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Abstract 

Analysis of the Martian surface today can provide insight into the processes that may 

have affected it over its history. Information about the physical surface characterization of 

a region can help determine the degree of sorting it has experienced and/or its geologic 

maturity. Sub-resolved “checkerboard” mixtures of materials with different horizontal 

thermal inertia mixtures can lead to differences in the apparent thermal inertia values 

inferred from night and day radiance observations. Standard methods for deriving thermal 

inertia from orbit via the THermal EMission Imaging System (THEMIS) can give values for 

the same location that vary by as much as 20% between images (Fergason et al., 2006b). 

Such methods assume that each pixel contains material of a single, uniform thermal inertia.  

Here, it is proposed that if a mixture of low and high apparent thermal inertias is present 

within a pixel, the inferred thermal inertia will be strongly dominated by the thermal 

inertia of whichever surface is warmer at the time of the measurement. This effect will 

result in a change in thermal inertia values inferred from measurements taken at different 

times of day and night.  Therefore, a correlation is hypothesized between the magnitude of 

diurnal variations in apparent thermal inertia values and the degree of non-uniformity of 

thermal inertias present in a given pixel location.  

Preliminary work has shown that the magnitude of such diurnal variation in inferred 

thermal inertias is sufficient to detect geologically useful differences in surfaces mixtures.  

Mapping the difference in apparent thermal inertias from day and night THEMIS 

observations may prove to be a new way of distinguishing surfaces that have relatively 

uniform thermal inertias from those that have mixed thermal inertias.   
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1. Background 

1.1. Sediments on Mars 

For billions of years on Mars, the dominant geologic processes have been sedimentary 

processes and impact gardening. As a result, detailed knowledge of the sediments at any 

given location is critical in the selection of landing sites for Martian exploration or 

evaluating any landscape that may have undergone sorting processes. For example, 

workers evaluating potential landing sites need to know the surface distribution of 

boulders within a given rover landing site before it is selected to evaluate the scientific 

potential as well as traversability (e.g., Grant et al., 2004, 2011). Well-sorted materials are 

more mature than those that are poorly sorted (Folk, 1974), and the degree of sedimentary 

sorting therefore provides information about a surface’s geologic history. It is generally not 

possible to determine detailed grain properties from orbital images, and in-situ 

measurements are only available for a few small areas on Mars. Sedimentary sorting is a 

key observation for assessing whether the surface modification process in question was/is 

lacustrine, fluvial, alluvial, aeolian, or another mechanism.  

It should be noted that orbital data cannot explain an entire geologic history by 

themselves; they must be taken in context with other properties of the area. On Mars, 

explaining the geologic history becomes a much more difficult issue, as data collection on 

Mars is much more limited than that on Earth. Data and samples can easily be collected in 

the field here on Earth, however on Mars, rovers have only explored a small portion of the 

surface.  While this limited data can be supplemented with orbital systems, both suffer 

from resolution and data volume constraints. From a global sedimentary perspective, much 

of what is known regarding Martian grain sizes comes from the Thermal Emission 
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Spectrometer (TES) (Christensen et al., 2001) and the THermal EMission Imaging System 

(THEMIS) (Christensen et al., 2004). Standard thermophysical analysis methods used with 

both datasets rely on the assumption that the calculated thermal inertia for each of their 

pixels (3x6-km and 100x100-m respectively) are uniform. The purpose of the present work 

is to test the hypothesis that sub-pixel mixing of surfaces with varying thermal inertias will 

yield diurnally-variable apparent thermal inertias on the full-pixel scale, and that this 

variation is of sufficient magnitude to be observable in THEMIS data.  

Here, the term “apparent thermal inertia” is used to denote the thermal inertia value 

inferred from a single time-of-day measurement under the assumption of a horizontally 

homogeneous thermal inertia pixel. This concept is distinct from the physical property of 

thermal inertia (herein referred to as “absolute thermal inertia”), which refers to a bulk 

material characteristic of the surface. Throughout this work, the terms homogeneity and 

heterogeneity will be used to reference the thermal inertia components. “Homogeneity” is 

not an indication that within the sub-pixel every component contains the exact same 

thermal inertia, but instead that the mixture is homogenous or heterogeneous with respect 

to the limit of detectability of the employed method and instrument. Furthermore, the term 

“components” will be used to describe the physical surface characteristics (herein referred 

to simply as “surfaces”) of the region. For example, a pixel completely filled with well-

sorted aeolian fine-grained material would be considered, in this context, a homogeneous 

surface, whereas a pixel that contains a mix of well-sorted aeolian fines plus boulders (or 

bedrock) would be considered a heterogeneous surface.  

To confirm the viability of this hypothesis, the areas to be investigated herein will be 

those where in-situ measurements of the physical properties of the surfaces have been 
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made. These data do have constraints; the cameras onboard every rover have resolution 

limits for characterizing grains below certain sizes (Eibl et al., 2015), but sands around the 

rover have been analyzed by the Microscopic Imager (MI) and the Miniature Thermal 

Emission Spectrometer (miniTES), and  were determined to be typically a fine sand with 

embedded particles in a bimodal distribution from 0.6 to 6 mm (Fergason et al., 2006a), 

which corresponds well with the laboratory measurements conducted by Iversen et al. 

(1976) that determined the most easily moved grain size on Mars to be 100-150 𝜇m.  

 

1.2. Radiance and Thermal Inertia 

The TES and THEMIS instruments observe in the thermal infrared portion of the 

electromagnetic spectrum, measuring the target’s spectral radiance. Through the Stefan-

Boltzmann Law, the radiant flux of emitted radiance at all wavelengths over a surface per 

unit area can be calculated: 

  Φ = 𝜋𝑅 = 𝜎𝜖𝑇4.      [W/m2] [1] 

Here Φ is the radiant emittance, 𝜎 is the Stefan-Boltzmann constant, 𝑅 is the radiance, 

and 𝜖 is the emissivity; for any given brightness temperature T, an estimated radiant 

emittance may be calculated or vice-versa. Because the radiant emittance scales as the 

fourth power of the brightness temperature, a small increase in temperature can have a 

large increase in the radiant emittance. For example, take the average Martian surface 

temperature of 218 K: to increase the radiant emittance by 50%, the temperature only 

needs to rise to 259 K. Calculating the temperature on the surface of Mars also relies on a 

variety of factors which dictate the radiance the detector receives, so thermophysical 

models, (Kieffer, 2013; Putzig et al., 2013) must account for deviation in such variables as: 
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atmospheric opacity, slope, pits, diurnal variability, multiple sub-surface layering, rotation 

rate, stellar brightness, and orbital obliquity. 

