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ABSTRACT 

The U.S. has the biomass production potential to dramatically offset yearly 

petroleum consumption, but many efficiency barriers remain for developing enduring 

bioenergy sources. Synthetic biology allows researchers to redesign energy-relevant 

organisms to increase the efficiency and lower the cost of bioenergy technologies. 

However, developing complex gene circuit behavior in new organisms or networks can 

result in unexpected complications and off-target effects. Since cellular structure and 

scale can affect gene expression dynamics, understanding how gene expression 

operates within the physiological context of the cell becomes important for developing 

robust gene circuits. Gene expression occurs in a highly crowded and confined (from 

about 1 fL to several pL) environment. Macromolecules occupy 5-40% of the intracellular 

environment, effecting changes in molecular transport, association, and reaction rates 

associated with gene expression. Gene expression also exhibits “bursty” patterns of 

expression, characterized by episodic periods of high activity between periods of low 

activity. These bursting patterns are shaped not only by molecular mechanisms but also 

by the global availability of resources within the expression environment, both of which 

may be further modulated by physical effects, like crowding and confinement. Since 

manipulating the physical conditions surrounding gene expression can be difficult to 

achieve in cells, cell-free systems are used to directly probe gene expression reactions. 

In this work, gene expression reactions in cell-free systems are modified to mimic 

physiological levels of crowding and confinement, revealing information about the 

interplay between expression bursting, resource sharing, and spatial ordering in 

transcription and translation. These results explore how confined reactions alter bursting 

patterns and distribute limited expression resources, as well as how crowding-induced 

spatial inhomogeneities in transcription can affect bursting patterns in translation. The 

cell-free platform described here also demonstrates spatial organization of gene 

expression similar to that seen in cells, providing a useful technique for exploring the 

mechanisms of cellular self-organization in gene expression and developing spatial 

control over transcription and translation reactions. 
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1 INTRODUCTION 

1.1 Bioenergy’s Future in Synthetic Biology 

 World energy needs are increasing dramatically. It is estimated between 2012 

and 2040, world energy demand will increase 48%.1 Over 80% of primary power in 2015 

came from fossil fuel sources,2,3 which are implicated in concerns about climate change, 

global energy security, and numerous other social and economic costs. Driven by the 

need to offset increase in expected energy consumption and limit the negative impacts 

of fossil fuels, renewables now account for about 10% of energy consumption in the 

United States.4 Though large-scale fossil fuel consumption in the US may seem 

inevitable due to the availability and established infrastructure, the US has an untapped 

energy resource that may compete with this. The Department of Energy’s 2016 Billion 

ton report concludes that the US has the potential to produce a billion tons of dry 

biomass on an annual basis— which would offset about 30% of 2005’s yearly petroleum 

consumption without affecting other agricultural production.5 

As of 2016, the largest single source of renewable energy is biomass, which 

accounts for about half of all renewable energy consumption.3,4 Biomass includes 

agricultural and forestry resources (e.g. energy crops or logging residues), municipal 

solid waste, and more recently, algae. The use of biomass feedstock in the United 

States is commonly associated with ethanol and biodiesel production, largely due to 

policy incentives and mandates such as the 2005 Renewable Fuel Standard, but 

biomass resources can also be used for other renewable bioproducts, such as biogas or 

value-added chemical compounds. In the biorefinery, microorganisms are often used to 

ferment sugar intermediates into fuel blendstocks and valuable chemicals. The most 

common current ethanol production processes use yeast fermentation of maize 

feedstock. This method uses the natural homo-ethanol pathways found in 

Saccharomyces cerevisiae or other microbes6, however this method is not necessarily 

the most scalable or efficient commodity source. Though harnessing the native functions 

of biological resources is useful, a redesign of the organisms that contribute to biofuel 

production could significantly increase the efficiency and lower the cost of bioenergy 

applications.7-9 
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Synthetic biology uses engineering design principles, like rapid prototyping and 

testing, to manipulate the function of energy-relevant organisms. Using tools such as 

standardized gene “parts” and advanced DNA synthesis and sequencing methods, 

specific cellular functions and pathways can be repurposed or altered outside of their 

native function. In the context of bioenergy, the advent of synthetic biology has allowed 

for manipulation of metabolic pathways for bioproduct formation and offers a powerful 

method for reducing the expected cost of renewable fuels and chemicals. Driven mainly 

from the desire to alter chemical pathways or the release of lignocellulosic sugars6, 

possible synthetic biology solutions range from engineering plants to produce more 

accessible carbohydrates to using protein engineering to develop more effective 

digestive enzymes.7 Genetic parts and chemical processes can similarly be reassigned 

to more tractable organisms, for example, E. coli was manipulated to deliver homo-

ethanol production by integrating the production of ethanol (PET) pathway from 

Zymomonas mobilis into the host chromosome.6 E. coli has also been manipulated to 

perform complex intracellular reactions like in-vivo transesterification, which may reduce 

the impact of costly or inefficient chemical synthesis.10 Cells can also be modified to be 

very specific utilizers of feedstocks or be manipulated to directly produce complex high-

value industrial chemicals11, materials12, or pharmaceuticals13. Synthetic biology tools 

allow for the potential to finely tune energetic constraints and pathway manipulation—all 

of which are essential to producing cost-competitive yields. 

Bioproduct formation through manipulating existing parts and pathways, however, 

only captures one aspect of the transformative potential for synthetic biology in energy 

science. The ability to manipulate organisms via genetic circuit design introduces 

advanced aspects of computation and decision-making into the cell.14-16 Regulation of 

gene expression can provide more complex operational tools for the cell, such as 

selectively turning on expression in a specific sequence or under certain conditions. 

Though gene regulation has been used for improving chemical production, more 

advanced systems could control more advanced decision-making behaviors, including 

complex modules derived from control theory.14 Robust and tightly controlled circuits are 

necessary for the “second wave” of synthetic biology control—movement into organisms, 

such as bioenergy crops, or involvement in intricate microbial communities.7,8 
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1.2 Gene Circuit Design in Cellular Context 

Robust gene circuits that operate effectively in multiple contexts can be difficult 

and time-consuming to develop. Gene circuit development is not limited simply by the 

amount of available parts for circuit design. Inserting even well-designed genes into new 

organisms or networks can result in unexpected complications and off-target effects— 

the desired effect of the circuit may be diminished, altered, or absent entirely if not 

designed with the molecular context of the host cell in mind14. Problems related to the 

operation of a gene circuit in the host cell might include host overload, molecule 

queueing, and retroactivity14, but since cellular structure and scale can affect gene 

expression dynamics, understanding how gene expression operates within the physical 

context of the cell is important for developing robust gene circuits. In order to further 

elucidate the impact of host systems on gene circuits and networks, further analysis 

must be done to characterize these circuits in the physical context of the systems in 

which they will operate. 

At the most basic level, cellular context is defined by the physical constraints of 

confinement and macromolecular crowding. Cell volumes are measured on the 

picoliter17 and femtoliter18 scale. Within those confined volumes, cellular reactions are 

often compartmentalized or sequestered into distinct subregions for specialized 

purposes, primarily seen in eukaryotic organelles or bacterial microcompartments19,20. 

Confinement of reactions can not only improve molecular localization and association, 

but also provide a more favorable chemical environment for a reaction or process, 

isolated from other processes in the cell. The individuation of different physical 

subregions and conditions adds to the physical heterogeneity in the cell interior, where 

5-40% of the total volume is crowded with proteins, nucleic acids, and other large 

molecules21. A single E. coli is approximately one femtoliter in volume, and between 30-

40% of this volume is occupied by macromolecules.22 Macromolecular crowding, which 

may be thought of as nonspecific steric exclusion, can dramatically affect reaction 

dynamics by altering the diffusion, orientation, and effective concentration of relevant 

species.23 The effects of macromolecular crowding are sensitive to the size and shape of 

the constituent crowding molecules, as well as the distribution of molecules within the 

confined space21,24. Both confinement and macromolecular crowding together can have 

a dramatic effect on complex reactions in cells, like gene expression, which require the 
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localization and coordination of many molecular components of many sizes in order to 

proceed.22,25,26 

In order to characterize gene circuits in a physiological context, physical 

constraints like crowding and confinement must be characterized in terms of their impact 

on gene expression.26 As local confinement or crowding can inhibit or alter the diffusion 

or positioning of molecules relevant to gene expression, the influences of physical 

molecular conditions and an individual gene’s expression behavior are innately 

entwined. Macromolecular crowding may, for example, alter the positioning of 

constituent components in a reaction such that the components are increasingly co-

localized and thus more likely to react. Conversely, crowding may also limit the mobility 

of reactants such that constituent components cannot freely interact, reducing effective 

reaction rates. The effects of both diffusion-limitation and increased molecular 

association can be seen in gene expression reactions in the re-initiation of reaction 

components like polymerases, for example, which can temporally alter expression rates 

through high periods of transcriptional activity. 

1.3 Noise in Gene Expression 

Gene expression is a noisy process that occurs in bursts characterized by periods 

of high and low (or no) activity. Gene expression bursting is a phenomenon observed 

across many different systems, from complex eukaryotes to viral expression. The noise 

caused by transcriptional bursting, in particular, is implicated in many decision making-

processes, including cell differentiation27,28, the Bacillus subtillus decision between 

competence and sporulation27, and the HIV decision between active replication and 

proviral latency29. Bursting patterns are shaped not only by molecular mechanisms, like 

supercoiling30, promoter architecture31,32, or chromatin remodeling33, but also by the 

global availability of resources within the expression environment34. Individual genes are 

expressed in the context of global gene expression from a finite pool of shared 

resources, so the expression behavior of individual genes is coupled to the behavior of 

all genes within a confined expression environment. Since expression bursts draw 

shared resources (like polymerases, cofactors, or ribosomes) in a time-variant way, even 

genes with no direct regulatory relationship are affected by the communal use of 

expression machinery. The use of resources among different genes is further modulated 
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by the molecular availability of gene expression components, altered in part by crowding 

and confinement.  

The stochastic fluctuations in molecular populations related to noisy gene 

expression are an important feature of the cellular context. The molecules that regulate 

gene expression – from small molecule inducers to the polymerases and ribosomes – 

are present in small populations where the inherent fluctuations are large compared to 

mean population levels35-41. As described above, gene expression reactions occur in a 

highly crowded and confined environment, which may further modulate the availability of 

the reactants. These contributing factors to stochasticity in molecular populations have 

demonstrable consequences for gene regulation as fluctuations in the inputs or 

controlling mechanisms of gene circuits can alter the operation of a circuit.26,35,42 The HIV 

decision between active replication and latency is a notable example of how stochastic 

fluctuations in molecular populations can affect the behavior of a gene circuit29. In this 

case, the selection between two possible fates is mediated by fluctuations in the 

population of the Tat protein. Examining the fluctuations in gene expression over time, or 

the “noise” of the circuit, reveals the temporal variations associated with bursting 

behavior and provides a way to analyze the expression patterns of the gene circuit. 
The simplest way to model gene expression is the constitutive expression model, 

where mRNA is produced from a gene in a Poissonian process at rate α and translates 

in a Poissonian process at rate kp to make protein, p (Figure 1.1A) such that 

〈𝒎〉 =
𝜶

𝜸𝒓

1. 1 

〈𝒑〉 =
𝜶𝒌𝒑

𝜸𝒓𝜸𝒑

=
𝜶𝒃

𝜸𝒑

, 1. 2 

where rates γr and γp describe exponentially distributed decay of the mRNA and protein 

populations and the term b is the translational burst size (average number of protein 

molecules made during the lifetime of an individual mRNA).  

As described above, transcription typically occurs in bursts, and a more realistic 

model of gene expression involves transcription switching between active and inactive 

states. This expression motif is typically analyzed using the Random Telegraph, or “two-

state”, model. In this model, the gene switches from OFF to ON at rate kON and from ON 

to OFF at rate kOFF (Figure 1.1B). This expression motif results in mRNA being produced 
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in bursts, with the transcriptional burst size (B) defined as the average number of mRNA 

molecules made during the lifetime of an ON state. These bursts occur at a burst 

frequency 𝑓 = 1 (1 𝑘⁄ + 1 𝑘⁄ )⁄ . The constitutive model is a special case of this 

model, where transcription occurs at B=1 at frequency of 𝑓 = 𝛼. The overall burst size 

(BS) – which includes both transcriptional and translational bursts – is simply the product 

of the two individual burst sizes (B*b). For the two-state model: 

〈𝒎〉 =  
𝑩𝒇𝑩

𝜸𝒓

1. 3 

〈𝒑〉 =
𝑩𝒃𝒇𝑩

𝜸𝒑

. 1. 4 

By measuring protein noise in gene expression reactions over time, the burst size and 

burst frequency may be estimated. Expression data may be used to find the variance, 

mean, and other information about the expression trace in order to characterize the 

expression noise. The variances for mRNA and protein in the two-state model are found 

by43: 

𝝈𝒎
𝟐 = (𝑩 + 𝟏)〈𝒎〉 ≈ 𝑩〈𝒎〉 1. 5 

𝝈𝒑
𝟐 = (𝑩 + 𝟏)(𝒃 + 𝟏)〈𝒑〉 ≈ 𝑩𝒃〈𝒑〉 1. 6 

 

Figure 1.1: Models of Gene Expression A) Constitutive gene expression model B) Random 
telegraph or “two-state” model 
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Noise magnitude may be represented using the coefficient of variation squared, 

CV2, or the variance of the noise divided by the square of the mean (CV2=σ2/ µ2). Since  

𝑪𝑽𝒎
𝟐 =  

𝝈𝒎
𝟐

〈𝒎〉𝟐
1. 7 

𝑪𝑽𝒑
𝟐 =

𝝈𝒑
𝟐

〈𝒑〉𝟐 ≈
𝜸𝒑

𝒇𝑩
 , 1. 8  

plotting the CV2 against abundance, or mean expression, reveals distinctions between 

how burst size and burst frequency change between experimental conditions. While 

abundance (of either mRNA or protein) may change because of a change in burst size 

or burst frequency, CV2 changes only with burst frequency. Examining how CV2 changes 

with respect to abundance in this space reveals how burst size and burst frequency 

changes between experiments. For example, horizontal movement of a point in this 

space, or a large change in abundance without a corresponding large change in CV2, 

indicates that burst size, but not burst frequency, is changing. In contrast, a CV2 

inversely proportional to abundance indicates a change in burst frequency but little 

change in burst size (Figure 1.2) Thus plotting expression noise in this space allows the 

extraction of burst parameters, as well as the ability to analyze how these parameters 

change for different experimental conditions.  

 

 

Figure 1.2: CV2 vs Abundance Plot for Noise Analysis. Changes in bursting 
parameters can be understood by observing changes in positioning in this space. 
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1.4 Cell-free Expression 

Though gene expression noise has traditionally been investigated in cellular 

systems, cell-free platforms are increasingly being used as a platform for investigating 

questions in noise biology.34,44,45 Made from either purified cell extracts or reconstituted 

proteins, cell-free systems provide a flexible platform for isolating phenomena 

contributing to noise in gene circuits. In an effort to diagnose sources of failure or 

maladaptation in gene circuits, there has been considerable interest in developing cell-

free methods for “debugging” problems in gene circuits.15,46-49 These efforts include the 

development of minimal cell technology or in cell-free “breadboard” extracts, methods 

whereby the confounding interactions of a target host cell are minimized or eliminated. 

These methods concentrate all resources within the system to the operation of the 

genetic circuit, in theory allowing the researcher to isolate problems innate to the circuit’s 

function.49 However, even within these simplified systems there exist regulatory 

problems, such as molecular bottlenecks and crosstalk, which can change the topology 

of the circuit.14,15,50 Moreover, transcriptional bursting patterns may be observed in a cell-

free context, absent of the usual cell-attributed causes of chromatin remodeling or 

supercoiling.30,34,44,51,52 These findings highlight the importance of examining cell-free 

gene expression and expression noise within the context of physiological conditions, 

especially since many physical aspects of the intracellular environment, such as 

confinement and macromolecular crowding, can have large roles in reaction 

dynamics.23,26  
Cell-free systems allow the probing of physical and chemical conditions which may 

be difficult, or even impossible, to rigorously alter in a cellular system. Physiological 

confinement has been mimicked in cell-free gene expression by using microfluidic 

structures44,45,53,54, liposomes51,55-59, water-in-oil droplets52,60, and hydrogel structures61,62. 

Many of these confinement methods provide a viable way to acquire timescale 

information about gene expression within individual reactions— providing insights to the 

relationship between confinement and gene expression rates63 but also providing 

necessary data for noise analysis. Cell-free platforms also provide a method for 

examining physiological macromolecular crowding conditions. Though cell-free 

expression systems alone tend to be very dilute in comparison to cells9,64, artificial 

molecular crowders, such as PEG, Dextran, or Ficoll24,65 may be added directly to cell-
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free expression systems. Crowding has dramatic effects on gene expression reaction 

rates and yield in microliter-volume “batch” reactions65. However, examining 

physiological levels of crowding on gene expression in addition to confinement can 

produce physical effects not seen with crowding and confinement alone52,61,66-68. 

1.5 Scope of Dissertation 

The aim of this thesis is to characterize the response of gene expression bursting 

to spatial constraints, like macromolecular crowding and confinement. This work uses 

Cell-free Protein Synthesis (CFPS) gene expression systems to probe these conditions 

experimentally. Confinement is examined using both microfluidic and lipid vesicle 

encapsulation methods. Macromolecular crowding is examined by supplementing gene 

expression reactions with Ficoll-70. Both transcriptional bursting parameters and total 

bursting parameters are examined simultaneously by using a gene construct allowing 

fluorescence tracking of both mRNA and protein signals. The experimental results 

shown here are supported by computational simulations modelling gene expression and 

spatial localization of nucleic acids in confined spaces. Finally, confocal microscopy is 

used to visualize both crowding and confined reactions in lipid vesicles, revealing spatial 

heterogeneity in the distribution of mRNA over the volume of the vesicle. This spatial 

noise affects the temporal noise of the protein expression and is reflective of 

heterogeneity in cellular gene expression influenced by macromolecular crowding. This 

work explores the individual and combined effects of crowding and confinement on cell 

free reactions and discusses the self-organization of cell-free gene expression reactions 

in comparison to membrane-less spatial organization in cells. 

1.6 Organization of Dissertation 

Chapter 2 is adapted from the article “Sealable Femtoliter Chamber Arrays for Cell-

free Biology” originally published in the Journal of Visualized Experiments in 2015. This 

article is focused on the experimental methods for encapsulating cell-free reactants in 

microfluidic chambers. Chapter 3 is adapted from the article “Resource Sharing Controls 

Gene Expression Bursting” originally published in ACS Synthetic Biology in 2016. The 

results of this study are derived from the methods described in Chapter 2. This chapter 

describes the effect of confinement on cell-free gene expression, demonstrating how 
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resource use affects bursting patterns. Chapter 4 is adapted from the article 

“Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression 

Bursting Patterns” originally published in ACS Synthetic Biology in 2018. This chapter 

describes the effects of macromolecular crowding on bursting patterns in unconfined 

gene expression reactions. This chapter also introduces the simultaneous measurement 

of mRNA and protein, and reveals that transcription and translation have divergent 

bursting patterns with increased crowding. Chapter 5 is adapted from the article 

“Synergistic Interactions Between Confinement and Macromolecular Crowding Spatially 

Order Transcription and Translation in Cell-Free Expression” which is available on 

bioRxiv. This chapter examines both confinement and crowding of cell-free gene 

expression reactions and reveals how these physical effects control the spatial 

organization of gene expression reactions in a cell-free context. Where available, the 

Supplementary Information associated with each article is included in each respective 

chapter Appendix. References for all chapters are listed all together at the end of the 

document.  
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2 SEALABLE FEMTOLITER CHAMBER ARRAYS FOR CELL-

FREE BIOLOGY  
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A version of this chapter was originally published by S. Elizabeth Norred, Patrick M. 

Caveney, Scott T. Retterer, Jonathan B. Borekyo, Jason D. Fowlkes, C. Patrick Collier, 

and Michael L Simpson: 

Norred, S. E., Caveney, P. M., Retterer, S. T., Boreyko, J. B., Fowlkes, J. D., 

Collier, C. P., Simpson, M. L. Sealable Femtoliter Chamber Arrays for Cell-free 

Biology. J. Vis. Exp. (97), e52616, doi:10.3791/52616 (2015). 

 

This chapter has been adapted from its published format to accommodate new 

Figure, Table, and Equation enumeration. All references are located at the end of the 

document. The article presented in this chapter is methods-based, and includes an 

instructional protocol in a listed format. A video presentation of this article, featuring 

practical demonstrations of the methods used, was produced by the Journal of 

Visualized Experiments and is available open-access at the following URL: 

https://www.jove.com/video/52616/sealable-femtoliter-chamber-arrays-for-cell-free-

biology 

SEN, PMC, STR, JBB, JDF, CPC, and MLS conceived and planned the 

experiments. Experiments were adapted for cell-free expression and performed by SEN, 

PMC, JBB, and CPC. The microfluidic device was originally designed by CPC and JDF 

for use in a previous publication69. SEN, PMC, and CPC performed image analysis. All 

authors contributed to data analysis and the final manuscript. The authors acknowledge 

and thank Dr. Sukanya Iyer for constructing the Pet3a-EGFP plasmid used in these 

experiments. 

2.1 Abstract  

 Cell-free systems provide a flexible platform for probing specific networks of 

biological reactions isolated from the complex resource sharing (e.g., global gene 

expression, cell division) encountered within living cells. However, such systems, used in 

conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and 

efficiencies characteristic of their living micro-scale counterparts. Understanding the 

impact of internal cell structure and scale on reaction dynamics is crucial to 

understanding complex gene networks. Here we report a microfabricated device that 

confines cell-free reactions in cellular scale volumes while allowing flexible 
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characterization of the enclosed molecular system. This multilayered 

poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an 

elastomeric membrane which can be actuated (open and closed). When actuated, the 

chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a 

fluorescent protein, allowing for the visualization of the reaction kinetics over time using 

time-lapse fluorescent microscopy. Here we demonstrate how this device may be used 

to measure the noise structure of CFPS reactions in a manner that is directly analogous 

to those used to characterize cellular systems, thereby enabling the use of noise biology 

techniques used in cellular systems to characterize CFPS gene circuits and their 

interactions with the cell-free environment. 

2.2 Introduction 

Cell-free systems offer a simplified and flexible platform for viewing biological 

reactions free from complicating factors such as fitness, division, and mutation that are 

unavoidable in the study of living cells. Such approaches have been employed to study 

cellular systems including the characterization of membrane proteins70, the probing of 

protein interactions71, and the exploration of fundamental aspects of translation47,72-75. 

Recently cell-free systems have begun to gain a foothold as viable platforms for 

synthetic biology44,76,77. The appeal of such approaches is that they free synthetic biology 

from the resource sharing and ‘extrinsic noise’ that affects reaction dynamics in living 

cells. However, questions remain as to how the physical environment in which cell-free 

reactions are embedded affects the progression and outcome of the reaction. Cell-free 

reaction environments — particularly confined environments that approach cell-relevant 

volumes — remain poorly characterized. Cell-Free Protein Synthesis (CFPS) is 

conventionally thought of as being ‘scale-free,’ exhibiting equivalent kinetics across a 

range of microliter to liter-scale reaction volumes78. Nonetheless, confining reactions to 

cellular scale volumes has been shown to significantly affect protein expression rates63. 

