
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2018

Tensor Based Monitoring of Large-Scale Network Traffic Tensor Based Monitoring of Large-Scale Network Traffic

Gerald Liso
University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Liso, Gerald, "Tensor Based Monitoring of Large-Scale Network Traffic. " Master's Thesis, University of
Tennessee, 2018.
https://trace.tennessee.edu/utk_gradthes/5390

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5390&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Gerald Liso entitled "Tensor Based Monitoring of

Large-Scale Network Traffic." I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Computer Science.

Jens Gregor, Major Professor

We have read this thesis and recommend its acceptance:

Audris Mockus, Michael G. Thomason

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Tensor Based Monitoring of
Large-Scale Network Traffic

A Thesis Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

Gerald Liso
December 2018

ii

Copyright © 2018 by Gerald Liso
All rights reserved.

iii

ACKNOWLEDGEMENTS

I would first and foremost like to thank Dr. Jens Gregor for not only being an

outstanding mentor for my graduate and undergraduate degrees, but for also

instilling in me the foundations of computer science in the Data Structures and

Algorithms courses. Due to his great instruction, I found a passion for computer

science that led me to achieve higher learning in my Masters degree.

I also would to thank my master’s committee members, Dr. Michael Thomason

and Dr. Audris Mockus. Dr. Thomason provided exceptional guidance for much

of the mathematical concepts presented in this thesis, and without him, much of

this work would not be possible. Dr. Mockus provided great instruction for

developing analytical models and visualizations through his Fundamentals of

Digital Archaeology course. That course gave me a passion for data science and

allowed me to question the endless possibilities of the field.

Finally, I would like to thank Angel Kodituwakku for serving as a very good

source of information to make the work in this thesis possible as well as ensuring

the project’s proper continuation and growth. He worked hard and long hours that

provided me with the means to complete my research.

The work presented in this thesis was supported by the National Science

Foundation under Grant No. IRNC-1450959. Any opinions, findings, and

conclusions or recommendations expressed are those of the author and do not

necessarily reflect the views of the National Science Foundation.

iv

ABSTRACT

Network monitoring systems are important for network operators to easily

analyze behavioral trends in flow data. As networks become larger and more

complex, the data becomes more complex with increased size and more

variables. This increase in dimensionality lends itself to tensor-based analysis of

network data as tensors are arbitrarily sized multi-dimensional objects. Tensor-

based network monitoring methods have been explored in recent years through

work at Carnegie Mellon University through their algorithm DenseAlert.

DenseAlert identifies events anomalous events in tensors through quick

detection of dense sub-tensors in positive-valued tensors. However, from

experimentation, DenseAlert fails on larger datasets. Drawing from RED Alert,

we developed an algorithm called RED Alert that uses recursive filtering and

expansion to handle anomaly detection in large tensors of positive and negative

valued data. This is done through the use of network parameters that are

structured in a hierarchical fashion. That is, network traffic is first modeled at low

granular data (e.g. host country), and events detected as anomalous in lower

spaces are tracked down to higher granular data (e.g. host IP). The tensors are

built on-the-fly in streaming data, filtering data to only consider the parameters

deemed anomalous in previous granularity levels. RED Alert is showcased on

two network monitoring examples, packet loss detection and botnet detection,

comparing results to DenseAlert. In both cases, RED Alert was able to detect

suspicious events and identify the root cause of the behavior from a sole IP. RED

Alert was developed as part of a greater project, InSight2, that provides several

different network monitoring dashboards to aid network operators. This required

additional development of a tensor library that worked in the context of InSight2

as well as the development of a dashboard that could run the algorithm and

display the results in meaningful ways.

v

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview of Network Monitoring.. 1

1.2 Tensor Definitions ... 2

1.3 Problem Motivation .. 6

1.3.1 Performance Monitoring .. 7

1.3.2 Security Monitoring ... 7

2. Network Anomaly Detection Through DenseAlert ... 11

2.1 DenseAlert Overview ... 11

2.1.1 DenseAlert Algorithm .. 11

2.1.2 DenseAlert Analysis .. 13

2.2 DenseAlert Results .. 14

2.2.1 Packet Loss Detection .. 15

2.2.2 Botnet Detection ... 17

3. REDAlert: Recursive Event Detection ... 20

3.1 Algorithm Overview and Analysis .. 20

3.1.1 Granularity and Filtering.. 20

3.1.2 RED Alert Algorithm .. 22

3.1.3 Time and Space Complexity ... 24

3.2 RED Alert Results ... 26

3.2.1 Packet Loss Detection .. 26

3.2.2 Botnet Detection ... 28

3.2.3 Choosing Threshold Values .. 30

3.2.4 Effects of Time Window .. 31

3.2.5 Robustness ... 33

3.2.6 Using Energy as Criteria ... 34

4. Modeling Results with InSight2 ... 39

4.1 History and Motivation of InSight2 ... 39

4.1.1 GLORIAD and InSight... 39

vi

4.1.2 From InSight to InSight2 ... 40

4.2 Architecture Overview ... 41

4.2.1 Enrichment Module ... 41

4.2.2 Updater and Summarizer Modules ... 43

4.2.3 Plug-ins ... 44

4.2.4 Dashboards .. 44

4.2.5 InSight2 Workflow ... 45

4.3 Tensor InSight2 Framework .. 46

4.3.1 Overview of Python Tensor Libraries .. 46

4.3.2 Modifications to scikit-tensor ... 49

4.3.3 Interaction with Elasticsearch ... 50

4.4 RED Alert Plug-in within InSight2 .. 52

4.4.1 Frontend ... 52

4.4.2 Backend .. 53

5. Conclusions .. 56

References ... 58

Vita .. 61

vii

LIST OF FIGURES

Figure 1.1: Tensor Slices .. 4

Figure 1.2: Source Traffic Heatmap, Packet Loss .. 8

Figure 1.3: Destination Traffic Heatmap, Packet Loss .. 8

Figure 1.4: Total Packets Lost for Large Network ... 8

Figure 1.5: Source Traffic Heatmap, Number of Connections 10

Figure 1.6: Destination Traffic Heatmap, Number of Connections 10

Figure 1.7: Total Number of Botnet Connections for Large Network................... 10

Figure 2.1: DenseAlert Packet Loss, Country Data... 16

Figure 2.2: DenseAlert Packet Loss, City Data ... 16

Figure 2.3: DenseAlert, Packet Loss, Institution Data ... 16

Figure 2.4: DenseAlert Packet Loss, IP Data .. 17

Figure 2.5: DenseAlert Botnet, Country Data .. 18

Figure 2.6: DenseAlert Botnet, City Data .. 18

Figure 2.7: DenseAlert Botnet, Institution Data ... 18

Figure 2.8: DenseAlert Botnet, IP Data ... 19

Figure 3.1: Default Granularity Levels ... 21

Figure 3.2: RED Alert Algorithm .. 23

Figure 3.3: Finding Maximum Change .. 23

Figure 3.4: RED Alert Packet Loss, Country Granularity 27

Figure 3.5: RED Alert Packet Loss, City Granularity ... 27

Figure 3.6: RED Alert Packet Loss, Institution Granularity 27

Figure 3.7: RED Alert Packet Loss, IP Granularity.. 28

Figure 3.8: RED Alert Botnet, Country Granularity.. 29

Figure 3.9: RED Alert Botnet, City Granularity .. 29

Figure 3.10: RED Alert Botnet, Institution Granularity ... 29

Figure 3.11: RED Alert Botnet, IP Granularity ... 30

Figure 3.12: 10-second Time Window, Packet Loss Detection 32

Figure 3.13: 5-minute Time Window, Packet Loss Detection 32

Figure 3.14: 10-second Time Window, Botnet Detection 32

Figure 3.15: 5-minute Time Window, Botnet Detection 33

Figure 3.16: RED Alert Packet Loss using Energy, IP Granularity 36

Figure 3.17: RED Alert Packet Loss using Energy, City Granularity 36

Figure 3.18: RED Alert Packet Loss using Energy, Institution Granularity 36

Figure 3.19: RED Alert Packet Loss using Energy, IP Granularity 37

Figure 3.20: RED Alert Botnet using Energy, Country Granularity 37

Figure 3.21: RED Alert Botnet using Energy, City Granularity 37

Figure 3.22: RED Alert Botnet using Energy, Institution Granularity 38

viii

Figure 3.23: RED Alert Botnet using Energy, IP Granularity 38

Figure 4.1: InSight2 Architecture Workflow ... 46

Figure 4.2: COO Representation .. 49

Figure 4.3: InSight2 Sample Tensor ... 51

Figure 4.4: RED Alert Plug-in .. 54

1

1. INTRODUCTION

Parts of this thesis have been submitted to ACM Transactions on Knowledge

Discovery from Data as of October 2018. I served as the author of this paper,

additionally conducting the literature survey, developing the algorithm, portraying

and analyzing the results, and writing the journal paper. Other authors, Angel

Kodituwakku, Jens Gregor, and Michael Thomason served as sources of

guidance and advisers to help locate other resources that were beneficial to the

completion of the paper.

1.1 Overview of Network Monitoring

Network flow data is one source of data that can be used to facilitate real-time

network performance monitoring and detection of malicious traffic [1, 2]. Network

flow data is a stream of records that provide further metadata about a transaction

in the network, including labels of actors in a transaction and performance

metrics of each transaction. Due to the amount of flow data produced by even a

moderately active network, automated detection of interesting events is needed

to support the network administrators carry out their work [3]. The large number

of parameters associated with each flow, such as the source and destination host

IP addresses, the number of packets transmitted, lost and retransmitted, and the

protocol and port numbers to mention a few, furthermore implies that the analysis

might benefit from the use of multi-dimensional data representations.

Tensors offer a way to model multi-dimensional data effectively; tensors of order

n are n-dimensional representations of data describing linear relationships [4].

Various algorithms have been developed to analyze patterns within tensors. For

example, generalized singular value decomposition (GSVD) is used in genomics

for classification of genes [5]. GSVD has been extended to tensors through the

so-called higher-order GSVD (HOGSVD) [6]. Tensors have also been used

in network analysis for anomaly detection of network packet activity using

Canonical Polyadic (CP) decomposition [7]. Both of these methods project the

data in a new space. In order to relate events to specific parameters and fields, it

may be preferable that the analysis be carried out in the original data space.

2

DenseAlert [8] maintains a tensor model of the raw data. Events characterized by

an increase in activity are detected by identifying dense sub-tensors. The

algorithm uses sophisticated methods to carry out the needed computations

quickly. The complex nature of the code makes the algorithm relatively difficult to

implement. The Java implementation provided by the authors moreover builds on

dedicated tensor support code, the efficiency of which may not be matched by a

third-party. Combined, this makes porting the algorithm difficult. In addition,

DenseAlert requires that the data be positive valued which could be a limitation

for some applications. DenseAlert is analyzed and tested in Chapter 2 of this

thesis.

