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ABSTRACT 

 

Network monitoring systems are important for network operators to easily 

analyze behavioral trends in flow data. As networks become larger and more 

complex, the data becomes more complex with increased size and more 

variables. This increase in dimensionality lends itself to tensor-based analysis of 

network data as tensors are arbitrarily sized multi-dimensional objects. Tensor-

based network monitoring methods have been explored in recent years through 

work at Carnegie Mellon University through their algorithm DenseAlert. 

DenseAlert identifies events anomalous events in tensors through quick 

detection of dense sub-tensors in positive-valued tensors. However, from 

experimentation, DenseAlert fails on larger datasets. Drawing from RED Alert, 

we developed an algorithm called RED Alert that uses recursive filtering and 

expansion to handle anomaly detection in large tensors of positive and negative 

valued data. This is done through the use of network parameters that are 

structured in a hierarchical fashion. That is, network traffic is first modeled at low 

granular data (e.g. host country), and events detected as anomalous in lower 

spaces are tracked down to higher granular data (e.g. host IP). The tensors are 

built on-the-fly in streaming data, filtering data to only consider the parameters 

deemed anomalous in previous granularity levels. RED Alert is showcased on 

two network monitoring examples, packet loss detection and botnet detection, 

comparing results to DenseAlert. In both cases, RED Alert was able to detect 

suspicious events and identify the root cause of the behavior from a sole IP. RED 

Alert was developed as part of a greater project, InSight2, that provides several 

different network monitoring dashboards to aid network operators. This required 

additional development of a tensor library that worked in the context of InSight2 

as well as the development of a dashboard that could run the algorithm and 

display the results in meaningful ways. 
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1. INTRODUCTION  

 

Parts of this thesis have been submitted to ACM Transactions on Knowledge 

Discovery from Data as of October 2018. I served as the author of this paper, 

additionally conducting the literature survey, developing the algorithm, portraying 

and analyzing the results, and writing the journal paper. Other authors, Angel 

Kodituwakku, Jens Gregor, and Michael Thomason served as sources of 

guidance and advisers to help locate other resources that were beneficial to the 

completion of the paper. 

 

 

1.1 Overview of Network Monitoring 

 

Network flow data is one source of data that can be used to facilitate real-time 

network performance monitoring and detection of malicious traffic [1, 2]. Network 

flow data is a stream of records that provide further metadata about a transaction 

in the network, including labels of actors in a transaction and performance 

metrics of each transaction. Due to the amount of flow data produced by even a 

moderately active network, automated detection of interesting events is needed 

to support the network administrators carry out their work [3]. The large number 

of parameters associated with each flow, such as the source and destination host 

IP addresses, the number of packets transmitted, lost and retransmitted, and the 

protocol and port numbers to mention a few, furthermore implies that the analysis 

might benefit from the use of multi-dimensional data representations. 

 

Tensors offer a way to model multi-dimensional data effectively; tensors of order 

n are n-dimensional representations of data describing linear relationships [4]. 

Various algorithms have been developed to analyze patterns within tensors. For 

example, generalized singular value decomposition (GSVD) is used in genomics 

for classification of genes [5]. GSVD has been extended to tensors through the 

so-called higher-order GSVD (HOGSVD) [6]. Tensors have also been used 

in network analysis for anomaly detection of network packet activity using 

Canonical Polyadic (CP) decomposition [7]. Both of these methods project the 

data in a new space. In order to relate events to specific parameters and fields, it 

may be preferable that the analysis be carried out in the original data space. 
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DenseAlert [8] maintains a tensor model of the raw data. Events characterized by 

an increase in activity are detected by identifying dense sub-tensors. The 

algorithm uses sophisticated methods to carry out the needed computations 

quickly. The complex nature of the code makes the algorithm relatively difficult to 

implement. The Java implementation provided by the authors moreover builds on 

dedicated tensor support code, the efficiency of which may not be matched by a 

third-party. Combined, this makes porting the algorithm difficult. In addition, 

DenseAlert requires that the data be positive valued which could be a limitation 

for some applications. DenseAlert is analyzed and tested in Chapter 2 of this 

thesis. 

 

The primary focus of this thesis is the introduction of an algorithm called RED 

Alert that uses recursive filtering and expansion to create a hierarchy of sub-

tensors that represent the data at different granularity levels. The idea is to 

maintain a coarse-level tensor model that can quickly be updated when new data 

becomes available. When the activity being monitored exceeds a user-defined 

threshold, relevant sub-tensors are automatically expanded until an alarm can be 

raised which provides the most detailed information possible. Granularity is a 

refinement to the tensor dimensions. For example, low granularity data might be 

host country with high granularity data being the explicit host IP address. This is 

explained in more detail in Chapter 3 with some showcase examples. 

 

The data used in this thesis comes from a large research and education (R&E) 

network called GLORIAD. The Global Ring Network for Advanced Applications 

Development (GLORIAD) was an R&E network aiming to provide a network 

infrastructure to connect institutes and universities at a global scale [9]. 

GLORIAD’s successes can be seen through its ability to connect over 15 million 

endpoints and support from the NSF and universities worldwide. GLORIAD led to 

the development of a network performance tool called InSight2, a platform for 

which the work in this thesis was developed. The inner workings of InSight2 and 

the tensor processing infrastructure developed for InSight2 are described in 

Chapter 4. Concluding remarks are then provided in Chapter 5.  

 

 

1.2 Tensor Definitions 

 

Tensors are generalized n-dimensional objects that can provide a means for in-

depth analysis of multiple parameters. Tensors offer a way to easily model multi-
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dimensional data as they can contain an arbitrary number of dimensions. In this 

section, the basic tensor definitions and concepts that will be used in the 

remainder of this thesis are defined. 

 

Modes: The dimensions of a tensor are referred to as modes. For example, a 

vector is a tensor with 1 mode, and a matrix is a tensor with 2 modes. Tensors 

can have any number of modes since the dimensionality of a tensor is 

unrestricted.  

 

Furthermore, each mode can be indexed as one would expect. In a tensor with 2 

modes, element (i, j) corresponds to the value stored in the i th row and the j th 

column in the tensor. In this thesis, each mode represents a parameter in a 

network flow record. 

 

Sub-tensors: Tensors can be divided into subsets of a tensor by indexing a 

subset of the set of viable vertices in the original tensor. For example, suppose 𝑇 

is a tensor with 2 modes (i.e., a matrix) and dimensionality 4 × 4. Let 𝑆 be the set 

{(4,4), (4,1), (1,4), (1,1)}. Then, 𝑇𝑆 is the sub-tensor of 𝑇 consisting of the first and 

fourth rows and columns of 𝑇. 

 

Slices: Another method of dividing tensors (and sub-tensors) is a method called 

slicing. Slices are formed by holding one mode constant in the tensor, 

representing the various layers of a tensor. For example, consider the same 

tensor 𝑇 from the previous example. A slice across mode 1 would represent a 

row. A slice across mode 2 would represent a column. Since 𝑇 has dimensions 4 

× 4, each mode has 4 possible slices. Figure 1.1 visualizes slices in a tensor of 3 

modes [10]. These tensors can be sliced horizontally, laterally, or frontally as 

shown in the figure. 

 

Tensor Subtraction: Both tensors and sub-tensors can be subtracted from one 

another when the objects contain the same dimensionality. This is useful for 

tracking changes in streaming tensors as discussed in the next chapter. This 

subtraction is done in an index-wise manner. This means that for two tensors of 

mode 3, 𝑇1 and 𝑇2, the difference 𝑇1 − 𝑇2 would be the difference for each 

element at (i, j, k) in 𝑇1 and 𝑇2 for all i, j, k  the dimension set for 𝑇1 and 𝑇2. 
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Figure 1.1: Tensor Slices, Source: [10] 

 

Density: Tensors, sub-tensors, and slices have a density that can be calculated. 

Density can be interpreted as a quantified measure of influence created by the 

tensor, sub-tensor or slice. In the next chapter about the DenseAlert algorithm, 

density of a slice is used as the primary measurement. Density of a tensor 𝑇 can 

be defined as 

 

 
∑ 𝑇(𝑖,𝑗,𝑘)(𝑖.𝑗,𝑘)

|𝑇|
 , 

 

where (𝑖, 𝑗, 𝑘) are valid indices with 𝑇, and |𝑇| is the number of elements in the 

tensor. This equation holds when 𝑇 is a slice or sub-tensor as well. The 

summation would sum valid entries where (𝑖, 𝑗, 𝑘) are valid indices for the slice or 

sub-tensor. 

 

Change: Total change of a sub-tensor or a slice is defined as the sum of the 

element-wise absolute valued differences of two such entities. For two tensors, 

𝑇1 and 𝑇2, total change is defined as  

 

∑ |𝑇1(𝑖, 𝑗, 𝑘) −  𝑇2(𝑖, 𝑗, 𝑘)|(𝑖,𝑗,𝑘) , 

 

for all valid indices (𝑖, 𝑗, 𝑘) in the tensors. Total change serves as the main metric 

used in the RED Alert algorithm described in Chapter 3. The slice in a tensor with 

the most change is detected in RED Alert, indicating anomalous activity. 
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Total change is inspired from the concept of total variation in Calculus. Total 

change is described by the equation 

 

∫ |𝑓′(𝑥)|𝑑𝑥
𝑏

𝑎
, 

 

 

which calculates the arc length of a differentiable function, f(x) for a given interval 

[a, b]. This equation can be represented as 

 

∑|𝑓(𝑖) − 𝑓(𝑖 − 1)|

𝑏

𝑖=𝑎

, 

 

which is similar to the definition of total change defined above. 

 

Energy: Energy can be defined as the sum of the squares of the norms for a 

given sequence, normalized by the number of elements in this sequence [11]. 

Energy has been used to estimate the number of principal components needed 

through thresholding [11], but we use energy as an anomaly detection measure. 

