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Abstract

Titanium alloy Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo) is frequently used in the high-pressure

compressor of aero engines due to its excellent resistance to fatigue and creep failure at high

temperature. While exhibiting high strength at elevated temperatures, it is susceptible to

dwell fatigue at temperatures below 473 K due in part to the presence of microtextured

regions (MTRs), also known as macrozones. MTRs are clusters of similarly orientated

alpha particles, which form during alpha/beta processing and remain stable even after large

deformation. The major objective of this dissertation is to quantify the evolution of MTRs

under different thermomechanical processing parameters, and predict the optimal processing

parameters to eliminate the MTRs.

Idealized MTRs with pure initial orientation are first employed as the benchmark

case to investigate the loading direction effect on its breakdown efficiency. Three high-

temperature compression processes are simulated with different loading directions using

crystal plasticity finite element method, and the results are validated against high-

temperature compression experiments and EBSD measurement. The evolution of equivalent

plastic strain, accumulated shear strain, and misorientation distribution is analyzed in

detail to reveal the relationship between loading direction and MTR breakdown efficiency.

Lastly, the reorientation velocity divergence of arbitrary loading direction is expressed in the

Rodrigues’ space in order to predict the optimal processing parameters for MTR elimination.

The MTR breakdown efficiency also depends on the morphology and its position within

the specimen. Two different length scales have to be analyzed in order to consider both

factors, which present great challenge to the numerical simulation. In this dissertation, a

high-efficient FE-FFT multiscale modeling framework is derived and developed to overcome

this challenge. The Fourier-Galerkin method is utilized to solve the microscale unit cell

v



problem, while total Lagrangian finite element is used to solve the macroscopic boundary

value problems. Several numerical improvements are derived and implemented to further

improve its numerical efficiency, including consistent linearization, consistent homogenized

tangent stiffness, and inexact Newton method. A series of numerical studies is conducted to

investigate the accuracy, efficiency, and robustness of this algorithm.
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Chapter 1

Introduction

1.1 Motivation

The titanium alloy Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo) has been the structural material of

choice for use in high-pressure compressors for gas turbine engines of aircraft due to its

high strength-to-weight ratio and excellent mechanical properties. Jet engine efficiency is

highly correlated to operating temperature, and Ti-6242 has demonstrated excellent creep

and fatigue resistance at high temperatures up to 873 K. Although possessing excellent

high temperature performance, this titanium alloy is susceptible to creep fatigue failure

under dwell loading below 473 K. Such detrimental performance is mainly caused by the

microtextured regions (MTRs), which are clusters of α particles with similar orientation.

This kind of microstructure forms during the α/β processing, and remains stable even

under large strain processing when the α particles are significantly refined. Therefore, novel

processing techniques are required to break down the MTRs in order to improve the dwell

fatigue performance of this alloy. Previous experimental investigations have revealed that

MTR behavior under α/β processing depends on the loading direction, the morphology of

MTRs, and the position of MTRs within the specimen. Considering so many influencing

factors at different length scales, numerical simulation is a powerful tool to fully quantify

the MTR breakdown efficiency and predict the optimal processing parameters. However, the

breakdown process of MTRs is very complicate and involves different length scales, which

presents great challenge to the numerical simulations.
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The main objective of this dissertation is to derive and develop a high-performance FE-

FFT multiscale modeling framework, and further apply this framework to investigate the

MTR behavior under different loading conditions. The behavior of idealized MTRs with

pure initial orientation is first constructed to investigate the effect of loading direction on its

breakdown efficiency. In order to further incorporate the effect of MTR morphology and its

position within the specimen, a FE-FFT multiscale modeling framework is developed. In the

microscale, the finite strain Fourier-Galerkin method is utilized, which is more efficient than

finite element method and other FFT-based methods, making it suitable for the multiscale

modeling framework. The resulting framework serves as an efficient platform to investigate

the microstructure evolution under macroscopic loading.

1.1.1 Formation, evolution and elimination of microtextured re-

gion

Ti-6242 is widely used as the high-pressure compressors for gas turbine engines mainly

because of its high resistance to fatigue and creep failure under high temperatures. Although

pocessing excellent high-temperature performance, this alloy is susceptible to fatigue failure

under dwell loading mainly because of microtextured regions (MTRs) [89]. The MTRs

are clusters of similarly orientated grains, which remain stable during the α/β processing

[21, 24, 44, 20]. After high-temperature mechanical processing, significantly refined αp + αs

microstructures are generated, but EBSD results show that particles with similar orientation

are still clustered [21, 44, 20]. The MTR size depends on the processing parameters [67],

and are usually between 0.1 mm and 1 mm depends on the thermal-mechanical processing

procedures. MTRs with “hard” orientation are most detrimental, where c-axis is aligned

with the loading direction and stress concentration occurs at the MTR boundaries. In this

case, fatigue cracks grow an order of magnitude faster than typical fatigues, leading to

a significantly reduced fatigue life [2, 68]. Therefore, it is necessary eliminate the MTRs

within this alloy to improve its low temperature dwell fatigue behavior.

Several reasons can account for the stable MTRs under traditional α/β processing:

2



• The Burgers orientation relation between α phase and β phase remains unaltered even

under large strain α/β processing [21, 24, 44];

• The variant selection of αs laths nucleated after the cooling is influenced by the existing

αp particles [21, 44, 20];

• Limited deformation patterns of crystals with hexagonal closed pack structure [44, 4];

• Nucleated grains during dynamic recrystallization are usually aligned with the parent

grains [44, 4].

Recently, it is reported that the behaviors of MTRs under α/β processing depends on

several processing parameters: the loading direction [22], the morphologh of MTRs [4],

and the position of MTRs within the specimen [22]. However, such influence is difficult to

quantify experimentally, and only limited numerical simulations are performed to invetigate

the behavior of MTRs under different loading conditions. For example, visco-plastic self-

consistent (VPSC) method is used to investigate the relationship between microtexture and

macrotexture in Ti-6Al-4V [60].

In this dissertation, idealized MTRs with pure initial orientation is first employed

to investigate the effect of loading direction on its breakdown efficiency. The earlier

experimental work from our collaborator Dr. Pilchak and Dr. Semiation was performed in

Air Force Research Laboratory [67, 69]. Three high-temperature compression experiments

were done to investigate the influence of loading direction on the microstructure evolution

of MTRs, where the loading direction is 0◦, 45◦ and 90◦ with respect to the billet axis. High

temperature compression tests with three different loading directions are simulated using

crystal plasticity finite element method, and the simulation results are validated against

high-temperature compression experiments and EBSD measurement. In order to reveal

the relationship between loading direction and MTR breakdown efficiency, the evolution

of equivalent plastic strain, accumulated shear strain and misorientation distribution is

analyzed in detail. Lastly, the reorientation velocity divergence within the MTR under

arbitrary loading direction is presented in the Rodrigues’ space to predict the optimal loading

direction for breaking MTRs.
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Several assumptions are adopted to isolate the effect of loading direction. First, it is

assumed that αp particles control local strain distribution at 1172 K, which is based on the

experimental observation that the volume percentage of αp particles is about 75 % at 1172

K ([69]). It is also assumed that the grain interaction and MTR breakdown efficiency can be

captured by using regular shaped MTRs with pure initial orientations. This assumption

is motivated by taking advantage of numerical simulation to isolate the effect of MTR

orientation.

Additionally, two extensions are performed to take into account the influence from

realistic microstructure and β phase. First, the strain history from selected material points in

the prior simulations were imposed onto microscale models of clustered α particles with initial

texture representative of orientation spread within an MTR, and sharpening or softening of

texture was compared with the mesoscale results. Second, microstructure models of Ti-6242

at higher processing temperatures with greater than β phase fraction were simulated to study

interaction of α particles as a function of separation and orientation.

1.1.2 Multiscale modeling

Previous experimental investigations reveal that the behavior of MTR also depends on the

morphology [4] and its position within the specimen [22] under α/β processing. Again,

such simulation requires the microstructure description from mesoscale and the boundary

condition from macroscale, which presents great challenge to the numerical simulation. In

this dissertation, a highly-efficient FE-FFT multiscale modeling framework is derived and

developed to overcome this challenge.

The idea of multiscale modeling was originally proposed to enable image-based simulation

of realistic structure without reasonable computational cost [54]. The multiscale modeling

algorithms are classified to concurrent ones and hierarchical ones based on the coupling

of both scales. A boundary value problem defined in the representative volume element

(RVE) is usually solved in the microscale, and the homogenized stress is feed back to

the macroscale for material update. Different numerical methods are used to solve the

microscale RVE problems, including Taylor homogenization [83], grain cluster method[88],

and self consistent method [74]. All these methods are based on certain homogenization
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assumptions, and therefore inappropriate for exactly capturing the grain interaction required

in this dissertation. FE2 method is the most popular full field multiscale modeling, which

uses FE method to solve the microscale RVE problem [59]. The expensive computational

cost of FE method prevents applying the FE2 method to image-based simulations

The major alternative to the FE2 method for the full-field multiscale modeling is to use

FFT-based methods to solve the microscale unit cell problems. The FFT-based method

was first proposed by Moulinec and Suquet [63, 64], with later improvements to increase

its numerical efficiency and robustness for high-contrast problems [16, 58]. The FE-FFT

multiscale modeling technique was first proposed to handle failure evolution problems in

hyperelastic material [81]. Later, this framework was extended to solve phase field problems

[36] and crystal plasticity problems [34]. However, this framework was based on infinitesimal

strain assumption. The first finite strain FE-FFT multiscale modeling algorithm was

proposed in for hyperelastic material with a consistent homogenized tangent stiffness for

the basic scheme [25]. The basic scheme was used in the microscale, which is less efficient

and the convergence rate depends on the reference material.

Recent development of efficient FFT-based algorithms make it possible to further

accelerate the multiscale modeling method. For example, the variational frameworks can

deal with high-contrast problems efficiently [5] and the Fourier-Galerkin method eliminate

the dependence on reference material [91]. The latter was recently applied to solve small

strain [95] and finite strain problems [8], but this method is never employed to solve crystal

plasticity problems and consistent homogenized tangent stiffness is absent.

In this dissertation, a general interface is derived and implemented between the Fourier-

Galerkin method and objective rate constitutive relation. One key feature of this interface

is that small-strain based elasto-plastic constitutive relations, for example return mapping

algorithm, can be incorporated with objectivity. Specifically, the Fourier-Galerkin method

is employed to solve a Green-Naghdi rate based crystal plasticity model where most existing

crystal plasticity constitutive relations can be conveniently implemented. The consistent

homogenized tangent stiffness is derived to enable mixed boundary condition and concurrent

multiscale modeling. Inexact Newton method is utilized to further improve the numerical

efficiency of this spectral method. Lastly, the implemented spectral method is compared with

5



finite element method and other FFT-based methods to illustrate its numerical efficiency.

The high efficiency of the current implementation makes it suitable for concurrent multiscale

modeling, where extremely high computational cost is required.

Additionally, the highly efficient FE-FFT multiscale modeling framework is derived and

implemented for investigating the behavior of MTRs under different loading conditions.

While traditional FE-FFT multiscale modeling implementations are either based on small

strain or employed to solve only hyperelastic constitutive models, here we move one step

further by extending it to solve finite strain crystal plasticity constitutive relation. A total

Lagrangian finite element framework is employed to solve the macroscale boundary value

problem, where the material update at each integration point is performed through the

spectral solver mentioned before. By accounting for finite strain in both scales, the multiscale

modeling framework provides a general platform to investigate local microstructure evolution

under macroscopic boundary condition. In particular, we want to do forgings, which involve

large percent strain changes, like 1:2 depth reduction.

1.2 Dissertation outline

The development of the FE-FFT multiscale modeling framework and its application to the

investigation of microtextured region behavior under processing conditions are described in

the following chapters

• In Chapter 2, the breakdown efficiency of microtextured regions is investigated by

performing crystal plasticity finite element simulations. Idealized MTRs with pure

initial orientation are chosen as the benchmark case, and the simulation results are

validated against high-temperature compression experiment and EBSD measurement.

The evolution of dislocation density and misorientation distribution are investigated in

detail to reveal the relation between loading direction and MTR breakdown efficiency.

The optimal loading direction to breakdown MTRs is determined by quantifying the

breakdown efficiency of arbitrary loading direction in the Rodrigues’ space.
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• In Chapter 3, two extensions were performed based on the results in Chapter 2. First,

the strain history from selected material points in the prior simulations were imposed

onto microscale models of clustered α particles with initial texture representative

of orientation spread within an MTR, and sharpening or softening of texture was

compared with the mesoscale results. Second, microstructure models of Ti-6242

at higher processing temperatures with greater than zero beta phase fraction were

simulated to study interaction of α particles as a function of separation and orientation.

In both cases, specific initial crystal orientations were found to develop large orientation

gradients.

• In Chapter 4, a general interface is derived and implemented between the Fourier-

Galerkin method and the objective rate constitutive model. The consistent homoge-

nized tangent stiffness is derived to enable mixed boundary condition and concurrent

multiscale modeling. Inexact Newton method is introduced to further improve the

numerical efficiency. Lastly, the numerical efficiency of the Fourier-Galerkin method is

compared with finite element method and other FFT-based implementation.

• In Chapter 5, a concurrent FE-FFT multiscale modeling framework is developed to

further investigate the influence of MTR morphology and its position on the breakdown

efficiency. The highly efficient Fourier-Galerkin implementation developed in Chapter

4 is utilized to solve the microscale RVE problem. A total Lagrangian formulation of

finite element is utilized to solve the macroscopic boundary value problem. Numerical

results for a single element simulation is presented to illustrate the capability and

numerical efficiency of the FE-FFT multiscale modeling implementation.

• In Chapter 6, concluding remarks are presented which summarize the major contribu-

tions of this dissertation to the modeling of MTRs breakdown efficiency in Ti-6242.

Additionally, possible directions for future investigation are outlined.
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Chapter 2

Evolution of microtextured region in

Ti-6242
1

2.1 Introduction

The titanium alloy Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo) has been the structural material of choice

for use in high-pressure compressors for gas turbine engines of aircraft ([27]) due to its

high strength-to-weight ratio and excellent mechanical properties. Jet engine efficiency is

highly correlated to operating temperature, and Ti-6242 has demonstrated excellent creep

and fatigue resistance at high temperatures up to 873 K. While the near α alloy Ti-6242

was developed for high temperature applications, its microstructural characteristics have an

impact on low temperature fatigue resistance ([2]). The degraded dwell fatigue strength has

been linked to the presence of microtextured regions (MTRs, also known as macrozones),

which are formed during the secondary α/β hot working. This secondary α/β hot working is

imposed to spheroidize the α colonies as well as to produce a microstructure of fine equiaxed

αp particles. However, the processed material may still contain large clusters (∼1 mm) of

primary αp particles and secondary αs colonies with similar c-axis orientations. For example,

Figure 2.2 (c) shows a typical microstructure of the billet material after α/β processing ([67]).

1This Chapter has been adapted from “Ma, R., Pilchak, A.L., Semiatin, S.L. and Truster, T.J., 2018.
Modeling the evolution of microtextured regions during α/β processing using the crystal plasticity finite
element method. International Journal of Plasticity, 107, pp.189-206”.
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While the αp particles are refined in size, several groups can be found of similarly oriented

αp particles in close proximity. Faceted initiation sites with sizes and shapes commensurate

with those of the MTRs in the material are routinely observed on fracture surfaces formed

by dwell fatigue loading. These facets typically form in so-called “hard” MTRs which have

their c-axis nearly parallel to the loading direction (e.g. within 10◦), and crack growth occurs

over an order of magnitude faster in these orientations leading to the formation of physically

large defects in a small number of cycles ([2, 68]). The size of MTRs depends significantly

on prior processing steps ([67]), but are typically in the range of 0.1 mm to ∼1 mm for well

processed material and several millimeters larger for poorly processed material. Therefore, it

is necessary to reduce the prevalence of MTRs in order to improve the dwell fatigue behavior

of Ti-6242.

Because the final microstructure is a strong function of all prior processing steps, a deep

understanding of the complete thermomechanical processing sequence for α + β titanium

alloys and the operative mechanisms for globularization is crucial for developing processing

routes to reduce or suppress the appearance of MTRs. There have been numerous inves-

tigations that have provided a mechanism-based understanding of microtexture formation,

but quantitative treatments remain limited ([89]). Early work by [93] revealed that low

angle dislocation walls would develop within individual α lamellae during deformation. The

β phase would penetrate these walls during subsequent static annealing in an attempt to

balance interfacial energy, but this process does not induce any additional lattice rotation.

Hence the resulting microstructure appears morphologically equiaxed and recrystallized, but

electron backscatter diffraction (EBSD) analyses reveal that these grains remain similarly

oriented ([21, 24, 44, 20]). [94] were the first to highlight the importance of MTRs and

draw the correlation between the size of prior α colonies and the resulting MTR size after

deformation. Later, [4] provided a mechanism-based understanding explaining why some

colonies randomize during deformation while others persist. Recently, it was found that two

α colonies from different prior β grains might have the same orientation, resulting in larger

effective MTR size than prior α lamellae during the following heat treatment ([21]).

While static heat treatment cannot randomize the microstructure, strategies may be

employed to solution heat treat at a temperature where the volume fraction of α is
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low enough such that discrete αp particles are separated by at least a particle distance,

on average. Cooling from this temperature at moderately fast rates will produce a

fine, basket-weave microstructure in the secondary alpha phase to breakup the continuity

of orientation. Nevertheless, there are a number of microstructural arrangements that

still intensify microtexture despite this heat treatment: (1) the persistence of Burgers

orientation relationship (BOR) between αp particles and β matrix even at severe deformation

([21, 24, 44]), (2) the variant selection of inherited αs phase affected by existing αp phase

([21, 44, 20]), (3) limited texture components of deformed αp particles ([21]), and (4) dynamic

recrystallization (DRX) within both primary α lamellae and β layers where new grains

usually have an orientation similar to the parent grains ([44, 4]). Additional α/β processing

proves to be effective in breaking down MTRs ([22]). The forging sequence of this additional

processing should be chosen carefully to achieve an optimum breakdown efficiency ([4]).

Considering the extensive experimental work required to optimize the breakdown

processing, numerical simulation should be included in designing forging sequences for

breakdown of MTRs. However, simulating the α/β processing remains a challenge especially

when prediction of microtexture is required. In addition to the plastic anisotropy and

multi-scale microstructure of near α and α + β titanium alloys, modeling high temperature

deformation of these alloys is further complicated by the occurrence of significant amounts of

flow softening. The following studies have addressed this issue for single phase and two-phase

titanium. Macroscopic phenomenological models prove to be effective in predicting the strong

anisotropic plastic behavior of titanium alloys under non-proportional loading ([30, 31]).

Such models also correlate well with the post-yield behavior of ultrafine-grained titanium

([46]). However, in order to investigate the microtexture evolution at high temperature and

large strains, crystal plasticity based modeling is required, where strain-aging effect ([80]),

recrystallization ([17]) and microstructure based modeling ([23]) can be incorporated. [45]

explicitly simulated dynamic recrystallization (DRX) of TA15 alloy compressed in β regime

by combining crystal plasticity finite element (CPFE) method and 3D cellular automata. [1]

proposed a continuum scale physics-based model which can capture the mechanical response

of Ti-6Al-4V at a large range of strain rate and temperature. [53] utilized a crystal plasticity

based Mechanical Threshold Stress (MTS) model and a viscoplasticity self-consistent (VPSC)
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method to simulate the mechanical response of Ti-5553 both below and above the β transus

and at different loading rates. Till now, only limited investigation has been done on modeling

the microtexture evolution during thermomechanical processing. For example, [60] used

the viscoplastic self-consistent (VPSC) method to investigate the role of microtexture on

macrotexture evolution in Ti-6Al-4V at room temperature. Thus, the relationship between

MTR evolution and α/β processing sequence still remains unclear.

The current research serves as the first attempt to use the CPFE method to investigate

the effect of compression direction on the efficiency of MTR breakdown. Herein, numerical

analyses are carefully designed to complement the earlier experimental work from [67, 69].

The primary modeling assumption is that, the texture evolution of Ti-6242 deforming at 1172

K is mainly controlled by slip-based deformation of αp particles. Therefore, single-phase α is

considered in the current simulations. Key emphasis is placed on investigating the evolution

of lattice rotation and the development of crystallographic misorientations within each MTR.