The primary focus of this thesis is the introduction of an algorithm called RED

Alert that uses recursive filtering and expansion to create a hierarchy of sub-

tensors that represent the data at different granularity levels. The idea is to

maintain a coarse-level tensor model that can quickly be updated when new data

becomes available. When the activity being monitored exceeds a user-defined

threshold, relevant sub-tensors are automatically expanded until an alarm can be

raised which provides the most detailed information possible. Granularity is a

refinement to the tensor dimensions. For example, low granularity data might be

host country with high granularity data being the explicit host IP address. This is

explained in more detail in Chapter 3 with some showcase examples.

The data used in this thesis comes from a large research and education (R&E)

network called GLORIAD. The Global Ring Network for Advanced Applications

Development (GLORIAD) was an R&E network aiming to provide a network

infrastructure to connect institutes and universities at a global scale [9].

GLORIAD’s successes can be seen through its ability to connect over 15 million

endpoints and support from the NSF and universities worldwide. GLORIAD led to

the development of a network performance tool called InSight2, a platform for

which the work in this thesis was developed. The inner workings of InSight2 and

the tensor processing infrastructure developed for InSight2 are described in

Chapter 4. Concluding remarks are then provided in Chapter 5.

1.2 Tensor Definitions

Tensors are generalized n-dimensional objects that can provide a means for in-

depth analysis of multiple parameters. Tensors offer a way to easily model multi-

3

dimensional data as they can contain an arbitrary number of dimensions. In this

section, the basic tensor definitions and concepts that will be used in the

remainder of this thesis are defined.

Modes: The dimensions of a tensor are referred to as modes. For example, a

vector is a tensor with 1 mode, and a matrix is a tensor with 2 modes. Tensors

can have any number of modes since the dimensionality of a tensor is

unrestricted.

Furthermore, each mode can be indexed as one would expect. In a tensor with 2

modes, element (i, j) corresponds to the value stored in the i th row and the j th

column in the tensor. In this thesis, each mode represents a parameter in a

network flow record.

Sub-tensors: Tensors can be divided into subsets of a tensor by indexing a

subset of the set of viable vertices in the original tensor. For example, suppose 𝑇

is a tensor with 2 modes (i.e., a matrix) and dimensionality 4 × 4. Let 𝑆 be the set

{(4,4), (4,1), (1,4), (1,1)}. Then, 𝑇𝑆 is the sub-tensor of 𝑇 consisting of the first and

fourth rows and columns of 𝑇.

Slices: Another method of dividing tensors (and sub-tensors) is a method called

slicing. Slices are formed by holding one mode constant in the tensor,

representing the various layers of a tensor. For example, consider the same

tensor 𝑇 from the previous example. A slice across mode 1 would represent a

row. A slice across mode 2 would represent a column. Since 𝑇 has dimensions 4

× 4, each mode has 4 possible slices. Figure 1.1 visualizes slices in a tensor of 3

modes [10]. These tensors can be sliced horizontally, laterally, or frontally as

shown in the figure.

Tensor Subtraction: Both tensors and sub-tensors can be subtracted from one

another when the objects contain the same dimensionality. This is useful for

tracking changes in streaming tensors as discussed in the next chapter. This

subtraction is done in an index-wise manner. This means that for two tensors of

mode 3, 𝑇1 and 𝑇2, the difference 𝑇1 − 𝑇2 would be the difference for each

element at (i, j, k) in 𝑇1 and 𝑇2 for all i, j, k the dimension set for 𝑇1 and 𝑇2.

4

Figure 1.1: Tensor Slices, Source: [10]

Density: Tensors, sub-tensors, and slices have a density that can be calculated.

Density can be interpreted as a quantified measure of influence created by the

tensor, sub-tensor or slice. In the next chapter about the DenseAlert algorithm,

density of a slice is used as the primary measurement. Density of a tensor 𝑇 can

be defined as

∑ 𝑇(𝑖,𝑗,𝑘)(𝑖.𝑗,𝑘)

|𝑇|
 ,

where (𝑖, 𝑗, 𝑘) are valid indices with 𝑇, and |𝑇| is the number of elements in the

tensor. This equation holds when 𝑇 is a slice or sub-tensor as well. The

summation would sum valid entries where (𝑖, 𝑗, 𝑘) are valid indices for the slice or

sub-tensor.

Change: Total change of a sub-tensor or a slice is defined as the sum of the

element-wise absolute valued differences of two such entities. For two tensors,

𝑇1 and 𝑇2, total change is defined as

∑ |𝑇1(𝑖, 𝑗, 𝑘) − 𝑇2(𝑖, 𝑗, 𝑘)|(𝑖,𝑗,𝑘) ,

for all valid indices (𝑖, 𝑗, 𝑘) in the tensors. Total change serves as the main metric

used in the RED Alert algorithm described in Chapter 3. The slice in a tensor with

the most change is detected in RED Alert, indicating anomalous activity.

5

Total change is inspired from the concept of total variation in Calculus. Total

change is described by the equation

∫ |𝑓′(𝑥)|𝑑𝑥
𝑏

𝑎
,

which calculates the arc length of a differentiable function, f(x) for a given interval

[a, b]. This equation can be represented as

∑|𝑓(𝑖) − 𝑓(𝑖 − 1)|

𝑏

𝑖=𝑎

,

which is similar to the definition of total change defined above.

Energy: Energy can be defined as the sum of the squares of the norms for a

given sequence, normalized by the number of elements in this sequence [11].

Energy has been used to estimate the number of principal components needed

through thresholding [11], but we use energy as an anomaly detection measure.

In the context of our tensors, define energy can be defined as the squared

Frobenius norm [12] for a given tensor, sub-tensor, or slice, divided by the

number of non-zero entries. That is, for indices (𝑖, 𝑗, 𝑘) in tensor 𝑇 , we calculate

the energy as

∑ |𝑇(𝑖, 𝑗, 𝑘)|2
(𝑖,𝑗,𝑘)

|𝑇|
,

where |𝑇| is the number of non-zero components. In the context of slices or sub-

tensors, the equation holds, but instead the equation only iterates on indices

(𝑖, 𝑗, 𝑘) for the slice or sub-tensor. Energy is used as a supplemental

measurement for the anomaly detections in RED Alert. Just as the slice with

maximum change is detected, the slice with the highest energy in the tensor

representing total change can also be detected to indicate anomalous activity.

Total change and energy can be considered as the L1-norm and L2-norm for the

change tensor. Total change is the L1-norm as it considers the values of the

tensor in linear space, and energy is the L2-norm as it considers the tensor in

6

quadratic space. The Frobenius norm is equivalent to the Euclidean norm

typically used for L2-norms [12].

Streaming Tensors: Since network flow data can be viewed as a continuous

stream of data, in this thesis, dynamic streaming tensors are used instead of

static tensors of fixed dimensionality. Streaming tensors are a sequence of

tensors aggregated into a single tensor for a fixed time. This allows for data to

only be considered for a specific time window, and old data can be discarded as

new tensor streams come in. This concept will be touched on throughout this

thesis.

1.3 Problem Motivation

We were given access to several terabytes of GLORIAD’s network flow data to

develop network analysis tools. Using Argus [13] as a network flow aggregator,

over 40 different fields describing the network flow data could be extracted.

Examples of such fields include bytes per transaction, number of packets per

transaction, and packets lost. Additionally, online databases were used to gather

additional metadata about geolocation of the flow data. This is useful since

GLORIAD was a global network, so understanding how the network functioned in

different regions is essential for network monitoring. Varying levels of metadata

were gathered about each transaction from these online databases. This

includes country, city, and institution name for each IP discovered from the flow

data. This primary focus of this thesis is exploring how performance at these

varying levels of metadata, referred to as granularity levels, can be tracked and

explored to find anomalous trends within the data.

Although network monitoring can be conducted from varying perspectives, the

primary focus of this thesis is in the context of performance monitoring through

packet loss detection and security monitoring through botnet activity detection.

These two problems are described in this section.

7

1.3.1 Performance Monitoring

One important aspect of network performance is minimizing the number of

packets lost per transaction. With each packet lost, network users either must re-

fetch the request to obtain the lost data or suffice with incomplete data. Large

amounts of packet loss indicate potential issues in network infrastructure that

warrant investigation. Thus, one focus of this thesis is detection times of high

packet loss within GLORIAD. This can be detected by building tensors of the

number of packets lost between a given source and destination connection.

Figures 1.2 and 1.3 provide heat maps of packet losses during an 11-hour time

period for a select subset of source and destination countries. Dark cells indicate

low losses while bright cells indicate large amounts of packet loss. Figure 1.4

plots the corresponding percent of packets lost overall. The goal is to detect the

high loss events and determine whether they can be attributed to many hosts, in

which case they may indicate a general network problem, or if they are specific to

a small number of identifiable hosts, in which case the problem likely has to do

with the specific hosts. In Figure 1.4, the sudden increase in packet loss around

14:30 is one of primary interest explored in this thesis. Throughout the thesis, the

events marked in green circles in the figures represent anomalous events that

could be detected.

1.3.2 Security Monitoring

Botnets consist of a collection of compromised hosts which are used to

carry out network attacks including but not limited to stealing data, sending spam,

and performing distributed denial-of-service (DDoS) [14]. As these attacks can

greatly affect the well-being of a network and its hosts (not to mention the users),

it is important to discover when botnets are active. Because of this, another focus

of this thesis considers analyzing network flow data from a security perspective

to detect botnets in large networks.

Typical botnet behavior includes sudden broadcasting of connections after being

dormant for some time. This lends itself to detection by considering the number

of connections from a given source to a destination in a specific time window.

This way, a sudden increase in connections can be detected as the values in this

tensor will change drastically in a short period of time.

8

Figure 1.2: Source Traffic Heatmap, Packet Loss

Figure 1.3: Destination Traffic Heatmap, Packet Loss

Figure 1.4: Total Packets Lost for Large Network

9

Figures 1.5 and 1.6 provide heat maps of the number of connections made per

source and destination during an 11-hour period for a select subset of countries.

Dark cells indicate few connections while bright cells indicate many connections.

Figure 1.7 plots the number of known botnet hosts active during the same time

period. The term “known botnet host” refers to IP addresses labeled as

compromised in the Zeus [15], Palevo [16], and Feodo [17] botnet databases. As

seen in the figures, the large increase in botnet activity around 9:00 corresponds

to the large increase in network activity from Russia to the Netherlands.

In the next two chapters of this thesis, both DenseAlert and RED Alert process

these two datasets of packet loss and number of connections to attempt to detect

the performance and security anomalies. These algorithms use completely

different methodologies and evaluation metrics, providing varying results. Again,

the primary goal in these detections is the ability to be able to detect the

anomalous behavior at any level of metadata (country, city, institution, or IP).

That is, the spikes seen in Figures 1.4 and 1.7 should be detected independent

of the labels given in the tensor. DenseAlert fails to recognize spikes using IP

labels, which led to the development of RED Alert, an algorithm that can detect

anomalous behavior regardless of level of metadata through recursive filtering

and expansion.