In the context of our tensors, define energy can be defined as the squared 

Frobenius norm [12] for a given tensor, sub-tensor, or slice, divided by the 

number of non-zero entries. That is, for indices (𝑖, 𝑗, 𝑘) in tensor 𝑇 , we calculate 

the energy as 

 

∑ |𝑇(𝑖, 𝑗, 𝑘)|2
(𝑖,𝑗,𝑘)

|𝑇|
, 

 

where |𝑇| is the number of non-zero components. In the context of slices or sub-

tensors, the equation holds, but instead the equation only iterates on indices 

(𝑖, 𝑗, 𝑘) for the slice or sub-tensor. Energy is used as a supplemental 

measurement for the anomaly detections in RED Alert. Just as the slice with 

maximum change is detected, the slice with the highest energy in the tensor 

representing total change can also be detected to indicate anomalous activity. 

 

Total change and energy can be considered as the L1-norm and L2-norm for the 

change tensor. Total change is the L1-norm as it considers the values of the 

tensor in linear space, and energy is the L2-norm as it considers the tensor in 
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quadratic space. The Frobenius norm is equivalent to the Euclidean norm 

typically used for L2-norms [12]. 

 

Streaming Tensors: Since network flow data can be viewed as a continuous 

stream of data, in this thesis, dynamic streaming tensors are used instead of 

static tensors of fixed dimensionality. Streaming tensors are a sequence of 

tensors aggregated into a single tensor for a fixed time. This allows for data to 

only be considered for a specific time window, and old data can be discarded as 

new tensor streams come in. This concept will be touched on throughout this 

thesis. 

 

 

1.3 Problem Motivation 

 

We were given access to several terabytes of GLORIAD’s network flow data to 

develop network analysis tools. Using Argus [13] as a network flow aggregator, 

over 40 different fields describing the network flow data could be extracted. 

Examples of such fields include bytes per transaction, number of packets per 

transaction, and packets lost. Additionally, online databases were used to gather 

additional metadata about geolocation of the flow data. This is useful since 

GLORIAD was a global network, so understanding how the network functioned in 

different regions is essential for network monitoring. Varying levels of metadata 

were gathered about each transaction from these online databases. This 

includes country, city, and institution name for each IP discovered from the flow 

data. This primary focus of this thesis is exploring how performance at these 

varying levels of metadata, referred to as granularity levels, can be tracked and 

explored to find anomalous trends within the data. 

 

Although network monitoring can be conducted from varying perspectives, the 

primary focus of this thesis is in the context of performance monitoring through 

packet loss detection and security monitoring through botnet activity detection. 

These two problems are described in this section. 
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1.3.1 Performance Monitoring 

 

One important aspect of network performance is minimizing the number of 

packets lost per transaction. With each packet lost, network users either must re-

fetch the request to obtain the lost data or suffice with incomplete data. Large 

amounts of packet loss indicate potential issues in network infrastructure that 

warrant investigation. Thus, one focus of this thesis is detection times of high 

packet loss within GLORIAD. This can be detected by building tensors of the 

number of packets lost between a given source and destination connection. 

 

Figures 1.2 and 1.3 provide heat maps of packet losses during an 11-hour time 

period for a select subset of source and destination countries. Dark cells indicate 

low losses while bright cells indicate large amounts of packet loss. Figure 1.4 

plots the corresponding percent of packets lost overall. The goal is to detect the 

high loss events and determine whether they can be attributed to many hosts, in 

which case they may indicate a general network problem, or if they are specific to 

a small number of identifiable hosts, in which case the problem likely has to do 

with the specific hosts. In Figure 1.4, the sudden increase in packet loss around 

14:30 is one of primary interest explored in this thesis. Throughout the thesis, the 

events marked in green circles in the figures represent anomalous events that 

could be detected. 

 

 

1.3.2 Security Monitoring 

 

Botnets consist of a collection of compromised hosts which are used to 

carry out network attacks including but not limited to stealing data, sending spam, 

and performing distributed denial-of-service (DDoS) [14]. As these attacks can 

greatly affect the well-being of a network and its hosts (not to mention the users), 

it is important to discover when botnets are active. Because of this, another focus 

of this thesis considers analyzing network flow data from a security perspective 

to detect botnets in large networks. 

 

Typical botnet behavior includes sudden broadcasting of connections after being 

dormant for some time. This lends itself to detection by considering the number 

of connections from a given source to a destination in a specific time window. 

This way, a sudden increase in connections can be detected as the values in this 

tensor will change drastically in a short period of time. 
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Figure 1.2: Source Traffic Heatmap, Packet Loss 

 

Figure 1.3: Destination Traffic Heatmap, Packet Loss 

 

Figure 1.4: Total Packets Lost for Large Network 
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Figures 1.5 and 1.6 provide heat maps of the number of connections made per 

source and destination during an 11-hour period for a select subset of countries. 

Dark cells indicate few connections while bright cells indicate many connections. 

Figure 1.7 plots the number of known botnet hosts active during the same time 

period. The term “known botnet host” refers to IP addresses labeled as 

compromised in the Zeus [15], Palevo [16], and Feodo [17] botnet databases. As 

seen in the figures, the large increase in botnet activity around 9:00 corresponds 

to the large increase in network activity from Russia to the Netherlands. 

 

In the next two chapters of this thesis, both DenseAlert and RED Alert process 

these two datasets of packet loss and number of connections to attempt to detect 

the performance and security anomalies. These algorithms use completely 

different methodologies and evaluation metrics, providing varying results. Again, 

the primary goal in these detections is the ability to be able to detect the 

anomalous behavior at any level of metadata (country, city, institution, or IP). 

That is, the spikes seen in Figures 1.4 and 1.7 should be detected independent 

of the labels given in the tensor. DenseAlert fails to recognize spikes using IP 

labels, which led to the development of RED Alert, an algorithm that can detect 

anomalous behavior regardless of level of metadata through recursive filtering 

and expansion. 
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Figure 1.5: Source Traffic Heatmap, Number of Connections 

 

Figure 1.6: Destination Traffic Heatmap, Number of Connections 

 

Figure 1.7: Total Number of Botnet Connections for Large Network 
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2. NETWORK ANOMALY DETECTION THROUGH DENSEALERT 

 

One recently developed algorithm that showcases botnet detection in network 

data using tensors is DenseAlert [8]. This algorithm uses the concept of density 

to maintain the densest sub-tensor of a streaming tensor to detect sudden 

changes, reporting them as anomalous. The DenseAlert paper showcases the 

algorithm on a number of anomaly detection uses, including Yelp spam reviews, 

Wikipedia edit wars, and the botnet detection. Thus, it would seem that 

DenseAlert would be a suitable algorithm to use for our analyses of large-scale 

network traffic data. However, some problems arose when using DenseAlert with 

larger tensors. This chapter describes DenseAlert’s algorithm and demonstrates 

the shortcomings of the algorithm for GLORIAD data in the context of the 

performance and security monitoring problems. 

 

 

2.1 DenseAlert Overview 

 

DenseAlert is an algorithm that claims to be “fast and any time,” “provably 

accurate,” and “effective” [8]. This is done through the maintenance of a tensor 

consisting of entries that represent the increment or decrement values in a tensor 

for a given time window. This means that DenseAlert does not actually maintain 

an entire tensor; rather it tracks multi-dimensional streaming data for increments 

or decrements to values in the tensor. The idea is that a sudden change in the 

maintained dense sub-tensor should indicate anomalous activity. This section 

describes this algorithm in detail and provides some analyses of the algorithm. 

Although DenseAlert works for static and streaming data, we focused on the 

streaming implementation of the algorithm due to the use of network flow data. 

 

 

2.1.1 DenseAlert Algorithm 

 

DenseAlert’s main goal is to detect suddenly appearing dense sub-tensors within 

streaming or static tensors, which indicates anomalous activity. This is done by 

projecting a sequence of data streams into a tensor space and performing a 

series of re-orderings and calculations to maintain the densest block. The 

algorithm does not actually calculate the exact densest sub-tensor as that is 
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computationally expensive, taking high powers of polynomial time [18]. Instead, 

the algorithm estimates the densest sub-tensor with provable confidence to quell 

the large polynomial time. 

 

DenseAlert uses a variety of concepts and notations throughout its description of 

the algorithm. The most important component of DenseAlert is their idea of “D-

Ordering.” This idea is what provides significant speedup to DenseAlert 

compared to its competitors. A D-Ordering is obtained by repeatedly re-ordering 

slice indices so that the slice with the minimum sum is chosen first. That is, when 

a slice s is chosen for the D-Ordering, the slice index is added to the D-Ordering, 

and all elements from s are removed from the tensor. The process is then 

repeated until all slices appear in the D-Ordering. The paper claims that using D-

Ordering reduces the search time for finding the densest sub-tensor. 

 

The DenseAlert algorithm works as follows. Every T time ticks, the change for a 

given tensor is calculated by finding the difference between the tensor of the 

previous time window and the current time window. For each value in the tensor 

that changed, DenseAlert performs re-ordering and updating based on whether 

there was an increase or decrease in the value. The first iteration of the algorithm 

compares the current tensor against the zero tensor of the same size, meaning 

the first iteration will always be the case of increment. 

 

In the case of an increment in a tensor value, DenseAlert first finds a region that 

needs to be re-ordered by the definition of D-Ordering. Anything outside of this 

region can be left alone as the paper guarantees that the D-Ordering will be 

maintained after the detected region is updated. Once this region is found, the 

reordering of the calculated region is conducted to maintain the D-Ordering, and 

the slice sum of this region is saved. After the re-ordering, the dense sub-tensor 

needs to be updated. To do this, first the slice sum calculated by the D-Ordering 

is compared to the densest sub-tensor density from the previous tensor. If the 

maximum slice sum is less than the sub-tensor density, the paper proves that the 

densest sub-tensor is guaranteed to not need updating. Otherwise, DenseAlert 

recalculates the dense sub-tensor, updating it if it has changed. After this, 

DenseAlert is done with the re-ordering and updating. However, the algorithm 

then schedules a decrement to this tensor value at the next T time. This is done 

to undo the increment to the value experienced here and return the tensor back 

to its prior state in case of sudden and sharp increases. 
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In the case of a decrement in a tensor value, the algorithm again finds a region 

that needs to be re-ordered and re-orders the region to meet the D-Ordering 

definition. This region is determined in a slightly different fashion than in the case 

of an increment, but the idea is the same – re-order the region so that D-Ordering 

is maintained. Again, after the re-order process is completed, DenseAlert checks 

to see if the densest sub-tensor needs to be updated. Instead of comparing the 

maximum slice sum as done in the case of an increment, DenseAlert checks if 

the decremented tensor value is in the densest sub-tensor. If the value is a part 

of this region, the densest sub-tensor is updated if it has changed. If the tensor 

value is not in the densest sub-tensor, the authors guarantee that the sub-tensor 

would be unaffected and, thus, does not need to be updated. Unlike in the case 

of increment, DenseAlert does not schedule any event in the case of 

decrements. 