To account for plastic anisotropy and unequal slip resistance, a stress update framework was

developed, incorporating the Green-Naghdi stress rate along the lines of [56]. This framework

is general for implementing a wide class of crystal plasticity constitutive models with multi-

hardening variables by isolating the specific model dependent terms in the stress update

equations. The crystal plasticity constitutive model used in [10] was extended to account

for the effects of flow-softening and stress relaxation. Macroscopic stress-strain curves for

Ti-6242 under compression at 1172 K and constant strain rate were used for calibrating

the constitutive parameters ([69]). Subsequently, idealized microstructures were generated

to capture key features from the billet textures in [67]. Typical extrusion processing leads

to high-aspect-ratio MTR often having 〈101̄0〉 parallel to the billet extrusion axis. To gain

understanding of the thermomechanical processing (TMP) parameters that reduce MTR

size, [69] performed hot-compression tests at 1172 K on specimens cored from the same

billet. The compression directions were 0◦, 45◦ and 90◦ with respect to the extrusion axis.

To approximate these tests, highly-resolved finite element models of paired MTRs embedded

in a random-textured α matrix were subjected to compression in these same directions to

gain a deeper understanding of the MTR breakdown process. Evolution of lattice rotation
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and misorientation distribution within the MTRs were analyzed in detail and compared with

results of rotational velocity divergence to quantify orientation stability.

The chapter is organized as follows: In Section 2.2, the numerical modeling approach

is introduced in detail, including the extended crystal plasticity constitutive model,

proposed stress update algorithm, material parameter calibration and CPFE microstructure

description. In Section 2.3, critical results are presented, with an emphasis on the slip system

activity, lattice rotation and misorientation distribution. Additional discussion is contained

in Section 2.4, followed by concluding remarks in Section 2.5.

2.2 Modeling and simulation approach

The material studied is the near alpha titanium alloy Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo). Flow

softening is a well-known phenomenon for Ti-6242 when deformed above 973 K, which is

mainly caused by: (1) Deformation induced heating with an adiabatic temperature increase,

especially when forging at low temperatures and high strain rate ([78]); (2) Breakdown of

coarse-grain lamellar, such as α lamellae spheroidization ([78]); (3) Slip transfer across α/β

interfaces such that grain refinement strengthening and Hall-Petch effect are neutralized

([76]). To capture this softening response due to elevated temperature, a constitutive model

for Ti-6242 developed in [10] was extended and implemented into the crystal plasticity finite

element model of the Warp3d code ([11]). The stress update algorithm in Warp3d includes

specific features; for example, the Green-Naghdi stress rate is adopted in the presence of

finite rotations for the hypoelastic description of material response. These features are

essential for modeling MTR evolution, which requires large deformation and lattice rotation.

However, the previous CPFE implementation in Warp3d used identical hardening for all slip

systems ([56, 85]), limiting the incorporation of newer CP models. In the current research,

we extended this CPFE implementation to slip-system-dependent hardening and material

parameters, which is required for accommodating the dissimilar slip system resistance

exhibited by Ti-6242 α phase. Another feature of our implementation is that the tangent

stiffness is formulated such that most existing CP models can be incorporated into this

framework conveniently.
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2.2.1 Crystal plasticity based constitutive law with updated lat-

tice rotation

A brief discussion of the relevant kinematic assumptions for the implementation of crystal

plasticity in the finite element program Warp3d ([11]) is given below. Further details are

contained in ([56]).

The particular objective stress rate employed is the Green-Naghdi rate, σ̌, expressed in

terms of the spin tensor Ω as follows:

σ̌ = σ̇ + σΩ−Ωσ (2.1)

where σ is the Cauchy stress tensor, and the spin tensor Ω = ṘR
T

is defined in terms of

the rotation tensor R from the polar decomposition of the deformation gradient F = RU.

A primary advantage of the Green-Naghdi rate is that employing a constant elastic material

moduli tensor induces minimal impact on the quality of the computed response at large

rotations.

Within crystal plasticity theory, the motion of dislocations on particular crystallographic

slip systems characterizes the plastic deformation, and strain compatibility is restored locally

through lattice elastic deformation. The multiplicative split of the deformation gradient F

into elastic and plastic parts expresses this deformation mode through continuum kinematics:

F = FeFp ≈ (I + ε) ReRpUp (2.2)

where the additional assumption of small elastic strains ε � I is employed to simplify the

resulting formulation.

The stress-strain relation obtained from (2.1) and (2.2) invokes the unrotated Cauchy

stress t and its work conjugate deformation rate d in the intermediate configuration as:

ṫ = C0 :
(
d− d̄p

)
+ Rw̄pRT t− tRw̄pRT (2.3)
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in which t = RTσR is the unrotated Cauchy stress and d = 1
2

(
U̇U−1 + U−1U̇

)
is the

unrotated rate of deformation. The plastic deformation rate d̄p and plastic vorticity

w̄p are defined subsequently through constitutive relations in terms of the corotational

plastic velocity gradient l̄p. In the numerical implementation, the backward Euler time

integration scheme is applied to evolve equation (2.3), and the nodal displacements and

applied incremental strains are directly employed to compute F and d at the element level.

Further details of the derivation and implementation are provided in [56]. In particular, the

additional stress and rotation terms in (2.3) are correction terms accounting for the effect of

plastic spin.

For single crystal plasticity, the plastic strain rate is commonly represented through slip

rates γ̇(s) resolved onto the primary slip systems s = 1, . . . , nslip:

l̃p =

nslip∑
s=1

γ̇(s)
(
b̃(s) ⊗ ñ(s)

)
(2.4)

d̄p =

nslip∑
s=1

γ̇(s)RpTm̃(s)Rp (2.5)

w̄p =

nslip∑
s=1

γ̇(s)RpT q̃(s)Rp (2.6)

m̃(s) = sym
(
b̃(s) ⊗ ñ(s)

)
(2.7)

q̃(s) = skew
(
b̃(s) ⊗ ñ(s)

)
(2.8)

where b̃(s) is the slip direction within a crystal plane s and ñ(s) is the unit normal to plane

s. The “tilde” overbar refers to quantities in the lattice frame while the flat overbar denotes

quantities in the current deformed frame. Additionally, the evolution of the plastic rotation

rate is expressed through the plastic vorticity as Ṙp = w̄pRp.

The extended grain-scale crystal plasticity model for the Ti-6242 near alpha titanium

alloy accounting for flow softening follows from the bimodal titanium model proposed in

[10]. For the current developments, only microstructures containing primary αp particles are

considered. This constitutive model incorporates a decreasing slip resistance due to plastic
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deformation. The slip rate γ̇(s) on each slip system s is taken as a power law expression

involving the resolved shear stress τ (s) and the slip resistance ξ(s) :

γ̇(s) = γ̇
(s)
0

∣∣∣∣τ (s)

ξ(s)

∣∣∣∣1/m sign
(
τ (s)
)

(2.9)

Here γ̇
(s)
0 is the reference strain rate, m is a constant exponent and ξ(s) is the slip resistance

of slip system s. The slip resistance evolution is expressed through a combination of self-

hardening and latent hardening:

ξ̇(i) =

nslip∑
j=1

h(ij)
∣∣γ̇(j)

∣∣ =

nslip∑
j=1

q(ij)h(j)
∣∣γ̇(j)

∣∣ (2.10)

Here h(ij) is the combination of self-hardening rate h(j) and latent hardening rate q(ij). The

value of q(ij) is set to 1 for all i and j, such that full latent-hardening is considered. The

self-hardening rate follows a Voce-type equation:

h(j) = h
(j)
0

∣∣∣∣∣1− ξ(j)

ξ
(j)
s

∣∣∣∣∣
r

sign

(
1− ξ(j)

ξ
(j)
s

)
, ξ(j)

s = ξ̃(j)

(
γ̇(j)

γ̇0

)n
. (2.11)

Here h
(j)
0 is the initial hardening rate, and the saturation resistance ξ

(j)
s is taken as a power-

law relation of the current slip rate with exponent n and pre-factor ξ̃(j). Section 2.2.3

describes the slip system families employed for the αp phase and its relative constitutive

parameters. Note that this model does not have contributions from geometrically necessary

dislocation or strain gradient terms and hence is not size dependent.

The CP constitutive model (2.9)–(2.11) was originally developed to describe the rate-

sensitive strain hardening relation between shear strain rate γ̇(s) and resolved shear stress

τ (s), and was applied to model Ti-6242 in [10]. We extended this model to describe also the

strain softening behavior by simply setting the initial hardening variable ξ0 to be larger than

the saturated resistance ξs = ξs

(
γ̇0, ξ̃

)
, such that the hardening rate h(j) becomes negative

according to equation (2.11).

Remark: For initial elastic loading or the case when certain slip systems are not activated

during the deformation, the slip rate γ̇(i) and consequently ξ
(i)
s on certain slip systems remain
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close to zero, which causes numerical issues in (2.11). To avoid this deficiency, the lower

bound of ξ
(i)
s was set to be ξ̃(i)/4, which is smaller than the actual saturation stress of an

activated system.

2.2.2 Generalized implicit material update algorithm

In order to account for slip system dependence of the flow resistance, the Green-Naghdi stress

rate based material update algorithm was modified from the work of [56], where only one

hardening variable is allowed. This algorithm was modularized to accommodate any crystal

plasticity model with multi-hardening variables, where only 6 terms are model dependent,

i.e. two residual terms and four tangent stiffness terms.

In the finite element setting, the material evolution equations (2.3) and (2.10) are tracked

at the integration points of elements within the mesh during a series of time steps. Therefore,

the objective of the material update routine is to advance the values of the stress and

hardening variables to time tn+1 = tn+∆t. Both equations (2.3) and (2.10) will be integrated

using a backward Euler scheme, and together represent an implicit system of equations to

be solved. The equations are:

0 = R1 = tn+1 −
[
tn + ṫ (tn+1, ξn+1, ∆dn+1) ∆t

]
(2.12)

0 = R2 = ξn+1 −
[
ξn + ξ̇ (tn+1, ξn+1, ∆dn+1) ∆t

]
(2.13)

where the incremental deformation rate ∆dn+1 = dn+1∆t is specified from the current

best estimate of the nodal displacement increment, and ξ is the set of hardening variables

(presently, the slip resistances ξ
(s)
s , i = 1, . . . , nslip).

The quantities within the objective stress update (2.12) and hardening variable update

(2.13) are defined with respect to the time discrete counterparts:

ṫn+1∆t = C0 :
(
∆dn+1 −∆d̄pn+1

)
+ ∆W̄p

n+1tn+1 − tn+1∆W̄p
n+1 (2.14)
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Table 2.1: Newton-Raphson algorithm for stress update
procedure equation
1. Check compare ‖R‖ and Rtol

2. Solve

[
J11 J12

J21 J22

] [
δt
δξ

]
= −

[
R1

R2

]
3. Update

[
ti+1
n+1

ξi+1
n+1

]
=

[
tin+1

ξin+1

]
+

[
δt
δξ

]
4. Form

[
R1

R2

]
=

[
R1

(
tin+1, ξ

i
n+1

)
R2

(
tin+1, ξ

i
n+1

)] , Jjk = Jjk
(
tin+1, ξ

i
n+1

)

∆d̄pn+1 =

nslip∑
s=1

∆γ
(s)
n+1R

pT
n m̃(s)Rp

n (2.15)

∆W̄p
n+1 = Rn+1

[
nslip∑
s=1

∆γ
(s)
n+1R

pT
n q̃(s)Rp

n

]
RT
n+1 (2.16)

∆γ
(s)
n+1 = γ̇(s)

(
τ

(s)
n+1, ξn+1,

∆dn+1

∆t

)
∆t (2.17)

τ
(s)
n+1 = tn+1 :

(
RpT
n m̃(s)Rp

n

)
(2.18)

Rp
n+1 = exp

(
∆w̄p

n+1

)
Rp
n (2.19)

ξ̇
(i)
n+1 = ξ̇(i)

n +

nslip∑
j=1

h
(ij)
n+1

∣∣∣γ̇(j)
n+1

∣∣∣∆t. (2.20)

Notice that the plastic rotation tensor Rp is treated in an explicit fashion since the

value from time tn is used in equations (2.15)–(2.18). This algorithmic assumption greatly

simplifies the nonlinear system of equations (2.12)–(2.13) and generally is appropriate

because the evolution of plastic rotation Rp is relatively slow compared to the plastic strain

rate d̄p ([56]). Equation (2.20) specializes the hardening variable update for the material

model described in equation (2.9)–(2.11).

The residual equations (2.12)–(2.13) are solved using a Newton-Raphson scheme with

appropriate initial guesses for the stress tn+1 and hardening ξn+1. A generic iteration of

this algorithm is summarized in Table 2.1, where the superscript i denotes the value at the

indicated iteration.

At each iteration, the norms of the residuals ‖R1‖, ‖R2‖ are computed, and the algorithm

is terminated when either the absolute norm or the relative norm of both residuals is below

a user-specified tolerance Rtol. The Jacobian sub-matrices are obtained from the consistent
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linearization of (2.12)–(2.13), with Jij = ∂Ri/∂xj and xj=1,2 = {t, ξ}. Accounting for the

specific forms assumed for the plastic slip rates (2.9) and the hardening variables (2.10),

these derivatives can be expressed as follows, using index notation for clarity:

J11,ijkl =
∂R1,ij

∂tkl
=

1

2
(δikδjl + δilδjk) +

1

2

(
δik∆W̄

p
lj + δil∆W̄

p
kj

)
− 1

2

(
∆W̄ p

ikδjl + ∆W̄ p
ilδjk

)
+

nslip∑
s=1

(C0,ijmn
∂∆d̄pmn

∂∆γ
(s)
n+1

+ tim
∂∆W̄ p

mj

∂∆γ
(s)
n+1

− ∂∆W̄ p
im

∂∆γ
(s)
n+1

tmj

)
∂∆γ

(s)
n+1

∂τ (s)︸ ︷︷ ︸
model

∂τ (s)

∂tkl


(2.21)

J12,ijβ =
∂R1,ij

∂ξβ
=

nslip∑
s=1

[
−C0,ijmn

∂∆d̄pmn

∂∆γ
(s)
n+1

+ tim
∂∆W̄ p

mj

∂∆γ
(s)
n+1

− ∂∆W̄ p
im

∂∆γ
(s)
n+1

tmj

]
∂∆γ

(s)
n+1

∂ξβ︸ ︷︷ ︸
model

(2.22)

J21,ijα =
∂R2,α

∂tkl
= −∆t

∂ξ̇α
∂tkl︸︷︷︸
model

(2.23)

J22,αβ =
∂R2,α

∂ξβ
= δαβ −∆t

∂ξ̇α
∂ξβ︸︷︷︸

model

(2.24)

Each of the Latin alphabet subscripts varies from 1 to 3 for the spatial dimensions of

the problem, although accounting for the symmetry of the stress tensor enables condensing

from 3 × 3 = 9 indices to 6 indices. Each of the Greek alphabet subscripts varies from 1

to the number of hardening variables nhard. When the Newton-Raphson algorithm (Table

2.1) has been terminated after sufficient reduction of the residuals, the consistent values

for t and ξ have been found for the current value of the strain increment ∆dn+1 at the

integration point. The unrotated stress t is then transformed to the Cauchy stress σ and

used by the element subroutine to compute the internal force vector for assembly in the

global equilibrium residual vector. Similarly, the tangent moduli Tn+1 = ∂tn+1/∂∆dn+1

for the global equilibrium tangent matrix are computed from (2.21)–(2.24) along with other

terms described in [56].
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Table 2.2: Elasticity constants of Ti-6242 in the material coordinates (1172 K)
C11(GPa) C33(GPa) C12(GPa) C13(GPa) C44(GPa) C66(GPa)

132.8 159.4 76.56 67.19 39.84 28.12

The significance of this generalized stress update algorithm is that the model dependent

terms are clearly isolated from the crystal plasticity kinematics as two scalar constitutive

terms γ̇(s) and ξ̇α, and four tangent terms as shown in (2.21)–(2.24). Thus, other constitutive

models, e.g. mechanical threshold models ([37]) and dislocation density based models ([48]),

can be conveniently implemented in this framework.

2.2.3 Parameter identification

Anisotropic elastic constants of single crystal Ti-6242 are listed in Table 2.2. The relative

ratio between elastic constants was fixed according to the values at room temperature

reported in [10], and the magnitude was adjusted according to the temperature-dependence

of the Young’s modulus experimentally measured in [69]. Transverse isotropy was adopted

for the hexagonal close-packed αp phase, and the c-axis coincides with the z direction. Elastic

constants measured at 1172 K are about 20 % smaller than those at room temperature.

The material parameters from [10] were recalibrated to match the softening observed at

1172 K ([69]). The calibration was performed through a series of finite element simulations

that employed a single finite element with 100 random orientations of crystals homogenized

through the Taylor assumption. Constant true strain rate simulations were performed at ε̇ =

0.01 s−1, which is consistent with the experiment ([69]). The material parameters ξ̃(j), h
(j)
0

and ξ
(j)
0 were varied until the difference between experiment and simulation was minimized.

Three slip system families were considered: basal 〈112̄0〉 {0001}, prismatic 〈112̄0〉 {101̄0},

and 1st order pyramidal−〈c+ a〉 〈112̄3〉 {101̄1}. The ratio of slip system strengths was held

fixed at 1.0:0.67:3.0 according to the critical resolved shear stress measured at 1088-1228

K from [77]. The importance of the unequal slip resistances for the three systems versus

a uniform resistance for properly capturing Ti-6242 MTR breakdown is demonstrated by a

reference simulation in Section 2.3.2.
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Table 2.3: Crystal plasticity parameters for Ti-6242 αp particles at 1172 K
Basal Prismatic Pyramidal

γ̇0 (s−1) 0.12 0.12 0.12

ξ̃ (MPa) 69.38 46.25 208.13
h0 (MPa) 4.69 9.72 28.22
ξ0 (MPa) 68.08 54.46 163.4

n 0.14 0.15 0.15
r 0.30 0.29 0.29
m 0.20 0.20 0.20

The calibrated material parameters are listed in Table 2.3. Figure 2.1 compares the

measured true stress-strain curve from constant strain rate (∼ 0.01 s−1) tests under three

compression directions with the results from the displacement-controlled finite element

simulation. The measured and simulated responses match well, and the softening behavior

of stress-strain relation is well captured. Note that softening response is achieved when the

initial resistance ξ0 exceeds the saturated resistance ξs = ξs

(
γ̇0, ξ̃

)
, which for example takes

a value of about 49 MPa for the basal systems at the applied 0.01 s−1 strain rate. Here,

ξ0 is the initial value of the hardening variable ξ, where the latter evolves under continued

deformation. Due to the random texture assumption, the simulated stress-strain curve is

less loading-axis dependent than the experimental curves, which are obtained from cylinders

extracted at various angles relative to the long axis of a textured billet ([69]). The initial

yield stress is about 120 MPa, and gradually converges to 80 MPa as the applied strain

increases to −0.8. The plastic anisotropy caused by initial texture is apparent, especially at

the onset of plastic yielding where flow stress in axial direction is 10 MPa larger than that in

radial direction and 45◦ direction. It should be noted that the material parameters in Table

2.3 were calibrated only for the hot-compression tests conducted at 1172 K with constant

true strain rate of ε̇ = 0.01 s−1. These material parameters are sufficient to correlate the

simulation and EBSD measurements in Section 2.3 to interpret the effect of loading axis on

breakdown efficiency. However, to also include the effects of temperature and strain rate,

this model (or another temperature sensitive model) would likely need to be recalibrated

based on stress-strain curves obtained from the billet material at multiple temperatures and

strain rates.
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Figure 2.1: True stress-strain response from Taylor simulation (random texture) and cylinder
compression experiments (1172 K) ([69])

2.2.4 Simulation microstructure description

The initial microstructure and texture for the CPFE simulations were designed to capture

the main features of the experimental methods in [69]. Therein, the billet material is

a commercially produced near-α alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242S). Experiment

characterizations suggest that this 209-mm-diameter billet was obtained from preliminary

extrusion, resulting in a microstructure of equiaxed 10 µm diameter αp particles. Typically,

such extrusion leads to a fiber texture with 〈101̄0〉 parallel to the axial direction, while the

c-axis equally distributes along the radial direction ([67]). The actual macrotexture pole

figures of the 209-mm-diameter billet material are reproduced in Figure 2.2 (a). Overall, the

macrotexture is relatively weak (∼ 2.5×random), and 〈101̄0〉 parallel to the axial direction

is one major texture component. Because of the low strain from preliminary processing, the

texture components are not strong, and low density peaks scatter throughout the (0001)

pole figure. α/β processing by cogging and/or extrusion to produce billet or bar stock

generally leads to the formation of a 〈101̄0〉 texture at large strains, but the extrusion strain

of the current sample was only sufficient to rotate some grains to this orientation. As the

extrusion strain increases, such as the case of the 57-mm-diameter billet material shown in
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Figure 2.2 (b), the exhibited texture components are stronger and closer to the theoretical

components. However, strong MTRs with moderate aspect ratio (∼ 4 : 1) do exist in the

209-mm-diameter billet material, as shown by the inverse pole figure of Figure 2.2 (c). The

mean diameter of MTR is about 800 µm, and the volume fraction of MTR is about 0.6 ([67]).

