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Abstract

With the growing environmental consciousness, the global perspective in energy production

is shifting towards renewable resources. As recently reported by the Office of Energy

Efficiency & Renewable Energy at the U.S. Department of Energy, wind-generated electricity

is the least expensive form of renewable power and is becoming one of the cheapest forms

of electricity from any source. The aeromechanical design of wind turbines is a complex

and multidisciplinary task which necessitates a high-fidelity flow solver as well as efficient

design optimization tools. With the advances in computer technologies, Computational Fluid

Dynamics (CFD) has established its role as a high-fidelity tool for aerodynamic design.

In this dissertation, a grid-transparent unstructured two- and three-dimensional com-

pressible Reynolds-Averaged Navier-Stokes (RANS) solver, named UNPAC, is developed.

This solver is enhanced with an algebraic transition model that has proven to offer accurate

flow separation and reattachment predictions for the transitional flows. For the unsteady

time-periodic flows, a harmonic balance (HB) method is incorporated that couples the sub-

time level solutions over a single period via a pseudo-spectral operator. Convergence to

the steady-state solution is accelerated using a novel reduced-order-model (ROM) approach

that can offer significant reductions in the number of iterations as well as CPU times for

the explicit solver. The unstructured grid is adapted in both steady and HB cases using an

r -adaptive mesh redistribution (AMR) technique that can efficiently cluster nodes around

regions of large flow gradients.

Additionally, a novel toolbox for sensitivity analysis based on the discrete adjoint method

is developed in this work. The Fast automatic Differentiation using Operator-overloading

Technique (FDOT) toolbox uses an iterative process to evaluate the sensitivities of the cost

function with respect to the entire design space and requires only minimal modifications to
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the available solver. The FDOT toolbox is coupled with the UNPAC solver to offer fast and

accurate gradient information. Ultimately, a wrapper program for the design optimization

framework, UNPAC-DOF, has been developed. The nominal and adjoint flow solutions are

directly incorporated into a gradient-based design optimization algorithm with the goal of

improving designs in terms of minimized drag or maximized efficiency.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, renewable energy started playing a more important role in energy policies

in most of the developed countries. While the US is second among countries in terms of the

amount of energy produced from sustainable sources, renewables constitute about 20% of

the total energy produced [212]. Among other renewable energy resources, wind energy has

the second highest share after hydropower, as shown in Figure 1.1.

Figure 1.1: Renewable energy consumption by source (data from the U.S. Energy
Information Administration [212]).

The increased interest in wind energy among all the other renewable energy resources

can be related to a few different factors. Current data shows that there is a steady growth in

wind energy capacity. In a report published by the Global Wind Energy Council (GWEC), it
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is indicated that with the current and some conservative new policies, it is possible to see the

wind energy capacity getting tripled by the year 2050 [68]. However, this report also shows

that by investing in advanced technologies, it is possible to achieve an eight-fold increase

in wind energy capacity in the same amount of time [68] (see Figure 1.2). On the other

hand, a 2012 study by the National Renewable Energy Laboratory (NREL) reports that the

levelized cost of the wind power can go down by about 25% in the next 10-15 years [130].
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Figure 1.2: Wind energy capacity trend and forecast (data from Global Wind Energy
Council [68]).

Unfortunately, the increase in wind energy capacity can be limited due to cost

considerations as most of the current capacity improvement efforts are focused on increasing

the size of the blades which can exponentially increase the production costs. There has

been a steady increase in the size of the modern commercial wind turbines with the most

recent multi-MW horizontal-axis wind turbines (HAWT) having a rotor diameter of about

140 meters. With the goal of reducing the cost of electric power, this trend is forecast

to continue. However, the aerodynamic efficiency of the turbine can be improved as an

alternative for harnessing more energy from the wind. In fact, by designing optimized wind

turbine blades, the efficiency and capacity can be increased without increasing the size of

the wind turbines. While this is the main goal here, the development of an advanced and

robust design optimization framework can have broader impacts. As an example, techniques

developed in this work can be readily extended for designing aircraft wings and fuselage that

are much more efficient than what is currently available, which can be translated into billions

of dollars of savings in fuel costs as well as significant reductions in carbon footprint.
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The aerodynamic shape optimization of a wind turbine involves the determination of an

optimized blade topology that satisfies certain objectives subject to a set of aerodynamic

and/or structural constraints. Traditionally, “inverse” design methods have been used

with the goal of obtaining an optimal shape considering a prescribed target distribution

of aerodynamic quantities. More recently, design optimization techniques have shifted

towards more “direct” methods based on searching design space for optimum topologies.

This approach may lead to novel unconventional designs subject to challenging off-design

conditions.

As wind turbines continue to gain more popularity and take on a greater role in energy

production, their design has also become a more complex and multidisciplinary task involving

rather conflicting requirements such as increased performance, reduced acoustic signature,

and reduced blade loads. This requires advanced modeling tools, such as Computational

Fluid Dynamics (CFD), that can cover diverse aspects of the flow features around the turbine

blades while building a platform for design optimization to further enhance the state-of-the-

art. Currently, most designs rely on low-fidelity or semi-empirical computational tools such as

Blade Element Momentum (BEM) theory [78]. These methods are fast computational tools

but they also rely on the existence and accuracy of the available airfoil data. On the other

hand, Navier-Stokes solvers which have been mostly avoided in the past due to their high

computational requirements, are becoming widely used with the increasing computational

power available. Nonetheless, time-accurate transient solutions of HAWT flows can take a

significant amount of time even with the aid of high performance computing resources.

Due to the fact that most of the fundamental wind turbine unsteady problems can be

viewed as periodic, frequency-domain techniques can be utilized to avoid long wall-clock

times and prohibitively costly computational effort. The high-dimensional harmonic

balance (HDHB) method [85], in particular, takes advantage of the temporal periodicity

to convert the solution of the flowfield from an unsteady time-accurate approach into a

mathematically-steady time-frequency-coupled approach. Although the use of the HDHB

method can greatly reduce the computational cost, the overall efficiency of CFD modeling

used in the design optimization frameworks can be further enhanced in several ways.
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Since CFD solvers involve iterative numerical schemes, their convergence behavior can be

improved by novel acceleration techniques. On the other hand, any CFD-based simulation

and modeling requires extensive amount (well over 30%) of time spent on the generation of

the computational grid (mesh). In fact, the traditional CFD simulations require a continuous

improvement of the mesh which relies heavily on the experience of the design engineers.

Therefore, a solution-based grid adaptation technique can be greatly advantageous,

especially during the design stage, as unconventional geometries and off-design conditions

become involved.

In general, there are two main families of aerodynamic optimization techniques that can

be categorized as (1) gradient-based and (2) non-gradient-based approaches, where in the

latter, repeated cost function evaluations are required. Using a CFD-based design approach,

the computational burden of evaluating the objective (cost) function can be very high even

for today’s high performance computing resources. Therefore, it is desirable to use gradient-

based algorithms in the framework of aerodynamic design optimization. In this approach,

however, derivatives (sensitivities) of a cost function with respect to all design variables (that

can number in the hundreds to thousands) are required.

While “optimum” configurations can be determined after a small number of optimization

cycles using the gradient-based approach, the cost and complexity associated with the

gradient evaluations are overwhelming. These issues are even more pronounced in high-

fidelity CFD solvers and in the framework of a multidisciplinary design optimization process.

Therefore, a fast and efficient sensitivity analysis tool would be a leap forward that can

greatly reduce the time and cost of the CFD-based design and topology optimization. Such

an advanced and effective tool would result in the development of a robust optimization

platform for not only wind turbine designs but any aerodynamic or aerostructural design

problem involving aircraft and rotorcraft, to name a few.

Last but not least, the development of CFD solvers is a demanding task involving an

extensive amount of man-hour implementing various numerical techniques. With the steady

increase in the amount of flow features that are required to be captured in a numerical

flow solver, high-order methods are becoming popular in the CFD community. Additionally,

unconventional grid topologies are being considered in order to ease up the grid generation
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process for complex geometries. Implementing new high-order methods as well as the non-

standard element definitions in an in-house or a commercial CFD solver requires a great deal

of additional code development. Therefore, a grid-transparent solution process, that treats

different grid topologies identically, would result in significant time-savings for advancing

the available modeling tools while improving the flexibility of the CFD solvers for future

developments.

1.2 Background

Advances in airfoil analysis, rotor development, material technology and stress analysis have

made wind turbines suitable alternatives to fossil fuels in terms of cost incurred per energy

unit [228]. The aerodynamic effects on the wind turbines are mostly known but the details

of the flow are still not well-understood. On the other hand, in order to improve the wind

turbine aerodynamic and aerostructural characteristics, design optimization tools have been

developed and various efforts have been made to address the issues associated with each tool.

As far as the CFD solvers and their efficiency and numerical capabilities are concerned, efforts

have been made in developing convergence acceleration as well as grid adaptation techniques.

Overall, there have been numerous studies carried out in these different areas over a long

period of time. This section aims to highlight the previous efforts done in the field concerning

this dissertation.

1.2.1 Wind Turbine Modeling and Design

The size of commercial wind turbines has increased dramatically during the last 25 years.

This development has forced the design tools to evolve from simple static calculations (with

the assumption of constant wind speed) to dynamic simulation techniques that can predict

not only the unsteady aerodynamic loads, but also the aeroelastic response of the entire wind

turbine.

Different methods with various levels of complexity are used to calculate the aerodynamic

loads on a wind turbine rotor. Boundary Element Momentum (BEM) method is the

most common tool for calculating the aerodynamic loads on wind turbine rotors since it is
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computationally cheap. Furthermore, BEM provides satisfactory results provided that good

airfoil data are available for lift and drag coefficients as a function of the angle of attack

and the Reynolds number. The method was introduced by Glauert [78] as a combination of

one-dimensional momentum theory and blade element consideration to determine the loads

locally along the blade span. This method is proven to be successful but, as stated before,

it depends solely on reliable airfoil data for different blade sections. Additionally, for airfoils

subjected to temporal variations of the angle of attack, the dynamic response changes the

static airfoil data and dynamic stall models need to be included [89].

The first applications of Computational Fluid Dynamics (CFD) to wings and rotor

configurations date back to late seventies and early eighties in connection with airplane

wings and helicopter rotors [7, 24, 178, 170, 37] using potential flow solvers. To overcome

some of the limitations of potential flow solvers, a shift towards unsteady Euler solvers

was seen through the eighties [179, 115, 169, 3]. When computational resources increased,

the solution of the full Reynolds-Averaged Navier-Stokes (RANS) equations including the

viscous effects were obtained in the late eighties and early nineties [195, 196, 19]. As a result,

application of these simulation tools to flows over wind turbine blades became of practical

interest. Subsequently, full Navier-Stokes computations of rotor aerodynamics were carried

out [88, 191, 232, 57, 192].

For the CFD approaches in wind turbine flow applications, the computational cost

can easily become very high for large scale problems, such as unsteady wind turbine

computations. Furthermore, the traditional time-accurate method is not suitable in an

adjoint optimization platform, which is pursued in this study. This is due to the fact that

adjoint optimization requires storage of all intermediate flow variables that can make it

extremely expensive. Considering that most of the unsteady problems of interest in wind

turbine applications are periodic in time, the frequency domain techniques can be suitable

alternatives to these time-accurate methods. In the time-linearized methods [84, 42], the

unsteadiness is assumed to be harmonic in time and the deviations are small comparing to

the mean flow. Thus, the nonlinear unsteady governing equations can be decoupled into a set

of nonlinear steady and linear unsteady equations which would then be solved in sequence

one after the other. This way, the computational cost would be approximately three times
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that of the steady computation [106]. However, the nonlinear effects cannot be resolved due

to the fundamental assumption of small perturbations.

In order to be able to capture the nonlinear effects, Hall et al. [85] applied the classical

frequency domain technique of harmonic balance to Euler equations. In this approach, they

represented the flow by a Fourier series in time and the Fourier coefficients were defined by

conservative flow variables. The harmonic balance (HB) method is capable of handling both

linear and nonlinear unsteady problems and for linear unsteady problems, the HB solutions

are identical to those of the time-linearized method [106]. While the classical HB method can

be applied to Euler equations in a straightforward fashion, the method does not work well

for the RANS equations with complex turbulence models. With the aim of circumventing

this problem, Hall et al. [85] introduced the high-dimensional harmonic balance (HDHB)

method in which the conservative variables were computed and subsequently stored at

equally-spaced sub-time levels over the span of a single period. These solutions would

then be coupled using a pseudo-spectral operator which approximates the physical time

derivative in the governing equations [85]. Moreover, the entire numerical solution would

become mathematically steady-state which makes it possible for the convergence acceleration

techniques such as local time-stepping and residual smoothing to be utilized in order to

further enhance the computational speed. Time-periodic flows about wind turbines that are

driven by the rotation are special in the sense that the fundamental frequency is predefined

by an external forcing function, i.e., the rotation of the turbine in the case of wind turbine

flows. This characteristic along with the many benefits of the HDHB method, have made it

a perfect choice in conjunction with RANS solvers to tackle the complex wind turbine flow

problems.

It is worth mentioning that all of the previous efforts have been limited to flows with

time-periodicity while a number of interesting physical flows are aperiodic. As an example,

a turbine may be subjected to wake excitation at one frequency while the blades are

vibrating at another frequency. If the ratio of these excitation frequencies is irrational,

then the flow will be called aperiodic. As originally proposed and demonstrated by Ekici

and Hall [60], it is possible to use the harmonic balance method to tackle unsteady aperiodic

flows. In the framework of wind turbine flows and in the recent years, Campobasso and
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Baba-Ahmadi [35] have implemented a harmonic balance compressible RANS solver with

low-speed preconditioning for wind turbine unsteady aerodynamics. They have shown that

using a harmonic balance solver, periodic wind turbine flows can be simulated more than 10

times faster than time-domain solvers. Recently, Howison and Ekici [102] have used a robust

HB-RANS solver to study the unsteady aerodynamics of a pitching S809 wind turbine airfoil

using the one-equation Spalart-Allmaras turbulence model and low-speed preconditioning.

More recently, Howison [105] has shown that the coupling a transition model with HB-RANS

solvers can further increase the fidelity of the numerical results for cases involving highly

separated flows.

Despite various efforts that have been made for the design optimization of wind turbines,

achieving the optimal design of a wind energy system is yet to be realized. Due to the

multidisciplinary nature of the physics that the wind turbines experience as well as the

stochastic nature of the wind, the design optimization problem is complex and difficult to

tackle [82].

Nevertheless, various design methods have been made available in the literature that can

be readily applied to the aerodynamic shape optimization of the rotor blades [78, 99]. With

the advancements in CFD simulations, multidisciplinary design optimization techniques have

gained popularity [70, 181, 69, 95]. Development of the Eppler code [65] enabled the design

of new airfoil sections, which ultimately lead to the design of new HAWT turbines. This

code uses a prescribed velocity distribution as well as a conformal mapping technique to

solve for the potential flow around the airfoils using a panel method. Due to its inverse

design capabilities [176], the Eppler code has been favored among other airfoil design codes

available [87].

In the years that followed, BEM methods have become the driving force for the wind

turbine design and many efforts have been made to maximize the annual energy production

by optimizing airfoil geometries as well as blade twist [74, 131, 223]. With the Combined

Experiment Rotor (CER) project [30, 158] being commissioned at the National Renewable

Energy Laboratory (NREL), the Phase VI blade [73] was introduced. In the process of

developing this new blade, several codes and software packages have been developed and

utilized. These include a BEM-based flow solver named PROP [96], an inverse design method
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code named PROPID [72, 182], and finally a blade geometry optimization toolbox based on

the genetic algorithm named PROPGA [181]. These tools have been used collectively ever

since for the design optimization of horizontal-axis wind turbines [41, 94].

With the pioneering works of Pironneau [167] and Jameson [111] and the introduction of

the “adjoint method” for aerodynamic shape optimization, focus has been recently shifted

towards CFD-based continuous and discrete adjoint methods for the design optimization in

aerospace and wind turbine applications. These efforts are discussed in more detail in the

next section.

1.2.2 Adjoint-Based Sensitivity Analysis

In the past several decades, efficient gradient-based aerodynamic optimization methods have

been developed. Traditionally, the gradient information has been computed using the finite

difference method. However, these approximations not only suffer from truncation and

cancellation errors, but they also require evaluation of the objective function – a fully

converged CFD solution – for each perturbed input during each design cycle. Therefore, the

computational cost using this approach grows linearly with the number of design variables

which can be computationally expensive.

As an alternative to the finite difference approach, Pironneau [167] introduced the adjoint

method to fluid dynamics problems which was later extended to aerodynamic design of

three-dimensional wings by Jameson [111] using the continuous approach. A few years later,

Elliot and Peraire [64] presented the discrete method that allowed investigators to perform

large-scale, multi-point/multi-disciplinary optimization studies for aircraft design. The main

advantage of adjoint methods is their computational efficiency since the cost of gradient

evaluation is independent of the number of design variables in both continuous [6, 124] and

discrete [163, 75] approaches. In the continuous approach, the governing flow equations

are linearized first and then discretized which makes it not only computationally- but also

memory-efficient. However, development of a continuous adjoint solver normally requires

even more effort than the nominal CFD solver. Especially, for complex flow configurations

involving turbulence and transition, code development becomes extremely difficult and

cumbersome. The issue becomes even more pronounced because of the difficulties that
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arise in developing proper boundary conditions. In contrast, the discrete adjoint methods

are based on the linearization of the discretized form of the governing flow equations, i.e.,

the flow solver. In this approach, the inclusion of turbulence and transition models and

the treatment of boundary conditions is greatly simplified. A more in-depth comparison of

the continuous and discrete adjoint approaches and their advantages and disadvantages can

be found in a paper authored by Giles and Pierce [76]. To this day, the preference of one

approach over the other is still largely debated.

In the framework of discrete adjoint methods, algorithmic or automatic differentiation

(AD) tools can be used to substantially simplify the development of the complementary

adjoint solver. Automatic differentiation is a non-approximative method similar to symbolic

differentiation that is based on the systematic application of the chain rule of differentiation.

The AD method allows fast and highly accurate evaluation of derivatives that are exact

up to machine precision with no round-off or truncation errors. The AD algorithm can be

carried out in forward or reverse modes based on the direction in which the derivatives are

being propagated. The forward mode is very easy to implement as it simply propagates the

derivatives along the expression tree. Therefore, after each forward solution, the sensitivity of

the objective function with respect to one input variable is obtained. Apparently, the process

has to be repeated for each individual design variable, thus increasing the computational

cost linearly with the number of design variables. The reverse mode of AD, on the other

hand, has the advantage of having much improved efficiency since the computational cost

is independent of the number of input variables. However, this requires the reversal of the

expression tree of the nominal solver as well as the reversal of the propagation of gradient

information which makes it more challenging to implement.

As far as programming is concerned, AD can be performed using two different approaches:

(1) source code transformation (SCT) and (2) operator overloading (OO). Using the

former approach, a preprocessor reads in the computer code (nominal solver) and parses

it by applying differentiation rules to each expression and arithmetic operation and finally

generates a new source code (adjoined) that can be compiled and run to calculate the

derivatives. The SCT approach is popular among researchers since the resulting adjoint

code can be aggressively optimized to achieve fast run-times. However, since the code has to
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be parsed, adjoined, and extensively debugged after each minor modification to the primal

code such as changing the cost function or the design variables, investigators continue to

seek other alternatives. Currently, there are many SCT tools developed for C/C++ and

Fortran programming languages. Some examples include OpenAD [165], TAPENADE [91],

TAF [71], and ADIFOR [20]. In comparison, the operator overloading approach is a direct

result of the language capabilities of object-oriented programming. In the OO approach,

new derived types or classes are used for storing the values of each variable together

with an index for that variable in the expression tree. The entire expression tree is then

recorded in another class called the tape that stores the operation type, the indices of the

input arguments, the resulting value after the operation and the resulting partial derivative

(adjoint) for each individual entry. There are many OO/AD tools such as ADOL-C [80],

Adept [100], CppAD [17] and more recently CoDiPack [4] for C/C++ programs. As the use

of object-oriented programming paradigms has gained popularity in Fortran programming,

many OO/AD tools have been developed specifically for Fortran. ADF [199], ADOL-F [183],

AUTO DERIV [197], DNAD [234] and more recently dco/fortran [164] are some examples

of these tools that are available today. The main challenge in using existing OO/AD tools is

that the memory requirements for recording the tape can easily exceed the available resources

as the expression tree evolves. This issue becomes even more prominent for explicit iterative

schemes where a relatively slow convergence rate requires many iterations of the primal

solver to reach a fully converged solution. To the best of the author’s knowledge, none of

the existing OO/AD packages have so far addressed issues with inherently large memory

footprint.

1.2.3 Solution-Based Grid Adaptation1

In general, there are three different classes of adaptive mesh schemes. These can be

categorized as (1) h-adaptive, (2) p-adaptive, and (3) r -adaptive techniques. The first and

the most widely used is h-adaptive also known as “Adaptive Mesh Refinement” in which

1This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3245 titled
“An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers” (2018).
Authors: Reza Djeddi and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Reza Djeddi and Kivanc Ekici.
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the grid cells are locally refined with the addition of new grid nodes. A similar approach

can also lead to coarsening by removing unnecessary grid nodes. The local refinement or

coarsening can be triggered using a coloring scheme, which mostly depends on the gradient

information of a specific flow variable. The second class, which is closely related to the

h-adaptive technique and that is generally categorized under the same family of mesh

refinement schemes, is called the p-adaptive refinement. This approach is widely used in

the framework of finite element (FE) techniques where the order of elements is adjusted

locally. Once again a similar coloring scheme can mark the elements for refinement where a

higher order shape function is used to increase the accuracy of the FE approximation. While

both of these approaches provide a lot of flexibility and have been extensively improved over

the years, they suffer from some major disadvantages. First of all, h-adaptive techniques

require complex data structures with evolving nodal/elemental connectivity information that

can create significant implementation challenges. Moreover, the mesh refinement technique

is completely localized that can lead to irregular and highly stretched elements with poor

global structures [27].

The third class of adaptive mesh techniques known as r -adaptive is one of the the focal

points of this dissertation. Also known as “Adaptive Mesh Redistribution,” which is referred

to as AMR in this work, the r -adaptive approach in general is a moving mesh technique. In

this approach, the grid nodes are redistributed or relocated based on a forcing field while

keeping the number of nodes and the nodal connectivities unchanged. Although the r -

adaptive approach is not as mature as the other two adaptive mesh techniques, it provides

certain advantages that can make this technique more attractable. A very important feature

of the r -adaptive technique is the fact that the data structure remains constant throughout

the adaptive redistribution process which can make the implementation of the technique

straightforward in any numerical solver. This feature becomes particularly advantageous for

harmonic balance/time-spectral solvers where it is desirable to have exactly the same number

of grid nodes/cells for each sub-time level grid. That means, using the r -adaptive approach

the nodal connectivity is preserved for grids at different sub-time levels. Furthermore,

solution interpolation, which introduces additional errors is also avoided.
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The goal of the r -refinement approach like any other adaptive mesh technique is to

reduce the discretization errors by modifying the grid topology. However, as stated earlier,

unlike the h-adaptive method, the r -adaptive technique keeps the number of grid nodes

and their connectivities constant but relocates and clusters them around the regions where

the gradients and/or curvatures of a certain flow variable are high. It is worth noting that

in CFD calculations, the large discretization errors can be typically associated with the

high gradients and high curvature regions. Therefore, having smaller cells in these regions

can lead to significant accuracy improvements without the need to refine the entire grid.

This principal idea has been originally exploited by de Boor [49] via efforts to achieve an

optimal mesh that can guarantee an equi-distribution of the discretization error throughout

the computational domain.

Due to the fact that the node relocation has been extensively studied for the moving mesh

applications, the r -adaptive AMR approach is often referred to as a “Moving Mesh Method

(MMM)”. In fact, a very attractive feature of the r -refinement technique is its dual use in

mesh deformation applications as well as minimization of discretization errors. Tang [204],

and Budd et al. [28] provide a more-in-depth review of the moving mesh techniques and their

direct application in r -adaptive AMR problems.

Generally speaking, the r -adaptive techniques are less mature compared to the h-

adaptive and p-adaptive approaches. In fact, the r -adaptive AMR technique can sometimes

lead to mesh entanglement with negative volumes or collapsed cells being formed in the

computational domain. Moreover, cells with poor quality can be introduced in some cases

during the post adaptation process. These drawbacks led to the introduction of truss

networks based on the “spring analogy” to reduce the chances of mesh entanglement. This

idea was initially used by Batina [15] for mesh deformation in unsteady aerodynamics

applications, and was later improved by Blom [22] to include springs with zero equilibrium

length on each grid edge. Farhat et al. [67] introduced the idea of torsional springs placed at

each grid node with the torsional stiffness being defined based on the angle between the two

connecting edges. Originally developed for two-dimensional triangular cells, this approach

was later extended to three-dimensional problems with tetrahedral elements [50, 29]. The

use of torsional springs has shown to improve the quality of the deformed grid at the price of
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increased computational demand. This issue was successfully addressed by Blom [22] using

a semi-torsional approach where the opposing angle for each linear spring is used to define

a torsional stiffness. However, all of these approaches were only applicable to triangular (in

two-dimensions) or tetrahedal (in three-dimensions) elements [235].