 

In both the case of the increment and decrement, the density of the densest sub-

tensor is returned. As seen in the results section, spikes in the density of this 

region typically correspond to anomalies in the data. 

 

 

2.1.2 DenseAlert Analysis 

 

DenseAlert has time complexity O(S + RlogR) plus some relatively small time for 

other operations such as calculating slice sums and searching for slices. In this, 

S is the number of slices in the tensor, and R is the number of slices in the re-

ordered region. The O(S) time is due to the search for slices forming the dense 

sub-tensor, and the O(RlogR) time is from the re-ordering of the tensor to meet 

the requirements of D-Ordering. DenseAlert uses a Fibonnaci heap to search for 

the minimum slices in the re-ordering leading to this linear logarithmic time 

complexity. Otherwise, the search would be exponential as the search space 

requires updating as each slice is re-ordered. Through plots shown in the 

DenseAlert paper, the algorithm is unarguably much faster than its competitors. 

 

The algorithm described previously is a summary of DenseAlert, and the inner 

workings of the algorithm are complicated and require a detailed code base. 

Their tensor implementation alone consists of over 600 lines of code, and the 

actual DenseAlert algorithm requires over 1700 lines of code. The code uses 

sparse tensor implementations to lead to a small space complexity that is linearly 

proportional to the number of non-zero values stored in the tensor. That is, for N 
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non-zero values in the tensor, the space complexity is O(N). This makes 

understanding and porting the algorithm to other frameworks cumbersome for 

those who cannot work in the Java framework provided by the authors and do 

not have the resources to create such a detailed code base for their own 

implementation. Without a dedicated code base, implementing re-orders and 

searching of large multi-dimensional objects is costly. 

 

The paper showcases DenseAlert on a variety of datasets. These datasets 

include Yelp, Android, and Yahoo reviews for detecting fake reviews, Wikipedia 

edit history for detecting edit wars, bots or vandals, and social networks for spam 

detection. The paper also shows successful detection of botnets in TCP dump 

data where the dimensions were source IP × destination IP × timestamp, with 

values within the tensor being the number of connections. This would indicate 

that DenseAlert would be a suitable algorithm to use for our network data. In the 

next section, some shortcomings of DenseAlert are shown in the context of 

network data. 

 

 

2.2 DenseAlert Results 

 

In network anomaly detection, it is important to discover the root cause of the 

anomaly. Network operators rely on detailed information properly diagnose and 

solve the root cause of an issue. Since flow data has varying levels of granularity, 

it is important to be able to determine the cause of anomalies regardless of the 

level of network data being observed. For example, a time of large network 

performance issues should be able to be determined from a coarse perspective 

of country to country traffic and at a fine perspective of host IP to host IP traffic. 

This way, a network operator can understand if an issue is widespread across a 

region or fault for a specific IP. The DenseAlert algorithm is stated to work for 

large datasets, but in some cases DenseAlert fails to detect any anomalies and 

returns unhelpful and noisy results. This section shows the results of DenseAlert 

when attempting to process datasets of varying sizes, demonstrating some 

potential issues when using DenseAlert. To do this, minor modifications were 

made to the DenseAlert example code (https://github.com/kijungs/densealert) in 

order to work with our data. In both examples, a time window of 1 minute was 

used. 

 

 

https://github.com/kijungs/densealert
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2.2.1 Packet Loss Detection 

 

Although DenseAlert’s network monitoring example focused on botnet detection, 

the algorithm could be used on any type of positive-valued data. Since number of 

packets lost consists of positive values, DenseAlert should be able to detect 

sudden increases packets lost. The GLORIAD data was aggregated into a CSV 

file representing a tensor to be read by DenseAlert. The tensor itself consisted of 

dimensions source information × destination information × time (in second 

increments) where the source information and destination information varied in 

granularity level (country, city, institution, or IP). The values within the tensor 

were the number of packets lost for that connection, summed by seconds. 

DenseAlert was run on tensors from the four different granularity levels to see if it 

could detect the large increase in packet loss regardless of tensor size and 

labels. 

 

With reference to Figures 2.1 – 2.4, DenseAlert is able to detect the major spike 

in packet loss around 14:45, but as the granularity levels become finer, the 

reported densities slowly begin to have more variation until the algorithm 

completely fails at the IP granularity level. The country level detection (Figure 

2.1) provides the most descriptive results where the large spike is clearly defined 

with relatively consistent densities otherwise. At the city level (Figure 2.2), the 

large spike is still seen, but the algorithm reports more variation in the densities, 

notably between 10:30 and 12:30 as well as 15:00 to 17:00. This seems to 

indicate anomalous activity with the sudden and frequent changes in the 

densities, but according to the ground truth, the number of packets lost at this 

time is rather constant. A similar variation in the densities can be seen at the city 

level (Figure 2.3). Finally, at the IP level (Figure 2.4), the algorithm falls apart and 

reports noisy densities that provide absolutely no correlation to the data. The 

densities at this level are also about 5 magnitudes smaller than the densities 

reported at the country, city, and institution levels. If kept plotting using the same 

y-axis scale as the first 3 plots, the densities in Figure 2.4 would be unnoticeable 

due to the size of their magnitudes. 
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Figure 2.1: DenseAlert Packet Loss, Country Data 

 

Figure 2.2: DenseAlert Packet Loss, City Data 

 

Figure 2.3: DenseAlert, Packet Loss, Institution Data 
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Figure 2.4: DenseAlert Packet Loss, IP Data 

 

2.2.2 Botnet Detection 

 

In its debut paper, DenseAlert is showcased on a botnet detection example. As 

proposed in the paper, a CSV file containing number of connections in GLORIAD 

was aggregated and processed by DenseAlert for detection of increases in 

botnet activity. With reference to Figures 2.5 – 2.8, DenseAlert is again able to 

detect the botnet activity at the country, city, and institution granularity levels, but 

fails at the IP granularity level. As seen in the packet loss example, the decline in 

performance is gradual through the increasing granularity levels. The densities 

once again slowly become noisier in each subsequent level until nothing useful is 

returned at the IP granularity level. DenseAlert also only detects the major spike 

seen around 9:00 but misses the two spikes seen around 13:00 and 15:00. 

 

Nothing in the DenseAlert paper points to why the algorithm would fail on the IP 

level dataset in both cases. The IP level dataset consists of 4.7 million non-zero 

entries for the packet loss example and 7.4 million non-zero entries for the botnet 

example. The DenseAlert paper shows results from datasets containing up to 

82.8 million non-zero entries. Similarly, the dimensionalities of the datasets are of 

sizes DenseAlert should be able to handle. It seems that the size of these 

datasets leads to the algorithm’s failures. Since DenseAlert works on the smaller 

datasets of lower granularity and slowly performs worse as the datasets become 

larger and finer, the most reasonable explanation for the decline in performance 

would be the increases in granularity. 
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Figure 2.5: DenseAlert Botnet, Country Data 

 

Figure 2.6: DenseAlert Botnet, City Data 

 

Figure 2.7: DenseAlert Botnet, Institution Data 
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Figure 2.8: DenseAlert Botnet, IP Data 
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3. REDALERT: RECURSIVE EVENT DETECTION 

 

As seen in the previous chapter, DenseAlert fails to recognize anomalous activity 

for large datasets using IP address labels. Because of this, we created an 

algorithm called RED Alert to attempt to improve on the shortcomings of 

DenseAlert. RED (Recursive Event Detection) Alert uses recursive tensor 

expansion and exploration to detect and classify anomalous network behavior. 

The algorithm tracks anomalies detected at a high granularity level down to the 

lowest granularity level, discarding unimportant data. This chapter introduces 

RED Alert’s main algorithm, analyses of the time and space effects of the 

algorithm, and some case studies used to showcase RED Alert. 

 

 

3.1 Algorithm Overview and Analysis 

 

RED Alert finds the most changed slice in a sub-tensor by the total change or 

energy measures outlined previously. The algorithm works recursively in that 

when high change spikes are detected, the algorithm finds the most changed 

slice in the next finer level of granularity after filtering the data. This section 

explains the primary steps of RED Alert as well as some analyses of the 

algorithm’s runtime and space complexity. 

 

 

3.1.1 Granularity and Filtering 

 

For the source and destination parameters, different levels of granularity are 

used to explore the root cause of density spikes. Granularity organizes different 

levels of metadata in a hierarchical fashion. In our implementation, the lowest 

granularity level is the host country with a maximum of about 200 fields. The next 

two levels of granularity are city and institution, respectively with about 10,000 

and 35,000 fields. Institution is considered a finer granularity than city since 

multiple institutions may exist in one city. The finest granularity is the host IP 

addresses, having a magnitude of over 100 million fields in hours of data. Figure 

3.1 shows the four granularity levels used in RED Alert. Additionally, the 

granularities outlined are not finite. More levels could potentially be included if the 

labels exist in a dataset. The labels obtained for country, city and institution were 
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gathered using online databases that map IP addresses to these fields. Fields 

such as port number that can be included in the tensor data do not undergo the 

recursive filtering as no varying levels of metadata exists for these types of fields. 

 

To separate fields with the same name (i.e. same city name, different country, or 

same institution, different location), field names are appended together to as the 

granularity levels become finer. For example, a city is labeled as “country.city”, 

and an institution is labeled as “country.city.institution.” This avoids any labeling 

different places with the same name at a level as the same label. IP address 

labels are solely the IP address since only one instance of an IP address can 

exist. 

 

A coarse granularity tensor is, by nature, small. Finding the densest sub-tensor 

slice(s) therefore takes relatively little time. In an attempt to keep the search time 

low in the finer granularity tensors, the data is filtered prior to being expanded. 