10

Figure 1.5: Source Traffic Heatmap, Number of Connections

Figure 1.6: Destination Traffic Heatmap, Number of Connections

Figure 1.7: Total Number of Botnet Connections for Large Network

11

2. NETWORK ANOMALY DETECTION THROUGH DENSEALERT

One recently developed algorithm that showcases botnet detection in network

data using tensors is DenseAlert [8]. This algorithm uses the concept of density

to maintain the densest sub-tensor of a streaming tensor to detect sudden

changes, reporting them as anomalous. The DenseAlert paper showcases the

algorithm on a number of anomaly detection uses, including Yelp spam reviews,

Wikipedia edit wars, and the botnet detection. Thus, it would seem that

DenseAlert would be a suitable algorithm to use for our analyses of large-scale

network traffic data. However, some problems arose when using DenseAlert with

larger tensors. This chapter describes DenseAlert’s algorithm and demonstrates

the shortcomings of the algorithm for GLORIAD data in the context of the

performance and security monitoring problems.

2.1 DenseAlert Overview

DenseAlert is an algorithm that claims to be “fast and any time,” “provably

accurate,” and “effective” [8]. This is done through the maintenance of a tensor

consisting of entries that represent the increment or decrement values in a tensor

for a given time window. This means that DenseAlert does not actually maintain

an entire tensor; rather it tracks multi-dimensional streaming data for increments

or decrements to values in the tensor. The idea is that a sudden change in the

maintained dense sub-tensor should indicate anomalous activity. This section

describes this algorithm in detail and provides some analyses of the algorithm.

Although DenseAlert works for static and streaming data, we focused on the

streaming implementation of the algorithm due to the use of network flow data.

2.1.1 DenseAlert Algorithm

DenseAlert’s main goal is to detect suddenly appearing dense sub-tensors within

streaming or static tensors, which indicates anomalous activity. This is done by

projecting a sequence of data streams into a tensor space and performing a

series of re-orderings and calculations to maintain the densest block. The

algorithm does not actually calculate the exact densest sub-tensor as that is

12

computationally expensive, taking high powers of polynomial time [18]. Instead,

the algorithm estimates the densest sub-tensor with provable confidence to quell

the large polynomial time.

DenseAlert uses a variety of concepts and notations throughout its description of

the algorithm. The most important component of DenseAlert is their idea of “D-

Ordering.” This idea is what provides significant speedup to DenseAlert

compared to its competitors. A D-Ordering is obtained by repeatedly re-ordering

slice indices so that the slice with the minimum sum is chosen first. That is, when

a slice s is chosen for the D-Ordering, the slice index is added to the D-Ordering,

and all elements from s are removed from the tensor. The process is then

repeated until all slices appear in the D-Ordering. The paper claims that using D-

Ordering reduces the search time for finding the densest sub-tensor.

The DenseAlert algorithm works as follows. Every T time ticks, the change for a

given tensor is calculated by finding the difference between the tensor of the

previous time window and the current time window. For each value in the tensor

that changed, DenseAlert performs re-ordering and updating based on whether

there was an increase or decrease in the value. The first iteration of the algorithm

compares the current tensor against the zero tensor of the same size, meaning

the first iteration will always be the case of increment.

In the case of an increment in a tensor value, DenseAlert first finds a region that

needs to be re-ordered by the definition of D-Ordering. Anything outside of this

region can be left alone as the paper guarantees that the D-Ordering will be

maintained after the detected region is updated. Once this region is found, the

reordering of the calculated region is conducted to maintain the D-Ordering, and

the slice sum of this region is saved. After the re-ordering, the dense sub-tensor

needs to be updated. To do this, first the slice sum calculated by the D-Ordering

is compared to the densest sub-tensor density from the previous tensor. If the

maximum slice sum is less than the sub-tensor density, the paper proves that the

densest sub-tensor is guaranteed to not need updating. Otherwise, DenseAlert

recalculates the dense sub-tensor, updating it if it has changed. After this,

DenseAlert is done with the re-ordering and updating. However, the algorithm

then schedules a decrement to this tensor value at the next T time. This is done

to undo the increment to the value experienced here and return the tensor back

to its prior state in case of sudden and sharp increases.

13

In the case of a decrement in a tensor value, the algorithm again finds a region

that needs to be re-ordered and re-orders the region to meet the D-Ordering

definition. This region is determined in a slightly different fashion than in the case

of an increment, but the idea is the same – re-order the region so that D-Ordering

is maintained. Again, after the re-order process is completed, DenseAlert checks

to see if the densest sub-tensor needs to be updated. Instead of comparing the

maximum slice sum as done in the case of an increment, DenseAlert checks if

the decremented tensor value is in the densest sub-tensor. If the value is a part

of this region, the densest sub-tensor is updated if it has changed. If the tensor

value is not in the densest sub-tensor, the authors guarantee that the sub-tensor

would be unaffected and, thus, does not need to be updated. Unlike in the case

of increment, DenseAlert does not schedule any event in the case of

decrements.

In both the case of the increment and decrement, the density of the densest sub-

tensor is returned. As seen in the results section, spikes in the density of this

region typically correspond to anomalies in the data.

2.1.2 DenseAlert Analysis

DenseAlert has time complexity O(S + RlogR) plus some relatively small time for

other operations such as calculating slice sums and searching for slices. In this,

S is the number of slices in the tensor, and R is the number of slices in the re-

ordered region. The O(S) time is due to the search for slices forming the dense

sub-tensor, and the O(RlogR) time is from the re-ordering of the tensor to meet

the requirements of D-Ordering. DenseAlert uses a Fibonnaci heap to search for

the minimum slices in the re-ordering leading to this linear logarithmic time

complexity. Otherwise, the search would be exponential as the search space

requires updating as each slice is re-ordered. Through plots shown in the

DenseAlert paper, the algorithm is unarguably much faster than its competitors.

The algorithm described previously is a summary of DenseAlert, and the inner

workings of the algorithm are complicated and require a detailed code base.

Their tensor implementation alone consists of over 600 lines of code, and the

actual DenseAlert algorithm requires over 1700 lines of code. The code uses

sparse tensor implementations to lead to a small space complexity that is linearly

proportional to the number of non-zero values stored in the tensor. That is, for N

14

non-zero values in the tensor, the space complexity is O(N). This makes

understanding and porting the algorithm to other frameworks cumbersome for

those who cannot work in the Java framework provided by the authors and do

not have the resources to create such a detailed code base for their own

implementation. Without a dedicated code base, implementing re-orders and

searching of large multi-dimensional objects is costly.

The paper showcases DenseAlert on a variety of datasets. These datasets

include Yelp, Android, and Yahoo reviews for detecting fake reviews, Wikipedia

edit history for detecting edit wars, bots or vandals, and social networks for spam

detection. The paper also shows successful detection of botnets in TCP dump

data where the dimensions were source IP × destination IP × timestamp, with

values within the tensor being the number of connections. This would indicate

that DenseAlert would be a suitable algorithm to use for our network data. In the

next section, some shortcomings of DenseAlert are shown in the context of

network data.

2.2 DenseAlert Results

In network anomaly detection, it is important to discover the root cause of the

anomaly. Network operators rely on detailed information properly diagnose and

solve the root cause of an issue. Since flow data has varying levels of granularity,

it is important to be able to determine the cause of anomalies regardless of the

level of network data being observed. For example, a time of large network

performance issues should be able to be determined from a coarse perspective

of country to country traffic and at a fine perspective of host IP to host IP traffic.

This way, a network operator can understand if an issue is widespread across a

region or fault for a specific IP. The DenseAlert algorithm is stated to work for

large datasets, but in some cases DenseAlert fails to detect any anomalies and

returns unhelpful and noisy results. This section shows the results of DenseAlert

when attempting to process datasets of varying sizes, demonstrating some

potential issues when using DenseAlert. To do this, minor modifications were

made to the DenseAlert example code (https://github.com/kijungs/densealert) in

order to work with our data. In both examples, a time window of 1 minute was

used.

https://github.com/kijungs/densealert

15

2.2.1 Packet Loss Detection

Although DenseAlert’s network monitoring example focused on botnet detection,

the algorithm could be used on any type of positive-valued data. Since number of

packets lost consists of positive values, DenseAlert should be able to detect

sudden increases packets lost. The GLORIAD data was aggregated into a CSV

file representing a tensor to be read by DenseAlert. The tensor itself consisted of

dimensions source information × destination information × time (in second

increments) where the source information and destination information varied in

granularity level (country, city, institution, or IP). The values within the tensor

were the number of packets lost for that connection, summed by seconds.

DenseAlert was run on tensors from the four different granularity levels to see if it

could detect the large increase in packet loss regardless of tensor size and

labels.

With reference to Figures 2.1 – 2.4, DenseAlert is able to detect the major spike

in packet loss around 14:45, but as the granularity levels become finer, the

reported densities slowly begin to have more variation until the algorithm

completely fails at the IP granularity level. The country level detection (Figure

2.1) provides the most descriptive results where the large spike is clearly defined

with relatively consistent densities otherwise. At the city level (Figure 2.2), the

large spike is still seen, but the algorithm reports more variation in the densities,

notably between 10:30 and 12:30 as well as 15:00 to 17:00. This seems to

indicate anomalous activity with the sudden and frequent changes in the

densities, but according to the ground truth, the number of packets lost at this

time is rather constant. A similar variation in the densities can be seen at the city

level (Figure 2.3). Finally, at the IP level (Figure 2.4), the algorithm falls apart and

reports noisy densities that provide absolutely no correlation to the data. The

densities at this level are also about 5 magnitudes smaller than the densities

reported at the country, city, and institution levels. If kept plotting using the same

y-axis scale as the first 3 plots, the densities in Figure 2.4 would be unnoticeable

due to the size of their magnitudes.

16

Figure 2.1: DenseAlert Packet Loss, Country Data

Figure 2.2: DenseAlert Packet Loss, City Data

Figure 2.3: DenseAlert, Packet Loss, Institution Data

17

Figure 2.4: DenseAlert Packet Loss, IP Data

2.2.2 Botnet Detection

In its debut paper, DenseAlert is showcased on a botnet detection example. As

proposed in the paper, a CSV file containing number of connections in GLORIAD

was aggregated and processed by DenseAlert for detection of increases in

botnet activity. With reference to Figures 2.5 – 2.8, DenseAlert is again able to

detect the botnet activity at the country, city, and institution granularity levels, but

fails at the IP granularity level. As seen in the packet loss example, the decline in

performance is gradual through the increasing granularity levels. The densities

once again slowly become noisier in each subsequent level until nothing useful is

returned at the IP granularity level. DenseAlert also only detects the major spike

seen around 9:00 but misses the two spikes seen around 13:00 and 15:00.

Nothing in the DenseAlert paper points to why the algorithm would fail on the IP

level dataset in both cases. The IP level dataset consists of 4.7 million non-zero

entries for the packet loss example and 7.4 million non-zero entries for the botnet

example. The DenseAlert paper shows results from datasets containing up to

82.8 million non-zero entries. Similarly, the dimensionalities of the datasets are of

sizes DenseAlert should be able to handle. It seems that the size of these

datasets leads to the algorithm’s failures. Since DenseAlert works on the smaller

datasets of lower granularity and slowly performs worse as the datasets become

larger and finer, the most reasonable explanation for the decline in performance

would be the increases in granularity.

