cell productions, with 

backup water supplies held in contingency water containers resupplied from the ISRU mining sites or the excess fuel 

cell water production. Table 11 details the minimum water needs per person per day for a space mission. These will 

obviously vary based on the mission requirements, but they can serve as a baseline. The fuel cell will output 

approximately 65 kg of water per day, which is an incredible amount more than is needed. As was mentioned in the 

Power section, the water output can be decreased by changing operating parameters of the fuel cell itself, or from a 

life support standpoint, the astronauts could increase their daily water usage to include showering, flushing, etc. 

 

Table 11. Minimum water needs per person per day [68] 
Drinking 1.62 kg 

Food prep 0.76 kg 

Shower (min) 1.82 kg 

Handwash 4.09 kg 

Assume no urine flush 0 kg 

Total 8.29 kg 
 

The water will pass through a microbial control system before feeding into either the EVA suit connectors, the 

drinking water storage, or the hygiene water access. The drinking and hygiene water sources begin the waste 

management control system. The drinking water will be used to rehydrate food, and any food waste will be collected 

in a combined wet trash/fecal storage bladder. The industry standard waste collection system (WCS), otherwise known 
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as a toilet, will be integrated into the waste management system. The WCS separates fecal matter from urine and 

disposes both to their corresponding bladders [69]. The wet trash/fecal and waste water storage bladders will be 

returned to the Gateway and returned to Earth on Orion. Urine is typically vented overboard when in orbit, but if a 

permanent lunar base is the end goal for these lunar missions, that is not a sustainable practice [70]. 
A simplified schematic of the three major systems noted above can be seen in Fig. 29. The life support system 

unfortunately makes the lunar lander less reusable than will ultimately be required on Mars. Food is not grown on the 

lander, human waste is returned to Earth, and CO2 is not recycled back into the system, thus making this an open-loop 

life support system. Though much progress is being made toward a fully-closed life support system, there is not one 

readily available yet. Given the relatively short duration of the landings, this amount of purging and resupply was 

deemed acceptable. 

 

 

 
 

Figure 29. Simplified ECLSS schematic 

 

IX. Conclusion 
 This year, the National Aeronautics and Space Administration, in conjunction with AIAA, created a design 

competition to develop a reusable lunar lander capable of docking with the Lunar Orbiting Platform - Gateway and 

performing a variety of tasks on and around the Moon. While this project was outlined with this competition in mind, 

some parameters and requirements were adjusted, as detailed in the Introduction section of this paper. As such, a lunar 

lander, AVOLLO, was designed with these capabilities: to support a crew of four for up to seven days, to deliver a 

payload of 15,000 kg to the surface of the moon, to deliver a payload of 10,000 kg from the Moon back to the Gateway, 

to fit inside the payload bay of NASA’s SLS Block 1B, and to sustainably operate back and forth between the Gateway 

and the South Pole of the Moon. In developing this lander, all critical subsystems and structures were analyzed, 

including the in-situ resource utilization techniques that would be implemented on the Moon. The final components 

of each system were selected after careful consideration of technology readiness levels, mass and size constraints, 

durability of materials, and reusability/sustainability goals. NASA’s motivation in establishing this project was to 

ultimately develop a lander that could be used for a long-duration mission to Mars. AVOLLO provides a cost-effective, 

reliable, and sustainable permanent presence beyond low earth orbit that will serve as a stepping stone towards this 

larger goal by allowing astronauts to be trained and technologies to be tested in a much safer proving ground, the 

Moon. 
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