Filtering consists of discarding all but the densest sub-tensor slice(s) from further 

consideration. 

 

 

 

 

 

 

 

 

Figure 3.1: Default Granularity Levels 
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3.1.2 RED Alert Algorithm 

 

Rather than building a detailed tensor model for the data at the fine granularity 

level ultimately of interest, RED Alert initially models the data at a coarse 

granularity level, moving to finer granularity spaces as needed. The RED Alert 

algorithm works as follows. With reference to Figure 3.2, every N time ticks, a 

tensor is created by aggregating the network flow data captured during that time 

period. This tensor is created for the coarsest granularity level of country. Then, 

the tensor is compared against the tensor for the previous time period. That is, 

the difference between the two tensors is computed and passed to the function 

described in Figure 3.3 that finds and returns a list of (mode, index)-pairs 

identifying the slices that have a total change value approximately as much as 

the most changed slice. The search is based on change magnitudes to allow 

negative change values, which correspond to decreases in network activity, to be 

detected on par with positive change values, which correspond to increases in 

network activity. 

 

If the change magnitude exceeds a user-defined threshold, then a recursive 

search is carried out, during which copies of the original tensors and extracted 

sub-tensors are filtered and expanded as described in the previous section. 

Again, (mode, index)-pairs that do not exceed the threshold are ignored whereas 

the (mode, index)-pairs returned are expanded to consider the next level of 

granularity. For example, if the maximum (mode, index)-pairs returned were 

(source country, United States) and (destination country, Canada), then the 

tensor of the next granularity would be one of city to city traffic consisting only of 

data from the United States to Canada. 

 

Thresholds vary based on granularity, so that false alarms can be canceled at a 

finer granularity. That is, as each maximum change value is calculated, it is 

compared against the threshold at the given granularity level to see if the filtering 

and expansion should continue or be terminated. When the recursive search 

reaches the final level and terminates, an alarm is raised an information is shared 

with the user about the event. A modified version of RED Alert might use the sign 

of the maximum to raise alarms on positive values and clear alarms on negative 

values when the traffic returns to normal. 
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Figure 3.2: RED Alert Algorithm 

 

Figure 3.3: Finding Maximum Change 
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RED Alert differs significantly from DenseAlert. RED Alert finds the tensor slice 

for which the change is the greatest. DenseAlert, on the other hand, maintains 

and detects suddenly emerging dense sub-tensors using sophisticated re-

ordering techniques. RED Alert can handle positive and negative valued data. 

DenseAlert requires that the data be positive valued. RED Alert only expands the 

data to the finest granularity level when need be. DenseAlert stores data and 

carries out all analysis at the finest granularity level which involves large tensors. 

 

 

3.1.3 Time and Space Complexity 

 

RED Alert with no optimizations is able to run and process data in real-time. This 

section provides time and space analyses of RED Alert for each of the major 

components of the algorithm. 

 

Tensor Creation: Creating a tensor takes O(N) time for N non-zero entries in the 

tensor. This creation is independent of dimensionality used since each non-zero 

value will need to be processed regardless of the dimensionality. Likewise, 

tensor creation cannot be sped up since the values again must all be processed 

and assigned an index. The tensor creation process will be explained more 

deeply in the next chapter in the context of InSight2. 

 

Computing Total Change and Energy: For N non-zero entries in a tensor, 

computing the total change and energy for the tensor takes O(N) time. This is 

because each of the N non-zero entries must be subtracted (in the case of total 

change) and additionally squared and summed (in the case the of energy). 

Unfortunately, there are no speed-ups to make multi-dimensional 

addition/subtraction quicker. 

 

Finding Max Anomalous Slice: Finding the maximum change or energy for a 

tensor takes O(S) time for S total slices in a tensor, 𝑆 = ∑ 𝑑𝑑 ∈𝐷 , where D is the 

dimensionality of the tensor. For example, for a tensor with dimensions a × b × c, 

S = a + b + c. This process cannot be sped up since finding the maximum value 

in a list of values always takes linear time for an unsorted list. Sorting the list of 

changes and then finding the maximum change would take O(SlogS) time, longer 

than the original linear time. 
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The overall time complexity of RED Alert is O(N + S) since for each iteration of 

the algorithm, the N non-zero value differences must first be accumulated and 

calculated, O(N) time. This is followed by the detection of maximum slice, taking 

O(S) time. RED Alert runs in strictly linear time, and DenseAlert runs in log-linear 

time. However, DenseAlert’s leading big-O coefficient, RlogR, is much smaller 

than N + S. R, the re-order region, consists of a subset of S and guaranteed to 

be much smaller than S. In turn, S is a subset of N, and guaranteed to be much 

smaller than N. Because of this, RED Alert’s linear time complexity is a bit 

misleading when compared to DenseAlert. The latter algorithm is in fact faster 

since it only ever considers a subset of the entire tensor. 

 

RED Alert Space Complexity:  If stored directly without any improvements, 

storage of a tensor takes a maximum of O(M) for 𝑀 = ∏ 𝑑𝑑 ∈𝐷 , where D is the 

dimensionality of the tensor. This product can be exponentially large as the 

dimensionality increases. The tensors typically used are sparse, so sparse tensor 

representations are often useful to reduce the space complexity. RED Alert uses 

a sparse tensor representation called COO format, discussed in detail in the next 

chapter. For N non-zero entries and d dimensions, sparse tensor storage in COO 

format only requires O(N + Nd) space. This is because in COO format, only a list 

of the N non-zero values and a list of each non-zero value’s index (Nd total 

space) is stored. This has a tradeoff of increasing time complexity of accessing 

each slice as the index list must be searched to find all entries in a specific slice. 

That is, to find all elements in slice S of the tensor, it takes O(Nd) time to locate 

all values for that slice since the entire index list must be searched. Although this 

may seem long, the sizes of tensors used in RED Alert are large and sparse, so 

sparse tensor representations are needed. Thus, the increased time complexity 

is necessary to be able to hold the data in memory. 

 

Other than tensors, RED Alert uses constant memory to store temporary 

variables and constants. From this, the overall space complexity of RED Alert 

(assuming sparse tensor storage) is O(N + Nd), which is equivalent to O(N). RED 

Alert and DenseAlert have the same space complexity through the use of sparse 

tensor implementations in both algorithms. 
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3.2 RED Alert Results 

 
RED Alert is able to detect and identify anomalous behavior from both a security 

and network performance standpoint. The results of these detections are shown 

in this section using both total change and energy. This section also explores the 

parameters of RED Alert, time window and threshold values, and provides a look 

at the robustness of the algorithm in terms of processing for long periods of time.  

 

 

3.2.1 Packet Loss Detection 

 
As done in the DenseAlert example, a tensor consisting of packet loss values 

between a source and destination at a given time (3-mode tensor) was used for 

the packet loss detection through RED Alert. Again, a time window of 1 minute 

was used, so each minute, the streaming tensor was aggregated and compared 

to the tensor corresponding to the previous minute. The results of running RED 

Alert can be seen in Figures 3.4 – 3.7 in order to attempt the packet loss 

detection from Figure 1.4 

 

RED Alert uses its recursive filtering and expansion to detect a spike in packet 

loss at the country granularity level and trace it down all the way to the IP 

granularity level. Looking at Figure 3.4, the major spike around 14:30 is visible 

among other noise in the data. Using a threshold of 3000 at this level, 111 events 

were detected (shown through the red X’s in the figure). These 111 events were 

then expanded to focus on city to city traffic, shown in Figure 3.5. Once again, 

the major spike was detected and alerted on, along with 29 other events, at the 

city granularity level using a threshold of 3500. This removed 81 insignificant 

events that were triggered at the country granularity level, saving computational 

time. Then at the institution granularity level, only 7 events were alerted with a 

threshold of 4000 as seen in Figure 3.6. Finally, only 5 events were alerted at the 

IP granularity from a threshold of 5000, shown in Figure 3.7. These events 

corresponded to the major spike in packet loss seen in Figure 1.4, shown 

through the green circle in Figure 3.7. At this level, the algorithm reported the IP 

addresses experiencing the extreme packet loss. In this case, a destination IP 

identified was one losing 40% of its packets through over 1000 connections in 

the time window. This indicates potential performance issues that warrants 

investigation. 
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Figure 3.4: RED Alert Packet Loss, Country Granularity 

 

Figure 3.5: RED Alert Packet Loss, City Granularity 

 

Figure 3.6: RED Alert Packet Loss, Institution Granularity 
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Figure 3.7: RED Alert Packet Loss, IP Granularity 

 

3.2.2 Botnet Detection 

 

Again, RED Alert ran through the same tensor passed to DenseAlert in its botnet 

detection. This consisted of a time × source × destination tensor with number of 

connections as its value. As shown in Figures 3.8 – 3.11, RED Alert is able to 

detect periods of high botnet activity at the country, city, institution, and IP 

granularity levels. At each transition to a finer level, uninteresting data is removed 

by the filtering process. 130 events were identified as being of interest at the 

country level (threshold of 1000), followed by 46 events at the city level 

(threshold of 1500), and 6 events at the institution level (threshold of 2000). 

Ultimately, 5 events resulted in alerts at the IP level (threshold of 2500). Any 

change value greater than 2500 at the IP granularity was alerted.  

 

The alerts at the IP granularity level correspond to the increases in botnet activity 

seen in Figure 1.6. RED Alert identified the host responsible for the major spike 

seen around 9:00 in Figure 1.6. The detected IP address, which indeed was 

labeled as a botnet, went from no requests at 9:06 to over 5,000 requests at 

9:07. Additionally, the IP identified at the spike around 15:00 was a group of 

botnets that increased activity from 0 requests at 14:59 to over 3,000 requests at 

15:00. RED Alert was able to detect these events at the country granularity level 

and successfully track them to the offending hosts at the IP granularity level. The 

spike at 10:00 was traced down to the final granularity level, but was not alerted 

as it did exceed the threshold. 
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Figure 3.8: RED Alert Botnet, Country Granularity 

 

Figure 3.9: RED Alert Botnet, City Granularity 

 

Figure 3.10: RED Alert Botnet, Institution Granularity 
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Figure 3.11: RED Alert Botnet, IP Granularity 

 

3.2.3 Choosing Threshold Values 

 
In both the botnet detection and packet loss examples, a periodic noise can be 

seen in the data with a total change value around 1000 for the botnet example 

and 3000 for the packet loss example. This noise represents the normal “hum” of 

the network traffic from users connecting and disconnecting, or the change in 

packet loss in the network for each time window. Thus, it is important that the first 

threshold for spawning the recursive search of RED Alert is at least this normal 

“hum” value (leading to the initial thresholds of 1000 and 3000 in our results). 