Thermal inertia (Kieffer et al., 1977) is an expression of how readily the temperature of 

an object responds to the presence of a heat source (usually insolation). It is expressed in 

thermal inertia units (tiu, defined as J·m-2·K-1·s-1/2) (Putzig, 2006) and is defined as the 

square root of the product of the thermal conductivity (𝑘), density (ρ), and the specific heat 

capacity (𝐶): 

  𝐼   ≡ √𝑘𝜌𝐶.       [tiu] [2] 

On bodies with little or no atmosphere and low water content in the regolith, apparent 

thermal inertia on non-indurated surfaces is correlated with particle size (Kieffer et al., 

1977; Presley and Christensen, 1997; Fergason et al., 2006a). In general, silt and other 

unconsolidated fines have lower absolute thermal inertias, sand-sized particles and 

consolidated fines have intermediate values, and boulder-sized rocks (and the 

thermophysically similar bedrock) have high absolute thermal inertias. By knowing the 

thermal inertia, and using the value of 1×106 𝐽 ∙ 𝑚−3 K for 𝜌𝐶 (Christensen et al., 2001; 

Fergason et al., 2006a), equation 2 can be used to solve for 𝑘. Then the particle diameter, 𝑑, 

in microns, can be calculated by using the relationship established by Presley & 

Christensen (1997): 

  𝑘 = 𝐶𝑃0.6𝑑−0.11 log(
𝑃

𝐾
), [W/(m·K)] [3] 

where 𝐶 ~ 0.0015 and 𝐾 ~ 81,000 torr respectively (1 torr = 133.3 Pa), and 𝑃 is the 

average atmospheric pressure of 5 torr (Kieffer, 2013). 
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1.3. Thermal Inertia Variability 

The above described relationship between the physical surface properties and thermal 

inertia is straightforward in homogeneous (single absolute thermal inertia) surfaces, but 

mixtures of variable (heterogeneous) surfaces are a non-trivial matter. When collecting 

data from orbit, the pixel resolution must be considered. Current methods for determining 

the apparent thermal inertia of the surface of Mars rely on the assumption that the 

components within a given pixel consists of a single thermal inertia. This is done through a 

two-step process: the radiance from a THEMIS pixel is input into a thermal model along 

with the appropriate conditions (time of day, time of year, location, albedo, slope, and tau) 

to calculate a temperature; second many thermal inertias are used to calculate diurnal 

temperature curves which are then matched against the temperature from the first step to 

find the closest curve. The thermal inertia which best matches the empirical value is the 

thermal inertia for that pixel.  

However, the Stefan-Boltzmann Law dictates that grains of varying temperature will 

contribute to the overall radiant emittance disproportionately. Because spectral radiance is 

proportional to the 4th power of temperature, the warmest components within a pixel of 

mixed thermal inertias will have a disproportionally high influence on the total radiant 

emittance of that pixel.  

Figure 1 demonstrates this effect schematically. In this figure, it is assumed that three 

theoretical scenarios contain surfaces with varying thermal inertias surfaces 

corresponding to: homogeneous sand, homogeneous bedrock, and a heterogeneous 

mixture of the sand and bedrock. The calculated apparent thermal inertia for homogeneous 

surfaces does not vary between day and night data, which is to be expected. However, 
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when the mixed surface is observed at multiple times of day, the component that is 

warmest at any given time has a disproportionate influence over the apparent thermal 

inertia. The magnitude of this effect can be quantified by subtracting the calculated 

apparent thermal inertia in the predawn hours (when high thermal inertias dominate) 

from the calculated apparent thermal inertia during midday (when lower thermal inertias 

dominate). A large disparity between apparent thermal inertias derived from predawn and 

midday data would, therefore, indicate a greater degree of heterogeneity in the thermal 

inertia mixture, while a small or nonexistent variation in apparent thermal inertias would 

indicate a more homogenous thermal inertia mixture on the surface.  

Previously, this phenomenon was studied for TES data (Putzig, 2006; Putzig et al., 2014; 

Putzig and Mellon, 2007a, 2007b), but the resolution of TES data is 3-km by 6-km and 

horizontal heterogeneity is almost guaranteed at such large scales. Unsurprisingly, all data 

collected with TES were found to exhibit heterogeneity and therefore this method was not 

explored further. By comparison, THEMIS has a resolution of 100-m per pixel, which 

outperforms TES by a factor of 1500 in area and may be more likely to resolve 

homogeneous surfaces.  

While THEMIS lacks the spectral resolution of TES, apparent thermal inertia can still be 

determined (Fergason et al., 2006b), and the spatial resolution increase of THEMIS over 

TES can be used to find heterogeneous mixing at a spatial resolution an order of magnitude 

lower than in previous work (Putzig et al., 2014). 
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1.4. Opportunity Rover Traverse 

Opportunity’s mission duration has surpassed 5000 sols, (a sol is a Martian day), many 

more than its originally planned 90 sols. This 14-year journey has taken the rover across a 

diverse range of terrains and inferred paleoenvironments. Opportunity landed in Eagle 

crater within Meridiani Planum and spent over 50 sols exploring the area (Squyres et al., 

2004). Endurance crater contained some outcrops of bedrock within the crater walls but 

also contained abundant sand deposits (Squyres et al., 2006), as well as rocky and sandy 

regions (~sol 88). Further along, Opportunity encountered an aeolian ripple which 

entrapped it for 40 sols (~sol 446). Both regions would have been prime candidates for 

testing of variability in apparent thermal inertia, but their areal extent may not be large 

enough to be resolved by THEMIS. However, Opportunity  made long traverses through a 

series of “pergatoids,” or ripples potentially capable of entrapping the rover, around sol 

2250 (Arvidson et al., 2011). This ripple field is large enough to easily span several THEMIS 

pixels and therefore makes an initial prime candidate for study. Areas within this region 

(within the context of THEMIS detectability) are thermophysically homogenous due to 

aeolian sorting. Elsewhere within this region, the ripples that partially mantle the 

surrounding bedrock create a horizontal, checkerboard-style mixing, which provides an 

ideal opportunity to test the sensitivity of this method for identifying sub-pixel 

heterogeneity.  
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2. Hypothesis 

Discrepancies between predawn apparent thermal inertia measurements have 

previously been attributed to inherent uncertainties in measurements or model 

assumption uncertainties (Fergason et al., 2006b). This previous approach differs from the 

model presented here. Fergason et al. 2006b refers only to variability between different 

measurements at similar times of day. The present model assumes a two-component 

mixture of thermal inertias which can yield variations in apparent thermal inertia over a 

diurnal cycle. Therefore, regions of only fine sand or only bedrock should exhibit constant, 

yet different, apparent thermal inertias throughout the course of a day, whereas a region 

with a mixture of bedrock and fine sand would exhibit variable apparent thermal inertias 

which trend towards the warmest component at any given time of day. This effect leads to 

two primary hypotheses: 

 

Null Hypothesis: Any diurnal variability in THEMIS-derived apparent thermal inertia is 

inherent to the instrument or thermal model, or errors in the parameters used by the 

thermal model, and does not correlate with the physical surface properties of the region. 

