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Summary:

Process Goals:
The primary objective of our study level process design was to devise a method
for the production of thorium oxide from monazite ore extracts while also
accommodating environmental and safety considerations. Primary concerns for
safety included process operation conditions such as temperature, pressure, and
pH. For environmental conditions, dangerous wastewater conditions were
mitigated as much as possible, and radioactive material was separated during
processing.

Capital Cost:
After considering the sizing, material, and type of equipment for our process, we
calculated a capital cost of approximately $17,033,000. This estimate includes
both equipment and wastewater treatment costs.

Manufacturing Cost:
Due to the significant profitability of the rare earth element oxide byproducts, the
total manufacturing expense was calculated at an estimated -$21,550,000
(meaning an annual earnings of $20.4 million). The calculated net annual profit
after taxes was $46,920,000, and the calculated after tax rate of return was
359.28%.

Conclusion:
Overall, these numbers show significant promise for a profitable thorium oxide
production process that takes both safety and environmental factors into
consideration. Throughout the flowsheet construction and design process, high
process temperatures and high steam pressures were minimized to limit
hazardous conditions. However low stream pH values present a challenge to
operator and engineer safety. Regardless, given the rudimentary nature of a
study-level process design, significant progress has been made in determining a
process that meets all of the previously stated goals.
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1.0 Introduction
In the following report the study level design of extracting thorium oxide from

monazite ore was explored. This was accomplished using the simulation software of
OLI Flowsheet. An acid catalyzed method was used in which monazite ore was treated
with sulfuric acid. Once the monazite ore is treated with sulfuric acid, thorium was
processed, using various process equipments, into its most economically viable form of
thorium oxide. Thorium oxide is a valuable product that has applications in areas such
as nuclear fuels, catalysis, and glass manufacturing. Rare earth elements from the
monazite ore such as Neodymium, Lanthanum, and Cerium were also processed into
their subsequent oxide forms to maximize process production value.

For this design project, we fed 1000 kilograms per hour of monazite ore, and our
objective was to recover 90% by mass of thorium oxide while focusing on pollution
prevention and process safety. The general goal of the manuscript is to provide
baseline information regarding processing challenges, safety considerations, and
intermediate economic analysis. A ChE index of 616 was used in doing all economic
analysis calculations.

Contributions to this study level design were made by the department of
Chemical and Biomolecular Engineering at the University of Tennessee, Knoxville and
Electric Power Research Institute.

2.0 Synthesis Information for Processes
2.1 Overall Process Schematic
Thorium oxide production was achieved by separation and purification from

mined monazite ore. Once the monazite ore is mined, it is leached with sulfuric acid to



break apart thorium and REE’s into their respective phosphates. In order to mitigate
extreme temperatures, the stream is flashed and cooled. After continuous filtration to
remove the solid thorium sulfate and silicon dioxide, two separate processes occur to
recover thorium oxide and REE oxides. As can be seen in Figure 2.1, the thorium oxide
recovery process is as follows: (1) React thorium sulfate/silicon dioxide mixture with
ammonium hydroxide to produce thorium oxide. (2) Filter out waste water and
ammonium from reaction. (3) Solubilize silicon dioxide with sodium hydroxide. (4) Filter
out silicon dioxide. Additionally, the REE recovery process is as follows: (1) React REE
sulfates with sodium hydroxide to add hydroxyl groups. (2) Filter out waste water and
excess sodium hydroxide. (3) Calcine REE hydroxides to produce REE oxides. The 2

processes are outlined below:

Waste Water and
Sodium Hydroxide
React REE Sulfat: R
. —» |Leaching with Sulfuric| ] Continuous 5 eac_ u ates — | continuous |—»| CalcineREE |
Monazite Ore i 7 5 with Sedium 3
Acid Filtration g Filtration Hydroxides
Hydroxide

I

React Thorium Sulfate and Silicon
Dioxide with Ammonium Hydroxide

> = = = o i 5 Thorium
Continuous Filtration of Thorium Solubilize Silicon |__,| Continuous | — Oxide
Oxide and Silicon Dioxide Dioxide with Sodium Filtration

l Hydroxide l

Waste Water and .
. Waste Silicon
Ammonium il
Dioxide

Figure 2.1: Thorium Oxide and REE Oxide Recovery Process

Rare Earth
Element
Oxides




2.2 Process Chemistry

The process for producing thorium oxide and rare earth oxides from monazite ore
is described through the reactions below. The process begins by thorium phosphate
and the rare earth phosphates from the monazite ore reacting with sulfuric acid to
produce thorium sulfate and rare earth sulfates. Thorium sulfate is then reacted with
ammonium hydroxide to form thorium hydroxide and the rare earth silicates are reacted
with sodium hydroxide to form rare earth hydroxides. Thorium hydroxide and the rare

earth hydroxides are then calcined to complete the process where thorium oxide and

the rare earth oxides are formed.