The stochastic nature of cell-free reactions — especially as these systems 

approach or even go below femtoliter volumes — may be of particular importance. Noise 

in gene expression is a property greatly influenced by confinement as small cell volumes 

and high densities of components force many of the important molecules to very low 

population levels — for example, Escherichia coli confines within a 1 fL volume as many 
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as 4,300 different polypeptides under the inducible control of several hundred different 

promoters79. This inherent noise has been implicated as a central driving force in 

numerous biological processes including chemotaxis80, the HIV decision between active 

replication and latency81, the λ phage decision between lysis and lysogeny27,82, and 

the Bacillus subtillus decision between competence and sporulation27. Cell-free synthetic 

biology then provides both an opportunity to explore the stochastic properties of cellular 

gene circuits and networks, and manipulate these behaviors to achieve specific 

technological goals. While the noise behavior of cellular systems has been well-

studied29,35,37,40,83-88, there has been little exploration of the fundamental noise behavior 

of cell-free systems44, particularly at the cellular scale. 

Here we present a platform for the study of stochastic effects in cell-free 

synthetic biology. This microfabricated platform contains femtoliter-scale reaction 

chambers which may be quickly transitioned between open (free diffusion in and out of 

the chamber) and closed (reactants confined within the chamber) states. In the closed 

state, we confine Cell-Free Protein Synthesis (CFPS) reactants expressing a green 

fluorescent protein (GFP), and follow gene expression using time-lapse fluorescence 

microscopy (Figure 2.1). We characterize this cell-free environment by measuring the 

structure of the stochastic fluctuations in gene expression in a manner directly 

analogous to those used to characterize cells35. Non-microfabrication methods for 

confining cell-free reactions include vesicles and liposomes55,56,89,90, water-in-oil 

emulsions63, and porous media91. However, while these methods can provide control 

over the size distribution of the confined volumes92, microfabrication methods create 

highly replicable features with tightly specified dimensions, even on the nanoscale. 

Moreover, these rigid structures can be easily tracked over time without being 

susceptible to evaporation or changes in the external environment. Microfabricated 

container designs used in previous work44,53 cannot quickly seal the reaction chambers 

following reaction initiation, complicating the clear assignment of the time when the 

reaction was initiated (time zero). Using the method presented here, only 4-5 min are 

needed between initiation and visualization of the reaction on the device, thereby 

providing a well-defined “time zero”. The following protocols describe the methods for 

fabricating and testing this device, including optical lithography, device assembly, device 

testing, and methods for image analysis. 
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Figure 2.1 Cell-Free Protein Synthesis reactants are confined in femtoliter scale reaction 
chambers for the purpose of measuring gene expression. Reactants from a commercial cell-
free protein expression system are used to constitutively express GFP inside confined PDMS 
reaction chambers. An array of these chambers may be visualized with time-lapse fluorescence 
microscopy in order to characterize protein expression and gene expression noise. The 
fluorescence intensity of each reaction chamber over time may be plotted as an individual trace. 

 

2.3 Protocol 

2.3.1 Optical Lithography of Device Masters 

1. Dehydrate clean silicon wafers on a hot plate at ~250 °C for at least 1 hr. NOTE: 

It is good practice to use more than one wafer when preparing a master, in case 

of user error. 

2. Prepare photoresist aliquots. Prepare aliquots of both SU-8 2015 photoresist and 

a dilution of SU-8 2015 photoresist in 2:1 ratio using SU-8 thinner as diluent. 

NOTE: Approximately 1 ml of photoresist is needed for spin-coating one wafer. 

3. Prepare three mask patterns for producing these masters. For the Membrane 

Master, prepare two masks: one patterning the membrane channel and the other 

patterning the reaction chambers. For the Control Valve master, prepare only 

one mask pattern. NOTE: For more details on lithographic techniques, including 

mask patterning, see Ito and Okazaki, 200093. See Fowlkes and Collier, 2013 for 

a more detailed description of device design69. 

4. Prepare the Membrane Master 

1. Spin-coat 2:1 SU-8 2015 photoresist dilution on wafers at 1,000 rpm for 

45 sec. 

2. Soft bake wafers at 95 °C for 2 min. Using a contact aligner, expose 

wafers with membrane channel pattern for 10 sec, and perform a post-

exposure bake for 2 min at 95 °C. 
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3. Develop wafers in SU-8 developer for 1 min, or until photoresist residue is 

removed. Rinse wafer with isopropanol, moving from top to bottom. Dry 

wafer with nitrogen, again moving from top to bottom. Bake wafers at 180 

°C for 4 min. 

4. Spin-coat patterned wafers again with 2:1 SU-8 dilution at 2,000 rpm for 

45 sec. 

5. Soft bake patterned wafers for 2 min at 95 °C. Using contact aligner, align 

patterned wafers with reaction chamber pattern, and expose for 10 sec. 

Perform post-exposure bake for 2 min at 95 °C. 

6. Develop wafers as described in step 1.4.3. After developing and drying 

wafers, bake wafers at 180 °C for 4 min. NOTE: The wafers may be 

developed in the same developer that was used in the previous step. 

5. Prepare the Control Valve Master 

1. Spin-coat undiluted SU-8 photoresist onto clean wafers at 2,000 rpm for 

45 sec. 

2. Soft bake wafer at 95 °C for 6 min. Using a contact aligner, expose 

wafers with control valve pattern for 10 sec. Perform a post-exposure 

bake at 95 °C for 6 min. 

3. Develop wafers in SU-8 Developer for 2 min, or until residue is removed. 

Rinse with isopropanol, moving from top to bottom. Dry wafer with 

nitrogen and bake at 180 °C for 4 min. 

2.3.2 PDMS Device Fabrication 

1. Silanize all masters with ~0.2 ml trimethylchlorosilane via vapor deposition. 

1. Quickly enclose the master in an airtight container at RT with a few drops 

of the silanizing agent. NOTE: Other silanizing protocols may be 

acceptable94. If performed properly, the PDMS will be easy to remove. 

2. Mix a commercial poly(dimethylsiloxane) (PDMS) base and curing agent in 

different ratios for both the membrane and control valve layers of the device, as 

has been demonstrated in similar multilayer valve designs95. Use 20:1 and 5:1 

ratios of base:curing agent for the membrane and control valve molds, 

respectively. 
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1. For the membrane mold, mix 10 g of base with 0.5 g of curing agent. 

NOTE: This volume will be spin-coated onto the membrane master. 

2. For the control valve mold, mix the base and curing agent in a 5:1 ratio. 

The amount of PDMS necessary to mold the control valve will depend on 

the container used to hold the control valve master; fill the container such 

that the master is coated with ~1 cm of PDMS. 

3. Thoroughly mix both PDMS preparations, and de-gas them in a vacuum chamber 

until no air bubbles are visible. Place the control valve master in a heat-resistant 

container, such as a glass dish. Carefully pour 5:1 ratio PDMS over the master, 

and de-gas the container a second time. 

4. While the control valve PDMS container is being de-gassed, spin-coat the 20:1 

ratio PDMS on the membrane master by carefully pouring the PDMS mixture 

onto the membrane master to minimize air bubble formation, then spin-coating 

the master at 1,000 rpm for 45 sec. 

5. Partially cure both masters in an oven at 80 °C for 6 min for the membrane 

master and 15 min for the control valve master. NOTE: When partially cured, the 

PDMS should hold its form, but the material will be slightly tacky. If PDMS is not 

yet cured, bake again in increments of a few minutes at a time until the material 

holds its form when pressed. 

6. Cut rectangular PDMS molds from control valve master, peeling the molds away 

gently. Punch inlet holes through the molded component using a 0.75 mm hole 

punch. NOTE: The hole may be cleaned by inserting a 23 gauge blunt tip needle, 

and the mold exterior may be cleaned with cellophane tape, if necessary. 

7. Using an optical microscope to locate the reaction chambers on the membrane 

master, align the control valve mold component with the features of the reaction 

chamber membrane and place the control valve component directly on top of the 

membrane master. Orient the control valve inlet to the bottom left corner of the 

device, and ensure that the reaction chambers and channel of the membrane 

master are visible inside the rectangular control valve. 

8. Bake the aligned mold components at 80 °C for 2 hr. NOTE: The membrane and 

control valve molds will now be sealed together, and manipulated as one mold. 
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9. Cut the layered PDMS mold away from the membrane master, peeling the mold 

away from the master very gently so as not to perforate the membrane. 

10. Punch inlet and outlet holes for the cell extract input using a 0.75 mm hole 

punch. Punch holes through both layers, and clean them in the same way as 

described in step 2.6. 

11. Using an inductively-coupled plasma cleaner, plasma treat both the mold 

(membrane side up) and a No. 0 glass coverslip at 10.5 W for 20 sec. 

Immediately remove the coverslip and mold from the plasma cleaner and layer 

the components, membrane side towards the glass, attempting to minimize air 

pockets between the glass and the mold. Do not press directly on the membrane 

input channel, or the membrane may anneal to the glass, making it difficult to fill 

the channel with reactants. 

1. Take special care when handling the assembled devices to avoid 

breaking the glass layer. Use thin glass coverslips as the device must be 

imaged through the glass coverslip using high magnification oil-immersion 

objectives — if the glass is too thick, the device features may not be 

visible. 

12. Finally, cure the completed devices at 80 °C for 2 hr. 

2.3.3 Experimental Setup for Cell-free Protein Synthesis Reaction 

1. Hydrate a device by boiling it in deionized water for 1 hr. NOTE: Device should 

have a cloudy appearance when completely hydrated. Device may also be left 

O/N in sterile water at RT in order to hydrate it. 

2. Using an inverted microscope with an incubation chamber, set the ambient 

temperature to 30 °C. NOTE: This temperature was chosen to optimize 

expression of GFP with a T7 promoter, so optimal temperatures for other 

reactions may vary49. 

3. Mount device to microscope stage holder with cellophane tape and wrap edges 

of device with wet tissue paper in order to maintain local hydration. 

4. Use two high precision closed-loop voltage-pressure transducers to modulate 

nitrogen gas pressure for control valve actuation and reagent input. NOTE: This 
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protocol has only been tested with low-purity nitrogen, though other inert gases 

may be used. 

1. Connect the first transducer by 24-gauge PTFE tubing to a water 

reservoir held in a 4 ml glass vial with a septum lid. Connect the reservoir 

to the control valve inlet using a second tube terminated by a 23 gauge 

blunt tip needle. NOTE: Both tubes penetrate the reservoir septum with 

two sharp 23 gauge needles. 

2. Connect the second transducer by 24-gauge PTFE tubing connected to a 

male-to-male Luer-lok connector. Attach this to a Luer-lok 23 gauge 

needle connected by tubing with another 23 gauge blunt tip needle, which 

is assembled individually for each device. This needle connects to the 

membrane reaction channel; use it to flush water from the reaction 

channel and input reagents. 

5. Using a cell-free protein expression system, assemble the components for the 

CFPS reaction on ice, according to manufacturer’s instructions. Minimize the 

time spent holding CFPS reagents on ice and place the reaction into the device 

immediately after assembly. NOTE: This device has been used with a 

commercial E. coli extract protein expression kit and a plasmid constitutively 

expressing GFP. The total reaction volume was scaled to 25 µl — it may be 

possible to use an even lower volume for reactants, if desired. As CFPS reagents 

tend to be sensitive to freeze-thaw cycles, it may be helpful to make aliquots of 

the reagents at the appropriate volume prior to the experiment. Other reagents 

may be added to the reaction mixture, but the reaction must be fully assembled 

before being applied to the device. 

1. Assemble the reaction, adding the DNA input last. NOTE: Once 

assembled in an Eppendorf tube, the CFPS reaction will begin if not held 

on ice. Since the time taken to apply the reagents to the device and begin 

the experiment may vary, it is helpful to start a timer once the reaction is 

assembled and mixed — this will keep the timescale between 

experiments consistent, and aid in troubleshooting. 

6. Using the tubing and needle connector described in Step 3.4.2, withdraw the 

assembled reaction into the tube using a 1 ml syringe. Insert the blunt tip needle 
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into the reaction chamber inlet. Detach the needle connector from the syringe 

and attach it to the male-to-male connector used for the reaction chamber 

transducer. 

7. Apply pressure (<10 psi) to the CFPS reactants to fill the channel. Remove the 

needle when the reaction is filled. 

8. Insert the blunt tube from the other transducer into the control valve inlet. Do not 

pressurize the control valve yet. 

9. Place the mounted device on the stage. Using brightfield imaging, locate the 

reaction chambers with a 100X oil-immersion objective. 

10. Actuate the control valve by pressurizing the control valve transducer to 20 psi; a 

visible change in the membrane will be evident when the control valve is 

actuated. Focus on the bottoms of the reaction chambers. 

11. Begin the image acquisition; growth in fluorescence will be visible in the interior 

and around the exterior of the reaction chambers, though it will likely not be 

evident in the early stages of the reaction. Capture images every 1-3 min until the 

reaction reaches a steady state fluorescence. If an automatically focusing stage 

is not available, briefly refocus each image prior to the images being taken. 

NOTE: While some photobleaching will occur, the effects on relative 

fluorescence due to photobleaching may be accounted for as long as the rate of 

photobleaching is known. This photobleaching rate may be estimated by 

exposing a fluorescent standard, such as a known concentration of GFP or a 

fluorophore mixture, to constant photobleaching over a period of time. 

12. Record the time elapsed from the reaction assembly to the first image acquired. 

NOTE: This typically takes 4-5 min 

2.3.4 Image Analysis and Data Processing 

1. Using an image analysis software such as ImageJ, select the interior of the 

reaction chambers as an ROI. Acquire the mean fluorescence intensity value of 

the ROI for all images. NOTE: This is the raw fluorescence intensity trace. 

1. Perform this task in ImageJ using the Time Series Analyzer and ROI 

Manager plugins — Use Time Series Analyzer to choose regions of 

interest around the interior of each reaction chamber. Set 
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“AutoROIProperties” to an area which corresponds to the interior of each 

reaction chamber, check “Add On Click”, and select each chamber. 

NOTE: This step may also be done using the ellipse tool to draw an ROI 

around the fluorescent chamber. This ROI size usually corresponds to a 

30 x 30 pixel ellipse for a 10 µm diameter chamber viewed with a 100X 

objective. 

2. Highlight all ROIs in the ROI Manager. Use the “Multi Measure” function 

to determine the fluorescence intensity mean of each ROI through the 

entire image stack. NOTE: A plugin named StackReg may be used to 

align the image stack, if necessary. 

2. After acquiring the raw fluorescence intensity traces for all chambers in an 

experiment, determine the deterministic component of the reaction by taking an 

inter-experimental average across all traces, and subtracting the average from 

individual raw traces. Use data analysis software such as IGOR or MS Excel for 

this analysis. NOTE: This provides noise traces for each reaction chamber. 

3. Analyze the gene expression noise from these reaction chambers using the 

same methods used to analyze gene expression noise derived from cells35 

2.4 Representative Results 

The distinct advantage of this microfabricated platform is in the application of the 

controllable elastomeric “control valve” which is independently actuated in order to 

confine CFPS reactions (Figure 2.2A). When the device is actuated, the membrane 

chambers are pressed against the glass slide to confine fluorescent reagents into an 

array of reaction chambers below (Figure 2.2C). In order to verify that the chambers 

reliably confine the reaction through the duration of the experiment, a basic FRAP 

(Fluorescence Recovery After Photobleaching) test was conducted69. A fluorophore (AF 

555) was applied to the device, and the control valve was actuated; using the shutter 

aperture of the microscope, a single well confining the fluorophore was isolated and 

photobleached individually (Figure 2.2D). The chosen well became dark and did not 

recover in brightness until the control valve was depressurized 20 min. later, releasing 

the chamber from the glass. This test verifies that these reaction chambers remain well-

sealed for the duration of the experiment. 
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Figure 2.2 Fabrication of two-layer microfluidic device with sealable femtoliter-scale 
chambers. (A) Layout and exploded view of device layers. The device is composed of two PDMS 
layers and a glass coverslip. The PDMS membrane, sealed between the glass and control valve 
layers, holds the reaction chambers. (B) SEM image of PDMS reaction chamber. The interior 
diameter is 10 µm. (C) Schematic of input channels in device. Cell-Free Protein Synthesis 
(CFPS) reagents are flown through the reaction channel. Water is pressurized in the control valve 
to compress the reaction chambers against the glass slide, sealing the chambers. Reproduced 
from Fowlkes and Collier 201369, with permission from The Royal Society of Chemistry. (D) 
Fluorescence Recovery After Photobleaching (FRAP) test on a single well using FITC indicates 
chamber is well-sealed against external environment. The fluorophore was captured in the 
chambers (upper image) and a single well was photobleached (lower image). No fluorescence 
recovery was seen in the photobleached chamber until the control valve was released. 
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In optimal conditions, a CFPS reaction expressing an easily visualized protein 

(such as GFP or Luciferase) expresses detectable protein within a few minutes of being 

applied to this device. Over the lifetime of the reaction, protein synthesis in the interior 

and exterior of the reaction chambers is imaged and quantified by measuring units of 

fluorescence intensity within each chamber (Figure 2.3A). Fluorescence intensity, 

corresponding to protein concentration, may be mapped over time for each reaction 

chamber (Figure 2.3D). 

Gene expression is an inherently stochastic process that introduces fluctuations 

(noise) at every molecular step (synthesis, degradation, protein-DNA binding, etc.)40. 

One branch of noise biology focuses on the probative value of gene circuit noise96 . 

Expression in cell-free systems will have extrinsic noise effects that arise from 

interactions between the molecular machinery of expression and the surfaces that define 

the boundaries of the reaction vessels. These extrinsic effects will likely become more 

pronounced as cell-free reactions are confined into even smaller reaction chambers. The 

ability to perform time-lapse imaging of multiple confined CFPS reactions then enables 

the careful analysis of noise structure (magnitude and dynamics) in confined cell-free 

systems in a way directly analogous to methods that have been reported for cellular 

systems35. Figure 2.3C and Figure 2.3D show the time courses of constitutive GFP 

expression from a T7 promoter in a standard 384-well microplate with a well volume of 

15 µL, compared to in PDMS reaction chambers 10 µm in diameter, corresponding to 

volumes of only about 300 fL, about seven orders of magnitude less. The variability in 

protein expression rates in the 10 µm reaction chambers is much higher than in the well-

plate measurements, approaching those seen in cells. 

Multiplexed reactions performed on the device exhibit similar kinetics to CFPS 

reactions performed in bulk on a microplate reader (Figure 2.3B), where there is a swift 

increase in fluorescence which plateaus, often assumed to be caused by resource 

limitation within the reaction volume46,97. This deterministic growth behavior, though 

fluctuating, is generally consistent across all reaction chambers, and between 

experiments — by averaging traces between chambers across experiments, the 

deterministic trend may be subtracted from trace values, leaving only the noise 

components of the reaction (Figure 2.4A). Figure 2.4B shows the GFP expression noise 

after removal of the deterministic, transient component (top), and the autocorrelation of  
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Figure 2.3: EGFP Expression in Confined Cell-Free Reaction. (A) Fluorescence images of 
sealed reaction chambers at chosen time points in the reaction. Protein production can be seen 
both inside the reaction chambers and outside the chambers in the main channel. (B) EGFP was 
cloned into a Pet3a vector, providing a T7 polymerase promoter and terminator and a strong 
ribosome binding site (RBS). (C) Normalized fluorescence measurements of constitutive 
expression of EGFP in a bulk cell-free reaction performed in a microplate reader. CFPS reactions 
usually produce protein quickly before slowing to a 'steady state' fluorescence — this is 
associated with resource limitation. Black dashes indicate the average trace. (D) Normalized 
fluorescence of 51 raw fluorescence intensity traces read from 51 reaction chambers over 
several experiments. Black dashes indicate the average trace over several experiments, which 
illustrate the deterministic component of the protein expression. 
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the noise (bottom), while Figure 2.4B shows the corresponding traces in the 10 µm 

reaction chambers. The distribution in the half-times of the autocorrelation traces gives 

the frequency dependence of the noise while the zero lag time of the autocorrelation 

traces gives the magnitudes of the noise, as the variance. 

2.5 Discussion 

Gene expression in cells is inherently noisy due to small cellular volumes and low 

copy numbers of important reactants. Noise biology often focuses on the sources, 

processing, and biological consequences of fluctuations in the populations, 

concentrations, positions, or states of molecules that control gene circuits and 

networks98. The vast majority of this work has been performed in cellular systems, which 

has the advantage of viewing the noise of a gene circuit within the natural context of the 

genetic networks within the cell. However, cell-free systems allow the characterization of 

the intrinsic fluctuations of an individual gene circuit without the confounding extrinsic 

effects83 that cannot be avoided in cellular systems. Analysis of noise can offer important 

physical insights into how genetic circuits are structured and how they function, and has 

Figure 2.4: Individual Noise Traces and Noise Autocorrelation of a Cellular and Cell-Free 
System. (A) From Austin et al., 2006. Noise in GFP expression (top) and normalized 
autocorrelation functions (bottom) acquired from tracking GFP production in living bacteria. 
Reprinted by permission from Macmillan Publishers Ltd: [Nature] 25 (Vol. 439), copyright (2006). 
(B) Noise in GFP expression (top) and normalized autocorrelation functions (bottom) acquired 
from GFP production in cell-free system, tracked in microfluidic device reaction chambers. 
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been used in cellular systems to characterize negative35 and positive29 autoregulation, 

extrinsic and intrinsic contributions to expression noise83, and transcriptional 

bursting99,100. Here we describe the study of a cell-free expression system in microfluidic 

devices that enable the simultaneous control of reactor size and reaction initiation times, 

in order to better understand the roles that confinement and crowding60,66 have on 

intrinsic protein expression noise without the complications associated with living cells. 

The key enabling feature of the design is the integration of arrays of femtoliter-

volume (micron-scale) reaction chambers used for confining the reactants of a cell-free 

protein expression system, with an elastomeric “control valve” membrane in PDMS that 

traps the reactants at a well-defined, “time zero” for reaction initiation (Figure 2.1). This 

control allows the kinetics of the reactions involved in protein synthesis to be followed in 

real time with high precision. As such, it is important to manage cell-free reactants so 

that inter-experimental variability is minimized as much as possible. This control allows 

us to evaluate noise structure of cell-free genetic circuits in a manner that is analogous 

to techniques previously used to evaluate gene expression in living cells. 

As reactants used in CFPS systems can be sensitive to freeze-thaw cycles, it is 

important to keep the reactants cold and minimize the time the reactants spend thawing 

on ice. It is good practice to periodically test the expression of the CFPS system in bulk 

in order to identify changes in expression levels over time — this may be done in a 10-

15 µl reaction in an Eppendorf tube, or in a device like a microplate reader, which 

performs multiple reads over time to capture reaction kinetics. Noting the age and thaw 

times of the reactants for every experiment will help when troubleshooting low 

expression levels. Furthermore, when assembling CFPS reagents, it is important to note 

that the reaction will begin once it is fully assembled and removed from the ice. In order 

to maintain a consistent “time zero”, it is helpful to record the time following the initiation 

of the CFPS reaction after the final addition of the DNA input, and to apply the reaction 

as quickly as possible to the incubated device. This process should take about 4-5 min, 

and fluorescence should not yet be visible within the reaction chambers. This control 

assures that the time available to visualize the growth portion of the reaction curve is 

maximized. 

Before running CFPS reactions on the device, it is advisable to run quality-control 

tests to verify there is no leakage from the chambers. A FRAP test can be performed (as 
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in Figure 2.2D) by applying a fluorophore to the device and exposing an individual well 

until the well is completely bleached. If the chambers are well-sealed, no recovery 

should be visible inside the well — there should be a stark contrast between the walls of 

the compartment and the interior and exterior spaces. If fluorescence recovery is 

apparent or the walls of the reaction chamber are not well defined, the pressure on the 

control valve should be increased or the device should be checked for leakage or 

delamination from the glass slide. 

