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ABSTRACT 

 Frontal sinus radiographs are frequently used to identify human remains. However, the 

method of visually comparing antemortem (AM) to postmortem (PM) cranial radiographs has 

been critiqued for its lack of sufficient error rates and the potential of practitioner training, 

experience, and education to influence results (Page, et al. 2011). In an effort to provide a more 

quantifiable method of frontal sinus identification, this thesis explored the use of the ArcGIS 

mapping software, ArcMap, and its spatial analyst tool, Similarity Search, for identifying frontal 

sinus matches. AM and PM cranial radiographs for 100 donors from the William M. Bass 

Donated Skeletal Collection and the Forensic Skeletal Collection at the University of Tennessee, 

Knoxville were organized into test groups containing one PM radiograph and ten AM 

radiographs and were uploaded into ArcMap 10.5 (ESRI 2018). Each frontal sinus was digitized 

using the Create Features tool, and the area and perimeter was calculated for the resulting 

polygons using the Calculate Geometry tool. For each test group, the Similarity Search tool was 

instructed to select the AM frontal sinus polygon that was most similar to the PM frontal sinus 

polygon based on the area and perimeter values. The percentage of correct matches by Similarity 

Search was calculated and statistical analyses were conducted to assess inter-observer and intra-

observer variation, and to establish a threshold of similarity index values for correctly identified 

polygons. The results indicate that area and perimeter do not capture shape, only size. Based on 

these results it is concluded that for this method to be usable in forensic casework, more analyses 

will need to be included that provide Similarity Search with more characteristics than just area 

and perimeter and provide Similarity Search with information about the shape of the polygons. 

 

 



   vi 

TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION ................................................................................................ 1 

Problem Orientation .................................................................................................................... 1 

Research Questions ..................................................................................................................... 3 

Chapter Organization .................................................................................................................. 4 

CHAPTER 2: LITERATURE REVIEW.................................................................................... 5 

Radiographic Identification Methods and GIS ........................................................................... 5 

Visual Recognition and Radiographic Image Identification Methods .................................... 5 

Frontal Sinus Radiograph Comparison Methods .................................................................... 8 

What is a GIS? ...................................................................................................................... 15 

Application of GIS to Anthropology and Related Fields...................................................... 16 

Application of GIS to Skeletal Elements .............................................................................. 17 

Application of GIS to Forensic Anthropology and Crime Scene Investigation ................... 18 

CHAPTER 3: MATERIALS AND METHODS ...................................................................... 21 

Digitizing in ArcMap ................................................................................................................ 21 

Sample....................................................................................................................................... 22 

Radiograph Methodology ......................................................................................................... 24 

Methodology Parameters, Sample Organization, and Anonymization ..................................... 26 

Digitizing the Frontal Sinus ...................................................................................................... 28 

Calculating Area and Perimeter ................................................................................................ 39 

Similarity Search ....................................................................................................................... 44 

Analysis..................................................................................................................................... 51 

Inter-observer Variation ........................................................................................................ 51 

Intra-observer Variation ........................................................................................................ 54 

Similarity Search Accuracy .................................................................................................. 56 

No True Match vs. True Match............................................................................................. 56 

Similarity Index Range for Correctly Identified Polygons ................................................... 57 

Each Donor to Entire Sample ............................................................................................... 58 

Summary ................................................................................................................................... 58 

CHAPTER 4: RESULTS ........................................................................................................... 60 

Inter-observer Variation ............................................................................................................ 60 

Hierarchical Cluster Analysis ............................................................................................... 60 

Coefficient of Variation (Cv) and Analysis of Variance (ANOVA) ..................................... 70 

Descriptive Statistics and Similarity Search Results ............................................................ 70 



   vii 

Intra-observer Variation ............................................................................................................ 83 

Coefficient of Variation ........................................................................................................ 83 

Similarity Search Accuracy and Correct Identifications .......................................................... 93 

No True Match vs. True Match................................................................................................. 93 

Similarity Search Threshold ................................................................................................... 103 

Similarity Index Range for Correctly Identified Polygons ..................................................... 103 

Each Donor to Entire Sample ................................................................................................. 103 

CHAPTER 5: DISCUSSION ................................................................................................... 112 

Are area and perimeter sufficient for Similarity Search identification? ................................. 112 

Similarity Search: An accurate tool for identifying a frontal sinus match? ............................ 122 

Overall Accuracy ................................................................................................................ 122 

Similarity Search: A new method for frontal sinus positive identification? ........................... 123 

Inter-observer and Intra-observer Variation ....................................................................... 124 

Similarity Index Value Range ............................................................................................. 132 

Additional Limitations ............................................................................................................ 133 

Significance and Future Directions ......................................................................................... 135 

Forensic Identification and Uniqueness of Biological Characteristics ................................... 137 

CHAPTER 6: CONCLUSION................................................................................................. 139 

REFERENCES CITED ............................................................................................................ 142 

APPENDIX ................................................................................................................................ 149 

Appendix 1 .............................................................................................................................. 150 

Test Group Example ........................................................................................................... 150 

Appendix 2 .............................................................................................................................. 153 

Inter-observer Polygons ...................................................................................................... 153 

VITA........................................................................................................................................... 159 

 

 

 

 

 

 

 



   viii 

LIST OF TABLES 

Table 4.1 Donors present in Cluster 1 for each observer……………...........................................61 

Table 4.2 Donors present in Cluster 2 for each observer…………………………………….......63 

Table 4.3 Donors present in Cluster 3 for each observer………………………………………...64 

Table 4.4 Donors present in Cluster 4 for each observer………………………………………...65 

Table 4.5 Tests of Normality for area, perimeter and SIMINDEX by cluster…………………...66 

Table 4.6 Descriptive statistics for Cluster 1…………………………………………………….75 

Table 4.7 Descriptive statistics for Cluster 2…………………………………………………….76 

Table 4.8 Descriptive statistics for Cluster 3…………………………………………………….77 

Table 4.9 Descriptive statistics for Cluster 4…………………………………………………….78  

Table 4.10 Mean, standard deviation, and Cv of area values for each donor…………………….79 

Table 4.11 Mean, standard deviation, and Cv of perimeter values for each donor………………80 

Table 4.12 Descriptive statistics for all observations………………………………………........81 

Table 4.13 Descriptive statistics of area, perimeter, and similarity 

index values for each observer…………………………………………………………………...82 

Table 4.14 Observers ranked first and last by Similarity Search for each donor………..............84 

Table 4.15 Coefficient of Variation of average area for female donors…………………………85 

Table 4.16 Coefficient of Variation of average perimeter for female donors…………………...87 

Table 4.17 Coefficient of Variation of average area for male donors…………………………...89 

Table 4.18 Coefficient of Variation of average perimeter for male donors……………………...91 

Table 4.19 Similarity ranks for true match polygons not identified     

as most similar by Similarity Search…………………………………………………………...101 

Table 4.20 Similarity index values of each donor’s true match and match selected    

by Similarity Search in absence of the true match…………………………...............................102 



   ix 

Table 4.21 Area, perimeter, and similarity index values for all correctly identified 

females………………………………………………………………………………………….104 

 

Table 4.22 Area, perimeter, and similarity index values for all correctly 

identified males…………………………………………………………………………………105 

Table. 4.23 Descriptive statistics for correctly identified male and female polygons………….106 

Table 4.24 Cluster 1 descriptive statistics of similarity index values for each    

female donor……………………………………………………………………………………108 

Table 4.25 Cluster 1 descriptive statistics of similarity index values for    

each male donor………………………………………………………………………………...110 

 

 

 

 

 

 

 

 

 

 

 

 



   x 

LIST OF FIGURES 

Figure 3.1 Simulated AM radiograph and PM radiograph……………………………………....25 

Figure 3.2 Creation of shapefiles in ArcCatalog………………………………………………...29 

Figure 3.3 Designating each shapefile as a polygon in ArcCatalog..............................................30 

Figure 3.4 Importing JPEG files into ArcMap…………………………………………………...31 

Figure 3.5 Importing shapefiles into ArcMap................................................................................32 

Figure 3.6 Create Features tool…………………………………………………………………..34 

Figure 3.7 Digitizing the frontal sinus……………………………………………………...........35 

Figure 3.8 Completed frontal sinus polygon……………………………………………………..36 

Figure 3.9 Frontal sinus polygon without the radiograph………………………………………..37 

Figure 3.10 Adding new field to attribute table………………………………………….............38 

Figure 3.11 Calculate Geometry tool…………………………………………………………….40 

Figure 3.12 Calculating area……………………………………………………………………..41 

Figure 3.13 Calculating perimeter……………………………………………………………….42 

Figure 3.14 Final geometry calculation in attribute table………………………………………..43 

Figure 3.15 Merge tool…………………………………………………………………………..45 

Figure 3.16 Attribute table for merged AM polygons…………………………………………...46 

Figure 3.17 Similarity Search tool…………………………………………………………….....48 

Figure 3.18 Polygons color coded from most similar to least similar…………………………...49 

Figure 3.19 Table of Contents displaying color codes…………………………………………..50 

Figure 3.20 Similarity Search results attribute table……………………………………………..52 

Figure 4.1 Normality plot of perimeter values for Cluster 2…………………………………….67 

Figure 4.2 Normality plot of perimeter values for Cluster 3…………………………………….68 



   xi 

Figure 4.3 Normality plot of perimeter values for Cluster 4…………………………………….69 

Figure 4.4 Normality plot of similarity index values for Cluster 1……………………………...71 

Figure 4.5 Normality plot of similarity index values for Cluster 2……………………………...72 

Figure 4.6 Normality plot of similarity index values for Cluster 3……………………………...73 

Figure 4.7 Normality plot of similarity index values for Cluster 4……………………………...74 

Figure 4.8 Distribution of area and perimeter values for donor 48a  

coded by similarity rank……………………………………………………………………….....94 

Figure 4.9 Distribution of area and perimeter values for donor 80a 

coded by similarity rank……………………………………………………………………….....95 

Figure 4.10 Distribution of area and perimeter values for donor 82a  

coded by similarity rank……………………………………………………………………….....96 

Figure 4.11 Distribution of area and perimeter values for donor 105a  

coded by similarity rank……………………………………………………………………….....97 

Figure 4.12 Distribution of area and perimeter values for donor 176a  

coded by similarity rank……………………………………………………………………….....98 

Figure 4.13 Distribution of area and perimeter values for donor 163a  

coded by similarity rank……………………………………………………………………….....99 

Figure 4.14 Distribution of area and perimeter values for donor 132a  

coded by similarity rank………………………………………………………………………...100 

Figure 5.1 Group 33 frontal sinus polygons……………………………………………………115 

Figure 5.2 Group 33 Similarity Search attribute table………………………………………….116 

Figure 5.3 Group 48 frontal sinus polygons……………………………………………………117 

Figure 5.4 Group 45 frontal sinus polygons……………………………………………………118 

Figure 5.5 Group 45 Similarity Search attribute table………………………………………….119 

Figure 5.6 80a frontal sinus polygons…………………………………………………………..126 

Figure 5.7 176a frontal sinus polygons…………………………………………………………127 

Figure 5.8 132a frontal sinus polygons…………………………………………………………128 



   xii 

Figure 5.9 Inter-observer polygons for donor 2a……………………………………………….129 

Figure 5.10 Inter-observer polygons for donor 41a…………………………………………….130 

Figure 5.11 Inter-observer polygons for donor 80a…………………………………………….131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   1 

CHAPTER 1: INTRODUCTION 

Problem Orientation 

Forensic human identification is based on unique characteristics and biological features 

of the human body. The rapid development of DNA sequencing technology over the past few 

decades has resulted in an increased reliance on it by the medicolegal community for the 

identification of human remains. However, DNA identification is not an option without access to 

sequencing technology, viable postmortem samples, or antemortem comparative samples. When 

DNA analysis, or other biometric methods such as fingerprints, are not available, radiographic 

comparison methods can be utilized. Antemortem (AM) and postmortem (PM) radiographs can 

be used to compare features such as AM fractures, pathologies, and the morphology of skeletal 

and dental elements. Individuals have been identified through AM and PM radiographic 

comparison of the chest (sternum, ribs, clavicles, and vertebrae), teeth and surrounding alveoli, 

and the maxillary and frontal sinuses (Angyal and Dérczy 1998; Derrick, et al. 2015; Kahana, et 

al. 2002; Mundorff, et al. 2006; Stephan, et al. 2011). 

When radiographs of the skull are accessible, comparison of the frontal sinus is a feasible 

method for positive identification. The current method consists of comparing the PM cranial 

radiograph of the unidentified individual to the AM radiographs of individuals who are potential 

matches. While visual matching has shown to be an accurate method that is widely accepted by 

forensic practitioners, it has been critiqued for lacking reliable error rates and relying on a visual 

pattern match that can be influenced by practitioner training, experience, and education  

(Christensen 2005b; Page, et al. 2011). There has been extensive research testing the validity of 

radiographic frontal sinus identification (Da Silva, et al. 2009; Jablonski and Shum 1989; Kirk, 
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et al. 2002; Marlin, et al. 1991; Murphy and Gantner 1982; Ubelaker 1984). Researchers have 

also tested the uniqueness of the frontal sinus among individuals and developed more 

quantitative methods for assessing frontal sinus morphology that utilize metrics, statistical 

models, and mathematical methods such as Elliptic Fourier Analyses (Christensen 2003, 2005a; 

Cox, et al. 2009; Patil, et al. 2012; Yoshino, et al. 1987).  

ArcGIS (ESRI 2018) is a tool that has yet to be utilized for frontal sinus identification. A 

Geographic Information System (GIS) is a database management system that allows the user to 

store and analyze spatial data. The program ArcGIS and its mapping program, ArcMap, allow 

the user to import or create maps, and conduct analyses of data with a spatial component. ArcGIS 

is commonly used in fields like geography, natural resource management, surveying, urban 

planning, and archaeology. In recent years, ArcGIS has been utilized by biological 

anthropologists to assess anything from spatial patterns of fossil assemblages to the spatial 

relationships between the presence of pathogen vectors and skeletal lesions (Benito-Calvo and 

De la Torre 2011; Gowland and Western 2012). Several researchers have even applied ArcGIS 

to skeletal elements, including teeth and the pelvis (Beckett, et al. 2014; Jernvall, et al. 2000; 

Ungar and Williamson 2000). These studies illustrate the potential of ArcGIS as a tool for 

spatially analyzing the human skeleton to address questions about human variation, human 

evolutionary history, and potentially aid in forensic human identification. 

In this thesis, I explore the use of ArcMap to digitize the frontal sinus as a polygonal 

shape from radiographs and to calculate the area and perimeter of the polygon. I also test the 

ability of the spatial analyst tool, Similarity Search, to correctly identify frontal sinus matches 

based on user-defined attributes. If this method proves accurate, I suggest that ArcMap and its 

spatial analyst tools can provide a quantitative, user-friendly, and automated method for 
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identifying a frontal sinus match that can be easily implemented in forensic case work when 

frontal sinus radiographs are available and accessible. This method will also address the need for 

more quantitative identification methods in forensic anthropology. 

Research Questions 

The main objective of this study is to assess the use of ArcMap and its spatial analyst 

tool, Similarity Search, for identifying a frontal sinus match from radiographs. This objective 

will be achieved by answering three questions: 

1. Are the area and perimeter values of a frontal sinus polygon sufficient variables for 

Similarity Search to be able to identify a match? 

2. Can ArcMap’s Similarity Search tool identify a PM to AM radiographic match using 

the frontal sinus polygon? 

3. If ArcMap Similarity Search can match a PM to AM radiograph, is this a quantifiable 

and reproducible method for positive identification using radiographs? 

These questions will be answered by testing the Similarity Search tool on a sample of 100 

individuals from the William M. Bass Donated Skeletal Collection and the Forensic Skeletal 

Collection that each have two cranial radiographs. Overall accuracy of Similarity Search’s ability 

to identify the correct match will be assessed, as well as intra- and inter-observer variation. 

Statistical analysis will inform the establishment of a range for the similarity index values that 

are produced by Similarity Search to indicate the most similar and least similar polygons. It is 

expected that this research will provide preliminary results for how Similarity Search can be 

leveraged for frontal sinus identification, and with further research can be developed into a 

practical, quantifiable, and user-friendly method for frontal sinus identification. 
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Chapter Organization 

 Chapter two is a literature review to place this study in context. The literature on 

radiographic identification methods in general, and frontal sinus radiograph identification 

methods in particular, will be discussed. This chapter will also explain what a GIS is and how the 

ArcGIS software program functions. The origins of GIS and the applications of GIS to 

anthropology, forensic anthropology, and the human skeleton will also be reviewed.  

Chapter three is the materials and methods chapter. It discusses the study sample 

composition including the methodology used to obtain the cranial radiographs, and sample 

organization, and anonymization. Methodology for digitizing the frontal sinus in ArcMap, the 

calculation of area and perimeter, and function and application of the Similarity Search tool to 

this study are explained. Chapter three also details the statistical analyses for this study. These 

include inter and intra-observer variation analyses, the percentage of Similarity Search’s correct 

identifications, and the establishment of a similarity index range.  

Chapter four presents the results of the statistical analyses. Chapter five provides an 

interpretation and discussion of the results and their significance to forensic anthropology and 

human identification methods. Future directions for this research are addressed in chapter five as 

well. Chapter six provides concluding remarks, synthesizing the significance of this study and 

potential ways to develop this method for future implementation.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides an introduction to visual and radiographic image identification 

methods and Geographic Information Systems (GIS). It reviews identification methods that use 

visual recognition of unique anatomical features, and radiographic images of the post-cranial 

skeleton and the frontal sinus. The origins and fundamentals of GIS are discussed, as well as its 

applications to archaeology, biological anthropology, forensic anthropology, and crime scene 

investigation. The chapter concludes with a discussion of the importance of spatial analytical 

tools like GIS to forensic science and forensic anthropology. 