18

Figure 2.5: DenseAlert Botnet, Country Data

Figure 2.6: DenseAlert Botnet, City Data

Figure 2.7: DenseAlert Botnet, Institution Data

19

Figure 2.8: DenseAlert Botnet, IP Data

20

3. REDALERT: RECURSIVE EVENT DETECTION

As seen in the previous chapter, DenseAlert fails to recognize anomalous activity

for large datasets using IP address labels. Because of this, we created an

algorithm called RED Alert to attempt to improve on the shortcomings of

DenseAlert. RED (Recursive Event Detection) Alert uses recursive tensor

expansion and exploration to detect and classify anomalous network behavior.

The algorithm tracks anomalies detected at a high granularity level down to the

lowest granularity level, discarding unimportant data. This chapter introduces

RED Alert’s main algorithm, analyses of the time and space effects of the

algorithm, and some case studies used to showcase RED Alert.

3.1 Algorithm Overview and Analysis

RED Alert finds the most changed slice in a sub-tensor by the total change or

energy measures outlined previously. The algorithm works recursively in that

when high change spikes are detected, the algorithm finds the most changed

slice in the next finer level of granularity after filtering the data. This section

explains the primary steps of RED Alert as well as some analyses of the

algorithm’s runtime and space complexity.

3.1.1 Granularity and Filtering

For the source and destination parameters, different levels of granularity are

used to explore the root cause of density spikes. Granularity organizes different

levels of metadata in a hierarchical fashion. In our implementation, the lowest

granularity level is the host country with a maximum of about 200 fields. The next

two levels of granularity are city and institution, respectively with about 10,000

and 35,000 fields. Institution is considered a finer granularity than city since

multiple institutions may exist in one city. The finest granularity is the host IP

addresses, having a magnitude of over 100 million fields in hours of data. Figure

3.1 shows the four granularity levels used in RED Alert. Additionally, the

granularities outlined are not finite. More levels could potentially be included if the

labels exist in a dataset. The labels obtained for country, city and institution were

21

gathered using online databases that map IP addresses to these fields. Fields

such as port number that can be included in the tensor data do not undergo the

recursive filtering as no varying levels of metadata exists for these types of fields.

To separate fields with the same name (i.e. same city name, different country, or

same institution, different location), field names are appended together to as the

granularity levels become finer. For example, a city is labeled as “country.city”,

and an institution is labeled as “country.city.institution.” This avoids any labeling

different places with the same name at a level as the same label. IP address

labels are solely the IP address since only one instance of an IP address can

exist.

A coarse granularity tensor is, by nature, small. Finding the densest sub-tensor

slice(s) therefore takes relatively little time. In an attempt to keep the search time

low in the finer granularity tensors, the data is filtered prior to being expanded.

Filtering consists of discarding all but the densest sub-tensor slice(s) from further

consideration.

Figure 3.1: Default Granularity Levels

22

3.1.2 RED Alert Algorithm

Rather than building a detailed tensor model for the data at the fine granularity

level ultimately of interest, RED Alert initially models the data at a coarse

granularity level, moving to finer granularity spaces as needed. The RED Alert

algorithm works as follows. With reference to Figure 3.2, every N time ticks, a

tensor is created by aggregating the network flow data captured during that time

period. This tensor is created for the coarsest granularity level of country. Then,

the tensor is compared against the tensor for the previous time period. That is,

the difference between the two tensors is computed and passed to the function

described in Figure 3.3 that finds and returns a list of (mode, index)-pairs

identifying the slices that have a total change value approximately as much as

the most changed slice. The search is based on change magnitudes to allow

negative change values, which correspond to decreases in network activity, to be

detected on par with positive change values, which correspond to increases in

network activity.

If the change magnitude exceeds a user-defined threshold, then a recursive

search is carried out, during which copies of the original tensors and extracted

sub-tensors are filtered and expanded as described in the previous section.

Again, (mode, index)-pairs that do not exceed the threshold are ignored whereas

the (mode, index)-pairs returned are expanded to consider the next level of

granularity. For example, if the maximum (mode, index)-pairs returned were

(source country, United States) and (destination country, Canada), then the

tensor of the next granularity would be one of city to city traffic consisting only of

data from the United States to Canada.

Thresholds vary based on granularity, so that false alarms can be canceled at a

finer granularity. That is, as each maximum change value is calculated, it is

compared against the threshold at the given granularity level to see if the filtering

and expansion should continue or be terminated. When the recursive search

reaches the final level and terminates, an alarm is raised an information is shared

with the user about the event. A modified version of RED Alert might use the sign

of the maximum to raise alarms on positive values and clear alarms on negative

values when the traffic returns to normal.

23

Figure 3.2: RED Alert Algorithm

Figure 3.3: Finding Maximum Change

24

RED Alert differs significantly from DenseAlert. RED Alert finds the tensor slice

for which the change is the greatest. DenseAlert, on the other hand, maintains

and detects suddenly emerging dense sub-tensors using sophisticated re-

ordering techniques. RED Alert can handle positive and negative valued data.

DenseAlert requires that the data be positive valued. RED Alert only expands the

data to the finest granularity level when need be. DenseAlert stores data and

carries out all analysis at the finest granularity level which involves large tensors.

3.1.3 Time and Space Complexity

RED Alert with no optimizations is able to run and process data in real-time. This

section provides time and space analyses of RED Alert for each of the major

components of the algorithm.

Tensor Creation: Creating a tensor takes O(N) time for N non-zero entries in the

tensor. This creation is independent of dimensionality used since each non-zero

value will need to be processed regardless of the dimensionality. Likewise,

tensor creation cannot be sped up since the values again must all be processed

and assigned an index. The tensor creation process will be explained more

deeply in the next chapter in the context of InSight2.

Computing Total Change and Energy: For N non-zero entries in a tensor,

computing the total change and energy for the tensor takes O(N) time. This is

because each of the N non-zero entries must be subtracted (in the case of total

change) and additionally squared and summed (in the case the of energy).

Unfortunately, there are no speed-ups to make multi-dimensional

addition/subtraction quicker.

Finding Max Anomalous Slice: Finding the maximum change or energy for a

tensor takes O(S) time for S total slices in a tensor, 𝑆 = ∑ 𝑑𝑑 ∈𝐷 , where D is the

dimensionality of the tensor. For example, for a tensor with dimensions a × b × c,

S = a + b + c. This process cannot be sped up since finding the maximum value

in a list of values always takes linear time for an unsorted list. Sorting the list of

changes and then finding the maximum change would take O(SlogS) time, longer

than the original linear time.

25

The overall time complexity of RED Alert is O(N + S) since for each iteration of

the algorithm, the N non-zero value differences must first be accumulated and

calculated, O(N) time. This is followed by the detection of maximum slice, taking

O(S) time. RED Alert runs in strictly linear time, and DenseAlert runs in log-linear

time. However, DenseAlert’s leading big-O coefficient, RlogR, is much smaller

than N + S. R, the re-order region, consists of a subset of S and guaranteed to

be much smaller than S. In turn, S is a subset of N, and guaranteed to be much

smaller than N. Because of this, RED Alert’s linear time complexity is a bit

misleading when compared to DenseAlert. The latter algorithm is in fact faster

since it only ever considers a subset of the entire tensor.

RED Alert Space Complexity: If stored directly without any improvements,

storage of a tensor takes a maximum of O(M) for 𝑀 = ∏ 𝑑𝑑 ∈𝐷 , where D is the

dimensionality of the tensor. This product can be exponentially large as the

dimensionality increases. The tensors typically used are sparse, so sparse tensor

representations are often useful to reduce the space complexity. RED Alert uses

a sparse tensor representation called COO format, discussed in detail in the next

chapter. For N non-zero entries and d dimensions, sparse tensor storage in COO

format only requires O(N + Nd) space. This is because in COO format, only a list

of the N non-zero values and a list of each non-zero value’s index (Nd total

space) is stored. This has a tradeoff of increasing time complexity of accessing

each slice as the index list must be searched to find all entries in a specific slice.

That is, to find all elements in slice S of the tensor, it takes O(Nd) time to locate

all values for that slice since the entire index list must be searched. Although this

may seem long, the sizes of tensors used in RED Alert are large and sparse, so

sparse tensor representations are needed. Thus, the increased time complexity

is necessary to be able to hold the data in memory.

Other than tensors, RED Alert uses constant memory to store temporary

variables and constants. From this, the overall space complexity of RED Alert

(assuming sparse tensor storage) is O(N + Nd), which is equivalent to O(N). RED

Alert and DenseAlert have the same space complexity through the use of sparse

tensor implementations in both algorithms.

26

3.2 RED Alert Results

RED Alert is able to detect and identify anomalous behavior from both a security

and network performance standpoint. The results of these detections are shown

in this section using both total change and energy. This section also explores the

parameters of RED Alert, time window and threshold values, and provides a look

at the robustness of the algorithm in terms of processing for long periods of time.

3.2.1 Packet Loss Detection

As done in the DenseAlert example, a tensor consisting of packet loss values

between a source and destination at a given time (3-mode tensor) was used for

the packet loss detection through RED Alert. Again, a time window of 1 minute

was used, so each minute, the streaming tensor was aggregated and compared

to the tensor corresponding to the previous minute. The results of running RED

Alert can be seen in Figures 3.4 – 3.7 in order to attempt the packet loss

detection from Figure 1.4

RED Alert uses its recursive filtering and expansion to detect a spike in packet

loss at the country granularity level and trace it down all the way to the IP

granularity level. Looking at Figure 3.4, the major spike around 14:30 is visible

among other noise in the data. Using a threshold of 3000 at this level, 111 events

were detected (shown through the red X’s in the figure). These 111 events were

then expanded to focus on city to city traffic, shown in Figure 3.5. Once again,

the major spike was detected and alerted on, along with 29 other events, at the

city granularity level using a threshold of 3500. This removed 81 insignificant

events that were triggered at the country granularity level, saving computational

time. Then at the institution granularity level, only 7 events were alerted with a

threshold of 4000 as seen in Figure 3.6. Finally, only 5 events were alerted at the

IP granularity from a threshold of 5000, shown in Figure 3.7. These events

corresponded to the major spike in packet loss seen in Figure 1.4, shown

through the green circle in Figure 3.7. At this level, the algorithm reported the IP

addresses experiencing the extreme packet loss. In this case, a destination IP

identified was one losing 40% of its packets through over 1000 connections in

the time window. This indicates potential performance issues that warrants

investigation.

27

Figure 3.4: RED Alert Packet Loss, Country Granularity

Figure 3.5: RED Alert Packet Loss, City Granularity

Figure 3.6: RED Alert Packet Loss, Institution Granularity

28

Figure 3.7: RED Alert Packet Loss, IP Granularity

3.2.2 Botnet Detection

Again, RED Alert ran through the same tensor passed to DenseAlert in its botnet

detection. This consisted of a time × source × destination tensor with number of

connections as its value. As shown in Figures 3.8 – 3.11, RED Alert is able to

detect periods of high botnet activity at the country, city, institution, and IP

granularity levels. At each transition to a finer level, uninteresting data is removed

by the filtering process. 130 events were identified as being of interest at the

country level (threshold of 1000), followed by 46 events at the city level

(threshold of 1500), and 6 events at the institution level (threshold of 2000).