Reactor 1
2LaP O, +3H,50, — La,(SO,), +2H PO,
ThHPO,), + H,S0, — Th(S0,), + H,PO,
2NdPO, +3H,50, — Nd,(SO,), + 2H,PO,
2CeP O, +3H,80, — Ce,(SO,), +2H,P O,
Reactor 2/ Reactor 4
La,(S0O,), + 6NaOH — 2La(OH), +3Na,SO,
Nd,(SO,), + 6NaOH — 2Nd(OH), +3Na,SO,
Ce,(SO,); + 6NaOH — 2Ce(OH), +3Na,SO,
Reactor 3
Th(SO,), +4NH,OH — Th(OH), +2(NH,),SO,

Th(OH), — ThO, +2H,0



Calciner
2La(OH), — La,0; +3H,0
2Nd(OH), — Nd, 0, +3H,0
2Ce(OH); — Ce,0, +3H,0
2.3 Literature Summary

Isyatun Rodliyah, S. R., Tatang Wahyudi. (2015). Extraction of Rare Earth Metals
from Monazite Mineral Using Acid Method. Indonesian Mining Journal, 18, 39-45.

The purpose of this study was to determine the extent to which rare earth
elements could be extracted from monazite using the acid method. In the experiment,
monazite was first leached with sulfuric acid under pressure. Thorium was then
precipitated out using ice. The remaining rare earth elements were treated with sodium
hydroxide to convert them to the hydroxide form. They were then run through a calciner
to convert them into rare earth oxides. During the experiment, leaching temperature,
solvent concentration, and length of dissolving time were all varied. The study found
that the greatest rare earth element extraction occurred when the volume ratio of sulfur
acid to water was 1 to 2. It was also found that the extraction was greatest when the
leaching temperature was 220 C and the leaching duration was 150 minutes.

John Demol, E. H., Gamini Senanayake. (2018). Sulfuric acid baking and

leaching of rare earth elements, thorium and phosphate from a monazite

concentrate: Effect of bake temperature from 200 to 800 °C. Hydrometallurgy,

179, 254-267.

The purpose of this study is to gain a further understanding of the chemistry that

occurs during the sulfuric acid baking of monazite and how baking temperature affects

the dissolution of rare earth elements during leaching. The acid bake experiments were



performed in a furnace, and the temperature ranged from 200 and 800 degrees Celsius.
The weight of monazite used was 20 grams, and the amount of sulfuric acid was kept
constant at 250% of the stoichiometric amount needed. The baked monazite samples
were then cooled and ground before leaching. Monazite was leached with sulfuric acid
at a ratio of 40 to 1 sulfuric acid to monazite. The study found that between 200 and 300
degrees Celsius that the leaching of rare earth elements was maximized. Between 400
and 500 degrees Celsius, the extraction of rare earth elements decreased, and between
600 and 800 degrees Celsius, the monazite started to reform. It was also found that the
reaction between sulfuric acid and monazite was complete after two hours at 250 C.

Loren Berry, Vivek Agarwal, Jennifer Galvin & M. Sadegh Safarzadeh (2018)

Decomposition of monazite concentrate in sulphuric acid. Canadian Metallurgical

Quarterly, 57(4), 422-433.

The goal of this study was to examine the bake-leach process of monazite with
sulfuric acid and the effects baking on the extraction of rare earth elements, uranium
and thorium from monazite during leaching. Five grams of monazite were used in the
baking experiments, and baking was carried out in a muffle furnace. The temperature
and duration of baking were varied along with the ratio of sulfuric acid to monazite
concentrate. After baking, the monazite was then leached in a 500 mL beaker. The
temperature and duration of leaching were kept constant at 70 C and 30 min. The study
found that nearly full extraction of rare earth elements, uranium, and thorium was
possible at a bake temperature of 250 C and a bake duration of four hours with a
sulfuric acid to monazite concentrate ratio of 4 to 1. Changes in temperature between

180 and 250 C had a minimal effect on the extraction of rare earth elements. However,



it was also found that the amount of thorium and uranium extracted from monazite
decreased with increasing bake temperatures.

Barry Perlmutter. Comparison of Gypsum Dewatering Technologies at Flue gas

Desulfurization Plants. Presented at the 45th ISA Power Industry Division

(POWID) Conference San Diego, California on June 2-7, 2002.

This paper provides a review of three possible filtration techniques for the
filtration of gypsum in flue gas desulfurization plants. The review includes analysis of
utilities and maintenance required for each technique as well as analysis of
performance. There are two types of vacuum filtrations: continuous belt filters (CBF)
and continuous-indexing belt filters (CI-BF). One of the main differences between CBF
and CI-BF is that CBF requires a rubber belt, which must be cooled continuously with
water. This increases the water needed in the plant. The CI-BF has a longer filter cloth
life than CBF, and CI-BF uses pneumatics instead of a motor, so it requires less energy.
Another big difference between CBF and CI-BF is that CBF uses continuous washing,
while CI-BF uses intermittent washing that is controlled by a residence time. The
benefits of intermittent washing are that the residence time can be altered, and a
smaller amount of water is required. The other technique used in filtration is vertical
basket centrifuges. This technique runs on a batch basis with a typical batch time at 8 to
10 minutes. A major benefit of vertical basket centrifuges is that it produces a dry cake.
However, it requires high maintenance due to rotation speeds. The review study found
that out of the three techniques, CI-BF is the best option because it requires the least

maintenance and the least amount of water.