This protocol has been tested with CFPS reagents from a commercial E. coli cell-

free protein expression kit (scaled to 25 µl), though other robust CFPS systems may be 

used. It is possible to use volumes much lower than 25 µl when applying reactions to the 

device, which may be helpful when reagent cost is a limiting factor in experiments. Once 

reactants are added to the device and the reaction chambers are sealed, it is not 

possible to add reactants to the solution without de-actuating the control valve — thus 

this device is not suitable for reactions which require the addition of reagents during the 

course of the reaction. This device is also not optimized for observing CFPS reactions 

which may run longer than 3 hr — the effects of dehydration and drying of the device 

after this time period have not been evaluated. If longer reaction times are desired, these 

effects may be mitigated by sealing the device to prevent evaporation, changing the 

incubation temperature, or by using a humidity chamber. Modifications to the device 

design, such as nanoporous structures in the chamber walls54,101 or the inclusion of a 

porous membrane layer, represent a few methods which could allow reagent exchange 

and thus lengthen reaction timescales. 

Microfabricated reaction compartments of uniform volume are valuable for 

maintaining consistent dimensions across experiments and highly suitable for 

investigation into “side reactions” with the compartment walls. Unlike methods using 

non-microfabricated techniques, these reactions must be evaluated in small numbers, 

and do not provide dimensional flexibility during experiments. However, the controllable 

design for these reaction chambers is highly suitable for time-lapse microscopy, and 

may be an illuminating complement to a high-throughput method of confinement. 
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3 RESOURCE SHARING CONTROLS GENE EXPRESSION 

BURSTING 
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design and methods presented in the previous chapter45. PMC, SEN, CWC, JBB, BSR, 

STR, CPC, and MLS conceived and planned the experiments. Experiments were 

performed by PMC, BSR, and SEN. The microfluidic device was originally designed by 

CPC and Dr. Jason Fowlkes for use in a previous publication69. BSR adapted the vesicle 

fabrication method from previous work by Nishimura et al. 201551. SEN, PMC, and CWC 

performed image analysis. CWC programmed Gillespie simulations and wrote analytical 

scripts. SEN’s specific contributions included preparing experimental reagents, 

fabricating microfluidic devices, performing experiments, maintaining laboratory setups, 

performing image analysis and data acquisition, and participating in group meetings and 

data analysis. All authors participated in data analysis and contributed to the final 

manuscript. The authors acknowledge and thank Dr. Sukanya Iyer for constructing the 

Pet3a-EGFP plasmid used in these experiments. 

3.1 Abstract 

Episodic gene expression, with periods of high expression separated by periods of 

no expression, is a pervasive biological phenomenon. This bursty pattern of expression 

draws from a finite reservoir of expression machinery in a highly time variant way, i.e., 

requiring no resources most of the time but drawing heavily on them during short intense 

bursts, that intimately links expression bursting and resource sharing. Yet, most recent 

investigations have focused on specific molecular mechanisms intrinsic to the bursty 

behavior of individual genes, while little is known about the interplay between resource 

sharing and global expression bursting behavior. Here, we confine Escherichia coli cell 
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extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how 

resource sharing influences expression bursting. Interestingly, expression burst size, but 

not burst frequency, is highly sensitive to the size of the shared transcription and 

translation resource pools. The intriguing implication of these results is that expression 

bursts are more readily amplified than initiated, suggesting that burst formation occurs 

through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these 

results suggest that large translational bursts may be correlated with large transcriptional 

bursts. This correlation is supported by recently reported transcription and translation 

bursting studies in E. coli. The results reported here demonstrate a strong intimate link 

between global expression burst patterns and resource sharing, and they suggest that 

bursting plays an important role in optimizing the use of limited, shared expression 

resources. 

3.2 Introduction 

Bursty or episodic gene expression—periods of high expression separated by 

periods of very low or no expression—is a widespread phenomenon observed across 

biological domains31,37,43,102-105. The common gene expression burst pattern (Figure 3.1A) 

consists of short intense periods of expression separated by relatively long periods 

without expression40,43,100. This bursty pattern of expression draws from a finite reservoir 

of reusable expression machinery, e.g., polymerases and ribosomes, in a highly time 

variant way. Thus, the majority of expressed genes require no resources most of the 

time, yet these genes draw heavily on them during short intense bursts. The reservoir of 

expression machinery is common to all genes in the organism, and many studies have 

addressed how, in a time-averaged way, expression resources are shared among 

genes106-108. Thus, genes with no direct regulatory relationships still interact through 

expression resource sharing46,107,109,110. However, little is understood about the 

relationships (if any) that exist between expression bursting patterns and resource 

sharing. 
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Figure 3.1: Bursty gene expression impact on global resource utilization. (a) Bursty gene 
expression draws heavily from shared global resource pools but only for limited durations. (b) 
Increasing protein abundance by increasing the number of genes and the amount of expression 
resources. The larger resource pool may be shared by all of the genes (right), or the sharing of 
resources may be enforced by compartmentalization (left). (c) Protein abundance changes may 
be driven by an increased expression burst size (right) or bust frequency (left). Does the resource 
sharing scenario affect the expression burst pattern? 
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Gene expression bursting studies have most often focused on molecular 

processes that are not directly related to resource sharing. Translational bursting, 

occurring when many proteins are synthesized from reading the same mRNA molecule, 

is initiated by the birth of an mRNA molecule and terminated by its decay. 

Transcriptional bursting has been shown, at least in part, to be controlled by molecular 

processes such as transcription factor kinetics111-113, promoter architecture32,114-

116, chromatin remodeling115,117, supercoiling30, and transcriptional reinitiation37,118,119. 

Such a view sees expression bursting primarily as an intrinsic property of individual gene 

circuits. However, given the demands that an expression burst places on the common 

cellular pool of resources, this intrinsic view of bursting may be overly limiting. Instead, it 

seems likely that changes in the size of the common reservoir of expression machinery 

or in the number of genes drawing upon these resources (Figure 3.1B) will globally 

impact expression burst patterns (Figure 3.1C). 

Studies of gene expression patterns have been carried out using various 

experimental techniques32,36,43,120,121 in cells or in cell-free systems that were not confined 

to cellular-scale reaction chambers. Cell-based platforms provide the important 

advantage of viewing function within its natural context, but it is difficult to manipulate 

specific parameters, such as confinement, when they are isolated from all the other 

cellular processes, such as growth, cell division, and global gene expression. 

Conversely, in vitro reaction chambers are especially suited for isolating the effects of 

specific mechanisms from confounding cellular processes48,54,101,122,123, and cell-free 

protein synthesis (CFPS) systems have been successfully used to observe gene 

expression bursting30. Recently, arrays of microfabricated cellular-scale reaction 

chambers have been demonstrated to be a viable way to confine CFPS reactions to 

study gene expression, in particular the noise in expression44,45. Bursting and noise are 

inseparably linked as bursting is often the dominant contributor to expression 

noise43,100,119,124,125, and noise measurements are often used to understand the 

underlying dynamics of gene expression in vivo42,43,100,126. In combination, 

microfabricated cell-scale reactors and gene expression noise measurements provide a 

unique platform to explore gene expression bursting and resource sharing in well-

controlled and easily manipulated environments. 
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Here, we study cell-free gene expression in synthetic reaction chambers under 

different resource sharing scenarios. Specifically, we measure gene expression burst 

patterns as the number of genes and size of the resource pool are increased (i.e., the 

volume of the reaction chamber is increased) either by summing together discrete 

individual chambers (discrete resources;  Figure 3.1B, left) or by making one larger 

chamber (shared resources; Figure 3.1B, right). As expected for both cases, total protein 

production and production rate scaled linearly with the amount of DNA and expression 

resources. However, while the discrete resources case (i.e., summed smaller chambers) 

generated higher protein abundance through more frequent bursts (Figure 3.1C, left), 

the shared resource case (i.e., individual larger chambers) drove increased protein 

production by increased burst sizes (Figure 3.1C, right). Surprisingly the divergent 

bursting behavior was found even though a constant ratio between expression resources 

and DNA was maintained for both scenarios, showing that resource sharing and 

expression bursts are directly coupled. For transient expression in cell-free expression 

chambers, we present a model that suggests this behavior emerges from the timing of 

mRNA production and size of the available resource pool. The mRNA molecules 

produced early consume most of the translational resources and make many proteins, 

whereas mRNAs produced later are created in a resource poor environment and make 

few proteins. As a result, in all cases the same number of mRNA molecules is 

responsible for the majority of protein production, but in the large chambers, those few 

mRNA molecules experience a very large translational burst size. This model of self-

reinforcement of bursts may explain the robust positive correlation observed between 

transcriptional and translational burst sizes in Escherichia coli127 and suggests that burst 

size control is the principle mechanism driving protein abundance changes. 

3.3 Results 

To confine cell-free expression reactions, we fabricated actuatable 

polydimethylsiloxane (PDMS) cylindrical chambers on membranes suspended above 

microfluidic channels using soft lithography as described earlier45. All chambers were 5 

μm deep but ranged in diameter from 2 to 10 μm and in volume from ∼15 to ∼400 fL, 

respectively. A 25 μL commercial raw extract CFPS reaction was mixed with 500 ng of 

enhanced green fluorescent protein (EGFP)-coding pET3a plasmid and was confined 
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within the chambers through a two-step process described previously45. First, the cell-

free mixture was loaded into the microfluidic channel using <10 psi of pressurized 

nitrogen, and then the membrane was actuated with ∼20 psi of DI water to seal the 

reaction chambers (Figure 3.2A). Since the chambers were actuated and imaging began 

very soon, ∼4 min, after plasmids were added to the CFPS mixture, this experimental 

platform provided a well-defined t = 0, i.e., the time when expression began, thereby 

allowing for the direct comparison of results from experiments performed on different 

days (See Appendix, Figure 3.7). Additionally, through microfabrication techniques, the 

reaction chamber size could be easily and accurately defined. 

The time course of protein expression was characterized by measuring total 

fluorescence of EGFP within individual chambers every 3 min for 1 h (Figure 

3.2B; Methods). Time courses averaged across all 119 individual chambers were similar 

to those observed in bulk reactions, although as reported elsewhere55,63 confined 

reactions did proceed at a slightly increased rate (See Appendix, Figure 3.8). The 

fluorescence transients exhibited a relatively rapid increase in protein expression initially, 

followed by a much slower rate of GFP accumulation. This two-phase expression profile 

is consistent with resource limitations and not equilibrium between protein decay (e.g., 

photobleaching; See Appendix, Figure 3.9 and Figure 3.10) and synthesis44,47. Similar to 

cellular experiments35, there was considerable chamber-to-chamber variation in the final 

fluorescence levels, yet there was a striking uniformity to the shape of the transient 

response between experiments and chamber sizes (See Appendix, Figure 3.7 and 

Figure 3.11). 

This uniformity in transient response allowed the use of a previously described 

method29,43,44 to extract the noise from each individual trace (Figure 3.2D; Methods). 

Briefly, the deterministic transient response was removed from each trace. The 

remaining signals were assumed to be due only to the stochastic fluctuations in the gene 

expression process, i.e., the expression noise. The magnitude of the expression noise 

within an individual chamber was quantified using the square of the coefficient of 

variation (CV2; variance/[final fluorescent abundance]2). The CV2 of individual chambers 

and the composite CV2 of all chambers of the same size were plotted versus their final 

fluorescence abundance (Figure 3.2D). Similar to cellular experiments35,43, the 

CV2 values of individual chambers were scattered around the composite CV2  
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Figure 3.2: Confined cell-free gene expression and noise measurements. (a) Cell-free 
protein synthesis (CFPS) reactions expressing EGFP were isolated within microfabricated 
chambers. (b) Time-lapse fluorescence microscopy was used to image the confined reactions 
every 3 min for 1 h. Images from an expression experiment performed in 10 μm diameter reaction 
chambers show fluorescence intensity increasing over time. Scale bar, 20 μm. (c) 
Representative z-slice of POPC vesicles expressing EGFP. Imaged every 3 min for 1 h. Scale 
bar, 20 μm. (d) (left) Time history of the growth of the protein population collected for each 
chamber. (middle) Gene expression noise found by removing the deterministic general trend from 
each expression transient. (right) CV2 and final fluorescence level (protein abundance) for 
individual chambers (colored circles) and for the average of all chambers (gray square). 
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oriented along a line inversely proportional to final fluorescence intensity. 

The baseline expression noise vs abundance relationship (Figure 3.3A) of this 

experimental system was established using the average behavior of the 2 μm chambers 

(large filled orange triangle). To study the effects of resource sharing on gene 

expression noise and bursting, the volume of the reaction was increased from this 

baseline in two ways. First, composite chambers were created by summing fluorescence 

signals from between two and six individual 2 μm chambers (open orange 

triangles Figure 3.3A). These composite chambers allowed for the total reaction volume 

to be varied while ensuring that expression resources were shared exactly as they were 

in the individual 2 μm chambers. Average final fluorescence levels in these composite 

chambers scaled linearly with volume, and as expected36,38,43,104, CV2 scaled linearly with 

the inverse of abundance (Figure 3.3A dotted line). This behavior indicated that 

expression within each of the chambers was similar to, but statistically independent of, 

the other chambers included in the sum. Said differently, the number of expression 

bursts, or burst frequency, increased linearly (Figure 3.4) with the number of chambers 

included in the composite. 

Reaction chamber volume was also increased by fabricating larger (5 and 10 μm 

diameter) individual chambers, allowing one individual expression resource pool to be 

shared by all of the genes. These larger chambers had proportionally more plasmids and 

resources, and once again the final protein abundance scaled linearly with volume 

(Figure 3.3A inset). Yet, in striking contrast to the composite 2 μm chambers, the 

CV2 values of these shared resource chambers (large filled symbols in Figure 3.3A) 

were insensitive to abundance variation driven by changes in chamber volume (Figure 

3.3A solid line; greater than a factor 25 change in abundance with less than a factor 3 

change in CV2). Notably, a composite of six individual 2 μm chambers, which is nearly 

equal in volume and final protein abundance to a single 5 μm chamber, produced a 

CV2 approximately a factor of 5 lower than single 5 μm chambers (red box, Figure 3.3A). 

This strikingly different noise behavior is not only apparent in the time histories of the 

expression experiments but also is seen in the distribution of final protein abundances 

seen across the populations of individual and composite reaction chambers (Figure 

3.3B). 
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Figure 3.3: Effects of resource pool size and configuration on gene expression noise in both 
microfluidic chambers and vesicles. (a) CV2 vs protein abundance for 2, 5, and 10 μm diameter 
chambers. The small filled data points represent individual chambers, and the large filled data points 
show the mean behaviors for all chambers of a given size. The dotted line is of the 
form a/abundance, and where a is a constant that is calibrated so the line passes through the mean 
of the 2 μm diameter chambers (large filled orange triangle). The open orange triangles show 
combinations of 2 μm chambers. The left most open triangle shows the average behavior of sums of 
two individual 2 μm chambers, and the right most open triangle shows the average behavior of sums 
of six individual 2 μm chambers. CV2 for these combinations of 2 μm chambers closely follow 
the a/abundance trend. In contrast, the individual 5 μm chambers deviate strongly (solid line) from 
the a/abundance trend even though their volume and protein abundance are about equal to six 2 μm 
chambers (red box). The inset shows that protein abundance scales approximately linearly with 
volume. (b) Histograms of protein abundance across the ensemble of individual 5 μm chambers 
(blue) and the ensemble of combinations of six 2 μm chambers (orange). Histograms are normalized 
(i.e., frequency of most likely protein abundance is set to 1) and fit with normal distributions (solid 
lines). (c) CV2 vs protein abundance for vesicles ranging in diameter from 4 to 19 μm. Each data 
point (gray or colored) represents an individual vesicle. The orange points are vesicles with 
diameters of 9–10 μm, and the blue points have diameters of 18–19 μm. The solid line is a power 
law fit to all points. While abundance varies by 3 orders of magnitude, CV2 values decrease only by 
about 1 order of magnitude. Dashed lines show fits to individual volumes (orange and blue), where 
CV2 goes as 1/abundance2. The inset shows that protein abundance scales linearly with vesicle 
volume. The shaded region on the inset corresponds to the volume range explored using the 
chambers. (d) Same data in (a) without means. Dashed lines are fits to each size chamber where 
CV2 goes as 1/abundance2. 
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To confirm that this flat CV2 trend across volumes was not unique to PDMS 

chambers, perhaps due to surface charge or molecular adsorption or absorption, we 

encapsulated PURE cell-free reactions expressing EGFP in more biologically similar 

POPC water-in-water vesicles (Methods) and imaged them with confocal microscopy 

(Figure 3.2C). Vesicles ranged from about 4–19 μm in diameter (∼65–3500 fL). Just as 

in the PDMS chambers, abundance scaled linearly with volume (Figure 3.3C inset), and 

CV2 was only modestly sensitive to abundance changes across the range of volumes 

(e.g., fluorescent abundance increased by 3 orders of magnitude while CV2 decreased 

by only 1 order of magnitude; solid line in Figure 3.3C). 

While insensitive to systematic changes in protein abundance driven by changes 

in the reaction volume, CV2 was hypersensitive to random fluctuations in protein 

abundance across a population of same-sized reaction chambers. Final protein 

abundance across the population of individual 2 μm chambers varied less than 1 order 

of magnitude, from 104 to 8 × 104 AU, but CV2 varied more than an order of magnitude, 

from 10–2 to 3 × 10–4. Similar behavior was observed across populations of 5 and 10 μm 

chambers as well (Figure 3.3D). 

Figure 3.4: Graphical Description of “Noise Space” 
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3.3.1 Box 1 

In bursty protein synthesis45 

〈𝑷〉 =
𝑩𝒇𝑩

𝜸𝑷

3. 1 

𝑪𝑽𝟐 ≈
𝜸𝑷

𝒇𝑩

3. 2 

where ⟨P⟩ is the amount of protein produced and γP is the protein decay rate. The 

term fB is often called the burst frequency, and it is a measure of how often a burst 

occurs. In the case of a single bursty gene, fB is simply a frequency (Figure 3.1C) and is 

the inverse of the time period between adjacent burst events. If there are multiple copies 

of a gene, fB is the average number of these genes that are active at any given time. B is 

the size of an expression burst, i.e., the average number of protein molecules produced 

in one expression burst. 

Although protein abundance may be changed by either burst size or burst 

frequency, CV2 is sensitive only to changes in burst frequency. As a result, CV2 vs 

protein abundance plots reveal if abundance changes are driven primarily by changes in 

burst size or in burst frequency (Figure 3.4). In the cell-free experiments reported here, 

systematic protein abundance changes were induced by changes in reaction chamber 

volume (i.e., by changes in the number of copies of the gene and the associated 

expression resources). Changes in protein abundance that induced little or no changes 

in CV2 were indicative of changes in burst size with little or no change in burst frequency 

(Figure 3.4). In contrast, changes in protein abundance where CV2 varied inversely with 

protein abundance were indicative of changes in burst frequency with little or no change 

in burst size (Figure 3.4). 

3.4 Discussion 

The most important implication of the results is that resource sharing and 

expression bursting are intimately linked. Sums of small discrete pools of resources 

achieved much lower expression noise than large shared pools, even with a constant 

ratio between DNA and expression resources (Figure 3.3A). These results lead to the 

inference that expression occurring in the large shared resource pool environments 

displays larger bursts (Figure 3.4) than equal volume sums of discrete resource pools. 

The intriguing result is that instead of frequently consuming a small fraction of the 
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available resources, individual genes are more apt to infrequently consume a large 

fraction of total resources. In a large shared volume, when both the pool of resources 

and the number of genes increased proportionally, the increased resources were drawn 

into making bursts larger (Figure 3.1C, right), not more frequent (Figure 3.1C, left). It 

seems that, given additional resources, expression bursts are more readily made bigger 

rather than made more often. 

We investigated expression in the reaction chambers using a random 

telegraph128,129 model of transcription from a group of genes competing for a shared 

population of translational resources (modeled here just as ribosomes;  Figure 3.5A). In 

this model, genes switched between an OFF state with no transcription and an ON state 

where they produce uniquely identifiable mRNA molecules. Ribosomes diffused between 

a global pool and being bound to mRNA. Once bound to mRNA molecules, the 

ribosomes were less likely to rerandomize by diffusion back into the global pool, 

i.e., kb ≫ kr. To correspond with the experiments, we performed Gillespie simulations of 

this model and measured the CV2 of the resulting protein population using exactly the 

same algorithms used for the experimental data (Methods). Small reaction chambers 

were modeled with a small number of genes drawing from a small pool of ribosomes, 

whereas larger reaction chambers were modeled as larger numbers of genes drawing 

from a proportionally larger pool of ribosomes. In agreement with the experimental data, 

larger reaction chambers led to a proportional increase in protein abundance, yet the 

CV2 of this population remained flat (Figure 3.5B). The invariance of the CV2 to protein 

abundance indicated that burst size, not frequency, was responsible for increasing 

protein abundance (Figure 3.4). 

Interestingly, examination of the different simulations showed that regardless of 

reaction chamber size a similar number of genes, those that burst ON early, captured a 

disproportionate percentage of the available translational resources. Conversely, genes 

that turned ON late captured very few translational resources. The net result was that in 

both small and large reaction chambers just a few mRNA dominated protein synthesis 

(Figure 3.5C). The dominant mRNA molecules in the bigger reaction chambers drew 

from a much larger pool of available translational resources, so in effect each of these 

mRNA molecules experienced larger translational bursts than dominant mRNA 

molecules in the smaller reactions. This model predicts that the larger protein 
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Figure 3.5: Model of the effects of resource pool size on expression bursting. (a) In 
silico model of resource sharing includes a resource pool of a limited number of reusable 
molecules, e.g., ribosomes, that associate with one of n genes (rate constant kb) and return to the 
resource pool with rate constant kr. The number of resources is proportional to the number of 
genes in each reaction. Genes burst ON and OFF at rates kON and kOFF, respectively. Molecules 
of mRNA are created at rate α only in the ON state. (b) CV2 vs protein abundance from the model 
described in (a). Colors represent the size of the reaction from 15 to 150 genes. Large points are 
means of multiple runs of the same reaction size. The solid line is a power law fit to all mean data 
points, and the dashed line is of the form a/abundance2, where a is selected so that the line 
passes through the mean of a 105 gene reaction. As in the experimental chambers and vesicle 
data, CV2 from this model is relatively insensitive to increases in abundance driven by changes in 
reaction sizes, but it is highly sensitive to increases in abundance that occur within a single 
reaction size. (c) mRNA molecules are ranked in the order of the time they were created. The y-
axis shows the fraction of the total protein translated from each mRNA molecule. Points are 
colored by the reaction size (small reaction sizes are more blue, larger ones are more red). 
mRNA molecules made early, regardless of the reaction size, collected a disproportionate 
amount of resources and made a disproportionate amount of the total protein. The inset shows 
that mRNA abundance scales linearly with reaction size. (d) Schematic showing large reactions 
produced proportionally more mRNA molecules than small reactions, but most of this mRNA was 
inactive. 
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populations found in larger reaction chambers resulted from the translational 

amplification of burst sizes, not the initiation of more bursts. In this model, larger 

chambers did indeed produce proportionally larger mRNA populations (Figure 3.5C 

inset), yet much of this mRNA was translationally inactive because earlier produced 

mRNA molecules had already sequestered translational resources (Figure 3.5D). 