This way, any activity that is outside of this range would be explored through the 

remaining steps of RED Alert. The other threshold values should scale according 

to the user’s desires. It is up to the user to determine which threshold values 

provide the most meaning in the context of their network, so some trial and error 

with the threshold values is necessary to properly utilize RED Alert.  

 

As seen in the botnet example in Figure 3.11, three events were not alerted at 

the final granularity level. This was due to the threshold chosen. If the threshold 

was lowered at a coarser granularity, the events would have been tracked down 

to the IP granularity level and alerted on. However, the threshold was set to 

detect the larger spikes at 9:00 and 15:00 and thus did not consider the other 

anomalous events at 12:15, 13:15, and 16:00. 

 
 



 

31 
 

3.2.4 Effects of Time Window 

 

As is important with any machine learning algorithm, finding the best value for 

parameters is key to an algorithm’s success. RED Alert has two main types of 

parameters, the time window and the thresholds. As just described, the 

thresholds are more of a user-configurable parameter for what is being detected. 

On the other hand, the time window could have drastic results on the detection in 

the algorithm. Too small of a time window could cause a large amount of noise 

being detected in the data whereas too large of a time window could lead to 

events being undetected when they are washed out by other noise. 

 

RED Alert was run using varying time windows for the detections shown 

previously, focusing on the effects of the country level detection as it is what 

ultimately leads to the recursive event detection. As shown earlier, a time window 

of 1-minute provided meaningful and conclusive results. At the 10-second time 

window seen in Figures 3.12 and 3.14, the data is noisy, but still detects the 

spikes in packet loss for the network and the spikes in botnet activity. From a 

data analytics perspective, this time window performs well, but is a bit more 

visually unpleasing than the 1-minute time window. The periodic noise seen here 

is a bit more noticeable than in the 1-minute time window. 

 

When using a 5-minute, shown in Figures 3.13 and 3.15, the plots fail to indicate 

some activity that was evident in the 1-minute and 10-second time windows. For 

example, in Figure 3.15, anomalous activity from 15:00 to 16:00 is washed out 

when using the 5-minute window, but not in the 1-minute and 10-second 

windows. This is because when looking at the larger time window of 5-minutes, 

the change may not be as drastic since more values are being aggregated even 

though the same slice may be detected as the most changed. For example, in 

the botnet detection, Russia was alerted as the most changed slice at the country 

level at 15:00. However, in the 5-minute time window, Russia increased from 

23,400 requests at 14:55 to 24,700 at 15:00. Even though this was the most 

changed slice, the total change is only 1300, much lower than the orders of 

10,000 typically calculated for the total change for this time-window. At the 1-

minute scale, Russia increased from 2500 requests at 14:59 to 10,000 requests 

at 15:00. This caused the total change value to be about 7500 and noticeable in 

the 1-minute plots. Although the label of the most changed slice does not tend to 

change between different time windows, the value calculated for larger time 

windows may not be as meaningful when plotted. 
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Figure 3.12: 10-second Time Window, Packet Loss Detection 

 

Figure 3.13: 5-minute Time Window, Packet Loss Detection 

 

Figure 3.14: 10-second Time Window, Botnet Detection 
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Figure 3.15: 5-minute Time Window, Botnet Detection 

 
Another key importance about selecting the time window is the effect on 

computation time. With an increase in the time window, tensors will be larger due 

to the increase in the number of data points. Since RED Alert processing time 

scales linearly with respect to the number of non-zero values, an increase in data 

size leads to an increase in the execution time of the program. For example, for 

the packet loss detection, RED Alert takes about 50 minutes total for the 10-

second time window, about 56 minutes for the 1-minute time window, and about 

74 minutes for the 5-minute time window. Likewise, RED Alert takes about 36 

minutes total for the 10-second time window, 37 minutes for the 1-minute time 

window, and about 57 minutes for the 5-minute time window in the botnet 

detection. Thus, there is a tradeoff with selecting the appropriate time window 

that works well for the data and also does not cause tremendous increases in 

execution time. 

 
 

3.2.5 Robustness 

 

To test the robustness of RED Alert, RED Alert was run on a month of data to 

see if the algorithm could handle long stretches of time without crashing and still 

properly filter out uninteresting data. 
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RED Alert ran through this month of data for both the packet loss example and 

botnet detection example. The dataset consisted of a total of over 590 million 

records. In the packet loss example, thresholds of 3000, 3500, 4000 and 5000 

respectively for each of the granularity levels were used again as they provided 

conclusive results in the previous example. From this, a total of 6371 events was 

alerted at the country level, 980 events at the city level, 276 events at the 

institution level, and finally, 229 events were deemed anomalous at the IP 

granularity level.  

 

For the botnet example, the same thresholds were used of 1000, 1500, 2000 and 

2500. This led to of 13,500 events alerted at the country level, 293 events at the 

city level, 179 events at the institution level, and 173 events at the IP granularity 

level. Processing this month of data took about 3600 minutes (2.5 days) for the 

packet loss example and 4900 minutes (3.5 days) minutes for the botnet 

detection example. This shows that RED Alert is able to keep up with large 

amounts of data in “faster than real-time” allowing for quick response when used 

on real-time network data. 

 

One potential limitation to using these constant thresholds is the changes in 

network behavior through days of the week. Network traffic on a weekend is 

much less active than network traffic on a weekday, so it would make sense to 

have varying threshold levels based on the day of the week and time of the year 

to provide more accurate detection. Some events on a weekend may be 

considered anomalous, but lower than the thresholds used for weekdays. This 

would cause some events to go unnoticed. However, using time-varying 

thresholding requires extensive understanding of the network behavior through a 

large amount of statistic collections and analysis. 

 

 

3.2.6 Using Energy as Criteria 

 

Total change was one evaluation criteria explored for detection through RED 

Alert. Another value RED Alert used was the energy metric explained in the 

introduction. For this, slices with the most energy were detected and alerted in 

the algorithm using thresholds based on slice energy. With respect to the RED 

Alert algorithm shown in Figures 3.2 and 3.3, nothing in regards to the 

algorithm’s process change besides calculating the energy of each slice rather 

than the total change. The algorithm merely detects the slice with the most 
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energy, alerting on energy-defined thresholds. Since values are squared in the 

energy calculations, larger values for thresholds are necessary. 

For the packet loss example shown in Figures 3.16 - 3.19, using energy as the 

threshold criteria led to conclusive results. From Figure 3.16 at the country 

granularity level, an energy threshold of 1,000,000 led to 130 events being 

detected. At the city granularity in Figure 3.17, a threshold of 20,000,000 led to 8 

events being detected. Then using a threshold of 40,000,000 at the institution 

granularity level led to 6 events continuing on to the IP granularity level (Figure 

3.18). Finally, as displayed in Figure 3.19, a threshold of 160,000,000 led to 5 

events being alerted as anomalous at the IP granularity level. RED Alert still 

alerted with the IP addresses leading to the events detected at this level. These 

final 5 alerts corresponded to the same IP addresses as the ones alerted in the 

total change example discussed previously. 

 

With reference to the plots in Figures 3.20 – 3.23, RED Alert was also successful 

in its detection of botnets using the energy criteria. The threshold values used 

here were much smaller than the ones in the packet loss example, but still larger 

than the thresholds from the total change example. For the country granularity 

level in Figure 3.20, a threshold of 150,000 resulted in 76 events detected. These 

events were filtered down to 26 events at the city granularity level from a 

threshold of 600,000, shown in Figure 3.21. At the institution level, a much larger 

threshold of 3,500,000 was needed to filter these events to the 7 events seen in 

Figure 3.22. Finally, in Figure 3.23, a threshold of 9,700,000 was used to alert on 

6 IP addresses. 5 of the IP addresses alerted at the final level corresponded to 

the same IP addresses detected from total change. The sixth IP address 

corresponds to the event that was detected around 16:20 that was overlooked 

when using total change. This is because energy is an L2-norm, so the change 

values will increase more drastically and can be detected with lower thresholds. 

The lack of detection for the botnet at event at 12:15 is due to a botnet that was 

already active becoming more active, and the event at 13:15 is undetected due 

to a botnet becoming gradually more active over time. RED Alert is only sensitive 

to sudden changes in the network as opposed to gradual changes. 

 

Using energy takes slightly more time than using total change due to the extra 

calculations in calculating and squaring the norm of the slices. RED Alert took 

about 56 minutes for the packet loss example using total change and 60 minutes 

using energy. Similarly, using total change took 37 minutes for the botnet 

detection, but total energy took 46 minutes. These differences become starker 

when used on longer periods of time and larger networks. 
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Figure 3.16: RED Alert Packet Loss using Energy, IP Granularity 

 

Figure 3.17: RED Alert Packet Loss using Energy, City Granularity 

 

Figure 3.18: RED Alert Packet Loss using Energy, Institution Granularity 



 

37 
 

 

Figure 3.19: RED Alert Packet Loss using Energy, IP Granularity 

 

Figure 3.20: RED Alert Botnet using Energy, Country Granularity 

 

Figure 3.21: RED Alert Botnet using Energy, City Granularity 
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Figure 3.22: RED Alert Botnet using Energy, Institution Granularity 

 

Figure 3.23: RED Alert Botnet using Energy, IP Granularity 
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4. MODELING RESULTS WITH INSIGHT2 

 

InSight2 is a network monitoring system developed at the University of 

Tennessee to provide a platform for data analytics and visualization of large-

scale network data. In this chapter, the history, motivation and current 

architecture of InSight2 is outlined as well as how RED Alert interacts with the 

platform. 