Since the structural stability of the truss structures is only valid for triangular geometries,

the standard system needs to be enhanced to include the variety of cell types in a hybrid

and grid-transparent CFD solver. In this regard, Bottasso et al. [25], and Acikgoz and

Bottasso [1] introduced a new approach called “ball-vertex,” which tries to remedy these

limitations. In the ball-vertex method, a new linear spring is added between each grid node

and its opposing face (virtual diagonal edges in quadrilateral cells or virtual opposing faces

connecting the neighboring nodes in prism, pyramid and hexahedral elements). It is worth

noting that if the node of interest passes through the opposing face, the element would

be tangled up which results in cell inversion. Therefore, the additional linear spring can

efficiently avoid mesh entanglement and compared to the torsional spring method, the ball-

vertex approach can offer higher quality cells with lower chance of entanglement even for

large deformations [25, 137].

It must also be pointed out that most of the work in the literature based on the spring

analogy and ball-vertex approaches are focused on mesh deformation and dynamic mesh

motion for fluid-structure interaction (FSI) applications. However, the general idea is directly

applicable to r -adaptive AMR techniques with the driving force being defined not based on

the boundary movements but the gradients/curvatures of a certain flow variable [151, 119]

or an error measure [23]. Additionally, some of the work in the literature is limited to

r -adaptive AMR for structured grids. These methods mostly rely on error minimization,

variational adaptation [26] or center of mass [126, 18] with a good review of error-based

r -adaptive techniques presented by Tyson et al. [211].

As discussed earlier, despite the fact that the r -adaptive AMR techniques offer significant

advantages compared to the h-adaptive methods, this class of AMR is still not widely

adopted by the scientific community. Moreover, the use of r -adaptive techniques in unsteady

aerodynamics applications is generally missing in the literature. In this work, the adaptive

mesh redistribution (AMR) technique based on the ball-vertex method and spring analogy

14



is applied to unsteady periodic flow cases. The harmonic balance (HB) method that was

originally introduced by Hall et al. [85] is used to cast the time-periodic unsteady flow

equations into a set of mathematically-steady equations governing the fluid flow at equally-

spaced sub-time levels over a single period. These equations are then coupled together using

a source term that is basically the approximation to the time-derivative of the conservation

variables defined based on a pseudo-spectral operator [51]. The use of the HB technique has

proven to substantially reduce the computational cost of modeling periodic and aperiodic

fluid flows in turbomachinery and wind energy applications [63, 107, 109, 103, 104, 102, 53].

To the best of the author’s knowledge, this is the first work in which the r -adaptive AMR

has been used in conjunction with the harmonic balance technique for unsteady aerodynamic

applications involving time-periodic flows.

1.2.4 ROM-Based Convergence Acceleration2

While there are many classical approaches that are primarily used for accelerating the

convergence to steady state such as local time stepping, implicit residual smoothing [115] and

multigrid [110], there has also been a great interest in the estimation and minimization of

convergence errors in the framework of iterative solvers. Almost all of these efforts are based

on the fundamental assumption of a linearly convergent iterative procedure. These methods

are categorized into two main families: (1) epsilon algorithms and (2) polynomial methods.

The epsilon algorithms are the oldest and can be based on scalar or vector sequences. Both

scalar epsilon algorithm (SEA) and vector epsilon algorithm (VEA) were introduced by

Wynn [231], and they transform a slowly convergent or even divergent sequence into a rapidly

convergent one with the aid of the method of summability and some intricate inversion

formulas. The mathematical complexity of this class of methods is prohibitively high, and

therefore, the popularity of the epsilon algorithms has declined, especially for complex CFD

problems.

2This section, in part, is a reprint of the material as it appears in AIAA Journal 55 (9), 3059-3071 titled
“Convergence Acceleration of Fluid Dynamics Solvers Using a Reduced–Order Model” (2017). Authors:
Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici. The dissertation author was the primary investigator
and author of this paper. Copyright is held by Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici.
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Compared to epsilon algorithms, the polynomial methods have a simpler definition and

can be extended to higher order formulations. Minimal polynomial extrapolation (MPE)

and reduced rank extrapolation (RRE) were derived from the pioneering works of Cabay and

Jackson [32], Mešina [157] and Skelboe [187] which are all reviewed by Smith et al. [189].

These methods were later developed with the goal of convergence acceleration for mostly

inviscid CFD solvers. Hafez et al. [83] used the power method and the minimal residual

method to estimate and minimize the convergence error, which is then used to extrapolate to

a solution closer to the “exact” (fully converged) solution. In a similar approach, Dagan [47]

used the power method to develop a convergence acceleration algorithm, and Sidi [185] used

various extrapolation methods to accelerate the convergence of iterative solvers. On the

other hand, Theofilis [207] has used a linear instability-based “residual algorithm” approach

to achieve significant reductions in the total simulation cost by devising a stop criteria for

the time-integration process.

The fundamental idea of all polynomial methods is to approximate the eigenvalues of

the flow solver. These eigenvalues can then be used in the characteristic polynomial to

extrapolate the solution that drives the convergence error to machine accuracy [83, 157,

47, 185, 66]. Alternatively, the approximated eigenvalues can be used to determine the

unstable modes of the flow solver. Jespersen and Bunning [118] worked on the convergence

acceleration of an iterative process for the Euler equations by annihilating the dominant

unstable eigenvalues. Also, Ekici et al. [62] extended the same idea to stabilize a Navier-

Stokes solver by modifying the eigenvalues of the unstable modes that may drive the system

into a divergent or nonconvergent limit-cycle. In that work, Ekici et al. [62] used a proper

orthogonal decomposition (POD) method to approximate the eigenvalues of the unstable

modes. The POD technique has been applied to various problems in the literature to obtain

approximate, low-dimensional descriptions such as those that arise in turbulent fluid flows

and structural vibrations, to name a few [101]. In general, data analysis using POD is often

conducted to extract “mode shapes”, or basis functions, from experimental data or detailed

simulations of high-dimensional systems, for subsequent use in Galerkin projections that

yield low-dimensional dynamical models. In mechanical engineering and CFD applications,

there are numerous studies in the literature that incorporate linear/non-linear Reduced Order
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Models (ROMs) [140, 208, 86, 59, 36, 172] as well as stabilization of explicit time-marching

solvers [62].

In the framework of POD-based convergence acceleration, Tromeur-Dervout and Vas-

silevski [210] used proper orthogonal decomposition to obtain a reduced-order based initial

guess for the inexact backtracking method in order to accelerate the convergence of a fully

implicit solver applied to nonlinear unsteady boundary value problems. In a similar but

more recent approach, Shterev [184] used Lagrange interpolation as an extrapolation tool to

approximate in time the initial state required by the iterative solver in simulation of unsteady

flow problems for the purpose of convergence acceleration. Markovinović and Jansen [144]

have used POD-based reduced-order models to accelerate the solution of systems of equations

using iterative solvers in time stepping schemes for large-scale numerical simulations. The

acceleration is achieved by determining an improved initial guess for the iterative process

based on information in the solution vectors from previous time steps. However, it should be

noted that the application of POD-based techniques to convergence acceleration is mainly

limited to iterative implicit solvers [210, 184, 81].

1.3 Objectives and Contributions

Based on the motivations and the related works in wind turbine design optimization

presented earlier in this Chapter, the main objective of this dissertation is to develop a

computationally-efficient framework for unsteady wind turbine blade shape optimization.

The specific aims of this work as well as the contributions to the state-of-the-art include:

1. Development and validation of a grid-transparent two- and three-dimensional un-

structured RANS solver. This UNsturctured PArallel Compressible (UNPAC)

solver is enhanced with (1) the HB method for simulating time-periodic flows as well

as (2) the Spalart-Allmaras turbulence model and an algebraic transition model for

increased fidelity. Parallel computing capability is also added to the UNPAC solver

using a non-overlapping domain decomposition approach and the Message Passing

Interface (MPI) standard.
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2. Development of a Fast automatic Differentiation toolbox based on Operator-

overloading Technique (FDOT). This advanced toolbox can efficiently and

accurately calculate the sensitivity information of a cost function with respect to any

design variable based on the discrete adjoint method with minimal changes required to

be made to the available codes. The novel FDOT toolbox advances the state-of-the-art

in discrete adjoint sensitivity analysis based on operator-overloading (OO) automatic

differentiation (AD) by utilizing an iterative approach along with a variable flagging

technique that can greatly enhance the computational and memory efficiency. To the

best of the author’s knowledge, none of the existing OO/AD packages have so far

addressed issues with inherently large memory footprint. The FDOT toolbox can then

be used in tandem with the UNPAC solver as well as a design optimization algorithm

to perform aerodynamic shape optimization of the wind turbine blades.

3. Development of a novel convergence acceleration technique based on the

reduced-order-modeling (ROM) that can significantly increase the performance

of the UNPAC solver and further improve the accuracy and efficiency of the design

optimization framework.

4. Incorporating a robust r-Adaptive Mesh Redistribution (AMR) technique in

the UNPAC solver. This grid adaptation technique has the potential of being solution-

based or adjoint-based although the former approach is sought in this work. Also, the

implementation of the AMR tool in the framework of the HB solver would be a direct

improvement to the state-of-the-art in grid adaptation for unsteady periodic flows.

5. Developing a design optimization framework, called UNPAC-DOF, by coupling the

UNPAC solver and the FDOT toolbox for robust aerodynamic shape optimization of

airfoils and wind turbine blade cross-sections.

1.4 Outline

The structure of the dissertation is as follows. Governing equations of the fluid dynamics

(Euler, Navier-Stokes, and Reynolds-Averaged Navier-Stokes) are presented in Chapter 2
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and details regarding the rotating frame of reference and cases involving moving grids are

discussed. Additionally, details of the harmonic balance method used in this work are also

presented. Next, the numerical procedure involved in the UNPAC solver including the spatial

and temporal discretization, boundary treatments, and parallelization is detailed in Chapter

3. Moreover, the novel convergence acceleration technique and the implementation of the

AMR approach in the UNPAC solver are presented. In Chapter 4, the FDOT toolbox

developed in this work is described. Validation results for the flow solver including the

convergence acceleration, AMR, steady, and HB test cases are presentd in Chapter 5 followed

by the sensitivity analysis results in Chapter 6. Ultimately, the development of the design

optimization framework, UNPAC-DOF, and the aerodynamic shape optimization results

using this framework are presented in Chapter 7. This dissertation closes with a summary

and the recommendations for future work in Chapter 8.
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Chapter 2

Governing Equations and

Mathematical Formulation

This chapter describes the governing equations for inviscid, laminar, and turbulent flows.

First, the conservation laws for mass, momentum, and energy are presented in Section 2.1.

Next, the Navier-Stokes equations are defined in the integral form followed by assumptions

and empirical constants in Section 2.2. Using the eddy-viscosity hypothesis and the one-

equation Spalart-Allmaras model, the turbulence effects are modeled. Moreover, an algebraic

transition model is utilized to address the laminar to turbulent transition in the boundary

layer. This leads to the Reynolds-Averaged Navier-Stokes equations described in Section 2.3.

Finally, for the unsteady periodic flows, the harmonic balance (HB) method is described and

the HB equations are presented in Section 2.4.

2.1 Conservation Laws for a Finite Control Volume

The science of investigating the interactive motion within a large number of individual

particles is called “fluid dynamics” [21]. These particles are in fact molecules and atoms

of the fluid. In order to define density, velocity, pressure, temperature, and other quantities

at each point in the fluid, mean velocity and mean kinetic energy must be specified for an

element of the fluid (however infinitesimally small). To do so, certain assumptions must be

made which are described below:
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1. The density of the fluid is high enough that it can be treated as a continuum. This

requires that the Knudsen number, Kn, to be [93]

Kn ≡ λ

L
� 1,

where λ is the mean free path and L is a characteristic length defined locally in the

fluid. In a more general sense, the Knudsen number can be approximated as

Kn ≈ M

Re
� 1,

where M is the Mach number and Re is the Reynolds number [93]. It must be noted

that this assumption obviously holds for inviscid flows where Re→∞.

2. By neglecting the intermolecular forces, the fluid is treated as an ideal gas. In this

work, air is assumed to be the working fluid which is treated as thermally and calorically

perfect.

3. The fluid is assumed to be Newtonian where the viscous stress is linearly proportional

to the strain rate.

Based on these assumptions, the conservation of a scalar quantity, U , per unit volume

can be determined in a finite control volume. This control volume is defined as an arbitrary

finite region of the flow, V , as shown in Figure 2.1. The control volume is enclosed by

the boundary surface ∂V which, for now, is assumed to be fixed in space (no boundary

velocities). A surface element dS and its corresponding unit vector ~n are defined on ∂V
where the normal vector is always pointing outward. Thus, the conservation law for the

scalar quantity is written as

∂

∂t

∫

V
U dV +

∮

∂V

[
(~FC − ~FD) · ~n

]
dS =

∫

V
QV dV (2.1)

where FC and FD are the convective and diffusive fluxes, respectively, and QV is the

volumetric source term.
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~dS

~v

V

dV

Figure 2.1: Finite control volume with fixed boundaries in space.

The conservation law given in Eq. (2.1) states that the time rate of change of the scalar

quantity within the control volume V plus the balance of the convective and diffusive

fluxes across the boundaries of the control volume, ∂V , are equal to the changes due

to the volumetric source term. Here, the convective flux determines the amount of the

scalar quantity leaving the control volume through the boundaries and the diffusive flux is

determined based on Fick’s gradient law [98].

While the conservation law described in Eq. (2.1) is for a scalar quantity, a similar

conservation law can be written for a vector quantity, ~U . However, in such cases, the

convective and diffusive flux vectors will turn into convective and diffusive flux tensors and

the volumetric source term, QV , will become a volumetric source vector, ~QV . It is worth

noting that this conservation law holds throughout the flow field even at the discontinuities

such as shocks. Also, in the absence of a source term, the time variations of the conservation

variable, ~U , will only depend on the fluxes across the boundaries of the control volume.

In the framework of fluid dynamics, three conservation laws are defined. These

conservation laws lead to continuity, momentum, and energy equations which will be

presented in the following sections.
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2.1.1 Continuity Equation

In order to describe the continuity equation, the fluid is assumed to be single-phase which

means while the fluid may consist of different chemical species, it is chemically inert.

Therefore, the conservation of mass states that mass cannot be produced or destroyed.

Assuming that the flow velocity at an arbitrary point on the boundary of the control volume

is ~v, the continuity equation is written for the conservation variable which is the fluid density,

ρ, that is

∂

∂t

∫

V
ρ dV +

∮

∂V
ρ(~v · ~n) dS = 0 (2.2)

It is worth noting that there is no diffusive flux nor any volumetric source term for the

continuity equation.

2.1.2 Momentum Equation

It is known that the momentum (mass times velocity) in a fraction of a control volume,

dV , is defined by ρ~vdV . Thus, the conservation variables for the momentum equation are

ρ~v = [ρu, ρv, ρw]T in the Cartesian coordinate system. According to Newton’s second law

of motion, changes in momentum are due to the net force acting on the mass element.

Therefore, using the conservation law defined in Section 2.1, the momentum equation within

an arbitrary control volume, V , can be written in the integral form as

∂

∂t

∫

V
ρ~v dV +

∮

∂V
ρ~v(~v · ~n) dS +

∮

∂V
p~n dS −

∮

∂V
(τ · ~n) dS =

∫

V
ρ~fe dV (2.3)

In the above equation, the third and fourth terms on the left-hand side (LHS) are in fact

source terms representing the external forces acting on the control surface. As such those

forces are related to the isotropic pressure, p, and viscous stress tensor, τ . While the latter

is also known as the diffusive flux, the pressure term is usually grouped with the momentum

flux (second integral on LHS) to give the total convective flux. Therefore, a more common

form of the momentum equation is given by
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∂

∂t

∫

V
ρ~v dV +

∮

∂V
[ρ~v(~v · ~n) + p~n] dS

︸ ︷︷ ︸
convective

−
∮

∂V
(τ · ~n) dS

︸ ︷︷ ︸
diffusive

=

∫

V
ρ~fe dV (2.4)

The volumetric source term on the right-hand side (RHS) is related to the external

body forces which include gravitational, buoyancy, Coriolis, and centrifugal forces that act

directly on the mass of the finite control volume. For flows that are modeled in a rotating

frame of reference (such as those seen in wind turbine and turbomachinery applications), the

inclusion of the Coriolis and centrifugal forces as the source terms of the momentum equation

is required, and this will be explained in more detail in the later parts of this document.

2.1.3 Energy Equation

While the Newton’s second law is the bedrock of the momentum equation, the first law of

thermodynamics is used to derive the energy equation. This law states that the time rate

of change of the total energy in a control volume, V , is caused by the collective sum of the

rate of work due to forces acting on the control volume as well as the net heat flux across

its boundaries. The total energy per unit mass of a fluid is defined as [98]

E = e+
|~v|2
2

(2.5)

which is the sum of the internal energy, e, and the kinetic energy. Therefore, the conservation

variable for the energy equation is defined as the total energy per unit volume, ρE. With

the inclusion of the surface source terms and the body forces as the volumetric source terms,

the integral form of the conservation of energy equation is written as [21]

∂

∂t

∫

V
ρE dV+

∮

∂V
ρE(~v·~n) dS+

∮

∂V
p(~v·~n) dS−

∮

∂V
(τ ·~v)·~n dS−

∮

∂V
k(∇T ·~n) dS =

∫

V
(ρ~fe·~v) dV

(2.6)

Once again, the surface source term due to pressure forces (third integral on LHS) is

combined with the energy flux to give the total convective flux for the energy equation.

Based on Fick’s law, one must include the effect of a diffusive flux in the governing equation,
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and it is defined as the gradient of the conservation variable per unit mass. In principle, this

diffusive flux is based on the heat diffusion due to thermal conduction at the molecular level.

Therefore, Fourier’s law of heat conduction is used in order to relate the thermal conduction

to the temperature gradient. It must be noted that in the presence of a volumetric heat

source, the volume integral on the RHS of Eq. (2.6) will be augmented by the rate of the heat

transfer per unit mass due to this heat source (e.g. absorption or emission of radiation [21]).

In practice, the energy equation is written in a slightly modified form using the total

enthalpy which is related to the total energy and pressure via [98]

H = h+
|~v|2
2

= E +
p

ρ
. (2.7)

Thus, using Eq. (2.7) and combining convective and diffusive fluxes, the final energy equation

can be written in the integral form as below.

∂

∂t

∫

V
ρE dV +

∮

∂V
ρH(~v · ~n) dS

︸ ︷︷ ︸
convective

−
∮

∂V

[
(τ · ~v) · ~n+ k(∇T · ~n)

]
dS

︸ ︷︷ ︸
diffusive

=

∫

V
(ρ~fe · ~v) dV (2.8)

With the derivation of the three conservation laws governing the fluid dynamics

completed, the system of the Navier-Stokes equations can now be expressed in integral form.

2.2 Navier-Stokes Equations

Named after the French physicist Claude-Louis Navier and the Irish mathematician George

Stokes, the Navier-Stokes equations govern the dynamics of the fluid flow. These equations

are defined based on the three main conservation laws of mass, momentum, and energy

that are collected into a single system of equations. For the sake of brevity, the sum of the

convective transport of the conservation variables in the fluid flow and the pressure terms

are cast into a vector of convective fluxes, ~Fc while the sum of viscous stresses and the heat

diffusion is grouped into a vector of diffusive or viscous fluxes, ~Fv. Also, all volumetric source

terms (mainly the body forces) are cast into a source term vector, ~Q. Thus, the integral
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form of the compressible Navier-Stokes equations for a finite control volume, V , with control

surface, ∂V and a surface element, dS, is given by

∂

∂t

∫

V

~U dV +

∮

∂V

[
~Fc − ~Fv

]
dS =

∫

V

~Q dV (2.9)

where ~U is the vector of conservation variables defined as

~U =




ρ

ρ~v

ρE


 (2.10)

where in Cartesian coordinate system, the velocity vector is defined as ~v = [u, v, w]T . Next,

the contravariant velocity term, V , is defined as the velocity normal to the surface element,

i.e.,

V = ~v · ~n = u nx + v ny + w nz (2.11)

Therefore, the convective flux vector can be written as

~Fc =




ρV

ρuV + p nx

ρvV + p ny

ρwV + p nz

ρHV




(2.12)

Additionally, the viscous flux vector is defined in terms of the viscous stress tensor and

the heat diffusion such that

~Fv =




0

~τx1 · ~n
~τx2 · ~n
~τx3 · ~n
~Θ · ~n




(2.13)
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where ~τxi (i = 1, 2, 3) is the i-th row of the viscous stress tensor given by

τ =




~τx1

~τx2

~τx3


 =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 (2.14)

Also, the elements of the ~Θ vector which describes the work of the viscous stresses as

well as the heat conduction in the fluid flow, are defined as

Θi = ~v · ~τxi + k
∂T

∂xi
; i = 1, 2, 3 (2.15)

The diagonal terms in the viscous stress tensor are the normal stresses while the rest are

shear stresses. In general, the viscous stress tensor includes the dynamic viscosity, µ, and a

second viscosity coefficient, λ, which are related according to the Stokes hypothesis [198] via

2µ+ 3λ = 0. (2.16)

As stated earlier, for a Newtonian fluid, the shear stresses are proportional to the velocity

gradients. Thus, with the assumption of a Newtonian fluid and using Eq. (2.16), the viscous

stresses (both normal and shear components) can be written as [98]

τij = µ

[(
∂vj
∂xi

+
∂vi
∂xj

)
− 2

3

(
~∇ · ~v

)
δij

]
(2.17)

where δij is the Kronecker delta.

Finally, in the absence of a volumetric heat source, the vector of source terms is only

described by the external body forces (including Coriolis and centrifugal terms) such that

~Q =




0

ρfe,x

ρfe,y

ρfe,z

ρ~fe · ~v




(2.18)
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As can be seen, the Navier-Stokes equations consist of five equations for the vector

of conservation variables, ~U . However, these equations contain seven unknown primitive

variables, ~W = [ρ, u, v, w, p, T, E]T . In order to complete the system of equations, additional

expressions are required.

Based on the assumptions described earlier in Section 2.1, in this work the fluid is

considered to be a calorically perfect gas. Therefore, the equation of state for a perfect

gas [98]

p = ρRT (2.19)

can be utilized, where R is the specific gas constant. The changes in the specific enthalpy

are also related to the changes in the absolute temperature via [159]

dh = cp dT. (2.20)

Thus, according to

R = cp − cv , γ =
cp
cv
, (2.21)

with γ being the gas constant (ratio of the specific heat coefficients), the pressure can be

expressed in terms of the conservation variables such that

p = (γ − 1)

[
ρE − (ρu)2 + (ρv)2 + (ρw)2

2ρ

]
(2.22)

Additionally, the dynamic viscosity, µ, is related to the absolute temperature via the

Sutherland formula [200] (named after the Australian physicist William Sutherland) given

by

µ =
CsuthT

3/2

T + Tsuth

(2.23)

where Tsuth is the Sutherland temperature and Csuth is a constant based on the reference

temperature and reference viscosity. In this work, air is considered to be the working fluid
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and therefore, various empirical constants and necessary coefficients for air at standard

temperature and pressure (STP) are given in Table 2.1.

Table 2.1: Empirical constants and closure coefficients for air (with an ideal gas
assumption).

constant value units
R 287.04 J/kg-K
γ 1.4 -
cp 1004.64 J/kg-K
Pr 0.72 -
Tsuth 110.4 K
Csuth 1.458× 10−6 K

While the thermal conductivity coefficient, k, is almost constant throughout the fluid

for liquids, it varies with temperature in gases and can be indirectly related to the dynamic

viscosity. Therefore, the thermal conductivity coefficient can be written for air as [21]

k = cp
µ

Pr
(2.24)

It is worth noting that in some cases, the heat flux in Eq. (2.15) can be written in terms

of gradient of the specific enthalpy according to Eq. (2.20) and Eq. (2.24) to have

Θi = ~v · ~τxi +
( µ

Pr

) ∂h

∂xi
; i = 1, 2, 3 (2.25)

It must be noted that the dynamic viscosity that is used throughout this section will be

later replaced by an effective dynamic viscosity in the framework of the Reynolds-Averaged

Navier-Stokes equations which will be discussed in Section 2.3.

2.2.1 Rotating Frame of Reference

For the simulation of fluid flow about wind turbine blades and helicopter rotors, and in

turbomachinery, where the computational domain undergoes a steady rotation about an

arbitrary axis, it is suitable to write the Navier-Stokes equations in a rotating frame of

reference. As opposed to the inertial frame of reference, rotating or moving reference frame
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(MRF) allows one to study an unsteady problem with a steady rotational frequency as a

steady problem in rotating frame of reference.

axis of rotation

~!