Although the model predicts that CV2 is insensitive to abundance changes driven 

by volume increases, it predicts hypersensitivity (CV2 α 1/abundnace2; dashed 

line Figure 3.5B) to abundance variations that occur across chambers with the same 

volume. Examination of the simulation results showed that this strong relationship 

between CV2 and abundance arose from the natural variability in the number of genes 

that initiated transcription early enough to effectively compete for ribosomes. Some runs 

of the simulation naturally showed a larger than average number of early turn-on genes, 

so these simulation trials exhibited a larger than average burst frequency. However, in 

these trials, a fixed population of ribosomes was distributed across this larger number of 

bursts, resulting in a reduction in the burst size. The prediction is a distribution of 

expression burst patterns across an ensemble of same-sized chambers where higher 

burst frequency is correlated with lower burst size (See Appendix, Figure 3.12). The net 

result is a distribution of final protein abundances and a CV2 that declines sharply as 

protein abundance increases. In good agreement with this model prediction, CV2 is 

highly sensitive to abundances changes across ensembles of same-sized PDMS 

chambers and POPC vesicles, and ensembles are well-fit by CV2 α 

1/abundance2 (dashed lines in Figure 3.3 C,D and Appendix Figure 3.13). 

The results presented here suggest that expression bursts are self-reinforcing 

and that available translational resources are readily drawn into active transcriptional 

regions. This leads to the intriguing idea that, at least within prokaryotic cells, large 

translational bursts may be the direct result of large transcriptional bursts (Figure 3.6A). 

Recent work has shown that in E. coli large mRNA populations are strongly correlated 

with large transcriptional burst sizes100 and that large protein populations are strongly 

correlated with larger translational burst sizes47. Taken together, these data demonstrate 

a strong correlation between transcriptional (B) and translational (b) burst sizes, with 

translational burst size increasing sharply (b = 0.25 × B4.77) with increased transcriptional 

burst size (Figure 3.6B). Although these data do not prove causation, this correlation 
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does suggest strong cooperativity between the transcriptional and translational 

components of expression bursting. While the results presented here highlight the idea 

of transcriptional events controlling translational burst size, it is possible that there is 

mutual feedback, i.e., that a large transcriptional burst encourages a large translational 

burst, which in turn encourages an increase of the transcriptional burst size. Such 

mutual feedback would likely involve spatial effects such as beneficially crowding 

RNAP65 or other crowding-enhanced localization of the ∼100 components necessary for 

expression130.  

Although it is well-known that expression bursting is a ubiquitous phenomenon, 

little is known about the possible benefits of bursting. However, organism-scale gene 

expression presents a classic problem of optimizing the utility of limited shared 

resources. As the results presented here illustrate, expression bursting and resource 

sharing may be intimately linked phenomena. Expression bursting constrains a gene to 

draw heavily from the common resource pool over limited periods, yet it draws no 

resources the majority of the time. This pattern of resource sharing is reminiscent of 

packet mode communication131, which allows the capacity of a shared network to be 

efficiently divided across a variable number of messages. Although expression bursting 

Figure 3.6: Correlation between transcriptional and translational burst sizes in E. coli. 
(a) Schematic of a large transcriptional burst sequestering a disproportionate amount of 
resources (heat map) leading to a large translational burst. (b) E. coli translational (adapted 
from Norred et al. 2015) vs transcriptional (adapted from So et al. 2011) burst sizes. Each data 
point is for an individual E. coli gene. The solid line is a power law fit as given by the equation 
in the graph. 
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is noisier than constitutive expression, it is certainly conceivable that it provides 

efficiency in the allocation of limited shared resources. Part of this efficiency may arise 

from the propensity—illustrated by the results presented here—to extend existing bursts 

instead of initiating new bursts. The initiation of new bursts requires the nucleation and 

assembly of expression machinery, while in contrast the extension of a burst leverages 

resources already in place. This preference for resource sharing through burst size, not 

burst frequency, modulation may explain recent results and analyses that have noticed 

burst frequency saturation in many cell types41,43,127. Indeed, other recent results have 

shown increased burst sizes in response to increased cell volume132 or increased 

crowding in vesicles52. The picture that is emerging across multiple studies is one where 

protein abundance changes are preferentially mediated by modulation of burst size, not 

burst frequency. The results reported here clarify this picture by showing that expression 

resources are more readily pulled into existing bursts instead of going into the nucleation 

of more frequent bursts. Furthermore, these results suggest the intriguing idea that 

bursting is not just an artifact but instead may play a critical role in the optimal use of 

limited shared resources. 

3.5 Methods 

3.5.1 Device Fabrication 

A detailed description of device design and fabrication can be found 

elsewhere45,69; briefly, clean silicon wafers were coated in SU-8 photoresist. These were 

exposed to two patterns: one for the control valve and one for the channel. The patterns 

were developed, and extra SU-8 was washed off with isopropanol. The masters were 

silanized with trimethylchlorosilane. PDMS base and curing agent were thoroughly 

mixed at 20:1 and 5:1 ratios for the membrane and control valve, respectively, and 

degassed under vacuum. The membrane PDMS was spin-coated at 1000 rpm for 1 min 

over the control valve master. The channel PDMS was poured on the channel master, 

and both masters were partially cured at 80 °C. Channel masters were cut out, the 

control valve inlet hole was punched, and the channel master was aligned and bonded 

to the control valve. Aligned devices were baked for 2 h at 80 °C. Devices were cut out, 
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inlet and outlet holes were punched, and the devices were plasma bonded to No. 0 

coverslips. 

3.5.2 Experimental Procedure (Chambers) 

A detailed description of the experimental procedure can be found in Norred et 

al. 201545; briefly, devices were boiled in DI water for 1 h to hydrate the PDMS. Cell-free 

kits were mixed according to the manufacturer’s instructions (Promega S30 T7 high-yield 

protein expression system). One 25 μL reaction was prepared with 500 ng of pet3a T7 

EGFP plasmid, 10 μL of S30 premix, and 9 μL of T7 S30 extract and was filled to 25 μL 

with nuclease-free water. Reagents were mixed just before the experiment, and time 

was recorded when reagents were mixed. The reaction was then loaded into the 

hydrated device with <10 psi of low-grade nitrogen. The control valve was then 

pressurized with ∼20 psi of low-grade nitrogen. This sealed the individual chambers. 

The time between mixing reagents and sealing the chambers was about 4 min. The 

device was then placed on a Nikon Instruments Eclipse TE 300 inverted microscope and 

imaged through a Nikon N.A. 1.4, 100× oil objective with a Roper Scientific CoolSNAP-

HQ CCD. Metamorph (Universal Imaging Corp., version 7.8.3.0) was used to capture 

images. 

3.5.3 Experimental Procedure (Vesicles) 

Vesicle preparation was adapted from Nishimura et al. 201551; briefly, an inner 

and outer solution were prepared. The inner solution contained 1 μL of Alexa 647 (15 ng 

of Alexa 647 transferrin dissolved in 3 mL of water), 10 μL of PURE Solution A, 7.5 μL of 

PURE Solution B, 400 ng of pet3a T7 EGFP plasmid, 0.125 μL of RNAsin (40 U/μL), and 

5 μL of sucrose (1 M) and was filled to 30 μL with nuclease-free water. The outer 

solution contained 3.6 μL of amino acid mix (50 mM), 4.9 μL of ATP (460 mM), 3.0 μL of 

GTP (500 mM), 1.5 μL of CTP (500 mM), 1.5 μL of UTP (500 mM), 3.6 μL of spermidine 

(250 mM), 7.5 μL of creatine phosphate (1 M), 9 μL of DTT (100 mM), 1.5 μL of folinic 

acid (4 mg/mL), 168 μL of potassium glutamate (1 M), 22.6 μL of magnesium acetate 

(0.5 M), 60 μL of HEPES (1 M), and 120 μL of glucose (1 M) and was filled to 600 μL 

with water. POPC (11.3 mg) was dissolved in 113 μL of chloroform. Of this mix, 30 μL 

was combined with 330 μL of paraffin oil and heated at 80 °C for 30 min. The 
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POPC/paraffin oil mix was removed from heat, and the inner solution was added. The 

mixture was vortexed for 30 s to create an emulsion. The emulsion was layered on top of 

the outer solution and centrifuged for 20 min at 13 200 g and 4 °C. The bottom 100 μL of 

outer solution and vesicle pellet was pipetted onto a Petri dish with a No. 1.5 coverslip 

bottom. 

3.5.4 Resource Sharing Model 

The resource sharing model was simulated using a Gillespie algorithm. The 

model consisted of a fixed pool of available ribosomes equal to 100 times the number of 

genes in the simulation (roughly corresponding to the number of ribosomes per plasmid 

in the cell-free reactions130). Genes stochastically bursted100 ON and OFF with 

rates kON and kOFF (0.0002 min–1, 0.2 min–1), respectively. While in the ON state, genes 

produced mRNA at rate α (1 min–1). Ribosomes bound mRNA molecules with rate 

constant kb (1 min–1) and returned to the pool with rate constant kr(0.0001 min–1). The 

rate of protein production per bound ribosome, kp, decayed with time, e–0.05t, to capture 

the decay in synthesis capacity observed in cell-free reactions44,47.  

3.5.5 Data Acquisition and Analysis 

Metamorph (Universal Imaging Corp., version 7.8.3.0) recorded images as .tif 

files. These files were read with Fiji (Fiji is just ImageJ, version 2.0.0-rc-14/1.49g). 

Images were captured by hand, so the chambers moved frame-to-frame. Images were 

aligned with the Fiji plugin StackReg. To make region-of-interest (ROI) placement easier, 

aligned stacks were averaged. ROI centers were located using an automated Hough 

circle finding algorithm. The averaged image was used to determine the center of the 

individual reaction chambers for the 5 and 10 μm chambers. For the 2 μm chambers, the 

exterior edges of the dark chamber walls were estimated, and the center was estimated 

by finding the highest local intensity value within a 30 pixel radius of the center of the 

found circle. Centers found were fed into a MATLAB script, which summed the intensity 

values of all pixels within a given radius of the center. ROI radii for every chamber in 

each of the three defined chamber sizes, 10, 5, and 2 μm, were 23, 10, and 5 pixels, 

respectively. 
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3.5.6 Image Processing (Vesicles) 

The vesicles settled to the coverslip and were imaged at 26 °C for 3 h with a 63× 

confocal oil objective on a Zeiss LSM710 confocal scanning microscope. Frames were 

recorded every 3 min as a z-stack of between 25 and 35 slices that were 1 μm thick 

each. The z-stack time series files were loaded into FIJI. Vesicles were found with the 

plugin TrackMate133. Spots were filtered with an estimated diameter of 10 μm, a signal-

to-noise ratio >0, and a contrast >0. Trackmate stitched together found vesicles into 

traces. Traces were filtered with duration >90 min, no gaps, jumps between frames <5 

μm, and a total track displacement <11.9 μm. Traces that remained, and existed for the 

entire third hour of the experiment, were analyzed by the same noise extraction method 

described below. 

3.5.7 Noise Extraction 

The method for noise extraction was adapted from Weinberger et al. 200829, 

where it is explained in more detail. Experiments were sorted by chamber size (indexed 

by s = 2, 5, and 10) and day of experiment (indexed as d = 1, 2, 3, 4, and 5). General 

trends of fluorescence signals (As,d) were calculated as 

𝐴 , (𝑘𝑇) =
∑ 𝐼 , , (𝑘𝑇)

𝑀
3. 3 

where T is the time interval between measurements of fluorescent intensity and k = 0, 1, 

2, .... K is the sample number; m = 1, ..., M represents each of the M individual 

chambers of a given size imaged during a given day; and Im,s,d(kT) is the time-dependent 

fluorescent intensity of an individual reaction chamber as measured by the procedure 

above. 

Noise (Nm,s,d(kT)) was defined as 

𝑵𝒎,𝒔,𝒅(𝒌𝑻) ≡ 𝑰𝒎,𝒔,𝒅(𝒌𝑻) − 𝒈𝒎,𝒔,𝒅 ∙ 𝑨𝒔,𝒅(𝒌𝑻) 3. 4 

 

where gm,s,d is a gain factor that describes the extent to which the general trend coupled 

into each individual noise trajectory. The gm,s,d values were selected to minimize the 

cross-correlation(45)between Nm,s,d(kT) and As,d(kT). CV2 was calculated as 
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𝑪𝑽𝒎,𝒔,𝒅
𝟐 =

𝝈𝑵𝒎,𝒔,𝒅

𝟐

𝑰𝒎,𝒔,𝒅
𝟐 (𝒇𝒊𝒏𝒂𝒍)

3. 5 

where Im,s,d(final) is the final fluorescence level measured at the end point of the 

experiments. 

3.5.8 Chamber Combination Analysis 

Two-hundred composite noise traces were created by randomly combining 

without replacement between two and six of the 45 individual 2 μm chambers imaged in 

the experiments. Composite chambers had no more than three individual 2 μm 

chambers in common with any other composite chamber. The fluorescent abundances 

of the composite chambers were found by summing the abundances of each individual 

chamber in the composite chamber. The variances of the composite chambers were 

found using the sums of the extracted noise of each individual chamber in the 

composite. The CV2 of each composite chamber was defined as the composite variance 

divided by the composite abundance squared. The volume of composite chambers was 

found as the sum of the individual chambers in the composite. 

3.5.9 Calculating mRNA Contributions 

The reaction size of the model was varied by changing the number of genes in 

the system from 15 to 150 genes in increments of 15 (indexed by g = 15, 30, 45, ..., 

150). Fifty trajectories (indexed as c = 1, 2, 3, ..., 50) were simulated for each reaction 

size. mRNA molecules were created and indexed by l = 1, 2, 3, ..., L in the order in 

which they were created (i.e., the first mRNA made was ranked l = 1). The number of 

ribosomes bound to an mRNA molecule was Rc,g,l,k, where k was the sample number (k = 

0, 1, 2, ...., K). The protein production rate decayed exponentially, kp = e–0.05(kT), over the 

duration of the experiment. The decay modeled the loss of expression capacity observed 

in cell-free reactions44,47. The total number of protein produced, Pc,g,l, from each mRNA at 

each sample number was calculated by summing the product of the number of bound 

ribosomes and the protein production rate for each minute of the simulated experiment. 
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𝑷𝒄,𝒈,𝒍 = 𝑹𝒄,𝒈,𝒍,𝒌𝒆 𝟎.𝟎𝟓(𝒌𝑻)

𝑲

𝒌 𝟎

3. 6 

where T is the interval between samples. The average number of protein produced by 

mRNA molecules of each rank was calculated as 

𝑷𝒈,𝒍 =
𝟏

𝑪
𝑷𝒄,𝒈,𝒍

𝑪

𝒄 𝟏

3. 7 

The average protein population associated with an individual mRNA molecule was 

normalized by the total amount of protein produced and was calculated as 

𝑷𝑵𝑶𝑹𝑴𝒈,𝒍
=

𝑷𝒈,𝒍

∑ 𝑷𝒈,𝒍
𝑳
𝒍 𝟏

3. 8 

This normalization, PNORMg,l, when plotted against mRNA rank, j, illustrated the relative 

influence of mRNA rank on the final protein population. 
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3.6 Appendix 

 

Figure 3.7: Comparison of transient behavior between different experimental days. Each 
color shows the average normalized fluorescence transient on a particular experimental day. Thin 
lines are individual chambers while thick lines are averages of chambers of all sizes acquired in 
the same experimental session. Each experiment had a similar 50% rise time (~25 minutes) and 
GFP production rate. 
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Figure 3.8: Comparison of fluorescence transients in unconfined (i.e. bulk) and confined 
chambers. Bulk reactions were run in a BioTek Synergy 2 plate reader. 25 µL, commercial, raw 
extract, cell-free protein synthesis (CFPS) reactions were mixed with 500ng of Enhanced Green 
Fluorescent Protein (EGFP) coding pET3a plasmid, and pipetted into a 384 well plate. Reactions 
were covered with 10 µL of mineral oil to prevent evaporation. Excitation was at 485 nm and 
fluorescence was measured at 528 nm every 7 minutes for 1 hour. 
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Figure 3.9: Photobleaching during imaging. To measure the effect of photobleaching occurring 
during experiments we ran a standard experiment for one hour with the aperture narrowed to only 
the 9 chambers in the field of view. At the end of the experiment we compared the intensity of the 
9 chambers in the field of view to the intensity of 9 chambers of the same size, on the same chip, 
during the same reaction that had not been exposed. Fluorescence intensity was only slightly 
reduced (by about 10%, dashed gray line vs. bars) and was reduced by similar amounts for all 
chamber sizes. 

 



53 

 

 

Figure 3.10: Rate of photobleaching. To measure the photobleaching rate in the system we 
imaged confined reactions in a standard experiment for one hour. We then continuously exposed 
the reaction to the light source (Nikon Intensilight C-HGFI) for 10 minutes while recording an 
image every second. The average intensity of 9 chambers was recorded for each time point and 
plotted against exposure time. Fluorescent intensity was normalized to the initial value and fit with 
an exponential decay curve. The photobleaching half-life was measured to be 987.47 seconds. 
The vertical line corresponds to the measured amount of photobleaching during a one-hour 
experiment, 153 seconds of exposure and a 10% reduction in fluorescence compared to 
chambers not imaged. 
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Figure 3.11: Effect of chamber size on fluorescence transient. Normalized fluorescent traces 
show the transients of different chamber sizes exhibit very similar behavior. Thick lines represent 
the average behavior of all chambers of a given size, while the thin lines depict individual 
chamber behavior. Both the average transient behavior and the distributions of the individual 
behaviors show little variation across the different chamber sizes. 

 



55 

 

 

Figure 3.12: Noise plot of simulation data colored by the time the first mRNA was made. 
Centroids are colored by reaction size (blue 15 genes; red 150 genes). The dashed gray line 
has the form a/abundance2. The timing of mRNA production heavily influences both the amount 
of protein produced and the noise. 
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Figure 3.13: R2 for varying power law fits to experimental data. Chamber and vesicle noise 
plot data (Figure 3.3A and C) were fit with equations of the form a*abundance-b. Values of b 
ranged between 0.0 and 4.0. For each value of b, the value of a was found by nonlinear least 
squared fitting. R2 was measured and plotted for each value of b. Values of b between 1.0 (solid 
line) and 2.0 (dashed line) show good fits to the experimental data in both chambers and 
vesicles. 
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4 MACROMOLECULAR CROWDING INDUCES SPATIAL 

CORRELATIONS THAT CONTROL GENE EXPRESSION 

BURSTING PATTERNS 
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document. SEN, PMC, CPC, and MLS conceived and planned the experiments. 

Experiments were performed by SEN, LKC, and PMC. SEN designed and constructed 

the pRSETb-mCherry-Spinach2 plasmid with the assistance of Drs. Jennifer Morrell-

Falvey and Amber Bible. The Spinach2 sequence was acquired, with thanks, from the 

Jaffery Lab website, accessed in 2014134,135. SEN, GC, SMA, and MLS analyzed the 

results and programmed simulations. SEN, GC, SMA, and MLS wrote the manuscript. 

4.1 Abstract 

Recent superresolution microscopy studies in E. coli demonstrate that the 

cytoplasm has highly variable local concentrations where macromolecular crowding 

plays a central role in establishing membrane-less compartmentalization. This spatial 

inhomogeneity significantly influences molecular transport and association processes 

central to gene expression. Yet, little is known about how macromolecular crowding 

influences gene expression bursting – the episodic process where mRNA and proteins 

are produced in bursts. Here, we simultaneously measured mRNA and protein reporters 

in cell-free systems, showing that macromolecular crowding decoupled the well-known 

relationship between fluctuations in the protein population (noise) and mRNA population 

statistics. Crowded environments led to a 10-fold increase in protein noise even though 

there were only modest changes in the mRNA population and fluctuations. Instead, cell-

like macromolecular crowding created an inhomogeneous spatial distribution of mRNA 

(“spatial noise”) that led to large variability in the protein production burst size. As a 

result, the mRNA spatial noise created large temporal fluctuations in the protein 
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population. These results highlight the interplay between macromolecular crowding, 

spatial inhomogeneities, and the resulting dynamics of gene expression, and provide 

insights into using these organizational principles in both cell-based and cell-free 

synthetic biology. 

4.2 Introduction 

The intracellular environment is highly crowded by proteins and other 

macromolecules which occupy a significant fraction of the cell (e.g. approximately 30% 

in E. coli)24,136,137. In contrast to the dilute environments often used to determine 

biochemical parameters, macromolecular crowding affects the dynamics of molecular 

transport and interactions in ways that significantly alter molecular association, ligand 

binding, and protein folding24.   Likewise, macromolecular crowding is known to 

differentially alter average transcription and translation rates65,138.  Yet, the relationship 

between macromolecular crowding and gene expression bursting patterns remains 

largely unexplored. 

Gene expression bursting is an episodic process where mRNA and proteins are 

produced in relatively short bursts separated by periods of no expression100,112,118. 

Expression bursting is often associated with molecular processes such as transcription 

factor binding kinetics46,110,111, supercoiling30, and transcriptional re-initiation30,37,117, that 

would seem likely to be influenced by macromolecular crowding. In particular, crowding 

is likely to modulate burst dynamics (Figure 4.1), which are characterized by burst size 

(average number of mRNA or protein molecules created per burst) and burst frequency 

(number of bursts per unit time). Burst size and burst frequency are modulated in 

response to numerous physical and chemical cues132,139, and macromolecular crowding 

could affect expression bursting through inhibited diffusion, physical exclusion from 

regions of space, and extended co-localization of interacting molecules (e.g. ribosome 

and mRNA; Figure 4.1).  

The effect of exclusion and co-localization on bursting depends on the size of the 

reacting molecules and the complexity of the reactions. Larger molecules are more 

readily excluded than smaller molecules24, while co-localization of only a few large 

reacting molecules occurs more readily than ones involving several large components. 

Accordingly, it seems likely that transcriptional and translational bursting respond 
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differently to changing levels of macromolecular crowding. For example, in cell-free 

expression T7 transcription requires only the co-localization of two large components 

(the polymerase and promoter), but translation requires the co-localization of many large 

structural proteins, as well as the availability of aminoacylated tRNAs in the proper 

amounts and sequence. Furthermore, ribosome mobility in crowded environments is 

significantly lower than that of the ~3x smaller polymerase24,140,141. These different 

effects of crowding are intertwined and, in some cases, lead to opposing behavior. As a 

result, little is known about how the two components of expression bursting (transcription 

and translation) are differentially modulated in response to macromolecular crowding.  

Here we show how macromolecular crowding drives expression bursting patterns 

in cell-free gene expression, and specifically, how crowding affects the transcriptional 

and translational components of bursting in very different ways. These experiments 

feature the simultaneous measurement of the intensity and fluctuations of fluorescent 

reporters of transcriptional and translational events driven from the same promoter. Total 

expression (transcription and translation taken together), burst size and burst frequency 

were modulated by crowding, but in opposite directions – i.e. crowding increased burst 

Figure 4.1:: Gene expression happens in an episodic process characterized by a burst size 
(average number of molecules synthesized during a burst) and a burst frequency (the average 
rate of burst occurrence). Crowding affects molecular transport by making diffusion to some 
reaction sites difficult (exclusion) and keeping nearby reactants co-localized. Exclusion seems 
likely to lower burst frequency, while co-localization seems likely to increase burst size. 
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size, but decreased burst frequency. The transcriptional component of bursting was only 

mildly affected by crowding. In sharp contrast, the translational component of bursting 

was very sensitive to changes in the crowding level, responding to greater crowding with 

a large decrease in burst frequency, but a large increase in burst size. These results are 

consistent with a crowded model consisting of spatially distinct  regions with widely 

varying populations of expression resources (e.g. ribosomes) that control the burst 

size34. Likewise, recent experimental results have demonstrated such subregions in E. 

coli that direct the location and rates of transcription and translation142, and in eukaryotic 

cells such subregions may be created through regulated phase transitions143. The results 

here suggest that such spatial features in cells may be responsible for controlling gene 

expression burst patterns, which may play important roles in the sharing of global gene 

expression resources34 and in making translation more variable than transcription144. 