Pairs of neighboring MTRs with orthogonal c-axis are still present. Previously, successive

extrusion processing was found to be less effective at eliminating such pairs of MTRs with

stable orientation (〈101̄0〉 parallel to the axial direction).

In order to optimize the TMP parameters for eliminating such stable MTRs, samples

taken from the billet material were compressed isothermally at 1172 K with different com-

pression directions ([69]). Specifically, the compression direction is 0◦ (axial compression),

45◦ and 90◦ (radial compression) to the billet axis. In order to obtain the morphology

of αp particles and β matrix at elevated temperature, samples were water quenched after

compression up to 1.07 true strain. More details about the experiment are given in [69].

Herein, a 5 mm × 5 mm × 5 mm idealized volume element (IVE) containing two MTRs

was employed to investigate the breakdown of MTRs under different compression directions,

as shown in Figure 2.3. Also, the present CPFE model assumes that texture evolution of

Ti-6242 deformed at 1172 K is mainly controlled by slip-based deformation of αp particles.

The green and red regions are sufficiently large that they represent collections of similarly

oriented αp particles, or two MTRs, while the blue region is a homogeneous matrix with

random orientation. These two MTRs have an elongated capsule shape, such that the

length and diameter of the geometry is comparable to the experimental observations. The

adjacent MTRs also makes it straightforward to see the interaction between two MTRs. The

total volume of the MTRs in the simulation domain is about 5 %. Actually, at 1172 K, the

microstructure of Ti-6242 from typical processing contains equiaxed αp particles with similar

orientation (75 %) with the remaining balanced by β phase (25 %) ([69]). Herein, idealized

MTRs with simplified shape and uniform initial orientation were chosen as a benchmark

case. The hexahedral mesh is a uniform grid with 100 voxels along each domain edge, and

the MTR-matrix interfaces are non-smooth. The size of each element is 50 µm, which is

equivalent to a few αp particle diameters. The mesh resolution in the MTRs is significantly

refined in order to capture the lattice rotation gradients within and between both MTRs.
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Figure 2.2: Representative EBSD measurement of the macrotexture and microtexture
distribution within the billet material: Macrotexture pole figures ((0001) and (101̄0)) of
(a) the 209-mm-diameter billet and (b) the 57-mm-diameter billet at mid-radius location
([67]). (c) Axial direction crystal-orientation maps for 209-mm-diameter billet at mid-radius
location, where the billet axis is perpendicular to the plane. A spatial cluster of similar or
identical color indicates alpha particles forming a microtextured region (MTR).

Figure 2.3: Initial configuration of the MTR (slice of 3D geometry) used in the present study
for three loading cases. White arrows indicate billet axis, hexagons depict the MTR lattice
orientation, and the black arrow indicates compression direction. (a) compression 0◦ to billet
axis; (b) compression 45◦ to billet axis; (c) compression 90◦ to billet axis.
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Compression was applied to the IVE along three different directions to investigate the

corresponding MTR breakdown efficiency, as shown in Figure 2.3. The orientations of the

two MTRs are selected from the theoretical extrusion macrotexture to approximate the billet

textures in Figure 2.2, where the 〈101̄0〉 direction is parallel to the billet axis and the c-axis

is along the radial direction. Thus, these two idealized regions act as samples of MTR

from within the macrotexture of the three compression cylinders described previously. This

orientation of MTR is different from those after rolling as described in [3, 13], where the

c-axis coincides with RD and TD while the common crystal direction 〈112̄0〉 coincides with

ND. In the RVE, each finite element in the matrix was assigned a different orientation from

a random initial texture. Notice that the MTRs are compressed in series for Figure 2.3 (a)

and in parallel for Figure 2.3 (c). Also notice for the radial case Figure 2.3 (c) that region

1 is oriented with the c-axis perpendicular to load axis (soft orientation) while region 2 has

its c-axis parallel to load axis (hard orientation).

Prescribed displacements were applied on the loading surface such that the true strain

rate was 0.01 s-1. Multi-point constraints (MPC) were applied on the transverse surfaces

to approximate a uniaxial state of remote stress on the IVE. The IVE simulations were

performed using Warp3d ([11]) in a high performance parallel computing environment.

Approximate wall clock time for each IVE simulation is about 30 hours when 18 shared

memory threads are used. The resulting plastic strain, slip system activity and lattice

rotation were compared to understand the breakdown of the two MTRs. The deformed

Euler angles from the models were imported into MTEX ([52]) to calculate the corresponding

orientation distribution functions (ODF) and subsequently generate pole figures and inverse

pole figures.

2.3 Results

2.3.1 Equivalent plastic strain distribution within MTRs

MTR breakdown efficiency is often influenced by inhomogeneous plastic strain. Figure

2.4 shows the equivalent plastic strain distribution within MTRs plotted on the deformed
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configuration after compression at 1172 K up to −0.51 true strain. Figure 2.5 presents

the equivalent plastic strain distribution along the central line inside each MTR at −0.51

macroscopic strain. The arc length measures the length along the selected path within

the MTRs from one end to the other, with 0.0-1.5 mm representing region 1 and 1.5-3.0

mm representing region 2 for all three figures. These results reveal that plastic strain

is more inhomogeneous for the 0◦ (axial) compression case compared with the other two

compression directions. For 0◦ (axial) compression, the circular cross-section evolves into

an elliptical shape. The long axis of the ellipse is perpendicular to the crystal plane (112̄0)

for both regions. Due to strain accommodation of the two regions, the plastic strain along

the interface between the two regions is lower than that in the region interiors, and the

transition is rather smooth. Moreover, strong fluctuations appear in the equivalent plastic

strain distribution within both regions, indicating a possibility of high breakdown efficiency.

For 45◦ compression, the MTRs exhibit relatively unchanged shape and rotate as a unit

toward the radial direction of the sample after deformation. Both maximum and minimum

local strain exists at the interface between the two regions, while the local strain within each

region is relatively homogeneous. For 90◦ (radial) compression, equivalent plastic strain in

region 1 is as high as 0.6, while in region 2 the average value is generally lower than 0.3.

Strain transition from region 1 to region 2 is rather smooth.

Previous studies found that the choice of element type may influence the quality of CPFE

simulation results, especially at MTR boundaries where stress concentrations exist ([6]). To

quantitatively understand this influence, meshes with linear hexahedral elements and meshes

with quadratic tetrahedral elements were generated for all three compression directions, and

the resulting plastic strain distributions were compared. For brevity, the results are not

shown here. The major conclusion is that the deformed shape of the MTRs as well as the

plastic strain distribution away from the boundaries (1 ∼ 2 element diameters) are in close

agreement for both mesh types, indicating that the interior response has not been affected.

2.3.2 Slip system activity

The development of orientation distribution within each MTR indicates that different lattice

rotations have occurred over the MTR region. Differences in lattice rotation result from
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Figure 2.4: Equivalent plastic strain distribution within MTRs on deformed configuration
after compression at 1172 K to −0.51 true strain (cross-section view on the mid plane).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.3

0.4

0.5

0.6

0.7

Eq
ui

va
le

nt
 P

la
sti

c 
St

ra
in

arc length (mm)

 0o (Axial)
 45o

 90o (Radial)

Figure 2.5: Equivalent plastic strain distribution along center line of MTR. (a) 0◦ (axial)
compression; (b) 45◦ compression; (c) 90◦ (radial) compression.
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differences in slip system activity. This section compares the accumulated shear strain,

defined by
∫ t

0
|γ̇(s)|dt, for the three most activated slip systems under different loading

directions. Figure 2.6 demonstrates the predicted activities of slip systems along the central

line from these two MTRs with different initial orientations at macroscopic true strain −0.51.

Contribution from the pyramidal slip systems is fairly low in each case.

For 0◦ (axial) compression, the compression direction is along [101̄0] of both regions,

such that two prismatic slip systems are most activated. It is interesting to find that in some

places, the prismatic system [1̄21̄0] is more activated while in other places the prismatic

system [2̄110] becomes more activated. Such competitive activity in both regions will result in

increasing misorientation within both MTRs. The slip system activity at the MTR boundary

is much lower than in the interior, mainly because the high 75.5◦ angle between the slip planes

on both sides makes the transfer of shear strain more difficult across the regions. Further

interpretations about the competitive slip system activity are discussed in Section 2.4.

When the compression direction is aligned at 45◦ to the billet axis, a single prismatic slip

system dominates in region 1 while two basal slip systems are equally activated in region 2.

The distribution of accumulated shear strain of each slip system is rather smooth compared

with 0◦ (axial) compression, even when two basal slip systems are equally activated in region

2. In both regions, other slip systems are also activated, but the accumulated shear strain

is generally less than 30 % of the most activated slip system.

For 90◦ (radial) compression, the slip system activity is quite different. In region 1,

two prismatic slip systems are equally activated across the MTR domain. Minimum shear

strain also exists at the region boundary where dislocation transfer across the boundary is

restricted. For region 2, since the compression direction is perpendicular to the basal plane,

only pyramidal slip systems are activated, and the accumulated shear strain is less than 0.1.

The variety of results for the accumulated plastic strain and slip system activity depend

crucially upon the differing slip system resistances assigned in Table 2.3. Ti-6242 is known

to exhibit anisotropic response at high temperatures ([77]). As a comparison, the 0◦ (axial)

compression case was simulated again using the averaged initial and saturation parameters

from Table 2.3 assigned to all of the basal, prismatic and pyramidal slip systems. The
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Figure 2.6: Accumulated shear strain of three most activated slip systems in each region:
(a) 0◦ (axial) compression; (b) 45◦ compression; (c) 90◦ (radial) compression.
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resulting macroscopic stress-strain curve for equal hardening is only slightly different from

the simulation with distinct hardening values. However, the equivalent plastic strain and

accumulated shear strain distribution vary significantly from Figure 2.4 and Figure 2.6(a).

In the single-hardening-constant case, the equivalent plastic strain within the MTRs is

essentially homogeneous at about 0.55. The pyramidal slip systems also contribute a larger

fraction to the macroscopic plastic strain. Therefore, the single-hardening-constant model

cannot accurately predict the MTR breakdown efficiency.

2.3.3 Lattice rotation

Previous experimental studies ([4]) revealed a profound influence of the slip system activity

on the breakdown of MTR in Ti-6Al-4V. Also, slip system activity is influenced by the

orientation of MTRs with respect to the compression direction. Presently, the CPFE

numerical simulations provide a prediction of the microtexture evolution to suggest which

compression direction is more effective at breaking down the MTR. The following sections

examine the texture that develops in the matrix and the MTR for each loading case. Also,

the disorientation about the average deformed orientation is quantified within each MTR.

Matrix texture evolution

The texture of the matrix after high temperature compression contains two dominant

components, similar to the macrotextures in [3, 13]. For the major component, the c-

axis is within 15◦ − 30◦ of the compression direction with random distribution around the

compression axis. The other major component consists of αp particles for which the c-axis is

perpendicular to the compression direction. For brevity, matrix pole figures are not shown.

The results for all 3 loading directions are quantitatively similar such that the individual

MTR at 5 % volume fraction do not impact the bulk matrix response.

Compression 0◦ to billet axis (axial compression)

The lattice rotation evolution within the MTRs differs significantly from that of the matrix.

Pole figures of region 1 and region 2 after primary processing are shown in Figure 2.7 (a) and
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(b), respectively. Figure 2.7 (c) shows the experimentally measured pole figure of the test

specimen after 0◦ (axial) compression at 1172 K, with the final true strain of 1.07 (i.e., a 3 : 1

reduction). For both regions, the loading axis is perpendicular to (101̄0), and prismatic slip

systems are most activated (see Figure 2.6 (a)). Generally, the c-axis remains fixed, while

other crystallographic directions exhibit very large rotation around the c-axis (< 30◦). The

orientation of both regions is unstable such that different αp particles have either a positive

or negative rotation about the transverse (radial) axes. Similar randomization is observed

in the EBSD measurement of Figure 2.7 (c), where the (101̄0) pole figure exhibits much

reduced intensity compared with the specimen response for other compression directions,

shown in later figures. However, the texture components in the (0001) pole figure still remain

relatively strong (∼ 1.5×random). Logical explanations for why the 0◦ (axial) compression

causes unstable lattice rotation are given in Section 2.4.1.

The spatial distribution of lattice rotation is also critical for assessing the breakdown

of MTRs. Figure 2.8 shows the cross-section plot of the orientation map for 0◦ (axial)

compression on the deformed configuration. The compression direction is along the

horizontal direction of the figure. For both regions, in-plane rotation around the c-axis

is obvious at both the MTR boundary and interior, indicating that breakdown of this region

is effective. However, the change of the c-axis direction is quite limited, so that the basal

planes of most αp particles are still aligned.

Compression 45◦ to billet axis

Unlike 0◦ (axial) compression, lattice rotation is much more obvious when the compression

direction is 45◦ to billet axis (Figure 2.9), although the orientation spreading is limited. In

region 1 (Figure 2.9 (a)) where the c-axis is perpendicular to the compression direction, the

basal-plane does not rotate while the slip plane of the most activated slip system rotates

toward compression direction. Since only prismatic slip systems are activated, and the

initial orientation distribution is homogeneous, spreading of texture components within this

region is very limited (< 10◦). On the other hand, for region 2 (Figure 2.9 (b)) where

the c-axis is 45◦ to the compression direction, the normal direction of the basal slip plane

rotates about 15◦ towards the compression direction. This lattice rotation comes mainly
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Figure 2.7: Pole figures corresponding to 0◦ (axial) compression: (a) region 1 from CPFE
(ε = −0.51); (b) region 2 from CPFE (ε = −0.51). Magenta dots denote the initial
MTR orientation. (c) EBSD measurement (ε = −1.07). The EBSD measurement ([69])
also includes αp particles with other orientations besides the major components adopted in
simulation (same for the following figures).

Figure 2.8: Orientation map of MTRs with respect to axial direction after 0◦ (axial)
compression (ε = −0.51, cross-section view on the mid plane)
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Figure 2.9: Pole figures corresponding to 45◦ compression: (a) region 1 from CPFE
(ε = −0.51); (b) region 2 from CPFE (ε = −0.51). Magenta dots denote the initial MTR
orientation. (c) EBSD measurement (ε = −1.07).

from the boundary condition induced macroscopic strain instead of particle interaction

and local instability. Similar lattice rotation is also observed in EBSD measurement in

Figure 2.9 (c), where the major texture components co-rotate instead of spreading out.

However, in EBSD measurement, it seems that the normal direction of basal slip plane rotates

towards the transverse direction (perpendicular to the compression direction), while (101̄0)

components rotate towards compression direction. This difference is probably caused by the

different loading direction with respect to the MTR orientation, since the c-axis is not evenly

distributed along radial direction. It is still reasonable to conclude that, for 45◦ compression,

although the lattice rotation is large, the spreading of major texture components within each

MTR is still quite limited.

Compression 90◦ to billet axis (radial compression)

Finally, for 90◦ (radial) compression, lattice rotation and spreading within each MTR is

shown in Figure 2.10. In this case, the c-axis is perpendicular to the compression direction

in region 1, while it is parallel to the compression direction in region 2. This is the most

interesting case in practice, since region 2 is well known for its difficulty to break down
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and high potential for crack initiation when loaded along the compression direction at room

temperature. Our results show that both regions still behave stably when the specimen is

compressed at 1172 K. It is interesting to find that after such large deformation, MTRs are

not noticeably broken down, and the average of each deformed texture component coincides

with that of the initial configuration, suggesting that both MTRs behave as stable regions

under this compression direction. Only minor spreading of the c-axis is observed in region 2

(hard orientation) for the (0001) pole figure, coinciding with the activity on the pyramidal

slip systems in Figure 2.6 (c). Therefore, 90◦ (radial) compression is a stable compression

direction, where rotations of αp particles are quite limited. Similarly, the EBSD measured

pole figure also shows strong texture components even after 1.07 true compression strain.

Compared with simulated texture components, the pole figure from EBSD measurement

is very similar to the region 1 pole figure, while the texture component of region 2 is not

observed. Since the compression specimen was taken randomly from the mid-radius position

of the billet, the texture component corresponding to region 2 may not have been present

in the specimen. Although the initial orientation is pristine, we can still conclude that

subtransus compression along the radial direction is not a very effective path for MTR

breakdown.

Remark: The CPFE simulations use exemplary microstructures with a pair of

representative MTR to investigate the influence of compression direction on MTR breakdown

efficiency, as opposed to the real yet complex microstructure shown in Figure 2.2 (c). The

advantage of this simplified approach is that the simulation size can be reduced (which is still

very large), and the influence of external force can be isolated and analyzed independently.

On the other hand, the disadvantage is also obvious: there is a larger discrepancy between

CPFE and EBSD measurement, especially for the reference experimental case where only

one extrusion processing is applied and the initial texture component is not sharp enough.

However, by comparing the three loading direction results for the CPFE simulations and

EBSD measurements as distinct groups, we can still find interesting common features which

support our major conclusions: (1) the most smooth and dispersed (101̄0) pole figure appears

in the 0◦ (axial) compression case (Figure 2.7); (2) the most obvious lattice rotation occurs

in the 45◦ compression case (Figure 2.9); and (3) the strongest texture components remain
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Figure 2.10: Pole figures corresponding to 90◦ (radial) compression: (a) region 1 from CPFE
(ε = −0.51); (b) region 2 from CPFE (ε = −0.51). The location prior to deformation
coincides with that at −0.51 true strain. (c) EBSD measurement (ε = −1.07).

in the 90◦ (radial) compression case (Figure 2.10). Certain major texture components are

also consistent between the simulations and experiments, but not all of them.

Disorientation distribution

The pole figures qualitatively suggest that axial compression shows random lattice rotation

around c-axis, 45◦ compression has bulk rotation but limited disorientation, and radial

compression has minor disorientation of the c-axis. The disorientation distribution within

each MTR is employed to quantify the breakdown efficiency. Figure 2.11 shows the

probability density distribution of disorientation with respect to mean orientation within

each MTR after compression. Disorientation distribution behaves quite differently when

the compression direction is 0◦, 45◦ and 90◦ to the billet axis. Specifically, for region 1,

the breakdown efficiency of 45◦ compression is only slightly less compared with loading 90◦

(radial) compression, both of which are less compared with 0◦ (axial) compression. Similarly,

for region 2, disorientation distribution after 0◦ (axial) compression is much larger than 45◦

compression. We note that the disorientation distribution for the 90◦ (radial) compression

case is the most spread out of all cases other than the 0◦ (axial) case, indicative of the minor
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Figure 2.11: Disorientation distribution within MTRs after compression at 1172 K to −0.51
true strain: (a) region 1; (b) region 2. Horizontal axis is the average disorientation with
respect to the mean MTR orientation after compression. The maximum disorientation value
was deliberately limited to 30◦, since the actual disorientations are almost all about the
c-axis.

c-axis rotation that occurs as in Figure 2.10(c). Overall, disorientation for the majority of

elements in the MTR is less than 10◦ for 45◦ compression and 90◦ (radial) compression. The

limited disorientation in 45◦ compression and 90◦ (radial) compression is mainly because the

MTR is oriented such that the normal of a stable crystallographic plane coincides with the

compression direction ([70]).

To further investigate the characteristic disorientation distribution pattern for each

loading case, disorientation of each αp particle (finite element) with respect to mean rotation

is shown in Rodrigues space where hexagonal-hexagonal symmetry is considered, as shown

in Figure 2.12. In general, the disorientation distribution pattern in Rodrigues space is quite

different when external loading is 0◦, 45◦ and 90◦ to the billet axis. When the compression

direction is parallel to the billet axis, αp particles mainly rotate around the c-axis, and

the rotation angles are almost evenly distributed. Although the disorientation within both

regions for axial compression is very large, the c-axis still remains similarly oriented. When

the compression direction is 45◦ to the billet axis, both c-axis rotation and rotation around

the c-axis are limited. The smaller clusters of disorientation at 15◦ and 30◦ disorientation

may be caused by the interaction between MTR boundary layer and the surrounding matrix.

When compression is 90◦ to the billet axis, the disorientation is fairly limited especially in
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Figure 2.12: Disorientation distribution in Rodrigues space after compression at 1172 K to
−0.51 true strain. The disorientation is calculated by multiplying inverse rotation matrix
and mean rotation matrix, which represents the orientation deviation of each element with
respect to the mean orientation after compression. The hexagonal-hexagonal symmetry is
considered: (a) region 1; (b) region 2

region 1 that is in a stable orientation with respect to the external loading. The c-axis

rotation is mildly evident in region 2 where compression direction is perpendicular to (0001)

plane. The c-axis spreading of 90◦ (radial) compression is the largest among the three cases,

though its extent is limited by the ability to deform plastically. It is also worth noting that

the 45◦ and 90◦ compression cases produce distinct concentrations at 0◦, 15◦ and 30◦. These

less intense peaks are mainly associated with finite elements at the MTR boundaries.