~vrot

~vrel

~vabs

~vrel

~v ro
t
=
~! ⇥

~r
~vabs = ~vrel + ~vrot

~r

p

x

y

z

Figure 2.2: Steady rotation with angular velocity vector, ~ω, around an arbitrary axis. Note
the relation between the absolute and rotating frames of reference as well as the relative and
entrainment (rotating) velocity vectors.

Let us assume that there is a constant rotation with angular velocity vector, ~ω, about an

arbitrary axis, as depicted in Figure 2.2. It is easy to infer that the absolute velocity, ~vabs,

is a collective sum of the relative, ~vrel, and entrainment (rotating), ~vrot, velocity vectors such

that

~vabs = ~vrel + ~vrot = ~vrel + ~ω × ~r. (2.26)

where ~r is the position vector for an arbitrary point, p, in space (see Figure 2.2).

As discussed earlier, rotating frame of reference necessitates the inclusion of two external

body forces due to Coriolis acceleration and centrifugal force. According to Figure 2.2, for

an arbitrary point in space with position vector ~r, these forces (per unit mass) are given by

~fCor = −2 (~ω × ~vrel) (2.27)

~fcent = −~ω × (~ω × ~r) (2.28)
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Therefore, the Navier-Stokes equations can be recast in terms of relative velocity

components as

∂

∂t

∫

V

~Urel dV +

∮

∂V

[
~Fcrel − ~Fvrel

]
dS =

∫

V

~Qrel dV (2.29)

where ~Urel is the vector of conservation variables in relative frame of reference defined as

~Urel =




ρ

ρ~vrel

ρErel


 (2.30)

where in Cartesian coordinate system, the relative velocity vector is defined as ~vrel =

[urel, vrel, wrel]
T . Here, the relative total energy is given by

Erel = e+
|~vrel|2

2
− |~vrot|2

2
= e+

u2
rel + v2

rel + w2
rel

2
− |~vrot|2

2
(2.31)

Once again, with the definition of a contravariant relative velocity term, Vrel, as the

relative velocity normal to the surface element with unit normal vector ~n, i.e.,

Vrel = ~vrel · ~n = urel nx + vrel ny + wrel nz, (2.32)

the convective flux vector in relative frame of reference can be defined as

~Fcrel =




ρVrel

ρurelVrel + p nx

ρvrelVrel + p ny

ρwrelVrel + p nz

ρIVrel




(2.33)

where I is the rothalpy representing the total energy content in a steadily rotating frame of

reference [21] defined as

I = h+
|~vrel|2

2
− |~vrot|2

2
= Hrel −

|~vrot|2
2

(2.34)
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where Hrel is the relative total enthalpy. The viscous flux vector will have the same form

as in Eq. (2.13) with the only difference that the velocity components in the viscous stress

tensor (2.17) are now replaced by relative velocities.

Finally, the Coriolis and centrifugal forces are now included as the external body forces

in the source term vector. Therefore, in the absence of any other body force and heat source

in Eq. (2.18), the source term vector in relative frame of reference is given by

~Qrel =




0

ρ
(
~fCor + ~fcent

)

0


 (2.35)

Once again, the closure problem is addressed using thermodynamic relations between the

state variables. Therefore, the static pressure in Eq. (2.33) is defined for a calorically perfect

gas using

p = (γ − 1)

[
ρE − (ρu)2 + (ρv)2 + (ρw)2

2ρ
+ ρ

(urot)
2 + (vrot)

2 + (wrot)
2

2

]
(2.36)

where urot, vrot, and wrot are the components of the entrainment or rotational velocity vector

given by Eq. (2.26). For special cases, where the rotation axis is aligned with one of the

main axes in the Cartesian coordinate system, the governing equations and extra details are

provided in Appendix A.

2.2.2 Navier-Stokes Equations for Moving Grids

With the advancements in computational resources, the simulation of fluid flows involving

deforming or moving geometries has become more relevant. These applications include flutter

analysis, oscillating rotorcraft, aerodynamic shape optimization, to name a few. For these

cases, a robust mesh motion technique is required to conform the geometry deformations and

movements. In particular, during an aerodynamic shape optimization process, the geometry

is deformed during the design cycles which requires the body-fitted mesh to deform in order

to accommodate the changes in the topology.
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Grid movement during a simulation can be challenging since in some cases it can lead to

the violation of the mass conservation which can result in significant accuracy degradation. In

order to remedy these issues, an Arbitrary Lagrangian Eulerian (ALE) approach [55] is used

which relies on a continuous switching between Lagrangian and Eulerian points of view. This

means that while the Eulerian point of view is considered for satisfying the conservation laws

of fluid dynamics in a finite control volume, relative velocities are considered for convective

flux computations across the boundaries. This mimics the Lagrangian point of view where

the frame of reference is attached to the control surfaces and hence no movement is considered

and only fluxes across the boundaries are integrated. Therefore, the Navier-Stokes equations

can be modified to reflect this effect and are re-written as

∂

∂t

∫

V

~U dV +

∮

∂V

[
~FALE
c − ~Fv

]
dS =

∫

V

~Q dV (2.37)

where the ALE formulation of the convective fluxes, ~FALE
c , is as an augmented form of the

original convective flux vector, and includes the effect of moving grid velocities such that

~FALE
c = ~Fc − (~vgrid · ~n) ~U. (2.38)

where ~n is, once again, the unit normal vector that is pointing outward on the control surface

∂V . Here, the control surface is assumed to be moving according to the grid velocity vector,

~vgrid, that is defined as

~vgrid = [ ẋ, ẏ, ż ]T (2.39)

where ẋ, ẏ, and ż are the time variations of the mesh defined in Cartesian coordinates. Thus,

using the definition of the contravariant flow velocity, V , and the contravariant grid velocity,

Vgrid, the ALE form of the convective flux can be written as
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~FALE
c =




ρV

ρuV + p nx

ρvV + p ny

ρwV + p nz

ρHV




−




ρVgrid

ρuVgrid

ρvVgrid

ρwVgrid

ρEVgrid




(2.40)

where Vgrid = ~vgrid · ~n. Using Eq. (2.7), the two vectors can be combined to give

~FALE
c =




ρVr

ρuVr + p nx

ρvVr + p ny

ρwVr + p nz

ρHVr + p Vgrid




(2.41)

where Vr is the contravariant velocity relative to the grid motion, i.e.,

Vr = (~v · ~n)− (~vgrid · ~n) = V − Vgrid (2.42)

While the viscous fluxes and the source terms remain the same, the contravariant

flow velocity must be replaced by the contravariant relative velocity in the calculation of

the Jacobian of the convective flux (and hence the spectral radii) according to the ALE

formulation described here. These modifications due to grid motion will be discussed in

more detail in Chapter 3.

In order to avoid numerical errors produced by the deformation of the median-dual control

volumes, an additional conservation law must be solved simultaneously with the rest of the

governing equations. This additional equation that was first developed by Thomas and

Lombard [209] is referred to as the Geometric Conservation Law (GCL). If not accounted

for, the violation of the GCL can lead to significant degradation of accuracy especially in

aeroelastic computations [135]. The GCL is derived by first formulating the conservation of

mass or the continuity equation for moving grids such that

35



∂

∂t

∫

V
ρ dV +

∮

∂V
ρ(V − Vgrid) dS = 0 (2.43)

The ALE form of the continuity equation described by Eq. (2.43) must hold even for

cases with a constant density and a uniform flow velocity. Therefore, it can be shown that in

such cases the density terms can be cancelled and the integral of the contravariant velocity

will be zero over a closed control volume. Thus, the GCL equation in integral form can be

written as

∂

∂t

∫

V
dV +

∮

∂V
Vgrid dS = 0 (2.44)

which states that the rate of the total change of the control volume (CV) must be equal to

the rate of incremental volume change due to the movement of the boundaries of the CV.

The geometric conservation equation given as Eq. (2.44) is usually solved in the framework

of unsteady time-accurate solvers using the same numerical scheme that was used to

discretize and solve the rest of the governing equations. This is necessary for obtaining

a consistent solution method [21] and was also extended to non-linear frequency domain

(NLFD) techniques [205]. Alternatively, Ma et al. [142] have shown that a source term

approach can also be used to preserve the GCL condition eliminating the need to solve an

additional conservation equation. In this work, the source term approach of Ma et al. [142]

is used and the details of this method are presented in Chapter 3.

2.3 Reynolds-Averaged Navier-Stokes Equations

The Navier-Stokes equations presented in the previous section can be solved to simulate

inviscid and laminar flows. In fact, in the absence of the effects of viscosity or for cases

where the ratio of the kinematic to viscous forces is too large, the Navier-Stokes equations

result in the well-known Euler equations that are used for the simulation of inviscid flows.

However, many fluid flow problems in engineering applications involve turbulent flows whose

direct simulations require considerable and prohibitively costly computational resources. In

fact, the computational cost of the direct simulation of the turbulent flow features, known
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as direct numerical simulations (DNS), can easily grow out of hand due to the fact that the

required number of grid nodes is proportional to Re9/4 [21]. Therefore, the application of

the DNS is limited to small scale problems at low to moderate Reynolds numbers. Despite

its significant computational demand, DNS is used for calibrating turbulence models as well

as advanced studies of laminar to turbulent transition phenomenon, to name a few.

As an alternative, large-eddy simulations (LES) have been introduced. In the framework

of LES, only large scale eddies are resolved directly while approximative techniques (namely

“sub-grid scale” or SGS) are used to capture small scale turbulent features. This trade-off

leads to more efficient simulations compared to DNS while providing a reasonable accuracy

that can improve the understanding of the turbulent structures. However, the computational

cost of these two techniques is still high, making their use unsuitable in the design stage.

As a result, Reynolds-Average Navier-Stokes (RANS) models have been pursued which

can significantly reduce the computational cost of turbulence modeling, making them suitable

candidates for simulations in the design stage. In this work, the RANS equations are solved

in the framework of the UNPAC solver and the details of the governing equations, turbulence,

and transition models are described in this section.

2.3.1 Reynolds Averaging and Eddy-Viscosity Hypothesis

The concept of Reynolds averaging, first introduced by Reynolds [174], decomposes the flow

quantities into a mean and a fluctuating part. As an example, the density can be described

as

ρ = ρ+ ρ′ (2.45)

where ρ is the mean part approximated by an averaging process and ρ′ is the fluctuating part.

As a common practice (for flows at Mach numbers below 5), Morkovin’s hypothesis [160] is

used which assumes that ρ′ � ρ, thus the density fluctuations can be ignored. However, the

substitution of the mean and fluctuating parts of the conservation variables (similar to the

one shown in Eq. [2.45]) into the governing equations results in two additional terms given

as
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τ
R
ij = −ρ v′i v′j (2.46)

~F T
D = −ρ h′ ~v′ (2.47)

The first term is called the Reynolds-stress tensor [174] which includes the mean density, ρ,

and the mean value for the product of the two fluctuating velocity components, v′i and v′j.

The second term is called the turbulent heat-flux vector [98] which includes the mean density

and the mean value for the product of the enthalpy, h′, and velocity vector fluctuations, ~v′.

Due to the appearance of these two additional terms, the RANS equations are no longer

closed and complementary assumptions and equations are required to address this closure

problem which will be discussed next.

Eddy-Viscosity Hypothesis

The eddy-viscosity hypothesis, also known as Boussinesq hypothesis, was first introduced by

French physicist Joseph Boussinesq and assumes a linear correlation between the turbulent

shear stress and mean rate of strain [21]. Therefore, the Reynolds-stress tensor can be now

written as

τ
R
ij = −ρ v′i v′j = 2µT S̃ij −

2

3
ρK̃δij −

(
2µT

3

)
∂ṽk
∂xk

δij (2.48)

where S̃ij is the averaged strain rate, K̃ is the averaged turbulent kinetic energy, and µT is

the eddy viscosity [227]. The main result of the Boussinesq hypothesis is the introduction

of the eddy viscosity which is directly related to the local flow properties. In fact, the main

purpose of the turbulence models is to determine this quantity based on the flow conditions

and thus closing the system of equations.

The turbulent heat-flux vector or the Reynolds enthalpy flux [93], is approximated using

the gradient-diffusion hypothesis [226, 227] originally proposed by Reynolds [175] so that

~F T
D = −ρ h′ ~v′i = −kT

∂T̃

∂xi
(2.49)
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where kT is called the turbulent thermal conductivity coefficient [227, 21] given by

kT = cp
µT
PrT

(2.50)

Here, PrT is the turbulent Prandtl number which is assumed to be constant throughout the

fluid domain and is taken to be PrT = 0.9 for air. Once again, it can be seen that the eddy

viscosity, µT , is required to approximate the turbulent heat-flux vector. It must be noted

that since the RANS equations are written and solved for averaged or mean components of

the flow variables, the tilde sign can be omitted for clarity. The eddy-viscosity hypothesis

has certain flaws and a discussion about its weaknesses and the conditions at which this

hypothesis fails is presented by Wilcox [227].

As discussed previously in section 2.2, in the framework of the RANS equations, the

dynamic viscosity µ is replaced by an “effective” viscosity which is taken to be the sum of

the laminar and eddy viscosities, i.e.,

µeff = µL + µT (2.51)

where the laminar viscosity is calculated using the Sutherland’s law (see Eq. [2.23]) and the

eddy viscosity is computed via the turbulence model. Similarly, the thermal conductivity

coefficient can be written as a sum of laminar and turbulent components via

k = kL + kT = cp

(
µL
PrL

+
µT
PrT

)
(2.52)

where PrL is given in Table 2.1 for air as the working fluid. Next, the turbulence model used

in this work to complete the RANS governing equations will be presented.

2.3.2 Spalart-Allmaras Turbulence Model

As discussed earlier in this chapter, in order to close the RANS equations, the eddy viscosity

must be approximated. For this reason, closure models are often used which depending

on the number of equations that need to be solved, are classified as (1) zero-equation or

algebraic, (2) one-equation, and (3) two-equation turbulence models. The zero-equation or
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algebraic turbulence models use empirical formulations based on the local flow conditions

to calculate the eddy viscosity. Among these, the Baldwin and Lomax [10] algebraic model

is the most widely used for aerodynamic applications. However, the accuracy of the eddy

viscosity evaluation is directly related to the flow history which is neglected in the algebraic

models. This is addressed by solving a transport equation for the convective and diffusive

components of the turbulent features, which is the case for one-equation and two-equation

turbulence models.

In this work, the modified one-equation Spalart-Allmaras turbulence model [194] is

used which is enhanced with a “rotation correction” mechanism that reduces the eddy

viscosity in the vicinity of regions where the vorticity surpasses the strain rate [46, 45].

The Spalart-Allmaras (SA) turbulence model is capable of accurately predicting adverse

pressure gradients [227] while maintaining a local (grid-transparent) formulation that makes

it suitable for implementation in the framework of structured, unstructured, and mixed-grid

solvers.

By taking advantage of the eddy-viscosity hypothesis, the SA model can be written in

a conservation form similar to the rest of the governing equations. Therefore, in this work,

the RANS equations are augmented by the turbulence model and solved in a fully-coupled

fashion. The SA model can be written in the integral form for a finite control volume (see

Figure 2.1) as

∂

∂t

∫

V
ρν̃ dV +

∮

∂V

(
F SA
c − F SA

v

)
dS =

∫

V
QSA dV (2.53)

where ν̃ is the eddy viscosity variable or the working variable of the SA turbulence model.

Here, the convective and viscous fluxes of the SA model are given by

F SA
c = ρν̃V (2.54)

F SA
v = ~τSAxixi · ~n (2.55)
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where V is once again the contravariant flow velocity and ~τSAxixi is the vector of diagonal or

normal viscous stresses for the SA model. The components of the normal stresses for the SA

turbulence model are defined as [227]

τSAxx =
ρ

σ
(νL + ν̃)

∂ν̃

∂x

τSAyy =
ρ

σ
(νL + ν̃)

∂ν̃

∂y

τSAzz =
ρ

σ
(νL + ν̃)

∂ν̃

∂z
(2.56)

where the laminar kinematic viscosity, νL, is defined by

νL =
µL
ρ

(2.57)

The most important part of the SA turbulence model is its volumetric source term which is

defined as [21]

QSA = P −D + cb2(∇ν̃)2 (2.58)

where the production, P , and wall destruction, D, terms read

P = cb1S̃ν̃, D = (cw1fw)

[
ν̃

d

]2

(2.59)

with S̃ denoting the modified vorticity, i.e.,

S̃ = |~Ω|+ ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

(2.60)

where |~Ω| is the magnitude of the vorticity, and d is the distance to the closest wall. Finally,

the turbulent (eddy) viscosity, µT , as defined by the standard Spalart-Allmaras turbulence

model [194] is given by

µT = ρν̃fv1(χ) (2.61)
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where

fv1(χ) =
χ3

χ3 + c3
v1

, χ =
µt
µl

(2.62)

The function fw is:

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r), r = min

(
ν̃

S̃κ2d2
, rlim

)
(2.63)

The constants used in the above definitions are taken from [5] and, for completeness, are

given in Table 2.2.

Table 2.2: Constants and closure coefficients for the Spalart-Allmaras turbulence model.

constant value constant value
cb1 0.1355 κ 0.41
cb2 0.622 cw1 cb1/κ

2 + (1 + cb2)/σ
cv1 7.1 cw2 0.3
cv2 5.0 cw3 2.0
σ 2/3 rlim 10.0

It must be noted that the SA turbulence model presented in Eq. (2.53) is a single partial

differential equation written in the integral form similar to the RANS equations provided

earlier in this section. In this work, the Navier-Stokes equations (2.9) and the SA turbulence

model (2.53) are coupled together to give the final set of RANS-SA governing equations.

These equations are presented in the integral form as below

∂

∂t

∫

V

~U dV +

∮

∂V

[
~Fc − ~Fv

]
dS =

∫

V

~Q dV (2.64)

where ~U is the vector of conservation variables defined as

~U =




ρ

ρ~v

ρE

ρν̃




(2.65)
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and the convective and viscous fluxes are given by

~Fc =




ρV

ρuV + p nx

ρvV + p ny

ρwV + p nz

ρHV

ρν̃V




, ~Fv =




0

~τx1 · ~n
~τx2 · ~n
~τx3 · ~n
~Θ · ~n
~τSAxixi · ~n




(2.66)

where V is the contravariant flow velocity and the viscous stress tensor, work of the viscous

stresses, and the normal stresses of the SA turbulence model are calculated according to Eqs.

(2.14), (2.15), and (2.56), respectively. Additionally, the augmented vector of source terms

now reads

~Q =




0

ρfe,x

ρfe,y

ρfe,z

ρ~fe · ~v
QSA




(2.67)

where the source term for the SA turbulence model is given by Eq. (2.58) and body forces

for the momentum and energy equations can be described by the Coriolis and the centrifugal

forces in the case of the rotating frame of reference. In summary, 5 or 6 equations are solved

for two-dimensional or three-dimensional problems, respectively.

2.3.3 B-C Transition Model

In external flows such as those arising in wind turbine simulation and rotorcraft problems,

the boundary layer is initially laminar before transitioning to turbulent further downstream.

However, the Spalart-Allmaras turbulence model works with an assumption of fully turbulent

flow throughout the fluid domain. In fact, the SA model is capable of simulating a transition

between laminar and turbulent flows at a pre-specified location. However, this requires an
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a priori knowledge of the tripping point which can be very challenging to determine in

off-design conditions and for the unconventional designs. Therefore, transition models can

be utilized to predict the laminar-turbulent transition phenomenon. In fact, Howison and

Ekici [104] have shown the necessity of a transition model in accurately predicting the static

and dynamic stall for wind turbine blades in the framework of a RANS-SA solver.

Similar to the turbulence models, the transition models can also be classified based on

the number of additional equations that are required to be solved for the prediction of the

flow separation and reattachment. A widely used approach is the two-equation γ − Reθ t

transition model of Langtry and Menter [128, 129]. Although, it was initially proposed for

the two-equation k − ω SST turbulence model [155, 156], it was later adapted for the one-

equation Spalart-Allmaras turbulence model by Medida and Baeder [153, 152] and also used

in the framework of time-spectral methods by Howison and Ekici [104].

More recently, Baş and Çakmakçıoğlu [14, 34] developed a zero-equation (algebraic)

correlation-based transition model that is readily applicable to the SA turbulence model.

This transition model (known as B-C model) uses an intermittency, γtrans, function rather

than solving an intermittency transport equation, as is the case in the γ − Reθ t transition

model. It is shown [34] that the intermittency function can effectively and accurately predict

the laminar-turbulent transition without having to solve any additional equations. Based

on the local flow conditions, the intermittency scalar is calculated which will then scale

the production term of the SA turbulence model. Therefore, unless the turbulence onset

requirements are met, the production of eddy viscosity by the turbulence model is damped.

In this work, the B-C transition model [33] is utilized which will be incorporated into our

RANS-SA solver with minor modifications. Therefore, the source term of the SA turbulence

model (2.58) is modified to include the intermittency scalar, γtrans, which varies between 0

and 1, where the lower and upper bounds correspond to laminar and fully turbulent flow

conditions, respectively. Thus, the modified SA source term now reads

QSA = γtrans P −D + cb2(∇ν̃)2 (2.68)
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The intermittency scalar is a function of vorticity Reynolds number, Reν , momentum

thickness Reynolds number, Reθ, as well as a critical eddy viscosity, ν̃cr. The intermittency

function is defined as [14]

γtrans = 1− e−(TRe+Tν̃) (2.69)

where the Reynolds-based terms and the eddy-viscosity-based terms are given by [34]

TRe =

√
max(Reν

ct1
− Reθc, 0)

ct2Reθc
(2.70)

Tν̃ =

√
max(ν̃cr − ct3 , 0)

ct3
(2.71)

The vorticity Reynolds number and the critical eddy viscosity are defined based on the

local flow conditions (including the density, velocity, laminar dynamic viscosity, and the wall

distance) via

Reν =
ρΩd2

µ
(2.72)

ν̃cr =
ν̃

|~v| d (2.73)

where Ω is the vorticity magnitude, |~v| is the velocity magnitude, ν̃ is the turbulent eddy

viscosity (working variable) of the SA turbulence model, and d is the closest wall distance.

Now, the only remaining part is to determine the critical momentum thickness, Reθc. In

order to calculate this parameter, a correlation based on the experimental results is used.

This correlation is based on a zero-pressure gradient assumption [154] and is only a function

of the free-stream turbulence intensity, Tu∞. In the framework of the k− ω SST turbulence

model, the local turbulence intensity is calculated based on the solution of the turbulent

kinetic energy, k. Since the SA turbulence model does not solve for this quantity, a user-

specified free-stream turbulence intensity is used. According to Menter et al. [154], the

experimental correlation for the critical momentum thickness is defined as
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Reθc = cθ1 (Tu∞ + cθ2)
−cθ3 (2.74)

The coefficients of the B-C transition model are given in Table 2.3. It must be noted that

the first coefficient, ct1 , is a proportionality constant that relates the momentum thickness

and the vorticity Reynolds number [154].

Table 2.3: Coefficients of the B-C transition model [34].

constant value constant value
ct1 2.193 cθ1 803.73
ct2 0.002 cθ2 0.6067
ct3 5.0 cθ3 1.027

It must be noted that the B-C transition model has been previously applied to zero-

pressure gradient flow over a flat-plate, transonic flow around DLR-F5 wing, as well as the

low-speed NREL wind turbine and good agreements between the numerical and experimental

results are reported [33]. Moreover, the fact that no additional equation is solved to simulate

the laminar to turbulent transition, makes this model even more attractive. Therefore, the B-

C transition model described in this section is incorporated in the framework of the UNPAC

solver.

2.4 Harmonic Balance Equations

As explained earlier, since many flows of interest considered in this work are time-periodic,

the conservative variables for which the governing equations are solved, can be written in

terms of a truncated Fourier series up to a predefined number of harmonics by:

~U∗(ti) = A0 +

NH∑

n=1

[An cos(Ωnti) + Bn sin(Ωnti)] ; i = 1 : 2NH + 1 (2.75)

where Ω is the fundamental frequency of excitation and A0, An and Bn are the Fourier series

coefficients defined in terms of the conservative variables. The Fourier series is truncated in

a way that the flow variables are computed and stored at 2NH + 1 equally-spaced sub-time

levels over a single period. Based on Eq. (2.75) and using a discrete Fourier transform,
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the Fourier coefficients can be determined from the solutions stored at each sub-time level

through

~̂U = E~U∗ (2.76)

where E is the discrete Fourier transformation matrix defined as

E =
2

2NH + 1




1/2 1/2 1/2 · · · 1/2

cos(Ωt1) cos(Ωt2) cos(Ωt3) · · · cos(Ωt2NH+1)
...

...
...

...

cos(NHΩt1) cos(NHΩt2) cos(NHΩt3) · · · cos(NHΩt2NH+1)

sin(Ωt1) sin(Ωt2) sin(Ωt3) · · · sin(Ωt2NH+1)
...