 

Alternative hypothesis: Diurnal variability in the THEMIS-derived apparent thermal 

inertia of a surface can indicate multi-component mixing of thermal inertias, which 

indicates sub-resolved variations in the physical surface properties of the region. 

 

These hypotheses will first be examined through theoretical modeling before exploring 

the hypotheses using empirical data of a well-characterized region on the ground. 
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An additional alternative hypothesis to explain diurnal variations in apparent thermal 

inertia is the presence of vertical layering on a scale shorter than the diurnal skin depth of 

the surface, a phenomenon currently being investigated by Ahern and Rogers (2018). This 

work instead focuses on the effect of lateral (horizontal) sub-pixel checkerboard mixing in 

which the lateral scale of mixing is large compared to the horizontal length scale of diurnal 

heat transfer. Both types of two-component mixing are plausible for Mars, but one type 

may dominate over the other at specific sites due to local geologic circumstances. Since 

neither effect has been characterized fully up until this point, and because each are 

complex in their own right, it is more tractable to study them independently before 

considering their combined effect.   
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3. Methods 

3.1. Theoretical Modeling 

The theoretical model creates virtual THEMIS “data collections” based on the mixture of 

two theoretical input components (Figure 2) using lookup tables of varying thermal 

inertias and albedos. Because absolute thermal inertia is correlated directly to the physical 

surface characterization on Mars (Kieffer et al., 1977; Jakosky, 1986;  Presley and 

Christensen, 1997; Fergason et al., 2006a), varying thermal inertia within the model has 

the same effect as varying the size of grains or surface component. Lookup tables must be 

created individually for any given location and solar longitude through the KRC program 

provided by Arizona State University, krc.mars.asu.edu (Kieffer, 2013). The input variables 

used for thermal inertia calculations are (Kieffer, 2013):  

Thermal Inertia: The resistance of a material to change in temperature in the presence 

of a radiant heat source, typically the Sun 

Conductivity: The rate at which heat is conducted through a specified material 

Density: The amount of mass, or matter, contained within a specific volume 

Specific Heat: The amount of energy required to raise the temperature of a material 

Opacity: A measure of the impenetrability of the atmosphere to electromagnetic 

radiation 

Albedo: The proportion of the incident light or radiation that is reflected by a surface 

Emissivity: The ratio of the radiance from the surface to that radiated from a blackbody 

at the same temperature and wavelength. 

Slope: Angle of incline of a surface above or below horizontal 

Azimuth: Direction of slope as measured beginning from north and moving through east 
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Ls : The Mars-Sun angle, measured from the Northern Hemisphere spring equinox 

where Ls=0 

Pressure: The pressure exerted by the weight of the atmosphere 

Diurnal Surface Temperature: Variations in temperatures occurring throughout a day  

For model testing, most inputs remain constant to constrain the model. A series of 

lookup tables were constructed with input parameters tailored to the Opportunity landing 

site. These tables expedited the process and prevented the time-consuming thermal model 

from needlessly running every time a temperature was needed for a given thermal inertia 

and albedo. Instead the model parsed a pre-calculated lookup table. The primary lookup 

table used for this model used fixed values for all input parameters except thermal inertia 

and albedo, which therefore yields an array of fixed temperatures for predawn and midday 

data collections.  

The thermal inertia ranged from 12 to 2000 tiu, encompassing all observed thermal 

inertias on the Martian surface, and were incremented by 1-tiu each run for high resolution 

sampling. Any values lying between thermal inertia or albedo values were linearly 

interpolated. The albedos spanned typical Martian values of 0.01 to 0.20 in increments of 

0.01. The KRC program, using every combination of these input values, applied a thermal 

model of the surface of Mars to estimate the surface temperature at predawn and midday. 

This created a lookup table with 39,780 lines consisting of the albedo, thermal inertia and 

two temperatures output by KRC. One temperature value was calculated at predawn hours 

(0400 Local Mean Solar Time, or LMST) and the other was taken during midday hours 

(1400 LMST).  
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An interpolation code was constructed for this project so this lookup table could be 

used “backwards,” and the theoretical model could use the predawn and midday 

temperatures of a surface composed of any mixture of components to find corresponding 

apparent thermal inertia values. A flowchart (Figure 2.) also is provided to further 

illustrate the process. The THEMIS detector measures spectral radiance, which can be 

converted into temperature. However, temperature is an intrinsic property and therefore 

two temperatures cannot simply be averaged together. Thus, any temperatures from the 

lookup tables must be converted into radiance space, averaged, and then converted back to 

an apparent temperature for the mixed surface. To maintain consistency with current 

THEMIS processing methods, only band 9 radiances are used for calculating temperatures 

(𝜆 = 8.56 𝜇𝑚) (Kieffer, 2013). After converting the two predawn temperature values and 

the two midday temperatures values into radiance space, they can be averaged by slightly 

modifying the blackbody equation:  

  𝐵𝜆(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒

ℎ𝑐
𝜆𝑘𝑏𝑇1−1

𝑥 +
2ℎ𝑐2

𝜆5

1

𝑒

ℎ𝑐
𝜆𝑘𝑏𝑇2−1

(1 − 𝑥). [4] 

In equation 4, h is the Planck constant, c is the speed of light, 𝜆 is the band 9 wavelength 

of THEMIS, 𝑘𝐵 is the Boltzmann constant, 𝑇1 is the temperature of component 1 in Kelvin, 

𝑇2 is the temperature of component 2 in Kelvin, 𝑥 is the mixing percentage of component 1, 

and (1 – x) is the mixing percentage of component 2. The two radiances emitted by 

components 1 and 2 were mixed in proportion to their abundances, and then “detected” by 

THEMIS. The mixed radiance was then converted back into temperature space through an 

inversion of the blackbody equation. This inversion was performed twice, once for a 

predawn measurement and once for a midday measurement. The two apparent 
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temperatures for the two times of day were then fed into the inverse thermal model to find 

two thermal inertias, one corresponding closest to the predawn apparent temperature of 

the mixed components and the other corresponding closest to the midday apparent 

temperature. Finally, these two thermal inertias were subtracted from one another to find 

the delta thermal inertia (Δ𝐼). The 50% mixture gave the largest diurnal variation in 

thermal inertia and was therefore used for much of the model-based testing. 