2.4 Discussion

In this study, a crystal plasticity finite element (CPFE) model was used to investigate

the influence of compression direction on MTR breakdown efficiency in Ti-6242 during

primary processing. The main modeling assumption was that slip-based deformation in

αp particles controls the evolution of texture components at 1172 K. Also, a previously

developed phenomenological based model for room temperature behavior was extended to

consider strain softening at processing temperature. To account for plastic anisotropy and

unequal slip resistance, a general stress update procedure was developed for crystal plasticity
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constitutive models with multiple hardening variables. Simulation results of paired MTRs

under compression demonstrate a significant influence of compression direction on the plastic

strain distribution, slip system activity as well as lattice rotation.

A mechanism-based explanation for why some colonies randomize during deformation

while others persist was discussed previously by [4]. The authors found that orientations

with a high Taylor factor that are amenable to slip on multiple families of slip systems

would result in more randomization compared to those oriented for slip on a single family of

slip planes. In the latter case, all particles would tend to co-rotate due to the restricted slip

while the availability of multiple slip planes promotes more heterogeneous deformation within

colonies. The most difficult colonies to spheroidize have c-axis parallel to the compression

direction and hence need to operate the higher strength pyramidal 〈c+ a〉 slip systems to

deform.

Our current investigation provides a deeper understanding of the MTR-breakdown

process with different compression directions. An interpretation of this influence is suggested

by the analysis of reorientation velocity divergence as described below.

2.4.1 Reorientation velocity and divergence field

The lattice rotation rate vector ṙe and its divergence div ṙe was originally employed in Euler

space to characterize the texture evolution of ideal texture components ([84]). Recently, both

ṙe and div ṙe were expressed in the Rodrigues fundamental region of the FCC symmetry

group to investigate grain fragmentation in hot-deformed aluminum ([70]). In the current

investigation, ṙe and div ṙe are expressed in the fundamental zone of the HCP symmetry

group to quantify the MTR breakdown efficiency under uniaxial compression. Figure 2.13

explains the relationship between initial orientation and lattice reorientation velocity based

on the Taylor model assumption. Figure 2.13 shows the magnitude and divergence of

the reorientation velocity field in the Rodrigues’ fundamental zone (FZ). The FZ was first

discretized into a mesh containing 9000 nodes by 10-node tetrahedral finite element shape

functions, where the spatial coordinate of each node gives the axis-angle representation

of the initial orientation. These axis-angle coordinates were transformed into Euler angle

triplets and supplied to a Taylor-homogenized crystal plasticity simulation. Then after 0.08
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Figure 2.13: Lattice rotation velocity and its divergence expressed in Rodrigues’ fundamental
zone after compression at 1172 K to −0.08 true strain: (a) lattice rotation velocity; (b)
divergence of lattice rotation velocity. Point A, C and E represents the initial orientation of
region 1 for 0◦, 45◦ and 90◦ compression. Point B, D and F represents the initial orientation
of region 2 for 0◦, 45◦ and 90◦ compression.

Table 2.4: Rotational velocity in Rodrigues’ fundamental zone
rotational velocity divergence

0◦

compression
region 1 1.90× 10−9 9.53× 10−2

region 2 5.00× 10−10 7.94× 10−2

45◦

compression
region 1 3.01× 10−2 −7.76× 10−2

region 2 2.21× 10−2 −1.15× 10−1

90◦

compression
region 1 9.96× 10−8 −4.16× 10−1

region 2 2.13× 10−3 4.11× 10−1

compression strain with large enough plastic strain and lattice rotation, the final orientations

were transformed back to axis-angle representation. In this way, the reorientation velocity

on the 9000-node mesh is defined as the orientation increment in Rodrigues’ space divided by

the time step. The divergence of the interpolated reorientation velocity field is then obtained

by calculating the trace of its gradient tensor field using the shape function derivatives. This

velocity field is not the actual reorientation velocity in axis-angle notation, since Rodrigues’

space is not a linear vector space and does not follow the typical parallelogram law for vector

addition. Nevertheless, this velocity field serves as a valid indicator of the orientations that

tend to break down and is appropriate for the following analysis.
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The magnitude and divergence of the reorientation velocity field is shown in Figure

2.13. The magnitude field represents the lattice reorientation velocity, while the divergence

field reflects the stability of the initial orientation under fixed compression direction. A

positive divergence indicates the possibility of increasing disorientation under compression,

while negative divergence leads to decreasing disorientation. The reorientation velocity and

divergence are influenced by both the c/a ratio and the CRSS of each slip system. The

values corresponding to the initial orientations shown in Figure 2.3 are then extracted and

shown in Table 2.4. Generally, the reorientation velocity magnitude field does not correlate

with the divergence field, indicating that the reorientation stability is not determined by the

magnitude of reorientation velocity alone.

When the compression direction is parallel to the billet axis (axial compression case),

the MTRs with stable orientations are compressed along [101̄0] direction. Then, the average

rotational velocity is almost 0 and the divergence of rotational velocity (point A, B for region

1 and 2 in Figure 2.13) is positive according to the Taylor model prediction. This means

that both regions are in a metastable initial orientation where small perturbation from this

balanced position will increase rotational velocity significantly. This is consistent with the

orientation deviation of each element with respect to the mean orientation after compression

as shown in Figure 2.11 and Figure 2.12, where orientation dispersion is obvious. Also, the

equivalent plastic strain in both regions (∼ 0.60) is about 20 % larger than macroscopic true

strain in Figure 2.6, which further increases the disorientation.

For the 45◦ compression case, the divergence of reorientation velocity field is negative

(point C, D for region 1 and 2 in Figure 2.13), even though the rotational velocity is relatively

large. The Taylor model is also consistent with Figure 2.11 and Figure 2.12, where orientation

deviation with respect to the mean orientation after compression is negligible. This happens

when one single slip system, either basal or prismatic, is activated, or the accumulated shear

strain of two slip systems are equal and homogeneously distributed within the MTR (Figure

2.6(b)). Therefore, the entire region rotates as a unit towards one direction with limited

orientation dispersion.

When the compression direction is 90◦ to the billet axis, the behavior of lattice rotation

is quite different. In region 1 where this compression direction is along [112̄0] direction, the
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rotational velocity is relatively small and the divergence is negative (point E in Figure 2.13),

even though two slip systems are activated (Figure 2.6). Figure 2.11 and Figure 2.12 also

exhibit similar trends for region 1 where the orientation deviation is negligible. In region 2,

the average rotational velocity is relatively large and the divergence is positive (point F in

Figure 2.13), indicating that region 2 should be broken down efficiently. However, this large

value is only true for the Taylor model where the equal strain assumption is adopted and

greatly exceeds the CPFE computed response in Figure 2.11 and Figure 2.12. In fact, the

compression direction is perpendicular to the basal plane in this region, and only pyramidal

slip systems are activated (see Figure 2.6). The actual equivalent plastic strain in region 2 is

only about 40 % of the average equivalent plastic strain in region 1 (Figure 2.5). Therefore,

the lattice rotational velocity is much smaller compared with the Taylor model prediction but

nonetheless shows dispersion. The divergence of the reorientation velocity field computed

from the Taylor model is only an indicator of the breakdown efficiency, the quantification of

which also depends on the amount of plastic strain in the local vicinity of the material.

2.4.2 Major assumptions and future work

Although the strain softening behavior for compression at 1172 K is comparable between

the simulation and the experimental results in [69], our investigation is based on several

assumptions that future research should revisit. First, our simulations assume that evolution

of texture component is controlled by slip-based deformation of αp particles. Actually, the

β transus temperature of Ti-6242 is 1268± 15 K, and the volume fraction of αp particles is

about 75 % at 1172 K ([69]). Since the texture component of the matrix is well captured

and we are focused more on the interaction of αp particles, adopting only α phase in the

simulation appears to be justified. A similar assumption is adopted for the MTS model

based simulation of Ti-5553 (near β) compression at elevated temperature ([53]), where α

phase substitutes about 30 % of β matrix at 1073 K and only BCC β phase is considered. It

becomes increasingly important to account for the β phase as the deformation temperature

increases, particularly when individual alpha particles are entirely surrounded by β matrix.

Hence, the differences in flow stress and rate sensitivity can play an important role on strain

partitioning between the constituent phases.
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Notwithstanding the axial compression case, the extent of MTR breakdown in the

simulation is less than the experimental result in [22]. One possible explanation is that

the initial slip resistance of each slip system is not well defined by existing test data, and

differential latent hardening is not considered in the model, i.e. qij equals 1. The relative slip

resistance for basal, prismatic and first order pyramidal is held fixed at 1:0.67:3.0 according

to the critical resolved shear stress measured at 1088-1228 K in [77], which is for Ti-6Al-

4V. Accurate calibration of the relative resistance can help to further optimize the study of

compression direction on breakdown efficiency ([4]). Another limitation is that the current

microstructure model neglects the initial orientation distribution within each MTR. Further

simulations are needed to determine the sensitivity of this distribution on the MTR response.

Also, the maximum true strain reached by the simulations is -0.51 due to convergence issues

caused by mesh distortion within the Lagrangian formulation. Larger compressive strain

could be applied if an adaptive remeshing technique is employed.

In summary, the current research provides useful information on the simulation of Ti-6242

α/β processing and the influence of compression direction on the MTR breakdown process.

Plastic strain distribution, slip system activity and lattice rotation within each microtextured

region depend significantly on compression direction. Realistic αp particle geometry with

MTRs accounting for misorientation distribution will be employed in future work to explore

in greater detail the breakdown of MTRs in Ti-6242 during primary processing.

2.5 Conclusion

For the first time, crystal plasticity finite element modeling was employed to investigate the

influence of compression direction on MTR breakdown efficiency during primary processing.

The major conclusions are summarized as follows:

1. The extended crystal plasticity constitutive model captures the strain softening

behavior of Ti-6242 at 1172 K observed in hot-compression experiments.

2. To account for plastic anisotropy and unequal slip resistance, an implicit stress update

algorithm based on Green-Naghdi stress rate is extended. This algorithm provides
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a general framework for conveniently implementing models with multi-hardening

variables, using isolated model-dependent terms.

3. Compression direction has a significant influence on the plastic strain distribution, slip

system activity and lattice rotation within MTRs. The pole figures obtained from

CPFE simulations are qualitatively consistent with the EBSD measurement of evolved

texture of samples from an extruded Ti6242 billet.

4. For 0◦ (axial) compression, disorientation within MTRs is obvious but c-axis still

remains aligned. For 45◦ compression, lattice rotation occurs but all α particles co-

rotate such that MTRs remain stable. For 90◦ (radial) compression, the (0001) texture

component is most scattered when the basal plane is perpendicular to external load,

but the efficiency is limited by its high slip resistance. These conclusions are consistent

with the analyses based on the reorientation velocity and divergence in Rodrigues’

space, where uniform strain assumption is applied.
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Chapter 3

Mechanical interaction of alpha and

beta phases in Ti-6242 at high

temperatures

3.1 Introduction

Simulations of c-axis breakdown in microtextured regions (MTR) in Ti-6242 using crystal

plasticity finite element method were conducted in previous section. These studies consisted

of two ellipsoid alpha phase regions with single orientation embedded in a uniform-textured

matrix. Two extensions to these studies were performed herein. First, the strain history

from selected material points in the prior simulations were imposed onto microscale models

of clustered α particles with initial texture representative of orientation spread within an

MTR, and sharpening or softening of texture was compared with the mesoscale results.

Second, microstructure models of Ti-6242 at higher processing temperatures with greater

than zero beta phase fraction were simulated to study interaction of α particles as a function

of separation and orientation. In both cases, specific initial crystal orientations were found

to develop large orientation gradients.
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3.2 Motivation for computational modeling of micro-

textured regions

The titanium alloy Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo) has been the structural material of choice

for use in high-pressure compressors for gas turbine engines of aircraft due to its high

strength-to-weight ratio and excellent high temperature mechanical properties. However,

Ti-6242 is susceptible to dwell fatigue at low temperature due to crack growth on low-

angle boundaries along the primary α grains, in particular small faceted cracks that link

up to form a “quasi-cleavage” surface. These low-angle boundaries occur within so-called

microtextured regions (MTR) that consist of many neighboring primary α grains with

similarly oriented [0001] axes of the hexagonal close-packed (HCP) atomic lattice. In

post-mortem observations, Pilchak et al. observed facet clusters along the fracture surface

within the MTR. Mill processing techniques impacting MTR distribution are currently under

experimental investigation.

3.3 Approach

The scope of this section for crystal plasticity modeling of Ti-6242 involves two major phases.

First, microscale models of clustered alpha particles with representative microtexture are

subjected to various strain histories from mesoscale 1173 K microtexture simulations from

previous term. Second, a constitutive model for the β grains of Ti-6242 is implemented in

WARP3D to study the behavior of pairs of alpha particles embedded in the softer beta phase

at higher temperatures.

3.3.1 Titanium crystal plasticity model calibration

In crystal plasticity (CP) theory, plastic strains arise from the motion of dislocations along

preferential slip systems, where b(s) is the slip direction within a crystal plane s and n(s) is

the unit normal to plane s. Ti-6242 contains α phase which is hexagonal close packed (HCP)

and β phase which is body-centered cubic (BCC). The reduced symmetry of the HCP lattice

gives rise to slip systems with highly disparate resistances to dislocation motion.
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The constitutive model for Ti-6242 [10] is adopted for the alpha-phase to relate the

plastic slip rates γ̇(s), the resolved applied shear stress τ (s) = b(s)σn(s), and the critical slip

resistance g(s). The slip rate γ̇(s) on each slip system s is taken as a power law expression

involving the resolved shear stress τ (s) and the slip resistance g(s):

γ̇(s) = γ̇
(s)
0

∣∣∣∣τ (s)

g(s)

∣∣∣∣1/m sign
(
τ (s)
)
, ġ(i) =

nslip∑
i=1

h(ij)
∣∣γ̇(j)
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nslip∑
i=1
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where γ̇
(s)
0 is a reference strain rate and m is a constant exponent. The slip resistance

evolution is expressed through a combination of self hardening and latent hardening:

h
(j)
HCP = h

(j)
0

∣∣∣∣∣1− g(j)

g
(j)
s

∣∣∣∣∣ sign

(
1− g(j)

g
(j)
s

)
, g(j)

s = g̃(j)

(
γ̇(j)

γ̇0

)n
(3.2)

The material parameters are calibrated for room temperature where hardening of the

stress-strain response is apparent. At high temperatures, softening is observed, and therefore

the material parameters of the model are re-calibrated using a homogenized iso-strain finite

element model to address this observation. Three slip system families are considered: basal

〈112̄0〉{0001}, prismatic 〈112̄0〉{101̄0}, and 1st order pyramidal 〈112̄3〉{101̄0}. The ratio of

slip system strengths is held fixed at 1 : 0.67 : 3.0 according to material response measured

by Lee Semiatin and T.R. Bieler in 2001 [4]. The calibrated material parameters, obtained

last term, are listed in Table 2.2 and 2.3, where the designations (1) = basal, (4) = prismatic,

and (7) = pyramidal. The units of g̃(j), h
(j)
0 , and g

(j)
0 are MPa; other parameters are unitless.

For the β phase, which has a BCC lattice structure, a simplified Voce model with equal slip

resistance across the 12 〈111〉{110} systems was employed, since it is already implemented

in WARP3D:

γ̇(α) =
γ̇

(α)
0

τv + τw

∣∣∣∣∣ τ
(α)
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τv + τw
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rss , τ̇w = θ0
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∣∣∣∣m sign
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) nslip∑
α=1

∣∣γ̇(α)
∣∣ (3.3)

where τy is the yield flow stress and τv is the saturation hardening (softening) stress.

According to the modeling approach of Dunst and Mecking supported by recent small scale

experiments at high temperatures, the beta phase strength is set to approximately 1/3 of the
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Figure 3.1: Pole figures of evolved texture within two microtextured regions loaded in z-
direction at 1173 K.

prismatic slip strength. A 200-orientation iso-strain model was used for calibrating the beta

parameters to match 1173 K flow curves from Adam Pilchak. Isotropic elastic moduli were

adjusted from the values in [10] for higher temperature. The calibrated α-phase constitutive

model was then applied to model the orientation breakdown of ideal microtextured regions

(MTR) during the previous term.

3.3.2 Modeling setup

Highly resolved finite element models are developed with 100× 100× 100 linear hexahedral

finite elements for a cube with 0.5 mm edge length. Within the center of the 3D cell model,

two MTR with single orientation are placed in close proximity; surrounding elements contain

a random texture, as illustrated in the greenish square on the left of Figure 3.2. The 3D cell

model is simulated under prescribed constant strain rate imposed as a uniform displacement

increment on one face of the cube at a time. The strain rate is ε̇ = 9×10−3s−1. A maximum

true strain of 0.51 is reached. Out of the six uni-directional load paths considered, the most

efficient direction for MTR breakdown was the loading parallel to the c-axis in one MTR

and activating multiple slip systems in the second MTR to induce an unstable orientation

gradient, as shown through pole figures in Figure 3.1. Pole figures generated using MTEX

package [52]. These mesoscale results help guide the microscale models conducted this term.
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3.4 Results and discussion

3.4.1 MTR microstructure models of alpha particles

Actual MTR in Ti-6242 contain many α particles with similar but distinct c-axis alignment,

illustrated by the experimental pole figure shown in the right of Figure 3.2. Therefore, we

were interested to study if the initially heterogeneous makeup of an MTR, when deformed

according to the mesoscale finite element simulations, would exhibit similar texture evolution,

thereby justifying the prototypical modeling of MTR using mesoscale behavior as a guide.

Thus, a microscale model was generated with 75 hexahedral elements along each edge and

a log-normal distribution of grain sizes consisting of voxels, as shown in the red-blue cube

in the center, containing about 800 particles. The input texture, from MTEX, was a 1.0×

intensity fiber plus a 1.5× intensity unimodal component each with 7.5 degree half-width.

Alignment of the poles was chosen to agree with the selected point from the mesoscale

MTR, shown by the dots on the red-blue ellipsoid. Compression simulations were performed

for 6 strain histories, taken from points in the diagonal x compression and uniaxial z

compression mesoscale models. Finite elements are selected along the MTR centerline at

outside, midpoint, and near-interface locations, and the deformation gradient is used to

compute displacements to apply as periodic boundary conditions. Strain history from three

points for the z-direction case are given in Figure 3.3, showing that the transverse axial

strains as well as the shear strains are distinct. Thus, we can study the effect of mild strain

path changes to the resulting texture evolution.

The resulting texture evolution for 3 points in the diagonal x load case are shown in

Figure 3.4 through pole figures. The initial configuration exhibits the 7.5 degree half-

width initial distribution. For both the MTR, which have different initial orientations, the

texture sharpens to produce higher peak intensities. Thus, c-axis orientation of neighboring

crystallites is expected to come closer together at the larger strain levels.

The intensity is particular for the second MTR, where the fiber texture has almost

disappeared, retaining only a unimodal component. Thus, this loading direction is very

ineffective at breaking down the initial microtexture. Also, dependence on the strain path
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Figure 3.2: Description of microscale model of alpha particles within MTR subjected to
strain path from individual finite elements at mesoscale; input texture contains fiber texture
about mesoscale c-axis

Figure 3.3: Green-Lagrange strain history of selected MTR points in z-direction compression
simulation
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Figure 3.4: Texture development during diagonal x compression simulation. Texture
components sharpen in both MTRs, and macro rotation of primary directions is evident

Figure 3.5: Texture development during uniaxial z compression simulation. Texture
components soften in both MTR, unstable orientation apparent in MTR2
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Figure 3.6: Spatial inverse pole figure of MTR2 (c-axis perpendicular to loading) before and
after compression

for MTR1 is fairly mild. Bulk rotation of the MTR is also evident from the motion of the

peaks by about 15− 30◦ through the grid lines.

In contrast, the z-direction compression cases exhibit a softening of the texture

components from the initial condition. The first MTR has c-axis parallel to loading direction,

and the orientation spread increases from 15−30◦ in the (0001) pole figure after 50% strain.

In the second MTR, the intensity of the (1010) pole figure also reduces by a factor of two,

and the smearing of the unimodal to a fiber texture is also present for both strain histories.

This behavior agrees with the mesoscale model of ideal initial orientation that develops

orientation gradients; thus, orientation instability does not require a single perfect direction

but can be triggered in imperfect starting texture as well. This is analogous to column

buckling/bifurcation in structures, where critical load agrees for perfect and imperfect

initial condition. This orientation gradient is visualized through Figure 3.6, comparing the

inverse pole figure plotted on the microstructure in the undeformed and deformed states.