 

 

4.1 History and Motivation of InSight2 

 

InSight2 serves as a continuation of the GLORIAD InSight project developed in 

2013. InSight solely monitored the GLORIAD research and education network 

described below, but InSight2 serves as a generic, open framework capable of 

providing analytics for any network. This section explains the transition from 

InSight to InSight2. 

 

 

4.1.1 GLORIAD and InSight 

 

Due to the sheer size of GLORIAD and the data associated with it, InSight was 

created in 2013 as a network monitoring tool to ensure high performance and 

security in the international network [19]. Its focus was to provide in-depth 

analyses on network flow data such as jitter, packet loss, and various security 

measurements. 

 

However, in 2014, GLORIAD ended and with it came the termination of InSight. 

InSight’s dependencies changed and updated after InSight’s termination causing 

it to be useless. Updating the original code base of InSight seemed to be near 

impossible due to the complex components with little documentation and no 

modularity. Additionally, it was unclear as to what types of database backends 

were used to host the GLORIAD data for display. For these reasons, 

modernizing InSight would require much more work than anticipated. From NSF 

sponsorship under the project “The InSight Advanced Performance 

Measurement System” with sponsorship from IRNC-AMI (International Research 

Network Connections - Advanced Measurement Network Infrastructure) program, 
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development for a completely new InSight platform (aptly named InSight2) 

began. 

 

 

4.1.2 From InSight to InSight2 

 

InSight2 is a complete redesign from the original InSight framework [1]. InSight2 

strived to have the modularity and cohesiveness that InSight lacked in a modern 

framework with less moving parts. The goals of InSight2 remained the same as 

those of InSight – providing a large-scale network visualization tool that allows for 

network operators to quickly determine the health of their system. Moreover, 

InSight2 was developed with extendibility in mind so that users can define their 

own dashboard interfaces and provide their own data to be used with the tool. All 

tools and databases used in the framework are free or open-source so that 

InSight2 can be shared with anyone without licensing issues. 

 

InSight2 consisted of some notable changes from the original InSight. The first 

change was to use a Python code base rather than Perl. Python is a very robust 

and user-friendly language that would easily allow for extensions to the platform 

without rewrites in the code base. Although Python is a scripting language, it 

contains object-oriented design mechanisms that allow for modularity in software 

design. Moreover, InSight2 used Elasticsearch [20] as the sole data storage 

database. Python has libraries that interact directly with Elasticsearch databases 

(elasticsearch-py and elasticsearch-dsl-py) allowing for quick and easy upload 

and retrieval of data stored in the database. Another useful component of having 

Elasticsearch access is the ability to create visualizations of the data within the 

same framework with Kibana. Kibana users can access the various indices within 

Elasticsearch and create a variety of different visualizations of the data. 

Examples of highly used visualizations are area plots, line plots, heat maps, and 

bar graphs among many others. Kibana also has the ability to aggregate multiple 

visualizations together to create dashboards. Using these Kibana dashboards 

and an HTML frontend, the InSight2 visualization platform can be seen anywhere 

from the web. This differs from the original InSight in that multiple different 

database types (MySQL, SQLite, and Elasticsearch) were aggregated with a 

customized Kibana front-end for display. The InSight2 method is much more 

compartmentalized with only the Elasticsearch and Kibana interaction. 
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Some components from InSight stayed the same due to their performance. Argus 

was kept as the network flow aggregating tool since it is versatile and fast, 

supporting the collection of up to 127 different fields for each flow. Currently, 

work is underway to support other network flow aggregators such as NetFlow. 

Additionally, the majority of the dashboards were kept the same since the 

dashboards used in InSight provided meaningful displays in regards to the health 

of the network. In the next section, the changes made are described in detail. 

 

 

4.2 Architecture Overview 

 

The InSight2 architecture was developed with simplicity and modularity in mind 

[21]. Each component of the design is independently developed and maintained 

so that add-ons and changes can be made to the design without disrupting the 

flow of InSight2. These modules work synchronously together to provide a better 

user experience as well as having more efficient disk usage. The main modules 

are the Enrichment Module (EM), Updater Module (UM), Summarizer Module 

(SM), and user-defined plug-ins. These modules are described below as well as 

how they work together in the InSight2 framework. 

 

 

4.2.1 Enrichment Module 

 

The Enrichment Module (EM) serves as the core component in InSight2. Its 

purpose is to collect the output from the Argus flow data and provide further 

metadata from other database sources. The EM then uploads the aggregated 

data to the Elasticsearch database. The EM works both for archived flow data, 

such as the GLORIAD data, or can be used on live streaming data. The 

database sources used to provide further metadata are described below. The 

Global Science Registry and MaxMind GeoIP databases are the ones used for 

RED Alert’s granularity levels. 

 

Global Science Registry (GSR): The Global Science Registry is a SQL 

database from the original InSight that is uploaded to Elasticsearch. The GSR is 

composed of tags for over 14,000 different institutions that used GLORIAD. For 

InSight2, GSR is used to collect information about each unique IP address’s 

domain name server (DNS) information, the labels for each IP node, the IP 
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name, the address to domain ID matching, location information, autonomous 

system (AS) numbers, the IP address’s ISP name, and the organization the IP 

belongs to. Since this database is so large, it is stored in its own index in the 

Elasticsearch database to provide quick access and searching. 

 

MaxMind GeoIP: MaxMind’s GeoIP database contains information about IP 

address locations. The location data varies in granularity level including 

information about the IP’s city, province, zip code, country, latitude and longitude. 

Using the Python module pygeoip, IP addresses are quickly tagged with the 

appropriate geolocation data. The GeoIP database is stored on disk since it is 

implemented using the Python library. 

 

Threats Databases (TD): Various online databases listing malicious IP 

addresses are aggregated into the Threats Database (TD) upon InSight2’s 

creation to tag potential suspicious activity in the network. The TD contains 

information on emerging threats, CYMRU Bogons, and IP addresses belonging 

to the Zeus, Feodo, Palevo, and Spyeye botnets. Using the Updater Module 

described in the next section, these threat databases are guaranteed to be up-to-

date and contain the most recent lists of malicious IP addresses. This database 

is also stored in Elasticsearch to provide quick searching and tagging of 

malicious IP addresses. 

 

The EM is parallelized to provide quick collection and upload of flow data by 

distributing the enrichment across all available cores. This is done by using 

Python’s multiprocessing library and splitting the data into chunks to be 

processed and uploaded individually by each core. Each core has its own thread 

from the main program with each thread processing one flow record at a time. 

Race conditions are avoided using the multiprocessing Manager class in Python 

that provides shared data types across threads. This ensures that two threads do 

not try to index to the same point in Elasticsearch and cause overwrites. 

Moreover, these threads are lightweight, containing only the necessary values 

needed for enrichment – the data to be enriched, access to the Elasticsearch 

database, access to the enrichment databases, and other small data types such 

as verbose flags and file names. 

 

The EM works as follows. The first step in the enrichment is to spawn off the 

Argus client. Using the subprocess Python module, an Argus thread is started to 

pipe flow data into the EM. If archived data is used, the data is broken up into 

smaller sets so that the Argus call does not hold up the enrichment. If live data is 
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used, the output buffer from Argus is read every few seconds to gather any new 

flow data that has appeared. The flow data typically amounts to a large quantity 

of records since the records are stored by milliseconds. When the Argus call 

finishes (or when the live stream buffer is read), the resulting flow data is 

chunked into smaller pieces to begin the parallelized parsing of the flow data for 

further enrichment. This parsing works by accessing the various fields returned 

by Argus and adding them to a Python dictionary for temporary storage. Checks 

are made to ensure that no data fields are left empty or of the wrong data type. If 

a field is left empty, a default value is used. Using the source and destination IP 

address fields, information from the previously mentioned databases are 

aggregated as well and added to the dictionary. Once all fields have been added 

to the dictionary, it is converted to a JSON object for upload to the Elasticsearch 

database within the appropriate index. Once a thread finishes parsing and 

uploading its data, it joins back to the main thread and is given a new set of data 

to parse.  

 

 

4.2.2 Updater and Summarizer Modules 

 

The EM is useful for uploading the data to the Elasticsearch database, but it is 

important to ensure that the data in the database is up to date and aggregable. 

This is the motivation for the Updater Module (UM) and Summarizer Module 

(SM). The UM is used to periodically check for updates in the databases used in 

the EM to see if any new information is available. The SM is able to “summarize” 

data in longer time periods than the millisecond granularity used in the EM. Both 

of these modules are described in this section. 

 

Updater Module: The UM ensures up-to-date enrichment databases by polling 

the sources of each database periodically. If a database changed in the past time 

period, the UM deletes the old database from Elasticsearch and uploads the 

more modern one in its place. The UM is run as a background daemon with 

logging capabilities to log changes to the databases and alert the user if 

problems with the module arise. This time period is configurable by the user, and 

each database can be individually configured to be checked at different time 

intervals. Examples of information updated through the UM include newly 

discovered botnet IP addresses and organizational labels for IP addresses. 
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Summarizer Module: From the EM, data is collected at the time granularity of 

milliseconds. In some instances, this granularity is too fine for network operators. 

The SM is designed to fix this issue by summarizing numerical data in larger time 

windows such as minute-to-minute scale. The SM summarizes data in the 

following ways. Source and destination IP addresses are summarized by using 

least specific subnet prefixes. Number of bytes and packet counts are individually 

summed. Jitter and inter-packet arrival times are individually averaged per time 

window. This allows for a quick snapshot of what the network traffic looks like at 

a specific time without using the large data at such a fine granularity. 

 

 

4.2.3 Plug-ins 

 

The dashboards generated by InSight2 only provide information about the raw 

data collected in the EM. For proper data analysis, intelligent algorithms are 

useful to provide further insight as to underlying trends in the data. Plug-ins are 

user-created modules that have access to the InSight2 Elasticsearch database to 

collect flow data and provide more informative network analytics. Plug-ins are 

designed to work by accessing the Elasticsearch database to quickly obtain the 

dataset, perform some sort of analytics, and upload the resulting data to a new 

Elasticsearch index. The resulting data in the new index can then be visualized in 

a Plug-in dashboard with the visualization design suited for the analysis. Since 

InSight2 uses an Elasticsearch backend, users can develop Plug-ins in their 

programming language of choice to interact with the database. Currently, 

Elasticsearch has APIs in Java, Javascript, Perl, Python, PHP, and Ruby. 