By using this model repeatedly, a grid of thermal inertias with a fine sampling 

resolution was analyzed against one another and plotted onto a 2D comparison plot, where 

the x- and y-axes are the possible thermal inertias of components 1 and 2 in the mixture, 

respectively, with values ranging the full width of the lookup table (12-2000 tiu). The 

values at each x and y position are the 𝛥𝐼 values of two mixed thermal inertias. These 𝛥𝐼 

values were then compared to the published THEMIS uncertainty on the absolute values of 

the thermal inertia of 20%  (Fergason et al., 2006b) (Figure 3). This 20% uncertainty likely 

is conservative because it only takes into consideration a single surface thermal inertia, 

rather than a mixture of multiple thermal inertias. It was derived from comparisons of 

thermal inertias all acquired at similar (pre-dawn) times of day, which is different from 

how the 𝛥𝐼 used here is derived. For comparison, two other values for the possible 

uncertainty on the absolute value of a thermal inertia (5% and 10%) were considered in 

Figure 3 in addition to the 20% uncertainty by calculating the limit of detectability for all 

uncertainty values and comparing it to the calculated change in thermal inertia: 

  Δ𝐼 > √(𝛿𝑃𝐼𝑃)2 + (𝛿M𝐼𝑀)2 ∴ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒  

  Δ𝐼 < √(𝛿𝑃𝐼𝑃)2 + (𝛿M𝐼𝑀)2 ∴ 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒.  [5] 
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Here 𝛿 represents the uncertainty (5%, 10%, and 20%) in the apparent thermal inertia, 

𝐼, at predawn, 𝑃, and midday, 𝑀. Through this equation, the uncertainty in Δ𝐼 is calculated 

based on the uncertainty associated with the corresponding pre-dawn and mid-day 

thermal inertia measurements, and if that is smaller than the corresponding Δ𝐼 value, the 

𝛥𝐼 value would be above the uncertainty and therefore detectable. Each uncertainty was 

tested against the Δ𝐼 and a limit of detectability was determined. As shown by Figure 3, a 

heterogeneous surface consisting of 50% dust and 50% boulders should be detectable even 

with the 20% uncertainty in absolute thermal inertia asserted in Fergason et al. (2006b). 

While this level of detectability for heterogeneous surfaces is certainly useful, empirical 

results presented below suggest the method proposed here is also sensitive to less extreme 

differences in mixing.  

 

  3.2. Site Selection 

The Opportunity Mars rover landing site in Meridiani Planum was chosen as the 

primary location for this study as the rover has traversed over 45-km across a variety of 

terrains. Some of these terrains contain mixtures of both bedrock and sand (Figure 4) 

while others are primarily covered in sand (Figure 5). Regions that have a wide variety in 

the degree of surface heterogeneity (at the 100-m scale of a THEMIS pixel) make ideal 

candidates for searching for evidence of diurnal variability in apparent thermal inertia.  

To further evaluate the utility of 𝛥𝐼 as a proxy for surface heterogeneity, images from 

Opportunity’s hazard avoidance cameras (Hazcams) were inspected manually to assess the 

degree of heterogeneity and compared to 𝛥𝐼 values derived from THEMIS data for the same 

locations. The front Hazcam images were selected for this evaluation, rather than the 
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microscopic imager (MI) images. Images from the hazard avoidance cameras were chosen 

to keep a constant viewing angle to maintain consistency between rover locations and 

because these images cover areas much closer to the extent of a THEMIS pixel than an MI 

image. Also, Hazcam can resolve larger components of the surface mixtures found at 

Meridiani Planum, and the grain size of the smaller components visible in Hazcam images 

were “spot checked” using the MI and Mini-Thermal Emission Spectrometer (MiniTES) 

where available (Fergason et al., 2006a). 

The High Resolution Imaging Science Experiment (HiRISE) has a resolution of 25-32-

cm/pixel (McEwen et al., 2007). This resolution is insufficient to directly determine surface 

mixing at the resolution of this 𝛥𝐼 method. However, there are characteristic differences 

between the albedos of sand and bedrock specific to the materials encountered along the 

Opportunity traverse at Meridiani Planum that allowed use of albedo to determine the 

proportions of sand and bedrock at the THEMIS pixel scale from HiRISE images. Therefore, 

HiRISE images were used as a proof-of-concept for this thermal analysis by analyzing the 

degree of heterogeneity over the Opportunity traverse. The combination of available 

ground observations and the simple relationship between albedo and surface component 

at this site provided an excellent means of validating the method proposed here. If 

validated, this method can be used globally in regions with no ground-based coverage or 

different relationship between albedo and surface component in HiRISE images. 

 

3.3. Data Collection 

Comparing THEMIS measurements between two separate scenes carries a high degree 

of uncertainty (Fergason et al., 2006b). To mitigate this uncertainty, three criteria were 
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given special consideration during image selection: Mars Year, Solar Longitude, and Image 

Rating. Images were required to have been acquired by THEMIS during the same Mars 

year, and as close to the same solar longitude as possible. This was to minimize time-

variable contributions to the uncertainty, such as the amount of dust loading in the 

atmosphere. THEMIS complete repeat coverage occurs approximately every 30 days near 

the equator (Christensen et al., 2004). This is a maximum time for repeat coverage; images 

that overlap at predawn and midday are more common. Furthermore, coverage repeat at 

the poles is faster, so midday and predawn image pairs are temporally close, and images 

were selected to maximize this temporal proximity. Image quality also plays a major factor 

in image processing. THEMIS images are rated based on exposure, missing lines, 

instrument noise, and atmospheric features. Image ratings range from 1 to 7, with 7 being 

extremely rare, pristine quality, 3 to 6 the generally acceptable range for image quality, and 

1 to 2 being low quality images unsuitable for research purposes. For this research, only 

images with an image rating of 4 and above were used. The 𝛥𝐼 method relies on subtle 

diurnal shifts in apparent thermal inertia, and using high quality images maximizes the 

chances of detecting these shifts.  