Ultimately, 5 events resulted in alerts at the IP level (threshold of 2500). Any

change value greater than 2500 at the IP granularity was alerted.

The alerts at the IP granularity level correspond to the increases in botnet activity

seen in Figure 1.6. RED Alert identified the host responsible for the major spike

seen around 9:00 in Figure 1.6. The detected IP address, which indeed was

labeled as a botnet, went from no requests at 9:06 to over 5,000 requests at

9:07. Additionally, the IP identified at the spike around 15:00 was a group of

botnets that increased activity from 0 requests at 14:59 to over 3,000 requests at

15:00. RED Alert was able to detect these events at the country granularity level

and successfully track them to the offending hosts at the IP granularity level. The

spike at 10:00 was traced down to the final granularity level, but was not alerted

as it did exceed the threshold.

29

Figure 3.8: RED Alert Botnet, Country Granularity

Figure 3.9: RED Alert Botnet, City Granularity

Figure 3.10: RED Alert Botnet, Institution Granularity

30

Figure 3.11: RED Alert Botnet, IP Granularity

3.2.3 Choosing Threshold Values

In both the botnet detection and packet loss examples, a periodic noise can be

seen in the data with a total change value around 1000 for the botnet example

and 3000 for the packet loss example. This noise represents the normal “hum” of

the network traffic from users connecting and disconnecting, or the change in

packet loss in the network for each time window. Thus, it is important that the first

threshold for spawning the recursive search of RED Alert is at least this normal

“hum” value (leading to the initial thresholds of 1000 and 3000 in our results).

This way, any activity that is outside of this range would be explored through the

remaining steps of RED Alert. The other threshold values should scale according

to the user’s desires. It is up to the user to determine which threshold values

provide the most meaning in the context of their network, so some trial and error

with the threshold values is necessary to properly utilize RED Alert.

As seen in the botnet example in Figure 3.11, three events were not alerted at

the final granularity level. This was due to the threshold chosen. If the threshold

was lowered at a coarser granularity, the events would have been tracked down

to the IP granularity level and alerted on. However, the threshold was set to

detect the larger spikes at 9:00 and 15:00 and thus did not consider the other

anomalous events at 12:15, 13:15, and 16:00.

31

3.2.4 Effects of Time Window

As is important with any machine learning algorithm, finding the best value for

parameters is key to an algorithm’s success. RED Alert has two main types of

parameters, the time window and the thresholds. As just described, the

thresholds are more of a user-configurable parameter for what is being detected.

On the other hand, the time window could have drastic results on the detection in

the algorithm. Too small of a time window could cause a large amount of noise

being detected in the data whereas too large of a time window could lead to

events being undetected when they are washed out by other noise.

RED Alert was run using varying time windows for the detections shown

previously, focusing on the effects of the country level detection as it is what

ultimately leads to the recursive event detection. As shown earlier, a time window

of 1-minute provided meaningful and conclusive results. At the 10-second time

window seen in Figures 3.12 and 3.14, the data is noisy, but still detects the

spikes in packet loss for the network and the spikes in botnet activity. From a

data analytics perspective, this time window performs well, but is a bit more

visually unpleasing than the 1-minute time window. The periodic noise seen here

is a bit more noticeable than in the 1-minute time window.

When using a 5-minute, shown in Figures 3.13 and 3.15, the plots fail to indicate

some activity that was evident in the 1-minute and 10-second time windows. For

example, in Figure 3.15, anomalous activity from 15:00 to 16:00 is washed out

when using the 5-minute window, but not in the 1-minute and 10-second

windows. This is because when looking at the larger time window of 5-minutes,

the change may not be as drastic since more values are being aggregated even

though the same slice may be detected as the most changed. For example, in

the botnet detection, Russia was alerted as the most changed slice at the country

level at 15:00. However, in the 5-minute time window, Russia increased from

23,400 requests at 14:55 to 24,700 at 15:00. Even though this was the most

changed slice, the total change is only 1300, much lower than the orders of

10,000 typically calculated for the total change for this time-window. At the 1-

minute scale, Russia increased from 2500 requests at 14:59 to 10,000 requests

at 15:00. This caused the total change value to be about 7500 and noticeable in

the 1-minute plots. Although the label of the most changed slice does not tend to

change between different time windows, the value calculated for larger time

windows may not be as meaningful when plotted.

32

Figure 3.12: 10-second Time Window, Packet Loss Detection

Figure 3.13: 5-minute Time Window, Packet Loss Detection

Figure 3.14: 10-second Time Window, Botnet Detection

33

Figure 3.15: 5-minute Time Window, Botnet Detection

Another key importance about selecting the time window is the effect on

computation time. With an increase in the time window, tensors will be larger due

to the increase in the number of data points. Since RED Alert processing time

scales linearly with respect to the number of non-zero values, an increase in data

size leads to an increase in the execution time of the program. For example, for

the packet loss detection, RED Alert takes about 50 minutes total for the 10-

second time window, about 56 minutes for the 1-minute time window, and about

74 minutes for the 5-minute time window. Likewise, RED Alert takes about 36

minutes total for the 10-second time window, 37 minutes for the 1-minute time

window, and about 57 minutes for the 5-minute time window in the botnet

detection. Thus, there is a tradeoff with selecting the appropriate time window

that works well for the data and also does not cause tremendous increases in

execution time.

3.2.5 Robustness

To test the robustness of RED Alert, RED Alert was run on a month of data to

see if the algorithm could handle long stretches of time without crashing and still

properly filter out uninteresting data.

34

RED Alert ran through this month of data for both the packet loss example and

botnet detection example. The dataset consisted of a total of over 590 million

records. In the packet loss example, thresholds of 3000, 3500, 4000 and 5000

respectively for each of the granularity levels were used again as they provided

conclusive results in the previous example. From this, a total of 6371 events was

alerted at the country level, 980 events at the city level, 276 events at the

institution level, and finally, 229 events were deemed anomalous at the IP

granularity level.

For the botnet example, the same thresholds were used of 1000, 1500, 2000 and

2500. This led to of 13,500 events alerted at the country level, 293 events at the

city level, 179 events at the institution level, and 173 events at the IP granularity

level. Processing this month of data took about 3600 minutes (2.5 days) for the

packet loss example and 4900 minutes (3.5 days) minutes for the botnet

detection example. This shows that RED Alert is able to keep up with large

amounts of data in “faster than real-time” allowing for quick response when used

on real-time network data.

One potential limitation to using these constant thresholds is the changes in

network behavior through days of the week. Network traffic on a weekend is

much less active than network traffic on a weekday, so it would make sense to

have varying threshold levels based on the day of the week and time of the year

to provide more accurate detection. Some events on a weekend may be

considered anomalous, but lower than the thresholds used for weekdays. This

would cause some events to go unnoticed. However, using time-varying

thresholding requires extensive understanding of the network behavior through a

large amount of statistic collections and analysis.

3.2.6 Using Energy as Criteria

Total change was one evaluation criteria explored for detection through RED

Alert. Another value RED Alert used was the energy metric explained in the

introduction. For this, slices with the most energy were detected and alerted in

the algorithm using thresholds based on slice energy. With respect to the RED

Alert algorithm shown in Figures 3.2 and 3.3, nothing in regards to the

algorithm’s process change besides calculating the energy of each slice rather

than the total change. The algorithm merely detects the slice with the most

35

energy, alerting on energy-defined thresholds. Since values are squared in the

energy calculations, larger values for thresholds are necessary.

For the packet loss example shown in Figures 3.16 - 3.19, using energy as the

threshold criteria led to conclusive results. From Figure 3.16 at the country

granularity level, an energy threshold of 1,000,000 led to 130 events being

detected. At the city granularity in Figure 3.17, a threshold of 20,000,000 led to 8

events being detected. Then using a threshold of 40,000,000 at the institution

granularity level led to 6 events continuing on to the IP granularity level (Figure

3.18). Finally, as displayed in Figure 3.19, a threshold of 160,000,000 led to 5

events being alerted as anomalous at the IP granularity level. RED Alert still

alerted with the IP addresses leading to the events detected at this level. These

final 5 alerts corresponded to the same IP addresses as the ones alerted in the

total change example discussed previously.

With reference to the plots in Figures 3.20 – 3.23, RED Alert was also successful

in its detection of botnets using the energy criteria. The threshold values used

here were much smaller than the ones in the packet loss example, but still larger

than the thresholds from the total change example. For the country granularity

level in Figure 3.20, a threshold of 150,000 resulted in 76 events detected. These

events were filtered down to 26 events at the city granularity level from a

threshold of 600,000, shown in Figure 3.21. At the institution level, a much larger

threshold of 3,500,000 was needed to filter these events to the 7 events seen in

Figure 3.22. Finally, in Figure 3.23, a threshold of 9,700,000 was used to alert on

6 IP addresses. 5 of the IP addresses alerted at the final level corresponded to

the same IP addresses detected from total change. The sixth IP address

corresponds to the event that was detected around 16:20 that was overlooked

when using total change. This is because energy is an L2-norm, so the change

values will increase more drastically and can be detected with lower thresholds.

The lack of detection for the botnet at event at 12:15 is due to a botnet that was

already active becoming more active, and the event at 13:15 is undetected due

to a botnet becoming gradually more active over time. RED Alert is only sensitive

to sudden changes in the network as opposed to gradual changes.

Using energy takes slightly more time than using total change due to the extra

calculations in calculating and squaring the norm of the slices. RED Alert took

about 56 minutes for the packet loss example using total change and 60 minutes

using energy. Similarly, using total change took 37 minutes for the botnet

detection, but total energy took 46 minutes. These differences become starker

when used on longer periods of time and larger networks.

36

Figure 3.16: RED Alert Packet Loss using Energy, IP Granularity

Figure 3.17: RED Alert Packet Loss using Energy, City Granularity

Figure 3.18: RED Alert Packet Loss using Energy, Institution Granularity

37

Figure 3.19: RED Alert Packet Loss using Energy, IP Granularity

Figure 3.20: RED Alert Botnet using Energy, Country Granularity

Figure 3.21: RED Alert Botnet using Energy, City Granularity

38

Figure 3.22: RED Alert Botnet using Energy, Institution Granularity

Figure 3.23: RED Alert Botnet using Energy, IP Granularity

39

4. MODELING RESULTS WITH INSIGHT2

InSight2 is a network monitoring system developed at the University of

Tennessee to provide a platform for data analytics and visualization of large-

scale network data. In this chapter, the history, motivation and current

architecture of InSight2 is outlined as well as how RED Alert interacts with the

platform.

4.1 History and Motivation of InSight2

InSight2 serves as a continuation of the GLORIAD InSight project developed in

2013. InSight solely monitored the GLORIAD research and education network

described below, but InSight2 serves as a generic, open framework capable of

providing analytics for any network. This section explains the transition from

InSight to InSight2.

4.1.1 GLORIAD and InSight

Due to the sheer size of GLORIAD and the data associated with it, InSight was

created in 2013 as a network monitoring tool to ensure high performance and

security in the international network [19]. Its focus was to provide in-depth

analyses on network flow data such as jitter, packet loss, and various security

measurements.