...
...

...

sin(NHΩt1) sin(NHΩt2) sin(NHΩt3) · · · sin(NHΩt2NH+1)




(2.77)

In a similar fashion, the conservative variables at the sub-time levels can be determined

using the inverse discrete Fourier transform:

~U∗ = E−1 ~̂U (2.78)

where E−1 is the inverse of the discrete Fourier transformation matrix given by

E−1 =




1 cos(Ωt1) · · · cos(NHΩt1) sin(Ωt1) · · · sin(NHΩt1)

1 cos(Ωt2) · · · cos(NHΩt2) sin(Ωt2) · · · sin(NHΩt2)

1 cos(Ωt3) · · · cos(NHΩt3) sin(Ωt3) · · · sin(NHΩt3)
...

...
...

...
...

1 cos(Ωt2NH+1) · · · cos(NHΩt2NH+1) sin(Ωt2NH+1) · · · sin(NHΩt2NH+1)




(2.79)
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It is worth mentioning that the discrete Fourier transformation matrix, E, and its inverse,

E−1 are both square matrices with a size corresponding to NT × NT where NT = 2NH + 1

is the total number of sub-time levels.

In order to incorporate the harmonic balance method into the governing equations, let

us first assume a volume-averaged representation of the conservation variables defined at the

center of the control volume via

~U =
1

V

∫

V

~U dV (2.80)

where V is the control volume. Inserting Eq. (2.80) into Eq. (2.64) and dropping the bar

notation for clarity gives

∂(V ~U)

∂t
+

∮

∂V

[
~Fc − ~Fv

]
dS =

∫

V

~Q dV (2.81)

The details on finite-volume discretization approach used in this work will be presented

in Chapter 3. However, for the moment, let us assume that the convective and viscous fluxes

as well as the volumetric source term are discretized and cast into a residual vector, ~R(~U),

as a function of the flow variables at all grid nodes. Therefore, the semi-discrete form of

the governing equations shown in Eq. (2.81) can now be written as an ODE in terms of the

conservation variables via

d(V ~U)

dt
+ ~R(~U) = 0 (2.82)

As described earlier, in the HB method, the flow variables are computed at different sub-

time levels that are equally-spaced over a single period. Therefore, Eq. (2.82) can be written

for each conservation variable at each grid point in terms of the sub-time level solutions via

d(V∗~U∗)
dt

+ ~R(~U∗) = 0 (2.83)

where V∗ are the sub-time level control volumes and ~R(~U∗) includes the residuals consisting

of convective, viscous as well as source terms at each sub-time level. Next, the time-derivative

term in Eq. (2.83) can be approximated with a pseudo-spectral operator D given by
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d

dt
≈ D =

dE−1

dt
E (2.84)

so that Eq. (2.83) is rewritten as

D(V∗~U∗) + ~R(~U∗) = 0 (2.85)

where the above equation is solved for all sub-time levels. It can be seen that the above

equation is mathematically steady which is the most important feature of the HB method.

In general, in order to march the governing equations to steady-state at each sub-time level,

a “pseudo-time” derivative term is added to the time-spectral HB equation [Eq. (2.85)].

Therefore, almost all convergence acceleration techniques that are commonly used for steady

cases can be applied to these equations to accelerate the convergence to time-periodic

solutions. With the inclusion of a pseudo-time term, the harmonic balance equations become

d(V∗~U∗)
dτ

+ D
(
V∗~U∗

)
+ ~R(~U∗) = 0 (2.86)

where τ is the pseudo-time. The first term in the equation above must vanish when marching

the HB solution to convergence, thus recovering Eq. (2.85). As the sub-time level control

volumes, V∗, do not change in pseudo-time, they can be taken out of the pseudo-time

derivative to get the final form of the HB-RANS-SA equations that read

d~U∗

dτ
+

1

V∗
[
D
(
V∗~U∗

)
+ ~R(~U∗)

]
= 0 (2.87)

The details of the discretization and the numerical procedure used in UNPAC solver are

described in the next chapter.
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Chapter 3

UNstructured PArallel Compressible

(UNPAC) Solver

In this work, a hybrid-grid solver is developed that solves the governing equations described in

Chapter 2 using the Finite Volume Method (FVM). These equations are implemented in both

two-dimensional and three-dimensional forms using proper vectorization of the primitive and

grid variables such that based on the dimensionality of the input grid, the corresponding form

of the governing equations is utilized. The UNPAC solver is written in Fortran programming

language (standard Fortran 2003) and is also parallelized using the message passing interface

(MPI) tools with a non-overlapping domain decomposition [236]. Additionally, ParMETIS

software package [123] is used for parallel partitioning of the computational domain. In this

chapter the numerical procedure and the details of the UNPAC solver are presented.

3.1 Non-Dimensionalization

A common practice in almost all numerical solvers is to non-dimensionalize the governing

equations. By having all flow variables defined in a dimensionless form, consistency can

be maintained for the entire set of governing equations independent of the units used for

each individual variable. This allows one to use the angle of attack, the Mach number

and the Reynolds number as the only input parameters for two-dimensional compressible

flow solutions. Therefore, similarity parameters can be properly identified which reduce
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the number of input parameters for each test case in the modeling and design process.

Ultimately, by using a proper normalization, flow variables become of order of magnitude

unity thus allowing for easier comparison with benchmark datasets [168, 105].

The non-dimensionalization process uses reference values for certain primary variables.

This allows one to define secondary (or the rest of the) variables based on the reference

quantities. In this work, reference length, reference pressure, and reference temperature

values are specified. Additionally, the gas constant, Rgas, as well as the specific heat ratio,

γ, for the working fluid are input. The primary (independent) and secondary (derived)

variables are listed in Tables 3.1 and 3.2. In general, the reference pressure is taken to be the

atmospheric pressure at sea level, i.e., 1 atm = 101325 N/m2, and the reference temperature

is set to 273 K. Also, for air used as the working fluid, the values of gas constant and the

specific heat ratio are defined.

Table 3.1: Primary reference variables (user-specified).

variable name UNPAC variable value units (SI)
Length Lref (input) problem-specific m

Pressure pref (input) 101325.0 N/m2

Temperature Tref (input) 273.0 K
Gas Constant Rgas (input) 287.0 J/kg-K

Specific Heat Ratio γ (input) 1.4 -

Table 3.2: Secondary (derived) reference variables.

variable name UNPAC variable units (SI)
Density ρref = pref/(RgasTref) kg/m3

Velocity Vref =
√
Rgas Tref m2/s

Dynamic Viscosity µref = ρref Vref Lref kg/m-s
Frequency ωref = Vref/Lref 1/s

Using the reference values defined in Tables 3.1 and 3.2, the dimensionless variables

(denoted by overbars) are defined [105] as
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x =
x

Lref

, y =
y

Lref

, z =
z

Lref

, t =
t

Lref/Vref

(3.1)

ρ =
ρ

ρref

, p =
p

pref

, ~v =
~v

Vref

(3.2)

ω =
ω

ωref

, T =
T

Tref

, µ =
µ

µref

(3.3)

It must be noted that substituting the above dimensionless variables into the equation of

state (Eq. [2.19]) leads to a modified form of this equation that reads

p = ρ T (3.4)

which no longer includes the gas constant.

As described earlier, the non-dimensionalization is followed by a normalization process

so that the primitive free-stream flow variables (density, velocity, pressure, and temperature)

are of order of magnitude unity. In the UNPAC solver, the following non-dimensional free-

stream flow variables are set to unity:

ρ∞ = 1.0, V ∞ = 1.0 (3.5)

Therefore, based on the equation of state given in Eq. (3.4), the free-stream pressure,

temperature, and the speed of sound are

p∞ =
1

γ M2
∞
, T∞ =

p∞
ρ∞

= p∞, a∞ =

√
γp∞
ρ∞

=
1

M∞
(3.6)

which means that for air at free-stream Mach numbers in the range of 0.3 < M∞ < 0.9 (as

an example), the free-stream pressure and temperature are varied between 0.88 < p∞, T∞ <

7.94 and the free-stream speed of sound is in range 1.11 < a∞ < 3.33 which are all in the

order of O(1).

In the UNPAC solver, the free-stream Mach number is the main input variable and for

viscous (laminar and turbulent) cases, the user also specifies the Reynolds number which is

defined in terms of the reference variables as
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Re =
ρrefVrefLref

µref

(3.7)

Thus, in order to match the user-specified Reynolds number, the reference length, Lref, is

tuned automatically. Another important preliminary step for setting up the flow solver is

the definition of the free-stream velocity vector which is used for flow initialization as well

as in the far-field boundary. For two-dimensional cases, the two components of the velocity

vector are defined based on the free-stream velocity magnitude, V∞, and the angle of attack,

α, such that

~v∞ = [V∞ cos(α), V∞ sin(α)]T (3.8)

On the other hand, for three-dimensional cases, the free-stream velocity vector is provided

as part of the case settings, i.e., ~v∞ = [u∞, v∞, w∞] is input.

3.2 Data Structure and Grid Transparency

In the UNPAC solver, the integral form of the governing equations introduced in Chapter

2 are discretized and solved numerically. Using the method of lines, the temporal and

spatial discretizations are performed separately which enables us to use different numerical

approximations with various levels of accuracy in space and time independently.

3.2.1 Primal and Dual Grids

As discussed earlier, the discretization process starts by taking an average of the conservation

variables over each control volume and writing according to the Taylor series expansion

U =
1

Vi

[∫

Vi

~U dV − (~∇U)

∫

Vi
(~x− ~xi) dV + H.O.T.

]
(3.9)

where Vi is the arbitrary control volume whose centroid is located at ~xi.

Therefore, this averaging process requires us to determine a location where the averaged

quantities are defined at, which will shortly be discussed. Since grid generation is not in the
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scope of this work, the unstructured grids are provided as an input to the UNPAC solver.

The unstructured grid subdivides the physical domain into a number of grid cells or elements

which will be called the “primal grid”. In general, there are six types of elements that are

recognized by the UNPAC solver which are all shown in Figure 3.1 for two-dimensional (2D)

and three-dimensional (3D) cases.
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Hexahedral

Figure 3.1: Different types of cells in the primal grid for the (a) 2D and (b) 3D cases

As can be seen in Figure 3.1, each cell type has different number of nodes (vertices),

edges, and faces. Each edge is associated with only two vertices and for 2D cells, the faces

of the grid cell are the same as the grid edges.

To motivate the finite volume discretization of the governing equations (in the integral

form), the control volumes and the location at which the averaged state variables are stored

need to be defined. The definition of the control volumes results in what is called the “dual

grid”. In the framework of an unstructured solver, there are two available choices:

1. Cell-centered approach: In this approach, the control volumes are the same as

the grid cells such that the “primal grid” and the “dual grid” are identical. Also the

conservation variables (volume averages in Eq. [3.9]) will be located at the centroid of

the grid cells shown in Figure 3.1.
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2. Cell-vertex approach: Here, the conservation variables are stored at the grid vertices

and the control volumes are defined by connecting the edge medians and the cell

centroids of all edges and cells connected to each grid vertex. This type of control

volume is called “median-dual” which results in a dual grid that obviously does not

match the primal grid as shown in Figure 3.2.

It must be noted that for structured grids, there is another type of cell-vertex approach

that results in “overlapping” control volumes but since this is not pursued in unstructured

grid topologies, it will not be addressed here [21].

Primal Grid
.
.
Dual Grid

Primal Grid
.
.
Dual Grid

p

Figure 3.2: Primal (solid black) and dual grids (dashed red). The median-dual control
volume associated with grid vertex p is shaded.

There is a lot of debate in the CFD community over the choice of cell-centered or cell-

vertex approaches. Each approach has its own advantages and disadvantages compared to

the other and the interested reader is referred to Ref. [21] for an in-depth discussion. The

goal of this work is to have a grid-transparent discretization scheme and for the reasons that

become obvious in the next few sections, the median-dual control volume approach is used in

the UNPAC solver. However, it must be noted that in the cell-vertex approach used herein,

since the flow variables are stored at grid vertices, which is not necessarily at the centroid of

the control volume, extra care must be given to the volume averaging given by Eq. (3.9).

According to Eq. (3.9), due to the mismatch between the centroid of the control volume,

~xi, and the grid vertex, ~x, at which the flow variables are stored, second-order errors are
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introduced [133]. However, according to Leonard [133], this is only an issue for high-order

(third-order or higher) schemes. On the other hand, this mismatch also necessitates the

coupling of the flow variables at any control volume to those of its neighboring cells through

a mass matrix. However, for steady flows (or mathematically steady as in the case of HB

method), this mass matrix can be replaced by an identity matrix (lumped) without sacrificing

accuracy [93, 220]. It must be added that the median-dual definition used in this work arises

naturally in Galerkin-type FEM approach when applied to the triangular elements with

linear shape function [93]. Hence, the present solver gives accuracy comparable to those of

Galerkin-type FEM solvers on triangular and tetrahedral elements.

3.2.2 Data Structure and Classes

For structured grids, the cell, face, edge, and the node connectivity data is pretty much

straightforward and neighborhoods can be simply identified by increasing and decreasing

indices. For unstructured grids, on the other hand, the connectivity data is non-trivial and

an elaborate data structure is required. This data structure must match the discretization

method while containing necessary information for pre- and post-processing stages.

For the reasons that become clear in the next section, an edge-based data structure is

used in this work. Therefore, the goal of the data structure is to use cellular, facial, and

nodal data and associate them with the edge information. This is due to the fact that in the

median-dual control volume approach, the edges of the primal and dual grids match. In the

FVM method used in this work, it is required to calculate fluxes across the faces (control

surfaces) of the control volume. Thus, by associating the edges of the dual grid (faces of the

median-dual control volume) to the edges of the primal grid, all fluxes can be calculated by

simply looping over the edges of the primal grid.

The data structure of the UNPAC solver uses the object-oriented programming capabil-

ities of Fortran 2003 standard, which in turn allows the use of special classes with their

corresponding components (attributes) and modules (methods). Three main classes are

defined in the UNPAC data structure that handle cells, edges, and nodes. While a separate

class can be used for the faces, due to the fact that in 2D cases edges are treated the same
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as the faces of the control volume, extra components and methods are added to the cell class

for handling face data only used for 3D cases.

First, the node class is described which contains the nodal locations in the Cartesian

coordinate system. Since control volumes are associated with the grid nodes, the node

class also stores the volume of the median-dual cell. Finally, the node-node and node-cell

connectivity data as well as the node-edge associations are stored in this class.

Next, a cell class is defined in the data structure which contains all the cellular

information (as well as the facial information for the 3D cases). This class is parameterized

based on the dimensionality of the provided grid such that for 2D and 3D cases the

components of the cell class are pre-allocated to their maximum allowable sizes. For example,

in 2D cases, each cell has a maximum of 4 nodes and 4 edges/faces that happens in the case

of a quadrilateral element (see Figure 3.1). Also, each face of the element contains 2 nodes

(same for an edge) and each node inside the cell has only 2 node neighbors that belong to

that same element. On the other hand, for 3D cases, each cell has a maximum of 8 nodes, 6

faces, and 12 edges that all happen in a hexahedral cell. Moreover, each face has a maximum

of 4 nodes (quadrilateral faces in pyramid, prism, and hexahedral elements), each edge has

2 nodes (true for all edges), and each node has a maximum of 4 node neighbors connected

to it by an edge (happens only for the top node in the pyramid cell).

Another important feature of the cell class is the local node, edge, and face indices. In

general, nodes and edges have global indices that go from 1 to the total number of nodes

(nNodes) and edges (nEdges) (same for primal and dual grids), respectively. However, inside

any given cell, local indices are used to ease up the grid pre-processing. These local indices

are shown as an example for triangular and tetrahedral elements of the primal grid in Figure

3.3. A similar approach is used for all element types (6 in total) for 2D and 3D cases.

An important issue in the case of the local indexing is the cell orientation. According to

VTK [8] and CGNS [132] standards, nodes are arranged according to the indices shown in

Figure 3.1. Therefore, in the definition of the facial node lists, a right-hand-rule is utilized

to make sure that the nodes are in the counter-clockwise order so that the face normals are

all pointing outward from the element perspective.
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Figure 3.3: Local indexing for the (a) triangular and (b) tetrahedral elements.

While the VTK/CGNS nodal conventions are followed in all grid generation solver

packages, sometimes cells are exported in a reversed order due to the complex meshing

and block-merging processes. Therefore, a cell reorientation procedure is implemented in

UNPAC that first checks the orientation of the grid cells according to the vector calculus

and, if required, reorients the cells to their standard form.

Another issue is the mesh entanglement or cell inversion that can happen during the

grid adaptation (AMR) as well as during mesh deformation. For a cell that undergoes large

deformations, sometimes one of the nodes passes through an opposing face that leads to an

inverted cell. To identify these cells, the cell orientation checks are performed after each

AMR or mesh motion cycle and since the orientation of the elements have been checked

in the pre-processing step, any cell that requires reorientation is obviously inverted. This

method is useful for identifying invalid meshes which will be discussed later.

Boundary Considerations

As mentioned earlier, an edge-based approach is used throughout the solution process.

Therefore, extra attention must be given to the boundary conditions and their treatment in

the numerical solver. Although the discretized boundary conditions are presented in Section
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3.9 in detail, data structure considerations for the boundaries need to be addressed here.

For 2D problems, boundaries consist of edges, while for 3D problems, they consist of faces.

As shown in Figure 3.4, in some cases two or more boundaries can intersect with each other.

For 2D cases, a node-based boundary treatment can create issues since a node can be shared

by two boundary edges. As an alternative, an edge-based approach needs to be followed

which requires the addition of the boundary edge normal information to the data structure.

This issue becomes more apparent for 3D problems, where not only the nodes, but also

the edges can be shared by more than one boundary. Therefore, a face-based boundary

treatment would be necessary for 3D cases, which requires having the boundary face normal

information evaluated at the pre-processing stage.
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Figure 3.4: Boundary intersections. For the 2D case (a) node n1 is shared between
boundaries 1 and 2. For the 3D case (b) edge n1n2 is shared between boundaries 1 and
3.

As discussed previously for the cell orientation process, a similar approach will be used

for boundary faces (or boundary edges in 2D cases) to fix the local ordering of the nodes for

each face in a way that face normals are always pointing outward (exiting the computational

domain).
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3.2.3 Grid Transparency

As discussed earlier, the goal of this work is to develop a robust solver that can handle

mixed unstructured grids where different cell types can be used. The goal here is to have

a solution method that is independent of the various cell types involved in the primal grid.

Obviously, different cell types should be treated differently and separately during the pre-

processing as well as post-processing stages of the numerical solver. However, during the

discretization and solution processes, one wants to avoid the necessity of having different or

separate procedures according to the various cell types. Otherwise, auxiliary arrays must

be included in the data structure and the solution process will involve many conditional

statements that can negatively affect the performance of the solver and the readability of

the computer code.

Ideally, it is desired to have a solver with a concise data structure that can handle the

solution process independent of the cell type, hence the term “grid transparent” [93]. In

order to achieve this goal, attention must be shifted away from cellular data and focused

on the edge and vertex information. This is the main reason for using an edge-based data

structure in this work.

Another important feature of the UNPAC solver is its dimensional flexibility such that

it can handle both 2D and 3D grids without having many special instruction or subroutines

to distinguish between the two. This makes the “grid transparent” approach used in this

work even more attractive. In fact, edges are always defined by two vertices independent

of the problem dimensionality and therefore, an edge-based data structure can lead us to

an ultimately grid transparent solver. In the framework of the UNPAC solver, different cell

types or even mixed grids are handled identically during the solution process.

It must be noted that polyhedral elements and grids of arbitrary topology which have

been used primarily in the Finite-Element (FE) solvers, are becoming more popular in the

FVM-based CFD solvers [162]. Therefore, by having a grid transparent solver, addition

of the arbitrary grid topologies only requires modifications to the pre- and post-processing

stages without altering the computational core of the CFD solver.
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Figure 3.5: Fractional face vectors used in the calculation of the total edge vector, ~Sij,
for (a) the median-dual control volume of node i in a 2D mixed grid, and (b) a fraction of
the median-dual control volume of node i in a 3D tetrahedral element sharing node i. (Face
vectors are not drawn to scale)

Considering the cell-vertex median-dual control volume approach used in this work, fluxes

need to be integrated over the control surfaces for each cell. As discussed earlier, these control

surfaces are associated with the edges of the primal grid. The median-dual control volume

is defined by connecting the cell and face centroids and the edge medians of all the cells,

faces, and edges sharing each vertex. This is shown in Figure 3.5a for a mixed grid in 2D.

As can be seen, an arbitrary edge is associated with two fractional face vectors, ~dSij1 and

~dSij2 , that share the same edge. Therefore, by collecting these two fractional face vectors,

the total face vector of this edge, ~Sij, can be determined via

~Sij = ~dSij1 + ~dSij2 (3.10)

For a second order scheme, the conservation variables are assumed to be constant for

each face and the fluxes (both convective and viscous) are evaluated at the edge median.

Therefore, the edge vector, ~Sij, that includes both the area and the normal direction of the

control surface is used for integration. For the sake of improving performance and to avoid
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extra computations, edges are defined such that they go from node i to node j and the ~Sij

vector is aligned with the same direction. Therefore, the edge vector ~Sij is used for the

integration at node i and −~Sij is used for the integration at node j.

C1

F1

j

~Sij

i

Figure 3.6: Total face vector, ~Sij, for an arbitrary edge ij in 3D case using the median-dual
approach.

Obviously, for 2D cases, each edge is only shared by two cells on each side although at

the boundary edges, only one cell (and hence one fractional face vector) is contributing to

the edge vector, ~Sij. However, in 3D cases, this process is more complicated as each edge

can be shared by many cells. Therefore, in these instances, fractional face vectors should be

calculated one at a time for each edge-face-cell combination. This is shown in Figure 3.5b

for a tetrahedral element where local node indices are used for clarity. Here, the fractional

face vector, ~dSij1 , is considered which is constructed by connecting the edge median, M1,

the face centroid, F1, and the cell centroid, C1. This process is repeated for all edge-face-cell

combinations sharing the same edge and the edge vector, ~Sij, will be the sum of all these

fractional face vectors as shown in Figure 3.6.

3.3 Convective Fluxes

As described in Chapter 2, fluxes in the Navier-Stokes equations consist of convective and

viscous parts. In the absence of viscous effects (inviscid flows), the convective flux is the

only flux term in the governing equations (now called the “Euler” equations). Convective
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fluxes are also the main source of non-linearity in the equations governing the fluid flow.

Therefore, extra attention has been given to their discretization and various schemes have

been introduced to improve accuracy of their evaluation.

Traditionally, central schemes based on simple arithmetic averaging of the conservation

variables have been used in the framework of Euler and Navier-Stokes solvers. To eliminate

the odd-even decoupling phenomenon, as well as stability and shock handling issues

associated with the central schemes, artificial dissipation terms have been added with the

JST scheme, named after Jameson-Schmith-Turkel [117].

While computationally cheap, central schemes fail to offer high resolution shock and

boundary layer capturing. As an alternative, upwind schemes have been developed which,

compared to the arithmetic averaging in central schemes, use a biased averaging of the

flow variables. Upwind schemes are generally categorized into two classes of (1) flux-vector

splitting and (2) flux-difference splitting schemes. In the former approach, only the direction

of the wave propagation is accounted for with the Van Leer’s scheme [214] and the Jameson’s

convective upwind split pressure (CUSP) scheme [113] being among the most widely used

techniques.

In contrast, the flux-difference splitting schemes consider both the direction and the

magnitudes of the propagating waves. Initially proposed by Godunov [79], the idea of the

flux-difference splitting scheme is to solve the Riemann shock tube problem by considering the

left and right states of the solution. More than a decade later, Philip Roe [177] and Stanely

Osher [166] introduced approximate Riemann solver techniques which provide comparable

accuracy at a fraction of the cost of the exact Riemann solvers.

Due to its popularity, the Roe upwind scheme [177] is used in this work. While details of

the numerical scheme can be found in references [21, 98], for completeness, the discretization

process is presented next.

3.3.1 Flux-Difference Splitting (Roe Scheme)

Let us consider the 1D Euler equations written in strong conservation form as a non-linear

hyperbolic PDE via
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∂~U

∂t
+
∂ ~F (~U)

∂x
= 0 (3.11)

where ~U is the vector of conservation variables and ~F is the convective flux vector. The

above equation can be written in the quasi-linear form using the chain rule of differentiation

such that

∂~U

∂t
+ A(~U)

∂~U

∂x
= 0 (3.12)

where A(~U) is the Jacobian of the flux vector, i.e., A(~U) = ∂ ~F (~U)

∂~U
. Applying the FVM to

Eq. (3.12) requires having the Jacobian defined at the face of the control volume between

the two states, ~Ui and ~Uj. The main idea of the Roe scheme is to find matrix ÃRoe(~UL, ~UR),

also known as Roe matrix, by decomposing the flux vectors into left and right states such

that matrix ÃRoe would be constant between the two states. Therefore, Eq. (3.12) can be

solved as a truly linear hyperbolic PDE for which the exact solution can be easily found.