Two THEMIS infrared images (image numbers I53125002 and I53343006) were used 

for the analysis of the Meridiani Planum site. Both images overlap over Endeavor crater 

and the remainder of the Opportunity traverse. They are separated by only 8° of solar 

longitude (one month is 30°) and both were taken in the Martian spring. Image I53125002 

has an image quality of 4 and I53343006 has an image quality of 5.  
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3.4. Data Processing with MARSTHERM 

The THEMIS images were processed through MARSTHERM (Putzig et al., 2013), a 

model created by the Southwest Research Institute. While KRC is a variation on the original 

thermal model crafted by Hugh Keiffer in FORTRAN (Kieffer et al., 1977), MARSTHERM 

uses an enhanced version of the thermal inertia derivation algorithm developed by Mellon 

et al. (2000). MARSTHERM has a web-based interface which simplifies the processing of 

THEMIS images compared to using KRC.  Fergason (2006b) showed that “any differences 

between the thermal models does not significantly contribute to differences between 

derived thermal inertia values”.  

Image outputs from MARSTHERM consist of several products, all of which are map 

projected and cropped to user defined coordinates: a processed radiance image of the 

region of interest, an apparent thermal inertia image, and a quality factor image. The 

MARSTHERM quality factor (0-5) is distinct from the individual THEMIS image rating in 

that: A) it is assessed on a per-pixel basis rather than based on the entire image, and B) the 

quality factor of MARSTHERM is based on interpolation value accuracy and varies from 

pixel to pixel, whereas the THEMIS image rating is a subjective assessment of image quality 

based on conditions such as exposure, noise, any missing lines, and atmospheric features. It 

should be noted that the sense of these two quality indicators are opposite each other; low 

MARSTHERM quality factors (0-good to 3-useable) and high THEMIS image ratings (3-

useable to 7-good) are desirable for analysis (Putzig et al., 2013).  
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3.5. Data Processing with ENVI 

The MARSTHERM-processed images (based on images I53125002 and I53343006 as 

input) were taken into ENVI (ENvironment for Visualizing Images) for further processing. 

These images were masked to remove any pixels of a quality factor of 4 or 5. The two 

masks were compared and pixels that were masked from one image due to poor quality 

factor also were masked from the other image. This way only pixels with thermal inertia 

values with quality factors of 0-3 were used to produce the 𝛥𝐼 image. MARSTHERM 

produces image products that have been georectified using SPICE kernels and cropped to a 

user-set longitude and latitude. The ground resolution of the two images were the same 

(100-m/pixel), so the images overlaid each other to the pixel and were easily subtracted 

from one another easily. A manual “flicker” between images was used prior to the 

subtraction to verify the positioning of the images, but no correction was needed. A slight, 

approximately 0.1-degree grid pattern is visible across processed images which is caused 

by the memory limitations in MARSTHERM. 

 

3.6. Data Processing with ArcGIS 

ArcGIS is used to visualize the final subtraction step in the diurnal thermal inertia 

comparison with orbital images and the rover traverse. However, while the thermal inertia 

images were cropped and co-rectified, the resultant 𝛥𝐼 image was not georectified. Tie 

points registered the 𝛥𝐼 image to the CTX and HiRISE basemap of the Opportunity rover 

traverse location (Parker et al., 2012). A color ramp was added to the basemap to clearly 

show variations in 𝛥𝐼 (Figure 6). Low 𝛥𝐼 values therefore correspond to more 

homogeneous surface mixtures, while higher 𝛥𝐼 values should correspond to more 
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heterogeneous surface mixtures. The georeferenced traverse of Opportunity then was 

overlain to visualize the path and to select regions of interest along it for further 

investigation. Locations of interest were selected from specific pixels that have very low or 

very high 𝛥𝐼 values. Regions with high topographic slope (>15°) were avoided to mitigate 

against thermoclinometric effects, which can significantly influence the apparent thermal 

inertia values inferred from midday THEMIS images (Fergason et al., 2006b). While the 

model does include a slope correction, thermoclinometric effects on sloped surfaces still 

may yield spurious thermal inertia values, especially in the midday images. This is due to 

the MOLA data used for the elevation map. MARSTHERM uses an elevation map of 20 pixels 

per degree, and elevation values are interpolated linearly. As the DEM used to get slope 

values has a lower resolution than the resolution of the THEMIS data, high sloped regions 

were avoided for this study. 

Selected regions of interest were linked to a specific sol number for the rover and front 

Hazcam images were acquired for those sols.  Regions where the rover stayed for multiple 

sols used the images from the first sol in that location. Images throughout the traverse 

were selected by choosing a sol located around 100-m from the previous image location. If 

that sol did not have a Hazcam image, the next sol with a Hazcam image was selected. For 

the study location, 64 images were selected for manual evaluation of the degree of surface 

heterogeneity by independent reviewers. Each Hazcam image field of view is less than 50-

m in front of the rover and images are acquired during every drive the rover completes. 

Therefore, while Hazcam images do not have the pixel resolution necessary to differentiate 

varying sand sizes, they are ideal for differentiating sand and bedrock over an area of a size 

approaching that of a THEMIS pixel.  
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Volunteers (n=12) were selected to evaluate the degree of surface heterogeneity of the 

selected 64 images taken along the traverse. First, the volunteers scanned through the 

images without rating to become accustomed to the scenes, then rated each image from 1 

(very homogeneous) to 5 (very heterogeneous) based on 5 sample images at each degree 

of heterogeneity. After rating once, the volunteers began again so the first images were 

rated in a similar manner to the final images. For an assessment of surface heterogeneity, 

only the second set of ratings was used from each volunteer. The results then were 

averaged for each location. Image ratings for each location all had standard deviations of 

less than 1.5, so more reviewers were deemed unnecessary. Each rating for the images then 

was then logged to the correct sol in the Opportunity traverse within ArcGIS and compared 

to the value of the corresponding pixel in the 𝛥𝐼 image (Figure 7). Here, darker green 

circles indicated a larger degree of surface heterogeneity and therefore should correspond 

to an increase in Δ𝐼 if the alternative hypothesis stated in Section 2 is true. 