These burst patterns play a central role in setting the low noise limit in gene 

expression127, and these noise constraints have consequence for quick adaptation to 

stress and survival in uncertain environments145,146. 

4.3 Results and Discussion 

In order to examine transcription and translation simultaneously, we inserted a 

sequence coding for a stabilized aptamer, Spinach2134, into a plasmid coding for a 

fluorescent red protein, mCherry (Figure 4.2A). Fluorescence readings for both reporters 

were recorded over 12 hours (Figure 4.2C) at crowding fractions ranging from 0-30% 

(Figure 4.2D and Methods). These crowding levels were selected to mimic cellular 

environments where the high total concentration of macromolecules produces crowding 

between 5-40%21 .  

Expression bursting was investigated by extracting the noise behavior of the two 

reporters from the expression trajectories (Figure 4.2C) using a previously described 

method29,34,43,44. In agreement with previous reports 65, the protein expression rate was 

strongly repressed by macromolecular crowding, and was completely repressed at a 

crowding level of 30% (Figure 4.3A). In contrast, mRNA expression was only mildly 

responsive to crowding and displayed only small decreases in expression level as the 

crowding fraction was increased. However, at the highest crowding fraction studied 

(30%) there was a large decrease in the rate of mRNA synthesis, but synthesis 
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Figure 4.2: Cell-free tracking of mRNA and Protein expression. A) Gene layout for pRSET-b-
mCherry-Spinach2 used in cell-free experiments. B) The RNA aptamer, Spinach2, folds and 
binds to a fluorophore (DFHBI-1T) which fluoresces at 495 nm. The mRNA upstream of the 
aptamer codes for the mCherry reporter protein that fluoresces at 630 nm. (C) Fluorescence from 
both reporters was tracked over time for noise analysis. D) Cell-free expression (PURExpress kit) 
was in microplate wells (15uL) in the presence of DFHBI-1T was measured every 5 minutes for 6 
hours. Different crowding levels were achieved by the addition of Ficoll-70 to the cell-free 
reactions. (E) and (F) The spatial distribution of mRNA and protein was visualized by confocal 
microscopy imaging of cell-free reaction in liposomes at (E) 0% and (F) 5% crowding fractions. In 
(E) both protein and mRNA are distributed evenly throughout the volume of the liposome. In (F) 
protein is distributed throughout the volume of the liposome, but mRNA exhibits a more 
inhomogeneous distribution. 
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Figure 4.3: Average expression time course (A) and CV2 vs. steady-state (SS) fluorescence (B) 
for mRNA and protein at crowding fractions ranging from 0 to 30%. The small data points in (B) 
represent individual experiments, while the large data points are averages of all experiments at 

the same crowding fraction. The black lines represent the Poisson scaling trend (𝑪𝑽𝟐 ∝
𝟏

𝑺𝑺 
). (C) 

Mean (blue dots) and median (red square) burst sizes (Fano factor) vs. crowding fraction 
extracted from mRNA and protein noise measurements. Error bars indicate standard error of the 
mean. The means of some crowding fractions in the mRNA measurements are pulled up by a 
small number of high outlier values. The trend line for the mRNA data is a linear fit to the 
medians. The trend lines shown for the protein graph show assumptions about the relationship 
between the variance of the burst size and the crowding fraction (CF). The red line assumes a 
linear relationship (𝝈𝟐 ∝ 𝑪𝑭), and the blue line assumes an exponential relationship (𝝈𝟐 ∝ 𝒆𝑪𝑭 ). 
(D) Mean and median burst frequency (1/CV2) for mRNA and protein. The trend lines for both 
mRNA and protein are linear fits to the medians. 
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continued to occur for a longer duration (Figure 4.3A). There was a striking difference in 

the noise behaviors of the mRNA and protein populations in response to crowding-

induced changes in expression.  Although median mRNA noise magnitude was only 

mildly sensitive to the size of the mRNA population (number of molecules), protein noise 

was hypersensitive (i.e. increased faster than Poisson (1/population) scaling) to changes 

in the protein population (Figure 4.3B). This difference in noise behavior indicated that 

crowding resulted in very different transcriptional and translational burst behaviors. 

Previous analysis and experimentation show that 𝐶𝑉 =  , where B is the burst 

size and 𝜇 is the mean value of the molecular population43,99,100,104,125,127,147,148. Since the 

Fano factor is equal to 𝜇𝐶𝑉 , it is a direct measure of the burst size. Accordingly, to 

determine how transcriptional and translational burst sizes varied with crowding, we 

examined the Fano factors (Methods) of mRNA and protein populations (Figure 4.3C). 

The transcriptional burst size was insensitive to changes in crowding fraction. There was 

no statistically significant change in transcriptional burst size across all crowding 

fractions as determined by one-way ANOVA (F(6,281) = 1.08, p = .38). In contrast, there 

was a statistically significant change in protein Fano factor as determined by one-way 

ANOVA (F(5,250)=50.04, p<.0001) as the Fano factor increased approximately three-

fold as the crowding fraction increased from 0 to 25% (Figure 4.3C).  The protein Fano 

factor could not be measured for the 30% crowding fraction as no protein production was 

observed for this condition.  

To determine how burst frequency varied with crowding, we examined 1/CV2 of 

mRNA and protein populations, which are proportional to the frequency of transcriptional 

and translational bursts, respectively (Figure 4.3D, also see Appendix). The 

transcriptional burst frequency had a statistically significant change across all crowding 

fractions as determined by one-way ANOVA (F(6,281)=4.1, p=0.0006), but most of this 

drop was observed between 0% and 5% crowding levels (Figure 4.3D). In contrast, there 

was a sharp, monotonic decrease in translation burst frequency (Figure 4.3D) and a 

statistically significant change in translational burst frequency as determined by one-way 

ANOVA (F(5, 250)=84.07, p<.0001). The translational burst frequency at a 30% 

crowding fraction was essentially 0 as no protein synthesis was observed under these 

conditions.  
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Although crowding had only a small effect on the average transcriptional 

behavior, it did lead to a higher propensity for “outlier” transcriptional behavior. At many 

crowding fractions – and in particular, at the moderate crowding levels – the median and 

mean Fano Factors were significantly different (Figure 4.3C), indicating that the mean 

was being pulled up by a small number of traces with very high Fano factors. These 

outliers were easily identified by inspection of the noise traces, where they often exhibit 

extended periods of high expression (See Appendix, Figure 4.5).  A likely explanation for 

these transcriptional outliers is repeated binding of RNAP and promoters that have been 

entrapped together by crowding induced compartments. Although crowding increases 

the mean time for an initial reaction, it also enhances the possibility for repeated 

rebinding and may even increase some reaction rates149 .  Such re-initiation events have 

been shown to increase transcriptional burst size and noise37. These outliers were rare 

events in these experiments, making it impossible to determine the actual likelihood of 

outlier behavior. As a result, we focused our attention on the “bulk” behavior exhibited by 

the majority of the experimental runs.  

An earlier study52 of the effects of crowding on expression noise provides a 

foundation for the results reported here. The important advance reported here came 

from the simultaneous observation of reporters of both transcriptional and total 

expression activity under the control of the same promoter and within the same 

environment. This additional level of detail allowed the unambiguous observation of the 

individual contributions of transcription and translation to expression burst behavior.  

Starting with the mRNA measurements, crowding levels of 25% or lower 

produced small changes in transcriptional behavior. For all crowding levels, mRNA 

synthesis occurred for at least 200 minutes and the mRNA population increased at a 

nearly constant rate before a fairly abrupt cessation of mRNA synthesis (Figure 4.3A and 

Figure 4.6 in Appendix). The most noticeable effect was a drop of about 35% in the final 

mRNA population as crowding increased from 0 to 25% (Figure 4.3A). As crowding 

increased from 25% to 30%, the rate of mRNA production dropped by more than 20%, 

yet transcription remained active for at least 100 minutes longer (Figure 4.3A). This 

behavior was observed in conjunction with complete loss of translational activity. 

Previous studies have shown that the elongation rate of transcription by bacterial 

polymerases is highly correlated with the rate of translation150, and our measurements 
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similarly suggest that the T7 polymerase elongation rate drops in the absence of 

translation.  Furthermore, the absence of translation reduced the energy demand of 

expression, likely leading to the extended duration of transcription. These observations 

illustrate the importance of the simultaneous measurement of both transcriptional and 

translational activity, as transcriptional behavior may change substantially in the absence 

of translation.  

Surprisingly, as crowding increased from 0 to 25%, protein noise changed by 

more than 10-fold with only a 35% change in the mRNA population and only small 

changes in mRNA noise (Figure 4.3B). This indicated that mRNA population statistics 

played very little role in total expression noise. As a possible explanation for the large 

changes in protein noise behavior, we explored how crowding affected the mRNA spatial 

distribution. Hansen et al. reported evidence of the formation of pockets of mRNA in 

transcription-only experiments52. To examine the spatial distribution of mRNA in a full 

expression experiment, we performed fluorescence microscopy imaging of cell-free 

reactions in vesicles (Appendix, Figure 4.7) with and without added crowders (Figure 

4.4A-B). The most striking effect of crowding was the emergence of distinct regions with 

very high mRNA populations (Figure 4.4A-B).  These mRNA-rich regions created a high-

end tail in the mRNA spatial distribution that is most clearly visible in the log-scale 

distribution (Figure 4.4B, inset). While this change to the mRNA spatial distribution only 

modestly affected mRNA population and fluctuation behavior, it led to significant 

changes in the protein expression behavior. Specifically, increased crowding led to less 

frequent but more intense translational bursting (Figure 4.4C-D). Since there was no 

associated drop in the mRNA burst frequency, less frequent translational bursting 

implies that much of the mRNA was translationally inactive at the higher crowding level. 

This finding is similar to results we recently reported for gene expression under different 

levels of spatial confinement34. In that study, less confinement (bigger reaction chamber 

volume) resulted in a sub-population of mRNA that was translationally inactive due to 

unequal sharing of translational resources.  

It is an intriguing result that in our experiments 30% crowding was enough to 

silence translation completely, yet translation continues at higher crowding fractions in E. 

coli and other cell types. Continued translation at high crowding levels is likely the result 

of inhomogeneous crowding in cells where there is little translation in very crowded  
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Figure 4.4 Spatial Inhomogeneity in mRNA and Simulation results (A) Distribution of mRNA 
in vesicles expressing pRSET-b-mCherry-Spinach2 at 0% (Top) and 5% (Bottom) crowding 
fractions. The blue and red boxes denote 1440 pixel regions of interest (ROIs) that were analyzed 
to understand how crowding affected the spatial distribution of mRNA. (B) Histogram of pixel 
intensities for the two ROIs from (A). The inset shows the two histograms together using a log 
scale for the y-axis to illustrate the long tail distribution created by crowding. (C) Schematic of 
physical gene expression model with low crowding (Top) and high crowding (Bottom). The model 
simulates a crowding-controlled distribution of accessible regions for gene expression. Two 
factors, T1 and T2, must be present in the region for translation to occur. As crowding increases, 
the volume of the regions decreases and the diffusion rate (indicated by the thickness of the black 
arrows) into and out of the region decreases. Translational activity in a region is indicated by red 
arrow. D) Representative protein expression trajectories for low crowding (Top) and high 
crowding (Bottom). The crowding level in the model is described by VNC, which represents the 
fraction of volume outside the expression regions.  High crowding level (VNC =0.97, red) 
trajectories are more variable than low crowding level trajectories (VNC =0.10, blue). E) Noise 
analysis of trajectories colored by VNC. As VNC increases, protein abundance decreases while 
CV2 increases. F) The Fano factor of protein expression increases as VNC increases, indicating 
an increase in burst size. 
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regions (e.g. the nucleoid), but much greater translational activity in less crowded 

ribosome-rich regions142. 

We hypothesized that crowding leads to unequal sharing of translational 

resources by parsing the mRNA into spatially distinct, translationally-favored and 

translationally-disfavored sub-populations. To explore how crowding-induced spatial 

correlations of mRNA affected expression, we developed a physically-motivated model 

where transcription and translation occurred in compartmentalized regions of space 

(Figure 4.4C). In this model, increased crowding reduced the size of the 

compartmentalized regions and the transport of molecules to and from the 

compartments151. The translational step was modeled by requiring the assembly of two 

components (referred to generically as T1 and T2) for translation to occur (Figure 4.4C). 

In this model, higher crowding (smaller compartmentalized regions) led to reduced 

protein population (Figure 4.4D and E), higher protein CV2 (lower burst frequency; 

Figure 4.4E), and higher protein Fano factor (higher protein burst size; Figure 4.4F) 

much like the effects observed in the experiments.  

These crowding induced effects in the model were primarily due to wide 

variability in the size and timing of the translational bursts. Importantly, both increased 

translational burst size and larger variability in the burst size lead to greater noise in the 

protein population, with127 

𝑭𝑭𝒑 = 𝑩 +
𝝈𝑩

𝟐

𝑩
, 4. 1 

where 𝐹𝐹  is the Fano factor of the protein, and  𝐵 and 𝜎  are the mean and the 

variance of the translational burst size, respectively (Appendix, 4.5.1). To study explicitly 

the effect of translational burst size variability on protein noise, we constructed a 

simplified two-state expression model (Appendix, 4.5.2) that captured the variability of 

the translational burst size predicted by the model described above.  This two-state 

model is like the traditional two-state model of expression with one important exception: 

the average translational burst size remained constant, but the variance of the burst size 

increased as crowding increased (Appendix Figure 4.8).  Gillespie simulations of this 

model were performed where the variance of the burst size varied over a 25X range, and 

demonstrate that large variability in the translational burst size – not just changes in the 
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mean burst size – can generate the crowding-induced changes in protein noise behavior 

measured here (Appendix Figure 4.8).    

The results here demonstrate that spatially inhomogeneous distribution of 

molecular populations plays an essential role in controlling expression bursting behavior 

in crowded cell-free systems.  Cell-like macromolecular crowding creates an 

inhomogeneous spatial distribution of mRNA.  This spatial “noise” in turn controls 

expression burst behavior and becomes ingrained in the temporal noise of the protein 

population.  This spatial arrangement in cell-free systems is similar to that found in E. 

coli. Recent superresolution microscopy of E. coli shows spatial segregation of the 

nucleoid and the bulk of the ribosome population142. This spatial arrangement in cells 

affects both transcription and translation, but similar to the results reported here, in 

differing ways. RNA polymerase can explore the crowded inner nucleoid region, and low 

levels of transcription can occur throughout the nucleoid152. However, ~85% of the 

ribosome population is excluded from the nucleoid region142.  The most active region of 

expression bursting seems to be concentrated at the interface between the nucleoid and 

ribosome-rich region where dense clusters of transcribing RNAPs congregate152. 

Intriguingly, dynamic reordering of the spatial organization appears to be a mechanism 

for expression rate regulation in cells152, and may be a viable strategy in cell-free 

systems that make use of advanced nanofabricated platforms153.  

It is important to point out differences between the crowded environment in cells 

and those reported here for the cell-free experiments. For prokaryotic cells such as E. 

coli, water makes up approximately 50-70% of an E. coli, while the dry weight is ~55% 

protein, ~20% RNA, ~10% Lipids, and ~15% of other molecules154. Since a large fraction 

of the protein and RNA is ribosomal155, ribosomes (~20 nm in diameter in prokaryotes) 

make a significant contribution to cellular crowding. Most of the other proteins have a 

globular configuration with radii in the 3-6 nm range156. Ficoll 70 (stokes radius of ~5.1 

nm) and the cell free expression media used here resemble the distribution of globular 

protein and ribosome crowders in cells.  Conversely, these cell-free experiments do not 

mimic extended structures like cytoskeletal filaments or elongated proteins, nor larger 

structures like organelles or the bacterial nucleoid. These extended structures in cells 

may affect expression bursting in important ways by allowing for facilitated transport 

along filaments or by creating inhomogeneous crowding (e.g. very crowded nucleoid 
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region with less crowded ribosome rich areas142)  that are not well approximated by the 

experimental platform reported here. While eukaryotic cells have crowded environments 

like that described for prokaryotic cells, they completely decouple transcription and 

translation. The coupling of transcription and translation is likely to affect expression 

burst behavior by modulating the rate of transcription (described above) and by affecting 

local crowding around the promoter. Accordingly, the results presented here should be 

used cautiously with regards to eukaryotic transcriptional burst dynamics where 

promoter structure (e.g. TATA boxes) or nucleosome occupancy patterns play prominent 

roles in burst behavior124  not seen in prokaryotic cells.  

The vast majority of synthetic biology efforts focus on gene circuit design that 

relies on specific molecular mechanisms – e.g. transcriptional control with regulatory 

proteins – and engineering principles of circuit and network design16. But even very well 

characterized gene circuit elements, like the lac promoter, may be more sensitive to 

location or local concentrations than to specific molecular interactions157. Spatial effects 

on the regulation of gene expression provide both significant challenges and 

opportunities for cell-free synthetic biology. Chief among the challenges is a limited 

understanding of how the spatial distribution of molecular populations may be used to 

design specific functionality.  However, cell-free platforms provide the means to vary 

spatial arrangements in intricate ways153, and may be especially well-suited for 

developing a deeper understanding of spatial synthetic biology.  

4.4 Methods 

 The Spinach2 sequence, which fluoresces after hybridizing with a fluorophore, 

DFHBI-1T (Lucerna, Inc), was inserted 30 bp downstream of the mCherry stop codon 

and upstream of the T7 terminator (Figure 4.2A). This placement ensured that all 

fluorescing gene transcripts contained a complete transcript of the mCherry protein 

(Figure 4.2B). The plasmid pRSET-b-mCherry-Spinach2 was expressed in a scaled-up 

PURExpress (NEB) cell-free protein synthesis reaction in the presence of DFHBI-1T. 

The reaction was divided into 15µL aliquots. For each 15µL reaction, fluorescence 

readings for Spinach2-DFHBI-1T and mCherry were performed in a microplate reader 

(Perkin-Elmer, EnSpire Multimode Plate Reader) every 5 minutes for 12 hours to 

generate expression traces for Spinach2-DFHBI-1T and mCherry fluorescence (Figure 
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4.2B). All fluorescence traces were zeroed after the first 5 time points in order to exclude 

initial readings due to autofluorescence. Additionally, all traces were truncated after 72 

timepoints, after which all traces reached a maximum level (Appendix Figure 4.9). This 

maximum level was indicative of the end of expression due to resource limitation, and 

was not an equilibrium between synthesis and decay44,47.  

To simulate cell-like macromolecular crowding, concentrated Ficoll-70 (Sigma-

Aldrich) was added to the cell-free reactions in order to create crowding fractions ranging 

from 0-30 w/v% (in previous sections and hereafter referred to as % crowding). 

Concentrated Ficoll-70 (Sigma-Aldrich) was prepared in nuclease free water by adding 

375 mg Ficoll-70 to 500µL of nuclease-free water, to create a weight volume percent of 

approximately 75 w/v%. This was weight/volume percent of the mass of the solute to the 

volume of the solvent instead of the mass of the solute to the volume of the solution. The 

crowder solution in nuclease free water was applied to the PURE system reactants in 

lieu of the water used to dilute all reactants to a 30µL volume. This means all 

experiments of differing crowding fractions had the same amount of proteins and cell-

free reactants. 

Ficoll-70 is a highly branched polymer that approximates a sphere with a Stokes 

radius of ~5.1 nm. This is of a comparable volumetric scale to a T7 polymerase, and 

much smaller than an intact ribosome (Figure 4.2D). Three experiments were run for 

each crowding fraction at 0, 5, 10, 15, and 20%. Each experiment was prepared by 

creating a “master mix” of cell-free reagents and Ficoll-70 at a specific crowding fraction, 

then aliquoting the master mix into sixteen 15µL reaction volumes. This resulted in 48 

reaction traces for each crowding fraction from 0-20%. Additional experiments were 

conducted for crowding fractions of 25% (16 reaction traces) and 30% (32 reaction 

traces). Neither the presence of DFHBI-1T nor the Ficoll 70 significantly affected 

fluorescence measurements (Appendix Figure 4.10). 

To visualize the spatial distributions of mRNA and protein, microscopy was 

performed on cell-free reactions in polydisperse vesicles ranging from approximately 

5µm to 30µm in diameter (Figure 4.2E-F). PURExpress reactants with the pRSET-b-

mCherry-Spinach2 plasmid and DFHBI-1T were encapsulated in vesicles, following 

methods described in Nishimura et al, 201451. The vesicle microreactors containing cell-

free reactants were allowed to express for 5 hours at room temperature (Appendix, 
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4.5.3), and imaged using a confocal microscope (Zeiss LSM T-PMT). Vesicles were 

imaged in uncrowded conditions (0%) and mildly crowded conditions (5%) in two 

different experiments (Figure 4.2E-F).  

Individual Spinach2-DFHBI-1T (mRNA) and mCherry (protein) traces for each 

uncrowded reaction appeared similar to expression growth traces reported 

previously34,44,57, where protein and mRNA populations increased in expression over 

time before reaching a plateau upon resource limitation of the cell-free reaction (Figure 

4.2C)44,47. While mRNA-fluorophore fluorescence began to build very quickly after the 

reaction was initiated, significant protein fluorescence was not seen until ~25 minutes 

into the experiment (Figure 4.3A), which is consistent with an expected maturation time 

for the mCherry reporter158. Normalized traces of mCherry expression across crowding 

fractions showed very similar transient behaviors, indicating that protein maturation time 

was not affected by increased crowding fraction (Appendix Figure 4.6).  

The noise in mRNA and protein populations was extracted from each mRNA and 

protein trace. Briefly, the traces for each reporter within an experiment were averaged to 

create a general trend for mRNA and protein populations, respectively (Appendix Figure 

4.11). This deterministic transient component was subtracted from each trace, leaving 

noise signals describing the stochastic fluctuations in mRNA and protein populations. 

The noise magnitude in each molecular population was quantified using the square of 

the coefficient of variation (where 𝐶𝑉 =
〈 〉

, where 𝜎  and 〈𝑓𝑙〉 were the variance of the 

fluorescent signal and the final fluorescent level, respectively). For both molecular 

species, CV2 was plotted versus its final fluorescence level, which was used throughout 

the text as a measure of mRNA and protein populations. The Fano factor was calculated 

as 𝐹𝐹 =
〈 〉

. 