Misorientation is present within certain grains.

The texture breakdown in the microscale simulations is quantified through the disori-

entation curves given in Figure 3.7. Disorientation is measured with respect to the mean

orientation of the respective simulated domain, at the initial and final strain level. The curves

in the left plots correspond to the mesoscale results from the previous term, highlighting the
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Figure 3.7: Disorientation with respect to mean orientation in MTR: mesoscale results from
previous report, initial and final curves for diagonal x compression, and initial and final
curves for uniaxial z compression

large disorientation for the z-compression case and the low disorientations in the other two

cases. The disorientation from the microscale model with diagonal MTR shows a reduction

in disorientation between the initial and final configuration; the peak has shifted to the left

and intensified. Also, the final frequency distribution is smoother than the initial condition,

which is true in all cases. In contrast, the z-compression case shows a spreading out of the

distribution of disorientation angle and a reduction in the peak, showing effective breakdown.

Also, the dependence of the behavior with respect to the strain path (comparing the blue

and black curves) is a bit larger. In conclusion, microscale and mesoscale trends have strong

correspondence, and z-case is most effective.

3.4.2 Interaction of alpha and beta phases

As the processing temperature increases, a greater percentage of softer BBC β phase is

present in Ti-6242, typically greater than 75%. This reduces the required force to deform the

billet, but also the soft phase may fail to induce much strain into the remaining α phase, and

subsequent phase transformation during cooling can lead to unfavorably clustered textures

of α particles. Thus, models are desirable to understand the stress and strain partitioning
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Figure 3.8: Description of alpha-beta phase models at 1173 K: separation of spherical alpha
particles and orientation of each alpha particle for 18 individual simulations; log-normal
distribution of beta-matrix

in bi-modal titanium during 1173 K processing. As a benchmark study, microstructures of

beta-phase grains are generated as shown in Figure 3.8, with a random initial texture. Two

spherical alpha particles are embedded in this matrix, with a diameter of 26 microns. Three

separations of the particles are given, as multiples of the diameter, and correspond one-to-

one with the volume fraction in the assumed periodic arrangement. Uniaxial compression is

applied parallel to the x-axis (passing through both particles, in series) at a fixed strain rate

ε̇ = 9× 10−3s−1. Six combinations of c-axis orientations are selected for the alpha particles,

given in the table below, with either identical or misoriented c-axes. A constant number of

26 hexahedral finite elements span the diameter of the alpha spheres, to fix the level of mesh

resolution in the models.

Examples of the deformed configuration of the models are shown in Figure 3.9. The

maximum strain before divergence in the c-axis parallel case was 20% due to the hard

orientation; the spheres remained almost rigid, and the beta elements became highly

distorted. Higher 60% max strain was achieved for the c-axis perpendicular cases, since the

alpha particles deform as well, though about 1/3 less because of the slip resistance disparity.

Since the levels of imposed strain are much lower than typical inputs for mill processes, these

results are considered as preliminary and warrant further study for FE mesh robustness.
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Figure 3.9: Deformed shape of alpha particles during compression and distortion of β-phase
finite elements

Comparisons of disorientation developed at the maximum imposed strain for each

orientation configuration and two particle separations are given in Figure 3.10. Disorientation

is slightly greater for larger separation, and soft particles become less disordered when in

series with hard particles than with soft particles. Note that the c-axis=(0,0,1) case was

oriented at 30 degrees to have an orientation gradient.

3.5 Conclusion

Crystal plasticity modeling of alpha and beta phase Ti-6242 of mechanical processing at

high temperature is performed using the WARP3D finite element code. Mesoscale results

of texture evolution in ideal-oriented microtextured regions (MTR) from previous term were

used to inform microscale models of alpha particle distributions to determine the effect

of heterogeneity on the MTR evolution. For the cases of strain history imposed on the

microscale models, the disorientation remained small when the mesoscale disorientation was

small and became larger when the mesoscale exhibited larger disorientation. Orientation

gradients develop for a particular alignment. While the c-axis parallel loading produced

the largest breakdown, this loading also required 50% larger stress. Preliminary studies of

alpha and beta phase mechanical interaction were conducted based on material parameters
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Figure 3.10: Disorientation at max strain before divergence of FE solution in α-particles
with 2 spacings

fitted to data for 1173 K. Distortion of finite elements representing the softer beta phase

often led to FE convergence issues and limited the maximum compressive strain achieved.

Orientation of c-axis of alpha particle with respect to loading direction had a much larger

effect on disorientation versus particle separation.
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Chapter 4

Highly efficient fast Fourier transform

method
1

4.1 Introduction

Mesoscale modeling has often been employed to investigate microstructure evolution under

external loading, for example of polycrystalline or composite materials [73]. Image-based

simulations of realistic microstructures enable comparisons directly with in-situ experiments.

Such simulations usually require high resolution and thus present computational challenges.

The finite element (FE) method is the prevailing numerical method to solve the governing

equations of such problems. However, the FE method does not scale well for heterogeneous

nonlinear materials because direct factorization of the global tangent matrix is required

for robustness. As an alternative to the FE method, fast Fourier transform (FFT) based

methods are becoming increasingly popular to solve boundary value problems defined over

representative volume elements (RVEs) [55]. FFT-based methods are more efficient than

the FE method, especially for large scale problems with refined mesh resolution [72], since

the global matrix factorization is avoided. Also, FFT-based calculations are performed on

regular grids, making it straightforward to transfer experimental data, including electron

1This Chapter has been adapted from “Ma, R. and Truster, T.J., 2018. FFT-based homogenization
of hypoelastic crystal plasticity model at finite strains. Computer Methods in Applied Mechanics and
Engineering, under review”.
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or X-ray diffraction measurements [82], directly to the simulations without requiring extra

effort for mesh generation.

The FFT-based method was first proposed by Moulinec and Suquet [63, 64]. The

periodic equilibrium equation is reduced to the Lippman-Schwinger (L-S) equation when

the polarization field is projected onto a homogeneous reference material. The L-S equation

is conveniently solved by the Green’s function method, and this process is iterated until

stress equilibrium is achieved. The numerical robustness and convergence behavior of this

basic scheme has been improved by reformulating as the Eyre-Milton scheme [16] or the

augmented Lagrangian scheme [58], both of which have been found to be special cases of

the polarization scheme [62]. Recently, the basic scheme was reenvisioned as the Neumann

expansion of a linear operator [16] and alternatively solved by Krylov subspace methods

for higher efficiency [96, 28]. Later, variational frameworks of the FFT-based methods were

proposed to deal with infinite contrast problems [5] and improve the performance of the

basic scheme [91]. The latter, termed as the Fourier-Galerkin scheme, uses trigonometric

polynomials as the shape functions, and the Green’s operator is independent of the reference

material. A Newton-Krylov method is used to solve the discretized nonlinear equations

to enforce strain compatibility, and the conjugate gradient method proves to be the most

efficient linear solver [61]. Recently, the Fourier-Galerkin framework was applied to solve

infinitesimal strain problems [95] and finite strain problems [8]. Its consistent tangent

stiffness can be explicitly implemented since this formulation is independent of the reference

material.

The Fourier-Galerkin scheme, although efficient and robust, was not yet been extended to

solve finite strain crystal plasticity (CP) problems, where extremely high efficiency is required

to perform image-based simulations. Also, when solving either stress-driven or concurrent

multiscale modeling problems, the homogenized tangent stiffness relating the effective RVE

stress to effective RVE strain is advantageous for consistent linearization [14] compared with

finite difference secant approximations. The homogenized stiffness was defined from the

deformation energy point of view, but only upper and lower bounds were derived for linear

elastic materials [92]. Thus, the algorithmic tangent stiffness has not yet been derived for

the Fourier-Galerkin scheme, especially for highly heterogeneous nonlinear cases.
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The FFT-based method was first applied to simulate polycrystalline material behavior by

Lebensohn under small deformations [42]. This computational approach was then validated

against in-situ experiments of polycrystalline copper [43]. However, until recently, only

limited investigations were performed to solve finite strain CP problems using FFT-based

methods. The first attempt was published by Eisenlohr et al. [14], based on previous work

[40] for composite materials. Upon this framework, different FFT schemes (basic scheme,

Eyre-Milton scheme, and augmented Lagrangian scheme) and nonlinear equation solvers

(Richardson, GMRES, and inexact GMRES) were compared to find a robust and efficient

combination to solve CP problems [79]. This scheme was further employed to calibrate

the yield surface of AA3104 aluminum alloy by means of full-field virtual experiments

with 500 grains [97]. Later, the efficiency of this scheme was enhanced by a semi-explicit

time-integration CP formulation defined in the current configuration [66]. Other recent

extensions include a finite difference approximation to remove ringing artifacts [90] and GPU

parallel programming to accelerate the FFT evaluation [32]. Most of the aforementioned

investigations are based on the fixed-point scheme with augmented Lagrangian method [58].

Thus, the numerical behavior depends significantly on the chosen reference material and

consistent linearization is difficult to be performed.

The current investigation launches from the Fourier-Galerkin scheme [8], which is

independent of the reference material and more efficient than other FFT-based methods

[61]. A general interface is proposed between the FFT-based method and objective rate

constitutive models, which is widely used in FE software including WARP3D [12]. One

advantage of objective rate constitutive models compared with hyperelastic models is that

small strain elasto-plastic models can be directly used without modification, including the

return mapping algorithm. The consistent tangent stiffness is derived for this interface

by pulling back the Jacobian matrix from the unrotated configuration to the reference

configuration. Finite strain CP kinematic equations based on the Green-Naghdi rate were

proposed in [50], providing a general interface for most existing CP constitutive models. Also,

the algorithmic homogenized tangent stiffness is derived for the Fourier-Galerkin scheme,

which is essential for concurrent multiscale modeling [35] and mixed boundary condition

treatment [29]. The proposed local and homogenized tangent stiffness expressions improve
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the convergence behavior of the Newton iteration and the conjugate gradient (CG) solver.

The entire framework is implemented in FORTRAN utilizing OpenMP parallelism, and

investigated through a series of finite strain CP examples with various levels of heterogeneity.

This chapter is organized as follows: In Section 4.2, the Fourier-Galerkin method is

reviewed, and the homogenized tangent stiffness is derived for mixed boundary conditions

and multiscale modeling. In Section 4.3, a general interface is proposed to combine the

FFT-based method and objective rate constitutive models. The consistent tangent stiffness

is pulled back directly from the unrotated configuration to the reference configuration.

Numerical tests are used in Section 4.4 to verify and analyze the proposed FFT-based

method against the FE method and other FFT-based methods. Also, the inexact Newton

method is incorporated to further improve its efficiency. Section 4.5 summarizes the current

investigation with major conclusions.

4.2 Homogenization of the Fourier-Galerkin method

This section begins with an overview of the Fourier-Galerkin method. Then the tangent

stiffness homogenization of this scheme is derived, and it is applied herein to solve problems

with mixed boundary conditions in an implicit fashion. Distinguishing implementation

aspects are highlighted.

4.2.1 The Fourier-Galerkin method

The Fourier-Galerkin method is previously proposed in [91] and briefly summarized below.

The relevant boundary value problems are defined in a regular shaped representative volume

element (RVE) denoted by B, which is a rectangle for 2D problems and a cuboid for 3D

problems (Figure 4.1). Heterogeneous materials are represented in this region through

a discretization into pixels (2D) or voxels (3D), and periodic boundary conditions are

prescribed.
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For finitely-deforming bodies under quasi-static conditions, the balance of linear momen-

tum can be expressed in the reference configuration as

Div P = 0 in B, P · n−#, 〈F〉 = F̄ (4.1)

where Div represents divergence in the reference configuration, P is the first Piola-Kirchhoff

stress, n is the outward unit normal vector, and F̄ is the applied RVE average deformation

gradient. Here, 〈·〉 denotes the volume average of a field computed using the trapezoidal

rule. Periodic and anti-periodic boundary conditions are denoted by # and −#, respectively.

The weak form is derived by multiplying the strong form (4.1) with an arbitrary periodic

displacement perturbation w:

∫
B

w ·Div P dΩ = 0, ∀w ∈ L2
# (4.2)

in which L2
# denotes a space of periodic functions over B where each vector (tensor)

component is square-integrable [91]. Performing integration by parts yields:

∫
B

δF̃ : P dΩ = 0, ∀ δF̃ ∈ L2
#, ∇× δF̃ = 0. (4.3)

Note that δF̃ is the gradient of a virtual displacement field, for example δF̃ = ∇w, and

therefore must be compatible (i.e. its curl vanishes). Also, the virtual work contribution

vanishes over the boundary, since the displacement perturbation is periodic and the traction

field P · n is anti-periodic. In contrast to the FE method, the FFT-based methods usually

discretize the deformation gradient F instead of the displacement u. Specifically, in the

Fourier-Galerkin method, the Green operator G is introduced to project an arbitrary second

order tensor field δF into its curl-free components δF̃ [91], thereby relaxing the requirement
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for the compatible test function field:

∫
B

(G ∗ δF) : P dΩ = 0, ∀δF ∈ L2
# (4.4a)

Ĝijkl =

 0 ξ = 0

δikξjξl
‖ξ‖2 ξ 6= 0

(4.4b)

Here, ∗ denotes convolution, a superimposed hat denotes the quantities in Fourier space, and

ξ is the frequency vector. Taking advantage of the self-adjoint property of the G operator,

the weak form (4.4a) of equilibrium in the RVE can be expressed for arbitrary (possibly

incompatible) test functions δF as follows:

∫
B

δF : (G ∗P) dΩ = 0, ∀δF ∈ L2
#. (4.5)

To evaluate the integral in equation (4.5), the RVE B is first discretized into a regular

grid of points:

xi =

(
−1

2
+

1

2Ni

,−1

2
+

3

2Ni

, . . . ,
1

2
− 1

2Ni

)
× Li, i = 1, 2, 3 (4.6)

where xi is the grid point coordinates, Ni is the total number of grid points, and Li is the RVE

length in the i th direction. In the current research, only odd numbered Ni are considered

to avoid the influence of the Nyquist frequency. Then, the trigonometric polynomial shape

functions can be defined as

F(x) = Fkϕk(x), ϕk(x) =
1∏3

j=1Nj

∑
m

[
3∏
l=1

exp 2πi

(
mlxl
Ll
− klml

Nl

)]
(4.7)

Here, m and k are the truncated frequency vectors. The periodic boundary condition on F

is enforced by the periodicity property of the trigonometric polynomials.

Two integration strategies can be performed after discretizing the G operator. One

utilizes the Plancherel theorem and properties of trigonometric polynomials to analytically

evaluate the integrals, leading to the Galerkin approximation (Ga) algorithm. The

other utilizes the trapezoidal rule, leading to the Galerkin approximation with numerical
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integration (GaNi) algorithm [95]. In this chapter, the GaNi scheme is employed to achieve

better numerical efficiency. Evaluating (4.5) by the trapezoidal rule, taking advantage of the

Kronecker delta property of the trigonometric polynomials, and considering the arbitrariness

of δF leads to the discretized equations:

G ∗P = 0 (4.8a)

F−1
[
Ĝ : F (P)

]
= 0 (4.8b)

where F and F−1 represent respectively forward and backward Fourier transformation. Since

(4.8a) appears similar to the strong form (4.1) satisfied at each grid point, the Fourier-

Galerkin method with numerical integration is equivalent to a spectral collocation method.

The nonlinear equation (4.8a) in terms of F can be solved by the Newton-Raphson

method. Since the projection operator G is independent of the deformation gradient,

consistent linearization of equation (4.8a) is possible for an arbitrary Newton iteration (i):

G ∗
(
P(i) + A(i) : ∆F(i+1)

)
= 0 (4.9a)

G ∗
(
A(i) : ∆F(i+1)

)
= −G ∗P(i). (4.9b)

The conversion to equation (4.9b) utilizes the linearity of the G operator. Equation (4.9b)

can be solved by the Newton-Krylov method with a conjugate gradient solver. The existence

and uniqueness of the solution has been proven in [96].

In the original formulation, a hyperelastic material was assumed where P equals to

∂W/∂F and A equals to ∂P/∂F. One contribution of the current work is to derive and

implement a general interface between the Fourier-Galerkin method and hypoelastic-plastic

materials, in particular a crystal plasticity material model.

4.2.2 Homogenized tangent stiffness

The homogenized tangent stiffness of the RVE problem is essential for treating mixed

boundary conditions and for concurrent multiscale modeling within the Newton-Raphson

method. In the former case, it is used to update the average deformation gradient F̄ according
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to the prescribed average stress P̄. In the latter, it is used to update the macroscopic

displacement field [39]. The analytical stiffness evaluation shown below requires only one

call to the constitutive subroutine or recall from memory per grid point, as opposed to

6 or 9 constitutive computations per grid point for the finite difference evaluation. This

cost savings is greater for more involved constitutive models, such as crystal plasticity.

Previously, the homogenized tangent stiffness was computed from either volume average [14]

or finite difference [33] methods. Recently, an analytical expression was achieved by utilizing

the Lippmann-Schwinger equation [25], but this solution applies to the basic scheme which

depends on the reference material. Here, the analytical form of the consistent homogenized

tangent stiffness is derived for the Fourier-Galerkin method that is appropriate for highly

heterogeneous and nonlinear material.

The homogenized tangent stiffness Ā is a fourth order tensor defined as

d 〈P〉 = Ā : d 〈F〉 =

〈
∂P (F)

∂F
:
∂F

∂ 〈F〉

〉
: d 〈F〉 . (4.10)

In this equation, Ā is defined as the volume average of the inner-product between local

stiffness and local strain perturbations caused by the macroscopic strain 〈F〉 = F̄.

For the history dependent material response considered in Section 4.3, the RVE

deformation is tracked through a quasistatic time step series. Hence, the first term

∂P (F) /∂F in (4.10) is the algorithmic consistent tangent A at each grid point obtained

from the material update routine as shown in Section 4.3.2

A (F) =
∂P (F)

∂F
. (4.11)

The second term ∂F/∂F̄ can be obtained from the Fourier-Galerkin discrete equation

(4.8a) by taking the derivative on both sides:

G ∗
(
∂P (F)

∂F
:
∂F

∂F̄

)
= 0. (4.12)
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Note that the current RVE deformation gradient can be decomposed into an average part

and a perturbation part:

F = F̄ + F̃,
〈
F̃
〉

= 0 (4.13)

where the perturbation part F̃ should be compatible, and its volume average should be zero.

Differentiating equation (4.13) with respect to F̄ leads to an expression relating

macroscale and microscale strains:

∂F

∂F̄
= I +

∂F̃

∂F̄
. (4.14)

Here, I is the fourth order identity tensor. Substituting equations (4.11) and (4.14) into

equation (4.12) and employing the linearity of the G operator produces an implicit expression

for the second term ∂F/∂F̄ representing how a change in macroscale F̄ affects the microscale

perturbation F̃:

G ∗

(
A :

∂F̃

∂F̄

)
= −G ∗A. (4.15)

This system of equations for the 81 × N1 × N2 × N3 unknowns within ∂F̃/∂F̄ has direct

analogy with the consistent tangent of the FE2 approach relating macroscale and microscale

displacement degrees of freedom, contained for example in [39]. It can be solved by the

conjugate gradient method under the following constraint:

1

V

∫
B

∂F̃

∂F̄
dV = 0. (4.16)

Both the compatibility constraint and (4.16) are ensured by the properties of the G operator

and the conjugate gradient algorithm [95]. This solution along with (4.14) can be substituted

into definition (4.10) to yield the homogenized stiffness tensor Ā.

It should be noted that equation (4.15) can be decomposed and implemented as 4 (2D)

or 9 (3D) independent equations, as suggested in [25]. In this way, a previously implemented

conjugate gradient solver can be reused, and the total amount of required memory can be

reduced.
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4.2.3 Mixed boundary conditions

The Fourier-Galerkin method is extended to treat mixed boundary conditions as an

application of the homogenized tangent stiffness. The loading directions need to be grid-

aligned instead of being arbitrary [29].