However, in 2014, GLORIAD ended and with it came the termination of InSight.

InSight’s dependencies changed and updated after InSight’s termination causing

it to be useless. Updating the original code base of InSight seemed to be near

impossible due to the complex components with little documentation and no

modularity. Additionally, it was unclear as to what types of database backends

were used to host the GLORIAD data for display. For these reasons,

modernizing InSight would require much more work than anticipated. From NSF

sponsorship under the project “The InSight Advanced Performance

Measurement System” with sponsorship from IRNC-AMI (International Research

Network Connections - Advanced Measurement Network Infrastructure) program,

40

development for a completely new InSight platform (aptly named InSight2)

began.

4.1.2 From InSight to InSight2

InSight2 is a complete redesign from the original InSight framework [1]. InSight2

strived to have the modularity and cohesiveness that InSight lacked in a modern

framework with less moving parts. The goals of InSight2 remained the same as

those of InSight – providing a large-scale network visualization tool that allows for

network operators to quickly determine the health of their system. Moreover,

InSight2 was developed with extendibility in mind so that users can define their

own dashboard interfaces and provide their own data to be used with the tool. All

tools and databases used in the framework are free or open-source so that

InSight2 can be shared with anyone without licensing issues.

InSight2 consisted of some notable changes from the original InSight. The first

change was to use a Python code base rather than Perl. Python is a very robust

and user-friendly language that would easily allow for extensions to the platform

without rewrites in the code base. Although Python is a scripting language, it

contains object-oriented design mechanisms that allow for modularity in software

design. Moreover, InSight2 used Elasticsearch [20] as the sole data storage

database. Python has libraries that interact directly with Elasticsearch databases

(elasticsearch-py and elasticsearch-dsl-py) allowing for quick and easy upload

and retrieval of data stored in the database. Another useful component of having

Elasticsearch access is the ability to create visualizations of the data within the

same framework with Kibana. Kibana users can access the various indices within

Elasticsearch and create a variety of different visualizations of the data.

Examples of highly used visualizations are area plots, line plots, heat maps, and

bar graphs among many others. Kibana also has the ability to aggregate multiple

visualizations together to create dashboards. Using these Kibana dashboards

and an HTML frontend, the InSight2 visualization platform can be seen anywhere

from the web. This differs from the original InSight in that multiple different

database types (MySQL, SQLite, and Elasticsearch) were aggregated with a

customized Kibana front-end for display. The InSight2 method is much more

compartmentalized with only the Elasticsearch and Kibana interaction.

41

Some components from InSight stayed the same due to their performance. Argus

was kept as the network flow aggregating tool since it is versatile and fast,

supporting the collection of up to 127 different fields for each flow. Currently,

work is underway to support other network flow aggregators such as NetFlow.

Additionally, the majority of the dashboards were kept the same since the

dashboards used in InSight provided meaningful displays in regards to the health

of the network. In the next section, the changes made are described in detail.

4.2 Architecture Overview

The InSight2 architecture was developed with simplicity and modularity in mind

[21]. Each component of the design is independently developed and maintained

so that add-ons and changes can be made to the design without disrupting the

flow of InSight2. These modules work synchronously together to provide a better

user experience as well as having more efficient disk usage. The main modules

are the Enrichment Module (EM), Updater Module (UM), Summarizer Module

(SM), and user-defined plug-ins. These modules are described below as well as

how they work together in the InSight2 framework.

4.2.1 Enrichment Module

The Enrichment Module (EM) serves as the core component in InSight2. Its

purpose is to collect the output from the Argus flow data and provide further

metadata from other database sources. The EM then uploads the aggregated

data to the Elasticsearch database. The EM works both for archived flow data,

such as the GLORIAD data, or can be used on live streaming data. The

database sources used to provide further metadata are described below. The

Global Science Registry and MaxMind GeoIP databases are the ones used for

RED Alert’s granularity levels.

Global Science Registry (GSR): The Global Science Registry is a SQL

database from the original InSight that is uploaded to Elasticsearch. The GSR is

composed of tags for over 14,000 different institutions that used GLORIAD. For

InSight2, GSR is used to collect information about each unique IP address’s

domain name server (DNS) information, the labels for each IP node, the IP

42

name, the address to domain ID matching, location information, autonomous

system (AS) numbers, the IP address’s ISP name, and the organization the IP

belongs to. Since this database is so large, it is stored in its own index in the

Elasticsearch database to provide quick access and searching.

MaxMind GeoIP: MaxMind’s GeoIP database contains information about IP

address locations. The location data varies in granularity level including

information about the IP’s city, province, zip code, country, latitude and longitude.

Using the Python module pygeoip, IP addresses are quickly tagged with the

appropriate geolocation data. The GeoIP database is stored on disk since it is

implemented using the Python library.

Threats Databases (TD): Various online databases listing malicious IP

addresses are aggregated into the Threats Database (TD) upon InSight2’s

creation to tag potential suspicious activity in the network. The TD contains

information on emerging threats, CYMRU Bogons, and IP addresses belonging

to the Zeus, Feodo, Palevo, and Spyeye botnets. Using the Updater Module

described in the next section, these threat databases are guaranteed to be up-to-

date and contain the most recent lists of malicious IP addresses. This database

is also stored in Elasticsearch to provide quick searching and tagging of

malicious IP addresses.

The EM is parallelized to provide quick collection and upload of flow data by

distributing the enrichment across all available cores. This is done by using

Python’s multiprocessing library and splitting the data into chunks to be

processed and uploaded individually by each core. Each core has its own thread

from the main program with each thread processing one flow record at a time.

Race conditions are avoided using the multiprocessing Manager class in Python

that provides shared data types across threads. This ensures that two threads do

not try to index to the same point in Elasticsearch and cause overwrites.

Moreover, these threads are lightweight, containing only the necessary values

needed for enrichment – the data to be enriched, access to the Elasticsearch

database, access to the enrichment databases, and other small data types such

as verbose flags and file names.

The EM works as follows. The first step in the enrichment is to spawn off the

Argus client. Using the subprocess Python module, an Argus thread is started to

pipe flow data into the EM. If archived data is used, the data is broken up into

smaller sets so that the Argus call does not hold up the enrichment. If live data is

43

used, the output buffer from Argus is read every few seconds to gather any new

flow data that has appeared. The flow data typically amounts to a large quantity

of records since the records are stored by milliseconds. When the Argus call

finishes (or when the live stream buffer is read), the resulting flow data is

chunked into smaller pieces to begin the parallelized parsing of the flow data for

further enrichment. This parsing works by accessing the various fields returned

by Argus and adding them to a Python dictionary for temporary storage. Checks

are made to ensure that no data fields are left empty or of the wrong data type. If

a field is left empty, a default value is used. Using the source and destination IP

address fields, information from the previously mentioned databases are

aggregated as well and added to the dictionary. Once all fields have been added

to the dictionary, it is converted to a JSON object for upload to the Elasticsearch

database within the appropriate index. Once a thread finishes parsing and

uploading its data, it joins back to the main thread and is given a new set of data

to parse.

4.2.2 Updater and Summarizer Modules

The EM is useful for uploading the data to the Elasticsearch database, but it is

important to ensure that the data in the database is up to date and aggregable.

This is the motivation for the Updater Module (UM) and Summarizer Module

(SM). The UM is used to periodically check for updates in the databases used in

the EM to see if any new information is available. The SM is able to “summarize”

data in longer time periods than the millisecond granularity used in the EM. Both

of these modules are described in this section.

Updater Module: The UM ensures up-to-date enrichment databases by polling

the sources of each database periodically. If a database changed in the past time

period, the UM deletes the old database from Elasticsearch and uploads the

more modern one in its place. The UM is run as a background daemon with

logging capabilities to log changes to the databases and alert the user if

problems with the module arise. This time period is configurable by the user, and

each database can be individually configured to be checked at different time

intervals. Examples of information updated through the UM include newly

discovered botnet IP addresses and organizational labels for IP addresses.

44

Summarizer Module: From the EM, data is collected at the time granularity of

milliseconds. In some instances, this granularity is too fine for network operators.

The SM is designed to fix this issue by summarizing numerical data in larger time

windows such as minute-to-minute scale. The SM summarizes data in the

following ways. Source and destination IP addresses are summarized by using

least specific subnet prefixes. Number of bytes and packet counts are individually

summed. Jitter and inter-packet arrival times are individually averaged per time

window. This allows for a quick snapshot of what the network traffic looks like at

a specific time without using the large data at such a fine granularity.

4.2.3 Plug-ins

The dashboards generated by InSight2 only provide information about the raw

data collected in the EM. For proper data analysis, intelligent algorithms are

useful to provide further insight as to underlying trends in the data. Plug-ins are

user-created modules that have access to the InSight2 Elasticsearch database to

collect flow data and provide more informative network analytics. Plug-ins are

designed to work by accessing the Elasticsearch database to quickly obtain the

dataset, perform some sort of analytics, and upload the resulting data to a new

Elasticsearch index. The resulting data in the new index can then be visualized in

a Plug-in dashboard with the visualization design suited for the analysis. Since

InSight2 uses an Elasticsearch backend, users can develop Plug-ins in their

programming language of choice to interact with the database. Currently,

Elasticsearch has APIs in Java, Javascript, Perl, Python, PHP, and Ruby.

Despite InSight2’s internal development in Python, any of these languages can

be used to create Plug-ins. Examples of Plug-ins developed already are Markov

chain analysis and RED Alert.

4.2.4 Dashboards

As briefly mentioned earlier, dashboards are the ways in which the data created

by these different modules are visualized. The dashboards used in InSight2 were

inspired by the dashboard interface from the original InSight, but with a

modernized interface. Dashboards group related visualizations together,

separating each dashboard in different tabs on the InSight2 webpage. These

45

dashboards are iFrames from Kibana stored in an HTML file for display on the

web. This means that any browser with Javascript capabilities can load the

dashboards for viewing from any location. The three main dashboards are the

overview dashboard, the performance dashboard, and the connections

dashboard. As mentioned in the previous section, additional dashboards may be

created for plug-in modules.

4.2.5 InSight2 Workflow

InSight2 has modularized the framework, so it is important that the individual

components interact in a cohesive fashion to provide a reliable and efficient

system. Each module works independently such that a problem in one module

does not disrupt the process of the overall framework. Additionally, as modules

are added or removed in potential future updates, the whole framework does not

need to be redesigned as it is robust to changes.

The workflow for the InSight2 framework proceeds as follow. The EM is spawned

to collect the Argus flow data and upload the enriched data to Elasticsearch.

From the EM, each additional Plug-in is started to collect the data from

Elasticsearch and perform their analyses. The EM periodically checks that each

Plug-in is still running and not using too much computational power. The results

of the Plug-ins are uploaded back to Elasticsearch and stored there. Separately,

the UM and SM interact with Elasticsearch. The UM daemon is inactive for most

of the time and updates the enrichment databases when needed. The SM

periodically accesses the Elasticsearch database and summarizes data,

uploading the summarized data back to Elasticsearch in a new index. Using a

webserver with embedded Kibana visualizations, the various dashboards are

visible to network operators. The Kibana visualizations are built on top of

Elasticsearch which allows for direct access to create visualizations without the

need for a middleman. Figure 4.1 displays a diagram depicting the workflow for

InSight2 and how each module interacts with one another.