Farzaneh Sadri, F. R., Ahmad Amini (2017). Hydrometallurgical digestion and

leaching of Iranian monazite concentrate containing rare earth elements Th, Ce,

La and Nd. International Journal of Mineral Processing, 1569, 7-15.

This paper examines the effects of temperature and time on a three step
procedure for the removal of rare earth elements from monazite. The three steps
outlined in this paper are acidic digestion, leaching, and precipitation. The acidic
digestion was done using sulfuric acid and 3 grams of monazite. The temperature of
digestion was varied at 200, 225, and 250 C. The ratio of sulfuric acid to monazite was
varied between 1, 1.75, and 2.5. Lastly, the length of acid digestion was varied between
1, 3.5, and 6 hours. The acid digestion experiments found that the optimal conditions for
digestion are a temperature of 225 C, a sulfuric acid to monazite ratio of 2.5, and a
duration of 3.5 hours. Leaching was also performed under three temperatures of 25, 50,
and 75 C. The duration of leaching was varied between 5, 10, and 15 hours, and the
ratio of water to solid was varied between 5, 7.5, and 10. The experiment found that the
optimal conditions for leaching are a temperature of 75 C, a duration of 15 hours, and a
water to solid ratio of 7.5. All precipitation was done for 30 minutes using oxalic acid at

an acid to solid ratio of 1 to 1. The precipitate was then run through a calciner at 800 C

for 1 hour. The final purity of the rare earth oxides was 84%.

2.4 Basic Process Economics
One objective of this study is to determine the economic potential of removing
rare earth elements from monazite ore and converting them to oxides. The economic

analysis performed takes into account the cost of products, byproducts and raw
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materials as well as equipment and operational costs. The costing information used for

products, raw materials, and energy is shown in Table 2.1 below.

Cost Assumptions

Material Cost/Unit
Monazite Concentrate | $1.00/kg
H2S04 $0.04/kg

HNO3 $0.4/kg
ThO; $80.00/kg
La;0s SZ.OD/kg
Ce0; $2.00/kg
Nd;03 $60.00/kg
NaOH $0.35/kg

NH4OH 50.2/kg
Natural Gas $4.40 /GJ

Table 2.1: Cost of Materials

3.0 Method of Approach

3.1 Sustainability, Environmental, and Worker Safety

The major reason for thorium oxide production stems from the necessity of a
fertile alternative to uranium alone for nuclear power. When reacted in conjunction with
uranium in a thermal breeder reactor,the excess neutrons produced can be reused in
the initial fuel mixture. This significantly reduces the amount of fuel required for nuclear
energy production. Additionally, thorium is a much more abundant resource than
uranium. Although thermal breeder reactors are a developing technology, their potential
as a more sustainable method for nuclear energy extraction demands a viable method
for thorium oxide extraction. Regarding environmental safety, the most concerning
aspect of nuclear energy production involves the production of atoms larger than

uranium (also known as transuranic atoms). Thorium oxide processing in thermal

11



breeder reactors avoids transuranic atom production altogether. Regarding the process
of thorium oxide extraction from monazite ore, there is a significant environmental and
worker safety risk associated with the radioactivity of thorium. The rare earth elements
are toxic to humans, and the strong acids and bases utilized throughout the process
(like sulfuric acid and sodium hydroxide) can significantly irritate and even burn workers
if they aren’t wearing proper personal protective equipment. Furthermore, plant design
should be optimized for worker safety. A more comprehensive outline of the hazards of
the raw materials are presented in the stream hazards chart in Appendix F. The design
has been optimized by allowing extra space in the equipment to prevent splashing as
well as having sturdy materials of construction that can handle the high levels of
corrosivity. There is also comprehensive tertiary treatment wastewater plant that will
keep harmful waste from the environment and the workers. There is also endothermic
flaring and flue glass cleaning on the vapor outlet of the flash tank such that harmful
vapors are not released to the environment. Worker safety will also depend on safety
training modules and simulation training that will be mandated for all employees.

3.2 Product Quality

A main objective in designing the process was to recover at least 90% by mass
of thorium oxide. The process was designed in order to maximize the product quality of
thorium oxide as well as the byproduct quality of REE oxides. Achieving this level of
product quality allows us to use the values for thorium oxide and REE oxides cited in

Table 2.1. This constraint affected the design of the flowsheet and choice of equipment.

12



4.0 Results

4.1 Capital Cost Estimates

The design of each piece of equipment used in the process is detailed in
Appendix E. The equipment was sized based on the mass balance of the process given
by OLI Flowsheet. All mass flow rates from OLI Flowsheet are presented Appendix C.
These pieces of equipment were given 25 percent more volume than the minimum
volume to contain the material. This was done a safety measure to protect against
minor fluctuations in time throughout the process. The costs of these pieces of
equipment were estimated using the capital cost estimation charts in Ulrich. The total
capital cost for this grass root plant is $17.03 million as can be seen in Capital Cost
Summary in Figure D.1 in Appendix D . Example costing calculations for each type of
equipment can be found in Appendix B. The distribution of these costs are shown in

Figure 4.1.