Radiographic Identification Methods and GIS 

Visual Recognition and Radiographic Image Identification Methods  

 

There are several methods available to medical examiners and anthropologists for 

establishing a positive identification of human remains. Positive identification requires a 

scientific modality to identify unique biological data that can exclude all other individuals, such 

as DNA analysis (Caplova, et al. 2017). Examples of methods that utilize unique biological data 

for identification include: visual identification of unique body features such as scars, tattoos, 

moles, etc., dermatoglyphics (fingerprint analysis), and dental comparison (Caplova, et al. 2017; 

Derrick, et al. 2015; Patil, et al. 2012).  

Caplova, et al. (2017) reviewed current identification methods based on physical 

appearance: simple visual recognition, identification based on specific facial and/or body areas, 

soft biometrics such as tattoos, moles, and scars, and AM/PM dental superimposition. Individual 

identification by physical characteristics is very subjective and not applicable in every setting, 

particularly situations that lack antemortem data for comparison such as migrant and refugee 



   6 

deaths, and mass disasters with open populations (Caplova, et al. 2017). Moreover, few studies 

have tested the reliability and applicability of visual identification methods, and there are no set 

standards or studies validating these methods. This lack of standardization, reliability, and 

applicability is a problem seen throughout identification methodologies (Caplova, et al. 2017). 

When visual recognition methods, fingerprints, and DNA analysis are not feasible due to 

decomposition, thermal damage, or the lack of a comparative reference sample radiographic 

comparison methods may be another option for identification (Derrick, et al. 2015; Kuehn, et al. 

2002; Patil, et al. 2012). 

When human remains are skeletonized or otherwise visually unrecognizable, forensic 

anthropologists rely on the morphology of highly variable traits in the human skeleton to assist 

with identification. Morphological identification is primarily done through the comparison of 

AM and PM radiographs (Angyal and Dérczy 1998). Skeletal elements most commonly used for 

radiographic comparison are in the chest region – clavicles, sternum, ribs, and vertebrae – along 

with the dentition and surrounding alveoli, and the maxillary and frontal sinuses (Angyal and 

Dérczy 1998; Derrick, et al. 2015; Kahana and Hiss 1997; Mundorff, et al. 2006; Stephan, et al. 

2011). The sphenoidal sinus, sella turcica, mastoid processes, and shoulder girdle have also been 

used for positive identification (Quatrehomme, et al. 1996).  

 Murphy and Gantner (1982) reviewed eight forensic cases that used radiographic images 

to re-associate body parts or establish identity. Four of the cases involved the use of radiographic 

images to re-associate human body parts that had been separated from the rest of the body as a 

result of grave desecration or theft from anatomy labs. The other four cases demonstrated how 

radiographic images of skeletonized remains can be used to see individualizing features such as 

fractures, anatomical differences, and pathological features which may help establish identity 
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(Murphy and Gantner 1982). While Murphy and Gantner (1982) agree that radiographs of human 

remains can contribute to a forensic investigation, the authors further argue that radiological 

methods should never replace osteological analysis. Instead, radiographs should be used in 

conjunction with or as a supplement to osteological analysis and other methods when applicable 

(Murphy and Gantner 1982). 

 Adams and Maves (2002) discuss the use of the right clavicle to identify a civilian who 

went missing during the Vietnam war. Dental records were not available for comparison, but an 

AM chest radiograph that had been taken five months prior to the victim’s disappearance was 

located. For this case, the authors used superimposition of the AM and PM chest radiograph and 

found the shape and size of the clavicles matched, allowing them to confirm identity.  

Other studies have confirmed the validity of identification using chest radiographs. 

Kuehn, et al. (2002) aimed to validate the method of comparing AM and PM chest radiographs 

for human identification by quantifying the method’s reliability, identifying individualizing 

features in chest radiographs, and recognizing potential errors in comparisons. The authors found 

an 80% accuracy rate and determined that the quality of the radiographs was a major limitation 

to this method. Building on the work of Kuehn, et al. (2002), Stephan, et al. (2011) addressed the 

need for known error rates and studies that quantify the accuracy of identification methods. The 

authors acknowledged that previous chest radiograph studies had been performed on remains that 

were still fleshed, thus the accuracy rates could not apply to skeletal remains due to the 

significant postmortem changes in the skeleton from decomposition processes. Using clavicle 

morphology and the third cervical through the fourth thoracic vertebrae for AM to PM 

comparison, Stephan, et al. (2011) found that chest radiographs could sufficiently be used for 
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identification even with poorly preserved skeletal remains and compromised AM radiograph 

image quality. 

In addition to the assessment of AM chest radiographs for identification, the morphology 

of the spine has been assessed as a feature for AM/PM radiograph comparison. Valenzuela 

(1997) used lumbar spine morphology to identify human remains found in a cave in Granada, 

Spain. The author compared PM to AM radiographs of the individual’s lumbar spine, and was 

able to establish a positive identification by matching unique features such as osteophytes on the 

third, fourth, and fifth lumbar vertebrae, spinous and transverse process morphology, and lumbar 

spine scoliosis (Valenzuela 1997). Kahana, et al. (2002) used AM and PM radiographs of the 

spine to identify eight individuals. The authors used normal anatomical variation of the 

vertebrae, degenerative processes, healed trauma, and congenital malformations to identify 

radiographic matches (Kahana, et al. 2002). Mundorff, et al. (2006) examined a set of 

skeletonized remains recovered from the East River in New York City. The biological profile of 

the remains matched a missing person report, and AM radiographs were obtained from the 

medical records of this individual. Using AM and PM radiographs, the authors compared the 

seventh cervical and first thoracic vertebra, showing that the morphology of the spinous 

processes matched. The positive identification based on AM and PM radiographs was later 

confirmed with DNA. 

Frontal Sinus Radiograph Comparison Methods 

 

The previous studies illustrate how AM and PM radiograph comparison of normal 

skeletal variation can be used establish a positive identification. One of the most widely accepted 

and commonly used radiographic identification methods uses frontal sinus morphology 

(Christensen 2005b). The frontal sinus, which is located inside the frontal bone in the glabellar 
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region, has been shown to be a reliable feature for comparison due to its morphological stability 

after age 20, its high rate of preservation due to its location within the cranium, and its highly 

variable morphology among individuals (Angyal and Dérczy 1998; Cox, et al. 2009). 

Radiologists, anatomists, and anthropologists have confirmed the significance of the frontal sinus 

as a highly variable feature that can be used for forensic identification purposes (Nambiar, et al. 

1999). The frontal sinus has a known rate of development with the paranasal sinuses developing 

in-utero, and enlargement and definition of the sinus occurring after birth with the initial 

presentation by age one. The frontal sinus will show up radiographically by about age six, but 

will not obtain full size until late adolescence, usually age 20 (Nambiar, et al. 1999).  

Once fully developed, the sinus is highly variable among individuals. The left and right 

sides of the sinus develop independently resulting in asymmetry or absence of the sinus on one 

side or the other. It is estimated that 4-15% of the population is missing one side of the sinus, 

possibly due to extreme cases of a deviated septum (Nambiar, et al. 1999). The size of the frontal 

sinus is highly variable, but it has been observed that the sinus tends to be larger in males, and 

smaller in females with more scalloping on the upper borders. The degree of variability seen in 

the frontal sinus among individuals, its morphological stability throughout life (barring disease 

or trauma), and its presentation on radiographs has made it a useful feature of forensic 

identification (Nambiar, et al. 1999). 

Culbert and Law (1927) were the first to show that the comparison of AM and PM 

radiographs of the frontal sinus could be used to establish identity. They observed that the 

mastoid processes and cranial sinuses remained constant throughout an individual’s life, and the 

shape and arrangement of these sinuses was different in every individual they observed, making 

these features ideal for determining identity. This was the first study to show that AM and PM 
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radiographs could be used to compare the cranial sinuses for the purpose of positive 

identification (Culbert and Law 1927). 

Since Culbert and Law’s study in 1927, many other medical professionals and 

anthropologists have published studies on the use of frontal sinus radiographs to confirm 

identification. By the 1980s research into the use of cranial sinuses for identification was present 

in the anthropology and anatomy literature. Ubelaker (1984) used cranial radiographs to identify 

a set of remains. AM radiographs from the victim’s medical records were accessed and 

compared to the PM radiographs of her skull. The lateral and frontal views of the skull were 

compared, which showed that the size and shape of the sella turcica of the sphenoid, and the 

frontal sinus was an exact visual match. When the case went to trail, Ubelaker testified in court 

to the method of comparing AM and PM frontal sinus radiographs for the purpose of 

determining identity. While Ubelaker testified to the fact that the radiographs belonged to the 

same individual, this case brought up questions regarding the precedent for making positive 

identifications based on radiographic comparison, and the probability that two individuals could 

have identical frontal sinus patterns. As a result, Ubelaker conducted his own study using 35 

frontal radiographs of crania from the National Museum of Natural History/National Museum of 

Man. He compared each radiograph to all the radiographs in the sample to determine the number 

of differences in the presentation of the frontal sinus, orbits or frontal crest, and to document any 

relationship to surrounding cranial structures. Each comparison showed at last three differences 

and the average number of differences in the frontal sinus region between two individuals was 

eight. Ubelaker concluded that there were enough differences to support the assumption that the 

frontal sinus is unique to each individual (Ubelaker 1984). 
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Since the Ubelaker (1984) study, many other researchers have addressed the question of 

frontal sinus uniqueness and its usefulness for identification, as well as the precedent for the use 

of radiographs for identification purposes. Yoshino, et al. (1987) used skull radiographs from 35 

Japanese individuals to assess the frontal sinus using a quantitative method based on the total 

area and asymmetry of the sinus. They further used descriptive statistics to analyze the frontal 

sinus areas and codes to classify the different patterns observed. The authors concluded that the 

frontal sinus is unique enough among individuals to be a reliable method for identification. The 

authors implemented their method of using qualitative coding by assessing the area and 

asymmetry of the frontal sinus from AM and PM radiographs to successfully identify a missing 

person.  

Jablonski and Shum (1989) discuss two forensic cases to demonstrate how radiographic 

images of anatomically variable skeletal features can aid in identification. First, the authors 

utilized frontal sinus radiographs to confirm the identity of burned remains. Next, they compared 

AM and PM radiographs of a torso, specifically the morphology of the spine and the absence of 

the 12th rib, to confirm an individual’s identity. These cases illustrate the significance of using 

radiographs to compare anatomically variable features in order to determine identity, but also 

show that radiographic comparison is not a method to be used in isolation or as a first option. 

Both instances used it in conjunction with other methods of analysis, including osteological 

analysis, and when more traditional identification modalities such as dental comparison were not 

possible. 

Marlin, et al. (1991) established four positive identifications by using frontal sinus 

radiograph comparisons. The authors found this method to be useful and reliable, but 

underutilized. They further stressed the importance of accurate record keeping as radiographic 
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images, particularly of the head, are a valuable forensic tool. Quatrehomme, et al. (1996) use the 

frontal sinus as a comparative feature for positive identification in two homicide cases. First, 

both victims were presumptively identified through anthropological methods. Based on these 

results, radiographs were located and used as a comparison for positive identification. Kirk, et al. 

(2002) tested the validity of visually matching the frontal sinus for identification. Using the 

Caldwell and Waters’ positions (traditional positions for viewing the sinonasal area in 

radiographic films) (Hamed, et al. 2016) digital tracings were made for 35 sets of AM and PM 

radiographs of the frontal sinuses. Superimposition of the radiographs was used to identify a 

match. In addition to this visual assessment, (Kirk, et al. 2002) also used a quantitative method of 

measuring the width and length of each sinus from the radiographic image. The authors found 

sex and age did not affect the examiner’s ability to pattern match, and time between when the 

AM and PM films were taken did not have an effect. The authors confirmed that frontal sinus 

pattern matching from radiographs is a valid method for human identification (Kirk, et al. 2002). 

For the last few decades, this acceptance of frontal sinus uniqueness was anecdotal and 

based on the reported experiences of many experts reviewing thousands of radiographs over the 

course of their careers and never seeing two that were alike (Besana and Rogers 2010; 

Christensen 2005b; Cox, et al. 2009). However, until recently there were no studies that 

empirically tested this assumption. Christensen (2005a) empirically tested the uniqueness of the 

frontal sinus using Elliptic Fourier Analysis (EFA), a mathematical method that applies a curve 

to an ordered set of data points in order to reproduce the outline of a shape, in this case the 

outline of the frontal sinus from radiographs. By calculating Euclidean distances between pairs 

of frontal sinus outlines Christensen found that the average distance between the frontal sinus 

shapes of different individuals was significantly larger than the average distance between 
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duplicate frontal sinus shapes from the same individual. Christensen’s findings empirically prove 

that the frontal sinus shape of each individual is significantly different, and the probability of two 

different individuals having the same frontal sinus shape is low.  

Christensen (2005b) furthered this research by testing the reliability of frontal sinus 

identification using EFA to assess frontal sinus variation and identify a match. Using Bayes 

Theorem Christensen calculated the posterior probabilities and likelihood ratios of the 

comparisons made between frontal sinus outlines. Her results show that using EFA to compare 

frontal sinus radiographs is a reliable method with a 96% probability of identifying a match 

correctly. Christensen has shown that the widely-accepted belief that frontal sinus morphology is 

unique to each individual is supported as it has now been empirically tested, and also 

mathematically proved that there is a very small probability of any two individuals having 

identical frontal sinus morphology. This is an important step toward improving existing methods 

and developing new methods that meet rigorous standards. 

Since Christensen’s (2005a and 2005b) studies, other researchers have sought to develop 

quantitative methods for frontal sinus identification, tested qualitative coding methods to assess 

frontal sinus patterns, and established known error rates for the superimposition method. 

Cameriere, et al. (2005) developed a similar qualitative method as Kirk, et al. (2002) for 

assessing frontal sinus morphology for identification, which also builds off of the method 

described by Yoshino, et al. (1987). The authors aimed to estimate the potential error of the 

pattern matching method. They digitized radiographs from 98 individuals and assigned a code 

for each specific frontal sinus pattern identified. They determined that the frontal sinus is a 

reliable feature for identifying individuals due to its variable morphology and their results 

indicated a low probability of misidentification. 
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 Da Silva, et al. (2009) affirmed the forensic importance of frontal sinus radiographs in 

the identification of a male killed in a traffic accident who had remained unidentified for over a 

year. A presumptive identification was made from postmortem photographs leading investigators 

to request medical records from the victim’s family. The medical records contained two skull 

radiographs, which after digitization and adjustment for brightness and contrast, allowed for 

frontal sinus comparison. A match was determined from visual comparison, superimposition in 

Adobe Photoshop, and through measurements. The authors acknowledge that comparative visual 

analysis is based on the experience of the observer, rather than on an objective method. Given 

the need to establish more objective methods many anthropologists have worked to develop new 

methods for the analysis of frontal sinus morphology (Da Silva, et al. 2009). 

Drawing on Christensen’s study, Cox, et al. (2009) also sought to quantify the differences 

between frontal sinus outlines by measuring each sinus from a fixed point and summing the 

differences between the measurements. The authors calculated the probability that a pair of 

radiographs came from the same individual or different individuals. They achieved an error rate 

of 0%. Besana and Rogers (2010) tested the independence of frontal sinus traits and the 

probability of correctly identifying a match based on combinations of traits. The authors 

compared this method to superimposition and found that most frontal sinus traits are dependent 

on other traits and thus cannot be used to calculate probabilities, and discrete traits do not have 

enough discriminatory power to rule out a match and be useful for positive identification. The 

authors concluded that superimposition was the most reliable method. Patil, et al. (2012) 

supported this conclusion. They tested the superimposition method and found that identification 

by superimposition of radiographs was 100% accurate. 
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Forensic anthropologists have long recognized that frontal sinus shape is unique to each 

individual. The above studies confirm this finding and are further able to show that this 

variability can be leveraged as a reliable method for human identification.  

What is a GIS? 

 

A Geographic Information System (GIS) is a database management system (DBMS) that 

is designed to store and analyze data so that it can be presented geographically or spatially in 

geospatial software programs such as ArcGIS/ArcMap. A DBMS can store geospatial 

information where it can then be managed, edited, analyzed, and displayed using a GIS. In a 

sense, GIS combines cartography, statistical analysis, and database technology in order to 

display and analyze spatial data (Aldenderfer and Maschner 1996; Dawsen 2011). GIS displays 

data in layers, with each layer being a distinct phenomenon (roads, forest, buildings, etc.). Data 

in layers can be represented in two data formats: raster or vector. Raster data is data that has been 

put into a tessellation, or grid, so that each data point is represented by a cell or pixel. Vector 

data is represented by some combination of points, lines, and polygons (two dimensional 

shapes). Both data formats operate on an x, y coordinate system. The decision of which data 

format to use depends on the project and what the researcher is trying to understand about a set 

of data (Aldenderfer and Maschner 1996).  

The earliest known use of a Geographic Information System was by John Snow, the 

founder of modern epidemiology, who was able to pinpoint the cause of a massive cholera 

outbreak in England in 1853 by mapping cases of the disease. The spatial pattern of the cholera 

cases showed a distinct cluster around a water pump on Broad Street that had been contaminated 

by sewage and was determined to be the source of the outbreak (Anemone, et al. 2011). This 

early use of spatial data, and interpreting patterns in those data to problem solve, set the stage for 
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the later development of GIS computer software and spatial analysis of geospatial data in fields 

like geography, remote sensing, land surveying, urban planning, natural resource management, 

and archaeology (Aldenderfer and Maschner 1996; Dawsen 2011).  