One-way ANOVA analysis was performed across all crowding fractions (0-30%) 

for the mRNA experiments (7 groups) and across crowding fractions between 0 and 25% 

for protein (6 groups).  The 30% crowding fraction was not included in the protein 

analysis since no protein was made for this condition.  The significance threshold was 

set at p<.05.   
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4.5 Appendix 

4.5.1 Expression Burst Analysis 

Gene expression noise may be characterized using various measures based on the 

mean value (µ) of a reporter (e.g. fluorescent protein) of a molecular population (e.g. 

number of mRNA or protein molecules) and the variance (σ2) of the distribution of these 

molecular populations.  Common measures include coefficient of variation (CV), the 

square of the coefficient of variation (CV2), and the Fano factor (FF). These three 

measures of the relative magnitude of expression variations are related as follows: 

𝑪𝑽𝟐 =
𝝈𝟐

𝝁𝟐
4. 2 

𝑪𝑽 = 𝑪𝑽𝟐 4. 3 

𝑭𝑭 =
𝝈𝟐

𝝁
= 𝝁𝑪𝑽𝟐 4. 4 

The Fano factor, which has also been known as noise strength159 or just defined 

mathematically147 as 𝜇𝐶𝑉  , has been used at least since 2001159 as a direct measure of 

burst size. Ozbudak et al. experimentally demonstrated125 that the Fano factor was 

linearly related to the translational burst size (the average number of proteins produced 

from an individual mRNA template), and Hasty and Collins148 commented that these 

results showed some evidence of transcriptional bursting. So et al. used Fano factor 

measurements to demonstrate that in E. coli, an increased transcriptional rate is often 

accomplished by an increased transcriptional burst size100.  Taniguchi et al. showed in E. 

coli that the Fano factor of the protein noise increased approximately linearly with 

increasing protein population104, and later analysis showed that this relationship was due 

to burst size increasing linearly with the protein population127. Other studies have used 

the Fano factor to characterize the transcriptional burst size in expression controlled by 

the HIV LTR promoter43,99,147.  

Some studies that did not explicitly use the Fano factor as a measure of 

expression burst size, still used the same underlying Fano factor principle to interpret 

their results.  For example, Hansen et al. noted52 that in their cell-free expression 

experiments that increased macromolecular crowding led to a larger CV2 without a 

correspondingly large decrease in their measured µ. However, since  𝐹𝐹 = 𝜇𝐶𝑉 , their 
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experimental results demonstrated a crowding induced increase in the Fano factor in a 

way entirely consistent with the results reported here.  

Although the three commonly used measures of noise are closely related, the 

Fano factor is the measure that is most strongly associated with burst size (B). 

Conversely, since 

𝑪𝑽𝟐 =
𝑭𝑭

𝝁
∝

𝑩

𝝁
4. 5 

and 

𝝁 ∝ 𝑩𝒇𝑩, 4. 6 

then127  

𝒇𝑩 ∝
𝟏

𝑪𝑽𝟐
, 4. 7 

where fB is the burst frequency. Accordingly, throughout this work we use the Fano factor 

as a measure of burst size and 1/CV2 as a measure of burst frequency.  

Looking deeper at the relationship between burst size and Fano factor, we can 

approximate expression bursting as the product of two random processes: Process A 

(transcriptional initiation) composed of a Poissonian pulse train of impulse functions of 

weight = 1 and average value �̅�; and Process B (expression bursting) that is uncorrelated 

with process A, has a mean value of 𝐵, and a variance of 𝜎  (note: we have lumped 

transcriptional and translational bursting into a single process with an average burst size 

of 𝐵) 

𝝓𝑨(𝝉) = 𝑨𝜹(𝝉) + 𝑨𝟐 4. 8 

𝝓𝑩(𝝉) = 𝝈𝑩
𝟐 𝜹(𝝉) + 𝑩𝟐 4. 9 

The autocorrelation function of the expression burst is given by the product of the 

autocorrelation functions of these two functions, or 

𝝓𝑨𝑩(𝝉) = 𝝓𝑨(𝝉) ∗ 𝝓𝑩(𝝉) = 𝑨𝝈𝑩
𝟐 𝜹(𝝉) + 𝑨𝑩𝟐𝜹(𝝉) 4. 10 

where we have neglected all the �̅�  terms because �̅� ≪ 1.  From this we get 

𝝈𝑨𝑩
𝟐 = 𝑨𝑩𝟐 + 𝑨𝝈𝑩

𝟐 4. 11 

and the Fano factor (which would be the Fano factor of the protein abundance) is 
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𝑭𝑭𝑨𝑩 =  𝑭𝑭 𝑷 =
𝝈𝑨𝑩

𝟐

𝑨 𝑩
= 𝑩 +

𝝈𝑩
𝟐

 𝑩
4. 12 

or   

𝑭𝑭 𝑷 = (𝑩 + 𝑭𝑭𝑩), 4. 13 

where FFB is the Fano factor of the expression burst size.  

Most previous analyses have assumed that expression bursting represents the counting 

of a Poissonian pulse train88,159, in which case 

𝑭𝑭 𝑷 = (𝑩 + 𝟏) 4. 14 

is the result.  Yet, this often-used equation becomes inaccurate when there is greater 

variability in the expression burst size.  As an example, consider a case where the 

expression burst size distribution is split between a high (BH) and a low (BL) level.  This 

would be a simple approximation for an inhomogeneous spatial distribution of resources 

where some regions are prone to very high translation rates, while other regions produce 

protein at relatively low rates. In this case 

𝑩 = 𝑷𝑯𝑩𝑯 + (𝟏 − 𝑷𝑯)𝑩𝑳 ≈ 𝑷𝑯𝑩𝑯 4. 15 

𝝈𝑩
𝟐 ≈ 𝑷𝑯(𝟏 − 𝑷𝑯)𝑩𝑯

𝟐 4. 16 

𝑭𝑭𝑩 ≈
𝑷𝑯(𝟏 − 𝑷𝑯)𝑩𝑯

𝟐

𝑷𝑯𝑩𝑯

= (𝟏 − 𝑷𝑯)𝑩𝑯 4. 17 

𝑭𝑭𝑷 ≈ 𝑩 + (𝟏 − 𝑷𝑯)𝑩𝑯 = 𝑷𝑯𝑩𝑯 + (𝟏 − 𝑷𝑯)𝑩𝑯 = 𝑩𝑯 4. 18 

where 𝑃  is the probability of having the 𝐵 -sized translational burst. The approximation 

in these equations assumes that 𝑃 𝐵 ≫ 𝐵 . Since 𝐹 ∝ , where 𝐹  is the 

apparent burst frequency,  

𝑭𝑩𝒂𝒑𝒑 ∝
〈𝑷〉

𝑭𝑭𝑷

∝
𝑷𝑯𝑩𝑯𝑭𝑩

𝑩𝑯

= 𝑷𝑯𝑭𝑩 4. 19 

where 𝐹  is the actual burst frequency. So, for the bursting case analyzed above, the 

apparent burst size is 𝐵  not 𝐵, and the apparent burst frequency is 𝑃 𝐹  not 𝐹 . In other 

words, as long as 𝑃 𝐵 ≫ 𝐵 , the train of high bursts completely control the noise 

behavior. 
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Figure 4.5: “Outlier” behavior in transcription in 5% crowding fraction experiment. A) The 
individual outlier expression trace is shown here in black. The yellow lines indicate expression 
traces found in the same experiment. B) Individual noise traces are shown as colored lines. 
Outlier noise trace shown in black. These outliers typically have high CV2 values. C) Individual 
noise values shown as small dots. Mean CV2 for this experiment shown as a large dot. Outlier 
noise value shown as black dot. 
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Figure 4.6: Normalized traces of average protein and mRNA expression. Normalized general 
trends across all crowding fractions up to 25% demonstrate similar shape and behavior over time. 
Notably, the 30% crowding fraction trace for mRNA appears to deviate from the other trends. No 
protein expression was detected at the 30% crowding fraction. 
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Figure 4.7: Protein synthesis in polydisperse vesicle microreactors. A) An ~10µL droplet 
containing the vesicles is placed on a glass coverslip, and surrounded by a PDMS spacer. The 
PDMS spacer is attached to the glass by plasma cleaning both layers, fixing the PDMS to the 
glass, and heating the layers at 80°C. These steps prevent de-lamination of the PDMS layer once 
the droplet is applied. Once the droplet has been added to the lower coverslip, another coverslip 
is placed on top of the PDMS spacer. This assembly allows the vesicles to be viewed over many 
hours at the interface of the glass, without risk of evaporation. B) Example of reconstructed 3D 
image of polydisperse vesicles sitting on the glass interface. These vesicles are expressing 
Green Fluorescent Protein and contain a red fluorescent volume marker. C) Example of 2D 
image slice of 5% crowded vesicles expressing pRSET-b-mCherry-Spinach2 in presence of 
DFHBI-1T. 
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4.5.2 Physical Model of Expression in Crowded Environments 

We developed a physically motivated model in which (i) transcription and 

translation occur in compartmentalized regions of space, (ii) multiple components must 

assemble for translation to occur, and (iii) crowding influences the size of the 

compartmentalized regions and the transport of molecules to and from the regions. 

Increased crowding leads to slower diffusion and, at sufficiently high levels, likely leads 

to the emergence of isolated regions of transcription and translation that decrease in 

size as crowding increases. 

Consider a system that contains cN  distinct locations at which mRNA is 

transcribed. Each of these locations is associated with a physical region of space (a 

“compartment”) in which transcription and translation occur. Each compartment has 

volume cV  and is regarded as well-mixed and independent of the others. As crowding 

increases, the crowding molecules decrease the volume of each compartment. The total 

volume of the system is conserved so that ccVNVV nctot = , where ncV  is the volume 

outside of the compartments. No reactions occur in this region, but reactants can diffuse 

from one compartment to another through it. Since the volume of the region outside of 

the reaction compartments increases with increasing crowding, we use ncV  as a proxy to 

describe the extent of crowding. 

Within each compartment, mRNA is produced at rate α and translation is 

modeled as a series of two bimolecular reactions involving translational components 
1T  

and 2T :  

 11TmRNA C  

                 221 T CC   

                             212 TTmRNAprotein C  

The sequence of reactions is motivated by the cooperative binding of multiple 

chemical species that is needed for translation to occur. We formulate the kinetics in 

terms of discrete numbers of molecules, so that the binding rates are given by 

cii Vkk /= (0)
,on,on  for 1,2=i . Here, (0)

,on ik  is the second-order rate constant that would appear in 

a well-mixed system with kinetics formulated in terms of concentrations. The expression 
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for ik ,on  emphasizes that decreasing cV  leads to higher effective second-order rates 

within compartments. Hence, small compartment volumes promote binding of mRNA 

and translational components, as well as rapid rebinding after protein production. The 

rate of transcription (α) and the rate of protein production ( pk ) decay exponentially in 

time to account for the decay in synthesis observed in cell-free reactions with time 

constants  and 
pk  respectively. Initially, the translational components are populated 

at random so that the probability of being in a particular region is equal to its fraction of 

the total volume. Each translational component can transition from the non-

compartmental region to a compartment and vice versa. The entry rate into a 

compartment is   and the exit rate is γ. These values are constrained such that the net 

flux of translational components across compartmental boundaries is zero in the 

absence of mRNA: nc/=/ VVc . Since crowding impedes diffusion, the rates of entry and 

exit decrease with increasing ncV . Bulk diffusion rates for a wide variety of molecular 

species decrease by about a factor of 30 over the range of crowding that we investigated 

experimentally 151. To match this magnitude of change in diffusion rates, we assumed 

the linear relationships 0nc)(1=  V  and 0nc)(1=  V  and allowed Vnc to vary between 

0.1 and 0.97. Due to their larger size, we assume that the complexes 1C  and 2C  

remained confined within a compartment once formed. 

To analyze the model, we generated stochastic simulation trajectories using the 

Gillespie algorithm and tracked the number of mRNA and proteins over time. Noise 

analysis on the resulting trajectories was performed using the same procedure as for 

experimental results. 

Main text Figure 4.4D shows representative simulation trajectories for two values 

of ncV  that represent low ( 0.10=ncV ) and high ( 0.97=ncV ) levels of crowding. 

Trajectories associated with the higher crowding level are more highly variable and, by 

inspection, appear to have episodic periods of rapid protein production. Main text Figure 

4.4E displays results of the noise analysis for simulations ranging from low to high 

crowding levels. The number of proteins decreases with increasing crowding, with a 
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corresponding increase in 2CV  at large values of ncV . The Fano factor increases 

markedly in this regime as well. 

Physically, as the crowding increases, fewer translational components are found 

in reaction compartments. Additionally, their mobility decreases, leading to a slower 

sampling of the entire system volume. As a consequence, the waiting time to assemble 

a full translational complex ( 2C ) increases and the average number of proteins 

decreases. This is associated with a decrease in burst frequency. However, once all of 

the translational components are colocalized within a compartment, they are likely to 

rapidly rebind when the compartment volume is small. This has the effect of increasing 

burst size at large values of ncV , which is reflected by the results in main text Figure 

4.4F. 

To study explicitly the effect of translational burst size variability on protein noise, 

we constructed a simplified two-state expression model (Figure 4.8) that captured the 

variability of the translational burst size predicted by the model described above.  In this 

model, the average translational burst size remained constant, but the variance of the 

burst size increased with increasing crowding.  In agreement with the measurements, 

the burst frequency (~kon in the model) was reduced as the crowding increased. 

Although the distribution of the translational burst size was not measured explicitly, the 

spatial organization of the mRNA population suggested a distribution with a high degree 

of skew and kurtosis (Figure 4.4B). Accordingly, we chose a simple bimodal distribution 

with one high and one low translational burst size, where increased crowding led to 

greater separation between the low and high states without affecting the average 

translational burst size (Figure 4.8B). Gillespie simulations of this model were performed 

where the variance of the burst size varied between 1x and 25x the mean burst size, and 

demonstrate that large variability in the translational burst size – not just changes in the 

mean burst size – can generate the crowding-induced changes in protein noise behavior 

measured here (Figure 4.8D). 
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Figure 4.8: Simplified two-state expression model. A) A simplified two-state model of 
expression which allows modelling of a crowding-controlled distribution of translational burst 
sizes. B) Simple bimodal distribution of translation rate constant (kp in (A)) used in the 
simulations. At low crowding levels kphigh and kplow were nearly equal. At higher crowding levels 
kphigh and kplow were further apart and the probability of kphigh was reduced. (C) The variation of kON 
with crowding fraction for the simulations was found from a linear fit (y= -40.96x+1339; red line) to 
the protein abundance vs crowding fraction measurements. (D) Gillespie simulation of the two-
state model in (A) showing the relationship between the measured burst size (Fano factor of the 
protein) and Fano factor of the burst size. These simulations used the translation rate 
distributions in (B) and assumed an average burst size of 10. The red line uses the relationship in 
main text Eq. (1) with 𝑩 = 𝟏𝟎. 
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Table 4.1: List of Model Parameters Used 

Model Parameter Value 

Nc 10 

Total number, T1 10 

Total number, T2 10 

⍺ 0.01 s-1 

kon,1
(0) 0.0001 s-1 

kon,2
(0) 0.03 s-1 

kp 20.0 s-1 

0 0.7 s-1 

0 0 Vc/Vnc 

⍺ 55.55 min 

kp 27.78 min 
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Figure 4.9: Protein and mRNA expression in PURExpress protein synthesis kit. A timescale 
of Spinach2-DFHBI-1T and mCherry fluorescence was read at 5 minute timesteps over 720 
minutes. Each of the 16 time traces represents a single 15µL reaction; each individual color in 
both graphs corresponds to mRNA or protein expression from one reaction. All time traces used 
in this work were truncated at 72 time points (denoted by the red arrows), after all traces in all 
experiments reached maximum expression in both mRNA and protein. Steady state fluorescence 
shown afterward does not correspond to equilibrium between expression and decay, but rather is 
governed by the elimination of resources and buildup of toxic side-reactions and by-products47,49. 
The first 5 time points were excluded as the Spinach2-DFHBI-1T readings likely correspond to 
initial autofluorescence, and not mRNA expression.  
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Figure 4.10: Control Experiments for Cell-free reactions. Top) Normalized expression of 
mCherry in the Promega S30 T7 High-Yield Protein Expression System. Traces are averages of 
triplicate reactions. The presence of DFHBI-1T did not significantly affect the shape of the 
average protein traces, indicating that the presence of the fluorophore does not have a significant 
effect on the translational timescale. Bottom) Spinach2-DFHBI-1T fluorescence in cell-free 
reactions in presence and absence of DNA. All reactions initially have some autofluorescence 
which appears to photobleach to a uniform background level after the first few time points. The 
presence of Ficoll-70 increases this baseline level of fluorescence, but cell-free experiments in 
the absence of plasmid do not increase significantly in fluorescence over time. This indicates that 
autofluorescence from Ficoll-70 does not substantially affect the zeroed data. 
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Figure 4.11: mRNA and Protein Expression in PURE System. A single experiment consisted 
of 16 traces from 15µL microplate well reactions. Fluorescent reads were performed at 495nm 
and 630nm. The method for performing noise analysis has been detailed in previous 
work29,34,43,45,49. The first panel shows the average timescale trace for each 16-reaction 
experiment, colored by crowding fraction. The average trace is corrected for the transient and 
subtracted from each individual reaction trace to create noise traces (shown as individually 
colored traces in the second panel). These individual traces are plotted as individual points in 
“noise space”, or CV2 vs steady-state fluorescence, colored by crowding fraction. Large dots 
represent the average for each crowding fraction group. 

 

4.5.3 Experimental Methods Supplement 

Gene Structure 

The pRSETb-mCherry-Spinach2 plasmid was constructed using an in-house pRSET-b 

backbone with an mCherry insertion. The restriction enzymes EcoRI and HindIII were 

used to insert the Spinach2 oligomer sequence, which was constructed by IDT DNA. 

The publicly available sequence for this aptamer and framing tRNA scaffolds was taken 

from the Jaffery Lab website134. The aptamer sequence was inserted downstream of the 

protein sequence to ensure that a full transcript of the mCherry sequence was produced.  

 

Gene Sequence (From T7 Promoter to T7 terminator) 

TAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACA

TATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGT

ACGACGATGACGATAAGGATCCCGCCACCATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTT

CATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCG

CCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCT
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GTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCT

TCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCT

CCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCA

GAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAA

GCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGT

GCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAA

CAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTAAGAATTCGAGCTCGAG

ATCTGCAGCTGGTACCATGGCCCGGATAGCTCAGTCGGTAGAGCAGCGGCCGGATGTAACTGAATGAAATGGTGAA

GGACGGGTCCAGTAGGCTGCTTCGGCAGCCTACTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCCGGCC

GCGGGTCCAGGGTTCAAGTCCCTGTTCGGGCGCCAAAGCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG 

 

Gene Preparation 

A plasmid midiprep kit (Quantum Prep Plasmid Midiprep Kit, BioRad) was used to isolate 

pRSETb-mCherry-Spinach2 from Top 10 E.coli following manufacturer’s instructions. 

The plasmid was purified by Isopropanol precipitation and the pellet washed with 70% 

Ethanol. The plasmid was resuspended in nuclease free water at a concentration of 

1000 ng/µL. 

 

CFPS Experiment Formulation 

Cell-free experiments used the PURExpress cell-free protein expression kit (NEB) 

diluted with nuclease-free water to the maximum manufacturer-suggested reaction 

volume of 30µL per reaction. A final plasmid concentration of 8.33 ng/µL was used for all 

reactions (250ng plasmid/reaction). DFHBI-1T (Lucerna, Inc) was diluted in DMSO and 

used in the reaction at a final concentration of ~13 µM. From these ratios, experiments 

were scaled up to a total volume of 300µL. For each experiment, a 300µL master mix 

was created and divided into 15µL microplate well reactions. 

The assembled reactions were applied to a 384-well microplate (Corning #3540, black, 

clear-bottom) in 15µL aliquots. A 12-hour kinetic read was performed in a microplate 

reader (Perkin-Elmer EnSpire Multimode Plate Reader), with fluorometric reads at 

495nm and 630nm every 5 minutes. Reactions were incubated at 30°C with 2 minutes 

shaking. The microplate was covered with a qPCR film to prevent evaporation. 

Cell-Free Protein Synthesis (CFPS) previous work and control experiments 

Similar gene structures to the one constructed for this paper have been examined in cell-

free conditions57,160. Of particular relevance was Van Nies et al. 2013 which used a 
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yellow fluorescent protein and an earlier version of the Spinach aptamer and DFHBI. 

The final concentration of DFHBI-1T used in this work (13µM) approximates the DFHBI 

concentration used in the previous work (20µM). 

The CFPS experiments were initially tested for the effects of Spinach2-DFHBI-1T activity 

in the Promega S30 T7 High-Yield Protein Expression System. In order to determine 

how protein expression timescales were affected by the presence or absence of DFHBI-

1T, reactions were run with and without the fluorophore, finding that difference in 

normalized timescales for both conditions are not significant (Figure 4.10, top). In the 

PURExpress system, reactions were performed in the presence and absence of DNA 

and crowders in order to determine background fluorescence levels in the Spinach2-

DFHBI-1T range (Figure 4.10, bottom). 

 

Vesicle Preparation Methods 

Vesicle preparation was adapted from Nishimura et al. 201251; the experiment was 

modified to observe mRNA and protein expression simultaneously. Briefly, vesicles are 

prepared by preparing the PURE System as described previously (“Inner solution”), with 

the addition of sucrose in order to aid visualization of vesicles in brightfield images. The 

inner solution is placed into a paraffin oil mixture containing phospholipids (POPC, 

Avanti Polar Lipids) and then vortexed to create a disperse population of vesicles. This 

“oil phase” vesicle emulsion is layered onto an aqueous “Outer Solution” mixture 

balanced with the aqueous Inner solution. The layered solutions are then centrifuged for 

20 minutes at high speed (~14k g) at 4C. Vesicles are collected by pipetting from the 

bottom layer. The majority of vesicle diameters range from approximately 5-30 µm.  

Vesicles were imaged in a method similar to that described in Caveney et al., 201634. 

Vesicles in the outer solution mixture were pipetted onto a glass coverslip. The droplet 

containing the vesicles was surrounded by a ~2mm PDMS spacer, and another coverslip 

was applied on top of the spacer to create an airtight chamber. This setup prevents 

evaporation and global drift in the imaged vesicle solution. ImageJ was used to perform 

the analytical steps of the intensity image taken from fluorescence values of the mRNA 

and Protein. For the Figure 4.4 analytical images of mRNA in vesicles, a square 1444 

pixel region of interest was selected in the interior of two representative vesicles, one in 

an uncrowded (0%) reaction and the other in a mildly crowded 5% reaction. The intensity 
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Table 4.2: Vesicle Reactants 

Inner Solution Outer Solution 

10 µL PURE Solution A,  

7.5 µL PURE Solution B,  

250 ng pRSETb-mCherry-Spinach2 

plasmid  

0.5 µL DFHBI-1T (1.56 mM) 

5 µL Sucrose (1 M), and  

filled to 30 µL with Nuclease-free water.   

 

3.6 mL Amino Acid mix (50 mM), 

 4.9 mL ATP (460 mM),  

3.0 mL GTP (500 mM),  

1.5 mL CTP (500 mM),  

1.5 mL UTP (500 mM),  

3.6 mL Spermidine (250 mM),  

7.5 mL Creatine Phosphate (1 M),  

9 mL DTT (100 mM),  

1.5 mL Folinic Acid (4 mg/mL),  

168 mL Potassium Glutamate (1 M),  

22.6 mL Magnesium Acetate (0.5 M),  

60 mL HEPES (1 M),  

120 mL Glucose (1 M),  

and filled to 600 mL with nuclease-free 

water.  

 

 

values of the ROIs were extracted and analyzed in MATLAB. 3D representations of the 

vesicles may be constructed from z-stack imaging, simplifying the estimation of vesicle 

diameter. The vesicles rest on the glass coverslip; they are largely spherical. Larger 

vesicles (d>20 microns) tend to be easier to image because they settle on the glass 

quickly and do not move significantly for several hours. 
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5 SYNERGISTIC INTERACTIONS BETWEEN CONFINEMENT 

AND MACROMOLECULAR CROWDING SPATIALLY ORDER 

TRANSCRIPTION AND TRANSLATION IN CELL-FREE 

EXPRESSION 
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A version of this chapter was originally published by S. Elizabeth Norred, Rosemary M. 