Capital Cost

B Wastewater Treatment Plant
mVaccum Fikers

i Heat Exchangers

Proces Vesels

W Mixers
m Calciner
B Contingency and Fees
m Offsite Facilities

Figure 4.1: Capital Cost Distribution
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4.2 Manufacturing Cost Estimates

Manufacturing costs were calculated using equations provided by Ulrich. Overall
general expenses were not included in Figure 4.2 because the value was negative
(indicating net monetary gain as opposed to expense). In a similar fashion, the total
manufacturing cost was determined to be -$20,459,064.63. The negative magnitude is
emblematic of a manufacturing process that earns approximately 20 million dollars
annually after counting expenses alone. The primary reason for this negative value is
based on byproducts credits earned from selling rare earth element oxide byproducts in
addition to thorium oxide. These byproducts alone generate over 40 million dollars of
revenue annually. The revenue generated from the sales of thorium oxide alone is
$37.84 M a year. Combining the total revenue from sales as well as the total
manufacturing expenses gives a net profit of $46.92 M per year. The calculations for

manufacturing costs are shown in Figure D.2 in Appendix D.

Manufacturing Costs

B Utidities

= Raw Materils

o Labor
Maintenance

m Operating Supplies.

m Overhead

B Local Taes

m Insurance.

Figure 4.2: Annual Manufacturing Expense Distribution
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5.0 Discussion of Results

The extraction of thorium oxide and rare earth oxides seems to be very profitable
as determined by this study level analysis. The total profit of the process on a yearly
basis is $46.92 M a year while only having $17.03 M in capital costs. This gives an net
annual rate of return after taxes of 359%. This level of economic prosperity may not be
entirely accurate given the scope and assumptions of the analysis, however the

economic potential of this process seems to be very favorable.

6.0 Conclusion

Overall, these economic numbers show significant promise for a profitable
thorium oxide production process with an annual rate of return after taxes of 359 %.
This design also takes both safety and environmental factors into consideration by
effective wastewater treatment and proper equipment design. Throughout the flowsheet
construction and design process, high process temperatures and high steam pressures
were minimized to limit hazardous conditions in order to promote worker safety.
However, low and high stream pH values present a challenge to operator and engineer
safety. This study level design is rudimentary in nature, however; significant progress
has been made in determining a potential process that meets all of the previously stated

goals.
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7.0 Recommendations

The scope of this study level design with all of the given assumptions, are a
beginning to understanding the feasibility of this process. However, the assumptions
listed in Appendix A require that this design deviates from reality. In order to further
progress the study of this potential process, these assumptions need to be more closely
related to reality. The filtration system must further be studied to have a more accurate
efficiency and not a perfect 100 percent. The heat exchangers must be studied more
closely with heat transfer coefficients that more closely resemble the actual heat
transfer coefficient of the fluids involved with the process. There must also be a closer
look into the amount of operators needed to run this potential plant in an efficient
manner. There must also be more rigorous estimations of the amount of downtime that
will inevitably occur in the plant as equipment fails. Another major factor that needs to
further studied is the kinetic parameters of the system. This design was created using
OLI Flowsheet which calculates an equilibrium for each piece of equipment. The
kinetics for each piece of equipment may drastically influence the design of this process
and thus needs more rigorous study. The kinetic and thermodynamic parameters of the
calciner must also be further analyzed because this piece of equipment was not
available in OLI. This further level of analysis can be accomplished by further laboratory
work as well as in the future building a small pilot plant.

The pH of this process must also be tempered in order to ensure process safety.
One proposed method is to use a specific type of biological catalyst (enzyme) that is

capable of removing phosphate groups. These enzymes are called phosphatases, and

16



although no known phosphatase is capable of carrying out the dephosphorylation
reaction of monazite ore components, designing one could result in a significant
increase in productivity and safety. Lower pH streams would be eradicated since they
would no longer be necessary to remove phosphate groups from thorium and rare earth

elements.
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Appendix A: Project Assumptions

Filtration was assumed in which the efficiency of all filters is thought to be 100%

- Liquid on the cold of the heat exchangers have a similar overall heat transfer
coefficient to water and brines

- 5 operators are needed to run a piece of equipment continuously but only needs
to have a third of their attention

- Operator of salary increases by 3% every year

- The reactions all have enough time to reach equilibrium for each piece of
equipment

- The rare earth hydroxides react completely in C-230 giving only the respective
rare earth oxides as well as water

- Production process has a 24/7/365 runtime (no downtime)

19



Appendix B: Sample Calculations
B.1: Reactor Costing Sample Calculations
Reactor 2:

From OLI Flowsheet : Q =7.2563 m3/hr

t=3hr

V=01 %125=(7.2563 m*/hr)(3 hr)(1.25) =27.2111 m?
D=V/m)'"=0272111 m/n)"* =2.05m
L=4«D=4%205m=821m
From Ulrich 2004 Figure 5.44 : Cp = $65, 161
From Ulrich 2004 Figure 545 (p =1 barg) : Fp=1
For Carbon Steel Base with PTFE lining : F, =5
Fn#F,=5%1=5
From Ulrich 2004 Figure 5.46 (vertical orientation) : F %, = 11
Cpu =

F %, * Cp % (ChE Index 2018/ChE Index 2004) = 11  $65, 161 * (616/400) = $1, 087, 699
B.2: Mixers Costing Sample Calculations
Mixer 2:

From OLI Flowsheet : Q = 157 m3/hr
T=3hr

V=0x%1%125= (157 m*/hr)(3 hr)(1.25) = .58875 m?

D=V /)" = (58875 m*/n)!® = 5722 m

20



From Ulrich 2004 Figure 5.41 : Cp = $75,000

From Ulrich 2004 Figure 5.41 (Stainless Steel) : F, = 2.9

CBM

F . % Cp * (ChE Index 2018/ChE Index 2004) = 2.9 x §75,000 * (616/400) = $33, 005
B.3: Flash Tank Costing Sample Calculations
From OLI Flowsheet : Q = 749.7 m3/hr
T =.01hr
V =0%1 % 125=(749.7 m3/hr)(.01 hr)(1.25) = 9.37 m?
D = ((4/5)(V 1)) = ((4/5)(9.37 m?/n))® = 2.866 m
L=5xD=5%2866m=1433 m
From Ulrich 2004 Figure 5.44 : Cp = $88,387
From Ulrich 2004 Figure 5.45 (p =1 barg) : Fp=1
For Carbon Steel Base with PTFE lining : F, =5
Fp«F,=5%x1=5
From Ulrich 2004 Figure 5.46 (vertical orientation) : F %, = 11
Coum
F %, * Cp % (ChE Index 2018/ChE Index 2004) = 11 « $88,387 * (616/400) = $1,497,275
B.4 Heat Exchanger Costing Sample Calculations:
Heat Exchanger 1:
From OLI Flowsheet : Q = Amount of heat generated = 5.18 * 10° cal/hr

(5.18 * 10%cal/hr)(4.18 Jlcal) = 2.16 * 10° J/hr

21



From OLI Flowsheet : AT =115 K

From Ulrich 2004 Figure 4.15a W ater + Brine Cold Side : U =900 J/m*> — K
Q0 =UAAT

A= QIUAT = (2.16 x 10° J/hr)/(900 J/m* — K)(115 K) = 5.42 m?

From Ulrich 2004 Figure 5.36 (Multiple double — pipe) : Cp = $6,478

From Ulrich 2004 Figure 5.36 (Titanium) : F,, =12

From Ulrich 2004 Figure 5.37 (p = 1 barg) : F , = 1

Fo+F,=1%12=12

From Ulrich 2004 Figure 538 : F %, = 17.5

CBM

F %, * Cp % (ChE Index 2018/ChE Index 2004) = 17.5 * $6,478 * (616/400) = $172,031

B.5 Filter Costing Calculations

Filter 1:

Solids Handling Rate from Coulson and Richardson's Chemical Engineering V ol.2 = .03 kg dry solids per 1
Stream M ass F low Rate entering filter = 101.67 kg/hr = .0282 kg/s

A = Stream Mass F low Rate entering filter/Solids Handling Rate = .0282 kg/s /.03 kg/m?* —s = 941 m?
From Ulrich 2004 Figure 5.57b (V acuum) : Cp = $57,000

For Carbon Steel Base with PTFE Lining : Fm =15

Cyyy = Fu* Cps* (ChE Index 2018/ChE Index 2004) = 5 % $57,000 * (616/400) = $438,900

B.6 Wastewater Manufacturing Treatment Calculations

Waste 2 Stream: From OLI Flowsheet : q = 6,268,380 g/hr = 0.002014 m3/s
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Csy = ax ChE Plant Cost Index 2018 + b * Cs,f

C, ;= Price of Fuel (§/GJ) = 4.48/GJ

From Ulrich 2004 Table 6.3 : a=0.001+2%10 %% ¢ %® p=0.1
a=0.001+2* 107" %0.002014 ¢ = 0.009291

Cs, =0.009291 % 616 + 0.1 + 4.4 = 6.16 $/m3 =391,429.716 $/year
B.7 Wastewater Plant Calculations