Application of GIS to Anthropology and Related Fields 

 

GIS has also been utilized by anthropologists to analyze spatial patterns in 

anthropological data. For example, Anemone, et al. (2011) applied remote sensing technology 

and GIS to the study of primate and human evolution. The authors acknowledge the ability of 

spatial analysis technologies like GIS to allow paleoanthropologists and paleontologists to study 

the spatial patterns of fossils. Anemone, et al. (2011) advocates for the use of geospatial science 

and spatial technologies like GIS in anthropology as this technology is capable of revealing 

patterns and relationships in the data that would otherwise not be apparent. This can be seen in 

several studies that have utilized GIS to better understand spatial relationships in anthropological 

studies.  

Benito-Calvo and De la Torre (2011) used GIS to examine the site formation processes of 

Bed I of Olduvai Gorge in Tanzania, which is one of the most renowned sites from the African 

Plio-Pleistocene. The authors hypothesized that natural processes played a more significant role 

in the site’s formation than hominins and carnivores. They imported the original site drawing 

into ArcMap and conducted spatial analyses of the artifact and bone distribution. The results 

showed that the assemblage pattern was significantly different from a uniform model, which is 

the model you would expect to find when an assemblage has not been affected by natural 

processes. From these results the authors concluded that geological forces were responsible for 

the post-depositional changes of the artifact and bone assemblages rather than just hominin and 

carnivore activity (Benito-Calvo and De la Torre 2011). 
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In addition to paleoanthropology, spatial analysis with ArcGIS software has been used in 

bioarchaeology and paleo-epidemiology. Gowland and Western (2012) looked at skeletal 

remains from 27 Anglo-Saxon sites in eastern England and documented the remains that 

presented with indicators of poor health, specifically cribra orbitalia (CO) and enamel hypoplasia 

(EH). Using GIS to map the instances of CO and EH, the authors compared these data to the 

spatial patterns of malarial outbreaks or outbreaks of “ague” during that time period. The authors 

found that the pattern of CO and EH was similar to historically recorded outbreaks of “ague” 

(malaria). These hotspots of malaria, CO, and EH also matched the distribution of the mosquito 

species, A. atroparvus, which was responsible for spreading malaria in that region. 

Application of GIS to Skeletal Elements 

 

GIS has also been applied to evolutionary studies by examining the relationship between 

mammalian tooth morphology and diet. Jernvall, et al. (2000) used GIS to quantify the 

evolutionary changes that impact dental morphology of the first lower molar in two rodent 

species, mouse and vole. The authors conducted a topographic analysis of the molars using GIS 

to understand the link between genes and morphological changes. The results of the spatial 

analysis in GIS indicated different growth patterns between mouse and vole molars, which 

suggests that at least two hierarchical development processes are responsible for the divergence 

in molar morphology between Families (Jernvall, et al. 2000). 

Ungar and Williamson (2000) also investigated tooth morphology of G. gorilla, 

specifically how tooth wear from diet affects functional efficiency, and whether worn teeth can 

be used to understand diet of past species. Most studies on the relationship between diet and 

tooth wear focus on inferring diet from unworn teeth, but Ungar and Williamson aimed to use 

GIS to analyze the topography of worn teeth. The authors looked at the tooth as a geographic 
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landscape that can be modeled and analyzed by looking at cusp surface area, aspect, slope, relief 

and even drainage. Ungar and Williamson concluded that GIS can be used to analyze 

morphological differences in worn teeth to understand diet (Ungar and Williamson 2000). 

Rose, et al. (2012) applied GIS to histological bone samples to understand biomechanical 

properties of loading and bone remodeling on the human skeleton. The authors used ArcGIS 

spatial analyst tools to look at directional distribution of bone remodeling sites in the bone 

microstructure in cross section histological samples. The directional distribution tools produced 

standard deviation ellipses of all of the points of remodeling in the cross section and allowed the 

authors to analyze the directional trend of bone remodeling. Rose, et al. refer to this as practicing 

“bone geography” because using ArcGIS on the skeleton requires viewing the skeleton, features 

on the skeleton, and bone microstructure as a kind of geographical landscape that can be 

understood spatially using spatial analysis tools like ArcGIS (Rose, et al. 2012).  

Application of GIS to Forensic Anthropology and Crime Scene Investigation 

 

Aldenderfer and Maschner (1996) argue that spatial thinking is key to many fields of 

anthropology. Cultural anthropology and archaeology both deal with spatial data, whether it be 

artifact scatters or the movements and geographic locations of modern and archaeological human 

settlements. The previously reviewed literature shows the many possible applications of spatial 

analysis to biological anthropology and bioarchaeology research questions regarding 

morphology, evolution, biomechanics, diet reconstruction, site formation processes, and 

epidemiology. However, the use of GIS in forensic science, particularly forensic anthropology is 

still new. 

Current research on GIS in forensic anthropology predominantly focuses on the spatial 

patterns of scattered human remains. Manhein, et al. (2006) used GIS and spatial analysis 
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technology to study the spatial patterns of dumped and scattered human remains in order to 

better predict the location of human remains and aid in the effective recovery of those remains in 

forensic contexts. Spradley, et al. (2012) used GIS and Global Positioning System (GPS) to 

analyze the spatial patterns of human remains scattered from vulture scavenging. Kolpan and 

Warren (2017) utilized GIS to study geographic patterns of where human remains were 

recovered in forensic cases in Florida in order to better understand where human remains were 

most likely to be found. Gundel (2017) used body disposal data from the Office of the Chief 

Medical Examiner, Connecticut and ArcGIS to create a predictive model for body disposal sites. 

Predictive modeling using ArcGIS would allow law enforcement to predict the most likely areas 

where perpetrators would dispose of their victim’s remains, which would drastically reduce the 

amount time and resources needed to search for a missing individual (Gundel 2017). Carlton, et 

al. (2018) used Structure from Motion (SfM) and GIS to document and analyze the taphonomic 

processes that affect human remains and burials. 

GIS has also been used by law enforcement to understand spatial relationships between 

crime scenes. Investigators of the 2002 sniper shootings in Washington, D.C. utilized GIS to 

create maps of where each shooting took place, and field guides outlining the proper procedure 

for cataloging data for inventories of each crime scene. This allowed the investigators to spatially 

analyze the crime scene locations and the evidence found at each crime scene. While the 

perpetrators were caught before the method could be operationalized, it showed how 

understanding the spatial relationships between crime scenes and evidence is a vital tool in 

reconstructing a crime and catching the perpetrators (Wilson 2003). 

Bolton applied ArcGIS directly to the skeleton (Beckett, et al. (2014). Using ArcGIS to 

analyze topographic data on the pubic symphysis from 3D pelvic images, the authors recorded 
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features like slop, aspect, and valley volume of the pubic symphysis. These features were 

analyzed as if they were geographical landscapes in order to determine significant differences in 

these features between age groups (Bolton 2013). The use of ArcGIS to assess age from the 

pubic symphysis could improve age estimations and provide a new tool for biological profiling.  

Each of these studies illustrates the importance of GIS and other spatial technologies to 

forensic science and forensic anthropology. Spatial analytical technologies like GIS can aid our 

understanding of patterns and processes that affect human remains post-deposition, whether a 

body dump site or predator scavenging. In each of these studies GIS was applied to a natural 

landscape or to a set of human remains in order to understand how human remains interact with a 

landscape. Given GIS’s ability to map landscapes and analyze patterns and specific points on a 

map, it follows that this same principle can be applied to specific features on the skeleton, 

particularly the frontal sinus. Additionally, GIS is capable of statistically analyzing patterns, and 

quantifying the landscapes and patterns it maps. Given the need for more quantifiable methods in 

forensic anthropology, it is worth exploring the ability of GIS to provide a quantifiable method 

for analyzing frontal sinus morphology as a landscape for the purpose of positive identification. 
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CHAPTER 3: MATERIALS AND METHODS 

This chapter discusses the method of digitizing the frontal sinus from cranial radiographic 

images in ArcMap to produce polygons that are representative of the frontal sinus, and the use of 

the spatial analyst tool, Similarity Search, to identify matches from a pool of frontal sinus 

polygons. Cranial radiographs of 100 donors (50 males and 50 females) from the Bass Donated 

and Forensic Skeletal Collections are used to test ArcMap’s (ESRI 2018) ability to digitize the 

frontal sinus, and the ability of Similarity Search to correctly identify a match. This chapter will 

first explain the digitization process and describe both the study sample and the radiograph 

methodology. Next, sample organization, frontal sinus digitization, polygon geometry 

calculation, and the Similarity Search tool are explained. The chapter concludes with an 

explanation of the statistical analyses used. 

Digitizing in ArcMap 

Digitizing is the process of translating non-digital information such as hard-copy images 

and maps into digital format (desktop.arcgis.com 2018b). This process is commonly used in the 

field of geography because hard copy maps often need to be digitized so that they can be 

uploaded to websites or imported into mapping software programs like ArcGIS (ESRI 2018). 

There are two types of digitizing: hard-copy or “heads down” digitizing and on-screen or “heads-

up” digitizing. Heads-up digitizing is done in software programs like ArcGIS/ArcMap where 

digital map images, or raster images, are uploaded into ArcMap and features of the map are 

digitized using points, lines, and polygons (desktop.arcgis.com 2018b). This process uses two 

types of data models: raster and vector. Raster data models are for continuous data like air 

temperature or soil pH and is defined in a grid base. Images, for example aerial images of 

geographic landscapes, are also examples of raster data as they represent a continuous image 
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organized in a tessellation, or grid (Burrough 2015). Vector data models are for discrete data that 

can be precisely defined such as population levels, gross median income, and geographic 

features like roadways and bodies of water that can be represented with vector graphics such as 

points, lines, and polygons (Burrough 2015). Vector data is defined mathematically rather than in 

a grid like raster data. For example, the user can import an aerial map JPEG file of a national 

park (raster) and create point, line, and polygon shapefiles, and then use the Create Features tool 

to digitize features such as buildings, roads and lakes (vector). The result is a map that is an 

abstraction of the original map where features like buildings, roads, and lakes are represented by 

geometric shapes (points, lines, and polygons). 

This same “heads-up” digitizing method is used for this study, but instead of using an 

aerial map of a geographic landscape on Earth and digitizing buildings, roads, and lakes, a raster 

image of human crania will be imported (JPEG radiograph images) and then the frontal sinus 

will be digitized as if it is a geographic feature. This process produces a two-dimensional 

representation of the frontal sinus referred to as a polygon.  

Sample 

To assess frontal sinus pattern matching with ArcGIS, I utilized a subset of cranial 

radiographs from the Forensic Anthropology Center (FAC) at the University of Tennessee. The 

radiographs were taken at the University of Tennessee Student Health Services by Dr. Angi 

Christensen, for her doctoral dissertation (Christensen 2003). The complete collection includes 

radiographs of 423 adult crania from the William M. Bass Donated Skeletal Collection (N = 

257), the Forensic Skeletal Collection (N = 105), and the historic plains Arikara archaeological 

collection (N = 61), all housed at the University of Tennessee, Knoxville. The radiograph 

collection also includes 161 radiographs from the University of Tennessee Student Health Center 
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that were taken for clinical purposes. The Bass Collection is comprised of individuals that 

donated their remains to the FAC Body Donation Program, which began in 1981 and continues 

to receive donations today. All individuals used in the Christensen study, and therefore the 

current study, were donated between 1981 and 2001. This study sample, which is a subset of the 

complete Christensen radiograph collection, consists of 50 males and 50 females, each with two 

separate radiographs to simulate AM and PM images, for a total of 200 radiographs. All of the 

individuals in the subset are from the Bass Collection except for six females that are from the 

Forensic Collection, because there were fewer female donors between the years of 1981 and 

2001 compared to male donors. In addition, some of the females who were radiographed had too 

small or unclear frontal sinus outlines rendering them unsuitable for this study. The study sample 

only includes individuals with the clearest presentation of the frontal sinus because the best 

examples of frontal sinus radiographs are needed to evaluate ArcMap’s ability to create polygons 

representative of the frontal sinus, and the ability of ArcMap’s spatial analyst tools to assess 

these polygons for the purpose of positive identification. 

All of the radiographs used in this study were originally hard copy radiographic images. 

These radiographs needed to be scanned into digital electronic files so that they could be 

uploaded into the ArcMap software program. The radiographs were scanned into Digital Imaging 

and Communication in Medicine (DICOM) files on a Diagnostic Pro Edge scanner at the West 

Virginia School of Osteopathic Medicine in Lewisburg, WV, with the assistance of Dr. Becky 

Kelso, and edited with OsiriX Lite viewer software. Editing was limited to contrast and exposure 

settings to enhance images that were too dark or over-exposed to maximize the visibility of the 

frontal sinuses. Each radiographic image was exported as a Joint Photographic Experts Group 

(JPEG) and saved onto an external hard-drive.  
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Radiograph Methodology 

Dr. Angi Christensen and an x-ray technician produced the cranial radiographs used for 

this study at the University of Tennessee Student Health Center. They used a HoLogic HFP 

Series 100kHz High Frequency machine with the following parameters: KVP (peak kilovoltage): 

48 kVpeak, (50kVpeak for denser skulls), CM (distance from the tube to film): 40 cm, MA (current 

in the x-ray tube): 75 mA, SEC (exposure time): 65 ms. Christensen used a standardized 

methodology to orient all of the crania so that each radiograph would be taken in the same 

orientation and with the image beam running from posterior to anterior. The crania were oriented 

facedown with the midsagittal plane perpendicular to the x-ray plate, and the frontal bone closest 

to the film, which would decrease distortion and increase clarity of the frontal sinus. The skulls 

were also oriented in the “Caldwell view” which involves positioning the crania so that the 

machine is perpendicular to a line running from nasion to the superior border of the external 

auditory meatus (Christensen 2003:66-67). 

In order to simulate AM and PM radiographs, each cranium was radiographed twice 

rather than using a copy of each cranium’s radiograph. Each cranium was radiographed using the 

same methodology, but at separate times so that each cranium would have to be repositioned and 

the second image would be similar to but not an exact copy of the first image (see Figure 3.1). 

This was done to introduce error that would be similar in a forensic case where the practitioner 

must approximate the orientation of the AM radiograph when radiographing the cranium, and it 

is expected that the practitioner will not be able to perfectly replicate the AM orientation 

(Christensen 2003:67).  

Radiographic images are 2-dimensional (2D) and thus prone to distortion and opacity due 

to the presence of overlapping structures within the skull. This can inhibit the visibility of the  
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          Figure 3.1 Simulated AM radiograph (left) and PM radiograph (right)  
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frontal sinus making frontal sinus matching difficult. Computed Tomography (CT) produces 3-

dimensional (3D) images that allow the user to assess features that are not visible with 2D 

radiographic images, particularly anterior to posterior width and volume. This makes CT a useful 

tool for positive identification and sex estimation using the frontal sinus (Akhlaghi, et al. 2016; 

Choi, et al. 2018; Cossellu, et al. 2015; Tatlisumak, et al. 2007). While CT images may provide 

higher resolution 3D images that are better for frontal sinus visualization, cranial radiographs are 

still a common procedure for many individuals, and a large radiograph sample was available and 

readily accessible for study. Sample access and the pervasiveness of radiographs were both 

important factors in the decision to use radiographs for this study, however, another major factor 

was the novelty of this method.  

Methodology Parameters, Sample Organization, and Anonymization 

Methodology parameters were established on a subset of five male and five female 

radiograph pairs (AM and PM) to identify limitations of the ArcMap software and potential 

weaknesses in the proposed methodology. One PM radiograph and five comparative AM 

radiographs, including the corresponding AM match to the PM radiograph, were imported into 

ArcMap 10.5 (ESRI 2018) and displayed as individual data layers in the table of contents. 

Radiographs were not anonymized for the preliminary assessment tests. The initial testing of 

Similarity Search on the subset sample did not reveal any technical limitations given the dataset. 

This initial testing helped to refine the methodology for successfully digitizing the sinuses, 

calculating the area and perimeter values, and formatting the data so that it could be read by the 

Similarity Search tool. 

After initial testing of this method with the subset sample, this process was implemented 

for the complete dataset of 50 males and 50 females. However, prior to implementation, the 
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sample needed to be anonymized and randomized to prevent any bias based on knowledge of the 

case information. Dr. Amy Mundorff anonymized the radiographs by assigning a randomly 

generated number (2018) followed by either an “a” or “b” to denote AM or PM. The randomly 

generated numbers were recorded in an electronic spreadsheet.  

Once the radiographs were anonymized, a fellow graduate student (Megan K. 

Kleeschulte) organized the data into 100 randomized test groups. Each test group contained one 

PM radiograph and a comparative group that was comprised of nine randomly selected AM 

radiographs, as well as the PM radiograph’s corresponding AM radiograph (the true match) for a 

total of 11 radiographs per group (Appendix 1). In addition to the 100 test groups that contained 

a true match, 20 groups (10 males and 10 females) were created using the same process, but no 

true match was included in the group as a means to assess how Similarity Search classifies the 

radiographs when there was not a true match included in the comparative group. In total, the test 

data consisted of 120 test groups, 

The test groups were limited to all male or all female because the sexes were to be 

assessed separately in this study. There has been limited research into sexual dimorphism of the 

frontal sinus, but in a recent study Choi, et al. (2018) used Cone-beam Computed Tomography 

(CBCT) images to assess a new methodology for sex estimation from the frontal sinus. The 

authors measured several variables on the three-dimensional frontal sinus images and used 

logistic regression to determine which variables were significant in determining sex. The authors 

found that volume has a significant influence on the accuracy of their model (an increase of 5%), 

suggesting that frontal sinus volume has significant power of explanation when it comes to sex 

estimation from the frontal sinus. These results are consistent with other studies that have found 

frontal sinus volume to be a distinguishing feature between males and females (Akhlaghi, et al. 
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2016; Nambiar, et al. 1999). Given the above-mentioned studies and the potential for males to 

have sinuses with larger volumes than females, the sexes were assessed as separate groups 

instead of combining them for analysis. This decision was taken in order to minimize the 

confounding variables that might affect the Similarity Search results.  