This idea can be easily extended to 3D cases with the exact solutions (also known as Roe

averages) given as [177, 21]

ρ̃ =
√
ρLρR

ũ =
1√

ρL +
√
ρR

(uL
√
ρL + uR

√
ρR)

ṽ =
1√

ρL +
√
ρR

(vL
√
ρL + vR

√
ρR)

w̃ =
1√

ρL +
√
ρR

(wL
√
ρL + wR

√
ρR)

H̃ =
1√

ρL +
√
ρR

(HL
√
ρL +HR

√
ρR)

(3.13)

and

c̃ =

√
(γ − 1)(H̃ − q̃2/2)

Ṽ = ~̃v · ~n

q̃ = ũ2 + ṽ2 + w̃2

(3.14)
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where left (L) and right (R) states will be defined later. Thus, the convective fluxes at the

face of the control volume located at the midpoint of the edge ij can be written as

(~Fc)ij =
1

2

[
~Fc(~UR) + ~Fc(~UL)− |ÃRoe|ij(~UR − ~UL)

]
(3.15)

As can be seen in Eq. (3.15), the convective flux for edge ij consists of a flux-averaged

term and a Roe-difference (upwind dissipation due to the Roe flux splitting) term where the

latter can be also decomposed to three terms based on the left traveling acoustic wave (la),

convective waves (conv), and the right traveling acoustic wave (ra) as

|ÃRoe|(~UR − ~UL) = |∆~Fla|+ |∆~Fconv|+ |∆~Fra| (3.16)

where

|∆~Fla| = |Ṽ − c̃|
(

∆p− ρ̃c̃∆V
2c̃2

)




1

ũ− c̃nx
ṽ − c̃ny
w̃ − c̃nz
H̃ − c̃Ṽ




(3.17)

|∆~Fconv| = |Ṽ |





(
∆p− ∆ρ

c̃2

)




1

ũ

ṽ

w̃

q̃2/2




+ρ̃




0

∆u−∆V nx

∆v −∆V ny

∆w −∆V nz

ũ∆u+ ṽ∆v + w̃∆w − Ṽ∆V








(3.18)
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|∆~Fra| = |Ṽ + c̃|
(

∆p+ ρ̃c̃∆V

2c̃2

)




1

ũ+ c̃nx

ṽ + c̃ny

w̃ + c̃nz

H̃ + c̃Ṽ




(3.19)

in which the difference ∆(�) = (�)R − (�)L defines the jump condition and averaged

quantities are based on Eq. (3.13) and Eq. (3.14).

As can be seen, Eqs. (3.17), (3.18), and (3.19) are scaled by the modulus of the eigenvalues

associated with the left and right traveling acoustic waves, |Ṽ ± c̃|, and that of the convective

wave, |Ṽ |, where Ṽ is the contravariant velocity defined in terms of the Roe averages (see

Eq. [3.14]).

A common issue with the original Roe scheme is associated with the stationary expansion

(c̃→ 0) which can be caused in the cases where the left and right flux vectors are identical,

i.e., ~Fc(~UL) = ~Fc(~UR), but the left and right flow variables are not, i.e., ~UL 6= ~UR. To remedy

these issues, Harten, Lax and Van Leer [90] have proposed a modification to the acoustic

wave modules, known as the Harten’s entropy correction, such that

|Λc| = |Ṽ ± c̃| =




|Λc| |Λc| > δ

Λc2+δ2

2δ
|Λc| ≤ δ

(3.20)

where δ is a small value taken as 0.05 in this work [21]. A similar problem can happen at

stagnation points where the convective wave modulus, |Ṽ |, goes to zero which can be avoided

in a similar fashion.

Now the only remaining part is to determine the left and right states of the flow variables,

i.e., ~UL and ~UR. In the edge-based approach used in this work, the flux integration involves

looping over edges of the primal grid. For an arbitrary edge ij, the flow solutions are defined

and stored at the two end nodes, i.e., ~Ui and ~Uj. The process of calculating the left and right

states, ~UL and ~UR, based on the solutions at the end nodes of the edge, ~Ui and ~Uj, is called

“solution reconstruction” and two approaches are implemented in UNPAC solver which will

be discussed next.
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3.3.2 First-Order Reconstruction

The solution reconstruction process helps us to determine the left and right states at the

midpoint of the edge as shown in Figure 3.7. In the first approach, the solution is assumed to

remain constant along the half-edge such that the left and right states can be simply defined

by the end node solutions, i.e.,

~UL = ~Ui

~UR = ~Uj

This approximation, leads to a first-order spatial discretization which can lead to excessive

diffusion in viscous problems as well as smeared shocks in general. Thus, a higher order

approximation scheme is required which will be pursued next.

j

i

R

L

~rij

Figure 3.7: Solution reconstruction at the midpoint of the edge ij (shown with a hollow
circle). ~rij is the vector connecting node i to node j

3.3.3 Second-Order Reconstruction

In order to motivate the second order Roe scheme, a piecewise linear reconstruction is used

which assumes that solution varies linearly between node i (or node j) and the edge midpoint

(flux location). This approach was initially proposed by Barth and Jespersen [13] and follows

the exact same procedure involved in the Galerkin-type FEM discretization on the linear
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elements. Using a piecewise linear reconstruction of the solution along edge ij (as shown in

Figure 3.7), left and right states can be defined based on the solutions and their gradients

(slopes) at the two end nodes, i.e.,

~UL = ~Ui +
1

2
φi(~∇~Ui · ~rij)

~UR = ~Uj −
1

2
φj(~∇~Uj · ~rij)

where ~∇~Ui and ~∇~Uj are the vectors of solution gradients at nodes i and j, respectively,

and φi and φj are the limiter functions defined at these points. Gradient calculation and

the definition of the limiter functions will be discussed later in this chapter. The vector ~rij

connects node i to node j and since the reconstruction is required at the midpoint of the

edge, a one-half factor is included. Also, due to the direction of the ~rij vector (pointing

from i toward j), the right state reconstruction requires a negative sign. According to the

Taylor series expansion, the piecewise linear reconstruction leads to a second order spatial

discretization [2]. Barth and Frederickson [12] and Barth [11] have shown that the same idea

can be extended to n-order methods using a reconstruction based on polynomials of degree

n. As an example, a piecewise quadratic reconstruction would require solution Hessians

(second derivatives of the solution) to give a third-order Roe scheme. However, higher order

schemes are not in the scope of this work.

It must be noted that the second-order Row scheme comes at a price of increased

computational demand specially due to the cost of gradient calculations at each solution

stage. Furthermore, the second-order scheme can lead to a slower convergence rate for the

numerical solver. An interesting remedy would be to use the first order scheme to achieve a

certain level of accuracy before switching to the second order scheme and using the previous

(low resolution) solution as the initial condition to speedup the solution process.

3.3.4 Limiter Function

As discussed earlier, artificial dissipation terms are necessary in the central schemes to

provide stability around shocks and discontinuities (regions with large flow gradients) while
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offering higher resolution in the smooth regions. In the framework of upwind schemes, limiter

functions offer a similar mechanism to guarantee solution stability and accuracy.

As shown in the previous section, for the second-order Roe scheme, the limiter functions

limit the solution reconstruction. This is necessary for achieving a “monotonicity preserving”

scheme around the shocks where large gradients can deteriorate the solution accuracy, create

non-physical oscillations, and jeopardize the stability of the method [21]. In smooth regions,

the idea is to have unlimited reconstruction to provide higher resolution and better accuracy.

In this work, the limiter function of Venkatakrishnan [218, 219] is used which provides enough

dissipation around the shock and regions of discontinuity to preserve resolution and stability

while offering a very good convergence rate for the numerical solver. The Venkatakrishnan’s

limiter function at node i is defined by [21]

φi = min
j





1
∆2

[
(∆2

1,max+ε2)∆2+2∆2
2∆1,max

∆2
1,max+2∆2

2+∆1,max∆2+ε2

]
∆2 > 0

1
∆2

[
(∆2

1,min+ε2)∆2+2∆2
2∆1,min

∆2
1,min+2∆2

2+∆1,∈∆2+ε2

]
∆2 < 0

1 ∆2 = 0

(3.21)

where

∆2 =
1

2

(
~∇~U · ~rij

)

~Umax = max(~Ui,max
j

~Uj)

~Umin = min(~Ui,min
j

~Uj)

∆1,max = ~Umax − ~Ui

∆1,min = ~Umin − ~Ui

(3.22)

A similar function can be defined at node j. The calculated limiter function will range

between 0 for the fully limited case (no reconstruction hence first order) and values close

to 1 for the unlimited case (linearly reconstructed hence second order). As can be seen in

Eq. (3.21) and Eq. (3.22), this limiter function requires the calculation of minimum and

maximum values of the conservation variables at all distance-one neighbors for each node.
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This is done via an initialization step before calculating the final limiter functions. The goal

of evaluating the min and max values is to enforce monotonicity which requires that:

1. local maxima does not increase,

2. local minima does not decrease,

3. no new local extrema is introduced in the flow field [21].

It is apparent that the limiter function is controlled by the parameter, ε2, defined as

ε2 = (KLlocal)
3

where Llocal is the local length scale and K is the coefficient that controls the limiter with

K = 0 corresponding to the fully limited (first order scheme) and K >> corresponding to

the unlimited (full reconstruction) settings. It must be noted that the computational and

the memory cost of the Venkatakrishnan’s limiter is relatively high due to the recalculation

and storage of the local minimum and maximum values.

3.4 Gradient Calculation

As demonstrated in the previous section, the second order Roe scheme relies on the

availability of the gradient information for all conservation variables to perform the solution

reconstruction. Additionally, the velocity and temperature gradients are required in the

calculation of the viscous fluxes.

In this work, the Green-Gauss method is used for the calculation of the gradients.

According to the Green-Gauss theorem, the volume integral of the gradient of a scalar U is

equal to the surface integral of that same scalar function such that

∫

V

~∇U dV =

∮

∂V
U · ~n dV (3.23)

Assuming that the gradient is constant over the control volume, Eq. (3.23) can be

approximated as
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~∇U =
1

V

∮

∂V
U · ~n dV (3.24)

As can be seen, the Green-Gauss gradient is, in essence, very similar to the flux term of

the conservation laws discussed in the previous chapter. This similarity makes it possible

to use the same edge-based approach and rewrite Eq. (3.24) as a summation of the surface

fluxes over all edges connected to node i such that for the gradient of the scalar function Ui

at the control volume Vi we have

~∇Ui ≈
1

V

Ngbi∑

j=1

Uij · ~Sij (3.25)

where ~Sij is the edge vector for edge ij and Ngbi is the number of node neighbors at distance-

one (direct neighbors) of the node i (same as the number of edges connected to node i). The

face value Uij can be simply defined as the arithmetic average of the scalar function at the

two end points, i.e.,

Uij = U ij =
1

2
(Ui + Uj) (3.26)

In the UNPAC solver, the gradients of the primitive variables (ρ, ~v, p, h, ν̃) are

calculated according to Eq. (3.25) and stored at the same location as the flow variables, i.e.,

the primal/dual grid nodes. The Green-Gauss gradient approximation approach discussed

herein is reported to run into some accuracy issues for the mixed grid [92]. However,

validation and verification tests performed in this work have led to very good agreements

with the literature in the case of mixed grids. Nonetheless, there are two approaches that

can improve the accuracy of the gradient approximation which will be discussed next.

In the first approach, Haselbacher and Blazek [92] and Blazek [21] have suggested the use

of mixed set of distance-one and distance-two neighbors of node i to calculate the summation

term in Eq. (3.25) (these nodes are marked with a
⊗

sign in Figure 3.5a). However, this

approach requires an additional data structure to include faces of the cells sharing the node

i. As a result, the approach would no longer be “grid transparent” since cell information

would be required [21].
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As an alternative, the least-squares approach as described by Haselbacher and Blazek [92]

and Blazek [21] can be used. However, this method also leads to the introduction of virtual

edges at the boundaries in the case of prism and/or hexahedral elements and therefore, is

not pursued here.

3.5 Viscous Fluxes

In this work, a central scheme is used for the calculation of the viscous fluxes. These

flux vectors require the solution and gradient information to be approximated at the face

centers. Due to the elliptic nature of the viscous fluxes, the simple arithmetic averaging

would suffice for a second-order scheme. Therefore, the velocity vector and the effective

viscosity (µeff = µL + µT for RANS solver or simply µL for the laminar cases) are averaged

at the midpoint of each edge. Additionally, the gradient information needs to be averaged so

that the viscous stresses can be evaluated. Ultimately, the viscous flux on edge ij is defined

by:

~Fvij = ~Fv(~Uij, ~∇~Uij); ~Uij = ~U ij =
1

2

(
~Ui + ~Uj

)
(3.27)

where ~Uij and ~∇~Uij are the flow variables and their gradients at the face center (midpoint of

edge ij). Now, the gradients at the face centers need to be averaged which will be discussed

next.

3.5.1 Gradient Averaging

Clearly, the first choice for evaluating the gradients at the midpoint of edge ij would be to

use a simple arithmetic average such that

~∇~Uij = ~∇~Uij =
1

2

[
~∇~Ui + ~∇~Uj

]
(3.28)

However, Mavriplis [146] has shown that this simple averaging can create unbalanced

weighting and solution decoupling on quadrilateral elements (in 2D) as well as on prism and

72



hexahedral elements in 3D cases. To fix these issues, Mavriplis [146] and Haselbacher [93]

have proposed the use of a corrected averaging based on the directional derivatives so that

~∇~Uij = ~∇~Uij −
[
~∇~Uij · ~̂rij −

(
∂U

∂r

)

ij

]
~̂rij (3.29)

where ~∇~Uij is the arithmetic averaging of Eq. (3.28) and ~̂rij is the norm of the vector ~rij

connecting the two end nodes of edge ij. Here, the directional derivative is simply defined

based on a second-order central difference approximation in the direction of edge ij, i.e.,

(
∂U

∂r

)

ij

≈ Uj − Ui
|~rij|

; O(|~rij|2) (3.30)

where |~rij| is the length of the edge ij.

3.6 Spatial Discretization

In the previous section, the evaluation of the convective and viscous fluxes were discussed.

Let us go back to the RANS-SA governing equations described in Chapter 2 which in the

integral form read

∂

∂t

∫

V

~UdV +

∮

∂V

[
~Fc − ~Fv

]
dS =

∫

V

~QdV

As explained earlier, the volume-averaged values at the centroid of the control volume are

used here. For the reasons discussed in Section 3.2.1, due to the median-dual CV, the volume

averaging leads to the introduction of a mass matrix that couples the solution at node i to

its neighboring control volumes. However, for the steady and HB (mathematically-steady)

solutions, the volumes are lumped and the mass matrix is replaced by an identity matrix to

get the following form of the governing equations for node i

∂Vi~Ui
∂t

+

∮

∂Vi

[
~Fci − ~Fvi

]
dSi =

∫

Vi

~Qi dVi

Using the method of lines, the spatial discretization for the convective and viscous fluxes

is performed. Also, the source terms are volume-averaged at the centroid of the control
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volume. Thus, the semi-discrete form of the RANS-SA governing equation can be obtained

as

∂Vi~Ui
∂t

+

Ngbi∑

j=1

[
~Fcij − ~Fvij

]
~Sij = ~QiVi

Here, the discretized fluxes and the source terms are grouped into a vector of residuals

~Ri that reads

~Ri =

Ngbi∑

j=1

[~Fcij − ~Fvij ]
~Sij − ~QiVi (3.31)

In fact, with the decomposition of the convective flux due to flux-difference splitting Roe-

scheme (Eq. [3.16]) to fully-convective (~Fc) and dissipative (~Fd) parts, the total residual can

be rewritten as

~Ri =

Ngbi∑

j=1

~Fcij · ~Sij −
Ngbi∑

j=1

~Fdij · ~Sij −
Ngbi∑

j=1

~Fvij · ~Sij − ~QiVi (3.32)

where ~Fc and ~Fd are the first and second terms in the Roe scheme flux-difference Eq. (3.16).

This is equivalent to

~Ri = ~Rc − ~Rd − ~Rv − ~Rs (3.33)

where ~Rc, ~Rd, ~Rv, and ~Rs are the truly-convective, dissipative, viscous, and source term

residuals. Finally, by having the total residual, the semi-discrete governing equations can be

written as

∂Vi ~Ui
∂t

+ ~Ri = 0 (3.34)

For steady cases, the physical time-step will be replaced by a “pseudo-time” step and the

temporal discretization is performed which will be discussed next.
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3.7 Temporal Discretization

In the previous section, it was shown how, with the help of the “method of lines”, the semi-

discrete form of the governing equations was obtained. Therefore, we are now left with an

ODE in time domain, i.e., Eq. (3.34), which reads

d(Vi ~Ui)
dt

+ ~Ri = 0 (3.35)

at each control volume Vi defined around node i. It must be noted that for the time-accurate

solutions of the unsteady flow problems, the dual-time stepping technique [112] can be used.

However, the goal here is to obtain the steady-state solution and therefore, the physical time

step can be replaced by a “pseudo time”, τ .

For the temporal discretization, one has the choice of the explicit and implicit approaches.

In the former approach, the residuals will be evaluated at time n+1, so that using a backward

finite-difference approximation (backward Euler) of the time derivative term, we will have

(Vi~Ui)
n+1 − (Vi~Ui)

n

∆τ
+ ~Ri(~U

n+1
i ) = 0 (3.36)

The implicit time discretization technique is not in the scope of the present study.

Therefore, as an alternative, the forward Euler method can be used to rewrite Eq. (3.35)

using the explicit approach which reads

Vi∆~Un
i

∆τ
+ ~Ri(~U

n
i ) = 0 (3.37)

where

∇~Un
i = ~Un+1

i − ~Un
i (3.38)

is the change in the flow solution from time-step n to n+ 1 which will be used eventually to

update the solution. Also, the control volumes are assumed to remain constant within each

time-step, which holds for steady flow problems. The problem with the explicit (forward

difference, FD) method is that it is “unconditionally unstable” for the present hyperbolic

governing equation. Many temporal discretization techniques for explicit methods are
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available in the literature which provide improved stability criteria among which the hybrid

multistage Runge-Kutta (RK) scheme of Martinelli [145] and Mavriplis and Jameson [148]

is used in this work due to its favorable stability and improved computational efficiency

compared to the original multistage RK scheme [215].

3.7.1 Hybrid Multistage Runge-Kutta Scheme

While multistage RK scheme with optimized stage coefficients provide very good stability

conditions, their computational cost can be overwhelming due to the recalculation of the

entire residual vector at each stage. As discussed in Section 3.6, the upwind convective flux

of the Roe scheme can be decomposed to truly-convective and dissipative parts to have the

total residual written in the form of Eq. (3.33).

Martinelli [145], and Mavriplis and Jameson [148] suggested combining the four terms in

the total residual (Eq. [3.33]) to two un-blended and blended terms such that:

~Ri = ~Rubi − ~Rbi (3.39)

where the un-blended part includes the truly convective and the source term portions, i.e.,

~Rubi = ~Rci
− ~Rsi (3.40)

and the blended part includes the residuals due to the viscous and dissipative fluxes, i.e.,

~Rbi = ~Rvi + ~Rdi (3.41)

Therefore, the five-stage hybrid RK scheme applied to Eq. (3.37) can be written as
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~U
(1)
i = ~U

(n)
i − α1

∆τ

Vi

[
~R

(n)
ubi
− ~R

(n)
bi

]

~U
(2)
i = ~U

(n)
i − α2

∆τ

Vi

[
~R

(1)
ubi
− ~R

(n)
bi

]

~U
(3)
i = ~U

(n)
i − α3

∆τ

Vi

[
~R

(2)
ubi
− ~R

(2,n)
bi

]

~U
(4)
i = ~U

(n)
i − α4

∆τ

Vi

[
~R

(3)
ubi
− ~R

(2,n)
bi

]

~U
(n+1)
i = ~U

(5)
i = ~U

(n)
i − α5

∆τ

Vi

[
~R

(4)
ubi
− ~R

(4,2)
bi

]

(3.42)

where the stage coefficients, αk, are carefully optimized and are given in Table 3.3. The last

terms in Eq. (3.42) at each stage apply a blending mechanism to reuse ~Rbi residuals from

previous stages such that the viscous and dissipative fluxes are only evaluated at odd stages.

The blending process at the third and fifth stages are given by

~R
(2,n)
bi

= β3
~R

(2)
bi

+ (1− β3)~R
(n)
bi

~R
(4,2)
bi

= β5
~R

(4)
bi

+ (1− β5)~R
(2,n)
bi

(3.43)

where the blending coefficients, βk, are also given in Table 3.3.

Table 3.3: Stage and blending coefficients for (5,3)-scheme (hybrid multistage RK).

Coefficients stage 1 stage 2 stage 3 stage 4 stage 5
α 0.2742 0.2067 0.5020 0.5142 1.0000
β 1.0000 0.0000 0.5600 0.0000 0.4400

Due to the fact that calculation of the viscous and dissipative fluxes at stages (1, 3, 5)

and their blending at stages 3 and 5, this hybrid multistage scheme is also known as the (5,

3)-scheme [21]. The stability conditions for the hybrid RK schemes will be discussed next.

3.7.2 Stability and Time-step Determination

As explained earlier, explicit schemes are conditionally stable, meaning that the time-step

∆t used in Eq. (3.42) cannot exceed a certain value. This introduces a stability criteria

known as the Courant-Friedrichs-Lewy (CFL) condition which is defined based on the

approximate stability analyses for multi-dimensional and non-linear problems. Vijayan and

Kallinderis [221] proposed a technique for calculating the maximum time-step at each node
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based on the spectral radii of the convective and viscous fluxes. It must be noted that the

spectral radius of a flux vector is the largest eigenvalue of its Jacobian. The method of

Vijayan and Kallinderis [221] is tailored for the unstructured mixed grid and therefore, it

is used in this work. This method gives the maximum allowable time-step at each node i

according to

∆ti = CFL
Vi
Λm

(3.44)

where Λm is the sum of the convective and viscous spectral radii defined as

Λm = Λc + γΛv (3.45)

where γ is a scaling factor for the viscous spectral radii which according to Swanson and

Turkel is taken to be γ = 1 for second-order Roe scheme and γ = 2 for first-order Roe

scheme [202].

The convective and viscous spectral radii defined in Eq. (3.45) are given as a sum of radii

in all Cartesian coordinates (x and y for 2D and x, y, and z for 3D). As an example, in

x-direction, we have

Λci

x
= (|u|+ c)iSi

x

Λvi

x
= max

(
4

3ρ
,
γ

ρ

)

i

(
µL
PrL

+
µT
PrT

)

i

Sx
2

i

Vi
where Si is the projection of the summation of edge vectors connected to node i defined as

~Si =
1

2

Ngbi∑

j=1

|~Sij|

Finally, according to Martinelli [145] and Mavriplis and Jameson [148], for the (5, 3)-

scheme used in this work, the CFL condition is taken to be CFL = 2.0 and CFL = 1.0 for the

first and second order Roe schemes, respectively. The reason for halving the CFL condition

for the second-order Roe scheme is that the characteristic waves originated from opposing
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sides of the control volume should not be allowed to interact with each other within the cell

in one time-step.

Although not pursued here, a global time-step can be defined as the minimum of all

nodal time-steps to ensure time accuracy in the case of unsteady flow problems. However,

in this work, the maximum permissible time-step at each node (Eq. [3.44]) is used rather

than a global time. This method is usually referred to as the “local time-stepping” (LTS)

which can result in significant convergence acceleration especially for viscous flows. Since HB

method relies on steady-state solutions at coupled sub-time levels, the loss of time accuracy

for unsteady flows due to the use of LTS method is not an issue.

3.7.3 Convergence Acceleration using CIRS

In order to accelerate the convergence to steady state, the local time-stepping (Section 3.7.2)

and the residual smoothing methods are used in this work and details of the latter approach

are discussed here. Additionally, a novel convergence acceleration technique based on the

reduced-order-modeling (ROM) is developed herein which will be presented independently

in Section 3.10.

The concept of residual smoothing was proposed by Jameson and Baker [115] to mimic

the characteristics of an implicit scheme in the framework of an explicit scheme. That

is why this method is also known as the implicit residual smoothing or IRS. Jameson and

Baker [115] showed that by replacing the total residual at each node by a weighted average of

the residuals in the adjacent nodes (direct neighbors), the stability condition (CFL criterion)

of the explicit scheme can be substantially improved. They also showed that such averaging

process leads to the attenuation of high frequency errors in the smoothed residual.