From OLI Flowsheet : gtotal = .00413 m3/s

From Ulrich 2004 Figure 5.12 : CBM (2004) = $1, 000,000

CBM (2018) = CBM (2004) = ChE Index 2018/ChE Index 2004 = $1,000,000 % (616/400) = $1, 540,000
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Mass and Energy Balance
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|Materia| - MW (kg/kmole) - |Waste-1 (kg/hr) - Waste-2 - [Waste3 - [Waste-4 - |[Waste-5 - |ThOZ
H20 18.02 796.136 6268.38 6268.38 315.422 162138 ]
LaPOd 236.899 0 0 o] 0 0 0
CePO4 2350874 0 o 0] ] o (4]
NdPO4 23921 0 0.208978 0.208978 0 0 0
Th{HPO4)2 43399 0 o 0] o o 0]
u3{Po4)a 1093.97 o o o 0 o 0
H2504 98.07 0 0 o o ] 0
Sio2 60.08 o 0.285226 0.285226 0.093 14383 o
NH40H 3504 0 o (0] 0] o o
Tho2 264.03 0 0 0 0 0 53.99
U[HPO4)2 42998 4] 0]} (0] (0] o o
o2 27002 0 0 0 0 o 0
02 3159 0 0 0 o o] 8]
MNa OH 395849 o 1500 1500 0 119992 0
HNO3 63.01 56.25 171.875 171.875 0 0 0
C2H204 122.09 0 0 0 ] 0 0
503 80.06 (0] 961.192 0961192 327463 o ]
Ce2(S04)3 568.41 0 0 0 0 0 0
CePO4.2H20 2711374 0 0 0 0 o] 0
LaPO4.2H2D 272939 o] o 0] 0 o 1]
NdPO4.2H20 275.25 0 o o] ] 0] 4]
P205 14194 0 145387 145387 0 0 0
Th{504)2 42416 o] o o o o o
ujso4)2 43015 0 0 0 0 0 0
NH3 17.03 0 a [ 145785 o] o
CelOH)3 19113 o 0 0] o (] 0
La[OH)3 18992 0 0 O ] 0 0
Nd(OH)3 195264 0 0 0 ] 0 0
Total: 852 3865 9047 328204 5047 328204 362.8398 43.043 53.9955,

Figure C.1: Stream Table



Appendix D: Capital Cost and Manufacturing Cost

TABLE 55 CAPITAL COST SUMMARY* Diate to which extimate apples Dec. 2018 Pae 1 of _1_
Job title: Jorezite Exiraction Location: |ndig By Gropd
.  CE Plart Cosl lodese |
(Fiow Shest Page Mumber: 1) Cost Indest Ty Gost Inde Vi 515 mew
Purchased Equipment Cost Pressure Actual
[hse material) Material | or other | Actual Bare Bare
Faclor, | Factors, | Module Module
|_Saulentidentiticglion . Numiber Capacity or Size Spegiictions Yoarzone | TamelYegr L Fu L _Fo 1 Factor Py 1 Cost Coyl Toll ]
Buxilliary Facilities
A-240  |Waste Water, Tartiary Treaiment 1M 1.5 M 1.4 M
A
A R = Lal
Seperators
H140 Carbon Steed Base with PTFE Linng, 1 &m, .54 m*2 5k BT K 500 s 4k
H1m Carbon Steel Base wih PTFE Linng 1 alm, (637 m*2 Sk K 500 s K
H2ila Carbon Steel Base wih PTFE Lining. 1 aim, 3,46 m*2 Tk 108 k 5.00 = 50k
H210b Carbon Steel Base wih PTFE Lining, 1 aim, 3.46 m*2 Tk 108k 500 - 58k
H180 Carbon Steel Base wih PTFE Linrg 1.aim, .43 m*2 A5 Bk 500 - Tk
e i i ii020005 Ll
Heaft Exchangers
E-120 |54 m*2 Thanim, Doubke Pipe, 1 am i5k | 0k 120 1.0 175 5k
E-160  |.4 m*2 Titenim, double pioe. 1 2m 15k | 23k 120 1.0 17.5 4.4k
e |
{Other items as taken from
the equipment lisf)
Process Vessels
R-100 Carbon Steel Base wih PTFE Linng 30 alm, &7 m"3 584k Bk 50 28 7.0 24 M
R-200a Carton Steal Base with PTFE Linng, 1 2m, 8.1 m*3 Balk 100k (] 1.0 11.0 1.1M
"1 Slarkss Steel 1am, 05m"3 15K 116K 4.0 1.2 11.0 128k
Fr-200b Carbon Steel Base with PTFE Linng, 1 am, 8.1 m*3 B65.1 k 10k 50 1.0 11.0 1.1M
R110 Carton Stedl Base weh PTFE Linng, 2 2m, 8.3 m*3 BEk 135k ] 1.0 11.0 14M
JouerTowl ARl
Miner
M-180 | Stainkess Stedl 1 alm, .05 m"3 20k | 44k 29 13K
-2 |Stainkess Steal 1 alm, 157 m*3 75k | 1.5k 29 Bk
Lota Pumps LI |
Gas Solid Contacter
[iec] ksl Aoy, 1.&m, 0.7 m*3 100k 154 k 9.0 1AM
L0l S0 Vs L
Total bare modde cost Actual maleials, Cry= £ Coy= 15T
Contingercy and e Ce+ Cr= Cryx 18 = 20
Toral modde cost Ca=| B&
Auxiary [oflste) Fackies Cryx 0.0 = 3450
(Grass Roots capial Con = 1.8 "1
|