Additionally, this method is designed to confirm or exclude a potential match, which first 

requires a presumption of the individual’s identity in order to access medical radiographs for 

comparison.  By the time medical records are requested, the practitioner will have already 

estimated the individual’s sex and will only request the medical records of individuals who are 

consistent with the biological profile of the remains. National databases, such as NamUs and 

CODIS, work by including genetic information and case details of both male and female missing 

and unidentified persons so that the user can search a combined pool to find matches. The 

creation of a national frontal sinus database like NamUs or CODIS is not the purpose of this 

method; instead it is designed to provide forensic practitioners with a user-friendly, quantitative 

method for identification when comparative frontal sinus radiographs are available.  

Digitizing the Frontal Sinus 

Once the radiographs had been anonymized and organized into test groups, new 

shapefiles were created in ArcCatalog (ESRI 2018) for each of the radiograph data layers (Figure 

3.2). Shapefiles are a file format for storing location and attribute information about geographic 

features, which can be represented as a point, a line, or a polygon. In this case, each shapefile 

was designated as a polygon (Figure 3.3). The new shapefiles and JPEG radiographs were then 

imported into the table of contents in ArcMap in order to be able to edit the file to create the 

polygons. (Figures 3.4 and 3.5). For each AM radiograph and the one PM radiograph, the JPEG 

data layer was selected, its corresponding shapefile was selected, and the polygon tool in the  
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       Figure 3.2 Creation of shapefiles in ArcCatalog 
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     Figure 3.3 Designating each shapefile as a polygon in ArcCatalog 
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  Figure 3.4 Importing JPEG files into ArcMap 
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  Figure 3.5 Importing shapefiles into ArcMap 

 

 

 

 

 



   33 

Create Features toolbar was used to create the outline of the frontal sinus (Figure 3.6). To create 

the outline, the computer mouse was used to click around the perimeter of the entire sinus 

(Figure 3.7). The polygon tool places one point per click and the points are linked by lines. 

Sinuses that have a lot of shape change will require more points to be placed by the user than 

frontal sinuses that have less shape change and more straight segments. For example, a square 

can be accurately digitized by only placing a point at each corner, but a lake with very curved 

borders will require more points to be placed along those borders to accurately capture the 

curved shape of the lake. Once the user has clicked around the entire sinus with as many points 

as necessary to sufficiently capture the shape, a polygon is created (Figure 3.8). The polygon is 

then saved to its corresponding shapefile.  

The radiograph JPEG data layers were then unselected in the table of contents so that 

only the frontal sinus polygons were visible in ArcMap (Figure 3.9). In ArcMap, each polygon 

shape is considered a feature layer and each polygon or feature has an attribute table 

automatically produced by ArcMap. An attribute table contains fields (columns) and records 

(rows), where each field is a specific attribute or characteristic of that feature. For example, a 

polygon that represents a city may have fields in the attribute table for total population, gross 

median income, demographics, and more. For each polygon, the attribute table contains three 

fields: Feature Identifier (FID), Shape (which in this case is polygon), and Identifier (ID). The 

FID and ID fields are automatically generated by ArcMap. In addition to these fields, other 

attributes can be manually added as fields by the user. For this study, three new fields were 

added to each polygon’s attribute table: AM_ID or PM_ID for AM or PM polygons, respectively, 

Area, and Perimeter (see Figure 3.10). Using the editor tool, the anonymized donor ID was  
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                      Figure 3.6 Create Features tool 
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    Figure 3.7 Digitizing the frontal sinus 

 

 

 

 

 

 



   36 

 

 

   Figure 3.8 Completed frontal sinus polygon 

 

 

 

 

 

 

 



   37 

 

 

 

  Figure 3.9 Frontal sinus polygon without the radiograph 
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  Figure 3.10 Adding new field to attribute table 
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manually entered under the AM_ID/PM_ID field for each polygon to ensure that each polygon’s 

attribute table also contained its ID number for easy tracking. 

Calculating Area and Perimeter 

ArcMap can automatically calculate the geometry of polygons, including the area and 

perimeter values, by right-clicking on the field in the attribute table. In this case, the user right-

clicks on the Area and Perimeter fields, selects Calculate Geometry from the drop-down menu, 

and then selects either area or perimeter from the drop-down menu (see Figures 3.11 – 3.13). 

ArcMap automatically calculates area or perimeter for that polygon and adds the value to the 

corresponding field in the attribute table (see Figure 3.14).  

The resulting values are not labeled with units in the metric or imperial system (meters, 

centimeters, feet, inches, etc.) because a geographic projection was not applied to the 

radiographs. For example, an aerial image of a national park will have geographic locational 

information and units of measurement, like meters, tied to it allowing any measurement to be 

done in meters. This study is using ArcMap in a way that is outside of its intended purpose by 

assessing features of the skull as if they are geographic features. While skeletal features are not 

calculated in geographical spatial units and are not geographic features of the Earth, the area and 

perimeter of the features can still be calculated because the radiographs, once imported, exist in a 

defined relational space. Each data layer that is added is assumed to be spatially related unless 

the user tells ArcMap otherwise. So, the area and perimeter values are meaningful in relation to 

one another and the values can be assessed.  
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   Figure 3.11 Calculate Geometry tool 
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   Figure 3.12 Calculating area 
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   Figure 3.13 Calculating perimeter 
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  Figure 3.14 Final geometry calculation in attribute table 
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A frontal sinus polygon that has a larger area and perimeter value than another polygon can still 

be said to be different relative to that polygon. However, if the radiographs are not the same 

dimensions or were taken at different orientations then the polygons would not be able to be 

compared directly. 

Similarity Search  

Once area and perimeter were calculated for each polygon the AM polygon shapefiles 

were merged into one data layer using the Merge tool (see Figure 3.15). This tool combines the 

polygons into one data layer, which combines their attribute tables into one table where each row 

represents one polygon (see Figure 3.16). Once the polygons have been merged into a single data 

layer, the Similarity Search tool can be used. This tool is part of ArcMap’s Mapping Clusters 

toolset which is part of the Spatial Statistics Toolbox in Arc Toolbox. The mapping cluster tools 

are designed to identify spatial clusters and outliers. Similarity Search can identify Candidate 

Features that are most similar or dissimilar to the Input Features to Match based on averages of 

the Attributes of Interest. Candidate Features are ranked from most to least similar by a 

similarity index value that is calculated by Similarity Search. Similarity Search calculates the 

similarity index from standardized values of the Attributes of Interest, which were area and 

perimeter. This involves a Z – transform of the attribute values. The Z – score is calculated by 

subtracting the mean of all values from each attribute value and then dividing that by the 

standard deviation for all values (both the Input Features to Match and Candidate Features). This 

Z – transform puts all of the data on the same scale. Once this is complete, Similarity Search 

calculates the similarity index value for each Candidate Feature. This is done by subtracting the 

standardized values (area and perimeter) of each Candidate Feature from the standardized values 

of the Input Feature to Match (area and perimeter), squaring the difference, and adding the  



   45 

 

 

 

 

  Figure 3.15 Merge tool 
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  Figure 3.16 Attribute table for merged AM polygons 
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squared differences together. The sum of the squared differences is the similarity index value 

that is used to rank each Candidate Feature from lowest index value (most similar) to highest 

index value (least similar) (pro.arcgis.com 2018a). 

  This tool is used in many scenarios within geography such as finding cities that have 

similar population levels and demographics or finding crimes within the past month that share 

specific attributes such as location and number of victims with one specific type of crime. For 

this study, Similarity Search identifies which AM frontal sinus polygon (Candidate Features) is 

most similar to the PM frontal sinus polygon (Input Features to Match) based on area and 

perimeter values (Attributes of Interest) in order to test the hypothesis that ArcMap and its tools 

(Similarity Search) can identify a frontal sinus match for the purpose of positive identification 

(pro.arcgis.com 2018b).  

For each of the 120 test groups the Input Features to Match was the PM frontal sinus 

polygon, the Candidate Features was the merged data layer of all 10 AM frontal sinus polygons, 

and the Similarity Search tool was instructed to produce a list of 10 results ranking the polygons 

from most similar to least similar based on the area and perimeter values of the PM polygon 

(Figure 3.17). Once this information was entered, Similarity Search began its analysis and 

produced 10 polygons that were all color-coded in a blue gradient based on their similarity to the 

PM frontal sinus (Figure 3.18). In the ArcMap table of contents each color is coded with a 

number one through five. One, most similar, is coded as dark blue and five, least similar, is 

coded as a light blue/green to visually show the most and least similar polygons as well as the 

progression of the polygons from most to least similar (Figure 3.19).  

The Similarity Search results also have an attribute table that lists the similarity rank of 

each polygon and its similarity index (SIMINDEX), which is a numerical value that represents  
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   Figure 3.17 Similarity Search tool 
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   Figure 3.18 Polygons color coded from most similar (blue) to least similar (light green) 
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    Figure 3.19 Table of Contents displaying color codes 
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how similar that polygon is to the PM polygon. Polygons with a similarity index closer to zero 

are more similar to the PM polygon than polygons with a similarity index farther from zero. A 

similarity index of 0 indicates a perfect match (Figure 3.20). 

Analysis 

Inter-observer Variation 

 

SPSS 25 was used to calculate all of the statistical tests for this study (IBM Corp 

Released 2017). An inter-observer study was conducted to assess how different practitioners 

might create differently-shaped polygons based on the same frontal sinus scan. Quality of the 

JPEG radiograph images, exposure, contrast, the computer screen, and personal experience 

assessing frontal sinuses can all affect how the observer chooses which areas to include in the 

frontal sinus outline and how to define the lower boundary of the sinus, which can be very 

unclear on radiographic images. To assess inter-observer variation, a group of faculty (N = 4), 

including a post-doctoral researcher, and graduate students (N = 6) from the Department of 

Anthropology at the University of Tennessee were asked to create polygons for one test group 

(11 radiographs total) (Appendix 2). Each participant was provided access to the same computer 

loaded with the ArcGIS 10.5 software, the radiograph images, and shapefiles. Therefore, each 

participant was only required to digitize the frontal sinuses. Participants were also provided 

verbal and written instructions on how to create the frontal sinus polygons. Once each participant 

completed the polygons for the test group, area and perimeter values were calculated for each 

polygon in the attribute tables using the Calculate Geometry tool in ArcMap.  

Next, all of the polygons created during the inter-observer study, along with the 

corresponding polygons created during the original study, were moved into separate folders for  
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Figure 3.20 Similarity Search results attribute table. Red = the similarity index value and the Candidate ID of each   

polygon. Orange = Input Feature to Match (PM polygon. Dark Blue = polygon ranked as most similar. Light blue 

= polygon ranked as least similar  
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each individual using ArcCatalog. Once all of the individuals were organized into their 

respective folders in ArcCatalog, each donor’s polygons (11 total) were imported into a new 

ArcMap file. The 10 polygons created by the inter-observer participants were merged into a 

single data layer using the Merge tool. The Similarity Search tool was run for each donor’s group 

of 11 polygons where the polygon I created was the Input Feature to Match, and the inter-

observer participants’ merged polygons (10 total) were the Candidate Features. Similarity 

Search was instructed to produce 10 results and to indicate the most similar polygon based on the 

area and perimeter values. The Similarity Search output was the same as the 100 test groups 

described previously with the most similar polygon labeled as “1” and indicated with a dark blue 

color, and the least similar polygon labeled as “10” and indicated with a pale blue/green color. 

Once this was complete for all 11 donors in the inter-observer test group, the Similarity Search 

attribute tables for each donor were exported as an electronic spreadsheet.  

Hierarchical cluster analysis using Ward’s Method with four defined clusters was used to 

see how the inter-observer participants clustered based on the area and perimeter values of their 

polygons. Kolmogorov-Smirnov (KS) and Shapiro-Wilk (SW) tests of normality were also run 

and Q-Q Plots were produced on the clusters for area, perimeter, and similarity index values to 

see if the data for each of these values was normally distributed. The Coefficient of Variation 

(𝐶𝑣 =  
𝜎

𝜇
 ), which is the ratio of the standard deviation () to the mean (), was calculated from 

the average area and perimeter values of the polygons created for each donor by the 

interobserver participants. The Cv value will show the extent of variability in relation to the mean 

of each donor polygon. It is important to establish the variability in how the frontal sinus 

polygons were created by different individuals as this variability could affect the area and 

perimeter values of the polygons, which in turn could affect the Similarity Search results. Using 
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the means of the area and perimeter values of each observer’s polygons, Levene’s test and a one 

– way ANOVA were conducted to analyze the variance among observers. Descriptive statistics 

were produced for the area, perimeter, and similarity index values for each cluster and each 

observer. Finally, the inter-observer polygons Similarity Search identified as most and least 

similar for each donor were reported. 

Intra-observer Variation 

 

Intra-observer analysis was conducted to assess my consistency in creating multiple 

polygons for the same individual. Some of the same factors that may influence the shape of the 

polygons between observers may also affect the shape of polygons created by a single observer. 

For example, image quality and familiarity with the frontal sinus will affect the ability of the 

observer to distinguish the full boundaries of the sinus, as well as overall fatigue from repetitive 

clicking with a mouse. Using a computer mouse, I created frontal sinus polygons in ArcMap for 

120 test groups, each containing 11 individuals for a total of 1,320 polygons. The 60 female 

groups and 60 male groups were each created from a pool of 49 males and 49 females, 

respectively. As a result, an individual’s AM radiograph is present in multiple test groups – and 

each time it was part of a test group the sinus was traced to create a new polygon. Therefore, 

multiple polygons from a single individual can be compared for variability in similarity index, 

area, and perimeter values. Of the 100 donors in my sample, 98 could be assessed for intra-

observer variability. Two individuals that could not be assessed for intra-observer variation 

because one (192a) was only present in one test group, and the other (162a) was only present in 

three groups, which is too few replicates to successfully conduct a Similarity Search test. This 

condition occurred because the test groups were created by randomly selecting donors from the 

sample pool so not all donors appeared in the same number of test groups.  
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In order to assess intra-observer variability, all of the polygons created for each donor 

were moved into their own folders using ArcCatalog in the order in which they were created. For 

example, individual 11a was digitized 25 times. The polygons for individual 11a were moved 

into a new folder in the order in which they were digitized, with the first polygon labeled as 11a 

and all subsequent polygons named 11a (1), 11a (2), etc. so that each polygon could be 

differentiated. Once each donor was contained in an individual folder, their polygons were 

imported into a new ArcMap file. All polygons, except for the first one created, were merged 

into a single data layer using the Merge tool. Similarity Search was run for each donor’s group of 

AM polygons. The first polygon, which was left out of the merged set, was the Input Feature to 

Match and the merged polygons were the Candidate Features. I instructed Similarity Search to 

produce the same number of results as there were polygons in the merged data layer so that each 

one would receive a similarity rank, and I instructed the tool to indicate which was most similar 

to the Input polygon based on the area and perimeter values. Once this was complete for all 98 

donors, each donor’s Similarity Search output attribute table was exported into a separate 

electronic spreadsheet. This attribute table contained the similarity rank of each AM polygon for 

that donor, the area and perimeter values, and the similarity index value. The mean, standard 

deviation, minimum and maximum values were calculated for each donor’s polygons from the 

area, perimeter, and similarity index values. The Coefficient of Variation (Cv) was calculated 

from the average area and perimeter values of the polygons for each donor that appeared in 

multiple test groups (N = 98). The Cv will show the extent of variability in terms of area and 

perimeter within each donor. 
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Similarity Search Accuracy 

 

A spreadsheet was developed to track the Similarity Search results and record whether 

Similarity Search identified the true match as the most similar or not. Out of the 100 test groups 

that contained a true match, the number of groups where Similarity Search correctly identified 

the true match as “most similar” was recorded. The percentage of correct identifications was 

calculated and recorded in the spreadsheet. Descriptive statistics were also produced for area, 

perimeter, and similarity index values of the male and female AM polygons that were correctly 

identified as most similar. Where Similarity Search did not correctly identify the true match as 

“most similar”, the ID of the polygon identified as most similar was recorded along with the 

similarity rank of the true match.  

No True Match vs. True Match 

 

Radiographs from the 20 donors who comprised the 20 no-match groups were also 

included in the 100 groups that contained a match, as part of the comparative polygons. 

Therefore, the similarity index value of each donor’s true match polygon was able to be 

compared to the similarity index value of the polygon that Similarity Search identified as most 

similar, when no true match was present. A new electronic spreadsheet was developed to include 

Donor ID, True Match, No True Match, and SIMRANK (Similarity Rank). The True Match 

column contained the similarity index value of each donor’s true match, regardless of whether 

Similarity Search correctly identified it as “most similar”. The No True Match column contained 

the similarity index value of the polygon Similarity Search identified as “most similar” when no 

true-match was present. The SIMRANK column contained the Similarity Rank of the true match 

value. This was done to show whether Similarity Search correctly identified the true match as 

“most similar” (rank = 1) or not. The similarity index values are non-normal data so non-
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parametric tests were required. A Wilcoxon Signed Rank test was run to assess the statistical 

difference between the True Match and No True Match similarity index values. 

Similarity Index Range for Correctly Identified Polygons 

 

In addition to assessing inter-observer and intra-observer error, the threshold for what is 

considered a match by the Similarity Search tool had to be established. First, each test group 

where Similarity Search correctly identified the match was opened in ArcMap. The attribute 

tables for the Similarity Search results and the AM polygon that is the true match were opened. 