At the start of each time step, the components of macroscopic strain FBC and stress PBC

are prescribed as boundary conditions, where individual components are exclusively of strain

or stress type. Two Newton loops are required to search for the final solution. The strain

iteration searches for the equilibrium stress state according to equation (4.8a) under given

homogenized deformation gradient F̄. The stress iteration searches for the homogenized

deformation gradient which fulfills the prescribed stress boundary condition P̄ = PBC . Each

strain component corresponding to the prescribed PBC is updated at each stress Newton

iteration until the homogenized stress P̄ converges to PBC with the following convergence

criteria satisfied: ∥∥P̄−PBC

∥∥∥∥P̄∥∥ < tol. (4.17)

An algorithm for this two-loop procedure is presented in Appendix B. To summarize briefly,

at the start of a time step, the deformation gradient components corresponding to the

prescribed stress components are extrapolated by the current (PBC,n+1) and previous (PBC,n)

stress boundary conditions as in equation (4.18a); subsequent iterations proceed using

equation (4.18b):

F̄
(1)
ij = F̄n +

(
∂F̄

∂P̄

)
ijkl

(PBC,n+1 −PBC,n)kl (4.18a)

F̄
(i+1)
ij = F̄

(i)
ij +

(
∂F̄

∂P̄

)
ijkl

(
P̄(i) −PBC,n+1

)
kl

(4.18b)

The average compliance tensor ∂F̄/∂P̄ is computed as follows. The 9× 9 stiffness tensor

Ā is first solved from equations (4.10) and (4.15). Rows corresponding to the essential

boundary conditions are set to zero, while the diagonal entries are set to one. Then the

compliance tensor is calculated as the inverse of the modified stiffness tensor.
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4.2.4 Implementation aspects

In order to combine the Fourier-Galerkin method with general Green-Naghdi rate based

hypoelastic-plastic constitutive models, a highly-efficient program is developed and pro-

grammed in FORTRAN to solve large-scale, 3-D solid models with periodic boundary

conditions. The discrete FFT from Intel Math Kernel Library is utilized in the current

program. Also, the projection operator G is organized such that the zero frequency is in

the middle of the array. Therefore, “fftshift” is performed by multiplying the Fourier basis

function to be consistent with the discrete FFT algorithm. All quantities corresponding to

the same tensor component are aligned continuously in the memory to improve the cache

efficiency. The deformation field is recovered by least squares projection via Lagrangian finite

element formulations, assuming that the deformation gradient in each element is constant.

4.3 Hypoelastic type crystal plasticity model

A hypoelastic crystal plasticity framework utilizing the Green-Naghdi objective stress rate

was developed for the finite element method in [57], accounting for the evolution of crystal

lattice rotation. Extensions to multi-hardening variables for unequal slip system resistance

and to nonlocal computation of geometrically necessary dislocations were performed in [50]

and [86], respectively. Section 4.3.1 summarizes the general kinematic equations of this

CP framework. However, this framework has currently been implemented in WARP3D

with an inconsistent material tangent stiffness that lacks contributions of rotation between

the reference and current configuration. Therefore, in Section 4.3.2, we propose a general

interface connecting the FFT-based method and objective rate constitutive models. We

derive the direct pull back of the local tangent stiffness from the unrotated configuration to

the reference configuration to ensure accelerated convergence when inserted into the Fourier-

Galerkin method (equation (4.9b)).
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4.3.1 Kinematic equations

Within a finitely deforming body described by the map φ (X, t) for a collection of material

points X at time t, the classical multiplicative decomposition of the deformation gradient

yields

F = FeFp (4.19)

where F = ∂φ/∂X is total deformation gradient and Fe, Fp represent correspondingly the

elastic part and plastic part. The velocity gradient tensor L is usually decomposed into the

symmetric part D and skew part W:

L = ḞF−1 = D + W (4.20)

For crystal plasticity (CP) modeling, it is commonly assumed that the plastic velocity

gradient l̃p in the lattice frame can be decomposed into the tensorial summation of the

resolved shear strain rate γ̇(s) on each slip system:

l̃p =

nslip∑
s=1

γ̇(s)
(
b̃(s) ⊗ ñ(s)

)
(4.21)

The orientation of slip system (s) is represented by the normalized Burgers vector b̃(s) and

the slip plane normal ñ(s). The relation between l̃p and the plastic velocity gradient lp in the

corotational, intermediate frame is a transformation using the plastic rotation tensor from the

polar decomposition Fp = RpUp. Quantities dp and wp in the intermediate configuration,

relevant to the Green-Naghdi rate, are defined as the symmetric and skew part of lp:

dp =

nslip∑
s=1

γ̇(s)RpTm̃(s)Rp, m̃(s) = sym
(
b̃(s) ⊗ ñ(s)

)
(4.22a)

wp =

nslip∑
s=1

γ̇(s)RpT q̃(s)Rp, q̃(s) = skew
(
b̃(s) ⊗ ñ(s)

)
(4.22b)

where m̃(s) and q̃(s) represent the symmetric and skew parts of the slip system tensor.

According to the derivations in [57] assuming small elastic strains, the constitutive equation

66



is specified by the Green-Naghdi rate σ̌ of the Cauchy stress σ, as

σ̌ = C :
(
D−RdpRT

)
−RwpRTσ + σRwpRT = σ̇ + σΩ−Ωσ (4.23)

where F = RU and Ω = ṘRT . In this equation, the lattice rotation caused by the plastic

strain gradient is explicitly considered, making it suitable for large strain problems. The

constitutive relation simplifies greatly when stated in the corotational frame

ṫ = C0 : (d− dp) + RwpRT t− tRwpRT (4.24)

where t is the unrotated Cauchy stress, d = RTDR is the strain rate tensor in the

corotational frame, and C0 is the tensor of elastic material moduli in the corotational frame.

In order to avoid tying the derivations to a specific choice of a slip system hardening

model, the CP constitutive relation for plastic slip and hardening evolution can be expressed

in the general form:

γ̇(s) = γ̇(s) (t, {ξ}) , ξ̇ = ξ̇ (t, ξ) (4.25)

where ξ = {ξ(1), ξ(2), . . . , ξ(n)} is a set of internal hardening variables. The typical dependence

on the generic form of the local Jacobian matrices, for example ∂t/∂d, can be found in

previous work [57, 50]. Significantly, this generalized stress update algorithm clearly isolates

the kinematics from the model dependent terms such that a variety of constitutive models,

for example mechanical threshold model [38] and dislocation density based model [49], are

easily accommodated.

4.3.2 Consistent tangent stiffness in reference configuration

The material model’s objective time integration is carried out on the unrotated configuration

to be independent of superposed rigid body motions. The geometric transformation of

material stiffness from unrotated configuration to reference configuration for the Green-

Naghdi objective rate was approximately computed previously in [26]. Such approximation

usually leads to slower convergence rate and increase in computation time [18]. Recently,

consistent linearization of Jaumann rate based elasto-plastic material model was derived [75].
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In this section, the Green-Naghdi rate based material stiffness is consistently transformed

into the reference configuration. Note that such exact geometric transformation yields a

non-symmetric tangent stiffness, which has limited influence on FFT-based methods since

the global stiffness matrix is never explicitly assembled or factorized.

Herein, we employ the time integration scheme from [50] using the midpoint rule to evolve

the material state from a generic time step tn to tn+1 = tn + ∆t. The target of this section is

to pull back the local tangent from the unrotated configuration to the reference configuration

∂tn+1

∂∆dn+ 1
2

⇒ ∂Pn+1

∂Fn+1

(4.26)

where the increment notation ∆ (·) = (·) ∆t is introduced. In this equation, the strain rate

dn+ 1
2

is defined in the unrotated configuration corresponding to Dn+ 1
2

at an intermediate

time step, given as follows:

∆Dn+ 1
2
≡ sym

[
(Fn+1 − Fn)F−1

n+ 1
2

]
, ∆dn+ 1

2
= RT

n+ 1
2
∆Dn+ 1

2
Rn+ 1

2
. (4.27)

Here, Fn+ 1
2

is defined by the midpoint rule

Fn+ 1
2

=
1

2
(Fn+1 + Fn) = Rn+ 1

2
Un+ 1

2
. (4.28)

The relation between tn+1 and Pn+1 reads

Pn+1 = Jn+1Rn+1tn+1R
T
n+1F

−T
n+1. (4.29)

Then, the tangent stiffness in both configurations can be defined in terms of total differentials

of the respective algorithmic equations as

dPn+1 = A : dFn+1, dtn+1 = c : d∆dn+ 1
2
. (4.30)

The unrotated configuration moduli c emerges from the total derivative of the algorithmic

counterpart of (4.24) and has been presented in [57]. Then, the relationship between the
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algorithmic moduli A and c is obtained by directly differentiating (4.29). This involved

derivation is presented in Appendix A.

4.4 Numerical results and discussion

In this section, the Voce model is used to illustrate the accuracy and efficiency of the current

FFT-based method compared with the FE method and a reference FFT implementation.

The Voce model typically adopts a power-law relation without temperature effects. All slip

systems are assumed to have isotropic resistance with equal saturation stress. The relation

between resolved shear strain rate γ̇(s) and resolved shear stress τ (s) in the Voce model reads

γ̇(s) =
γ̇0

τ̃

∣∣∣∣τ (s)

τ̃

∣∣∣∣n−1

τ (s). (4.31)

Here, (s) denotes the slip system, γ̇0 is the reference slip rate, and τ̃ replaces ξ in equation

(4.25) as the hardening variable. The slip system resistance τ̃ is decomposed into the intrinsic

(yield) resistance τy and the extrinsic (hardening) resistance τw

τ̃ = τy + τw. (4.32)

The extrinsic resistance τw evolves as a function of the slip system activity γ̇(s)

τ̇w = θ0

(
1− τw

τv

)m nslip∑
s=1

∣∣γ̇(s)
∣∣ (4.33)

where θ0 is the initial hardening rate, and the work hardening saturation strength τv sets

the upper bound of τw. The exponents m and n are separate parameters.

All numerical tests herein are performed on a cluster with compute nodes running CentOS

6.7 having 20 Intel Xeon Cores and 512 GB memory. The finite element code WARP3D [12],

reference DAMASK FFT-based method [14], and proposed Fourier-Galerkin method are each

written in FORTRAN and are compiled with Intel FORTRAN and Math Kernel Library

(MKL) at the highest permissible optimization level. Jobs are run on a single node with the

number of threads indicated in the problem description. The CP material subroutines in the
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FE and Fourier-Galerkin codes are exactly identical. These similarities provide a platform

for fair comparison of the methods.

However, certain differences in implementation also influence the methods’ relative

efficiency and are summarized below. First, the finite elements used in this investigation

are 8-node B-bar elements with 8-point integration, while in the FFT-based method the

Galerkin approximation with numerical integration (GaNi) is adopted with one integration

point per grid point. Therefore, the stress update in the FE method costs 8 times as much as

the FFT-based method when the total number of elements and grid points are the same. This

difference is not important when multiple threads are used for stress update, see discussions

below. Incidentally, since u and F are the primary unknown field for the FE and FFT-

based methods, respectively, the latter method has 3 times the number of global degrees

of freedom. Second, periodic boundary conditions (PBC) are used in the FE method to

quantitatively compare with the FFT-based method results. These conditions are achieved

by means of eliminating the dependent displacements in the equilibrium equations, which

avoids increasing the total number of equations and computational cost. Third, in the FE

method, the Pardiso direct solver is used, and the termination criteria of each Newton step

is when the global iterated residual norm ‖Rk‖ is less than η‖R0‖ for a specified tolerance η.

In the FFT-based method, the conjugate gradient (CG) solver (called DCG) from the MKL

library is used, and the strain iteration loop is stopped when ‖δFk‖ ≤ η‖∆F‖. Lastly, odd

numbers of grid points or elements are used for each simulation to avoid the influence of the

Nyquist frequency. This approach slightly increases the computation cost of DFT but leads

to strain compatibility and stress equilibrium simultaneously [8].

In the following sections, the results from the FFT-based method are first verified against

the FE method. Key emphasis is placed on the local stress distribution, the orientation

distribution and the algorithmic convergence rate. After that, the inexact Newton method is

applied to the FFT-based method to further improve the efficiency, and the relative influence

of CG tolerance and Newton tolerance are discussed. Lastly, the computational cost of the

FFT-based method is compared with the FE method and a reference FFT-based method.
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Figure 4.1: Spatial discretization of periodic RVE with mesh/grid resolution of 39 × 39 ×
39. Each color represents a randomly chosen initial orientation considering FCC crystal
symmetry.

Table 4.1: Material parameters based on those from [14]
C11 C12 C44 γ̇0 τy τv θ0 n m

Unit GPa GPa GPa ms-1 MPa MPa MPa - -
Value 106.75 60.41 28.34 1.0 31 63 75 20 2.25

4.4.1 Verification and validation

To verify the FFT-based method against the FE method, a periodic representative volume

element (RVE) with 30 randomly oriented grains is generated by Neper [71]. An FCC crystal

structure with 12 slip systems is considered here along with the material parameters in Table

4.1 [14]. The RVE is discretized into 39 × 39 × 39 voxels, as shown in Figure 4.1. Uniaxial

tension is applied in a series of 1000 equal increments of strain to reach the following total

values of strain and stress:

F =


1.5 0.0 0.0

0.0 ∗ 0.0

0.0 0.0 ∗

 , P =


∗ ∗ ∗

∗ 0.0 ∗

∗ ∗ 0.0

 . (4.34)

Various results from the FE and FFT-based methods are compared in Figure 4.2 to

Figure 4.4. Since both numerical methods are Galerkin-based and are solving the same

boundary value problem (constitutive relation, geometry, loading), all computed differences

can be attributed to differences in the approximating shape functions and mesh resolution.
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Figure 4.2: Homogenized stress-strain relation from FFT-based method and FE method

From the homogenized stress-strain curve in Figure 4.2, the homogenized loading stress (σxx)

of the FFT-based method appears slightly lower than the FE method. A similar trend is

also observed in [14], but our difference is much less obvious. Crystal orientation and local

stress distributions are presented in Figure 4.3. The grains experience similar fragmentation

and rotation in each case. Stress concentrations at triple junctions of grain boundaries

are captured in both methods. Even though the general distributions are similar, certain

differences regarding local perturbations still exist, for example in the longitude stress at the

upper right edge. Also, the transverse stress in the FE method seems to be more affected

by the voxelated, non-smooth grain boundary. Similar trends are also found in Figure 4.4

by examining the von Mises stress distribution along the RVE diagonal. The stress field

within the grains are similar for both methods. Larger discrepancy is observed at the grain

boundaries, where material heterogeneity and therefore stress discontinuity exists. Such

stress perturbations at grain boundaries may cause stress concentrations and lead to failure

hot spots [51]. Also, at position 0.8, stress oscillations appear in the FFT results which are

attributed to the Gibbs phenomena. Both methods are expected to converge to a similar

computed response as the grid resolution increases and the grain boundary smoothness

increases.
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Figure 4.3: Local stress distribution (MPa) when homogenized strain F̄xx = 1.5. (a) FFT-
based method; (b) FE method.
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Figure 4.4: Von Mises stress distribution along RVE diagonal when homogenized strain
F̄xx = 1.5. FE stress field is recovered by piecewise linear interpolation; FFT stress field is
recovered by trigonometric polynomial interpolation.
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Figure 4.5: Convergence progress of conjugate gradient solver.

Convergence progress of the CG solver in the FFT-based simulation is presented on a

logarithmic scale in Figure 4.5. Non-monotonic convergence of the residual is observed when

F̄xx equals to 1.005. Such oscillations have been observed for hyperelastic materials in [65]

and may be caused by the derivative calculation in the Fourier space. Large phase contrast

can also trigger osciallations [96] and can be reduced through the Galerkin approximation

(Ga) scheme when two-grid integration is used [61]. Presently, the transition between elastic

and plastic response in certain grains manifests as a large phase contrast when F̄xx equals to

1.005, leading to such oscillations. When the deformation gradient is large enough (F̄xx =

1.25), all the grains in the RVE deform plastically, and the phase contrast is less obvious. In

this case, oscillations are only observed in the first several iterations. We remark that the

CG convergence rate decreases as the deformation gradient further increases into the finite

strain region. This may be caused by the geometric stiffness induced phase contrast increase.

The evolution of the residual norm from the Newton algorithm is shown in Figure 4.6

(a) and (b) respectively for the strain iteration and the stress iteration. The residual

norm convergence rates reflect the accurate linearization of the local material tangent A

and the global homogenized tangent Ā. Both of the iteration loops converge at a rate

between super-linear and quadratic. The global applied strain F̄ appears to have a limited

influence on the convergence behavior. A better initial guess, such as extrapolating the
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Figure 4.6: Convergence progress of Newton iteration. (a) Strain iteration; (b) Stress
iteration.

microscale/polarization field at the grid points to the next load step, could also reduce the

initial error and number of Newton iterations.

4.4.2 Inexact Newton method and phase contrast study

In the previous simulation, a constant CG tolerance (equal to 1.0× 10−8) is applied during

every Newton iteration. Note that the deformation gradient field remains compatible during

every CG iteration, so that the global Newton nonlinear solver can search for a stress field

corresponding to the compatible strain field. Since the earliest Newton updates of a new step

are often imprecise, it is usually not necessary to solve the linear system (4.9b) accurately.

In this section, the inexact Newton method with evolving CG tolerance is applied to the

FFT-based method to further improve its numerical efficiency.

The evolving CG tolerance is determined according to previous experience of the

convergence rate in Figure 4.5 and 4.6. The initial CG tolerance is set as ηCG = 1.0× 10−4.

The evolving CG tolerance is set as ηCG = ‖RNR‖2/10 to ensure quadratic convergence rate.

The lower bound of ηCG is set as 1.0 × 10−8, which is the constant CG solver tolerance in

the previous simulation and also for the reference case labeled exact Newton method in this

section.

A cubic RVE (39 × 39 × 39) with a spherical inclusion (with a diameter across 22 grid

points) is constructed to investigate the influence of evolving CG tolerance on the method’s
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Figure 4.7: Computational cost of exact Newton method and inexact Newton method for
varying elastic phase contrasts.

numerical behavior. The volume fraction of the spherical inclusion is about 11.3 %. For

simplicity, both the matrix and the inclusion are isotropic hypoelastic materials. The Young’s

modulus of the matrix is E = 12000.0 MPa, and the modulus of the inclusion is set to ρE

where ρ is the phase contrast. Poisson’s ratio is 0.3 for both materials. Constant-volume

tension boundary conditions are applied to a level of strain equals to 0.1.

The effect of the inexact Newton method on computational efficiency is shown in Figure

4.7 with the phase contrast ρ ranging from 2.5×10−2 to 6.7×103. A square root relationship

is observed between the CPU time and the phase contrast for both exact Newton method and

inexact Newton method, consistent with the theoretical analysis in [96]. The total CPU time

reduces by about 25% between the exact and inexact cases. Such improved efficiency is more

obvious for the cases with greater contrast ratio ρ, where more CG and Newton iterations are

required. Therefore, the inexact Newton method is beneficial for crystal plasticity problems,

where strong heterogeneity can exist between grains of different orientation.

To further investigate the influence of evolving CG tolerance on the global Newton

iteration, Figure 4.8 presents the residual norm history and required CG iterations for

two extreme cases of phase contrast corresponding to ρ = 2.5 × 10−2 and ρ = 6.7 × 103,

respectively. The exact CG and inexact CG curves in Figure 4.8 (a) and (c) indicate the value
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of the CG residual at the completion of the CG algorithm for the associated Newton iteration

on the horizontal axis. Note that the exact CG case has an essentially constant level for all

iterations while the inexact CG has larger values at earlier Newton iterations. Meanwhile,

the exact NR and inexact NR curves indicate the residual norm history of the strain Newton

iteration loop. For the ρ = 2.5 × 10−2 case, the relaxed CG tolerance has no influence on

the global Newton iterations. While for the ρ = 6.7× 103 case the inexact Newton method

converges somewhat more slowly than the exact Newton method, the prescribed tolerance

is still reached within 3 iterations. Both cases indicate that an inexact linear solution has

minimal effect during the first iteration.

The benefit of the relaxed CG tolerance is shown in Figure 4.8 (b) and (d), where the

number of CG iterations (which require one matrix multiplication and two DFT applications)

is decreased by a factor of two to four at the earliest Newton iteration. This reduction is

responsible for the lower CPU time in Figure 4.7. For this hypoelastic material example, the

global Newton residual is only slightly influenced by the relaxed CG tolerance, and additional

balancing of the computational cost between the CG solver and Newton solver could be

pursued. Note that the number of material stress and state updates is directly proportional

to the number of Newton iterations, so that this balance must be more carefully evaluated,

e.g. for the crystal plasticity case in Section 4.4.3.

4.4.3 Computational effectiveness

The major advantage of FFT-based methods over the FE method is that the former

avoids the stiffness matrix factorization, which is costly for large scale problems. Also, the

integration points coincide with the grid points, making it convenient for implementation.

On the other hand, the stress update process for more involved material models, for example

crystal plasticity model, can be a significant fraction of the overall execution time. Therefore,

we quantitatively analyze the accuracy and efficiency of both types of methods as the total

number of grid points increases.