 

3.7 Processing HiRISE Images 

Three HiRISE stamps were selected for this region to fully cover the portion of 

Opportunity’s traverse being investigated (ESP_012820_1780, ESP_020758_1780, and 

PSP_009141_1780). Images ranged in scale from 26.9- to 29.6-cm/pixel, and each were 

taken at 15:27 ± 00:05 LMST. As seen in Figure 5, the approximate proportions of fines vs. 

bedrock along the Opportunity traverse easily can be assessed in rover-based images 

because the lighter-toned bedrock contrasts heavily with the darker-toned sand. As these 

happen to be the two dominant size fractions along the traverse, a threshold was applied to 

the HiRISE images of the region to separate each image into dark pixels representing fine 
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sand, and light pixels representing bedrock, and this bimodal image was used to assess the 

degree of lateral checkerboard mixing at the 100-m scale of THEMIS observations.  

However, the HiRISE pixel radiance values for each of these two units within the images 

were not uniform throughout the images. This was due to an overall gradient in gain the 

flat field correction was not able to correct which likely would not have been seen had the 

data not had a threshold applied. Reducing the data down to two unique values caused this 

gradient to become apparent, so a correction for this gradient was necessary. Once the 3 

HiRISE stamps were combined into one mosaic, the Opportunity traverse was overlain. The 

section of the HiRISE mosaic surrounding the traverse was broken into subsections of 1-km 

x 2-km. This size was picked as it was below the scale of the gain drift. Each subsection 

overlapped the previous subsection by approximately 10%, so they could be mosaicked 

together later to verify consistency of the sand/bedrock identification. A threshold was 

applied to each subsection in such a way as to separate the lighter toned material from the 

darker toned material (Figure 8).  

The thresholded subsections were mosaicked together, and the resultant HiRISE 

threshold map was then imported into ArcGIS and registered to the georectified HiRISE 

basemap. This HiRISE threshold is designed to calculate the percentage of bedrock and 

sand that would be present in any given THEMIS pixel. To do this, square 100-m buffers 

were created around each stop in the Opportunity traverse. This buffer served as an analog 

for a THEMIS pixel, and through a program written by ArcGIS user clarksu (2012), the 

number of light and dark pixels within each 100-m square buffer in the underlying HiRISE 

threshold was tallied, and a percentage of exposed bedrock was calculated. These data 
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were then compared to the average user submitted degree of heterogeneity and the map of 

𝛥𝐼 values (Figure 9) using the rover position at each sol, the center of each 100-m square.   
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4. Results  

4.1. Theoretical Model 

The results of the theoretical study were plotted on a 2D comparison graph in three 

increments of component mixing under ideal conditions: a 50% mixture  of two 

components (Figure 3a), a 25% mixture of two components (Figure 3b), and a “0% 

mixture” (homogeneous surface) as a control. A detection limit estimated based on the 

uncertainty in absolute thermal inertia provided by Fergason et al. (2006b) was calculated 

and plotted on each graph.  The control test for the homogeneous surface successfully 

resulted in a Δ𝐼 of 0 for all pixels. As this model used the same absolute thermal inertia for 

the two components being mixed, when “averaged” the pixel exhibited the same apparent 

thermal inertia at predawn and midday indicating the model performed nominally. The 

second verification of the model was the 25:75 ratio image, which calculated most 

heterogeneous surfaces would not be detectable at a 20% uncertainty. In fact, only 

bedrock/dust mixtures yielded Δ𝐼 values in excess of this limit, with an apparent thermal 

inertia difference of 100-110-tiu between predawn and midday. 

The final theoretical feasibility check for the method utilized a 50:50 mixture of 

component 1 to component 2 and yielded Δ𝐼 values up to 225-tiu, over 100-tiu greater than 

the 25:75 mixture. Even in a 50:50 mixture, plot contours corresponding to 20% 

uncertainty suggest any surface heterogeneities less extreme than a mixture of bedrock 

and dust, gravel-dust or cobble-dust would not be detectable via THEMIS.  
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4.2. In-situ Analysis 

Initially, two locations were chosen as places to make a qualitative “spot check” 

comparison of Δ𝐼 with what was seen on the ground by Opportunity. The first location, 

visited on sol 2246 of the mission, was chosen on flat ground with a homogeneous (as 

defined above) surface (Figure 5), as dust and sand mixtures are indistinguishable and no 

significant percentage of the area contained bedrock. The other location, from sol 2376, 

was chosen for its heterogeneous surface consisting of bedrock outcroppings and sand 

(Figure 4). The homogenous location had a 𝛥𝐼 value of 4-tiu, whereas the heterogeneous 

location had a 𝛥𝐼 of 123-tiu. After the spot-check method, the mixtures of the 

corresponding surfaces were plotted onto the theoretical 50% mixing plot in Figure 3a. 

This Δ𝐼 value of 4-tiu corresponds to a homogeneous surface, and using knowledge gained 

from in-situ observations and by estimating grain size from predawn THEMIS images it 

was concluded the surface consists of fine sand. The value of 123-tiu corresponds to a 

mixed thermal inertia surface, which here using in-situ observations can be refined to a 

50:50 mixture of fine sand and bedrock. The Δ𝐼 values were similar to the modeled results. 

The in-situ analysis provided by the volunteers was also compared to the corresponding 

Δ𝐼 for each location. The correlation between Δ𝐼 and user-submitted degree of 

heterogeneity was plotted on a series of histograms intended to reveal any correlation 

between these values, hereafter referred to as a “correlation histogram” (Figure 10a).  

 

4.3. Comparison Between 𝛥𝐼 Values and Masked HiRISE image 

The analysis of the 100-m buffered points along the MER traverse yielded similar, but 

significantly more results than the manual identification performed by the volunteers. 
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Values for the percentage of bedrock exposed ranged from 0% to 54%. The same portion of 

Opportunity’s traverse, between sols 2395 and 2594, contained the highest values of 

heterogeneity. Furthermore, as the mixing ratio approached 50:50, a similar increase was 

seen in the correlation histogram plot for Δ𝐼 values (Figure 10b).    
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5. Discussion 

The analysis performed by the volunteers appears to reveal a correlation between their 

evaluation of heterogeneity and in Δ𝐼, but this correlation is not as strong as the correlation 

seen in the HiRISE analysis. Perhaps this is because the Hazcams onboard Opportunity fail 

to resolve surface features farther than 50 m away. This resolution hinderance, plus the 

single orientation per sol from the front of the rover limits the observation window to a 

small subset of a 100-m THEMIS pixel. For a better representation of each THEMIS pixel, 

multiple Hazcam images within each THEMIS pixel could be analyzed over more of the 

Opportunity traverse. However, sufficient Hazcam analysis over the amount of traverse 

examined here would require that thousands of images be checked by volunteers.  