Dabbs, Gaurav Chauhan, Patrick M. Caveney, C. Patrick Collier, Steven M. Abel, and 

Michael L Simpson: 
S. Elizabeth Norred, Rosemary M. Dabbs, Gaurav Chauhan, Patrick M. 

Caveney, C. Patrick Collier, Steven M. Abel, and Michael L. Simpson 

“Synergistic Interactions Between Confinement and Macromolecular Crowding 

Spatially Order Transcription and Translation in Cell-Free Expression”  

Pre-print available at: bioRxiv: 445544 

This chapter has been adapted from its published format to accommodate new 

Figure, Table, and Equation enumeration. The Supplementary Information associated 

with this work may be found in the Appendix; all references are located at the end of the 

document. SEN, PMC, CPC, and MLS conceived and planned the experiments. 

Experiments were performed by SEN and RMD. Lauren K. Collier performed preliminary 

imaging experiments that led to the three-dimensional rendering seen in Figure 5.4B. 

SEN designed and constructed the pRSETb-mCherry-Spinach2 plasmid with the 

assistance of Drs. Jennifer Morrell-Falvey and Amber Bible. The Spinach2 sequence 

was replicated, with thanks, from the Jaffery Lab website, accessed in 2014134,135. SEN, 

RMD, and PMC performed image analysis. SEN wrote MATLAB scripts for image 

segmentation, data extraction, and analysis. GC and SMA developed the three-

dimensional simulations. All authors participated in data analysis. SEN, GC, SMA, and 

MLS wrote the manuscript. 

5.1 Abstract 

Synergistic interactions between macromolecular crowding and confinement 

spatially organize transcription and translation in cells. Yet, reproducing such spatial 

ordering in cell-free expression platforms has proven to be elusive. Here we report 

crowding- and confinement-driven spatial self-organization of cell-free expression that 

mimics expression behavior within and around the nucleoid of prokaryotes. These 

experiments use Ficoll-70 to approximate cellular macromolecular crowding conditions 

within cell-size lipid vesicles.  Intriguingly, there was an abrupt change in transcriptional 

dynamics when crowding reached physiologically relevant levels. Imaging experiments 

revealed that this change in transcriptional dynamics was coincident with localization of 
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plasmid DNA and mRNA at the vesicle wall. Computer simulations demonstrated that 

crowding leads to an entropically induced attraction between plasmid DNA and the wall, 

causing localization of DNA near the wall at sufficiently high crowding levels. The 

experiments demonstrate cell-like spatial organization of translation, where translational 

activity is controlled by chromosomally-templated positioning of mRNA. This cell-free 

system provides a flexible experimental platform to probe the underlying mechanisms of 

self-organization of membrane-less structures in cells and the spatial control of gene 

expression. 

5.2 Introduction 

Cellular volumes are confined in a range from roughly one femtoliter18 to several 

picoliters17, and much of this volume (e.g. approximately 30% in E. coli) is occupied by 

proteins and other macromolecules24,136,137. The physical consequences of 

macromolecular crowding and cell-relevant confinement has dramatic effects on 

complex molecular processes, especially ones with diverse molecular components and 

reaction requirements like gene expression. Cell-free gene expression studies have 

provided a detailed (expression levels, noise, burst parameters) picture of how 

confinement alone 34,63 or crowding alone52,65,67 affect gene expression bursting (Figure 

5.1). Unfortunately, little is known about how synergistic interactions between 

confinement and crowding69 affect expression. It is an intriguing possibility that crowding 

and confinement together may have surprising effects on the complex and multi-

component diffusion, binding, and re-initiation events of gene expression.  

Numerous studies in confined and crowded cellular environment demonstrate 

how the gene expression process self-organizes into spatial subregions142,161,162. 

Superresolution microscopy in E.coli  shows that transcriptional and translational 

components localize preferentially in different microenvironments142, and that transcripts 

often remain localized near their origin162. In eukaryotes, regulated phase transitions can 

drive spatial organization of super-enhancers that control transcriptional behavior 143,163. 

This self-organized, membrane-less structure in cells creates heterogeneous 

environments of crowding and confinement that control the sharing of gene expression 

resources and tune the patterns of expression bursting142,152,162,164,165. Cell-free systems 

can mimic some physical features of cells34,60,62,67,161, and crowding studies lacking cell-
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relevant confinement show some spatial organization of transcription52,67.  Yet, more fully 

mimicking cell-like self-organization has been elusive.  

Here we report synergistic interactions between macromolecular crowding and 

confinement of cell-free expression in vesicles that mimics aspects of spatial self-

organization observed in prokaryotic cells. Ficoll-70 was used to approximate cellular 

macromolecular crowders, and crowding levels were varied from 0 to 90 mg/mL. 

Intriguingly, there was an abrupt change in transcriptional dynamics as crowding 

reached physiologically relevant levels (>40 mg/mL). Imaging experiments showed that 

localization of plasmid DNA and mRNA near the vesicle wall generated the change in 

transcriptional behavior. Computer simulations demonstrated that crowding leads to an 

entropically induced attraction between plasmid DNA and the wall, causing localization 

of DNA near the wall at sufficiently high crowding levels. At these higher crowding levels, 

the mRNA remained localized in the dense DNA region at the vesicle walls and was 

largely inaccessible for translation. These results demonstrate the spatial organization of 

Figure 5.1: Confinement and Crowding affect gene expression bursting parameters. Gene 
expression bursting is sensitive to confinement (Top) and crowding (middle), but little is known 
about synergistic effects between crowding and cell-like confinement (bottom). 
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transcription and translation in a cell-free platform that mimics the behavior within and 

around the nucleoid of prokaryotes, where translational activity is controlled by 

chromosomally-templated positioning of mRNA162. This work demonstrates a flexible 

experimental platform to understand the underlying mechanisms of self-organization of 

membrane-less structures in cells and the spatial control of gene expression.  

5.3 Results 

To understand how the combination of crowding and confinement affects gene 

expression, we performed cell-free protein synthesis (CFPS) reactions in vesicles 

crowded with Ficoll-70. Transcription and translation were tracked simultaneously using 

a coupled mRNA/protein reporter technique described in previous work57,67,166,167. Briefly, 

Spinach2134, an RNA aptamer which fluoresces in the green range upon hybridization 

with the fluorophore DFHBI-1T, was inserted downstream of a gene coding for a red 

fluorescent protein, mCherry158 (Figure 5.2A). The Spinach2 fluorescence intensity was 

indicative of the mRNA population and transcriptional dynamics, while the mCherry 

fluorescence intensity was indicative of the protein population and total (transcriptional 

and translational) expression dynamics. Ficoll-70 at concentrations from 0-90 mg/mL 

was added to the Cell-free Protein Synthesis (CFPS) reactions. The concentrations of 

Ficoll used here mimics lower levels of physiological macromolecular crowding, which 

can range from 50 to 400 mg/mL21. Polydisperse vesicles containing the CFPS reactions 

were fabricated using a shearing method adapted from Nishimura et al. 201251 (Figure 

5.2C). Vesicles between 14-16 µm in diameter were observed using confocal 

microscopy over 6 hours (Figure 5.2D). Spinach2 and mCherry fluorescence were 

measured for individual vesicles over time (Figure 5.2B, 2E). Each experiment was 

performed in duplicate on separate days for Ficoll-70 concentrations of 0, 10, 40, 60 and 

90 mg/mL. Between 93 and 191 vesicles were analyzed per crowding condition, for a 

total of 694 vesicles. Transcriptional and total expression transients were extracted from 

individual vesicles using custom MATLAB code for image processing. The expression 

noise was extracted from these transients using a protocol described in previous 

work34,44,67,161 (Figure 5.2E; Methods). 

In contrast to either confinement34 or crowding67 alone, the shape and timing of 

the transcriptional transient response varied significantly as crowding was increased in a 
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Figure 5.2: Observation of transcription and translation in cell-free reactions. A) The 
plasmid used for these experiments included a T7 promoter, a gene coding for mCherry, and a 
sequence encoding an untranslated RNA aptamer, Spinach2. B) Transcription was tracked over 
time by measuring the fluorescence from Spinach2-DFHBI-1T, the fluorescent hybrid of the 
Spinach2 aptamer and DFHBI-1T. Total expression was tracked over time by measuring the 
fluorescence from mCherry. C) Fabrication steps for forming vesicle microreactors. Cell-free 
reagents and Ficoll-70 were placed in an oil phase solution containing phospholipids, sheared 
into polydisperse vesicles by vortexing, layered onto a balanced aqueous phase solution, and 
centrifuged into the solution. D) Confocal images over time of both mRNA and protein expression 
in a field of polydisperse vesicles. E) Protein and mRNA expression (fluorescence of mCherry 
and Spinach2 in Relative Fluorescence Units (RFU)) and noise were tracked over time in 
individual vesicles. 
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confined environment (Figure 5.3A). With confined crowding, transcription started 

without delay and persisted over a 100-200 minute (crowding level dependent) duration, 

at which point the Spinach2-DFHBI1T fluorescence reached its peak value (Figure 

5.3A). After the cessation of transcription, the Spinach2-DFHBI1T fluorescence decayed 

due to photobleaching (Figure 5.3A).   At the lower crowding levels (0-40 mg/mL), 

increased crowding decreased the transcriptional transient risetime to its peak value 

(Figure 5.3A), with the 40 mg/mL trace reaching its peak value ~125 minutes sooner 

than the 0 mg/mL trace.  Surprisingly, increasing the crowding level beyond 40 mg/mL 

reversed this trend, with the 60 and 90 mg/mL traces having risetimes similar to the 0 

mg/mL transient.  

A one-way ANOVA showed that confined crowding resulted in statistically 

significant differences in mRNA concentrations across the different crowding conditions 

(F(689,4)=61.47, p<0.001). In contrast to the unconfined condition67, the mean mRNA 

population was quite sensitive to crowding with confinement (Figure 5.3B). Even 

relatively high levels of unconfined crowding (175 mg/mL) only reduced the mRNA 

population by about 20%, while a low level of confined crowding (40 mg/mL) reduced the 

mRNA population by nearly 2-fold (Figure 5.3B). Surprisingly, the mRNA population did 

not decrease monotonically with increasing crowding fraction. Instead, a crowding level 

of 40 mg/mL produced the lowest mRNA population (Figure 5.3B) even though this 

condition produced the quickest risetime.  

The protein transients exhibited a delayed start in fluorescence – indicative of the 

maturation time of mCherry67,158– followed by a smooth ~250 minute rise to a peak 

value. In contrast to unconfined crowding67, mCherry maturation was significantly altered 

by confined crowding. The highest levels of crowding decreased maturation time by ~40 

minutes (Figure 5.3F) but did not otherwise significantly alter the shape of the mCherry 

transient (See Appendix, Figure 5.5).  

A one-way ANOVA showed that confined crowding produced statistically 

significant differences in protein concentration across crowding levels (F(689,4)=526.86, 

p<0.001). Increased crowding reduced protein synthesis in both unconfined and 

confined conditions, but cell-like confinement significantly amplified the effects of 

crowding (Figure 5.3G). Compared to no crowding, confined crowding of 90 mg/mL 

reduced protein production by more than an order of magnitude. In contrast, a similar 
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Figure 5.3: Transcription and translation in confined reaction chambers. A) Normalized 
average mRNA expression transient (Relative Fluorescence Units (RFU) versus crowding 
fraction). B) Normalized peak mRNA abundance in confined (colored dots) and unconfined (white 
dots) reactions. Error bars indicate standard error of the mean. C) mRNA expression noise vs. 
peak mRNA abundance. D) Normalized transcriptional burst size (i.e. mRNA Fano Factor) for 
confined and unconfined reactions. E) Normalized transcriptional burst frequency (1/CV2) for 
confined and unconfined reactions. F) Normalized average protein expression transient versus 
crowding fraction over time. G) Normalized peak abundance of protein in confined (colored dots) 
and unconfined (white dots) reactions. H) Protein expression noise (CV2) vs. peak protein 
abundance. I) Normalized total expression burst size (protein Fano Factor) for confined and 
unconfined reactions. J) Normalized total expression burst frequency (1/CV2) for confined and 
unconfined reactions. All unconfined batch reactions performed in a microplate reader (data taken 
from Norred et al. 2018)67. 
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decrease in protein population required an unconfined crowding level exceeding 175 

mg/mL (Figure 5.3G). Consistent with other reports65, there was a statistically significant 

1.4 fold increase in protein synthesis with a low level (10mg/mL) of confined crowding 

(Figure 5.3G).  

The details of expression behavior were investigated by examining the noise 

behavior of the two reporters using the relationships: 

𝝁 = 𝑩𝒇𝑩 5. 1 

𝑪𝑽𝟐 =
𝟏

𝒇𝑩
=

𝑩

𝝁
, 5. 2 

where 𝜇 is the mean population of the reporter (i.e. mCherry or Spinach2-DFHBI1T); 

𝐶𝑉  is the square of the coefficient of variation (variance of reporter population/ 𝜇 ); and 

B and fB are parameters that describe the expression pattern. In the 2-state model of 

expression bursting from an individual gene, B is the burst size (average number of 

molecules created per burst) and fB is the burst frequency (number of bursts per unit 

time)43,67,99,100,104,125,127,147,148.  With multiple copies of plasmids in each vesicle, the burst 

frequency may be thought of as the number of statistically independent expression 

centers, and the burst size as the intensity of expression within the centers161. There is 

evidence of expression patterns indicative of these distinct expression centers even 

without crowding161, but with crowding these centers (at least at the transcriptional level) 

are visible using optical microscopy52,67. The transcriptional and total expression burst 

sizes (𝐵 = 𝜇𝐶𝑉  (also known as the Fano factor); Figure 5.3D and 3I) and frequencies 

(𝑓 = ; Figure 5.3E and 3J) were calculated using the measured values of 𝜇 and 𝐶𝑉   

for each reporter in every vesicle (Figure 5.3C and H).  

There was a drastic shift in transcriptional burst behavior between the lower and 

higher crowding levels. The change in transcriptional burst size (BTX) across all crowding 

levels with confinement was statistically significant as determined by one-way ANOVA 

(F(689,4)=11.48, p<0.001). BTX increased by ~1.5 fold in response to low levels of 

confined crowding (10, 40 mg/mL; Figure 5.3D), but decreased at higher (> 60 mg/mL) 

crowding levels (Figure 5.3D). The abundance of transcriptional expression centers (fBTX) 

had a statistically significant change across all crowding levels as determined by one-

way ANOVA (F(689,4)=50.38, p<0.001). As the crowding level increased from 0 to 40 
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mg/mL, fBTX decreased by ~5 fold. Yet at higher levels of crowding (> 60 mg/mL), fBTX 

exceeded the value measured with no crowding (Figure 5.3E).  

Similar to unconfined crowding, there was little change in the total expression 

burst size (BT; protein Fano factor) for the crowding levels measured here (Figure 5.3I). 

Although this change in the protein Fano factor was marginally statistically significant as 

determined by one-way ANOVA (F(689,4)=2.77, p=0.0263), only the two groups that 

produced the highest and lowest protein Fano factor (0 mg/mL and 40 mg/mL) were 

significantly different from each other. This is similar to unconfined reactions, where 

protein Fano factors remained relatively unchanged for crowding <140 mg/mL, although 

higher levels of unconfined crowding did result in large increases (~4-fold) in the protein 

Fano factor67. In contrast, the abundance of total translational expression centers (fBT) 

was quite sensitive to the crowding level (Figure 5.3J) and varied by more than 30-fold 

from its peak value at low crowding (10 mg/mL) to its lowest value at high crowding (90 

mg/mL). This change was statistically significant as determined by one-way ANOVA 

(F(689,4)=154.38, p<0.001). As found for protein concentration, confinement amplified 

the crowding induced decrease in fBT (Figure 5.3J). 

Intriguingly, the results here show a decoupling between transcriptional and 

translational expression centers. While all translational expression centers must be 

initiated by a transcriptional center, many transcriptional centers were not translationally 

active.  For example, the spike in protein population with 10 mg/mL confined crowding 

(Figure 5.3G) was much larger than the associated mRNA concentration increase 

(Figure 5.3B) because this low level of crowding increased the number of transcriptional 

expression centers (as indicated by fBTX) that were translationally active (as indicated by 

fBT; Figure 5.3J). Yet, as the crowding level was increased, transcriptional expression 

centers became more elusive for the translational machinery. The abundance of 

transcriptional expression centers reached a peak with 90 mg/mL of confined crowding, 

but nearly none of these centers were translationally active (Figure 5.3J).  

Previous reports demonstrated that crowding without cell-relevant confinement 

affected translational activity by creating an inhomogeneous spatial distribution of 

mRNA52,67, and with increased crowding, much of the mRNA became inaccessible for 

translation. An especially intriguing feature of expression with confined crowding was the 

abrupt change in transcriptional behavior as crowding increased from 40 to 60 mg/mL 
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(Figure 5.3B and 3E), implying a pronounced shift in the mRNA spatial organization.  To 

examine the evolution of mRNA spatial organization with increased crowding, 

representative vesicles of the same approximate size were compared visually using 

confocal microscopy. Figure 5.4A shows fluorescence cross-sections of vesicles of 

~15µm diameter at the endpoint of a 300-minute reaction. With no crowding, mRNA was 

visible in distinct spots of relatively uniform intensity and spatial distribution (Figure 

5.4A). Low levels of crowding (10 mg/mL) had little discernable effect on the spatial 

distribution of the mRNA, but as we previously reported67 did lead to the emergence of a 

few hot spots of higher local mRNA concentration (Figure 5.4A). At a crowding level of 

40 mg/mL these hot spots preferentially appeared near the walls of the vesicles, and 

were almost exclusively found at the walls with crowding of 60 mg/mL (Figure 5.4A). 

This localization of mRNA at the vesicle walls was not seen in larger (~90 µm diameter) 

cell-free reaction chambers52, indicating that the synergistic effects of confinement and 

crowding69 emerge at cell-relevant confinement volumes.  

There was no evidence of mRNA diffusion to the wall after synthesis at other 

locations. Instead, time-lapse images (Figure 5.6) indicate that with crowded 

confinement, transcription occurred at the wall, and the mRNA remained localized near 

the site of transcription throughout the experiment. A 3D reconstruction of a crowded 

vesicle, created from z-stack confocal imaging, showed that mRNA were synthesized in 

hot spots around the periphery of the vesicles (Figure 5.4B). Since imaging experiments 

in prokaryotes show that mRNA often exhibit limited dispersion from their site of 

transcription162, we hypothesized that confined crowding led to localization of the plasmid 

DNA near the vesicle wall. To test this hypothesis, we prepared the vesicles with a DNA 

dye, Pico488, and examined fluorescence cross-sections of ~15 µm diameter vesicles 

using a confocal microscope. These measurements showed DNA was spatially 

organized in the same patterns as the mRNA. Without crowders, there was a sparse 

distribution of DNA throughout the interior of the vesicle. As the crowding level 

increased, the DNA appeared in localized hot spots distributed throughout the interior of 

the vesicle. At a crowding level of 40 mg/mL and higher, DNA localized near the vesicle 

wall (Figure 5.4A, 4C). 

We further explored this phenomenon using Brownian Dynamics computer 

simulations. We utilized a coarse-grained model of a DNA plasmid in a crowded and 
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Figure 5.4: Spatial distribution of protein, mRNA, and DNA in vesicles A) Representative 
vesicles demonstrating spatial distribution of mRNA and protein. Overlay shows combination of 
mRNA and protein signals in the same vesicle. Bottom row shows representative vesicles from 
separate experiments where DNA was fluorescently labelled with Pico488 dye (false colored to 
cyan). B) Three dimensional z-stack reconstruction of an individual vesicle. C) Distribution of DNA 
demonstrated by fluorescent labelling with Pico488 (false colored to cyan). D) Representative 
snapshots from equilibrated simulation trajectories at five different crowding fractions (DNA in 
blue, crowders in grey). The system is viewed from the side and is confined at the top and 
bottom. E) The z-component of the center of mass of the polymer, with walls confining the system 
at z = +10 and z = -10 in reduced units. Results from five independent simulations are shown for 
each crowding fraction. The polymer starts from z = 0 in each simulation. 
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confined environment: The DNA plasmid was modeled as a flexible ring polymer, the 

volume fraction of crowders (cr) was varied by changing the number of crowding 

particles, and all components interacted via short-ranged repulsive interactions. The 

system was confined by repulsive walls in one dimension (z) and had periodic boundary 

conditions in the other dimensions. A full description of the model is provided in the SI. 

Figure 5.4D shows the behavior of the polymer, initially located in the interior of the 

system, as a function of the volume fraction of crowders. At low crowding fractions, the 

ring polymer adopts coiled configurations in the bulk of the system. However, at higher 

crowding fractions, it localizes to the wall. At cr = 0.077 and higher, the polymer nearly 

completely flattens against the wall even though there are no specific attractive 

interactions between the two. The effective attraction is a consequence of depletion 

interactions resulting from the presence of crowding particles168,169. The crowding-

induced localization observed in simulations is consistent with the experimental 

observations (Figure 5.4C) in which DNA plasmids are found near vesicle walls at high 

crowding levels.  

The cell-free results reported here are strikingly similar to expression behavior in 

prokaryotic cells where mRNA localization determines translational efficiency162. 

Superresolution microscopy of E. coli shows that high-rate transcription preferentially 

occurs at the periphery of the nucleoid152, and this mRNA population is efficiently 

translated as it resides at the boundary with ribosome-rich regions of the cell142. 

Conversely, lower rate transcription occurs throughout the ribosome-poor142 nucleoid, 

and the resulting relatively immobile mRNA populations are inefficiently translated162.   At 

low levels of confined crowding in cell-free reactions, the mRNA is expressed in distinct 

translationally-active regions. At higher levels of crowding, the DNA is localized and 

compacted near the vesicle wall, and the resulting mRNA remains localized in this dense 

DNA region that appears to be largely inaccessible for translation.  By generating a 

spatial organization of transcription and translation that mimics key aspects of 

prokaryotic cell membrane-less structure, these cell-free experiments provide a flexible 

experimental platform to probe the underlying mechanisms of cellular self-organization.  

While Ficoll 70 provides a reasonable approximation of cellular crowding, there 

are important differences to note. An E. coli cell is approximately 50-70% water, and the 

dry weight is ~55% protein, ~20% RNA, ~10% Lipids, and ~15% of other molecules154. 
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As much of  the protein and RNA is ribosomal155, ribosomes (~20 nm in diameter in 

prokaryotes) are a significant contributor to cellular macromolecular crowding. Most of 

the non-ribosomal protein has radii in the 3-6 nm range with a globular configuration156. 

Ficoll 70 (stokes radius of ~5 nm) and the PURE expression media used here accurately 

approximate the distribution of globular protein and ribosome crowders in cells.  

However, extended structures like cytoskeletal filaments or elongated proteins, and 

structures like the bacterial nucleoid or eukaryotic organelles are not well approximated 

in these experiments. In contrast to these cell-free experiments, in cells these extended 

structures may affect expression bursting by allowing for facilitated transport or by 

creating inhomogeneous crowding142. Finally, the results presented here should be 

applied carefully concerning eukaryotic expression. First, eukaryotic transcriptional burst 

dynamics are highly sensitive to promoter structure (e.g. TATA boxes) or nucleosome 

occupancy patterns 124 not present in these cell-free experiments. Furthermore, 

eukaryotic cells completely decouple transcription and translation, and includes addition 

steps (e.g. mRNA export from the nucleus) that may affect expression noise170.  