Figure D.1: Capital Cost Summary
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MANUFACTURING CO2T SUMMARY

Jab Tidle_Thonum Extraction from Monasise One

Location _Kroxvile, TH

Page 1 of 1
by CBE 288 Groun 3
Date_ 25 Apr. 2019

Capadty: 8,760,000 kg /'y Monazite

Efiective Date o 'Which Esimate Applies 2013

capiml

Cost Index Type _CE Phni Cost ndex
Cost ndex Value E16

Fiseed capital, e 3T03E
Warking capital {15% of fxed capital), Cae 52555k
Total capital nvesment, Cre S19588 k
Manufacnng Expensas
DwrecT NSH T MES{yr
Raw materias ] 004
By-pmduct credits g (40.44)
Catay=t= and saverss 3 12498
Oiperating labor 3 1.78
Superssoy and derical labar (15% of
operatiing labor) 3 027
Ltiiitie=
Process waier #1302 m” @ 1.1/5n” 5 098
W tewaler Treatment 3 0.90
Mawml Ga= I A82.88 G @ 4. 45550 i 015(§ 203
Manermnce and repairs (5% of fed capial) 2 102
Operating supples (15% of mainerance & repars) g 0.15
Laboratory charges (15% of operading labar) ] 002
Patenis and royalies (5% of ol expense) 3 0106
Total, A s S (208 5 (2208)
inowrecT
Owertiemd (Payrdl and Plamt), Pack aging, and
Sworage (80% of Operating Labaor, Superdsion
and Manienance) 5 1.11
Local mxes (1.5% of fad capial) 2 026
In=rance {1.5% of fxed capial) 3 026
Tatal, A e g 1825 182
Total manuBcturing sxpenes, = e+ e 5 (2048}
Ganeral Expansas
Adminizraive cosis 25% of overhead ) 3 028
D=fribuion and sdiing (10% of total expense) 2 (2105
Remeamh and development |5% of iotal expenze ) g (102
Toml general expense, 4 & g 2% 8§ {279}
Depracianon (mppmomately 10% of Sxed copital) 4 3 170
ToRIEXpeanses . A g {2155}
Revanus from 3ales 473020 kghr @ 80 S%g. A 3 WAL
Met amual profit, A 5 5339
come taxes et anmual profil Smes the tax @e) 4, g 1247
Nat annual profit arter taxes (A o8 0k A see 5 #5492

Aftertax rate of return, | = (1.5 A G re) X 100 =

359 28%

Figure D.2: Manufacturing Cost Summary
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Appendix E: Equipment Design

R-100: In reactor R-100, monazite ore is leached with sulfuric acid in order to turn
phosphates into sulfates. R-100 is at a temperature of 220 degrees celsius, a pressure
of 30 atm, and the volume of the reactor is 8.7 cubic meters.The material that is used
for R-100 is a carbon steel base with PTFE lining. This material is chosen because
PTFE lining can handle acidic process conditions and can handle temperatures up to
220 degrees celsius. Carbon steel was the most economical base material to use.

R-110: In the flash tank, R-110, the effluent of R-100’s at a pressure of 30 atm is
dropped to a pressure of 2 atm where filtration is possible. The temperature of the flash
tank is 135 degrees celsius. The volume of the flash tank is 0.5 cubic meters. The
material that is used for R-110 is carbon steel base with PTFE lining. This material is
chosen because PTFE lining can handle acidic process conditions up to 220 degrees
celsius. Carbon steel was the most economical base material to use.

E-120: In heat exchanger E-120, the liquid stream coming out of R-110 is cooled from
135 degrees Celsius to 20 degrees Celsius at a pressure of 2 atm. This is done in order
to be able to precipitate out Thorium Sulfate from solution as well as allowing efficient
filtration in the next stage of the plant.The heat exchanger area is 5.4 m"2. The material
used is Titanium due to its resistance to degradation at the acidic inlet conditions at 135
degrees Celsius.

H-140: In filter H-140, the liquid proces stream coming out of E-120 at 20 degrees
Celsius and 2 atm is fed to a continuous belt vacuum filter in order to separate thorium
sulfate and SiO2 from the rest of the solubilized rare earth sulfates. This filter has an
area of .94 m”2. A continuous belt vacuum filtration allows for efficient operational use.
The material used is carbon steel base with a PTFE lining. The PTFE lining allows for
resistance due to degradation from the acidic conditions at the inlet of the filter. The
carbon steel base is used as it is the most economically base to use.

R-150: In reactor R-150, thorium sulfate is converted to thorium oxide by treating it with
ammonium hydroxide. The reactor is at a pressure of 1 atm and the volume of the
reactor is 0.5 cubic meters. Stainless steel is used as the material of the reactor
because it is the economical choice of material that can handle basic process condition
that comes with using ammonium hydroxide.

E-160: In heat exchanger E-160, the effluent of R-150 is cooled from 90 degrees
Celsius to 80 degrees Celsius at 1 atm. This is done in order to have efficient filtration in
the next stage of the plant. This double pipe heat exchanger area is .4 m”2 with the
material of construction being titanium. This material was used as precautionary safety
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measure that could easily withstand the process conditions while also not being very
expensive due to the small area of the exchanger.