A new field called SIMINDEX was added to the AM polygon’s attribute table. From the 

Similarity Search attribute table, the similarity index value of that same polygon was copied and 

pasted into the attribute table of the AM polygon. This was done for each test group where 

Similarity Search correctly identified the match. Each female AM polygon that was correctly 

identified by Similarity Search was imported into a new ArcMap file, and the same was done for 

each male AM polygon that was correctly identified by Similarity Search. The attribute tables for 

these polygons then contained their similarity index value. All of the female AM polygons were 

merged into one data layer using the Merge tool, and the same was done for all of the male AM 

polygons. Once this was complete all of the polygons and their attributes were combined into 

one attribute table and the similarity index values of the female sample and the male sample were 

able to be viewed. This allows the observer to see the entire range of similarity index values for 

polygons that were correctly identified by Similarity Search, which will inform the threshold for 

a similarity index value to be considered a potential match. 
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Each Donor to Entire Sample 

 

Similarity Search was re-run again on each individual in the sample. The Input Feature to 

Match was the PM polygon of each donor, but instead of only searching for Candidate Features 

in a test group of 10 individuals it searched for matches from the entire sample of 100 male or 

female AM and PM frontal sinus polygons. So, each PM polygon for the female donors was 

compared to one AM and one PM polygon from every female in the sample (100 polygons total). 

The same process was completed for the male donors. Each process produced 100 Similarity 

Search output attribute tables (one for each donor in the sample), which were exported into 

electronic spreadsheets. Hierarchical cluster analysis using Ward’s Method with four defined 

clusters was conducted based on the area and perimeter similarity index values of the polygons. 

For each donor’s PM polygon, descriptive statistics were produced from the area, perimeter, and 

similarity index values of the donor polygons that appeared in each of the four clusters. So, the 

mean, standard deviation, minimum, and maximum values were produced for clusters 1 – 4. 

Using the minimum and maximum similarity index values of cluster 1 for every donor, a 

similarity index range can be determined.  

Summary 

The inter-observer and intra-observer analyses will help to determine if there was 

significant variation within and between observers. This is important because statistically 

significant intra and inter-observer variation would mean that the area and perimeter values of 

each donor’s polygons and the polygons created by different observers are significantly different, 

potentially limiting the universal applicability of this method. Since Similarity Search is 

identifying which polygon is the most similar based on the area and perimeter values of other 
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polygons in the test group, significant variation in these values within and between observers 

will affect the ability of Similarity Search to correctly identify a match. 

In addition to understanding the accuracy of Similarity Search and the intra and inter-

observer variation, a threshold of similarity index values needs to be established. Using the 

results of the cluster analyses, and the range of similarity index values of correctly identified 

polygons, an overall range of similarity index values can be established. If successful, this range 

is designed to be used by an examiner to determine if the similarity index value of the frontal 

sinus polygon Similarity Search identified as the “most similar” indicates a potential match or 

not. 
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CHAPTER 4: RESULTS 

This chapter presents results from the statistical analyses discussed in chapter 3. First, the 

results of the inter-observer cluster analyses and the coefficient of variation and descriptive 

statistics for each observer are presented. Next, the coefficient of variation results for the intra-

observer analysis are presented. The overall accuracy of the Similarity Search tool and 

descriptive statistics for the donors it correctly identified as most similar are presented. The two 

similarity index values for the donors present in test groups where the true match was present, 

and where the true match was not present, assessed using Wilcoxon Signed Rank test, are 

presented. Finally, the similarity index range for correctly identified polygons, and Hierarchical 

Cluster Analyses of the Similarity Search results for each male and female donor compared to 

every other male and female donor, respectively, are presented. The overall similarity index 

range for males and females is determined from these cluster analyses. The following chapter, 

chapter 5, is a discussion of these results.  

Inter-observer Variation 

Hierarchical Cluster Analysis 

 

 Hierarchical Cluster Analysis using Ward’s Method with four defined clusters was 

conducted to show which donors and which polygons appeared in clusters one through four. 

Clusters represent groups of polygons that are different from each other, with Clusters 1 and 4 

being the most different. All observers (0-9) except for observer 10 had their 11a polygon 

present in Cluster 1 (Table 4.1). 
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Table 4.1 Donors present in Cluster 1 for each observer 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Observer ID Donor ID 

0 11a 

1 11a 

2 11a 

3 11a 

4 11a 

5 11a 

6 11a 

7 11a 

8 11a 

9 11a 
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Cluster 2 consisted of polygons from all 11 observers (0-10). Seven of the observers all had 

polygons for donors 18a, 41a, 6a and 7a present in Cluster 2, while four observations (4, 5, 8 and 

10) deviated from this pattern (Table 4.2). Cluster 3 consisted of polygons for all 11 observers 

(0-10). Seven of the observers had polygons from donors 1b, 35a, 58a, and 66a present. Again, 

observers 4, 5, 8 and 10 deviated from this pattern (Table 4.3). 

 Finally, Cluster 4 consisted of polygons for all 11 observers (0-10) with all observers 

except observer 5 having polygons 2a and 80a present. The main inter-observer outliers of the 

observer group were observers 4, 5, 8 and 10. Observers 4 and 5 differed from the majority for 

donors 41a, 7a, 6a and 80a. Observer 8 differed from the majority for donors 7a and 58a. 

Observer 10 differed from the majority for donors 1b, 35a, 41a, and particularly 11a which 

appeared in Cluster 3 as opposed to all other observers whose 11a polygons all appeared in 

Cluster 1 (Table 4.4). 

The Kolmogorov-Smirnov (KS) and Shapiro-Wilk tests show that the area values for all 

four clusters are not significantly different from a normal distribution (Table 4.5). The KS test 

showed that the perimeter values in Clusters 1 and 4 are not significantly different from a normal 

distribution whereas the KS test showed that Clusters 2 and 3 are significantly different from a 

normal distribution (see Table 4.5). The Q-Q plots for the perimeter values of Clusters 2 and 3 

show points deviating from the trend line, but Cluster 4’s values fit the trend line (see Figures 4.1 

– 4.3). The Shapiro-Wilk test showed that only the perimeter values of Cluster 4 are not 

significantly different from a normal distribution, which is consistent with the Q-Q plot which 

shows the Cluster 4 values following the trend line (see Figure 4.3).  
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Table 4.2 Donors present in Cluster 2 for each observer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observer ID Donor ID 

0 18a, 41a, 6a, 7a 

1 18a, 41a, 6a, 7a 

2 18a, 41a, 6a, 7a 

3 18a, 41a, 6a, 7a 

4 18a, 6a 

5 18a, 41a, 80a 

6 18a, 41a, 6a, 7a 

7 18a, 41a, 6a, 7a 

8 18a, 41a, 58a, 6a 

9 18a, 41a, 6a, 7a 

10 18a, 1b, 35a, 6a, 7a 
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Table 4.3 Donors present in Cluster 3 for each observer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observer ID Donor ID 

0 1b, 35a, 58a, 66a 

1 1b, 35a, 58a, 66a 

2 1b, 35a, 58a, 66a 

3 1b, 35a, 58a, 66a 

4 1b, 35a, 41a, 58a, 66a, 7a 

5 1b, 35a, 58a, 66a, 6a, 7a 

6 1b, 35a, 58a, 66a 

7 1b, 35a, 58a, 66a 

8 1b, 35a, 66a, 7a 

9 1b, 35a, 58a, 66a 

10 11a, 58a, 66a 
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Table 4.4 Donors present in Cluster 4 for each observer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observer ID Donor ID 

0 2a, 80a 

1 2a, 80a 

2 2a, 80a 

3 2a, 80a 

4 2a, 80a 

5 2a  

6 2a, 80a 

7 2a, 80a 

8 2a, 80a 

9 2a, 80a 

10 2a, 41a, 80a 
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Table 4.5 Tests of Normality for area, perimeter and SIMINDEX by cluster 

 

 

 

 

 

 

 

 

 

Ward Method Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Area 1 0.199 10 .200* 0.915 10 0.315 

2 0.096 42 .200* 0.963 42 0.193 

3 0.063 47 .200* 0.986 47 0.822 

4 0.171 22 0.092 0.938 22 0.176 

Perimeter 1 0.222 10 0.179 0.828 10 0.031 

2 0.161 42 0.008 0.844 42 0.000 

3 0.152 47 0.008 0.778 47 0.000 

4 0.149 22 .200* 0.941 22 0.210 

SIMINDEX 1 0.226 10 0.161 0.808 10 0.018 

2 0.247 42 0.000 0.720 42 0.000 

3 0.239 47 0.000 0.792 47 0.000 

4 0.202 22 0.020 0.839 22 0.002 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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  Figure 4.1 Normality plot of perimeter values for Cluster 2 
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  Figure 4.2 Normality plot of perimeter values for Cluster 3 
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  Figure 4.3 Normality plot of perimeter values for Cluster 4 
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The KS test showed that only the Cluster 1 similarity index values are not significantly 

different from a normal distribution, and the Shapiro-Wilk test showed that the similarity index 

values for all four clusters are significantly different from a normal distribution (see Table 4.5). 

The Q-Q Plots for all four clusters show similarity index values that do not follow the trend line, 

which supports the conclusion of the Shapiro-Wilk test that the similarity index values are not 

normally distributed (see Figures 4.4 – 4. 7). The mean area, perimeter, and similarity index 

values for Clusters 1, 2, 3 and 4 are presented in Tables 4.6 – 4.9.  

Coefficient of Variation (Cv) and Analysis of Variance (ANOVA) 

The Coefficient of Variation was calculated from the average area and perimeter values 

of the polygons from the donors in the inter-observer test group. For area, donor 66a had the 

lowest variance (7%) and donor 41a had the highest variance (38%) (Table 4.10). For perimeter, 

donor 1b had the lowest variance (4%) and donor 41a had the highest variance (26%) (Table 

4.11). The Test of Homogeneity of Variances shows that Levene’s test is not significant for area 

(F(10, 110) = 0.135, p = 0.999) or perimeter (F(10, 110) = 0.377, p = 0.954) so the variance in 

area and perimeter values between observers is not significant. The One-Way ANOVA results 

showed that there was not a statistically significant difference between observers for the area 

(F(10, 110) = 2.661,  p = 0.935) and perimeter values (F(10, 110) = 0.470,  p = 0.906). This 

supports the Cv results which show the low variance for area (38%) and perimeter (26%).  

Descriptive Statistics and Similarity Search Results 

 

The mean area, perimeter, and similarity index values for all polygons created by inter-

observer participants (N = 121) are presented in Table 4.12. The mean area, perimeter, and  
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  Figure 4.4 Normality plot of similarity index values for Cluster 1 

 

 

 

 

 

 

 



   72 

 

 

 

 

  

 Figure 4.5 Normality plot of similarity index values for Cluster 2 
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  Figure 4.6 Normality plot of similarity index values for Cluster 3 
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  Figure 4.7 Normality plot of similarity index values for Cluster 4 
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Table 4.6 Descriptive statistics for Cluster 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 1 Minimum Maximum Mean Std. Deviation 

Area 28420.50 32946.40 30644.00 1624.90 

Perimeter 995.46 1245.74 1064.86 80.67 

SIMINDEX 0.00 10.17 2.62 3.22 
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Table 4.7 Descriptive statistics for Cluster 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 2 Minimum Maximum Mean Std. Deviation 

Area 7414.26 14405.90 10970.17 304.39 

Perimeter 426.27 1048.12 594.19 17.11 

SIMINDEX 0.00 22.10 3.77 0.82 
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Table 4.8 Descriptive statistics for Cluster 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 3 Minimum Maximum Mean Std. Deviation 

Area 15039.70 22398.70 18058.97 230.63 

Perimeter 557.87 1169.33 675.24 15.50 

SIMINDEX 0.00 12.58 2.82 0.49 
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Table 4.9 Descriptive statistics for Cluster 4 

 

 

  

 

 

 

 

 

 

 

 

Cluster 4 Minimum Maximum Mean Std. Deviation 

Area 2819.54 6741.99 4540.56 1092.91 

Perimeter 265.68 425.42 329.58 46.33 

SIMINDEX 0.00 12.89 3.25 3.59 
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Table 4.10 Mean, standard deviation, and Cv of area values for each donor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Stand Deviation 

Coefficient of 

Variation 

1b 18057.12 2705.91 0.15 

2a 4461.00 1088.52 0.24 

6a 12835.64 2143.35 0.17 

7a 13815.63 3672.16 0.27 

11a 29894.43 2925.19 0.10 

18a 9135.20 1308.82 0.14 

35a 17693.73 1720.88 0.10 

41a 10550.30 3960.87 0.38 

58a 16159.70 1582.44 0.10 

66a 18100.61 1310.79 0.07 

80a 5283.11 1875.75 0.36 

    Min 0.07 

    Max 0.38 
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Table 4.11 Mean, standard deviation, and Cv of perimeter values for each donor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean 

Stand 

Deviation 

Coefficient of 

Variation 

1b 610.07 26.28 0.04 

2a 332.57 39.32 0.12 

6a 599.91 66.91 0.11 

7a 689.81 76.94 0.11 

11a 1074.36 82.76 0.08 

18a 555.41 21.55 0.04 

35a 736.35 135.36 0.18 

41a 531.43 139.99 0.26 

58a 596.47 59.82 0.10 

66a 711.96 33.84 0.05 

80a 342.74 65.31 0.19 

    Min 0.04 

    Max 0.26 
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Table 4.12 Descriptive statistics for all observations 

 

 

 

 

 

 

 

 

 

 

  N Minimum Maximum Mean Std. 

Deviation 

Area 121 2819.54 32946.40 14180.59 7198.47 

Perimeter 121 265.68 1245.74 616.46 206.79 

SIMINDEX 121 0.00 22.10 3.21 4.14 
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Table 4.13 Descriptive statistics of area, perimeter, and similarity index values for each observer 

 

Obs ID N Minimum Maximum Mean Std. 

Deviation 

0 Area 11 3690.39 28420.50 13408.32 7424.60 

Perimeter 11 271.78 997.10 567.48 203.36 

SIMINDEX 11 0.00 0.00 0.00 0.00 

1 Area 11 4067.06 32460.60 14314.40 7923.42 

Perimeter 11 326.73 1080.80 638.72 194.40 

SIMINDEX 11 0.02 7.54 2.80 2.37 

2 Area 11 3443.17 32198.60 13889.84 8219.57 

Perimeter 11 265.68 1062.85 563.10 213.37 

SIMINDEX 11 0.01 2.91 1.05 1.14 

3 Area 11 3641.13 31951.00 13614.67 7938.18 

Perimeter 11 292.34 1156.85 613.76 225.99 

SIMINDEX 11 0.12 13.66 3.14 4.11 

4 Area 11 4392.60 28933.40 15967.12 7363.93 

Perimeter 11 314.31 1009.26 625.64 198.08 

SIMINDEX 11 0.06 10.84 2.64 3.67 

5 Area 11 6219.10 29588.50 16640.39 6459.98 

Perimeter 11 347.87 1063.65 629.63 179.70 

SIMINDEX 11 0.03 22.10 5.44 6.52 

6 Area 11 6577.13 30655.30 14117.36 6792.06 

Perimeter 11 375.50 995.46 605.26 168.22 

SIMINDEX 11 0.04 12.89 3.11 4.02 

7 Area 11 5124.37 29488.60 14079.98 7075.06 

Perimeter 11 341.69 1005.79 582.59 176.40 

SIMINDEX 11 0.06 3.97 1.89 1.31 

8 Area 11 4155.96 32946.40 14494.46 7875.48 

Perimeter 11 313.98 1031.13 602.64 194.64 

SIMINDEX 11 0.04 15.97 4.13 4.79 

9 Area 11 4033.50 29797.10 14484.13 7616.65 

Perimeter 11 292.90 1245.74 723.60 260.20 

SIMINDEX 11 0.15 12.58 6.66 3.64 

10 Area 11 2819.54 22398.70 10975.79 6191.88 

Perimeter 11 280.75 1169.33 628.67 282.61 

SIMINDEX 11 0.00 17.68 4.46 5.65 
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similarity index values for all observations are presented in Table 4.13. Observer 3’s mean area 

was the closest to observer 0’s mean area. Observer 2’s mean perimeter was the closest to 

observer 0’s mean perimeter. Observer 2’s mean similarity index was closest to observer 0’s 

mean similarity index (see Table 4.13).  

All of the polygons the inter-observer participants created for each donor from the test 

group were run in Similarity Search. The Input Features to Match was observer 0’s polygon 

(me), and the Candidate Features were the polygons created by observers 1 – 10. Table 4.14 

presents the Similarity Search rank order of the first (most similar) and last (least similar) 

observers for each donor. 