46

Figure 4.1: InSight2 Architecture Workflow

4.3 Tensor InSight2 Framework

InSight2 is designed for large-scale networks, so the data aggregated from the

platform is large in volume. The dimensionality of the tensors can reach several

thousands of indices per mode. The tensors are also quite sparse due to the

nature of the data. Thus, an efficient method for storing and accessing large

sparse tensors is necessary for tensor analyses. In this section, Python libraries

for tensor computations are surveyed and analyzed. Then, the implementation

used for the RED Alert plug-in is described.

4.3.1 Overview of Python Tensor Libraries

Since the development of InSight2 consisted of using the Elasticsearch APIs in

Python, the RED Alert plug-in was designed in a Python framework. However,

Python has limited resources for tensor development. Many libraries exist for the

creation and processing of high-dimensional data, but many lack key

functionalities or documentation for proper use. This section summarizes some of

the tensor libraries tested for RED Alert’s InSight2 plug-in.

47

NumPy and SciPy: NumPy [22] is perhaps the most popular Python multi-

dimensional computation framework. The library is part of the SciPy numerical

computation library in Python. NumPy is a lightweight library contain only the

necessary tools to create and manage multi-dimensional objects with some

computational tools, whereas SciPy contains much more computational

packages such as statistics and linear algebra tools wrapped around BLAS and

LAPACK frameworks. These libraries are often compared to MATLAB due to the

similar uses and capabilities between the two.

NumPy is popular due to its easy and efficient use of n-dimensional arrays.

Python lists can easily be converted to NumPy arrays by using simple calls to the

library. Retrieval, filtering, and searching of data in these arrays is fast as well.

NumPy even contains functions for addition, subtraction, dot product, division,

inverse, and many other useful math tools for their n-dimensional arrays so that

the user does not have to iterate over the entire structure to compute some

result.

The fact that NumPy supports an arbitrary number of dimensions seems to

suggest that it could be used easily as the tensor framework for RED Alert, but

there are some notable limitations to using NumPy as a tensor framework. For

instance, modifying the multi-dimension data such as appending rows or columns

and adding dimensions is extremely slow in NumPy. Network data is dynamic

and may require deletions and additions to the tensors, so quick tensor

manipulation is essential for robust computation. Additionally, as mentioned

earlier, network flow data in a tensor framework is quite sparse. The data can

grow very large at times and exceed Python memory capacities. Thus, some sort

of sparse tensor compression is necessary for our analyses. NumPy itself does

not support any sort of compression and requires all data to be stored in RAM at

a given time. This solution will not work for all of our data. Although SciPy does

contain support for sparse matrix representations, it does not extend to n-

dimensional data objects as needed in our algorithm.

TensorLy: TensorLy [23] is a Python library designed for tensor storage and

computation with minimal dependencies. It contains not only support for tensor

storage and manipulation such as accessing sub-tensors and slices, but it also

comes with high-end tensor computations such as tensor decompositions and

regressions. TensorLy supports three different Python libraries as its internal

backends for storage, NumPy, PyTorch and MXNet. PyTorch and MXNet are

48

both large-scale deep learning frameworks that are capable of GPU usage that

contain n-dimensional data objects as NumPy does.

TensorLy seems to have most of the functionality necessary for RED Alert.

Though, as of late 2017 when this tensor analysis work began, no support for

sparse tensors existed for TensorLy (the authors mentioned it was on their

roadmap for the future). Once again, the memory problems of NumPy and SciPy

arose again where large tensors could not be stored in RAM when using Python.

As mentioned, TensorLy does support high performance backends that support

GPU use, but since RED Alert was designed for generic computational

frameworks without GPU support, these backends were not an option. TensorLy

may be revisited in future work once sparse tensor support is released.

scikit-tensor: Scikit-tensor [24] is a Python library built on top of SciPy and

NumPy to provide tensor support through multilinear algebra and tensor

factorization functions. Some of the same high-end functions from TensorLy were

available in scikit-tensor as well. More importantly though, scikit-tensor consisted

of support for both sparse and dense tensors. For dense tensors, scikit-tensor

used the NumPy n-dimensional arrays. For sparse tensors, scikit-tensor used the

Coordinate format (COO) from SciPy that stores only non-zero data.

COO works as follows. n different lists representing the n dimensions hold the

coordinates of the various non-zero values. For a tensor of 3 modes, the

coordinates (i, j, k) would be split into three different lists all at the same index.

Another list is stored that holds the non-zero values in the sparse data structure.

If there are m non-zero values in the sparse data structure, each of these n+1

lists would contain m values.

For example, consider a sparse matrix (tensor of two modes). The COO

representation of this matrix would contain a list for the rows with non-zero

values and a list with the corresponding columns with non-zero values. The COO

representation would then consist of a third list containing these non-zero values.

Thus, the i th non-zero value, stored in data[i] would be located at (rows[i],

columns[i]) in the matrix. Figure 4.2 shows a depiction of COO for a matrix of

dimensions 3 × 2.

Even though Scikit-tensor contained the functionalities needed for RED Alert, the

documentation was scarce and difficult to find, and the project had not been

updated in almost 2 years.

49

Figure 4.2: COO Representation

4.3.2 Modifications to scikit-tensor

Since scikit-tensor contained the core functionalities necessary for our tensor

processing, the library was selected as the basis for our toolkit with some

modifications to fully meet the requirements of our algorithm. Scikit-tensor lacked

functionality in accessing only subsections of the tensor such as slices and sub-

tensors. Consequently, the four following functions were added to scikit-tensor

for use in our tensor toolkit:

• slice(mode, i): Return the list of non-zero values at slice i in mode mode.

• slice_toarray(mode, i): Return the entire slice as an n-dimensional NumPy

array at slice i in mode mode including the zero values.

• delete(mode, i): Delete the non-zero values in the slice i of mode mode.

• subtensor_toarray(mode, begin, end): Return the subtensor as a NumPy

array from slice begin to slice end in mode mode.

50

These additional functions provided easy access to subsets of the tensors

without having to expand the entire tensor and running into memory issues as

was required in the original scikit-tensor library. Using these functions, tensors

could also be quickly resized and modified which was slow in NumPy. The code

for the tensor library used in RED Alert can be seen at

https://www.github.com/jtliso/scikit-tensor.

4.3.3 Interaction with Elasticsearch

As a plug-in for InSight2, functionality was needed to interact with the

Elasticsearch backend to create the tensors and perform the analyses. Using the

elasticsearch-py library, the InSight2 database could be queried to collect data.

Tensors are built from an n-tuple of data gathered from Elasticsearch. These n-

tuples consisted of (n-1) parameters (e.g., time, source information, destination

information, protocol, etc.) and a value (e.g., packets, number of connections,

bytes, etc.) as the n th item in the tuple. This corresponds to a tensor of n-1

modes with each mode corresponding to one of the n-1 parameters collected

from Elasticsearch. The user needs to specify a time range of data to collect, the

parameters of RED Alert (time window and thresholds) and the value to be

collected within the tensor. Figure 4.4 depicts a tensor of mode 3 collected using

the 4-tuple (time, source country, destination country, number of connections).

Spikes in the tensor represent values at each cell in the tensor.

The tensors are built in the following way. A query to Elasticsearch is sent using

the Search API from elasticsearch-py. For longer time ranges (greater than 1

hour), the searches are broken into one-hour chunks to prevent stress on the

Elasticsearch server and preserve RAM. These searches are sorted by the n-1

dimensions that are passed using Elasticsearch’s Sort API. This guarantees that

tuples containing the same n-1 parameters will be returned in succession. This is

important for creating the tensor in COO format as explained later in this section.

The n th entry in the n-tuple represents the value, and this value is stored in a list

of these values from Elasticsearch. This works well with the COO format since it

only needs to store the non-zero values (i.e., any value obtained from

Elasticsearch). By appending the value with the appending of the n-1 indices,

COO format is maintained by having the i th value correspond to the i th indices.

51

Figure 4.3: InSight2 Sample Tensor

As mentioned earlier in this section, these Elasticsearch results are sorted by the

parameters passed by the user. This means it is possible to sum the values

returned from the search until a new tuple is returned from the query. For

example, in building a tensor of time × source IP address × destination IP

address with number of connections as the value, the number of connections

between a specific source IP to destination IP can be summed until a new tuple

is reached before appending it to the non-zero value list. This prevents look-up in

the n different lists to determine which value needs to be incremented when a

repeated tensor entry is seen.

Once the searches in the specified time range have been completed, the scikit-

tensor model is ready to be created. The index list, the non-zero value list, and

the shape (which is determined by the number of unique parameters per mode)

are stored in a class, creating the sparse tensor representation.

52

4.4 RED Alert Plug-in within InSight2

As one of the premiere plug-ins of InSight2, RED Alert needed to be ported to

work with the InSight2 framework. This means that RED Alert must be able to be

initialized from an InSight2 dashboard and provide visualizations back to the user

on this dashboard. Kibana has no functionality of starting an outside script from a

dashboard, so a non-Kibana dashboard was needed. Kibana also prevents the

development of third-party dashboards within their web application, so this

required some engineering to work around their limited dashboard features.

Thus, the Python library Flask [25] was used to develop the application side of

the RED Alert plug-in. This allows for RED Alert script initialization from the

InSight2 user and display the results of RED Alert through Kibana visualizations.

Flask is an open-source library in Python that provides server management for

web applications. Users create a Flask-based HTML file that interacts with the

Flask server management through a Python file. Flask is well-documented with a

large userbase allowing for flexible development for any Python project. Since

InSight2 and RED Alert were both built in Python frameworks, it made sense to

use Flask to create the plug-in using RED Alert. This section summarizes the

development of the Flask application created for RED Alert in the context of

InSight2.

4.4.1 Frontend

The RED Alert plug-in can be seen in Figure 4.4. The plug-in features a form to

enter in the parameters used in RED Alert (date from, date to, time window,

thresholds, additional dimensions and tensor value) with a “Refresh” button and a

“RED Alert” button. The “Refresh” button refreshes the plots to match the date

range specified by the user, and the “RED Alert” button spawns the RED Alert

algorithm for the provided parameters. The backend workings of these buttons

and the interactions with the RED Alert script are explained in more detail in the

next section.

Below the form contains the plots generated for the RED Alert data using Kibana.

Since Kibana does not allow for direct manipulation of their dashboards, the

iFrame of the RED Alert visualization dashboard is stored in the application’s

53

HTML file to display the plots. Three different plots were used in this dashboard

to aid in the visualization of RED Alert’s results. The example below shows the

packet loss detection example discussed throughout this thesis. The first plot in

the dashboard shows a bar plot with positive and negative values. This displays

the “change of the change” through the use of Kibana’s difference plot. A positive

bar indicates a sudden increase in the change from the previous window (an

alert) and the negative bars indicate the “cancelling” of an alert, meaning the

network has returned back to normal behavior. The second plot is a line plot of

the overall health of the network representing the total change at a given

timestamp. Large increases and decreases in this plot correspond to the positive

or negative spikes seen in the difference plot above it. Finally, the third “plot” in

the dashboard is a table listing the values that were alerted in RED Alert. This

table lists the label of the alerted field, the mode that the alert occurred in and the

count for how many times it occurred in a time window (shown is a 5-minute time

window). This way, the network operator can search on these terms in the

Elasticsearch database to gather more information about the root cause and

outcome of the alert.