H-170: In filter H-170, continuous belt vacuum filtration is used to separate solid thorium
oxide and silicon dioxide from the liquids coming from R-150. The filter is at a pressure
of 1 atm and has an area of .637 square meters. The material for the filter is a carbon
steel base with PTFE lining. This material is used because it allows for efficient
continuous filtration and allows for precautionary measures against possible corrosion.

M-180: In mixer M-180, ThO2 and SiO2 are mixed with NaOH at a temperature of 80
degrees Celsius and 1 atm. The basic conditions created by mixing NaOH allows for the
solubilization of SiO2 while ThO2 stays as a solid. The volume of this mixer is .05 m"3.
The material of construction used is stainless steel. This material was chosen because
it is the cheapest material that can be used that can withstand the basic condition
created by NaOH at 80 degrees Celsius.

H-190: In filter H-190,using continuous belt vacuum filtration thorium oxide is separated
from silicon dioxide and the rest of the aqueous solution. The filter is at a pressure of 1
atm and a temperature of 80 degrees Celsius with an area of .499 square meters. The
material for the filter is a carbon steel base with PTFE lining. This material is used
because it allows for efficient continuous filtration and it will stand up to the basic
process conditions.

R-200a/200b: In reactors R-200a and R-200Db, the liquid streams containing rare earth
sulfates are reacted with NaOH in order to transform the sulfates into their respective
rare earth hydroxides. These identical reactors have volumes of 9.1 m”3 and are
operated at a temperature of 50 degrees Celsius and a pressure of 1 atm. The material
of construction is PTFE lining with a carbon steel base. This is used in order to be able
to handle the extremely acidic and basic solutions entering and existing the reactors.

H-210a/210b: In continuous belt vacuum filters H-210a and H-210b, The rare earth
hydroxide solids are isolated from the effluents from R-200a and R-200b. The identical
filter have an solids handling area of 3.46 m”2 and are operated at pressure of 1 atm
and a temperature of 50 degrees Celsius. The material of construction used is a carbon
steel base with PTFE lining. This material was chosen due to its ability to withstand the
basic conditions of the process while also using the most economic base material of
carbon steel.

M-220: In mixer M-220, two streams or rare earth oxides are mixed into one stream that
can be fed to a calciner to complete the process. The mixer is at a pressure of 1 atm
and has a volume of .157 cubic meters. The material that is used is stainless steel.
Stainless steel is used as precautionary safety measure to ensure minimal corrosion.
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C-230: In calciner C-230, rare earth hydroxides are converted rare earth hydroxides by
exposing them to a temperature of 850 degrees Celsius. Nickel alloy is used as the
material because it can handle very high temperatures at which structural damage is
possible. The pressure at the calciner is 1 atm and it has a volume of 0.7 cubic meters.

A-240: In wastewater treatment plant A-240: 14.9 m”3 an hour of process liquid must be
treated before release to the environment or fed back to the plant. Some streams are
very basic so a comprehensive tertiary treatment must be used. This includes filtration,
activated sludge,and chemical processing in order to neutralize and clean the streams
to an acceptable regulated level.

Appendix E.1: Flowsheet Design

Figure E.1: OLI Flowsheet Design
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Appendix F: Stream Hazards

Stream Hazard Chart F Toxicity

C d mw CAS No. |Melting Point {'C)|Flash Point {'C)|Boiling Point ("C)| Liquid Density (kg/m#3)| High Deadly Poision?| Toxin? | Carci Irritating? Corrosize?
H20 18 7732-18-5 0 Non-flammable 100 1000 Nen-flammable no no no no no no
Sio2 60.08 7631-86-9 1710 Non-flammable 2230 2650 Non-flammable no no yes yes yes no
La203 325.81 1312-81-8 2315 Non-flammable 4200 6510 Non-flammable no no no no yes no
Nd203 336.8 1313-97-9 2233 Nan-flammable 3760 7240 Nen-flammable no yes no no YEs no
Ce203 328.24 1345-13-7 2177 Non-flammable 3730 6200 Non-flammable no YEs no no no no

H2504 98.079 7664-93-9 10 Non-flammable 337 1840 powerful oxidant no yes yes no strongyly strongly
ThO2 264.04 1314-20-1 3330 Non-flammable 4400 10000 Non-flammable no no yes yes yes no
H3PD4 98 7664-38-2 42 Nan-flammable 158 2030 Nen-flammable no no no no yes yes
Monazite - - 2000 Nan-flammable - 5100 Nen-flammable no yes yes no YEsS no
HNO3 63.012 7697-32 -42 Non-flammable 83 1510 Non-flammable no Yyes no no yes yes
NaOH 39.9971 1310-73-2 318 Non-flammable 1388 2130 Non-flammable no YES no no yes YEs
NH40H 35.04 1336-21-6 515 Non-flammable 37.7 910 Nen-flammable no yes no no yes yes

Figure F.1: Stream Hazards Chart
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