Intra-observer Variation 

Coefficient of Variation 

 

Intra-observer variation was assessed for donors with polygons present in multiple test 

groups (98/100). The Coefficient of Variation (Cv) was calculated from the average area and 

perimeter values of the polygons created for 98 of the 100 donors in the sample. For the female  

donors, donor 48a had the lowest variance (0.6%) for area and donor 80a has the highest 

variance (35%) (Table 4.15). For perimeter, donor 82a had the lowest variance (0.7%) and donor 

80a had the highest variance (20%) (Table 4.16). For the male donors, donor 105a had the lowest 

variance (7%) for area and donor 176a had the highest variance (22%) (Table 4.17). For 

perimeter, donor 163a had the lowest variance (0.4%) and donor 132a had the highest variance 

(5%) (Table 4.18). Graphs of donors 48a, 80a, 82a, 105a, 176a, 163a, 132a illustrate the  
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Table 4.14 Observers ranked first and last by Similarity Search for each donor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Donor ID First Ranked Observer Last Ranked Observer 

1b 7 10 

2a 2 6 

6a 6 5 

7a 10 4 

11a 4 9 

18a 4 8 

35a 6 10 

41a 8 9 

58a 5 9 

66a 2 9 

80a 2 5 
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 Table 4.15 Coefficient of Variation of average area for female donors 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

48a 9627.31 60.36 0.006 

45a 10383.88 194.62 0.019 

23a 14593.18 279.82 0.019 

50a 10886.07 222.15 0.020 

83a 6918.56 221.78 0.032 

82a 23666.58 786.68 0.033 

66a 19468.12 678.74 0.035 

34a 12476.05 438.49 0.035 

99a 819.86 34.36 0.042 

58a 16568.77 723.94 0.044 

52a 22390.84 1032.12 0.046 

11a 33595.17 1619.40 0.048 

86a 8682.11 441.37 0.051 

54a 7558.67 384.66 0.051 

95a 10998.84 737.95 0.067 

35a 19678.16 1367.90 0.070 

27a 30551.83 2236.24 0.073 

15a 15939.53 1235.99 0.078 

53a 27927.55 2276.43 0.082 

47a 12660.00 1120.26 0.088 

94a 8681.51 786.03 0.091 

38a 7172.14 654.79 0.091 

72a 10146.61 960.54 0.095 

73a 20667.21 1967.30 0.095 

37a 9697.60 935.68 0.096 

57a 10449.27 1026.65 0.098 

100a 6755.70 696.47 0.103 

36a 6865.87 726.23 0.106 

71a 13130.51 1398.57 0.107 

97a 11388.58 1221.53 0.107 

29a 11293.63 1261.37 0.112 

79a 4982.63 604.49 0.121 

68a 46067.11 5710.58 0.124 

87a 7733.82 984.15 0.127 

18a 9401.80 1262.93 0.134 

44a 9105.88 1236.60 0.136 

67a 12495.08 1834.96 0.147 

6a 14439.53 2160.28 0.150 
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Table 4.15 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

76a 7033.23 1057.76 0.150 

40a 12765.60 1969.98 0.154 

7a 12210.16 1949.26 0.160 

2a 3638.01 604.88 0.166 

62a 7128.06 1303.78 0.183 

25a 16895.80 3215.19 0.190 

55a 11604.26 2325.50 0.200 

28a 10011.44 2412.04 0.241 

41a 9902.45 2657.22 0.268 

46a 10313.82 3321.41 0.322 

92a 4759.71 1539.37 0.323 

80a 4522.63 1569.22 0.347 
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Table 4.16 Coefficient of Variation of average perimeter for female donors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

48a 462.61 3.03 0.007 

82a 683.52 4.75 0.007 

58a 575.25 4.75 0.008 

23a 565.83 4.92 0.009 

50a 689.10 7.31 0.011 

11a 984.67 12.40 0.013 

45a 546.74 7.40 0.014 

27a 994.83 16.18 0.016 

18a 529.87 10.04 0.019 

57a 493.90 9.38 0.019 

86a 458.09 9.43 0.021 

100a 448.49 9.40 0.021 

66a 699.24 15.42 0.022 

73a 737.52 16.36 0.022 

99a 129.43 2.92 0.023 

37a 486.97 11.11 0.023 

34a 542.29 13.25 0.024 

44a 509.49 12.82 0.025 

53a 963.63 25.65 0.027 

28a 541.22 15.30 0.028 

72a 441.74 14.06 0.032 

54a 394.31 12.96 0.033 

95a 535.74 18.37 0.034 

15a 560.23 19.96 0.036 

25a 608.25 23.51 0.039 

94a 516.46 20.97 0.041 

67a 608.05 25.81 0.042 

52a 712.12 30.85 0.043 

35a 677.17 29.59 0.044 

71a 602.39 30.34 0.050 

55a 495.70 24.97 0.050 

97a 519.36 27.28 0.053 

47a 608.23 33.12 0.054 

6a 628.75 34.61 0.055 

29a 482.83 28.59 0.059 
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 Table 4.16 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

40a 532.40 32.65 0.061 

68a 1131.48 69.40 0.061 

87a 420.16 26.35 0.063 

7a 665.45 43.94 0.066 

79a 325.76 22.17 0.068 

92a 370.48 25.51 0.069 

2a 299.15 21.38 0.071 

36a 411.66 32.83 0.080 

38a 441.11 37.65 0.085 

76a 380.70 32.57 0.086 

62a 459.08 45.18 0.098 

83a 480.12 52.44 0.109 

46a 524.50 60.38 0.115 

41a 482.73 92.23 0.191 

80a 304.36 61.31 0.201 
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Table 4.17 Coefficient of Variation of average area for male donors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

105a 21460.04 153.60 0.007 

163a 35325.92 274.15 0.008 

139a 31589.55 248.19 0.008 

131a 18582.47 159.66 0.009 

140a 19937.83 205.51 0.010 

135a 33790.08 488.86 0.014 

160a 29245.97 514.98 0.018 

186a 19512.60 364.05 0.019 

193a 20261.80 388.15 0.019 

164a 23851.82 463.83 0.019 

156a 17891.74 385.15 0.022 

130a 19499.26 424.43 0.022 

115a 38690.32 854.15 0.022 

161a 37348.40 835.95 0.022 

112a 24068.36 544.67 0.023 

101a 13535.49 333.82 0.025 

178a 36450.64 902.43 0.025 

184a 18554.81 478.17 0.026 

138a 20783.19 539.31 0.026 

123a 6881.05 201.10 0.029 

106a 18474.63 642.10 0.035 

124a 17436.13 623.11 0.036 

116a 36606.15 1322.42 0.036 

141a 16940.42 649.24 0.038 

119a 25188.78 1024.07 0.041 

190a 24386.17 1000.78 0.041 

148a 20931.65 875.01 0.042 

177a 11119.53 472.65 0.043 

117a 18277.80 777.39 0.043 

126a 22907.91 1098.90 0.048 

167a 16014.41 776.57 0.048 

109a 13568.60 663.94 0.049 

195a 15965.52 781.35 0.049 

189a 41344.76 2108.01 0.051 

129a 24906.21 1310.00 0.053 
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 Table 4.17 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

152a 16753.28 888.87 0.053 

191a 15324.04 829.31 0.054 

165a 20170.60 1201.39 0.060 

168a 17850.10 1145.96 0.064 

200a 17395.73 1170.52 0.067 

174a 17785.35 1255.80 0.071 

145a 17553.67 1464.65 0.083 

118a 9989.05 841.40 0.084 

103a 20157.30 1768.69 0.088 

111a 10427.48 1107.25 0.106 

132a 17926.34 1964.81 0.110 

182a 9344.55 1254.08 0.134 

176a 19933.62 4351.06 0.218 



   91 

Table 4.18 Coefficient of Variation of average perimeter for male donors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

163a 959.08 3.74 0.004 

190a 775.87 4.15 0.005 

140a 617.43 4.63 0.008 

106a 691.65 6.03 0.009 

103a 775.73 7.21 0.009 

186a 678.64 6.37 0.009 

130a 622.58 6.62 0.011 

105a 735.39 7.86 0.011 

131a 630.56 6.77 0.011 

139a 902.84 10.09 0.011 

101a 595.01 6.71 0.011 

138a 655.20 7.92 0.012 

161a 895.49 10.95 0.012 

109a 550.71 6.91 0.013 

167a 615.24 7.79 0.013 

177a 525.39 7.32 0.014 

119a 759.27 10.81 0.014 

115a 925.96 13.23 0.014 

184a 636.75 9.64 0.015 

200a 682.45 10.34 0.015 

145a 695.91 10.59 0.015 

118a 479.20 7.99 0.017 

148a 656.28 11.89 0.018 

124a 732.91 13.30 0.018 

135a 977.50 18.02 0.018 

195a 577.05 10.67 0.018 

123a 433.36 8.76 0.020 

164a 810.66 16.70 0.021 

141a 601.57 12.46 0.021 

116a 1013.18 21.14 0.021 

168a 748.77 15.75 0.021 

156a 764.17 17.64 0.023 

160a 912.65 21.43 0.023 

193a 676.04 16.51 0.024 

165a 777.08 19.98 0.026 



   92 

Table 4.18 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Mean Std. Deviation Coefficient of Variation (CV) 

126a 733.60 19.63 0.027 

174a 705.69 18.97 0.027 

129a 774.38 22.26 0.029 

191a 555.73 16.02 0.029 

111a 612.34 18.89 0.031 

182a 569.93 18.60 0.033 

112a 704.33 24.70 0.035 

117a 642.81 23.90 0.037 

176a 787.59 29.75 0.038 

189a 1095.39 46.42 0.042 

152a 654.22 30.84 0.047 

178a 952.62 45.06 0.047 

132a 643.20 34.27 0.053 
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previously discussed variance for are and perimeter values. The distribution of each donors’ 

polygons based on area and perimeter values and are coded by their similarity rank (see Figures 

4.8 – 4.14). 

Similarity Search Accuracy and Correct Identifications 

Similarity Search correctly identified the true match AM polygon for 31 of the 50 male 

test groups (62%). Similarity Search correctly identified the true match AM polygon for 36 of 

the 50 female test groups (72%). Table 4.19 presents the rank of each true match polygon for 

males and females that Similarity Search did not identify as most similar (N = 33). All of these 

polygons were ranked in the top 5 most similar by Similarity Search. The majority (N = 15 out of 

33) were ranked second, 10 were ranked third, six were ranked fourth, and two were ranked fifth. 

No True Match vs. True Match 

Each of the twenty donors used in the test groups that contained a true match, and the test 

groups that did not contain the true match had their similarity index values recorded. Each donor 

had two values, the similarity index of their true match and the similarity index of the polygon 

identified as most similar when no true match was present (Table 4.20). The similarity index data 

are non-normally distributed so a non-parametric test, Wilcoxon Signed Rank, was performed to 

compare these two sets of values. The result was not significant (0.433), indicating no 

statistically significant difference between each donor’s true match similarity index value and the 

similarity index value of the polygon Similarity Search identified as most similar in absence of 

the true match. 
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Figure 4.8 Distribution of area and perimeter values for donor 48a coded by similarity rank. Donor 48a had the 

lowest variance for area values out of all female donors. 
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Figure 4.9 Distribution of area and perimeter values for donor 80a coded by similarity rank. Donor 80a had the 

highest variance for area and perimeter value out of all female donors. 
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Figure 4.10 Distribution of area and perimeter values for donor 82a coded by similarity rank. Donor 82a had the 

lowest variance for perimeter values out of all female donors. 
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Figure 4.11 Distribution of area and perimeter values for donor 105a coded by similarity rank. Donor 105a had the 

lowest variance for area values out of all male donors. 
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Figure 4.12 Distribution of area and perimeter values for donor 176a coded by similarity rank. Donor 176a had   

the highest variance for area values out of all male donors. 
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Figure 4.13 Distribution of area and perimeter values for donor 163a coded by similarity rank. Donor 163a had 

the lowest variance for perimeter values out of all male donors. 
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Figure 4.14 Distribution of area and perimeter values for donor 132a coded by similarity rank. Donor 132a had the 

highest variance for perimeter values out of all male donors. 
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Table 4.19 Similarity ranks for true match polygons not identified as most similar by Similarity Search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group No. True Match Donor ID Similarity Rank 

7 7a 2 

11 25a 2 

25 57a 2 

33 11a 2 

46 66a 2 

57 190a 2 

61 191a 2 

76 138a 2 

78 116a 2 

86 135a 2 

87 167a 2 

88 119a 2 

93 132a 2 

94 124a 2 

100 186a 2 

12 82a 3 

20 29a 3 

21 95a 3 

48 83a 3 

51 162a 3 

56 145a 3 

62 174a 3 

65 164a 3 

69 109a 3 

82 141a 3 

2 40a 4 

9 18a 4 

13 6a 4 

15 45a 4 

58 131a 4 

90 105a 4 

19 76a 5 

97 176a 5 
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Table 4.20 Similarity index values of each donor’s true match and match selected by Similarity Search in absence of 

the true match 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID 

True Match 

SIMINDEX 

No True Match 

SIMINDEX 

21b 0.179 0.017 

49b 0.001 0.196 

13b 0.064 0.127 

19b 0.242 0.023 

77b 0.001 0.140 

4b 0.030 0.010 

26b 0.001 0.151 

33b 0.002 0.030 

61b 0.005 10.765 

5b 0.086 0.007 

170b 0.011 0.080 

125b 0.176 0.236 

134b 0.241 0.096 

181b 0.112 0.026 

121b 0.073 0.930 

147b 0.019 0.037 

122b 0.016 0.046 

196b 0.991 0.262 

143b 0.134 0.184 

107b 0.093 0.198 
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Similarity Search Threshold 

It is important to establish a range of similarity index values to assess the value of the 

frontal sinus polygon identified by Similarity Search as the most similar as a potential match 

based on the range determined from this study. This range of similarity index values is 

determined from the similarity index values of all correctly identified polygons. It also includes 

the range of values produced when each male and female donor are compared to every other 

male and female donor in the sample, respectively.  

Similarity Index Range for Correctly Identified Polygons 

The area, perimeter, and similarity index values for male and female donors correctly 

identified by Similarity Search were compiled into two tables (Tables 4.21 and 4.22), with the 

similarity index values sorted from smallest (most similar) to largest (least similar). The range of 

similarity index values for all correctly identified females (N = 36) was 0.001 to 1.557. The 

range of similarity index values for all correctly identified males (N = 31) was 0.000 to 0.305. 

Descriptive statistics for area, perimeter, and similarity index values were calculated for all 

correctly identified polygons (Table 4.23). 

Each Donor to Entire Sample 

Hierarchical Cluster Analysis using Ward’s method was conducted for all 100 donors. 

Each donor’s PM polygon was compared to a PM and an AM polygon from every other donor of 

the same sex (males compared to males and females compared to females). Cluster Analysis was 

run on each of these groups (N = 100). Ward’s Method with four clusters was defined for each 

cluster analysis. Descriptive statistics (minimum, maximum, mean, and std. deviation) were 

produced for each of the four clusters for each female test group (N = 50) and each male test  
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Table 4.21 Area, perimeter, and similarity index values for all correctly identified females 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Area Perimeter SIMINDEX 

23a 14654.665 563.068 0.001 

28a 6624.851 512.266 0.001 

41a 9601.786 456.078 0.001 

67a 10756.826 584.891 0.001 

79a 4724.464 304.064 0.001 

54a 7437.990 398.646 0.002 

48a 9572.741 463.168 0.002 

62a 6621.158 487.538 0.002 

97a 11716.072 514.863 0.003 

36a 5984.591 365.536 0.004 

2a 3425.884 292.753 0.004 

68a 39580.780 1033.962 0.005 

27a 29438.390 989.180 0.006 

34a 12459.938 552.351 0.006 

86a 8633.342 469.550 0.007 

92a 3500.091 351.254 0.008 

50a 10942.115 695.706 0.008 

100a 6210.229 437.708 0.010 

37a 10476.380 479.274 0.011 

55a 14797.439 522.708 0.012 

72a 9873.548 437.330 0.022 

44a 10335.346 511.112 0.024 

35a 20790.474 663.865 0.030 

58a 16491.223 577.155 0.035 

46a 8214.470 481.186 0.044 

38a 6483.273 383.017 0.045 

94a 10255.966 532.550 0.049 

47a 12033.400 622.190 0.050 

52a 23226.366 718.805 0.062 

71a 14007.083 618.780 0.064 

87a 7907.719 411.467 0.064 

15a 15571.494 554.523 0.068 

80a 8735.952 477.266 0.086 

53a 25860.804 1009.171 0.164 

73a 18020.812 711.980 0.291 

99a 810.224 129.265 1.557 
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Table 4.22 Area, perimeter, and similarity index values for all correctly identified males 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Area Perimeter SIMINDEX 

123a 6673.735 421.449 0.000 

177a 11382.234 525.187 0.002 

148a 20256.931 655.028 0.004 

106a 18243.477 681.738 0.005 

118a 10010.060 469.651 0.007 

101a 13516.691 605.087 0.008 

152a 17759.529 699.361 0.009 

115a 37609.063 911.272 0.011 

139a 31833.606 905.172 0.012 

111a 9315.485 590.967 0.016 

184a 18163.117 637.306 0.019 

193a 20156.008 658.368 0.020 

140a 19909.752 616.876 0.027 

178a 37057.042 880.209 0.027 

192a 30622.071 881.565 0.031 

156a 17864.025 753.231 0.032 

168a 18429.229 759.301 0.033 

200a 16950.149 683.994 0.034 

130a 19405.122 617.737 0.037 

129a 24647.683 781.936 0.042 

189a 44099.493 1186.337 0.061 

161a 36738.408 902.120 0.065 

112a 25350.419 759.142 0.066 

160a 28234.509 915.010 0.073 

182a 12207.737 611.247 0.093 

117a 17964.366 611.368 0.112 

163a 35051.381 952.901 0.137 

103a 19276.934 772.096 0.150 

195a 16254.932 575.706 0.282 

165a 17991.186 790.466 0.285 

126a 23988.200 741.210 0.305 
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Table 4.23 Descriptive statistics for correctly identified male and female polygons 

 

 

 

 

 

 

 

 

 

 

Sex N Minimum Maximum Mean Std. 

Deviation 

Male Area 31 6673.74 44099.49 21837.50 9291.96 

Perimeter 31 421.45 1186.34 727.52 161.57 

SIMINDEX 31 0.00 0.30 0.06 0.08 

Female Area 36 810.22 39580.78 12104.94 7802.77 

Perimeter 36 129.27 1033.96 536.51 189.12 

SIMINDEX 36 0.00 1.56 0.08 0.26 
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group (N = 50). Cluster 1 descriptive statistics for each male and female donor are reported in 

Tables 4.24 and 4.25. Only Cluster 1 was reported and used in the establishment of the similarity 

index range because Cluster 1 represents the values that were closest to the input donor values 

and thus most similar. These values will be of most use in determining the similarity index range 

that a practitioner could use to determine if Similarity Search identified a potential frontal sinus 

match. In Tables 4.29 and 4.30 each donor has a minimum and maximum similarity index value 

for Cluster 1. The minimum similarity index value out of all of the minimum similarity index 

values and the maximum similarity index value of all of the maximum similarity index values, 

along with the averages of all minimum values, maximum values, means, and standard 

deviations are reported in Tables 4.24 and 4.25. Based on these results the similarity index value 

range for females is 0 to 11.56, and for males it is 0 to 5.51. 
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Table 4.24 Cluster 1 descriptive statistics of similarity index values for each female donor 

 

Donor ID Minimum Maximum Mean Std. 