The benchmark problem for this section is an RVE composed of 3 × 3 × 3 grains

with randomly distributed orientations and cubical shape in order to avoid the influence

of voxelated grain boundaries as the mesh resolution increases. Constant-volume tension
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Figure 4.8: Influence of CG tolerance on convergence progress: (a) residual norm history,
phase contrast ρ = 2.5×10−2; (b) conjugate gradient iterations, phase contrast ρ = 2.5×10−2;
(c) residual norm history, phase contrast ρ = 6.7 × 103; (d) conjugate gradient iterations,
phase contrast ρ = 6.7× 103.
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loading is employed, with Fxx = 1.1 and Fyy = Fzz =
√

1/Fxx. The Voce material parameters

are retained from Table 4.1. Five mesh resolutions are tested: 39 × 39 × 39, 57 × 57 × 57,

69 × 69 × 69, 87 × 87 × 87, 99 × 99 × 99. All simulations are performed with 9 computing

threads. Only the first three resolutions are tested for the FE case due to the computational

time.

Comparison with finite element (direct solver)

First, the influence of mesh resolution on the homogenized stress-strain curve is shown in

Figure 4.9. The mesh resolution does not affect the homogenized stress-strain curve, and the

difference between the FFT-based method and the FE method is negligible. This observation

is contrary to the conclusion in [14], where an FFT-based method converges to the exact

solution at relatively low resolution and the FE method gradually approaches to the FFT

solution. In their investigation, each grain contains approximately 82, 650, and 5000 elements

for FE method at different mesh resolutions. In the current investigation, each grain contains

approximately 2200 and 6900 elements for the first two mesh resolutions. Also, the planar

grain boundaries are accurately captured for each mesh resolution, as opposed to Voronoi

tessellations in [14] where the inclined grain boundaries are approximated by voxels in a

stair-step pattern with the size decreasing upon mesh refinement. Therefore, our results

suggest that approximately 2200 elements per grain is a large enough resolution to capture

the homogenized stress-strain curve for both the FFT-based method and the FE method for

cubic shaped grains.

The influence of mesh resolution on the computational cost is presented in Figure 4.10.

Figure 4.10 (a) and (b) present the CPU time for the FFT-based method and the FE method,

respectively. Generally, the FFT-based method is much more efficient than the FE method.

The CG solver scalability (including discrete Fourier transform) is about linear, while the

factorization scalability is about N3. The outcome is that the FE method requires about

10 times more runtime than the FFT-based method on the coarse mesh with a disparity

that increases for finer meshes. In fact, the finest FFT simulation finishes in almost less

time than the coarsest FE simulation. In both cases, the CPU time for the stress update

is almost linear with respect to the total number of elements. The FE method costs about
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Figure 4.9: Influence of mesh resolution on homogenized stress evolution. (a) FFT-based
method; (b) FE method.
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Figure 4.10: Relationship between computation cost and total number of grid points. (a)
FFT-based method; (b) FE method.

8 times more time for the stress update, since one finite element has 8 integration points.

Such a difference is not significant when multiple threads are used for the stress update and

when the linear solver becomes the most time consuming part.

Comparison with other crystal plasticity FFT implementation

In this section, the Fourier-Galerkin method is compared with the Düsseldorf Advanced

Material Simulation Kit (DAMASK), a widely used FFT-based implementation for crystal
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plasticity modeling at finite strains. Stress equilibrium is used as the convergence criteria:

‖Div P‖
‖P̄‖

≤ tol. (4.35)

This convergence criteria is also used in the Fourier-Galerkin method to enable an exact

comparison. The suggested relative tolerance 5.0 × 10−4 [79] is used in this section. In

DAMASK, the nonlinear GMRES solver from PETSc is utilized to solve the Lippman-

Schwinger equation. The convergence behavior depends on the choice of reference material,

which is updated at every Newton iteration.

The example RVE from the FE method comparison is adopted herein, and the loading

history is maintained. Figure 4.11 compares the Cauchy stress distribution between the

Fourier-Galerkin method and DAMASK. The distribution of σxx stress in the loading

direction is generally similar, but certain differences exist. For example, some stress

oscillations are more obvious in the Fourier-Galerkin method, while the peak stresses at

boundaries are generally higher in DAMASK. Such differences are entirely a consequence

of the kinematics and objective stress rate differences of the two formulations. The former

employs the Green-Naghdi rate while the latter effectively employs the Truesdell-Noll rate,

and the updates of the lattice orientations at finite strains probably differ. Otherwise, both

formulation effectively utilize trigonometric polynomial basis functions, the Voce material

model and parameters, and the same mesh resolution and loading history, and both are

solving the equilibrium governing equation by trapezoidal numerical integration. This

equivalence is confirmed by solving an RVE model composed of hyperelastic Saint Venant

Kirchhoff material in each phase. The grid point results between simulations using DAMASK

and the hyperelastic Fourier-Galerkin code [7] agree up to machine precision times the

convergence tolerance. For brevity, this comparison is not shown here.

The total computational cost in wall clock time versus the number of grid points is shown

in Figure 4.12; both simulations are performed on an Intel Xeon E5-2630 processor with 9

computing threads. It is observed that the total CPU time increases almost linearly for both

the Fourier-Galerkin method and DAMASK. In general, the total CPU time of DAMASK is

about 5 times larger than the Fourier-Galerkin method regardless of the total number of grid
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Figure 4.11: Tensile stress (σxx) distribution when Fxx = 1.1 under constant-volume tension
boundary condition (det F = 1) on 99 × 99 × 99 grids. (a) Fourier-Galerkin method; (b)
DAMASK.

points. Several algorithmic and implementational differences between these two codes can

explain this cost difference. We believe the primary contribution factor is that the nonlinear

GMRES solver adopted in DAMASK generally requires more constitutive updates as well as

more memory to store the orthogonal Krylov subspace vectors. Therefore, it is less efficient

for more involved crystal plasticity models. This point is motivated by Figure 4.13 below.

We consider all other differences to be secondary. Firstly, the theoretical basis of both codes

is identical up to CP kinematics and other aspects as mentioned in the preceding paragraph.

Secondly, the projection operator in DAMASK depends on the reference material, which

is updated by computations in each global iteration. Thirdly, the parallelism strategy in

DAMASK is distributed memory using PETSc and the FFTw library, while in the Fourier-

Galerkin code herein the strategy is shared memory using the Intel MKL library. Lastly,

both codes are implemented in FORTRAN, compiled with level 2 optimization using Intel

compiler on the same machine, and programmed with reasonably high levels of vectorization

and optimized programming.

The residual norm evolution of the Fourier-Galerkin method and DAMASK are shown

in Figure 4.13 (a) and (b), respectively, for load step 200 and Fxx = 1.1. The convergence

rate of the Fourier-Galerkin method (Figure 4.13 (a)) appears to be almost independent of

the grid resolution. Fewer Newton iterations are required at the expense of searching longer

for the best CG solution during each iteration. Such cost could be reduced by adopting the
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Figure 4.12: Total computational cost of Fourier-Galerkin method and DAMASK for same
convergence criteria and tolerance.

inexact Newton strategy as shown in Section 4.4.2. Quadratic convergence rate is achieved

because of the consistent linearization of the governing equation (4.8a) and the accurate

pull-back of material stiffness from the corotational frame to the reference configuration.

In comparison, DAMASK with nonlinear GMRES solver requires more Newton iterations

and the convergence rate is linear. The linear solver is more robust for higher contrast

problems [79] at the expense of more global iterations, which is less efficient for more involved

constitutive models. It is interesting to find that the convergence behavior of DAMASK

depends on the grid resolution. This observation may be explained by the efficiency of the

GMRES solver. As the grid resolution increases, GMRES is applied to systems with more

degrees of freedom. Therefore, more previous solutions need to be stored to achieve the

same level of accuracy. Meanwhile, the Fourier-Galerkin method with CG solver possesses a

convergence rate estimate depending only on the modulus contrast radio. For larger nonlinear

problems, the tangent modulus at each grid point changes only slightly since similar stress

states are encountered at intermediate grid points.

4.5 Conclusion

This manuscript presents a general framework that combines the FFT-based method,

objective stress rate constitutive models and treatment of mixed boundary conditions. More
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Figure 4.13: Convergence behavior of global Newton iteration when Fxx = 1.1 under
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specifically, a hypoelastic crystal plasticity (CP) framework utilizing the Green-Naghdi rate is

incorporated into this FFT-based method. The algorithmic homogenized tangent stiffness for

the Fourier-Galerkin method is derived in order to accommodate mixed boundary conditions.

The inexact Newton method is introduced to further improve the numerical efficiency. The

accuracy and computational cost of the Fourier-Galerkin method is compared with the FE

method and another widely used FFT-based implementation (DAMASK). Major conclusions

are summarized below:

1. The FFT-based method and FE method produce almost the same homogenized stress-

strain response. Certain differences exist in the local stress distributions, especially at

grain boundaries where stress concentrations exist.

2. The convergence rate of the global Newton iteration for the FFT-based method is

between superlinear and quadratic, indicating that both the local and homogenized

tangent stiffness are consistent.

3. The inexact Newton method can reduce the total computational cost by about 25%.

More sophisticated strategies to balance the convergence progress of the linear solver

and the nonlinear solver could further improve the method’s efficiency.
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4. The computational cost of the Fourier-Galerkin method versus the number of grid

points is approximately linear. This cost is much less compared with the FE method

and other FFT-based methods. The most time consuming part is the linear solver

(FFT-based method) and the factorization (FE method).

5. For modeling identical RVE, the Fourier-Galerkin method requires more CG linear

solver iterations and less nonlinear Newton iterations than DAMASK in a single time

step under the same convergence tolerance. This balance makes it more efficient overall

than DAMASK for simulations with involved constitutive models such as CP, at the

expense of robustness for solving high-contrast problems.

Future work will target the following challenges. First, preconditioning will be introduced

to the Krylov subspace solver to improve the robustness of the Fourier-Galerkin method.

More specifically, proper preconditioning may improve the Fourier-Galerkin method to

converge for domains with infinite contrast, for example damage evolution along grain

boundaries. Second, the method will be extended to become a multiscale FE-FFT modeling

framework. Multiscale modeling can provide essential information to explain the in-situ

observed microstructure evolution, for example grain fragmentation and misorientation

evolution.
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Chapter 5

FE-FFT multiscale modeling

5.1 Introduction

Nowadays, there is an increasing demand to combine theory and numerical simulation to

explain experimental observations. In order to directly compare experimental measurement

with simulation results, image-based simulation is usually required which presents great

challenge to high performance computations. Multiscale modeling method has been proposed

to handle this problem [54], which is comparable to the full-field simulation but requires

much less computational resources [41]. There is still a great demand to find a more efficient

multiscale modeling algorithm that is able to predict local microstructure evolution of a real

structure.

Thanks to the tremendous development of modern computers, multiscale modeling tech-

nique has been employed to investigate the local texture evolution. Different homogenization

algorithms have been proposed to achieve this objective. The piorneering work was based on

Taylor homogenization [83], where it is assumed that all grains at one macroscopic material

point have the same deformation pattern. Later, grain cluster method based homogenization

was proposed to relax the equal-strain assumption [88, 15]. In the grain cluster method,

the total strain energy of microscale model was minimized, which induces grain interface

mismatch. Extensive investigations have been performed to incorporate self-consistent

method [74], eigenstrain based method [98], and finite element method [59, 19, 47] as the

microscopic homogenization method to simulate local texture evolution. However, they are
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either computationally expensive or not full-field simulation, making them inappropriate for

large scale modeling

Recently, fast Fourier transform (FFT) based method has been combined with finite

element method to solve the microscopic unit cell problem [81]. Compared with FE

method, FFT-based method is more efficient especially for high-resolution simulations,

and periodic boundary condition is handled naturally. The microscale FFT method can

solve either phase field model [36] or crystal plasticity model [34]. Recently, the FE-FFT

framework is further employed to investigate the local lattice strain evolution of aluminum

alloy in a hierarchical manner [87]. But the aforementioned investigations are based on

infinitesimal strain assumption. Finite strain based FE-FFT modeling is attempted in

[25], and a consistent algorithm was derived to homogenize the tangent stiffness. Only

heterogeneous microstructure with hyperelastic model is simulated. Till now, finite strain

FE-FFT multiscale modeling is never developed to solve crystal plasticity model, which is

essential for a deep understanding of the industrial processing.

The FFT-based method was originally proposed to solve stress equilibrium equation in

heterogeneous elastic media [63, 64], which is later named the basic scheme. The polarization

field is projected to a homogeneous reference media, and the resultant Lippman-Schwinger

equation can be solved by Green’s function method. The basic scheme was later reformulated

to improve the numerical efficiency [16] and robustness [58]. A more general polarization

scheme was later proposed [62, 65], and its numerical behavior was compared in detail with

the Eyre-Milton scheme and the augmented Lagrange scheme. By realizing that the above

mentioned iterative algorithm is equivalent to the Neumann expansion of the Green operator,

the FFT-based governing equation was further solved by Newton-Krylov method [96], and

the numerical efficiency is significantly improved. The FFT-based method was also applied

to model the texture evolution of polycrystalline material [79], with different numerical solver

compared to improve the robustness for high-contrast problems. The original FFT-based

method was recently reformulated in a variational way, i.e. the Fourier Galerkin method,

and further applied to solve infinitesimal strain [95] and finite strain [8] RVE problem. This

method is independent of the reference material, thus consistent linearization is possible. The
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Fourier-Galerkin method was further utilized to solve hypoelastic crystal plasticity model,

and a consistent homogenized tangent stiffness was derived.

The current investigation launches from the previous work where the Fourier-Galerkin

method is employed to solve a hypoelastic crystal plasticity model, and consistent homog-

enized tangent stiffness was derived. The novel contribution is that, for the first time,

the FE-FFT multiscale modeling framework is built to solve finite strain crystal plasticity

model. Furthermore, the current FE-FFT multiscale modeling framework possesses several

key features. It is a finite strain based hypoelastic type model, and the crystal plasticity

implementation has a general interface to incorporate most existing constitutive models.

Consistent linearization is derived for both macroscale and microscale Newton-Raphson

iteration, so that quadratic convergence rate is achieved in both scales. The Fourier-Galerkin

method is utilized as the microscale BVP solver, which is more efficient than other FFT-based

methods.

This chapter is organized as follows: In Section 5.2, the finite strain Fourier-Galerkin

method is reviewed, and the Green-Naghdi rate based hypoelastic crystal plasticity material

model is outlined. In Section 5.3, the macroscopic finite element kinematics is introduced,

and concurrent FE-FFT multiscale modeling framework is proposed. Numerical tests are

used in Section 5.4 to verify and analyze the proposed multiscale modeling framework.

Section 5.5 summarizes the current investigation with major conclusions.

5.2 Periodic microscale problem

The microscopic equilibrium equation is solved by the FFT-based method. The recently

proposed Fourier-Galerkin method [8] is adopted, which is more efficient than other FFT-

based methods. A general interface was previously proposed to connect the FFT-based

method and hypoelastic elasto-plasticity model. This algorithm is briefly reviewed in this

section, followed by the crystal plasticity kinetics.
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5.2.1 Fourier-Galerkin method

The microscale problem is defined in the representative volume element (RVE) in reference

configuration. The RVE is discretized into regular shaped grids, with periodic boundary

condition prescribed. For any point within the unit cell, quasistatic equilibrium equation

reads:

Div P = 0 in B, P · n−#, 〈F〉 = F̄ (5.1)

where Div represents the divergence with respect to the initial coordinates, P is the first

P-K stress, and n is the normal direction of the unit cell surface. The surface traction is

anti-periodic, as denoted by −#. The volume averaged deformation gradient 〈F〉 equals to

the externally applied boundary condition F̄.

Then, the weak form can be derived by assuming that the displacement perturbation

field is periodic and the surface traction field is anti-periodic:

∫
B

δF̃ : P dΩ = 0, ∀ δF̃ ∈ L2
#, ∇× δF̃ = 0. (5.2)

Here, the space L2
# is a square integrable periodic function field. The weight function F̃

is an arbitrary compatible deformation gradient field, which equals to the gradient of the

displacement perturbation field. Such compatible field is difficult to determine during the

implementation. Fortunately, the Green operator G can project arbitrary second order

tensor field to its curl-free part, and can be employed to release the compatibility restriction.

Utilizing the self-adjoint property of the G operator, the weak form (5.2) can be reformulated

as: ∫
B

δF : (G ∗P) dΩ = 0, ∀δF ∈ L2
#. (5.3)

Here, ∗ represents convolution operation which can be conveniently calculated in the Fourier

space. The new weight function F is arbitrary second order tensor field without having to be

compatible. The weak (5.3) can be further discretized by trigonometric polynomials. After

discretization by trigonometric polynomial function and performing numerical integration
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using trapezoid rule, we get the following discretized form:

G ∗P = 0 (5.4)

which is a nonlinear equation defined on all the grid points This equation (5.4) can be solved

by Newton-Raphson method considering the linear property of the G operator:

G ∗
(
A(i) : ∆F(i+1)

)
= −G ∗P(i). (5.5)

Here, A(i) is the material point tangent stiffness at the i th iteration. This equation can be

efficiently solved by conjugate gradient method.

5.2.2 Crystal plasticity

This section introduces an incrementally objective crystal plasticity model based on Green-

Naghdi rate. The elastic-plastic constitutive relation is defined in the current configuration:

σ̌ = C :
(
D−RdpRT

)
−RwpRTσ + σRwpRT = σ̇ + σΩ−Ωσ (5.6)

where σ̌ is Green-Naghdi rate, D = (∇v + v∇)/2 is the strain rate, and R is the rotation

tensor. The plastic velocity gradient lp = dp + wp = ḞpFp−1 can be decomposed into the

symmetric part dp and the skew symmetric part wp. The spin tensor Ω = ṘRT . Material

integration can be performed conveniently when the elastic-plastic relation is pulled back to

the unrotated configuration:

ṫ = C0 :
(
d− d̄p

)
+ Rw̄pRT t− tRw̄pRT (5.7)

where C0 is the elastic stiffness tensor in unrotated configuration. The unrotated strain rate

d = RTDR. The plastic velocity gradient dp is the summation of shear strain on each slip
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system:

dp =

nslip∑
s=1

γ̇(s)RpTm̃(s)Rp, m̃(s) = sym
(
b̃(s) ⊗ ñ(s)

)
(5.8)

wp =

nslip∑
s=1

γ̇(s)RpT q̃(s)Rp, q̃(s) = skew
(
b̃(s) ⊗ ñ(s)

)
(5.9)

where γ̇(s) is the shear strain rate on slip system (s), and the slip direction and slip system

normal direction is represented by b̃(s) and ñ(s), respectively. The shear strain rate γ̇(s)

is determined by the resolved shear stress τ (s) and slip system resistance. Without loss of

generality, the classical Voce model is used in the current investigation:

γ̇(s) =
γ̇0

τ̃

∣∣∣∣τ (s)

τ̃

∣∣∣∣n−1

τ (s). (5.10)

Here, τ̃ is the hardening variable, γ̇0 is the reference strain rate, and n is the strain rate

sensitivity coefficient. The hardening variable is decomposed into the intrinsic part τy and

the extrinsic part τ̄ , which evolves as the shear strain increases:

τ̃ = τa + τy (T, ε̇)
µ(T )

µ0

+ τ̄ (εp, T, ε̇)
µ(T )

µ0

(5.11a)

τy (T, ε̇) = τ̂y

[
1−

(
kT

µ(T )b3g0,y

ln
ε̇0,y

γ̇0

)1/qy
]1/py

(5.11b)

τv (T, ε̇) = τ̂v

[
1−

(
kT

µ(T )b3g0,v

ln
ε̇0,v

γ̇0

)1/qv
]1/pv

(5.11c)

dτ̄

dt
= θ0

(
1− τ̄

τv(T, ε̇)

)m nslip∑
s=1

|γ̇(s)| (5.11d)

Detailed explanation of the material parameters can be found in [51]. The material

parameters used in this investigation is shown in Table 5.1.
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Table 5.1: Material parameters for the MTS model throughout this investigation
Elastic Yield Saturation MTS model

E 78.8 Gpa τ̂y 155 MPa τ̂y 25 MPa τa 0.0 MPa
ν 0.33 g0,y 0.007808 g0,v 0.0048 n 20
µ0 29.6 GPa py 0.5 pv 0.5 b 3.5× 10−7 mm
D0 0.0 MPa qy 2 qv 2 m 1
T0 204 K ε0,y 1.0× 1013 ε0,v 1.0× 107 θ0 180.0 MPa

5.3 Macroscopic boundary value problem and concur-

rent coupling

In this section, the total Lagrangian formulation for solving macroscopic boundary value

problems is first summarized. The macroscale framework is traditional finite element method,

except that the material response is updated through an RVE problem. The coupling of

macroscale and microscale response is achieved according to the Hill-Mandel principle [9],

which is introduced next.