The history of cell-based synthetic biology is one of gene circuit design using 

specific molecular mechanisms (e.g.  promoter/transcription factor interactions) and 

principles borrowed from electronic circuit design16. Much of cell-free synthetic biology 

has followed a similar path47,49,171. However, there is a growing realization that the 

manipulation of the expression environment – from the composition of the expression 

reaction media172 to the physical (confinement and crowding) arrangements – provide 

another dimension to cell-free synthetic biology.  One big advantage of cell-free 

platforms is that they provide the ability to intricately vary spatial arrangements153 and 

are especially well-suited for spatial synthetic biology as a strategy to achieve specific 

functionality. However, the results here – which show the cell-free spatial organization of 

expression much like that seen in prokaryotes – suggest that the most immediate 

application of these experimental systems is to understand the underlying mechanisms 

of self-organization of collective behavior in cells.   

5.4 Methods 

In order to simultaneously track transcription and translation outputs, a plasmid 

vector coding for mCherry and a downstream fluorescent mRNA aptamer, Spinach2, 
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was expressed134,166. The plasmid pRSET-b-mCherry-Spinach2 transcribes from a T7 

polymerase promoter to create a transcript with a translated region coding for mCherry, 

followed by an untranslated aptamer tag which fluoresces after folding and binding with 

the fluorophore DFHBI-1T135 ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-2-methyl-1-

(2,2,2-trifluoroethyl)-1H-imidazol-5(4 H)-one, Lucerna, Inc). A commercial cell-free 

protein synthesis kit (PURExpress, NEB) was used to express the plasmid in the 

presence of DFHBI-1T and a crowding molecule, Ficoll-70 (Sigma-Aldrich). 

Vesicles containing the cell-free expression system and added components (the 

“Inner Solution” were prepared by a shearing method adapted from Nishimura et al. 

2012. In summary, vesicles are prepared by assembling the cell-free reaction mixture, 

plasmid, DFHBI-1T, sucrose (to aid with visualizing vesicles), and Ficoll-70. 

Concentrated Ficoll-70 was added at a final concentration from 0-90 mg/mL. The Inner 

Solution is vortexed in a paraffin oil solution containing phospholipids (POPC, Avanti 

Polar Lipids) to create a polydisperse population of water-in-oil droplets. This paraffin oil 

mixture with droplets is layered on to an aqueous “Outer Solution” and then centrifuged 

for 20 minutes at 4C at ~14k g. The Outer Solution is balanced with the inner solution, 

containing small molecules found in the PURE system reactions64,130 (See Appendix for 

list of reactants). Vesicles are collected by pipetting and are prepared for microscopy by 

placing ~10 µL of vesicles in Outer Solution between two glass coverslips separated by 

a ~2 mm PDMS spacer.  Most vesicle diameters range from 5-30 µm.  

Vesicles were observed while resting on a coverslip, using a (Zeiss LSM 710 

Axio Observer) confocal microscope to image every 5 minutes for 6 hours. A 20x 

objective (Zeiss Plan Apochromat 20x/0.8 M27) was used for the timescale data, 

followed by a 63x objective (Zeiss Plan Apochromat 63x/1.40 Oil DIC M27) for a more 

detailed image of fluorescence distribution at the end of the experiment. The Spinach2-

DFHBI-1T signal was measured using a 561 nm laser from 488/536 nm Ex/Em. The 

mCherry was measured using a 561 nm laser from 561/637 nm Ex/Em. Brightfield 

images were also acquired contemporaneously. For each timepoint, the vesicles were 

imaged using a z-stack capture, using ~14 images per slice at 2 µm increments. The 

images were analyzed using ImageJ and custom MATLAB code to detect vesicle size 

and location and to acquire intensity values for Spinach2-DFHBI-1T and mCherry from 

individual vesicles over time. 
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To determine spatial DNA distribution in the vesicles, vesicles were prepared as 

normal with the 0.25 µL of the 200x fluorophore Pico488 (Lumiprobe) in the Inner 

Solution, instead of DFHBI-1T. These vesicles were imaged using confocal microscopy, 

using a 63x objective and 561nm laser at 488/536 Ex/Em. Ficoll-70 was added at a final 

concentration at 0, 10, 20, 30, 40, 60, and 90 mg/mL. A control reaction containing no 

DNA was also performed. Z-stack renderings and cross-sections in the middle of 

vesicles were used to characterize DNA distribution within vesicles. 

Two experiments were performed for each Ficoll-70 crowder concentration of 0, 

10, 40, 60, and 90 mg/mL. For an individual vesicle in each experiment, a 6-hour mRNA 

and protein expression trace was extracted for noise analysis, as described in previous 

work34,67,127,161. Built-in functions in ImageJ and custom MATLAB code were used to 

identify the boundaries of vesicles in a brightfield view, select regions of interest around 

each vesicle, and extract fluorescence information from each ROI. Fluorescence for 

individual vesicles was tracked over time for detected vesicles between a diameter of 

14-16µm. 

Briefly, for each population of zeroed expression traces in a single experiment, 

an average trace, or “general trend” was calculated for all vesicles, and then was 

subtracted from each individual vesicle’s expression trace. This was done for both 

reporters, revealing the “noise signals”, or the stochastic variation in mRNA or protein 

reporter at each timepoint. The coefficient of variation squared (CV2) was used to 

quantify the noise magnitude in the molecular populations of mRNA or protein. The 

coefficient of variation squared is defined in Eqn. 5.2. The steady state fluorescence 

level was defined as the maximum fluorescence level attained per fluorescence trace, 

instead of the endpoint of the trace. This was due to trace decay caused by 

photobleaching, causing the final fluorescence value not to be descriptive of the total 

molecular populations produced. Since the mRNA traces reached their final value prior 

to the protein traces, noise traces were only calculated based on the first 150 minutes of 

the mRNA reactions. However, protein noise traces, which are derived from traces that 

generally express continuously over the entire experiment, were calculated over 300 

minutes. CV2 is plotted against these maximum values, which is useful for describing 

changes in the bursting patterns between experimental conditions. 
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5.5 Appendix 

 

Figure 5.5: Time-shifted normalized average protein expression transients Protein 
expression transients (Relative Fluorescence Units versus Crowding Fraction) shifted in time to 
demonstrate similarity in transient profile. The crowding fractions were shifted forward in time by 
10 mins for 10 mg/mL, 24 mins for 40 mg/mL, 56 mins for 60 mg/mL, and 42 mins for 90 mg/mL. 
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Figure 5.6: Timescale of mRNA expression in a single vesicle Expression of mRNA in a 
single vesicle at a 40 mg/mL crowding. Scale bar indicates 10 microns. The mRNA remains 
localized at the periphery of the vesicle for the duration of the experiment. 

 

5.5.1 Description of Computational Model 

 We employed Brownian Dynamics computer simulations to explore the 

physical consequences of crowding on a DNA plasmid in a confined system. We 

utilized a coarse-grained description of the system, with the DNA plasmid 

modeled as a flexible ring polymer and the level of crowding controlled by 

changing the number of crowding particles. All components interacted via short-

ranged repulsive interactions. The system was confined by repulsive walls in one 

dimension (z) and had periodic boundary conditions in the other dimensions. The 

ring polymer consisted of 50 monomer units, with adjacent monomers connected 

via a finitely extensible nonlinear elastic (FENE) bond173 potential, given by 

where r is the center-to-distance between two adjacent monomers. The 

maximum distance between two monomers connected via a FENE bond was R0 

= 2.0  with spring constant K = 15.0/2.  

The DNA plasmid used in experiments consisted of 3772 bp. In the 

coarse-grained model, each monomer unit corresponds to approximately 75 bp, 

which is approximately 25.5nm in length. All components interacted via the short-

ranged and purely repulsive Weeks-Chandler-Andersen (WCA) potential174, 
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where rij is the center-to center distance between particles i and j. For crowder-

crowder, monomer-monomer and monomer-crowder interactions, ij =  and ij = 

Ri + Rj, where Ri and Rj denote the size (radius) of particles i and j respectively. 

The size of monomer particles was Rm = 0.75 and the size of crowder particles 

was Rc = 0.25. The simulation box ranged from -10  to 10  in the x- and y-

directions, with periodic boundary conditions used. The simulation box ranged 

from -12  to 12  in z-direction, with confinement introduced by positioning an 

immobile array of wall particles at z = -12  and z = 12. The wall particles 

interacted with crowders and monomers via the WCA potential with wm=wc=100 

and wm=wc=2.0. This gives the size of the box confined in z-direction to be 

20 × 20 × 20. 

The number of crowding particles (Nc) was varied, with the volume 

occupied defined as Vc = Nc 4Rc3/3. 

We used the LAMMPS175 simulation package to conduct the Brownian Dynamics 

simulations. The temperature used was T=/kB. The equations of motion were integrated 

in time using the velocity-Verlet algorithm with a timestep of 0.01, where = m/. The 

mass of a monomer and the mass of a crowder particle were 14.02m. The friction 

coefficient was 140.2-1. The resulting trajectories were visualized using OVITO176. 

5.5.2 Gene Sequence  

(From T7 Promoter to T7 terminator) 

TAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACA
TATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGT
ACGACGATGACGATAAGGATCCCGCCACCATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTT
CATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCG
CCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCT
GTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCT
TCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCT
CCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCA
GAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAA
GCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGT
GCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAA
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CAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTAAGAATTCGAGCTCGAG
ATCTGCAGCTGGTACCATGGCCCGGATAGCTCAGTCGGTAGAGCAGCGGCCGGATGTAACTGAATGAAATGGTGAA
GGACGGGTCCAGTAGGCTGCTTCGGCAGCCTACTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCCGGCC
GCGGGTCCAGGGTTCAAGTCCCTGTTCGGGCGCCAAAGCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA
GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG 

5.5.3 Gene Preparation 

A commercial DNA preparation kit (Quantum Prep Plasmid Midiprep Kit, 

BioRad) was used to extract pRSETb-mCherry-Spinach2 from Top 10 E. coli. 

Plasmid DNA was purified by Isopropanol precipitation and washed with 70% 

Ethanol. Plasmid DNA was resuspended at a concentration of 1000 ng/µL in 

nuclease-free water. 

5.5.4 Vesicle Inner Solution Formulation 

Cell-free experiments were performed using the PURExpress cell-free 

protein expression kit (NEB) diluted to a volume of 30µL per reaction. A final 

plasmid concentration of 33 ng/µL was used for all reactions (1000 ng 

plasmid/reaction). The fluorophore DFHBI-1T (Lucerna, Inc) was diluted in 

DMSO to concentration of 1.56 mM.  A stock solution of Ficoll-70 (Sigma-Aldrich) 

was prepared in nuclease free water at 50 w/v%. The crowder solution replaced 

the nuclease-free water component of each reaction in order to alter the 

crowding fraction of the solution. Therefore, all experiments across all crowding 

fractions had the same amount of proteins and other cell-free reactants. 
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Table 5.1: Vesicle Reactants 

Inner Solution Outer Solution 
10 µL PURE Solution A,  
7.5 µL PURE Solution B,  
250 ng pRSETb-mCherry-Spinach2 
plasmid  
5 µL Sucrose (1 M) 
1000 ng plasmid DNA 
 
0.5 µL DFHBI-1T (1.56 mM) (mRNA 
analysis) 
OR 
0.25 µL Pico488 (200x) (DNA analysis) 
 
filled to 30 µL with Nuclease-free water.   
 

3.6 mL Amino Acid mix (50 mM), 
 4.9 mL ATP (460 mM),  
3.0 mL GTP (500 mM),  
1.5 mL CTP (500 mM),  
1.5 mL UTP (500 mM),  
3.6 mL Spermidine (250 mM),  
7.5 mL Creatine Phosphate (1 M),  
9 mL DTT (100 mM),  
1.5 mL Folinic Acid (4 mg/mL),  
168 mL Potassium Glutamate (1 M),  
22.6 mL Magnesium Acetate (0.5 M),  
60 mL HEPES (1 M),  
120 mL Glucose (1 M),  
and filled to 600 mL with nuclease-free 
water.  
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6 CONCLUSION 

 This thesis focused on understanding how cell-like confinement and 

macromolecular crowding influenced gene expression behavior. Enabled by the bottom-

up capabilities of cell-free reaction platforms, both confinement and crowding were 

examined individually, without the confounding influence of all the complexities (e.g. 

global gene expression, growth, cell division) seen in cell. Of particular note, a gene 

construct allowing simultaneous tracking of transcription and translation was developed. 

Gene expression behavior was extracted from a detailed analysis of gene expression 

noise, which is intimately linked to expression bursting. It was found that physiologically-

relevant levels of confinement or crowding alone had dramatic effects on gene 

expression bursting patterns. After characterizing each of these physical conditions 

individually, both confinement and crowding were examined together to develop an 

understanding of the synergistic effects of crowding and confinement on gene 

expression bursting. The results presented here provided new insights about the 

allocation of limited expression resources and spatial orientation of gene expression in 

cell-free systems, and how both of these factors affect temporal noise in translation.  

 This work was published in a series of four papers, presented as chapters, that 

explored expression behavior with confinement, with macromolecular crowding, and 

finally with both confinement and macromolecular crowding. Each chapter reflected an 

important component in understanding how spatial properties of the molecular 

environment affected cell-free reactions. Chapter 2 described a technique for 

encapsulating cell-free reactants in microfluidic chambers of varying confinement and 

revealed that this confinement method could be used to analyze gene expression noise 

traces similarly to methods used to analyze noise in cells. Using the platform described 

in Chapter 2, Chapter 3 demonstrated the results of varying confinement in cell-free 

gene expression, revealing that resource sharing and gene expression bursting are 

closely linked. Chapter 4 examined macromolecular crowding in the absence of 

confinement and examined both mRNA and protein expression simultaneously. This 

chapter revealed that increased crowding decoupled mRNA and protein expression 

statistics and that the spatial distribution of mRNA became more heterogeneous with 

increased crowding, resulting in large temporal variation (noise) in both mRNA and 

protein populations. Chapter 5 explored the effects of macromolecular crowding and 
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confinement together on gene expression noise, revealing more information about the 

crowding-dependent distribution of mRNA in confined spaces and the effect of this 

spatial organization on transcriptional and translation behavior.  

The first paper in the series45 (Chapter 2) demonstrated an experimental platform 

that confined expression reactions into cell-like volumes. A microfluidic reaction 

encapsulation platform was developed for acquiring expression noise data in cell-free 

systems. The key feature of the design was the use of arrays of micron-scale reaction 

chambers of varying sizes with a flexible “control valve” that initiated the capture of the 

cell-free reactants at a well-defined start time of expression (“time zero”).  The static, 

fabricated design of these reaction chambers was useful for time-lapse microscopy, 

allowing easy imaging of reaction kinetics involved in protein synthesis. This platform 

allowed the evaluation of expression noise of genetic circuits in a cell-free environment, 

analogous to techniques used to evaluate gene expression noise in cells.  

The second paper in the series34 (Chapter 3) used the cell-free platform 

described above to study how variations in the level of confinement affected expression 

burst behavior. In particular, this study examined the intimate link between resource 

sharing and gene expression bursting. Examining the expression noise of protein made 

in these reaction chambers revealed numerous insights about how resources are shared 

within a confined volume. Protein statistics from small, confined chambers were summed 

together and compared to statistics from large, less-confined chambers of equivalent 

volume—i.e. resources were allocated into small discrete pools and large shared pools 

of equivalent resource concentration and volume. Though the abundance of protein 

made in both cases was roughly equivalent, the sums of small discrete pools produced 

much lower expression noise. This result indicated that expression in the larger, shared 

pool exhibits larger expression bursts than in smaller, divided pools. This finding 

suggested that genes in the large pool were more likely to infrequently acquire or 

consume a large fraction of the total resources instead of more frequently creating new, 

smaller bursting centers. So in environments with many shared resources, resources are 

more likely to be allocated to existing expression locations instead of nucleating new 

bursting centers, suggesting that expression bursts are self-reinforcing.  

The third paper in the series67 (Chapter 4) explored how physiological levels of 

macromolecular crowding affect expression behavior. While Chapter 3 described the 
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influence of reaction confinement, the reactions were performed in a comparatively dilute 

cell-free expression system that did not reflect physiological levels of crowding. In this 

chapter, an artificial crowder, Ficoll-70, was added to the reactions in order to mimic 

physiological levels of macromolecular crowding. Ficoll-70 is a high molecular weight, 

highly branched polysaccharide with an average Stokes radius of ~5 nm22,151. Insights in 

Chapter 3 about transcriptional activity were also limited as the experimental methods 

tracked only protein fluorescence, requiring information about transcriptional activity to 

be inferred. Chapter 4 introduced a new gene expression tool which allowed the 

simultaneous tracking of protein and mRNA expression, allowing transcriptional activity 

to be measured directly. This method also provided the insight of coupled transcriptional 

and translational signals, as each fluorescent reporter (a fluorescent mRNA aptamer and 

a fluorescent protein) was derived from the same DNA promoter. In brief, as the 

crowding fraction of Ficoll 70 increased, final abundance in mRNA decreased modestly, 

but the final abundance in protein decreased dramatically. At the highest crowding 

fraction tested, no translation was detectable for the entire course of the experiment, and 

the mRNA timescale trace demonstrated a decrease in rate and duration not 

comparable to the previous, less-crowded conditions. Corresponding to previous studies 

showing that bacterial transcription elongation is correlated with the rate of translation, 

these results suggest that the elongation rate in this cell-free context decreases in the 

absence of translation. Low translational activity also reduced the energy demand of the 

overall gene expression reaction, allowing an extended duration of transcription 

reactions. The disparity in the overall abundances of mRNA and protein was also 

reflected in the noise behavior—as crowding increased, mRNA noise changed very little, 

whereas protein noise increased substantially with higher crowding. This indicates that 

the mRNA abundance statistics do not have a strong controlling role in overall 

expression noise.  

The final paper in the series68 (Chapter 5) looked at how the combination of both 

crowding and confinement affected expression behavior. This investigation further 

explored the relationship between crowding and confinement by examining bursting 

behavior in crowded lipid vesicle reaction chambers. It was shown that bursting 

parameters for confined crowding were different than those for unconfined crowding, and 

that the expression bursting behaviors shifted collectively near physiological crowding 
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and confinement levels. Confocal imaging of these vesicles showed that the spatial 

organization of nucleic acids shifted dramatically with increased crowding, with both 

DNA and RNA appearing at the periphery of the reaction chambers as crowding 

increased. The results from this work reinforced the findings from the previous paper 

describing a decoupling between mRNA and protein statistics, adding a spatial 

dimension to the noise analysis that revealed how transcription and translation centers 

may not share the same levels of activity. At crowding fractions above 40 mg/mL, 

statistics for transcriptional and overall bursting also shifted dramatically with the spatial 

reorganization of mRNA and DNA at the vesicle wall, further underlining how spatial 

noise in transcription can affect temporal noise in translation. 

 The results here demonstrate that gene expression bursting is controlled by 

several spatial mechanisms, including the local concentrations of resources and 

distribution of molecular populations. Cell-relevant levels of crowding and confinement 

create an inhomogeneous distribution of nucleic acids, controlling the expression burst 

behavior and temporal noise of the protein population. Above a certain crowding 

threshold, the confined cell-free positioning of transcriptional activity reflects expression 

behavior and positioning of transcripts in prokaryotes. Superresolution microscopy 

studies in E.coli demonstrate that the nucleoid and ribosome population are spatially 

segregated, where transcription occurs at high rates around the peri-nucleoid space and 

mRNA is translated efficiently at the boundary between the nucleoid and ribosome-

populated space142,152,162. Since RNA polymerases more easily permeate the nucleoid152, 

transcription also occurs within the nucleoid interior, but because of the lack of 

ribosomes in this region, this mRNA is inefficiently translated. This “crowded nucleoid” 

model in cells is mimicked in the crowded and confined cell-free expression platform; at 

higher levels of crowding approaching physiological crowding levels, DNA and the 

resulting mRNA are localized at the vesicle periphery. The mRNA remains persistently 

localized in this dense region at the periphery of the vesicle, and it appears to be largely 

inaccessible to translation. The spatial organization of transcription and translation 

reactions within this cell-free structure provides a useful method for examining 

mechanisms of self-organization in gene expression present in cells. 

 Though the cell-free platform organization mimics the gene expression 

organization found in cells, there are some important differences between the crowded 
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cellular environment and the environment reported here. At least half of an E. coli cell 

weight is water, and the dry weight is composed of protein, RNA, lipids, and other 

molecules154. Ribosomes themselves make up a large portion of the cell weight and 

volume occupancy155, and themselves contribute significantly to crowding. In the cell-

free environment, ribosomes are the largest protein structures, but the cell contains 

numerous larger structures, like cytoskeletal filaments and other protein assemblies. The 

cell-free environment used here also does not mimic the dense central bacterial 

nucleoid, and it is far-removed from eukaryotic models where transcription and 

translation are segregated by a nucleus and other mechanisms.  

 Many factors in the spatial self-organization of gene expression components 

presented here have yet to be explored. Of particular interest is the positioning of 

ribosomes and other translation machinery in the crowded and confined cell-free 

context. In the crowded-nucleoid model of prokaryotic gene expression, ribosomes are 

excluded from the crowded nucleoid center and much of translation does not occur co-

transcriptionally142. Intact ribosomes are also the largest molecular component in these 

reactions and themselves may act as active crowding molecules in these reactions. 

Understanding how ribosomes are positioned in this space may reveal important 

information about the spatial influence of translation machinery on gene expression as 

well as deepen an understanding of cooperativity between transcription and translation.  

 Other interesting factors that could be explored would involve manipulating the 

vesicle expression platform to investigate different membrane chemistries, rigidity, or 

other chemical factors that may alter how nucleic acids adsorb to the interior of the 

vesicle. While simulations from Chapter 5 indicate that nucleic acid localization at the 

vesicle wall is dominated by entropic effects, the strength of this effect may possibly be 

modulated by manipulating the charge profile of the membrane, for example. Changing 

the size or type of artificial crowder to a material like Ficoll-400 or PEG-8000 may also 

alter expression and bursting patterns in interesting ways. Both of these crowders have 

been shown to decrease protein abundance in batch reactions at lower w/v% than Ficoll-

7065. This suggests that these crowders may halt translation at lower crowding fractions 

than Ficoll-70 in batch reactions, and may be an interesting method for investigating rate 

dependencies between transcription and translation in both batch and confined 

reactions.  
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 In general, the crowded vesicle platform provides an interesting molecular 

arrangement for investigating how gene circuits could express in the crowded peri-

nucleoid space and the less-crowded translation-heavy region. Introducing new genes 

with feedback or regulatory mechanisms could be an immediate pathway for 

investigating how crowding and confinement affect the bursting profiles of more 

complicated circuits.  

 Synthetic biology gene design has traditionally relied on the availability of diverse 

gene circuit control elements in order to engineer functions and network behaviors. 

However, even well-characterized gene circuit elements (e.g. transcriptional control 

using the lac promoter) may be strongly influenced by local molecular conditions 

surrounding the gene. Manipulation of the expression environment, from placing circuits 

in different cellular contexts to fine-tuning physical molecular arrangements with cell-free 

reactions, gives researchers a new pathway for altering gene circuit functionality. Cell-

free platforms in particular are useful for spatially arranging gene expression while 

allowing direct access to the molecular components of a reaction. The results shown 

here indicate that cell-free systems may be used to spatially arrange gene expression in 

an orientation reflective of the crowded-nucleoid prokaryote model. Platforms like these 

are well-suited for understanding the mechanisms controlling self-organization of gene 

expression in cells, and for developing new spatial controls in the future of gene design. 
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