Despite InSight2’s internal development in Python, any of these languages can 

be used to create Plug-ins. Examples of Plug-ins developed already are Markov 

chain analysis and RED Alert. 

 

 

4.2.4 Dashboards 

 

As briefly mentioned earlier, dashboards are the ways in which the data created 

by these different modules are visualized. The dashboards used in InSight2 were 

inspired by the dashboard interface from the original InSight, but with a 

modernized interface. Dashboards group related visualizations together, 

separating each dashboard in different tabs on the InSight2 webpage. These 
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dashboards are iFrames from Kibana stored in an HTML file for display on the 

web. This means that any browser with Javascript capabilities can load the 

dashboards for viewing from any location. The three main dashboards are the 

overview dashboard, the performance dashboard, and the connections 

dashboard. As mentioned in the previous section, additional dashboards may be 

created for plug-in modules. 

 

 

4.2.5 InSight2 Workflow 

 

InSight2 has modularized the framework, so it is important that the individual 

components interact in a cohesive fashion to provide a reliable and efficient 

system. Each module works independently such that a problem in one module 

does not disrupt the process of the overall framework. Additionally, as modules 

are added or removed in potential future updates, the whole framework does not 

need to be redesigned as it is robust to changes. 

 

The workflow for the InSight2 framework proceeds as follow. The EM is spawned 

to collect the Argus flow data and upload the enriched data to Elasticsearch. 

From the EM, each additional Plug-in is started to collect the data from 

Elasticsearch and perform their analyses. The EM periodically checks that each 

Plug-in is still running and not using too much computational power. The results 

of the Plug-ins are uploaded back to Elasticsearch and stored there. Separately, 

the UM and SM interact with Elasticsearch. The UM daemon is inactive for most 

of the time and updates the enrichment databases when needed. The SM 

periodically accesses the Elasticsearch database and summarizes data, 

uploading the summarized data back to Elasticsearch in a new index. Using a 

webserver with embedded Kibana visualizations, the various dashboards are 

visible to network operators. The Kibana visualizations are built on top of 

Elasticsearch which allows for direct access to create visualizations without the 

need for a middleman. Figure 4.1 displays a diagram depicting the workflow for 

InSight2 and how each module interacts with one another. 
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Figure 4.1: InSight2 Architecture Workflow 

 

4.3 Tensor InSight2 Framework 

 

InSight2 is designed for large-scale networks, so the data aggregated from the 

platform is large in volume. The dimensionality of the tensors can reach several 

thousands of indices per mode. The tensors are also quite sparse due to the 

nature of the data. Thus, an efficient method for storing and accessing large 

sparse tensors is necessary for tensor analyses. In this section, Python libraries 

for tensor computations are surveyed and analyzed. Then, the implementation 

used for the RED Alert plug-in is described. 

 

 

4.3.1 Overview of Python Tensor Libraries 

 

Since the development of InSight2 consisted of using the Elasticsearch APIs in 

Python, the RED Alert plug-in was designed in a Python framework. However, 

Python has limited resources for tensor development. Many libraries exist for the 

creation and processing of high-dimensional data, but many lack key 

functionalities or documentation for proper use. This section summarizes some of 

the tensor libraries tested for RED Alert’s InSight2 plug-in. 
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NumPy and SciPy: NumPy [22] is perhaps the most popular Python multi-

dimensional computation framework. The library is part of the SciPy numerical 

computation library in Python. NumPy is a lightweight library contain only the 

necessary tools to create and manage multi-dimensional objects with some 

computational tools, whereas SciPy contains much more computational 

packages such as statistics and linear algebra tools wrapped around BLAS and 

LAPACK frameworks. These libraries are often compared to MATLAB due to the 

similar uses and capabilities between the two. 

 

NumPy is popular due to its easy and efficient use of n-dimensional arrays. 

Python lists can easily be converted to NumPy arrays by using simple calls to the 

library. Retrieval, filtering, and searching of data in these arrays is fast as well. 

NumPy even contains functions for addition, subtraction, dot product, division, 

inverse, and many other useful math tools for their n-dimensional arrays so that 

the user does not have to iterate over the entire structure to compute some 

result. 

 

The fact that NumPy supports an arbitrary number of dimensions seems to 

suggest that it could be used easily as the tensor framework for RED Alert, but 

there are some notable limitations to using NumPy as a tensor framework. For 

instance, modifying the multi-dimension data such as appending rows or columns 

and adding dimensions is extremely slow in NumPy. Network data is dynamic 

and may require deletions and additions to the tensors, so quick tensor 

manipulation is essential for robust computation. Additionally, as mentioned 

earlier, network flow data in a tensor framework is quite sparse. The data can 

grow very large at times and exceed Python memory capacities. Thus, some sort 

of sparse tensor compression is necessary for our analyses. NumPy itself does 

not support any sort of compression and requires all data to be stored in RAM at 

a given time. This solution will not work for all of our data. Although SciPy does 

contain support for sparse matrix representations, it does not extend to n-

dimensional data objects as needed in our algorithm. 

 

TensorLy: TensorLy [23] is a Python library designed for tensor storage and 

computation with minimal dependencies. It contains not only support for tensor 

storage and manipulation such as accessing sub-tensors and slices, but it also 

comes with high-end tensor computations such as tensor decompositions and 

regressions. TensorLy supports three different Python libraries as its internal 

backends for storage, NumPy, PyTorch and MXNet. PyTorch and MXNet are 
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both large-scale deep learning frameworks that are capable of GPU usage that 

contain n-dimensional data objects as NumPy does. 

 

TensorLy seems to have most of the functionality necessary for RED Alert. 

Though, as of late 2017 when this tensor analysis work began, no support for 

sparse tensors existed for TensorLy (the authors mentioned it was on their 

roadmap for the future). Once again, the memory problems of NumPy and SciPy 

arose again where large tensors could not be stored in RAM when using Python. 

As mentioned, TensorLy does support high performance backends that support 

GPU use, but since RED Alert was designed for generic computational 

frameworks without GPU support, these backends were not an option. TensorLy 

may be revisited in future work once sparse tensor support is released. 

 

scikit-tensor: Scikit-tensor [24] is a Python library built on top of SciPy and 

NumPy to provide tensor support through multilinear algebra and tensor 

factorization functions. Some of the same high-end functions from TensorLy were 

available in scikit-tensor as well. More importantly though, scikit-tensor consisted 

of support for both sparse and dense tensors. For dense tensors, scikit-tensor 

used the NumPy n-dimensional arrays. For sparse tensors, scikit-tensor used the 

Coordinate format (COO) from SciPy that stores only non-zero data.  

COO works as follows. n different lists representing the n dimensions hold the 

coordinates of the various non-zero values. For a tensor of 3 modes, the 

coordinates (i, j, k) would be split into three different lists all at the same index. 

Another list is stored that holds the non-zero values in the sparse data structure. 

If there are m non-zero values in the sparse data structure, each of these n+1 

lists would contain m values.  

 

For example, consider a sparse matrix (tensor of two modes). The COO 

representation of this matrix would contain a list for the rows with non-zero 

values and a list with the corresponding columns with non-zero values. The COO 

representation would then consist of a third list containing these non-zero values. 

Thus, the i th non-zero value, stored in data[ i ] would be located at (rows[ i ], 

columns[ i ]) in the matrix. Figure 4.2 shows a depiction of COO for a matrix of 

dimensions 3 × 2. 

 

Even though Scikit-tensor contained the functionalities needed for RED Alert, the 

documentation was scarce and difficult to find, and the project had not been 

updated in almost 2 years.  
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Figure 4.2: COO Representation 

 

4.3.2 Modifications to scikit-tensor 

 

Since scikit-tensor contained the core functionalities necessary for our tensor 

processing, the library was selected as the basis for our toolkit with some 

modifications to fully meet the requirements of our algorithm. Scikit-tensor lacked 

functionality in accessing only subsections of the tensor such as slices and sub-

tensors. Consequently, the four following functions were added to scikit-tensor 

for use in our tensor toolkit: 

 

 

• slice(mode, i): Return the list of non-zero values at slice i in mode mode. 

 
• slice_toarray(mode, i): Return the entire slice as an n-dimensional NumPy 

array at slice i in mode mode including the zero values. 

 
• delete(mode, i): Delete the non-zero values in the slice i of mode mode. 

 
• subtensor_toarray(mode, begin, end): Return the subtensor as a NumPy 

array from slice begin to slice end in mode mode. 
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These additional functions provided easy access to subsets of the tensors 

without having to expand the entire tensor and running into memory issues as 

was required in the original scikit-tensor library. Using these functions, tensors 

could also be quickly resized and modified which was slow in NumPy. The code 

for the tensor library used in RED Alert can be seen at 

https://www.github.com/jtliso/scikit-tensor. 

 

 

4.3.3 Interaction with Elasticsearch 

 

As a plug-in for InSight2, functionality was needed to interact with the 

Elasticsearch backend to create the tensors and perform the analyses. Using the 

elasticsearch-py library, the InSight2 database could be queried to collect data.  

 

Tensors are built from an n-tuple of data gathered from Elasticsearch. These n-

tuples consisted of (n-1) parameters (e.g., time, source information, destination 

information, protocol, etc.) and a value (e.g., packets, number of connections, 

bytes, etc.) as the n th item in the tuple. This corresponds to a tensor of n-1 

modes with each mode corresponding to one of the n-1 parameters collected 

from Elasticsearch. The user needs to specify a time range of data to collect, the 

parameters of RED Alert (time window and thresholds) and the value to be 

collected within the tensor. Figure 4.4 depicts a tensor of mode 3 collected using 

the 4-tuple (time, source country, destination country, number of connections). 

Spikes in the tensor represent values at each cell in the tensor. 