Deviation 

1b 0.00 1.22 0.37 0.39 

3b 0.00 5.82 0.56 0.95 

4b 0.00 1.76 0.58 0.46 

5b 0.00 5.22 0.50 0.82 

8b 0.00 7.57 0.88 1.28 

9b 0.00 6.37 0.64 1.05 

10b 0.00 1.89 0.95 0.43 

12b 0.00 2.62 1.02 0.75 

13b 0.00 5.46 0.50 0.87 

14b 0.00 5.10 0.54 0.79 

16b 0.00 0.85 0.24 0.21 

17b 0.00 1.45 0.49 0.37 

19b 0.00 1.11 0.27 0.26 

20b 0.00 2.43 0.77 0.64 

21b 0.00 1.23 0.32 0.30 

22b 0.00 3.24 0.53 0.72 

24b 0.00 2.54 0.56 0.76 

26b 0.00 5.46 1.42 1.29 

30b 0.00 5.80 0.56 0.95 

31b 0.00 2.61 0.58 0.78 

32b 0.00 1.37 0.40 0.35 

33b 0.00 4.71 0.46 0.78 

39b 0.00 3.77 0.78 0.89 

42b 0.00 5.12 0.56 0.84 

43b 0.00 7.62 0.89 1.30 

49b 0.00 1.49 0.48 0.39 

51b 0.00 10.44 1.72 1.85 

56b 0.00 3.93 0.48 0.68 

59b 0.00 5.71 0.53 0.92 

60b 0.00 2.92 1.12 0.82 

61b 0.00 1.85 0.68 0.79 

63b 0.00 1.37 0.42 0.36 

64b 0.00 3.60 0.77 1.24 

65b 0.00 4.53 0.45 0.75 

69b 0.00 11.56 2.17 2.05 

70b 0.00 8.16 1.02 1.40 
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Table 4.24 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Minimum Maximum Mean Std. Deviation 

74b 0.00 3.84 0.80 0.90 

75b 0.00 4.08 0.89 0.96 

77b 0.00 4.80 0.48 0.86 

78b 0.00 5.04 1.37 1.19 

81b 0.00 3.38 0.71 1.17 

84b 0.00 2.28 0.55 0.64 

85b 0.00 5.97 0.59 0.98 

88b 0.00 7.10 0.80 1.20 

89b 0.00 1.95 0.38 0.65 

90b 0.00 1.10 0.33 0.27 

91b 0.00 5.18 0.58 0.79 

93b 0.00 3.16 0.54 0.71 

96b 0.00 6.01 1.69 1.43 

98b 0.00 6.07 1.76 1.45 

          

Range 0.00 11.56     

Average 0.00 4.16 0.73 0.85 
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Table 4.25 Cluster 1 descriptive statistics of similarity index values for each male donor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donor ID Minimum Maximum Mean Std. Deviation 

102b 0.00 0.96 0.41 0.31 

104b 0.00 2.05 0.65 0.76 

107b 0.00 3.31 0.71 0.89 

108b 0.00 3.59 0.98 0.81 

110b 0.00 3.70 0.48 0.96 

113b 0.00 1.88 0.34 0.39 

114b 0.00 2.66 0.79 0.99 

120b 0.00 2.11 0.47 0.63 

121b 0.00 2.25 0.73 0.60 

122b 0.00 1.50 0.52 0.59 

125b 0.00 2.51 0.67 0.65 

127b 0.00 4.26 1.17 0.99 

128b 0.00 1.39 0.39 0.36 

133b 0.00 3.94 0.68 1.10 

134b 0.00 4.08 1.11 0.94 

136b 0.00 3.84 1.23 1.33 

137b 0.00 4.37 2.39 1.38 

142b 0.00 4.67 0.73 1.22 

143b 0.00 2.88 0.82 0.76 

144b 0.00 2.64 0.75 0.92 

146b 0.00 2.42 0.47 0.69 

147b 0.00 1.36 0.36 0.37 

149b 0.00 2.37 0.49 0.51 

150b 0.00 2.58 0.46 0.72 

151b 0.00 1.58 0.30 0.32 

153b 0.00 1.85 0.51 0.43 

154b 0.00 1.33 0.28 0.29 

155b 0.00 2.21 0.33 0.54 

157b 0.00 5.51 1.18 1.55 

158b 0.00 1.35 0.32 0.32 

159b 0.00 2.47 0.53 0.53 

166b 0.00 2.59 0.70 0.68 

169b 0.00 2.95 1.18 0.97 

170b 0.00 2.80 0.39 0.71 

171b 0.00 1.25 0.40 0.37 

172b 0.00 2.84 0.48 0.70 

173b 0.00 2.26 0.48 0.64 

175b 0.00 2.87 0.84 1.06 

179b 0.00 1.24 0.32 0.30 

180b 0.00 1.43 0.33 0.29 

181b 0.00 1.16 0.35 0.34 

183b 0.00 2.25 0.48 0.64 
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Table 4.25 Continued 

Donor ID Minimum Maximum Mean Std. Deviation 

185b 0.00 1.29 0.31 0.31 

187b 0.00 1.68 0.32 0.34 

188b 0.00 2.36 0.51 0.50 

194b 0.00 1.83 0.51 0.53 

196b 0.00 2.79 0.64 0.62 

197b 0.00 3.79 0.49 0.98 

198b 0.00 1.97 0.74 0.60 

199b 0.00 1.26 0.28 0.28 

          

Range 0.00 5.51     

Average 0.00 2.48 0.62 0.67 
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CHAPTER 5: DISCUSSION 

 The purpose of this study was to investigate the use of ArcMap’s spatial analyst tool 

Similarity Search to identify an AM/PM radiograph match using polygons representative of the 

frontal sinus. This project sought to answer three main research questions: 

1) Are the area and perimeter values of a frontal sinus polygon sufficient variables for 

Similarity Search to be able to identify a match? 

2) Can ArcMap Similarity Search identify a PM to AM radiographic match using the 

frontal sinus polygon?  

3) If ArcMap Similarity Search can match a PM to AM radiograph is this a quantifiable 

and reproducible method for positive identification using radiographs?  

This chapter will discuss the results presented in chapter 4 as they relate to each of these 

research questions. The chapter concludes with a discussion of the limitations of the study, the 

significance of these findings, future directions of this research, and a discussion of recent 

research reassessing the uniqueness of certain features used for human identification. 

Are area and perimeter sufficient for Similarity Search identification? 

Area and perimeter were the selected parameters investigated for this proposed method 

for human identification. Given that these were the sole parameters used in Similarity Search, the 

first research question focused on whether area and perimeter values of each frontal sinus 

polygon were sufficient attributes for the Similarity Search tool to be able to correctly identify a 

match. Based on the results presented in chapter 4, area and perimeter fail to capture and 

quantify all of the characteristics of the frontal sinus that makes it unique to each individual. 

Similarity Search, like statistical models in general, is a tool that is only as good as the 

information it is given to compare. Inaccurate or minimal information is going to limit its ability 
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to identify the most similar cases. In this case, Similarity Search was provided with the area and 

perimeter values of the polygons in each test group and was instructed to rank the polygons from 

most similar to least similar using the similarity index, which is automatically calculated by the 

Similarity Search tool.  

Similarity Search performed well with just those two values for both females (72%) and 

males (62%), but area and perimeter do not adequately capture the shape of the frontal sinus, 

particularly to discern those with similar area and perimeter values. The method of visually 

comparing and matching frontal sinus radiographs to identify an unknown individual is based on 

the tested and well-accepted notion that the shape of the frontal sinus is unique to each 

individual. Visually assessing those shape differences from radiographic images allows a 

practitioner to identify a match and establish a positive identification. The method tested in this 

study only provided Similarity Search with the area and perimeter values of each polygon, which 

does not tell the program anything about the shape of the polygons. Area and perimeter provide 

basic metric data about each polygon and can certainly tell Similarity Search which polygons are 

bigger or smaller than other polygons, but it does not capture the billowing shape of the sinus 

and the prevalence of scalloped edges, all features that contribute to the distinctive and unique 

shape of the frontal sinus. Two polygons can have very similar area and perimeter values yet 

have completely different shapes. 

Despite the lack of shape information, Similarity Search was able to identify the correct 

match in over 60% of the cases for males and females. However, an informal visual assessment 

of the groups where Similarity Search was able to correctly identify a match, and the groups 

where it was not able to correctly identify a match, indicates that the size of the other polygons in 

the test group may influence Similarity Search’s ability to distinguish between polygons and 
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select the correct match, based on area and perimeter alone. For example, in test group 33 the 

PM polygon and its corresponding AM polygon were very similar in overall shape and had area 

and perimeter values that were very similar (Figure 5.1). However, Similarity Search identified 

another AM polygon that was not the true match as the most similar because its area and 

perimeter values were closer to the PM polygon’s area and perimeter values, even though 

visually two polygons had different shapes (Figure 5.2). Similarity Search relied exclusively on 

the area and perimeter, regardless of the obvious shape differences. If area and perimeter values 

could be combined with a shape assessment, a more robust model for identification is possible. 

Similarly, in test group 48 the polygon that was determined to be the most similar to the PM 

polygon, based on its area and perimeter values, had a very different shape (see Figure 5.3). The 

opposite phenomenon is also true. In test group 45, the PM polygon was very large with many 

scalloped edges while the other polygons in the group were relatively small (Figure 5.4). 

Therefore, based on area and perimeter values, Similarity Search was able to correctly identify 

the match due to the distinctive size (Figure 5.5). These groups are examples of Similarity 

Search’s inability to correctly identify a match based on area and perimeter values when more 

than one comparative polygon has a similar overall size, regardless of its shape. Unless the size 

difference between polygons is distinct, area and perimeter will need additional comparative 

values (i.e. shape, max height/length, or number of billows) before this method is ready for 

implementation. 

Sex may also be influencing these results. Recent research has explored the use of the 

frontal sinus for sex determination based on the assumption that male sinuses are larger with 

more billows than females (Akhlaghi, et al. 2016; Choi, et al. 2018; Cossellu, et al. 2015; 

Tatlisumak, et al. 2007).  
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Figure 5.1 Group 33 frontal sinus polygons (most to least similar). Boxes denote the 

PM polygon (orange) and its AM match (dark blue). 
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Figure 5.2 Group 33 Similarity Search attribute table. Orange = the Input Feature to Match (PM polygon). Blue=    

the AM polygon that is the true match but was ranked second most similar. 
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Figure 5.3 Group 48 frontal sinus polygons. Solid line box denotes the PM polygon 

(orange) and AM polygon ranked as most similar (dark blue). The dash line box 

denotes the true AM match. 
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Figure 5.4 Group 45 frontal sinus polygons. Box denotes the PM polygon (orange) and 

the AM true match polygon (dark blue) that was ranked as most similar. 
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  Figure 5.5 Group 45 Similarity Search attribute table 
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Visually, the frontal sinuses of the male donors in the sample were larger than the female 

sinuses. It is difficult to say what exactly contributed to the lower percentage of correct 

identifications for the male test groups (62% versus 72%) but given the large size of the male 

sinuses on average, and the fact that area and perimeter do not capture shape, a sample of 

relatively large sinuses may have made it more difficult for Similarity Search to identify matches 

on area and perimeter alone. 

The inability of Similarity Search to correctly identify the true match using only area and 

perimeter values also became apparent when the similarity index values of polygons identified as 

the most similar for the same PM polygon were compared: one value was for the true match 

polygon, and the other value was for the polygon identified as the most similar by Similarity 

Search in the absence of the true match. A Wilcoxon Signed Rank test was used to compare 

these two values. The results of this test showed that there was no significant difference between 

these two values. This means that the similarity index value of the true match was not 

statistically significantly different from the similarity index value of a polygon that was not the 

true match – it only had the closest perimeter and area values.  

These results are indicative of Similarity Search’s inability to truly distinguish between 

polygons in order to identify the correct match. Similarity Search uses the data it is given to rank 

features from most to least similar, and area and perimeter are not sufficient data for it to be able 

to distinguish the true match polygon as most similar with a high level of accuracy. Radiograph 

quality, and even slight distortions could be affecting the area and perimeter values as well, 

which will affect how Similarity Search ranks the AM polygons.  

Alternatively, this result could have something to do with the way the similarity index 

value is calculated for each Candidate Feature. Each attribute value undergoes a Z – transform 



   121 

prior to the index calculation. For the groups where no true match was present, Similarity Search 

was forced to select the polygon that was most similar to the Input Feature based on a standard 

index that was calculated from standardized area and perimeter values. This standardization may 

be affecting the amount of variance between the true match similarity index and no true match 

similarity index to the point where statistical tests do not find any significant difference. 

Overall, these results, combined with the accuracy rates and examples of visually similar 

polygons not being identified as a match, suggest that another variable is needed that can be used 

by Similarity Search to identify matches. This other variable is some aspect of shape. In order for 

this method to be rigorous, viable, and accurate it needs to include a shape analysis component in 

addition to basic measurements of size like area and perimeter. Many studies have proposed 

methods that quantify and capture frontal sinus shape using single metric measurements and 

pattern coding (max height, max breadth, etc.) (Cameriere, et al. 2005; Kirk, et al. 2002; 

Yoshino, et al. 1987). However, the purpose of testing and developing this method was to make 

the tools of ArcMap and other already existing spatial analyst tools (e.g., computer graphics 

software) work for the observer to create a user-friendly and potentially automated process.  

One possibility is to incorporate Zonal Geometry. Zonal Geometry is located within the 

Spatial Analyst toolbox in ArcMap and is a way to calculate the geometry of a raster dataset. 

Four types of geometry can be calculated for zones of the raster data: area, perimeter length, 

thickness (distance from the farthest cell to all other cells), and centroid (an ellipse fixed at the 

geometric center of the zone) (desktop.arcgis.com 2018a). This tool would not tell the user about 

the actual shape of the data, but it would provide a standardized way to calculate additional 

metrics of a frontal sinus polygon that would provide more characteristics than just overall area 

and perimeter to assess. Zonal Geometry may provide sufficient data for Similarity Search to be 
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able to more accurately and reliably distinguish between different frontal sinus polygons, 

particularly those with similar area and perimeter values. 

Another possibility is the implementation of shape analysis algorithms that can be coded 

into ArcMap using Python coding software. Python is already used to code basic functions in 

ArcMap that would otherwise be tedious and take up time and resources to manually complete. 

One type of shape analysis algorithm that could be utilized is facial recognition software. Facial 

recognition algorithms work to mimic the ability humans already possess for recognizing 

different faces in order to allow computers to have this same ability. It uses landmarks on the 

face like the nose, eye sockets, and jaw line to establish nodes or points and then measures the 

distances between the nodes. The software can then compare the measurements to a database to 

find a match. The addition of a facial recognition algorithm would allow Similarity Search to 

assess more than just the size of the polygon, but also the shape by automatically identifying 

landmarks and features of the sinus, such as the number of scalloped edges, and measure the 

distances between those features. This would allow Similarity Search to assess not only the size 

of the polygon, but the shape as well, which would increase the accuracy of the tool and make 

this a more complete and usable method for frontal sinus identification. 

Similarity Search: An accurate tool for identifying a frontal sinus match? 

Overall Accuracy 

 

 The second question in this study addressed the ability of using ArcMap’s Similarity 

Search tool to identify a PM to AM radiographic match from a frontal sinus polygon. The 

percentage of cases where Similarity Search correctly identified a match using the frontal sinus 

polygons was 72% for females and 62% for males. For the true match polygons that were not 
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identified by Similarity Search as the most similar, all were ranked in the top 5 (N = 33) with the 

45% ranked second (N = 15). So even when Similarity Search did not correctly identify the 

match, the true match was still ranked in the top half.  

While Similarity Search was able to identify the correct match in the majority of male 

and female groups, accuracy rates are not much better than chance. Therefore, the ability of 

using ArcMap’s Similarity Search tool to identify a PM to AM radiographic match from a frontal 

sinus polygon is not supported. However, the 72% and 62% correctly identified males and 

females, respectively, bolstered by the majority of the incorrect matches ranked second, indicates 

that additional parameters beyond area and perimeter may strengthen the accuracy, reliability, 

and forensic utility of this method.  

Similarity Search: A new method for frontal sinus positive identification? 

 The third research question was whether ArcGIS and its spatial analyst tools could be 

used to create a reproducible method for quantifying and spatially assessing frontal sinus 

morphology for the purpose of positive identification. Given the results discussed above, the 

answer is no in its current state. However, this method has the potential to be a quantifiable, 

viable, and accurate method for quantifying and spatially assessing the frontal sinus, but shape 

analysis must be incorporated so that Similarity Search can assess each polygon on more than 

just size. Further, a standardized method for determining the lower boundary of the sinus is 

needed in order to improve repeatability and reliability because the lower boundary presented the 

most difficulty for the observers during the digitization process due to overlapping cranial 

structures that obscure the lower boundary.  
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Inter-observer and Intra-observer Variation 

 

 The Coefficient of Variation (Cv) for each of the donor polygons created by the inter-

observer participants demonstrated low variance overall. For the area values, seven out of the 11 

donors used for the inter-observer study had a Cv value of 17% or lower and the remaining 

values were between 24% and 38%. For the perimeter values, 10 out of the 11 donors had a Cv 

value of 19% or lower. This means that for all of the polygons created for each donor by the 

observers, the area and perimeter values were clustered together and had low variability between 

observers. The ANOVA also showed no statistically significant difference between observers for 

both area and perimeter values, and cluster analysis showed most observers and their polygons 

clustering together, with only a few observers deviating from the majority. These results support 

the statistical reliability of the area and perimeter values between observers and the reliability of 

the method of digitizing the frontal sinus. 