5.3.1 Macroscale finite element problem

Total Lagrangian formulation of finite element is adopted here, which is a natural choice

to be consistent with the FFT-based method. The quantities with superscript M on the

right means it is defined in macroscale. The equilibrium equation is defined in the reference

configuration: The strong form (5.12a):

Div PM + ρM0 BM = 0 (5.12a)

φM = φ̄M on Γu (5.12b)

PM ·NM = TM on Γσ (5.12c)

where ρM0 is the initial density, PM is the first Piola-Kirchhoff stress, BM represents the

body force, and φM maps the initial coordinate X to the current coordinate x. The essential

boundary condition φ̄M is defined on Γu, while the natural boundary condition TM is defined
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on Γσ. The equivalent weak form of the equilibrium equation (5.12a) is derived as:

∫
Ω

∇wM : PM dΩ−
∫

Ω

wM · ρM0 BM dΩ−
∫

Γσ
wM ·TM dA = 0 (5.13)

where the arbitrary displacement perturbation field w is square integrable. To solve the

weak form (5.13) using finite element method, the displacement field is discretized using

finite element shape function:

∫
Ω

∇NT : P dΩ−
∫

Ω

NT · ρM0 BM dΩ−
∫

Γσ
NT ·TM dA = 0 (5.14)

where N is the finite element shape function. In this way, the unknown continuous

displacement field satisfying the equilibrium equation is relaxed to a vector of unknown

nodal displacement defined at the finite element nodes. The nonlinear equation (5.14) can

be solved by Newton-Raphson method. By doing so, the linearized form of (5.14) is required:

[∫
Ω

∇NT : A∇N dΩ

]
∆u = fext − fint (5.15a)

fext =

∫
Ω

NT · ρM0 BM dΩ +

∫
Γσ

NT ·TM dA (5.15b)

fint =

∫
Ω

∇NT : P dΩ (5.15c)

where ∆u is the displacement of the current Newton iteration, fint is the internal force vector,

and fext is the external force vector.

5.3.2 Concurrent multiscale algorithm

The schematic of concurrent multiscale framework is shown in Figure 5.1. The macroscopic

stress PM and strain FM are defined as the volume average of corresponding microscopic

quantities:

PM = 〈P〉, FM = 〈F〉. (5.16)
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Figure 5.1: Schematic of FE-FFT multiscale modeling framework.

This coupling follows the Hill-Mandel principle, where the macroscale stress power equals to

the microscale stress power:

PM : ḞM = 〈P : Ḟ〉. (5.17)

However, to enable the macroscale Newton iteration, the homogenized tangent stiffness

should be provided by the RVE problem. In the current investigation, the algorithmic

homogenized stiffness is calculated analytically, as proposed previously, by solving the

following equation:

G ∗

(
A :

∂F̃

∂F̄

)
= −G ∗A (5.18)

under the constraint
1

V

∫
B

∂F̃

∂F̄
dV = 0. (5.19)

Here, A is the material point tangent stiffness, F̄ is the average strain acting on the unit

cell, and F̃ is the strain perturbation caused by F̄. After solving equation (5.18) for ∂F̃/∂F̄,

the homogenized tangent stiffness can be reconstructed by noting that

Ā =

〈
A :

∂F̃

∂F̄

〉
. (5.20)

The algorithm of the concurrent multiscale modeling is shown in Algorithm 1.
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Algorithm 1: Concurrent FE-FFT multiscale modeling

1 for n← 1 to nstep do
2 while ‖f int − f ext‖ < tol. do
3 assemble
4 ∆u
5 call FFT finite 3d(F̄n+1, F̄n, Fn, tn, history)
6 calculate f int

7 end

8 end
9

10 Function FFT finite 3d(F̄n+1, F̄n, Fn, tn, history):
11 while R > tol. do
12 update Pn+1: Pn+1 = f (Fn+1,Pn, history)

13 solve for ∆F̃: G ∗
(
An+1 : ∆F̃

)
= −G ∗Pn+1

14 update Fn+1: Fn+1 = Fn+1 + ∆F̃

15 update residual: R = ‖∆F̃‖
16 end

17 return

5.4 Numerical results and discussion

In this section, a one-element simulation is performed to illustrate the capability of the

current FE-FFT multiscale modeling framework. The homogenized stress-strain response

is presented, together with local stress distribution in microscale. Also, the convergence

behavior of the finite element problem is analyzed.

5.4.1 Single element verification

A single element simulation is used to verify the multiscale modeling implementation. In

the macroscale, uniaxial tension boundary condition is applied to a hexagonal element with

8 integration points. All integration points have the same initial microstructure, which is

represented by an RVE problem with 3 × 3 × 3 grid points as shown in Figure 5.2. Each

unit cell contains two grains with the initial orientation shown in Figure 5.2. Mechanical

threshold (MTS) model is used as the constitutive relation, with the material parameters

shown in Table 5.1.
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Figure 5.2: Example of FE-FFT multiscale modeling.
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Figure 5.3: Stress strain curve of FE-FFT multiscale modeling.

The homogenized stress-strain curve is shown in Figure 5.3. The plastic strain behavior

of the MTS model is captured in the stress strain response. Figure 5.4 shows the unrotated

Cauchy stress distribution within the unit cell. It is observed that the heterogeneous behavior

of polycrystalline material is well captured. Grain with stiffer initial orientation carries more

loading under the uniaxial boundary condition, and stress jump occurs at the grain boundary.

The convergence progress of the macroscopic Newton iteration is shown in Figure

5.5. Relative residual evolution of four conditions are compared, including small strain

increment at smaller strain (Figure 5.5 (a)), small strain increment at larger strain

(Figure 5.5 (b)), large strain increment at smaller strain (Figure 5.5 (c)), and large

strain increment at larger strain (Figure 5.5 (d)). Three different tangent stiffness are

compared. In all the figures, ‘symmetric’ represents algorithmic homogenized tangent
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Figure 5.4: Unrotated Cauchy stress of FE-FFT multiscale modeling.

stiffness calculated from symmetric material tangent stiffness, ‘unsymmetric’ represents

algorithmic homogenized tangent stiffness calculated from unsymmetric material tangent

stiffness, and ‘finite difference’ means the macroscopic tangent stiffness is calculated using

finite difference method. The symmetric material tangent stiffness is adopted in finite

element software WARP3D to reduce the required memory [12]. It is observed that when the

strain increment is about 0.002, all three tangent stiffness results into the same convergence

rate, which is super-linear. However, if the strain increment is 0.02, it is observed that the

homogenized tangent stiffness based on the symmetric material stiffness results in linear

convergence rate. The convergence rate can be improved by either using finite difference

method, or remove the symmetry assumption of the material tangent stiffness.

5.5 Conclusion

In this work, the concurrent FE-FFT multiscale modeling framework is derived and

implemented. The kinematics in both scales are finite strain based, making it suitable

to modeling the realistic thermal-mechanical processing at large strains. In the macroscale,

total Lagrangian formulation is employed, and the stress updated is achieved by solving

an microscale RVE problem using FFT-based method. Major conclusions are summarized

below:
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Figure 5.5: Convergence progress of macroscopic finite element iteration. (a) Small strain
increment ∆Fzz = 0.002, step 5 Fzz = 1.01 (b) Small strain increment ∆Fzz = 0.002, step
10 Fzz = 1.02 (c) Large strain increment ∆Fzz = 0.02, step 5 Fzz = 1.1 (d) Large strain
increment ∆Fzz = 0.02, step 10 Fzz = 1.2
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1. The homogenized stress-strain response and the local plastic anisotropy is well captured

simultaneously by the concurrent FE-FFT multiscale modeling framework.

2. The convergence rate of the macroscopic Newton iteration is linear, even with

consistent homogenized tangent stiffness. Further investigation is required to improve

this convergence rate to quadratic.
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Chapter 6

Concluding Remarks and Future

Work

6.1 Concluding Remarks

As concluding remarks, the objective of this dissertation is to investigate the effect of

processing parameters on the breakdown efficiency of microtextured regions (MTRs). The

breakdown efficiency usually depends on the loading path, the morphology of microtextured

regions, and its position within the specimen. The effect of loading direction is first

investigated, where idealized MTRs with pure initial orientation is constructed for crystal

plasticity finite element simulations. Two extensions are performed later to take into account

the influence from realistic microstructure and β phase. In order to take into account the

MTR morphology and its position within the specimen, a high-efficient FE-FFT multiscale

modeling framework was derived and developed.

Significant conclusions and contributions of the present work are as follows:

• Crystal plasticity finite element method was employed to investigate the effect of

loading direction on the breakdown efficiency. The original constitutive relation was

extended to capture the strain softening of Ti-6242 observed above 1172 K. The

previously crystal plasticity framework in WARP3D was extended such that different

critical resolved stresses can be assigned to different slip systems. This feature is
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essential for the modeling of Ti-6242, which is highly anisotropic. Another feature of the

current implementation is that it provides a general interface for other crystal plasticity

constitutive relations, where model dependent terms are isolated. The simulation

results are validated against high-temperature compression experiments and EBSD

measurement. It is found that the loading direction has a significant influence on the

evolution of microtextured regions. When the compression direction is 0◦ to the billet

axis, disorientation within MTRs is obvious but c-axis still remains aligned due to

the competing mechanism between two prismatic slip systems. When the compression

direction is 45◦ to the billet axis, lattice reorientation is obvious but the disorientation

is less obvious. When compressed along the billet radial direction, the c-axis is most

scattered but the extent is limited by the total plastic strain. The divergence of

reorientation velocity is further presented in the Rodrigues’ space to predict the MTR

breakdown efficiency of arbitrary loading direction.

• Crystal plasticity modeling of α and β phase Ti-6242 of mechanical processing at high

temperature is performed using the WARP3D finite element code. Mesoscale results of

texture evolution in ideal-oriented microtextured regions (MTR) from previous term

were used to inform microscale models of alpha particle distributions to determine the

effect of heterogeneity on the MTR evolution. For the cases of strain history imposed

on the microscale models, the disorientation remained small when the mesoscale

disorientation was small and became larger when the mesoscale exhibited larger

disorientation. Orientation gradients develop for a particular alignment. While the

c-axis parallel loading produced the largest breakdown, this loading also required 50%

larger stress. Preliminary studies of alpha and beta phase mechanical interaction

were conducted based on material parameters fitted to data for 1173 K. Distortion

of finite elements representing the softer beta phase often led to FE convergence issues

and limited the maximum compressive strain achieved. Orientation of c-axis of alpha

particle with respect to loading direction had a much larger effect on disorientation

versus particle separation.
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• A general interface between the FFT-based method and objective rate constitutive

model is derived and implemented before the efficient FE-FFT multiscale modeling

framework is implemented. In particular, the Green-Naghdi rate based crystal

plasticity kinematics are incorporated in the Fourier-Galerkin method. The consistent

homogenized tangent stiffness is derived to enable mixed boundary condition and

concurrent multiscale modeling. A consistent linearization of the objective rate

constitutive relation is proposed to increase the convergence rate. The idea of

inexact Newton method is utilized to further improve the numerical efficiency of this

framework. The implemented FFT-based method is verified against finite element

method, and the numerical efficiency is compared with FE method and other FFT-

based methods. It is observed that the FFT-based method and FE method have the

same homogenized mechanical response, although certain discrepancy regarding the

local stress distribution exists especially at the grain boundaries. The superlinear

convergence rate of the stress update iterations and strain update iterations indicate

that the linearization is consistent in both scales. The computational cost of the

Fourier-Galerkin method is orders of magnitude less than the FE method, and about

4/5 less than other FFT-based method. The major reason for the lower computational

cost is attributed to less nonlinear Newton iterations required by the Fourier-Galerkin

method and material update routines.

• A concurrent FE-FFT multiscale modeling framework is derived and implemented,

which is suitable to correlate macroscopic structural feature and microscopic mi-

crostructure evolution. In the macroscale, finite element with total Lagrangian

formulation is utilized to solve the boundary value problems; while in the microscale,

the previously developed FFT-based method is utilized to solve the unit cell problems.

The key features of our implement are: (1) the coupling between two scales

is consistent with algorithmic tangent stiffness; (2) the microscopic FFT-based

method is efficient compared with FE method and other FFT-based methods; (3)

the microscopic constitutive relation is objective rate constitutive model, so that

infinitesimal constitutive relations can be incorporated with objectivity. A single
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element test is performed to verify and investigate the convergence progress. The FE-

FFT multiscale modeling method is capable to capture the homogenized stress-strain

response, and microscale stress distribution can be capture simultaneously. However,

it is found that the convergence rate of the finite element iteration is linear instead of

being quadratic, which requires further investigation for improvement.

6.2 Future Work

The FE-FFT multiscale modeling framework is derived and developed in this dissertation

to investigate the behavior of microtextured regions under different loading conditions. This

framework is capable of correlating the mechanical behavior at different length scales, and

is potential for further application to explain microstructure evolution under macroscopic

boundary conditions. A selection of the possible next steps is outlined in the following

sections.

6.2.1 High performance FE-FFT implementation

The current FE-FFT multiscale modeling framework is implemented serially in MATLAB,

limiting its ability to simulate realistic structures with more degrees of freedom. A natural

extension of this dissertation is to transfer the developed multiscale modeling framework

to a high-performance computing environment. Message Passing Interface (MPI) parallel

programming will significantly improve the speed of the code, where the finite element

problem is solved by the master node while the unit cell problems are solved by the slave

nodes. Fortunately, a widely used finite element code, FEAP, enables such implementation

with simple interface for unit cell problem. Similar implementation is achieved in [34], but

it is based on infinitesimal strain assumption.

Two aspects will be focused regarding the development of highly-efficient multiscale

modeling framework and its parallel efficiency. First, novel parallel programming strategy

will be employed to improve the efficiency of this framework. The basic parallel unit is finite

element instead of integration point, which will reduce the communication cost between

different nodes [47]. The parallel efficiency will also be investigated, i.e. the relationship
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between CPU time and total number of CPUs. Second, the numerical behavior of this

framework will also be investigated, namely the numerical stability of FFT-based method

for high-contrast problem under large strains.

6.2.2 Influence of MTR morphology and position on its break-

down efficiency

The developed FE-FFT multiscale modeling framework can also be applied to investigate

the influence of MTR morphology and its position on the breakdown efficiency. The MTR

morphology is a microscale feature of the material, while its position within the specimen is

a macroscopic feature. The multiscale modeling technique is a ideal platform for analyzing

such problems with acceptable computational cost.

It is expected that using this numerical technique, a optimal strain path to break down

the MTRs will be predicted instead of only loading directions in Chapter 2. The strain path

does not have to be monotonic; for example, the billet can be first rolled in one direction and

then rolled in another direction to achieve an optimal breakdown efficiency. The multiscale

modeling is able to quantitatively suggest when to change the strain path and which strain

path should be chosen. Furthermore, previous experiments suggest that the breakdown

efficiency of MTRs also depends on its morphology [4] and its position within the specimen

[22]. This effect is also expected to be captured by this multiscale modeling framework.

One major assumption of this dissertation is that α phase controls the local deformation

distribution and β phase is negligible at the processing temperature. This is true for lower

processing temperatures in the α/β region. If the processing temperature further increases,

the effect of β matrix should be considered which brings more numerical challenges. The

major challenge is that Lagrangian mesh is not capable to capture the large strain gradient

generated when hard αp particles are embedded in soft β phase. More sophisticated numerical

strategies are required to overcome this challenge.
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A Derivation of consistent tangent stiffness for hypoe-

lastic plastic model in reference configuration

This section presents the steps to derive the consistent tangent stiffness A in the reference

configuration for the Green-Naghdi objective stress rate. A similar derivation process applies

for Jaumann rate based hypoelastic models, where the orthogonal tensor Λ defined by Λ̇ =

w ·Λ is used to construct the unrotated configuration [75]. It is assumed that the consistent

elastoplastic tangent stiffness c = dtn+1/d∆dn+ 1
2

is known. For brevity, we define the second

order tensor Q = RtRTF−T . By taking the derivative of both sides of equation (4.29), the

general form of A reads:

A =
dP

dF
= Q⊗ dJ

dF
+ J

dQ

dF
(1)

Here, J is the determinant of the deformation gradient. The first term in equation (1) is

well established. The second term in equation (1) can be computed using the product rule:

∂Qij

∂Fkl
=
∂Rim

∂Fkl

(
tU−1

)
mj

+Rim
∂tmn
∂Fkl

U−1
nj + (Rt)im

∂RT
mn

∂Fkl
F−Tnj + σim

∂F−Tmj
∂Fkl

. (2)

The fourth term in equation (2) is well established. To compute the first and third term in

equation (2), the derivative of the rotation matrix R with respect to F reads:

∂Rij

∂Fkl
= det(Y)−1

[
(RYRT )ikYlj − (RY)il(RY)kj

]
, Y = (tr(U)) I−U (3)

where U is the right stretch tensor. The second term in equation (2) involves the derivative of

tn+1 with respect to Fn+1. According to the definition of elastoplastic tangent stiffness c and

the strain tensor dn+ 1
2

defined in equation (4.27), the following equation can be presented:

dtn+1

dFn+1

=
dtn+1

ddn+ 1
2

:
ddn+ 1

2

dFn+1

= c :
d
(
RT
n+ 1

2

∆Dn+ 1
2
Rn+ 1

2

)
dFn+1

(4)
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Special attention has to be paid when calculating the derivative of Rn+ 1
2

with respect to

Fn+1

∂Rn+ 1
2

∂Fn+1

=
1

2

∂Rn+ 1
2

∂Fn+ 1
2

. (5)

The derivative of the strain rate Dn+ 1
2

with respect to the deformation gradient Fn+1 reads:

∆Dn+ 1
2

= sym ∆Ln+ 1
2
,

(
d∆Ln+ 1

2

dFn+1

)
ijkl

=

(
I− 1

2
∆Ln+ 1

2

)
ik

(
F−1
n+ 1

2

)
lj
. (6)

Combining equation (1), (2), (4) and (6), we can get the consistent tangent stiffness A in

the reference configuration.
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B Mixed boundary condition algorithm

The algorithm extending the Fourier-Galerkin method to treat mixed boundary condition

is shown in Algorithm 2. In this algorithm, the inner loop (strain loop) seeks the stress

equilibrium state using equation (4.8a), while the outer loop (stress loop) iterates until the

homogenized stress converges to the prescribed stress boundary condition.

Algorithm 2: Fourier-Galerkin method with mixed boundary condition.

1 for n← 1 to nstep do
2 if Strain boundary condition then ∆F̄ = ∆F̄BC ;
3 else ∆F̄ = Ā−1

n ∆P̄BC ;
4 while true do
5 Fn+1 = Fn+1 + ∆F̄ ;

6 solve for ∆F̃: G ∗
(
An : ∆F̃

)
= −G ∗

(
An : ∆F̄

)
;

7 update Fn+1: Fn+1 = Fn+1 + ∆F̃ ;
8 while R > tol. do
9 update Pn+1: Pn+1 = f (Fn+1,Pn, history) ;

10 solve for ∆F̃: G ∗
(
An+1 : ∆F̃

)
= −G ∗Pn+1 ;

11 update Fn+1: Fn+1 = Fn+1 + ∆F̃ ;

12 update residual: R = ‖∆F̃‖ ;

13 end
14 P̄ = 〈Pn+1〉 ;

15 if ‖P̄−PBC‖‖P̄‖ < tol. then break;

16 update Ān+1 using equation (4.15);

17 update ∆F̄: ∆F̄ = −Ā−1
n+1

(
P̄−PBC

)
;

18 end

19 end
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C Flow chart of the microstructure based simulation

In this section, the major procedures of the microstructure prediction in Chapter 2 are

presented. The major objective of this section is to summarize the commonly used procedures

for crystal plasticity finite element simulations, and call for possible improvements such that

the efficiency and reliability of the prediction can be increased.

The first step is to choose an appropriate material model according to the deformation

mechanism of this material and calibrate the material parameters. The selection of proper

material model is crucial, and the researcher should fully consider the major deformation

mechanism that controls the local strain, such as crystal structure, twinning, grain boundary

sliding, etc. The most used material calibration is through manual adjusting according to

experiment stress-strain curve. In this dissertation, the calibration process is performed

based on Taylor homogenization to increase the efficiency.

The second step is to generate a statistically equivalent (or even image-based) represen-

tative volume element (RVE) for the simulation. Essential microstructure features should

be captured in the RVE, for example grain size distribution, initial orientation distribution,

twinning fraction, etc. In order to perform point-to-point comparison between simulation

and experiment, image-based microstructure can be generated.

Lastly, the mesoscale simulations should be validated against microstructure measure-

ment to make sure the result is reliable. Such measurement techniques include but is not

limited to, average lattice orientation from X-ray diffraction, local orientation evolution from

EBSD, etc. Then the simulation is believed to be reliable and can be utilized to predicted

desired quantities.
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Figure C.1: Work flow of the microstructure prediction simulation.
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