 

The tensors are built in the following way. A query to Elasticsearch is sent using 

the Search API from elasticsearch-py. For longer time ranges (greater than 1 

hour), the searches are broken into one-hour chunks to prevent stress on the 

Elasticsearch server and preserve RAM. These searches are sorted by the n-1 

dimensions that are passed using Elasticsearch’s Sort API. This guarantees that 

tuples containing the same n-1 parameters will be returned in succession. This is 

important for creating the tensor in COO format as explained later in this section. 

 

The n th entry in the n-tuple represents the value, and this value is stored in a list 

of these values from Elasticsearch. This works well with the COO format since it 

only needs to store the non-zero values (i.e., any value obtained from 

Elasticsearch). By appending the value with the appending of the n-1 indices, 

COO format is maintained by having the i th value correspond to the i th indices.  
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Figure 4.3: InSight2 Sample Tensor 

 

 

As mentioned earlier in this section, these Elasticsearch results are sorted by the 

parameters passed by the user. This means it is possible to sum the values 

returned from the search until a new tuple is returned from the query. For 

example, in building a tensor of time × source IP address × destination IP 

address with number of connections as the value, the number of connections 

between a specific source IP to destination IP can be summed until a new tuple 

is reached before appending it to the non-zero value list. This prevents look-up in 

the n different lists to determine which value needs to be incremented when a 

repeated tensor entry is seen. 

 

Once the searches in the specified time range have been completed, the scikit-

tensor model is ready to be created. The index list, the non-zero value list, and 

the shape (which is determined by the number of unique parameters per mode) 

are stored in a class, creating the sparse tensor representation. 
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4.4 RED Alert Plug-in within InSight2 

 

As one of the premiere plug-ins of InSight2, RED Alert needed to be ported to 

work with the InSight2 framework. This means that RED Alert must be able to be 

initialized from an InSight2 dashboard and provide visualizations back to the user 

on this dashboard. Kibana has no functionality of starting an outside script from a 

dashboard, so a non-Kibana dashboard was needed. Kibana also prevents the 

development of third-party dashboards within their web application, so this 

required some engineering to work around their limited dashboard features. 

Thus, the Python library Flask [25] was used to develop the application side of 

the RED Alert plug-in. This allows for RED Alert script initialization from the 

InSight2 user and display the results of RED Alert through Kibana visualizations.  

 

Flask is an open-source library in Python that provides server management for 

web applications. Users create a Flask-based HTML file that interacts with the 

Flask server management through a Python file. Flask is well-documented with a 

large userbase allowing for flexible development for any Python project. Since 

InSight2 and RED Alert were both built in Python frameworks, it made sense to 

use Flask to create the plug-in using RED Alert. This section summarizes the 

development of the Flask application created for RED Alert in the context of 

InSight2. 

 

 

4.4.1 Frontend 

 

The RED Alert plug-in can be seen in Figure 4.4. The plug-in features a form to 

enter in the parameters used in RED Alert (date from, date to, time window, 

thresholds, additional dimensions and tensor value) with a “Refresh” button and a 

“RED Alert” button. The “Refresh” button refreshes the plots to match the date 

range specified by the user, and the “RED Alert” button spawns the RED Alert 

algorithm for the provided parameters. The backend workings of these buttons 

and the interactions with the RED Alert script are explained in more detail in the 

next section. 

 

Below the form contains the plots generated for the RED Alert data using Kibana. 

Since Kibana does not allow for direct manipulation of their dashboards, the 

iFrame of the RED Alert visualization dashboard is stored in the application’s 
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HTML file to display the plots. Three different plots were used in this dashboard 

to aid in the visualization of RED Alert’s results. The example below shows the 

packet loss detection example discussed throughout this thesis. The first plot in 

the dashboard shows a bar plot with positive and negative values. This displays 

the “change of the change” through the use of Kibana’s difference plot. A positive 

bar indicates a sudden increase in the change from the previous window (an 

alert) and the negative bars indicate the “cancelling” of an alert, meaning the 

network has returned back to normal behavior. The second plot is a line plot of 

the overall health of the network representing the total change at a given 

timestamp. Large increases and decreases in this plot correspond to the positive 

or negative spikes seen in the difference plot above it. Finally, the third “plot” in 

the dashboard is a table listing the values that were alerted in RED Alert. This 

table lists the label of the alerted field, the mode that the alert occurred in and the 

count for how many times it occurred in a time window (shown is a 5-minute time 

window). This way, the network operator can search on these terms in the 

Elasticsearch database to gather more information about the root cause and 

outcome of the alert. 

 

 

4.4.2 Backend 

 

The backend of the RED Alert plug-in works as follows. The plug-in consists of 

only one page at the root directory of the application. From there, the Flask app 

handles both GET requests and POST requests to this page. The GET requests 

handles reloading the page and fetching the iFrame from Kibana with a default 

time range. To change the date range of the visualized data in the plug-in, a 

POST request is committed through the “Refresh” button shown in Figure 4.4. 

This POST request first ensures that a valid date from and date to are provided 

by the user. Then the POST request reads the values of the date from and date 

to fields to re-fetch the iFrame from Kibana that displays the tensor dashboard. 

This is done through URL manipulation of the iFrame. The Kibana iFrame value 

contains the date from and date to values within the string. Using a regular 

expression, the date fields in this string are updated to match Kibana’s pattern 

with the valid dates. Once this URL has been modified correctly, the URL for the 

iFrame is then passed to the HTML file that overlays the iFrame. Flask allows for 

static variables in HTML files that can be passed through functions in a Python 

file, so updating this iFrame string in the HTML file is simple. 
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Figure 4.4: RED Alert Plug-in 
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Other than the “Refresh” button to change the date range, the plug-in form also 

contains a “RED Alert” button that is used to spawn the RED Alert algorithm. This 

is also done through a POST request, but in this case more validation and 

processes must be completed than in the “Refresh” case. Not only do the date 

range fields need to be validated and stored from the POST request, but also the 

other fields necessary for RED Alert must be collected as well. The user must 

input a valid integer time window greater than 0. Additionally, the user must 

provide the desired threshold for each of the granularity levels. The selection of 

other dimensions besides source, destination and timestamp are also included 

since exploration of higher dimensionality is currently being looked into. Finally, 

the user needs to indicate whether to use number of connections (botnet 

detection) or total packets lost (packet loss detection) within the tensor being 

used in RED Alert. Once the user inputs these values, pressing the “RED Alert” 

button spawns a POST request to validate these input values and spawn the 

RED Alert process. If a value is missing or invalid, the Flask application returns a 

meaningful error message pointing the user to the issue. 

 

After the POST request is completed, the RED Alert process is started as a new 

process from the Flask application so that the page can be reloaded while the 

algorithm is running. This allows for the user to periodically refresh the iFrame 

with the “Refresh” button to see the results of RED Alert uploaded and displayed 

in real-time. The RED Alert script uploads the results from each time tick back to 

Elasitcsearch so that the data can be visualized through Kibana. This process 

allows for the user to have no coding knowledge as the backend handles all of 

the parameter passing and checking to execute the script. The user needs to 

navigate to the RED Alert plug-in page and enter the desired parameters for 

proper functionality. 
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5. CONCLUSIONS 

 

Analyzing network trends is an important aspect of network operator’s 

responsibilites. Creating ways to extract and process network flow data in 

meaningful ways is a challenge due to the volume and high-dimensionality of the 

data. In this thesis, two main algorithms that use tensors as a means to process 

and analyze large-scale network traffic were explored. Network data from the 

GLORIAD provided the means for the analyses. 

 

Using DenseAlert as a network monitoring tool proved to be problematic in large, 

finely defined tensors. The algorithm begins to report unhelpful results as the 

datasets become larger. Specifically, DenseAlert failed to provide any meaningful 

results from datasets representing IP network traffic, although smaller tensors of 

lower granularity led to more conclusive results. Since IP is the level of traffic that 

provides the most meaning to network operators, it is important that a network 

monitoring algorithm provides conclusive results on these datasets. Even though 

DenseAlert provides quick processing through its re-ordering and update 

strategies, its shortcomings can be seen through these results. 

 

Thus, RED Alert was created as a tensor-based monitoring tool for network traffic 

to provide means of anomaly detection at any level of granularity. RED Alert 

offers a useful alternative to DenseAlert by exploiting the hierarchical nature of 

network data, filtering out unimportant data and exploring interesting events in 

more detail. It is a simple, but effective algorithm for recursively filtering and 

expanding sparse tensors representing time-varying network flow data. We have 

provided empirical evidence that the algorithm is able to detect and track the 

modeled activity and attribute the changes to host IPs. This is shown through 

detection of increases in packet loss and detection of high botnet activity for a 

network. Through the use of change magnitude, RED Alert can be used on a 

wide variety of data to provide real-time event detection, be that for interesting 

benign or critical malicious events. RED Alert also used the idea of slice energy 

to show that other tensor metrics can be used to monitor the behavior of the 

network. Both total change and energy provide conclusive results with detailed 

alerts from the data. RED Alert was shown to be robust in its performance, 

processing a month of data in merely a few days. RED Alert can further be 

extended to other problems that have multi-dimensional data that can be 

separated in a hierarchical fashion. 
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Although the steps of RED Alert’s algorithm are easy and straightforward, 

creating or implementing tensor libraries in Python proved to be cumbersome. 

Python provides numerical processing libraries through SciPy and NumPy, but 

these libraries require extensive memory that becomes problematic when dealing 

with large, sparse tensors. SciPy and NumPy are useful for their computational 

capabilities through their wide variety of linear algebra functions, but they are not 

designed for large multi-dimensional storage. This requires the use of third-party 

libraries that provide more efficient tensor processing. However, most libraries 

lacked the functionality desired at the time. As the DenseAlert creators had to do, 

we created a tensor library that fit the needs of RED Alert through modifications 

to scikit-tensor, a third-party tensor library on GitHub. 

 

This work ties into the large overall project of InSight2, a network monitoring 

platform developed here at the University of Tennessee. The tensor library used 

was modified to work in the context of this platform, so that RED Alert could 

effectively access and process the data. RED Alert was built as an additional 

plug-in to InSight2 using Flask to allow for the execution of the algorithm through 

its backend management and meaningful displays in the frontend. From this, a 

useful tool for tensor-based network performance monitoring has been created 

for internal and external use.  
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