 Intra-observer analysis showed that the polygons created for each donor clustered 

together and had low variation between them indicating high reliability and low intra-observer 

variation. The Cv values of the area and perimeter values for the female donors were all 34% or 

lower. The average area values for the male donors had lower variation ranging from 0.7% to 

22%, but the perimeter values for the male donors had a Cv of 5% or lower. These results 

indicate that intra-observer variation was low and the area and perimeter values for both males 

and females clustered together and were not widely dispersed.  

Even with low overall variation, there was no Cv value of 0, indicating that in some 

instances donor polygons did deviate from one another. For example, donor 80a has a Cv of 

0.347 for area values. Figure 5.6 shows the polygons I created for 80a and the shape differences 

that contributed to the variable area and perimeter values. Figure 5.7 shows the polygons I 
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created for donor 176a, which had a Cv value of 0.218 for area, and Figure 5.8 shows the 

polygons I created for donor 132a which had a Cv value of 0.053 for perimeter. This variation is 

to be expected due to human error, but two factors may be contributing, in part, to the overall 

variation in area and perimeter values: the quality of the radiographs and difficulty visualizing 

the lower boundary of the frontal sinus. The hard-copy radiograph images were scanned into 

JPEG image files. The higher the resolution of an image, the clearer and higher quality the image 

is. The process of scanning hard-copy radiographs files to JPEG could have affected the image 

quality resulting in a sinus outline more difficult to visualize.  

No standardized method for determining the lower boundary of the frontal sinus was 

employed in this study. Locating and determining the lower boundary of the frontal sinus was a 

problem that arose during the digitization process and during the inter-observer study. Each 

participant was instructed to digitize the polygon and use their own judgement to determine the 

lower boundary of the frontal sinus. Even though inter-observer variation was low, each 

participant, myself included, had a different idea of what was considered the outline of the lower 

boundary of the sinus. Figures 5.9 - 5.11 show the polygons created for three of the 10 donors 

used in the inter-observer study and highlight the variation in the polygons’ shape. This is a 

common problem when assessing the frontal sinus from radiographs due to the 2D nature of 

radiographs. Christensen (2003) addressed this issue in her dissertation. Christensen 

acknowledged that while the upper and lateral borders of the frontal sinus are clearly discernable, 

the lower boundary is often obscured by overlapping structures making it difficult to visualize. 

The author discussed several different methods that have been proposed by other researchers for 

delineating the lower boundary, including drawing a line at the planum sphenoidale, drawing a 

horizontal line at nasion, and drawing a line tangent to the upper margins of the orbits  



   126 

 

 

 

 

 

   Figure 5.6 80a frontal sinus polygons 
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   Figure 5.7 176a frontal sinus polygons 
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 Figure 5.8 132a frontal sinus polygons 
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  Figure 5.9 Inter-observer polygons for donor 2a 
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  Figure 5.10 Inter-observer polygons for donor 41a 
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   Figure 5.11 Inter-observer polygons for donor 80a 
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(Brothwell, et al. 1968; Christensen 2003; Libersa and Faber 1958; Schuller 1943). Because this 

study did not use any of these methods, there was a lot of variability within and between 

observers in how the lower boundary of the frontal sinus was determined, which in turn affected 

the shape of the polygons, and the area and perimeter values. This lack of standardization for 

determining the lower boundary contributed to the variation in polygon shape of the 1,320 

polygons that I created, which affected the area and perimeter values, and subsequently affected 

the results of Similarity Search. It is possible that this variability is what contributed to the higher 

Cv values for both the inter and intra-observer polygons.  

In addition to shape analysis, a standard method for determining the lower boundary of 

the frontal sinus needs to be employed in order to increase the accuracy and reliability of this 

method. A consistent method for determining the lower boundary will eliminate some of the 

variation in polygon shape, and variation in the area and perimeter values. Combined with shape 

analysis, these changes will greatly bolster the accuracy, reliability, and reproducibility of this 

method. 

Similarity Index Value Range 

 

 Part of this study included the establishment of a similarity index value range. The 

purpose of this range would be to provide a reference that similarity index values of presumed 

matches could be compared to as a means for a practitioner to determine if the polygon 

Similarity Search identified as the most similar is, in fact, a potential match. The range 

determined for females was 0.0 – 11.56, and the range for males was 0.0 – 5.51. Both of the 

similarity index value ranges for all correctly identified females (0.001 – 1.557) and males (0.0 – 

0.305) were well within these ranges. Based on these ranges a female index value greater than 

11.56 and a male index value greater than 5.51 could not be a match. However, based on the 
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index ranges of the correctly identified polygons, a more conservative recommendation is that a 

male index value greater than 0.305 and a female index value greater than 1.557 could not be a 

match. However, as previously discussed, without a shape analysis component, area and 

perimeter are not sufficient attributes for Similarity Search to identify frontal sinus matches. 

Further research and development of this method, particularly the inclusion of shape analysis 

will greatly improve Similarity Search’s ability to quantify frontal sinus morphology and provide 

a reproducible and accurate method for frontal sinus positive identification.  

Additional Limitations 

 It is also important to address the issue of radiograph orientation. The sample used for 

this research represents the best-case scenario: cranial radiographs where the cranium was 

scanned in the same orientation for the AM and PM radiographs and using the same parameters 

for each scan. In a real forensic case, practitioners try to replicate the orientation of the skull in 

the AM radiograph when taking the PM radiograph. However, it is never a perfect replication 

because the AM radiograph would have been taken when the person was alive so flesh is present 

and the position of the head is a result of a living person positioning themselves for the scan, 

rather than the manual positioning of the skull, which is no longer attached to a body, obscured 

by flesh or supported by muscles.  

For this study, the PM radiograph images were simulated. The PM radiographs represent 

true PM radiographs, as they were taken of skeletonized remains. However, the AM radiographs 

were not true to an AM radiograph. Instead they were simulations, also taken of the skull, but 

after it was removed from the pedestal and repositioned, to introduce some error and simulate a 

scan that was taken at a different time (Christensen 2003). This resulted in radiographs that were 

not exact copies, but still very similar and thus comparable, but not true to a real forensic case. In 
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a real forensic case, it is expected that there will be more error in terms of the skull being in a 

slightly different position because the practitioner will be using a true AM radiograph as a 

comparison and will not be able to replicate the orientation of the true AM radiograph perfectly 

when positioning the skull for the PM radiograph. For example, if the skull is tilted laterally, the 

radiograph is taken in an inferior to superior direction rather than a posterior to anterior direction, 

or if the distance between the machine and the frontal bone is different.  

Differences in position can produce differences in the scale and skew of a radiograph that 

will result in distortions to the image. These distortions can result in frontal sinus polygons from 

the same individual that may have different area and perimeter values that would affect 

Similarity Search’s ability to identify them as a match. If this method were to be used in a 

forensic case, it would be important to replicate the AM radiographs as accurately as possible 

when producing the PM radiograph of the skull. Two ways to ensure the radiographs are 

comparable and replicated as accurately as possible would be 1) check the dimensions and 

resolution of the AM radiograph and reproduce those dimensions for the PM radiograph or 2) 

find out the Standard Operating Procedure (SOP) used to obtain the AM radiograph. If a 

practitioner has AM cranial radiographs from five individuals who are potential matches, they 

could contact the hospital and find out more information about the radiograph, such as why it 

was taken (fractures nose, skull fracture, sinus infection, etc.) and what the SOP is for that 

specific type of radiograph. The practitioner could use that SOP for the PM radiograph to ensure 

that the PM radiograph was taken with the same parameters as the AM radiograph. Given that 

each AM radiograph was taken for a different reason and potentially using a different SOP, it 

would be necessary for the practitioner to take five sperate PM radiographs each using the SOP 

used for each of the AM radiographs. Adams and Maves (2002) outline a similar protocol used 
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for the identification of an individual killed in a helicopter crash in Vietnam. The right clavicle 

was determined to be the best candidate for comparison. The authors obtained an AM chest 

radiograph from the potential victim and used the right clavicle for comparison. The authors 

duplicated the SOP that would have been employed when the AM chest radiograph was taken. 

They also took multiple radiographs of the clavicle, each at a different rotation, and selected the 

radiograph that was closest in orientation to the original AM radiograph. The authors were able 

to establish a positive identification using this method.  

Obtaining the SOP used for each AM radiograph that is available for comparison and 

taking multiple radiographs are steps that can ensure the PM radiograph is as close an 

approximation to the AM radiograph as possible. These procedures will also reduce the potential 

for differences in skull orientation that can lead to size and shape discrepancies between the AM 

and PM radiographs, and should be considered if this method is implemented in forensic 

casework. 

Significance and Future Directions 

 In its current form, this method is not usable for human identification due to the issues 

previously discussed in this chapter. However, this thesis is a first step in the identification and 

implementation of this novel approach. The goal of this thesis was to determine if ArcMap is a 

tool that can be applied to the frontal sinus and be utilized by biological anthropologists for 

forensic human identification. This research shows that ArcMap can be used with frontal sinus 

radiographs, and that the spatial analyst tools already present in the ArcMap program have the 

ability to be leveraged for frontal sinus identification.  

 Given the issues with 2D images (different orientations and the inability to fully visualize 

the sinus), the use of images obtained with Computed Tomography (CT) should be explored. 
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Problems with different image orientation, opacity, overlapping structures, and unclear 

boundaries between structures would be overcome with 3D images. Also, problems comparing 

differently oriented radiographs, or radiographs taken at different distances could be addressed 

using 3D images. Facial recognition software programs that still use 2D images face similar 

problems as they require the face to be looking directly into the camera (Bonsor and Johnson 

2018). Partial views of faces turned to either side inhibit the software’s ability to identify a 

match. However, new systems utilize 3D images of faces that use distinct features like the curves 

and planes of noses, chins, and eye sockets which control for differences in orientation and 

lighting. The use of 3D images for frontal sinus identification would also correct for similar 

problems posed by 2D radiographs (Bonsor and Johnson 2018).  

The use of 3D images would also allow for more robust analysis using spatial analyst 

tools in ArcMap. Spatial analyst tools are commonly used to analyze 3D geographic data and 

provide a suite of surface modeling tools that can analyze raster data by looking at contouring, 

profiling, slope, aspect, and volume calculations that could be applied to CT scans of the frontal 

sinus to calculate max height, breadth, volume, and assess the topography of the sinus 

(desktop.arcgis.com 2018c). This would allow for more robust metrics than just area and 

perimeter to be calculated, particularly volume, and allow for shape analysis that is not possible 

with 2-deminsional polygons.  

While this method is not ready to be applied in its current state, given that further 

research into shape analysis algorithms and 3D images is needed, this research highlights the 

potential of ArcMap and Similarity Search to provide a feasible method for positive 

identification via the frontal sinus that can be used in conjunction with the visual comparison 

method. This method was not designed as a total replacement of the visual comparison method. 
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Instead, it may eventually serve to augment the visual comparison method by providing 

quantifiable results that confirm a visual match. Based on the results of this study, the similarity 

index values that could suggest a potential match for males and females are  5.51 and  11.56, 

respectively.  

Any method that utilizes unique features or biological characteristics should be backed up 

by quantifiable results. Many of the characteristics used for human identification such as AM 

fractures, surgical interventions, and pathologies were found to not be as rare as previously 

thought and thus not reliable for establishing a positive identification, particularly in an open 

population scenarios such as a mass disaster (Komar and Lathrop 2006). Unlike AM fractures 

and pathologies, the frontal sinus is a developmental feature whose growth is influenced by 

genetics and environmental factors and is generally accepted as a unique biological feature. 

However, it is still important to develop quantifiable methods that are repeatedly tested to ensure 

rigorous standards are met when using biological features for positive identification. When 

possible, other methods such as DNA analysis and fingerprints are utilized first, but if these 

methods are not feasible due to the state of the remains or access to DNA analysis technology, 

radiographic methods can be utilized. With the addition of shape analysis algorithms and the 

ability to code functions in ArcMap using Python, or the use of other ArcMap tools such as 

Zonal Geometry, this method could be developed into a user-friendly, and quantifiable method 

for conducting frontal sinus matching. 

Forensic Identification and Uniqueness of Biological Characteristics 

 This method and the visual comparison method rely on the widely held assumption 

amongst forensic practitioners that frontal sinus shape is unique to each individual. This 

assumption is based on considerable research over the last few decades into the uniqueness of the 
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frontal sinus (Besana and Rogers 2010; Christensen 2005b; Cox, et al. 2009; Ubelaker 1984). In 

addition to developmental features like the frontal sinus, skeletal characteristics such as 

antemortem fractures, diseases, and medical hardware are used to establish identity. However, 

recent research by Komar and Lathrop (2006) reevaluated the assumption of uniqueness for three 

morphological features commonly used in victim identification: AM fractures, evidence of 

surgical interventions, and pathological conditions. The comparison of features using AM and 

PM radiographs is a common and accepted method for victim identification. The authors used 

two contemporary skeletal collections housed at the Maxwell Museum of Anthropology at the 

University of New Mexico and the University of Tennessee Forensic Anthropology Center to 

determine if these morphological features are rare enough to be considered unique and usable for 

victim identification. The authors found that morphological features such as AM fractures and 

pathologies are not as rare as previously thought, and thus may not be unique enough to be used 

for individual identification.  

 While Komar and Lathrop (2006) did not specifically look at the frontal sinus, their 

research suggests that caution is needed when using morphological features for identification and 

further supports the use of multiple methods to identify human remains. Methods based on 

morphological features, including the frontal sinus, should be used with caution in isolation or as 

the first method employed to identify an individual. Other methods such as fingerprints for 

mummified remains or DNA analysis should be used in conjunction with or as confirmatory to 

radiographic methods when possible. The findings by Komar and Lathrop (2006) highlight the 

importance of utilizing multiple methods, the importance of continuing to improve existing 

methods, and the development of new, quantifiable methods.  
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CHAPTER 6: CONCLUSION 

Comparison of frontal sinus radiographs is an established and widely accepted method 

for positive identification in forensic anthropology. Like many other methods, it is based on the 

repeatedly tested notion that certain biological features and characteristics are unique due to 

either their rarity within the population (fractures, diseases, medical hardware, DNA profile, 

etc.), or developmental processes that result in a vast amount of variation in their presentation 

(frontal sinus shape, skeletal morphology, fingerprint pattern) due to genetic and environmental 

influences.  

The concept of “uniqueness” in biological characteristics has been tested and critiqued. 

Characteristics such as AM fractures, certain surgical procedures, and pathologies are actually 

more common than previously thought and thus may not be reliable for determining identity 

(Komar and Lathrop 2006). The uniqueness of developmental biological features, such as the 

frontal sinus, fingerprints, and the morphology of skeletal elements, has been critiqued, 

particularly the methodologies that established these features as unique and provided the basis 

for their use in forensic human identification (National Research Council 2009; Page, et al. 

2011). Page, et al. (2011) argue that it is impossible to know with absolute certainty if a feature 

is unique and probabilities of a trait occurring more than once in the entire human population 

have been underestimated due to fallacious logic and a misunderstanding of probability statistics. 

However, the authors also argue that the problem with many forensic human identification 

methods is not the use of questionably unique features, but rather poor performance by 

examiners, a lack of standards and rigorous methods, and bias as these factors all contribute to 

misidentifications and potentially wrongful convictions (Page, et al. 2011). While the method 

tested in this thesis does rely on the frontal sinus being unique between individuals, more 
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importantly it is a method that attempts to address the need for more rigorous methods that limit 

observer bias, provide standards for how to approach frontal sinus identification, and provides a 

user-friendly method able to quantify frontal sinus morphology rather than rely on a visual 

pattern match by observers with variable training and experience.  

This thesis shows that Similarity Search within ArcGIS has potential as a tool for frontal 

sinus matching. Currently, results indicate that area and perimeter are not sufficient for 

Similarity Search to distinguish between individuals who have sinuses that are very close in size, 

necessitating additional comparative values such as shape to bolster the method. ArcGIS has 

never been applied to frontal sinus radiographs, so starting with 2D images, and basic metrics 

(area and perimeter) was necessary in order to determine whether this method was even feasible 

and thus worth exploring further. The results of this study show that it is not only feasible, but 

possible. Inter-observer results indicate this method can be very accessible to those without 

extensive GIS experience, with the potential to provide a quantifiable, automated, and user-

friendly method for frontal sinus identification. However, a shape analysis component needs to 

be included so that Similarity Search can truly differentiate between individuals based on shape 

and basic size metrics. A fully developed version of this method that incorporates metrics and 

shape analysis could be used in conjunction with the visual assessment method so that any 

determination of a frontal sinus match based on visual comparison of radiographs can be 

supported with the Similarity Search results. 

This thesis also adds a relatively new area exploring biological anthropology and GIS, 

particularly how GIS can be implemented in forensic anthropology casework and methods. As 

previously discussed, GIS has been widely utilized by archaeologists and is beginning to be used 

by biological anthropologists to answer questions about human evolution, explore the effects of 
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diet on tooth morphology, and conduct spatial analysis of biomechanical forces on bone at the 

microscopic level (Rose, et al. 2012; Ungar and Williamson 2000). These studies, and the study 

conducted for this thesis, illustrate the potential of GIS to aid anthropological research and allow 

for analysis of skeletal elements that was not previously possible. 

Human identification of skeletal remains will always be determined by a combination of 

methods dictated by the state of the remains and the elements present. No method, including 

frontal sinus radiograph comparison, is ever used in isolation, nor is it the first method utilized 

by forensic practitioners when trying to establish identity. A frontal sinus match is just another 

data point amongst many other data points that increase the likelihood that a set of remains 

belong to a specific person. This thesis is only the starting point, but with further testing, 

development, and creation of a protocol for practitioners to follow this method could be 

implemented into forensic casework and increase the rigor of frontal sinus radiograph matching, 

limit bias, and provide a user-friendly and quantitative method for frontal sinus identification.  
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Appendix 1 
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Appendix 2 

Inter-observer Polygons 
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