While different variations of the implicit residual smoothing are available in the

literature [21], in this work, the central IRS (CIRS) method of Jameson et al. [116] is used

which is tailored for unstructured grids. The CIRS method, applies a Laplacian operator to

the residual vector such that

L(~R(~Ui)) =

Ngbi∑

j=1

θij

[
~R(~Uj)− ~R(~Ui)

]
(3.46)
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where θij are the weights for each node neighbor j connected to node i. Thus, the smoothed

residual at node i can be evaluated by solving the following system of linear equations

~R∗(~Ui) +

Ngbi∑

j=1

ε
[
~R∗(~Ui)− ~R(~Uj)

]
= ~R(~Ui) (3.47)

where ~R∗ and the RHS term are the smoothed and unsmoothed (original) residuals,

respectively. The above system can be easily solved using two to three steps of Jacobi

iteration since the matrix is diagonally dominant. Moreover, the smoothing coefficient ε can

take any value between zero and one. While ε = 0 means no smoothing, ε→ 1, can lead too

excessive smoothing that can result in the loss of essential information. Therefore, Jameson

et al. [116] suggest a smoothing coefficient close to 1/2 (or 0.3 ≤ ε ≤ 0.8 according to [21]).

It must be noted that the CIRS technique can be performed at each stage of the explicit

RK scheme. However, a more relaxed approach can involve the application of CIRS at odd

stages of the (5,3)-scheme to improve the efficiency of the numerical solver.

3.8 HB Method for Periodic Flows

For fluid flows that are temporally periodic, the harmonic balance (HB) method is used to

write the conservation flow variables at each node i in terms of a truncated Fourier series

including a predefined number of harmonics, N , such that

~Ui(t) = A0 +
N∑

n=1

[Ancos(ωnt) + Bnsin(ωnt)] (3.48)

where i = 1 : 2N + 1, ω is the fundamental frequency of excitation, and A0,An, and Bn are

the Fourier series coefficients. In the framework of the HB method (also referred to as the

high-dimensional harmonic balance or HDHB), the flow variables are computed and stored

at 2N+1 equally-spaced sub-time levels over a single period. Thus, the time-derivative term

in Eq. (3.34) can be replaced by a pseudo-spectral operator, D, that gives

D(Vi~U∗i ) + ~R(~U∗i ) = 0 (3.49)
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where both the residual and the time-derivative terms are defined in terms of the sub-time

level flow solutions at node i, i.e., ~U∗i . As explained in Chapter 2, the pseudo-spectral

operator is defined as

d

dt
≈ D =

dE−1

dt
E

where E and E−1 are the discrete Fourier transform and its inverse. In order to obtain the

steady-state solution at each sub-time level, a “pseudo-time” derivative term is added to the

HB Equation of 3.49. This equation now reads

∂

∂τ
(Vi~U∗i ) + D(Vi~U∗i ) + ~R(~U∗i ) = 0

The HB term, D(Vi~U∗i ) can be treated as a volumetric source term and combining it with

the residual term ~R(~U∗i ) leads to

∂(Vi~U∗i )

∂τ
+ ~R′(~U∗i ) = 0 (3.50)

which is exactly similar to Eq. (3.35) with physical time, t, being replaced by a pseudo-time,

τ . The total residual term ~R′(~U∗i ) now includes the discretized convective flux, viscous flux,

flow source terms, and the HB source term. Finally, the system of semi-discretized initial-

value ODEs displayed in Eq. (3.50) is marched temporally toward a steady-state solution

using an explicit five-stage hybrid Runge-Kutta scheme described in Section 3.7.1.

3.8.1 Mesh Motion

In the nominal HB solver without the r -refinement AMR (as will be discussed later in this

chapter), a mesh deformation technique is required to obtain the sub-time level grids. Also,

during the design optimization process, the geometry deformation requires the computational

mesh to be moved in order to conform to the surface displacements. The mesh deformation

in UNPAC solver is performed using radial basis function (RBF) approach that was initially

introduced by de Boer et al. [48]. In this approach, the nodal displacements at the interior

nodes are calculated based on radial basis functions of their distance to the control points
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(boundary nodes). The RBF approach used in this work follows the method of Rendall and

Allen [173] where the location of the grid nodes in the interior domain is defined by

~x′ =
Ns∑

i=1

αiφ(||~x− ~xi||) (3.51)

Here, ~xi is the location of the discrete base points on the moving/deforming boundary at

which the displacements are known a priori according to the excitation motion (in the HB

method) or the deformation due to the shape optimization process. In the RBF equation

(3.51) described above, φ is the basis function based on the normalized distances of the

volume nodes (nodes in the interior domain whose movement is being evaluated) to the

surface nodes (based points). There are many different choices for the basis function and

the interested readers are referred to [173] for a review of various functions. However, in this

work, Wendland’s C2 basis function [224] is adopted which is defined as

φ(ξ) = (1− ξ)4 (4ξ + 1) (3.52)

where ξ is the distance between the two points, ~x and ~xi, scaled by a support radius, R,

i.e., ξ = ||~x − ~xi||/R. The Wendland’s C2 basis function not only provides high quality

transformed meshes but also leads to a well-conditioned linear system due to its compact

support based on the pre-tuned support radius [173]. In practice, the support radius, R, is

taken to be around 5-10 times the chord length and must be less than the far-field boundary

radius so that the node movements are damped close to the far-field boundary. The RBF

mesh deformation method described herein, determines the updated locations at the interior

nodes using a weighted sum approach with coefficients αi. These coefficients are determined

according to the relative motion of the base points and their evaluation requires solving a

system of linear equations in each Cartesian coordinate [48, 173].

Obviously, in the HB method, sub-time level grids need to be updated individually

according to the corresponding motion of the body in that sub-time level. With the sub-time

level grids obtained using the RBF mesh deformation technique, the grid velocity components

can be approximated at grid node i using the pseudo-spectral operator (2.84) such that
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~̇xi ≈ D~x∗i (3.53)

where ~x∗i is the position vector at node i for 2N + 1 sub-time levels. It must be noted

that for highly non-linear body motions, retaining a relatively small number of harmonics in

the HB solver can lead to large approximation errors in grid velocities that can negatively

affect the accuracy of the ALE calculations. Tardif and Nadarajah [205] has introduced

a radial basis function method for velocities (RBFV) that follows a similar approach to

the original RBF technique for mesh deformation considering the fact that the velocities at

the control points (boundary nodes) can be determined analytically based on the prescribed

body motion. These velocities can be then interpolated at the interior nodes using the RBFV

approach [205] to obtain the accurate grid velocities to be used in the ALE formulation.

3.8.2 GCL Error Source Term

As discussed in Chapter 2, in order to avoid numerical errors produced by the deformation

of the median-dual control volumes, an additional conservation law must be solved

simultaneously with the rest of the governing equations. This additional equation that

was first demonstrated by Thomas and Lombard [209] is referred to as the Geometric

Conservation Law (GCL) and its violation can lead to degradation of accuracy especially in

large amplitude aeroelastic applications [135]. In general, GCL states that the rate of the

total change of the control volume must be equal to the rate of incremental volume change

due to the movement of the boundaries of the CV. It was shown that this can be represented

by a semi-discrete differential equation given as

∂Vi
∂t
−

Nfi∑

n=1

(
~vgrid · ~S

)
n

= 0 (3.54)

where Nfi is the number of faces of the control volume i and ~vgrid is the velocity averaged at

the midpoint of each face. The geometric conservation equation given in Eq. (3.54) is usually

solved in the framework of unsteady time-accurate solvers using the same numerical scheme

that was used to discretize and solve the rest of the governing equations. This is necessary
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for obtaining a consistent solution method [21] and was also applied to non-linear frequency

domain (NLFD) techniques [205]. Alternatively, Ma et al. [142] have shown that a source

term approach can also be used to preserve the GCL condition eliminating the need to solve

an additional conservation equation. In their approach, a volumetric error (or imbalance) is

added as a GCL source term to the governing equations. This error at node i can be defined

as

(
~EGCL

)
i

=
∂Vi
∂t
−

Nfi∑

n=1

(
~vgrid · ~S

)
n

(3.55)

In this work, the source term approach of Ma et al. [142] is adopted due to its simplicity.

To decrease the error induced by the deformation of the control volumes, the semi-discretized

governing equations (Eq. [3.50]) are modified to include the GCL volumetric source term so

that [142]
∂

∂τ

(
Vi~U∗i

)
+ ~R′(~U∗i ) =

(
~EGCL

)
i
· ~U∗i (3.56)

It must be noted that HB results have shown that the GCL errors tend to be very small in

magnitude and have minimal effects on the convergence rate and accuracy of the numerical

solver. Nevertheless, the GCL error source terms are included in the UNPAC solver to

preserve the geometric conservation law.

3.9 Boundary Condition Treatment

With the spatial and temporal discretizations taken care of, the flow conditions at the

boundaries will be discussed next. These boundaries can be classified as (1) physical (due

to the physical boundaries such as walls) and (2) numerical (due to numerical boundaries

of the computational domain such as farfield, symmetry, etc.). For the median-dual control

volumes neighboring the boundaries (as can be seen in Figure 3.8), boundary fluxes must

be evaluated. Inaccurate or faulty calculation of these fluxes can spoil the accuracy of the

simulations as well as the convergence rate of the numerical solver. In this section, boundary

condition (BC) treatments at different boundary types are presented.
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3.9.1 Solid Wall

An important part of the computational domain is the natural boundaries occurring at the

surface of the physical obstacles. These solid walls can be stationary or moving depending on

the definitions of the flow problem being studied. Here, the details of the boundary condition

treatment for different types of wall boundaries are discussed.

Free-Slip BC

For inviscid flows, due to the absence of friction forces at the wall, the fluid is allowed to

slip over the surface. Therefore, normal components of the fluid velocity would be zero such

that

~v · ~n = V = 0 (3.57)

holds on the wall surface. Since there are no viscous effects involved, only the convective

flux must be considered which according to Eq. (2.12) reads

~Fcwall
=




ρV

ρuV + p nx

ρvV + p ny

ρwV + p nz

ρHV




wall

(3.58)

at the wall boundary. In the case of a stationary wall, due to the fully tangential velocity,

the contravariant velocity, V , must be zero (Eq. [3.57]) which leads to

~Fcwall
=




0

p nx

p ny

p nz

0




wall

(3.59)
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Figure 3.8: Locations at which the boundary flux is evaluated for (a) 2D and (b) 3D cases
(marked by diamonds).

Therefore, only the static pressure at the wall needs to be determined to evaluate the

convective flux. The location at which this flux is evaluated falls at the centroid of the

boundary face as shown in Figure 3.8 for both 2D and 3D cases. Luo et al. [141] have shown

that in the framework of a median-dual finite-volume method, FEM-based averaging must

be used to approximate pressure at the wall boundary.

In the 2D cases, the boundary face is always an edge that belongs to either a triangular

or a quadrilateral element. As shown in [141, 21], the type of the boundary element should

be considered when the wall pressure is approximated. In this work, the wall pressure at

nodes p1 and p2 shown in Figure 3.8a are evaluated by

p1 =
1

6
(5p4 + p3) (3.60)

p2 =
1

4
(3p4 + p5) (3.61)

For 3D cases, however, the boundary face can be either a triangular or a quadrilateral face

of the boundary element and the convective flux requires the information regarding the static

pressure at the centroid of that face. Once again, using a finite-element approximation [141],
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the wall pressure at node p1 of a triangular boundary face and at node p2 of a quadrilateral

boundary face (as shown in Figure 3.8b) are determined according to

p1 =
1

8
(6p3 + p4 + p5) (3.62)

p2 =
1

16
(9p3 + 3p5 + 3p7 + p6) (3.63)

No-Slip BC

For viscous flows, a no-slip boundary condition in enforced at the wall which requires the

relative flow velocities to vanish. This means that for a stationary wall, the fluid velocity

vector must be zero, i.e., ~v = 0. Therefore, the contravariant flow velocity at the wall would

also be zero and the convective flux of Eq. (3.58) must be considered again. Once again, the

same process will be used to determine the static pressure at the wall as described for the

case of the free-slip wall.

Now, let us consider the viscous flux which is defined according to Eq. (2.13) on the wall

boundary as

~Fvwall
=




0

~τx1 · ~n
~τx2 · ~n
~τx3 · ~n
~Θ · ~n




wall

(3.64)

In the case of the stationary wall, the viscous flux at the boundary only includes the heat

flux such that

~Fvwall
=




0

0

0

0

~Θ · ~n




wall

(3.65)
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where the elements of the ~Θ vector are now defined as

Θwalli = k

(
∂T

∂xi

)

wall

; i = 1, 2, 3 (3.66)

Therefore, according to the heat transfer boundary condition, the wall boundary can be

classified as (1) adiabatic or (2) isothermal (with prescribed temperature). In the case of an

adiabatic wall (idealized adiabatic condition), since

~∇Twall · ~n = 0 (3.67)

the viscous stress work, ~Θ, will vanish and the viscous flux wil be entirely zero. However,

in the case of an isothermal wall, the heat flux should be approximated numerically based

on the prescribed temperature at the wall and the interior solution. For this reason, a

search algorithm is performed on all direct neighbors of the boundary node to find the

neighbor that is located at the most perpendicular location to the boundary. Here, the

angle between the boundary node normal vector and the vector connecting the boundary

node to its neighbors are considered. Therefore, the neighboring node corresponding to

the minimum angle (most perpendicular) is selected. Assuming that this neighbor is at

node j, the temperature gradient at the wall boundary is approximated using a one-sided

finite-difference formula via

(
∂T

∂xi

)

wall

≈ Twall − Tj
||~rwall,j||

(3.68)

where ~rwall,j is the vector connecting the wall boundary node to its neighbor.

Moving Wall BC

For flows involving a moving boundary, special care must be given to the evaluation of the

convective and viscous fluxes at the moving walls. As discussed previously in Chapter 2, the

Arbitrary Lagrangian-Eulerian (ALE) form of the governing equations results in a modified

form of the convective flux at the wall boundary which now reads
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~FALE
cwall

=




ρVr

ρuVr + p nx

ρvVr + p ny

ρwVr + p nz

ρHVr + p Vgrid




wall

(3.69)

where Vr and Vgrid are the contravariant velocity relative to the grid motion and the

contravariant grid velocity, respectively. As explained earlier, the contravariant flow velocity

is zero at the boundary for both the free-slip and the no-slip walls. Since the contravariant

relative velocity at the wall zero, the ALE form of the convective flux can be rewritten as

~FALE
cwall

=




0

p nx

p ny

p nz

p Vgrid




wall

(3.70)

This means that in addition to the pressure contribution to the momentum equations, a

convective flux for the energy equation can now be written which is based on the grid velocity

at the wall boundary (wall velocity). Viscous fluxes are similar to those shown previously

in Eq. (3.64). Assuming that the gradients of the grid velocity are negligible at the wall

boundary, the viscous stresses for the momentum equations can be ignored. However, the

elements of the ~Θ vector are now defined as

Θwalli = ~vwall · ~τxi + k
∂T

∂xi
; i = 1, 2, 3 (3.71)

which means that the discretized form of the viscous flux for the energy equation is now

augmented by a (Vwall × τ) term, where Vwall is the contravariant grid velocity at the wall

boundary and τ is the viscous stress tensor. The second term in Eq. (3.71) is evaluated

using the same procedure that was described for the stationary no-slip walls depending on

the choice of isothermal or adiabatic boundary condition.

89



Before moving on to the treatment of the far-field boundary conditions, it must be noted

that for the Spalart-Allmaras turbulence model used in this work, the eddy viscosity at the

solid wall is set to zero, i.e., ν̃wall = 0. Thus, there are no contributions to the convective or

viscous fluxes of the turbulence model at the wall boundary.

3.9.2 Far-Field

While physical domains are unbounded in external flows around wings or airfoils that are

sufficiently far from the ground, the computational domain imposes an artificial boundary

that limits the size of the grid. Ideally, two conditions must be satisfied at the far-field

boundary:

1. Outgoing waves should not be reflected back into the computational domain,

2. Extent of the computational domain must not affect the near-field solution (boundary

independent).

To achieve these goals, different methods have been introduced in the framework of

compressible RANS solvers. In this work, the method of characteristics [225] is used which

offers non-reflecting boundary conditions. It must be noted that the characteristic-based

boundary condition treatment is based upon the assumption of zero circulation. Unless the

far-field boundary is placed far enough from the lifting body, the no-circulation assumption

does not hold. Therefore, in the UNPAC solver, the vortex correction method of Usab and

Murman [213] is used to account for the circulation that is proportional to the lift force

generated by the lifting body.

The concept of characteristic-based boundary treatment is based on the solution of the

uni-directional (or 1D) Euler equations in the direction normal to the far-field boundary. In

this approach the sign of the eigenvalues for the convective flux Jacobian is considered to

determine which characteristic waves are leaving or entering the computational domain. It

must be noted that the characteristic variables consist of pressure, density, and the velocity

vector components (a total of 4 variables for 2D and 5 variables for 3D cases).

Details of the characteristic-based non-reflecting boundary condition method can be

found in [21, 225] and here only the final relations are provided for subsonic/supersonic
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inflow and outflow conditions. In order to determine the direction of the flow (inflow or

outflow) for all the above cases, the sign of the contravariant velocity at the boundary node

is used. Therefore, based on the default orientation of the boundary normal (always pointing

outward), positive and negative contravariant velocities would determine an outflow and an

inflow condition, respectively.

Subsonic Inflow

For the total of five characteristic variables in 3D subsonic inflow case, four characteristic vari-

ables are determined based on the free-stream conditions while the last one is extrapolated

from within the computational domain. Therefore, boundary values of the characteristic

variables are defined as

pb =
1

2
[p∞ + p′b − ρ′bc′b (~vd · ~n)] (3.72)

ρb = ρ∞ +
p′b − p∞
c′2b

(3.73)

~vb = ~v∞ −
[
p∞ − p′b
ρ′bc
′
b

]
~n (3.74)

where the primed variables are based on the old solutions at the boundary node (before

getting corrected) and ~vd is the relative velocity at the boundary based on the old solution

given by ~vd = ~v∞ − ~v′b. It must be noted that the boundary normal vector, ~n, is assumed to

be pointing outward.

Supersonic Inflow

In the case of the supersonic inflow, things are much simpler since all characteristic waves are

incoming and the boundary variables can be simply set equal to the free-stream conditions,

i.e.,
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pb = p∞ (3.75)

ρb = ρ∞ (3.76)

~vb = ~v∞ (3.77)

Subsonic Outflow

For the case of the subsonic outflow, situation is reversed compared to the subsonic inflow

conditions. Therefore, in 3D case, four characteristic variables are extrapolated and only the

last one is determined based on the free-stream conditions such that

pb = p∞ (3.78)

ρb = ρ′b +
pb − p′b
c′2

(3.79)

~vb = ~v∞ −
[
p′b − pb
ρ′bc
′
b

]
~n (3.80)

where, once again, the primed variables are the old solutions at the boundary (before they

are corrected).

Supersonic Outflow

Finally, for the supersonic outflow, all characteristic variables are extrapolated from the

interior domain which means that no correction is necessary. Therefore, the following

boundary values can be defined

pb = p′b (3.81)

ρb = ρ′b (3.82)

~vb = ~v′b (3.83)
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As can be seen, the treatment of the inflow and outflow conditions at supersonic regimes

is much simpler due to the fact that all characteristic waves are propagating in the same

direction. Additionally, the turbulent eddy viscosity at the far-field boundary is usually

taken to be ν̃ = 3ν∞ for the Spalart-Allmaras turbulence model.

3.9.3 Symmetry

Implementation of a symmetry boundary condition is very similar to that of the free-slip

wall described earlier for the inviscid flows. Due to the fact that there is no flux across

the boundary face, convective and viscous fluxes can be ignored all together. However,

best practice would be to correct velocity vectors as well as the gradients at the symmetry

boundary such that only tangent components are preserved.

3.9.4 Periodic

In fluid flow problems involving spatial periodicity, shrinking the computational domain

around the repeating region can be highly useful for computational efficiency. As an example,

when simulating flow around wind turbine blades or helicopter rotors, one can simply limit

the computational domain to a single blade and incorporate periodic boundaries. This

problem is often referred to as “rotational periodicity” and involves the rotation of the

coordinate system to correct the vector information.

Let us assume a case where there is rotation about the x-axis. As shown in Figure 3.9,

only a ψ-degree cut of the computational domain is considered and periodic BC is applied

to boundaries A and B. The periodic boundary condition treatment implemented in the

UNPAC solver is then described as follows:

1. First, the median-dual control volumes from the two periodic boundaries should be

matched with each other. This is done using a search algorithm performed during the

pre-processing stage. In this approach, master nodes from boundary A (e.g. node a in

Figure 3.9) are rotated by an angle ψ and then matched to slave nodes from boundary

B that are at a certain user-defined threshold distance which is taken to be 10−12 in

this work (e.g. node b in Figure 3.9).
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Figure 3.9: Definition of the periodic boundary nodes a and b for a case of rotational
periodicity with angle ψ applied to boundaries A and B.

2. During the solution process, the total residuals at all nodes (including the periodic

boundary nodes) are evaluated.

3. Next, the residuals at the matched nodes on periodic boundaries are summed up

according to

~Ratotal = ~Ra + ~R′b (3.84)

~Rbtotal = ~Rb + ~R′a (3.85)

where ~R′a and ~R′b are the corrected residuals due to coordinate rotation which will be

described in the next step.

4. Since the scalar variables (pressure, density, and eddy viscosity in our case) are

invariant with respect to coordinate rotation [21], only the velocity vectors and

gradients must be corrected. This correction process involves rotating the vector

quantities from one periodic boundary to the other using a rotation matrix such that
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~R′a = P ~Ra (3.86)

~R′b = P ′ ~Rb (3.87)

where the matrices P and P ′ are defined for the ψ-degree rotation about x-axis

according to

P =




1 0 0

0 cos(ψr) − sin(ψr)

0 sin(ψr) cos(ψr)


 (3.88)

P ′ =




1 0 0

0 cos(ψr) sin(ψr)

0 − sin(ψr) cos(ψr)


 (3.89)

where ψr is the cut (rotation) angle in radian, i.e., ψr =
π

180
ψ.

Note 1: Similar rotation matrices can be defined for special cases with rotation about y-axis

and z-axis.

Note 2: Rotation about an arbitrary axis involves a more elaborate process and details can

be found in [161].

3.10 ROM-Based Convergence Acceleration1

One of the main contributions of this work to the state-of-the-art is the development of

a novel convergence acceleration technique based on the reduced-order-modeling (ROM)

technique. The idea of model reduction of dynamical systems is to transform the original

1This section, in part, is a reprint of the material as it appears in AIAA Journal 55 (9), 3059-3071 titled
“Convergence Acceleration of Fluid Dynamics Solvers Using a Reduced–Order Model” (2017). Authors:
Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici. The dissertation author was the primary investigator
and author of this paper. Copyright is held by Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici.
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high-order system of governing equations to a system of much lower order, whereby only

the most important or dominant parts of the system dynamics are preserved. In the present

approach proposed in this work, the well-chosen snapshots of a slowly converging solution

are used to obtain the reduced order model. The simplicity and ease of implementation of

the method makes it an elegant approach in accelerating the convergence of iterative explicit

CFD solvers, which have been pursued by the author and his colleagues in the framework

of a 2D structured compressible RANS solver [54]. Kaminsky et al. [121] have also applied

this technique to approximate the converged sensitivities for a discrete adjoint solver using

unconverged (early) sensitivity values. It was shown that the computational cost of the

adjoint solver (and the accompanying optimization algorithm) can be greatly reduced using

this technique. Also, more recently, the same approach has been used in the framework of a

continuous adjoint solver for accelerating the convergence of the iterative solver for obtaining

the adjoint solutions [120].

The entire computational cost of the proposed technique at each cycle (including the I/O

and projection computation) is in general equivalent to having up to 10 additional iterations

of the nominal solver (usually about 3-4 iterations) which makes the technique a very robust

acceleration technique that can efficiently reduce the required number of iterations of the

explicit solver for reaching the steady state solution. It must be noted that, the proposed

technique can be particularly useful for unstructured solvers, as pursued herein, for which

the agglomeration of nodes (or cells) in a multigrid scheme is not straightforward [147]. In

this section, details of this method and its implementation in the UNPAC solver is discussed.

3.10.1 Model Reduction

As explained previously, the model order reduction is utilized to transform the original high-

order system of governing equations to a system of much lower order, whereby only the

most important or dominant parts of the system dynamics are preserved. In general, a

projection-based model reduction method “compresses” the system’s state information by

projecting the state behavior onto a lower dimensional subspace and rewrites the governing

equations in a compressed representation. In mathematical terms, the projection-based class
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of reduced-order model (ROM) methods can be described by assuming the following set of

governing equations defined in the semi-discrete form as

d~U

dt
+N (~U) = 0 (3.90)

where ~U is the N-dimensional vector of state and N is the non-linear discretization operator.