4.4.2 Backend

The backend of the RED Alert plug-in works as follows. The plug-in consists of

only one page at the root directory of the application. From there, the Flask app

handles both GET requests and POST requests to this page. The GET requests

handles reloading the page and fetching the iFrame from Kibana with a default

time range. To change the date range of the visualized data in the plug-in, a

POST request is committed through the “Refresh” button shown in Figure 4.4.

This POST request first ensures that a valid date from and date to are provided

by the user. Then the POST request reads the values of the date from and date

to fields to re-fetch the iFrame from Kibana that displays the tensor dashboard.

This is done through URL manipulation of the iFrame. The Kibana iFrame value

contains the date from and date to values within the string. Using a regular

expression, the date fields in this string are updated to match Kibana’s pattern

with the valid dates. Once this URL has been modified correctly, the URL for the

iFrame is then passed to the HTML file that overlays the iFrame. Flask allows for

static variables in HTML files that can be passed through functions in a Python

file, so updating this iFrame string in the HTML file is simple.

54

Figure 4.4: RED Alert Plug-in

55

Other than the “Refresh” button to change the date range, the plug-in form also

contains a “RED Alert” button that is used to spawn the RED Alert algorithm. This

is also done through a POST request, but in this case more validation and

processes must be completed than in the “Refresh” case. Not only do the date

range fields need to be validated and stored from the POST request, but also the

other fields necessary for RED Alert must be collected as well. The user must

input a valid integer time window greater than 0. Additionally, the user must

provide the desired threshold for each of the granularity levels. The selection of

other dimensions besides source, destination and timestamp are also included

since exploration of higher dimensionality is currently being looked into. Finally,

the user needs to indicate whether to use number of connections (botnet

detection) or total packets lost (packet loss detection) within the tensor being

used in RED Alert. Once the user inputs these values, pressing the “RED Alert”

button spawns a POST request to validate these input values and spawn the

RED Alert process. If a value is missing or invalid, the Flask application returns a

meaningful error message pointing the user to the issue.

After the POST request is completed, the RED Alert process is started as a new

process from the Flask application so that the page can be reloaded while the

algorithm is running. This allows for the user to periodically refresh the iFrame

with the “Refresh” button to see the results of RED Alert uploaded and displayed

in real-time. The RED Alert script uploads the results from each time tick back to

Elasitcsearch so that the data can be visualized through Kibana. This process

allows for the user to have no coding knowledge as the backend handles all of

the parameter passing and checking to execute the script. The user needs to

navigate to the RED Alert plug-in page and enter the desired parameters for

proper functionality.

56

5. CONCLUSIONS

Analyzing network trends is an important aspect of network operator’s

responsibilites. Creating ways to extract and process network flow data in

meaningful ways is a challenge due to the volume and high-dimensionality of the

data. In this thesis, two main algorithms that use tensors as a means to process

and analyze large-scale network traffic were explored. Network data from the

GLORIAD provided the means for the analyses.

Using DenseAlert as a network monitoring tool proved to be problematic in large,

finely defined tensors. The algorithm begins to report unhelpful results as the

datasets become larger. Specifically, DenseAlert failed to provide any meaningful

results from datasets representing IP network traffic, although smaller tensors of

lower granularity led to more conclusive results. Since IP is the level of traffic that

provides the most meaning to network operators, it is important that a network

monitoring algorithm provides conclusive results on these datasets. Even though

DenseAlert provides quick processing through its re-ordering and update

strategies, its shortcomings can be seen through these results.

Thus, RED Alert was created as a tensor-based monitoring tool for network traffic

to provide means of anomaly detection at any level of granularity. RED Alert

offers a useful alternative to DenseAlert by exploiting the hierarchical nature of

network data, filtering out unimportant data and exploring interesting events in

more detail. It is a simple, but effective algorithm for recursively filtering and

expanding sparse tensors representing time-varying network flow data. We have

provided empirical evidence that the algorithm is able to detect and track the

modeled activity and attribute the changes to host IPs. This is shown through

detection of increases in packet loss and detection of high botnet activity for a

network. Through the use of change magnitude, RED Alert can be used on a

wide variety of data to provide real-time event detection, be that for interesting

benign or critical malicious events. RED Alert also used the idea of slice energy

to show that other tensor metrics can be used to monitor the behavior of the

network. Both total change and energy provide conclusive results with detailed

alerts from the data. RED Alert was shown to be robust in its performance,

processing a month of data in merely a few days. RED Alert can further be

extended to other problems that have multi-dimensional data that can be

separated in a hierarchical fashion.

57

Although the steps of RED Alert’s algorithm are easy and straightforward,

creating or implementing tensor libraries in Python proved to be cumbersome.

Python provides numerical processing libraries through SciPy and NumPy, but

these libraries require extensive memory that becomes problematic when dealing

with large, sparse tensors. SciPy and NumPy are useful for their computational

capabilities through their wide variety of linear algebra functions, but they are not

designed for large multi-dimensional storage. This requires the use of third-party

libraries that provide more efficient tensor processing. However, most libraries

lacked the functionality desired at the time. As the DenseAlert creators had to do,

we created a tensor library that fit the needs of RED Alert through modifications

to scikit-tensor, a third-party tensor library on GitHub.

This work ties into the large overall project of InSight2, a network monitoring

platform developed here at the University of Tennessee. The tensor library used

was modified to work in the context of this platform, so that RED Alert could

effectively access and process the data. RED Alert was built as an additional

plug-in to InSight2 using Flask to allow for the execution of the algorithm through

its backend management and meaningful displays in the frontend. From this, a

useful tool for tensor-based network performance monitoring has been created

for internal and external use.

58

REFERENCES

59

[1] H.A.D.E. Kodituwakku. InSight2: An Interactive Web Based Platform for

Modeling and Analysis of Large Scale Argus Network Flow Data. Master’s

thesis, University of Tennessee, 201B.

[2] D. Phan, J. Gerth, M. Lee, A. Paepcke, and T. Winograd. Visual analysis

of network flow data with timelines and event plots. In John R. Goodall,

Gregory Conti, and Kwan-Liu Ma, editors, VizSEC 2007: Proceedings of

the Workshop on Visualization for Computer Security, pages 85–99,

Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[3] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data. IEEE

Transactions on Visualization and Computer Graphics, 1(1):16–28, March

1995.

[4] C. Van Loan et al. Future Directions in Tensor-Based Computation and

Modeling. NSF Workshop, 2009.

[5] O. Alter, P.O. Brown, and D. Botstein. Generalized singular value

decomposition for comparative analysis of genome-scale expression data

sets of two different organisms. Proceedings of the National Academy of

Sciences, 100(6):3351–3356, 2003.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle. A Multilinear Singular

Value Decomposition. SIAM Journal on Matrix Analysis and Applications,

21(4):1253–1278, 2000.

[7] K. Maruhashi, F. Guo, and C. Faloutsos. MultiAspectForensics: Pattern

Mining on Large-Scale Heterogeneous Networks with Tensor Analysis. In

2011 International Conference on Advances in Social Networks Analysis

and Mining, pages 203–210, July 2011.

[8] K. Shin, B. Hooi, J. Kim, and C. Faloutsos. DenseAlert: Incremental

Dense-SubTensor Detection in Tensor Streams. In Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1057–1066. ACM, 2017.

[9] G. Cole, and N. Bulashova. "GLORIAD: a ring around the Northern

Hemisphere for science and education connecting North America, Russia,

China, Korea and Netherlands with advanced network services", 2005.

[10] T.G. Kolda and B.W. Bader. Tensor Decompositions and Applications,

SIAM Review 2009 51 no. 3 455-500.

[11] S. Papadimitriou, J. Sun, and C. Faloutsos. 2005. Streaming pattern

discovery in multiple time-series. In Proceedings of the 31st international

conference on Very large data bases (VLDB '05). VLDB Endowment 697-

708.

60

[12] E.W. Weisstein. "Frobenius Norm." From MathWorld--A Wolfram Web

Resource. Retrieved from

http://mathworld.wolfram.com/FrobeniusNorm.html, 17 October 2018.

[13] QoSient Argus. Retrieved from http://qosient.com/argus/, 4 September

2018.

[14] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale Botnet Detection

and Characterization. In Proceedings of the First Conference on First

Workshop on Hot Topics in Understanding Botnets, HotBots’07, pages 7–

7, Berkeley, CA, USA,2007. USENIX Association.

[15] Zeus Tracker. Retrieved from https://zeustracker.abuse.ch/, 8 August

2018.

[16] Palevo Tracker. Retrieved from https://palevotracker.abuse.ch/, 8 August

2018.

[17] Feodo Tracker. Retrieved from https://feodotracker.abuse.ch/, 8 August

2018.

[18] A.V. Goldberg. 1984. Finding a maximum density subgraph. Technical

Report.

[19] “GLORIAD InSight”. Retrieved from http://insight.gloriad.org/, 4

September 2018.

[20] Elasticsearch. Retrieved from http://www.elastic.co/, 12 October 2018.

[21] A. Kodituwakku, J.T. Liso, and J. Gregor. Insight2: An Interactive Web

Based Platform for Modeling and Analysis of Large Scale Argus Network

Flow Data. FloCon, 2018 (Tuscon, AZ).

[22] NumPy. Retrieved from http://www.numpy.org/, 18 October 2018.

[23] TensorLy. Retrieved from http://tensorly.org/stable/index.html, 18

October 2018.

[24] Scikit-Tensor. Retrieved from https://github.com/mnick/scikit-tensor, 18

October 2018.

[25] Flask. Retrieved from http://flask.pocoo.org/, 12 October 2018.

http://mathworld.wolfram.com/FrobeniusNorm.html
https://zeustracker.abuse.ch/
https://palevotracker.abuse.ch/
https://feodotracker.abuse.ch/
http://insight.gloriad.org/
http://www.elastic.co/
http://www.numpy.org/
http://tensorly.org/stable/index.html
https://github.com/mnick/scikit-tensor
http://flask.pocoo.org/

61

VITA

Gerald Liso was born in Hackensack, New Jersey in April 1996, moving to

Franklin, Tennessee in October 1997. J.T. graduated with a Bachelors of

Science in computer science in December of 2017, joining the University of

Tennessee’s 5-year BS/MS program in computer science. As an undergraduate,

J.T. worked as an intern at Cisco and as a research assistant both at Oak Ridge

National Lab and the University of Tennessee. As a graduate student, J.T.

continued working as a research assistant at the University of Tennessee

developing the tensor plug-in model of InSight2 described in this thesis. J.T. will

graduate with a Masters of Science in December 2018 and is excited to begin

working in the technology industry.

	Tensor Based Monitoring of Large-Scale Network Traffic
	Recommended Citation

	Guide to the Preparation of