Luckily, within this region at Meridiani Planum albedo differences between sand and 

bedrock were distinct enough for percentages of these two components to be extracted 

from HiRISE images. While this HiRISE method may work well in Meridiani, other regions 

on Mars may not have such a strong correlation between albedo and the distribution of 

sand, and even if such a correlation exists elsewhere, the albedo differences may not be 

stark enough to separate them. The use of the same 100-m square buffer for HiRISE 

percent mixing was chosen to be at the same size as a THEMIS pixel for direct comparison. 

When plotted on the comparison histogram, a distinct trend is seen where pixels of higher 

HiRISE percent mixing correlate with values of lower Δ𝐼. As the degree of heterogeneity 

increases, the range of Δ𝐼 values also increases, to the point where a 50% mixture, or a 

maximally heterogeneous surface, corresponds to Δ𝐼 values of 100-tiu to more than 120-

tiu. Some variability was seen on this histogram where lower percent mixing correlated 

with increases in Δ𝐼 and higher percent mixing correlated to decreases. However, these 
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were uncommon, and may be caused by illuminated ripple crests (Figure 8). This is a 

limitation of the thresholding performed and could lead to an apparent increase in percent 

mixing over homogeneous surfaces.  

By analyzing the first “spot-check” location on sols 2246 and plotting it on the 

theoretical 50% mixing plot (Figure 3a), it was found that the Δ𝐼 of 4-tiu is well below the 

limit of detectability associated with 20% uncertainty between scenes, as expected for a 

site with a homogeneous surface. However, sol 2377, which was located in a region of high 

heterogeneity, corresponds with a Δ𝐼 value of 123-tiu, and when plot on the theoretical plot 

this Δ𝐼 value lies just above the limit of detectability for a 20% uncertainty. The higher than 

expected sensitivity of the method may suggest that previous estimates of the 20% 

uncertainty in THEMIS derived thermal inertia values may be unnecessarily pessimistic, 

but it could also be caused by the high-grading of the data. These data were selected 

specifically for a single season and taken within only a few weeks. Perhaps the rigorous 

selection process for these images reduced some of the uncertainty suggested by Fergason 

et al. ( 2006b). The correlation of high heterogeneity with a high Δ𝐼 value of both the spot-

check locations and the correlation plot in Figure 10b indicates surfaces of fine sand and 

bedrock can be detected through diurnal THEMIS thermal inertia comparisons. This 

correlation allows for an acceptance of the alternative hypothesis.  
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6. Summary 

A new technique has been evaluated for remotely mapping surface heterogeneity on the 

Martian surface using diurnal variations in apparent thermal inertia values derived from 

THEMIS infrared image pairs acquired in the pre-dawn and mid-day hours. Through 

inverse and forward modeling, variations in calculated thermal inertia caused by surface 

heterogeneity should be detectable for laterally-mixed surfaces with extreme differences in 

thermal inertia variability (i.e., dust mixed with bedrock). These results were then tested at 

Meridiani Planum, the location of the landing site and traverse of the Opportunity rover, by 

looking for variations in surface heterogeneity in front Hazcam images and comparing this 

to a map of Δ𝐼, the difference in apparent thermal inertia inferred from midday and 

predawn THEMIS measurements.  To further test this method, surface heterogeneity was 

evaluated with high-resolution HiRISE images for regions of high-albedo bedrock and low-

albedo sand to compare to the Δ𝐼 map.  

Previous apparent thermal inertia estimates had assumed a single apparent thermal 

inertia for each pixel. This new method can be used to distinguish surfaces that have 

relatively uniform surfaces from those that have mixed surfaces if the grain sizes are 

disparate enough and may show that previous estimates for uncertainty for THEMIS data 

were higher than the true value. 

Currently, images from the High-Resolution Imaging Science Experiment (HiRISE) 

cover only ~2.4% of the Martian surface. By contrast, THEMIS day and night infrared 

coverage is nearly global. This method can be a rapid and practical analytical technique to 

determine the degree of surface heterogeneity for future landing sites.  
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Furthermore, knowing the degree of surface heterogeneity can aid in geomorphologic 

studies. Because current interpretations of thermophysical measurements are based on the 

assumption that surfaces are composed of a single thermal inertia, the ability to determine 

whether a given area contains a distribution of multiple components or simply a single 

component will be of use to geomorphologists and engineers studying Mars’ past geologic 

history and potential future landing sites. Any research which has used THEMIS for 

physical surface characteristic estimations could be reanalyzed for regions with diurnal 

imagery to refine the degree of surface mixing. For instance, crater ejecta studies could 

benefit due to the abundance of surface size components within crater ejecta; ancient 

fluvial channel systems could be examined to determine the sorting along the channel bed; 

and dune fields can be analyzed for variations in sorting. Identification of many geologic 

processes can be aided by knowledge of the resultant variations in surface characteristics, 

so this method can be another tool in a remote sensing specialist’s toolbox for identifying 

these processes from thermal data.  

One caveat however is that midday thermal inertia maps are used, which still are 

affected by preferential heating, even when built-in slope corrections are used. Therefore, 

high sloped (>15°) regions should be avoided or examined with careful consideration. The 

terrain along Opportunity’s traverse is primarily flat, and therefore slopes above ~15 

degrees were not examined in the course of this study, avoiding the aforementioned slope 

heating issues.  

As the variations in THEMIS apparent thermal inertia between predawn and midday 

images are shown to correlate to regions of surface heterogeneity, the alternative 

hypothesis can be accepted: variability in the THEMIS-derived apparent thermal inertia of 
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a surface over a diurnal cycle indicates multi-component mixing of thermal inertias. This 

indicates sub-resolved variations in the physical surface properties of the region. These 

variations can be detected in data taken by the THEMIS instrument if the components are 

sufficiently different from each other and the different sizes are present in large enough 

proportions. This method of observing differences in diurnal thermal inertia pairs is the 

preferred method for determining the degree of surface heterogeneity as HiRISE does not 

have a global dataset, cannot directly observe components smaller than large cobbles, and 

other regions may not have component mixtures which correlate with albedo as neatly as 

those in Meridiani Planum do. The THEMIS 𝛥𝐼 map can discern surface heterogeneity 

detectable by HiRISE within Meridiani Planum, and hopefully can be another tool in the 

geomorphologists toolkit to identify horizontal surface heterogeneity across the rest of the 

planet.   
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Appendix A: Figures 

 