All projection-based model reduction methods share the same feature which is defined as

follows. The projection-based ROM tries to find M -dimensional (M � N) subspaces S1

and S2 of the state space that will yield a reduced system as a result of projection of the

state onto S1 and the residual onto S2. If subspaces S1 and S2 are equal, the projection is

orthogonal, otherwise it is oblique. For the case of an orthogonal projection, a matrix of basis

vectors Φ (which will be defined in the following subsection) and its Hermitian transpose

can be used, resulting in the reduced-order model given by

ΦT d

dt

(
Φ~ξ
)

+ ΦTN
(

Φ~ξ
)

= 0 (3.91)

where the values of the vector ~ξ are picked so as to minimize the error in the state-solution

approximation via

~U ∼= Φ~ξ (3.92)

and Φ is the matrix of basis vectors.

3.10.2 Solution Projection

To motivate the proposed convergence acceleration technique, Eq. (3.37) can be first

rewritten in the form of an update formula for the iterative process as below

~Un+1 = ~Un + ~R(~U) (3.93)

Note that the residual vector, ~R, used here must include a negative sign when compared to

the one shown in Eq. 3.37. Therefore, the fully converged solution, ~̃U , is reached when
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~̃U = ~̃U + ~R( ~̃U) (3.94)

which means that the residual of the fully converged solution would be very small (machine

accuracy zero). The origin of the idea for the proposed convergence acceleration technique

comes from the assumption that in later stages of the iterative procedure, the iteration

becomes linearly convergent. Given the fact that this assumption holds, the residual vector

can be written as a linear function of the flow variables, i.e.,

~R(~U) ≈ A~U −~b (3.95)

with the assumption that both A and b become independent of the iteration number, n, as

the solver is converging. The goal here is to find a projected solution as a linear combination

of the dominant states that would drive the residual of the flow solver to machine accuracy.

For this reason, M state-vector solutions {~Ui}Mi=1, called “snapshots”, are first stored over

a portion of the iterative process. It is assumed that there are N state variables in the

flow solver where N is the total number of computational nodes times the number of state

variables for each node (5 for three-dimensional Euler and laminar Navier-Stokes equations

and 6 for three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with one-

equation Spalart-Allmaras turbulence model [194]) as discussed previously in Chapter 2.

Correlation-Based Acceleration

In the first version of the present ROM-based convergence acceleration, a set of solution

snapshots is taken which forms an N ×M system of the following form

Φ =



~U1

~U2 . . . ~UM



N×M

(3.96)

While the basic idea behind the proper-orthogonal-decomposition is to use orthogonal

basis vectors as a mean for the development of the reduced-order-model, here, the snapshots

are taken to be the basis vectors, thus eliminating the need for the calculation of an
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orthogonal subspace. Ekici and Hall [59] state that this is a valid alternative to the POD-

based orthogonal basis vector calculation although it requires the snapshots of the solution

to be taken such that they would capture the dominant behaviors of the flow field. This

means that one may have to use more basis vectors compared to a POD approach. With

the well-chosen set of snapshots, it can be assumed that the span of our snapshots

span(Φ) =

{
M∑

i=1

~Uiξi | ξi ∈ R and ~Ui ∈ Φ

}
(3.97)

covers the fully converged (or a better projected) solution. In other words, the projected

solution, which hypothetically approximates the fully converged solution, belongs to the span

of the solution snapshots, i.e., span(Φ). Thus, the projected solution can be written as

~Uprojected =
M∑

i=1

~Uiξi = Φ ξ (3.98)

The goal is to find a projected solution that can approximate the fully converged solution

as closely as possible. Therefore, the expansion coefficients, ξi, need to be found such that

~R(~Uprojected) ≈ 0 (3.99)

According to Eq. (3.95), the residual can be written as

~R(Φ ~ξ) = AΦ ~ξ −~b = 0 (3.100)

which means the following system of linear equations must be solved to obtain the expansion

coefficients:

AΦ ~ξ = ~b (3.101)

Once again, the coefficients, ξ, are chosen so that the residual of the flow solver that is

projected onto the space spanned by the snapshots is zero. The size of the above system is

N ×N , which makes it computationally demanding to solve. As a remedy, the system can
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be pre-multiplied by the transpose of the matrix Φ, thus, reducing the order of the equation

down to M ×M (M � N) which is computationally cheap to solve. Therefore, we have

ΦTAΦ ~ξ = ΦT~b (3.102)

In the above equation, it is first required to calculate the right hand side vector, ~b. In the

framework of the compressible flow solver utilized in this work, the solution cannot admit

values of zero since the density and pressure terms must have strictly positive values. If

the solver can be initiated from an all zero initial condition (e.g. for the incompressible

streamfunction-vorticity form of Navier-Stokes), then we have

~R(~U = ~0) = −~b → ~b = −~R(~U = ~0) (3.103)

In density-based flow cases where it is not possible to initiate the CFD solver from

an all zero initial solution vector, a matrix-free Jacobian-vector product approximation

method [125] is used. Thus, the following second-order centered-difference formula can be

used to approximate the Jacobian-vector-product such that

∂ ~R

∂~U
~U = A~U ≈

~R(~U + ε~U)− ~R(~U − ε~U)

2ε
; O(ε2) (3.104)

Here, ε is the perturbation parameter, which is generally taken to be the square-root of

machine zero (2−53 ≈ 10−16 in double precision). Therefore, the perturbation parameter

is set 10−8 for all Jacobian approximations used in this work. The reader is referred to

the seminal work of Knoll and Keyes [125] for details regarding the choice of perturbation

parameter. Having an approximation for A~U , using Eq. (3.95), we have

~b = A~U − ~R(~U) (3.105)

where the approximation of the right hand side vector, ~b, can be performed at any stage

given the state variables ~U and the corresponding residual of the flow solver, ~R(~U).

An important feature of the present convergence acceleration technique is that the matrix

A is never computed explicitly. Instead, having the ~b vector, one can simply calculate the
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product of AΦ using Eq. (3.95) and the residual of the flow solver at each snapshot location.

Thus, as an example for the first snapshot of the solution, φ1 = ~U1:

Aφ1 = A~U1 = ~R(~U1) +~b (3.106)

Equation (3.102) can now be solved for the expansion coefficients that projects the

solution using Eq. (3.98).

Covariance-Based Acceleration

In the framework of the POD-based convergence acceleration or stabilization, Markovinović

and Jansen [144] and Ekici et al. [62] propose an alternative approach in which the covariance

matrix of

Φ̃ =



~U1 − ~U ~U2 − ~U . . . ~UM − ~U




N×M

(3.107)

is used instead of the correlation matrix where

~U =
1

M

M∑

i=1

~Ui (3.108)

represents the mean of the snapshots. According to Markovinović and Jansen [144], a

potential benefit of the subtraction of the mean is an increased level of detail in the reduced-

order description in the case of near-parallel snapshot vectors.

In the case of the covariance-based acceleration, the projected solution will be defined as

a linear combination of the perturbations plus the mean of the snapshots such that

~Uprojected = Φ̃ ~ξ + ~U (3.109)

Therefore, similar to Eq. (3.99), the coefficients ξ are chosen such that the residual vanishes:

~R(Φ̃~ξ + ~U) = 0 (3.110)
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which means

AΦ̃~ξ = ~b−A~U (3.111)

Knowing that ~R(~U) = A~U − ~b and pre-multiplying by the transpose of the matrix of

covariances, the reduced-order system of equations to solve for the expansion coefficients can

be written as

Φ̃TAΦ̃~ξ = −Φ̃T ~R(~U) (3.112)

Once again the matrix A is not required to be computed explicitly. The procedure here

starts by first setting ~U = ~U and running the CFD solver for one iteration to obtain ~R(~U).

Thus, with the residuals of the flow solver at each snapshot stage, the following matrix-vector

product

Aφ̃1 = A(~U1 − ~U) = A(~U1)−A(~U) = ~R(~U1) +~b− (~R(~U) +~b) = ~R(~U1)− ~R(~U) (3.113)

can be written for the first entry of the covariance-based matrix.

Other entries of the covariance matrix can be calculated in a similar fashion. An

important advantage of using the covariance matrix instead of the correlation matrix is that

it is no longer required to approximate the ~b vector. Also, as will be shown in the results

section, the covariance-based acceleration is significantly more robust when the solver is in

the linearly convergent stage with the global residuals getting close to the machine zero.

The present ROM-based acceleration method can be summarized as follows:

1- A set of M solutions and their corresponding residual vectors are stored with a user-

specified sampling frequency over a specified length of acceleration cycle.

2- Correlation or covariance matrices are set up.

3- In the case of correlation-based acceleration, the ~b vector is approximated using the

matrix-free perturbation method. In the case of the covariance-based acceleration, the

102



solver is run for one iteration using the mean solution as the initial condition and the

residual is stored.

4- Depending on whether it is desired to have correlation or covariance-based acceleration,

either Eq. (3.102) or Eq. (3.112) is solved for the expansion coefficients which are then

used for the calculation of the projected solution.

3.10.3 Snapshot Selection

As explained earlier, the idea of using the solution snapshots as the basis vectors without

an orthogonalization requires a careful selection process. In this section, some guidelines are

presented that can be useful in selecting the set of best snapshots for the projection.

To begin, Djeddi et al. [54] have shown that taking the first snapshot after two orders of

magnitude of drop in the maximum residual results in good acceleration. This is to make

sure that the flow solver has reached the linearly convergent phase. The next issue would be

to determine the span of the acceleration cycle over which the snapshots are taken and at

the end of this cycle the projection process is performed. It has been shown that once the

flow solver is linearly converging and depending on the convergence rate, 1 or 2 orders of

magnitude drop in the global residual can be taken as the span of the acceleration cycle [54].

UNPAC solver automatically monitors the convergence rate and can easily determine the

span of the acceleration cycle over which the nominal solver reaches 1 or 2 orders of magnitude

drop in its global residual.

It has also been found [54] that, for the inviscid and subsonic cases, 10-15 snapshots is

usually enough to capture the necessary flow features for a successful projection. On the

other hand, transonic cases and high-Re flow cases that usually exhibit a more oscillatory

or very slow convergence would require 20 or more snapshots for robust projections. The

snapshot interval is then determined from the span of the acceleration cycle and the number

of snapshots used. It must be noted here that in general, the performance of the acceleration

technique is enhanced as the number of snapshots is increased.
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3.11 Grid Adaptation2

In this work, an r -refinement adaptive mesh redistribution (AMR) technique is used that can

relocate nodes to have clustering in the regions with high flow gradients and curvatures [52].

The ball-vertex approach is utilized which is directly related to the spring analogy where all

edges connected to each node are represented by a linear spring that can control the stiffness

of that node. Also, virtual edges are defined to provide virtually-added stiffness that can

resist mesh entanglement and cell inversion. Based on Hooke’s law, the resistance force can

be expressed in terms of a spring stiffness and displacement according to

~F = K ~∆x (3.114)

where K is the total stiffness at each node, ~F is the force vector, and ~∆x is the vector of

node displacement given by

~∆x = δx · î+ δy · ĵ + δz · k̂ (3.115)

in three-dimensions. In the ball-vertex approach applied to node i, all edges that connect

this node to each of its node neighbors, j, are replaced by a stiffness, kij. This stiffness will

be an inverse function of the edge length, Lij, according to

kij =
1

(Lij)
n (3.116)

where n is normally taken to be 2, and is found to work well in CFD applications [50, 235].

Generally speaking, when a node is moved such that it passes through its opposite face (or

diagonal in the case of a quadrilateral cell), a concave element is produced that is the source

of mesh entanglement. Therefore, in order to further prevent the cell inversion, a virtual

stiffness is added to each node that is defined based on a virtual linear spring. The length

2This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3245 titled
“An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers” (2018).
Authors: Reza Djeddi and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Reza Djeddi and Kivanc Ekici.
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kij

N1

virtual edge

Figure 3.10: Physical and virtual edges with the corresponding springs for the grid node i
and its neighboring nodes j and neighboring cells Ni.

of this spring would be the distance between the node and its opposite face (in triangular

cells) or its opposite diagonal (in quadrilateral cells).

This stiffness is calculated for each cell neighbor of the grid node. As shown in Figure

3.10, for node i, the virtual stiffness is defined by k̃N1 where N1 refers to the first cell neighbor

of node i. It is worth noting that the stiffness of the virtual edge with length LN1 is calculated

based on the same formula given by Eq. (3.116). Finally, the total stiffness at each grid node,

i, can be defined as a sum of physical and virtual stiffness values:

Ki =

Ngbi∑

j=1

kij +

CNgbi∑

j=1

k̃Nj (3.117)

where Ngbi and CNgbi are the number of node and cell neighbors of node i, respectively.

As discussed earlier, UNPAC uses primarily an edge-based data structure. Therefore,

using a single loop over all edges ij, the linear stiffness values, kij, can be calculated. Next,

for each node, another loop is performed over all cell neighbors to calculate the distances,

LNc , where c is the number of cell neighbors. This leads to the virtual stiffness k̃Nc according

to Eq. (3.116). Preliminary results have shown that even with the addition of the virtual

edges in the framework of the ball-vertex approach, mesh entanglement can occur in cases
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with extreme node relocation. Therefore, a local relaxation technique based on a collapse

length [119] is used in this work that requires the minimum edge lengths (physical and virtual)

to be defined at each node. In this regard, during the process of calculating the physical

and virtual stiffnesses, the minimum edge lengths at each grid node are also calculated and

stored in the data structure to be used later. The local relaxation technique will be discussed

in detail later in this section.

In the r -adaptive AMR, a driving force is needed to control the node relocation process.

As explained before, the goal of the AMR approach is to cluster nodes around regions where

the gradient and curvature of a certain flow variable is high. Thus, a natural choice for the

AMR driving force would be to use the gradients and curvatures of flow variable along each

edge of the numerical grid. Assuming that the flow variable of interest, φ, and its gradient,

~∇φ, are defined at each node, the gradient and curvature forces can be calculated on edge

ij according to

~Fij, gradient =
|φi − φj|
|~xi − ~xj|

~rij

~Fij, curvature =
‖
(
~∇φi − ~∇φj

)
◦ ~r‖

|~xi − ~xj|
~rij (3.118)

where ~rij is the vector connecting node i to j and ◦ is the entry-wise or Hadamard product

operator. Jones [119] has used a clamped cubic spline approach for curvature reconstruction

in order to improve the accuracy of the curvature forces. However, our numerical tests have

shown that a simple approximation based on the gradient information at grid nodes (3.118)

can lead to identical results. These gradient and curvature forces are applied to node i while

a similar force with the same magnitude but in opposite direction will be applied to the

other end of each edge such that

~Fji, gradient = −~Fij, gradient and ~Fji, curvature = −~Fij, curvature (3.119)
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Having the gradient and curvature forces calculated at each edge, the forces can be

distributed to each grid node to obtain the total force vector. In doing so, the gradient and

curvature forces can be scaled by their corresponding factors so that

~Ftotal = Cf, gradient
~Fij, gradient + Cf, curvature

~Fij, curvature (3.120)

where Cf, gradient and Cf, curvature are some user-defined force coefficients that can control the

effects of gradient and curvature forces. It must be noted that before each AMR cycle, the

selected flow variable and its gradients are smoothed using a pseudo-Laplacian smoother [21].

Our numerical tests have shown that a smooth force field can result in better adapted-

grid qualities and a more efficient AMR process. Finally, having the force vectors given

by Eq. (3.118) and the total stiffness described in Eq. (3.117) calculated at all nodes, the

displacements at each node can be calculated according to Eq. (3.114). Thus, with the

calculated displacements, the nodal locations can be updated according to

~x new
i = ~x old

i + ~∆xi (3.121)

As discussed before, even with the addition of the virtual edges in the ball-vertex

approach, it cannot be guaranteed that the r -adaptive AMR technique would not lead to

mesh entanglement and cell inversion. In fact, for cases with sharp gradients and those

with strong discontinuities due to shocks, severe node relocation can still introduce invalid

elements in the adapted grid. Therefore, in this work, a local relaxation approach similar

to that presented by Jones [119] is used to further control the node movements. Assuming

that the minimum edge lengths (physical and virtual) at node i are given by Li, min, and the

magnitude of the calculated displacement at this node is greater than Li, min, the displacement

must be limited by using a local relaxation factor in the update formula given in Eq. (3.121).

Here, a safety factor λ is used to further shrink the safe displacement zone. Finally, the

calculated displacement can be modified except for cases where the original displacement

does not violate the safety zone:

~∆x
corrected

i =
λ Li, min

‖ ~∆xi‖
~∆xi only if ‖ ~∆xi‖ > λLi, min (3.122)
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The above correction is incorporated into the update formula as a local relaxation parameter

ωi such that

~x new
i = ~x old

i + ωi ~∆xi (3.123)

where

ωi =





λ Li, min

‖ ~∆xi‖
if ‖ ~∆xi‖ > λLi, min

1 otherwise

(3.124)

The update process described in Eq. (3.123) needs to be executed iteratively until nodes

have reached a certain level of equilibrium which can be determined by calculating the norm

of the effective displacements.

In the framework of a CFD solver, an important feature of the r -adaptive AMR would

be to preserve the original aerodynamic geometry while effectively moving and clustering

nodes along the boundaries. In order to force the boundary nodes to move only tangential

to the boundaries, the normal projections of the calculated displacements at each boundary

node must be killed. This correction can be done for boundary node b via

~x bndy correction
b = ~xb −

(
~xb · ~̂Sb

)
~̂Sb (3.125)

where ~̂Sb is the unit normal vector (outward) at each boundary node b. Since the update

process is repeated iteratively, the boundary normal vectors must be recalculated at each

iteration to make sure correct normal vectors are being used to fix the boundary node

displacements.

Although the process described here can be effective in guaranteeing that the boundary

nodes move along the boundaries and not normal to them, it would not be essentially shape

preserving. Therefore, in order to preserve the original geometry that was described by the

unadapted grid, a parameterization process is used in this work. Thus, to maintain the

original geometry, boundary nodes are parameterized as
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~x = ~x(s)

~y = ~y(s) (3.126)

where the parameterization variable s is taken to be the normalized arc-length of the sorted

boundary nodes with 0 ≤ s ≤ 1. Finally, a piecewise cubic spline is used to fit the

parameterization data in each Cartesian coordinate. Therefore, at the end of the node

relocation process, the final nodal locations at the boundary nodes are corrected according

to the parameterized functional forms of Eq. (3.126). Additionally, the nodes at the trailing

edge or any other point that defines a sharp corner are fixed to avoid having these regions

rounded during the parameterization process that can alter the geometrical features of the

aerodynamic body.

Following the r -adaptive AMR process, it is possible to have highly skewed cells even to

the point where the flow solver might face convergence issues or even diverge. This problem

can be remedied using a grid smoothing process that can follow the AMR process. In this

work, a Laplacian grid smoother [21] is used to increase the quality of the adapted grid. It

must be noted that during the Laplacian smoothing process, boundary nodes are allowed

to move along the boundary similar to what was described earlier for the AMR process [see

Eq. (3.125)]. Moreover, a similar geometry preserving process using the parameterization

data is ultimately applied to guarantee that the smoothing process does not alter the original

shape of the aerodynamic body.

In the framework of the HB solver, the AMR process is applied to each sub-time level

individually using the solution and the gradients at each of those time instances. Therefore,

the r -adaptive AMR can effectively cluster nodes at different sub-time levels according to

the instantaneous flow solution, location of the discontinuities and shocks or the separation

zones. Finally, the adapted grid is once again pre-processed to calculate the new metrics and

cell volumes. This is a great feature of the r -adaptive approach where there would be no

change in the nodal connectivities, number of nodes/edges and the data structure. During

the pre-processing of the adapted grid, the grid velocities are also updated according to
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Figure 3.11: Flowchart of the r -adaptive AMR approach coupled with the nominal CFD
solver.
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Eq. (3.53) based on the new nodal locations. Having the updated grid velocities, the GCL

errors given in Eq. (3.55) are also recalculated.

After the flow solver is converged to a certain level, i.e., AMR threshold, the AMR process

is initiated. The overall r -adaptive AMR process is provided below:

1. If requested, a pre-smoothing process is applied to the selected flow variable and its

gradient.

2. Using the selected flow variable, gradient and curvature forces are calculated at each

edge and are distributed to the two end nodes.

3. Physical and virtual stiffness values are calculated for each node by one loop over all

edges and another over all cell neighbors. The total stiffness is accumulated at all grid

nodes.

4. Using the minimum edge length at each node and the user-defined safety factor, the

local relaxation coefficient is calculated according to Eq. (3.124).

5. Displacements at the boundary nodes are corrected so that nodes would only move

along the boundaries and not normal to them.

6. The nodal locations are updated using Eq. (3.123).

7. Iterations are stopped if the convergence criterion is met or the maximum number of

iterations is reached, otherwise the process is repeated by going back to step 2.

8. The geometry preserving process is applied based on the pre-calculated parameteriza-

tion data according to the unadapted mesh.

9. If requested, a user-defined number of Laplacian grid smoothing iterations are

performed with a user-defined smoothing coefficient.

10. Grid metrics, median-dual control volumes, grid velocities, and GCL errors (for HB

solver) are recalculated before restarting the CFD solver with the newly adapted grid.

The process described here follows the flowchart shown in Figure 3.11.
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3.12 Parallelization

As engineering simulations keep growing in size and the extent of flow features that need

to be captured are increasing, it is necessary to focus our attention to developing fast and

efficient CFD solvers. From the perspective of numerical schemes involved in an iterative

solver, computational efficiency can be achieved using convergence acceleration techniques

which were discussed in Section 3.7.

As far as the design of the computer code is concerned, parallel processing would

be another option to improve the computational efficiency. With the advancements in

computer science and the fact that high performance computing resources are becoming

more and more readily available, parallel solvers are replacing sequential solvers that have

been conventionally developed. The UNPAC solver developed in this work is parallelized

using an advanced distributed-memory model and the details of the parallelization process

are presented next.

3.12.1 Domain Decomposition

The basic of idea of parallel computing for a numerical solver is to break down the

computational domain into multiple sub-domains over which the computational task is

handled by an individual processing unit (or core). This partitioning process is usually done

using a method called domain decomposition (DD) which, depending on how the inter-facial

boundary of the two adjacent sub-domains is handled, can be categorized as: (1) overlapped-

DD and (2) non-overlapped-DD. In the former approach, neighboring sub-domains overlap

each other by sharing a certain number of control volumes. While this can be beneficial to

the numerical accuracy of the parallel solver due to the strong coupling of solutions between

sub-domains, it can spoil the performance of the parallel solver by introducing redundant

computations and communications [236]. On the other hand, in the non-overlapped-DD

approach, the two adjacent sub-domains only share faces of the control volumes at the inter-

facial boundaries which reduces the amount of communications in between sub-domains.

However, this process involves the introduction of “ghost” nodes that are required for the
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calculation of fluxes across the inter-facial boundaries. In this work, a non-overlapped-DD

approach is utilized due to its computational efficiency.

When decomposing a computational domain, one must make sure that all processors

handle an equal (or almost-equal) share of computational load. This means that the number

of cells (in a cell-based approach) or the number of edges (in an edge-based approach) are in

the same order for all sub-domains. The parallel performance can be negatively affected (in

some cases very severely) due to unbalanced partitioning [203]. While domain decomposition

in structured grids can be straightforward, the partitioning of an unstructured grid is a much

more elaborate task. Fortunately, there are many non-commercial partitioning tools available

that can be used for this purpose. UNPAC solver adopts the METIS [123] partitioning

package due to its performance and ease of use.

In the next section, the parallel process used in the UNPAC solver is described and

the details of the non-overlapped-DD approach, definition of the ghost nodes, and the

communications between adjacent sub-domains are discussed.

3.12.2 Parallelization of UNPAC

The parallelization process in the UNPAC solver follows a “single program multiple data”

(SPMD), also known as single instruction multiple data (SIMD), approach. In this approach,

a set of processors or computing cores perform the exact same instructions on different sets

of data [193] which can clearly ease up the parallelization process as the solution algorithm

would be identical for all processing units.

As discussed earlier, the non-overlapped-DD approach introduces “ghost” nodes at the

inter-facial boundaries. This is shown in Figure 3.12 for a hybrid unstructured grid using

the median-dual control volume approach. The partitioning process performed by METIS,

generates the nodal partitions with the most balanced number of nodes allocated to each

sub-domain. As can be seen in Figure 3.12, the two median-dual control volumes share a

face at the inter-facial boundary. When decomposed, each control volume is handled by

a different processor. In the sub-domain to the left, the finite-volume method requires the

calculation of the total residuals for the control volume Vp5 . Here, node p5 is called the “core”

node of the left sub-domain as it physically belongs to it. Calculation of the residuals for the
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Figure 3.12: Non-overlapped domain decomposition (NDD) used in the parallelization of
the UNPAC solver. Shown here are the decomposition of the computational domain into two
adjacent sub-domains, definition of the “ghost” nodes (hollow circles), and the median-dual
control volumes on each sub-domain.

core node p5 involves evaluating the flux at edge p5p6 although p6 does not physically belong

to the left partition. Therefore, node p6 is added as a ghost node to the left sub-domain.