Figure 1. A schematic diagram showing the variability between predawn and midday 

observations of a mixed particle surface. The dashed line illustrates a diurnal thermal curve 

for a pixel consisting of 100% sand, while the solid line represents a similar diurnal thermal 

curve for a pixel of 100% bedrock. If a pixel lies on the boundary between the two, creating 

a 50:50 mixture (gray) of each, the resultant pixel, when measured will be offset towards 

the curve associated with the warmest particle size. The difference between calculated 

thermal inertia at predawn and midday is the change in thermal inertia (𝛥𝐼). This change 

is zero for pixels associated with homogeneous surfaces (solid and dashed circles) but 

nonzero for heterogeneous surfaces (gray circles).  
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Figure 2. Flowchart illustrating thermal inertia model for two particles with thermal 

inertias of 100 and 1500. The albedo and thermal inertia of two hypothetical surfaces are 

input into the model and matched with corresponding temperatures for each. Dashed 

borders are used to aid in the identification of different surfaces. The two midday 

temperatures and two predawn temperatures are converted into radiance space and 

each mixed linearly by observation time. The two combined radiances are then converted 

back to apparent temperatures by an inversion of the blackbody equation. These two 

temperatures are then input back into the original lookup table with no prior knowledge 

of the original temperatures or thermal inertias used to find midday and predawn 

apparent thermal inertias. The two new thermal inertias are then subtracted from one 

another to find the 𝛥𝐼. Example values are listed to the right. 
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Figure 3. Theoretical mixing plots which take an either 50% (a) or 25% (b) amount of 

Particle A mixed with Particle B and calculate a corresponding 𝛥𝐼 that would be observed 

by THEMIS under ideal conditions. Lines indicate the limit of uncertainty in THEMIS 

measurements between scenes, the 20% value quoted by Fergason et al. (2006b). The two 

Xs in a represent 𝛥𝐼 values for sols 2246 (green) and 2377 (pink). 
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Figure 4. Pancam taken on sol 2376 by the Opportunity rover, and an example of a relatively 

heterogeneous surface (sand/bedrock). 
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Figure 5. Pancam from sol 2246, and an example of relatively homogeneous surface (sand). 

Rover tracks are 20 cm in width. 
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Figure 6. A view along the traverse of the Opportunity rover. Data scale ranges from a 𝛥𝐼 of 

30 to 160. Note the excluded data around Victoria Crater which was avoided due to 

preferential thermal heating. 
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Figure 7. A view along the traverse of the Opportunity rover. Green points indicate locations 

which were evaluated by volunteers on the degree of heterogeneity. Larger circles indicate a 

higher 𝛥𝐼. 



46 

  

Figure 8. (a) Subset of a HiRISE image over a region of 

the Opportunity rover traverse. Note the lighter toned 

bedrock next to the darker toned sand. (b) Result of an 

image threshold of the above HiRISE image. The white 

represents outcrops of bedrock, where the black is dark 

sand. Grid pattern represents the resolution of a 

THEMIS pixel. 
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Figure 9. A view along the traverse of the Opportunity rover. Yellow to red points 

indicate the percentage of visible bedrock calculated over a 100-m buffer. Darker 

red indicate a larger percentage of bedrock. 
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Figure 10. a) Comparison histogram of user submitted degree of heterogeneity via Hazcam 

images to the THEMIS calculated 𝛥𝐼 over the Opportunity landing site in Meridiani Planum. 

b) Comparison histogram of percent mixing, as observed by HiRISE, compared to the change 

in apparent thermal observed by THEMIS over Meridiani Planum. 𝑓𝑚𝑎𝑥  represents the 

maximum frequency value for each histogram.  
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Appendix B: Theoretical Modeling of Diurnal Thermal Inertia Variations 

Creation of a Lookup Table 

Data used for lookup were collected through the KRC modeling program hosted by 

Arizona State University (Kieffer, 2013). These data are stored in a tab delimited text file. 

The first column is albedo which spans 0.01 to 0.2 and increments by 0.01. The second 

column is thermal inertia, which spans 12- to 2000-tiu in 1-tiu increments. The third and 

fourth columns are the results of the KRC program, which are the temperatures at 0400 

(predawn) and 1400 (midday) LMST respectively. 

 

User Inputs 

The program has no user inputs at the console, but at the end of the program file are 

several editable variables: 

• Alb_sm Albedo of component 1 

• Alb_lrg Albedo of component 2 

• num Resolution of graph (default: 142) 

• p_fine  Percentage of component 1 to component 2 
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Program Outputs 

Five matrices of num by num dimension consisting of the: predawn temperature 

(Celsius), midday temperature (Celsius), predawn thermal inertia (tiu), midday thermal 

inertia (tiu), and the 𝛥𝐼 values (tiu). All values within the matrix are equal to their 

corresponding x-value mixed in radiance space with the y-value in radiance space at the 

ratio defined by p_fine, afterwards combining back into temperature space.  

 

Step 1: Search lookup table for temperature values 

 

It should first be stated that a FOR loop is running the entire PRIMARY program. 

PRIMARY only calculates one 𝛥𝐼 for a specific point, therefore this loop calculates thermal 

inertia values individually at each step to generate the matrix. This section of the code 

above takes the two albedo values and two thermal inertia values and matches them to 

equal values in the lookup table. It then assigns four temperature variables to the predawn 

and midday temperatures for component 1 and B. 
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Step 2. Mixing temperatures in radiance space 

 Mixing temperatures must occur in radiance space, so the temperature variables are 

converted into radiance space using the PLANCKCAM subroutine. This is simply the Planck 

function manually added into IDL as the built-in function was slower.  

𝐵𝜆(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒
ℎ𝑐

𝜆𝑘𝑏𝑇1 − 1

 

The program runs the THEMISdata subroutine which takes the resultant temperature 

and combines it with the corresponding temperature for the other particle using the p_fine 

mixing ratio.  
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Step 3. Inverting the combined radiance 

 

This function takes the combined radiance and inverts the radiance equation to find the 

corresponding temperature.  

 

Step 4. Link temperatures to the lookup table 

Here the new temperatures are matched to every value within a similar albedo to find 

the closest match. This index value is saved and used later in the next step. 
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Step 5. Calculation of 𝛥𝐼  

The predawn thermal inertia (here listed as night) and midday thermal inertia are 

subtracted to generate the 𝛥𝐼 value. The midday temperature, predawn temperature, 

midday thermal inertia, predawn thermal inertia, and 𝛥𝐼 are all assigned to the ThermInfo 

variable. 

 

Step 6. Assign each temperature value into a matrix 
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