Due to the edge-based structure of the UNPAC solver, the addition of the ghost node p6

automatically generates the edge p5p6 in the left sub-domain. Similarly, node p5 is also added

to the right sub-domain as one of its ghost nodes. In fact, the ghost nodes of any sub-domain

are actually the duplicate copies of the core nodes of its adjacent partitions.This process does

not disturb the balanced partitions since ghost-typed node-edge pairs are distributed evenly

between adjacent sub-domains.

During the iterative process, different types of information are required at ghost nodes.

These include conservation variables, limiter functions (for second order Roe scheme), and

flow gradients (for second order Roe scheme and/or viscous flow cases). This information

is communicated using the message passing interface (MPI) protocol. Before starting the

iterative process, all the connectivity data and core-ghost associations are determined on all
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computing cores. Additionally, the entire nodal data that needs to be transferred from one

sub-domain to the other is packed in a point-to-point message to reduce the communication

cost. This requires a complex data structure that is developed as part of the parallel pre-

processing.

It must be noted that solutions at the ghost nodes can be communicated in a “non-

lagged” or a “lagged” manner. In the former approach, information is communicated during

each RK stage while in the latter, the communication is postponed until after each iteration.

Obviously, the “non-lagged” approach will result in a much higher parallel accuracy although

it significantly increases the number of Send/Receive calls to MPI functions. On the other

hand, the “lagged” approach can lead to slight inaccuracies due to parallelization especially

in cases where the inter-facial boundaries are crossing regions of large gradients (e.g. shocks

or boundary layer). Also, the “lagged” communication slightly affects the convergence rate

of the parallel solver due to delayed update of the solution at the ghost nodes. Overall, the

non-overlapped-DD approach implemented in the UNPAC solver using both non-lagged or

lagged techniques preserves essentially the same accuracy as the sequential solver. It must

be added that, irrespective of the communication method used, the solution at the ghost

nodes is not updated (is frozen) and the data flow direction is always from core nodes to

ghost nodes and not the other way around.
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Chapter 4

Sensitivity Analysis using FDOT

Toolbox

As discussed in Chapter 1, the goal of this work is to employ the gradient-based optimization

technique for aerodynamic shape optimization of wind turbine blades. This process relies on

the efficient and accurate calculation of the gradients or sensitivities of the objective function

(goal) to the design variables. In this dissertation, a new paradigm for the computation of

the discrete adjoint sensitivities is introduced. This novel approach directly addresses the

inherently large memory footprint required by existing OO/AD tools. The details about the

method and its underlying algorithm are discussed in this chapter.

4.1 Adjoint Sensitivity Analysis in CFD

In a CFD solver, the discretized form of the governing equations can be written in terms

of a residual operator ~R(~x, ~U(~x)) with ~x and ~U(~x) being the vector of design variables and

flow solutions, respectively. This residual vector is driven to zero using a time-marching

scheme to reach steady-state solution. At the fully converged state, the total derivative of

the residual with respect to the design variables must be zero, i.e.,

d~R

d~x
=
∂ ~R

∂~x
+
∂ ~R

∂~U

d~U

d~x
= 0 (4.1)
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In the framework of the gradient-based optimization approach, it is required to have the

total derivative of the objective function that needs to be minimized with respect to the

design variables. Thus, for an objective function, I(~x, ~U(~x)), the gradient information can

be calculated using the chain rule so that

dI

d~x
=
∂I

∂~x
+
∂I

∂~U

d~U

d~x
(4.2)

The cost of evaluating d~U
d~x

increases linearly with the number of design variables which makes

it impractical to use a direct approach in sensitivity analysis. However, by rearranging

Eq. (4.1) such that

d~U

d~x
= −

[
∂ ~R

∂~U

]−1
∂ ~R

∂~x
(4.3)

which upon substituting into Eq. (4.2) yields

dI

d~x
=
∂I

∂~x
− ∂I

∂~U

[
∂ ~R

∂~U

]−1
∂ ~R

∂~x
(4.4)

one can lay the groundwork for the adjoint approach. Therefore, the following adjoint

equation is solved for the adjoint vector, ψ

ψT = − ∂I
∂~U

[
∂ ~R

∂~U

]−1

(4.5)

This is the essence of the continuous adjoint approach. Finally, having the adjoint solution

vector, the sensitivities of the objective function with respect to the design variables can be

computed using

dI

d~x
=
∂I

∂~x
+ ψT

(
d~U

d~x

)
(4.6)

In the discrete adjoint method, the nominal CFD solver can be viewed as a series of m

function evaluations that are applied to a vector of initialized solution ~U0 based on ~x (the

design variables) such that
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~U0 = f0(~x), ~U1 = f1(~U0), ~U2 = f2(~U1) . . . ~Um = fm(~Um−1) (4.7)

where ~Um is the fully converged solution vector that the CFD solver outputs. Eventually,

this final flow solution is used to evaluate an objective function, I, via a vector operator ~v

operating on ~Um

I = ~vT ~Um (4.8)

In order to calculate the sensitivities of the objective function to the input variables, the

chain rule of differentiation can be applied to Eq. (4.8) resulting in

∇I = ~vT
[
∂fm

∂~Um−1

] [
∂fm−1

∂~Um−2

]
. . .

[
∂f1

∂~U0

] [
∂f0

∂~x

]
(4.9)

In the above equation, the derivatives of the intermediate functions with respect to the

design variables propagate from ~U0 toward ~Um which results in the so-called “forward” mode.

This process involves m matrix-matrix multiplications and a single matrix-vector product at

the last step. When the number of design variables is large, which happens to be the case in

aerodynamic design optimization applications, the cost of evaluating the m matrix-matrix

multiplications grows linearly, leading to high computational costs for sensitivity analysis.

Alternatively, without loss of generality, one can transpose Eq. (4.9) to obtain

∇IT =

[
∂f0

∂~x

]T [
∂f1

∂~U0

]T [
∂f2

∂~U1

]T
. . .

[
∂fm

∂~Um−1

]T
~v (4.10)

which requires only m matrix-vector multiplications, resulting in a significantly lower

computational cost. It must be noted that the gradients obtained using the discrete

adjoint approach are generally consistent with the finite-difference approximations, and

therefore, lead to slightly more accurate sensitivity information compared to the continuous

approach [139]. Apparently, in the discrete analysis the derivatives are propagated in the

reverse direction. However, this requires the complete time history of the flow equations to

be stored which can lead to huge memory footprints in a large scale three-dimensional flow

118



solver. In any case, this issue can be addressed in a simple way, which is one of the novel

aspects of the method presented in this dissertation.

4.2 Automatic Differentiation Using FDOT

Since many CFD solvers (such as steady and unsteady harmonic balance or time-spectral)

follow an iterative process to reach a converged flow solution, the memory requirements

for recording the entire expression tree can easily go out of hand after many iterations,

especially with the addition of auxiliary set of equations such as complex turbulence and

transition models. However, this issue can be addressed in a very simple way by using the

repetitive iterative process inherent in these CFD solvers. Assume that the nominal CFD

solver has converged to machine accuracy for a given set of design (or input) variables.

At this point, further iterations do not change the values of conservation and primitive

variables and the expression tree starts following the exact same path at each iteration since

the solution is fully converged. By taking advantage of this feature, the expression tree at

the fully converged state can be recorded in a tape. This is done for a single sweep of the

nominal solver (pre-processing plus one iteration of the CFD solver plus post-processing)

by loading a fully converged solution. This leads to a very short tape that can easily fit in

the random access memory (RAM). The adjoint solutions are then obtained by repeatedly

playing the recorded tape in reverse until the desired level of accuracy in the gradient

information is achieved. The reverse nature of these computations makes the method

equivalent to the discrete adjoint approach. As already mentioned, this method requires

the fully converged nominal solution before the discrete adjoint computations can be carried

out. However, this is not a drawback since the same is true for traditional discrete (SCT or

hand-written) or continuous adjoint computations. This method can easily handle even the

most complicated three-dimensional solvers in a fully-automated fashion. Furthermore, the

memory footprint becomes very manageable even on most modern workstations. The novel

approach is implemented into a toolbox called FDOT (Fast automatic Differentiation using

Operator-overloading Technique), and is written for both C/C++ and Fortran programming

languages.
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In this section, the methodology that constitutes the foundation of all available OO/AD

tools will be introduced first. In doing so, the challenges faced in using these tools will be

identified and discussed. Next, the novel approach proposed in this work will be explained

in detail and the implementation of the toolbox as well as its black-box-type application to

a simple CFD solver will be presented.

4.2.1 Reverse Mode of AD Using Operator Overloading

In the reverse mode of automatic differentiation the derivatives of the objective function

with respect to all design and intermediate variables, also known as adjoints, are calculated

via an evaluation process. As has been shown by Wolfe [229], and Baur and Strassen [16],

the reverse mode of AD is capable of evaluating the gradient of the output with respect

to a large number of design variables (or inputs) with a computational cost that is only a

small multiple of that of the primal solver that calculates the value of the function itself.

Once again, this is what makes the reverse mode of AD attractive for design optimization

problems. However, the implementation of the reverse mode is not as straightforward as

the forward mode of AD and, especially for the operator overloading approach, a lot of

meta-programming is required. In fact, for the reverse mode of AD to work, the solver has

to have access to the entire set of instructions, also known as the expression tree, that are

executed from the inputs all the way to the output. Almost all OO/AD tools achieve this

by recording the entire expression tree into a derived type class often called the tape that

is stored in the RAM. This tape not only stores the resulting value of each unary or binary

operation together with all assignments, but also stores the index of the first and second

(required only for binary operations) arguments, operation type and the adjoint value of the

result. The reverse mode of AD defines an adjoint object for each variable involved in any

unary or binary operation. As an example, for a binary operation, f , performed on two

variables a and b and resulting in another variable c, three adjoint variables, a, b, and c will

be defined. Therefore, the forward and the adjoint modes of this simple operation can be

written as
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c = f(a, b) ⇒
a += c ∗ ∂f

∂a

b += c ∗ ∂f
∂b

(4.11)

where, for example, a and b are the adjoints of a and b, respectively. It is useful to note that,

by definition

c =
∂c

∂f
= 1.0 (4.12)

Since the process for the reverse mode calculates all adjoints in the expression tree, one

must only set the adjoint of the objective function to 1.0 while initializing the rest of the

adjoints to 0.0. As an example for the above binary operation, one can set c = 1.0 to

calculate the adjoints of a and b variables, which in this case would simply be the partial

derivatives of the output function with respect to both input variables, i.e.,

c = 1.0 ⇒
a =

∂f

∂a

b =
∂f

∂b

(4.13)

This simple idea is the key rule for the reverse mode of automatic differentiation.

Therefore, each unary or binary operation can be overloaded such that the input arguments

are indexed along with their values and the type of operation. In the reverse evaluation

process, the adjoints of the input variables for each statement – or basically each entry

of the expression tree – will be calculated using the concept shown in Eq. (4.11). A very

important issue regarding the use of the OO-based AD tools is that, in contrast to the SCT

tools where all branches, loops and if blocks are transformed, there are no branches or if

blocks in the recorded tape and all of the loops are fully unrolled since the tape actually

records only the operations that are being executed at run time. Therefore, in the framework

of an OO-based AD tool, all of the data-dependent branches and loops can only be reversed

at run time. As can be clearly seen, there are two main challenges that must be addressed

in the reverse mode of AD using operator overloading which are summarized below.
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1- The memory footprint for the recorded tape can easily reach beyond the available

resources as the number of instructions are increased. Since all of the loops in the

nominal code are unrolled in the process of recording the tape, the iterative part of the

numerical solver will exponentially increase the number of tape entries thus increasing

the memory requirements and the computational overhead in writing, reading and

evaluating the tape. This can make the use of traditional OO-based AD tools infeasible

for full-fledged CFD solvers.

2- Because the tape is a complete record of all instructions and operations that are

performed, in the process of iterative convergence of the CFD solver, different branches

will be taken and different loops will be unrolled. Therefore, the recorded tape can

grow even larger as more iterations are unfolded. This forces the toolbox to use disk

files instead of the random access memory which further slows down the read/write

process of the tape.

The novel approach that is presented in the FDOT toolbox addresses all these issues and

the methodology is explained in the following section.

4.2.2 Discrete Adjoint Sensitivity Analysis Using FDOT

For a numerical solver (or more specifically a CFD solver) with a set of design variables, x,

and an objective (or output) variable, c, the entire process can be broken down to a set of

pre-iterative (flow initialization), iterative (flow solution) and post-iterative (computation of

the cost function) procedures.

To simplify the discussion, let us assume a single design variable, x, and a set of pre-

iterative procedures that can be collectively called u(x). Next, an iterative process is

recursively performed with only one intermediate variable, yk, which is updated at each

iteration k. This iterative process can be denoted as function f(yk, u, x) that can have

multiple inputs with only one input changing throughout the iterative process. Assuming

a convergent iterative process, one can assume yk → y∗ as k → N after a certain number

of iterations. Finally, a set of post-iterative procedures are performed using the converged

solution that leads to the cost function. This process can be viewed as another function,
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g(y∗, u, x), that can have multiple inputs. The output of this function would be our objective,

c. In order to see how the iterative process evolves as the loops are unrolled and the

instructions are being recorded, let us assume the iterative process converges after only

2 iterations. Therefore, this simple algorithm (left side of the following pseudo-code) can be

written as:

Primal Solver (forward) Adjoint Calculations (reverse)

pre-iterative part:

x

u = u(x)

y1 : initial guess

iterative part:

iteration 1: y2 = f(y1, u, x)

iteration 2: y3 = f(y2, u, x)

post-iterative part:

c = g(y3, u, x)

post-iterative part:

c = 1.0

y3 = y2 = y1 = u = x = 0.0

u + = ∂g/∂u ∗ c

x + = ∂g/∂x ∗ c

y3 + = ∂g/∂y3 ∗ c

iterative part:

iteration 2: y2 + = ∂f/∂y2 ∗ y3

u + = ∂f/∂u ∗ y3

x + = ∂f/∂x ∗ y3

iteration 1: y1 + = ∂f/∂y1 ∗ y2

u + = ∂f/∂u ∗ y2

x + = ∂f/∂x ∗ y2

pre-iterative part:

x + = ∂u/∂x ∗ u

Now, using the generalized adjoint formula [Eq. (4.11)], one can calculate all adjoints of

the intermediate variables, and propagate the sensitivities in the reverse order (right side of

the pseudo-code given above). As discussed earlier, there are no branches or if loops involved

in the recorded tape. This is due to the fact that the tape records only intrinsic operations
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(e.g., assignments, multiplications, additions, trigonometric functions, etc.) that are being

executed at run time. This very important feature necessitates the use of a fully converged

solution of the primal solver to ensure that all following iterations go through the exact

same expression tree. Therefore, the iterative process, f(yk, u, x, ...), would not change the

forward solution throughout the iterative evaluation process since:

y∗ = f(y∗, u, x, ...) with y → y∗ as k →∞ (4.14)

Thus, the iterative tape evaluation process can be generalized as

Iterative Adjoint Calculations (reverse)

for k = N, 1,−1

accumulation part:

iteration k: u + = ∂f/∂u ∗ yk+1

x + = ∂f/∂x ∗ yk+1

update part:

iteration k: yk + = ∂f/∂yk ∗ yk+1

yk+1 ← yk

end

where N is normally the total number of iterations that it takes for the primal solver to

converge to a certain level of accuracy. Therefore, the adjoint evaluation process depends on

the level of accuracy that was prescribed in the nominal solver. Having yN+1 from the post-

iterative process, one can initiate the above iterative procedure that leads to the converged

adjoint solution y1. However, most of the time y1 will not be used in the pre-iterative process

while the most important part of the above iterative loop is the accumulation of the u and x

or any other active variable that belongs to the pre-iterative portion of the recorded tape. In

fact, performing the iterative adjoint evaluation helps accumulating these adjoints to their

correct value. Finally, at the end of the pre-iterative part of the adjoint evaluation, the

124



correct final adjoint value, x, is obtained. This adjoint value is, in fact, the sensitivity of the

output, c, with respect to the input, x, or x = dc/dx. It is worth noting that the user needs

to execute a checkpointing function right before and after the iterative loop to simply record

the index of the tape entries. This way, it is easy to identify which portion of the recorded

tape belongs to pre-iterative, iterative and post-iterative stages. Figure 4.1 demonstrates

the coupling of the nominal solver to the FDOT toolbox for discrete adjoint analysis.

Figure 4.1: Flowchart for the FDOT toolbox and its integration into the nominal CFD
solver.

4.2.3 Operator Overloading and Adjoint Evaluation

As demonstrated earlier, the present AD technique takes advantage of the iterative feature of

the tape evaluation to greatly reduce the memory footprint and the computational overhead

that is involved with writing and reading the recorded tape. Initially, a user defined type

is introduced that takes care of the active real variables. A similar type can be defined

for the active integer variables. However, the integer variables are often treated as passive
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variables except for the cases where there is a combination of integer and real variables. In

these situations, the integer variables are usually converted to real variables in-place before

running the instructions. As an example, the definition of the new derived type is given

below in Pseudo-code 4.1.

1 Type AReal

2 integer :: index

3 real :: value

4 End Type AReal

Pseudo-code 4.1: AReal derived type

As can be seen, for each AReal derived type variable, not only its value is stored but

also an index is recorded that can be used to identify the variable’s location among tape

entries. It is worth noting that the precision of the floating point real numbers can be simply

set using compile flags if double precision is needed for real-typed variables throughout the

solver. Next, a derived type or class for the tape is defined which records all operations in

the exact order that they are performed. As explained earlier, for each unary, binary or

assignment operation this class records (1) an operation tag, (2) index of the first argument,

(3) index of the second argument (only for binary operations), (4) an iterative flag, (5) a

passive/active flag, (6) the primal value and (7) the adjoint value (see below).

1 Type Tape

2 integer :: optag

3 integer :: arg1

4 integer :: arg2

5 logical :: iterative

6 logical :: passive

7 real :: value

8 real :: adjoint

9 End Type Tape

Pseudo-code 4.2: Tape class
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As an example, for the multiplication operator, i.e., c = a ∗ b, not only the value of

c is stored but also a tag is recorded to indicate that a multiplication operation has been

performed. In addition, the indices of variables a and b are stored if any of the three variables

is active, i.e., of AReal type. As explained in Section 4.2.2, the iterative adjoint procedure

requires the values of the adjoints to be updated after each iteration by replacing the old

adjoint values yk+1 by the newly evaluated ones yk. This requires flagging those iterative

variables such that their indices could be stored in an array that determines which ones

should have their values swapped. Therefore, an iterative flag is used that will be enabled

for all tape entries of iterative variables and disabled for the rest of the tape.

An important feature of our OO-based AD tool is to overload all intrinsic operations.

For this reason, the following operators are overloaded in Fortran to achieve in-situ tape

recording while calculating each overloaded operation:

1- Unary operators: absolute (| · |), square-root (
√· ), sin, cos, tan, arcsin, arccos,

arctan, log, log10, exp, sinh, cosh, tanh

2- Binary operators: +, −, ∗, /, ∗∗, ATAN2, max, min

3- Logical operators: =, 6=, >, ≥, <, ≤

4- Special operators: MATMUL, DOT PRODUCT, MINVAL, MAXVAL. [Intrinsic

functions in Fortran and their equivalents in C++ standard template library (STL).]

As examples of unary and binary operations, the overloaded versions of sine and

multiplication operators in Fortran are provided below.
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1 Function FDOT_SIN(X) RESULT (Y)

2 Type(AReal), intent(in) :: X

3 Type(AReal) :: Y

4

5 Tape(index_counter ). optag = SINTAG

6 Tape(index_counter ).arg1 = X.index

7 Tape(index_counter ). value = sin(X.value)

8

9 Y.value = sin(X.value)

10 Y.index = index_counter

11 index_counter = index_counter + 1

12

13 End Function FDOT_SIN

Pseudo-code 4.3: Overloaded Sine (unary) operator (line 9) plus recording

a new tape entry

As all operations are overloaded for the derived type arguments, one must also ensure

that various combinations of Real and AReal as well as Integer and AReal operations are

handled properly. The important issue here is that a tape entry for the passive real or integer

variable must be created before continuing with the overloaded operation in order to have

the correct set of instructions recorded in the tape. However, these additional tape entries

are passive and their adjoints are not needed. Therefore, a logical flag is enabled for these

entries so that in the process of evaluating the tape, they can be skipped. This process can

greatly increase the efficiency of adjoint evaluations. It is worth mentioning that a similar

procedure is performed for assignment operations for cases where the right-hand-side is of

type Real or Integer while the left-hand-side is of type AReal.
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1 Function FDOT_MUL(X,Y) RESULT (XY)

2 Type(AReal), intent(in) :: X, Y

3 Type(AReal) :: XY

4

5 Tape(index_counter ). optag = MULTAG

6 Tape(index_counter ).arg1 = X.index

7 Tape(index_counter ).arg2 = Y.index

8 Tape(index_counter ). value = X.value * Y.value

9

10 XY.value = X.value * Y.value

11 XY.index = index_counter

12 index_counter = index_counter + 1

13

14 End Function FDOT_MUL

Pseudo-code 4.4: Overloaded multiplication (binary) operator (line 10)

plus recording a new tape entry

One of the attractive features of the present method is that the integration of the FDOT

module into any solver requires minimal changes to the primal code and no additional code

developement is needed. These steps are listed below:

1- Change all Real types to the user-defined type AReal.

2- In case there is an iterative update loop, flag all the iterative variables by simply storing

their indices.

3- Call the set checkpoint function before and after the main iterative loop.

4- Set the adjoint of the cost function to one, Tape(cost.index).adjoint = 1.0.

5- Call the evaluate tape function to calculate/accumulate adjoints.
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Since in most modern CFD solvers, the use of global data structure is common, changing

all the Real types to the user-defined type AReal would be easy as the user needs to simply

replace all instances of Real with Type(AReal) throughout the data structure. In order

to flag the iterative variables, user can simply call a function that handles this operation

by receiving the index of the iterative variable as an input argument. A similar function

is called right after the update formula. In fact, aside from changing the Real types to

AReals, user has to only add less than 10 lines of code, i.e., two function calls for flagging

iterative variables, two calls to the set checkpoint function, one line setting the adjoint of

the cost function to unity and one call to the evaluate tape function. Also, in the adjoint

version of the code, the iteration loop has to be executed for only one iteration using the fully

converged solution [see Fig. (4.1)]. This is the main advantage of the proposed technique

which greatly reduces the memory footprint and subsequently the computational overhead

in writing, reading and evaluating the recorded tape.

The last step of the adjoint code is to call evaluate tape function. This function reads

in the recorded tape and starts evaluating the adjoints by using the key rule that was defined

earlier in Eq. (4.11). This is mainly based on the derivatives of each operation with respect

to its argument(s). Since the recorded tape is needed to be assessed in the reverse order, the

process starts by evaluating the adjoints for the post-iterative portion of the tape first. Next,

the proposed iterative process that was explained in Sections 4.2.1 and 4.2.2 is performed

to evaluate the adjoints of the iterative portion of the tape. While consistently updating

the adjoints of the iterative variables, adjoints of the post- or pre-iterative stages will be

updated by getting accumulated. Note that the user can specify the number of iterations

or a convergence tolerance for the iterative adjoint evaluation process. Finally, the adjoints

of all intermediate as well as the input (design) variables are obtained. The results are the

sensitivities of the cost (objective) function with respect to all inputs. As an example, the

adjoint evaluation process is shown below for the multiplication and sine operators. Here, a

select/case is used that switches over different operation tags to execute the corresponding

adjoint formula [Eq. (4.11)].
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1 Do I = stage_end , stage_start ,-1

2 . . .

3 Select (Tape(I). optag)

4 Case (MULTAG)

5 IF (.NOT. Tape(Tape(I).arg1). passive) &

6 Tape(Tape(I).arg1). adjoint =

7 Tape(Tape(I).arg1). adjoint + &

8 Tape(Tape(I).arg2). value * &

9 Tape(I). adjoint

10 IF (.NOT. Tape(Tape(I).arg2). passive) &

11 Tape(Tape(I).arg2). adjoint = &

12 Tape(Tape(I).arg2). adjoint + &

13 Tape(Tape(I).arg1). value * &

14 Tape(I). adjoint

15 . . .

16 Case (SINTAG)

17 IF (.NOT. Tape(Tape(I).arg1). passive) &

18 Tape(Tape(I).arg1). adjoint = &

19 Tape(Tape(I).arg1). adjoint + &

20 cos(Tape(Tape(I).arg1).value) * &

21 Tape(I). adjoint

22 . . .

23 End Select

Pseudo-code 4.5: Adjoint evaluation: select/case

One final note is that the user can simply use a set of pause/unpause functions to

temporarily stop recording the tape in cases where there are check procedures or passive

function calls that should not be included in the tape. The inclusion of these passive function
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calls would not affect the results of the FDOT toolbox but their exclusion can decrease the

length of the tape which results in higher computational efficiency.
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Chapter 5

Validation and Verification

In this chapter, validation test cases are presented for verifying the numerical results obtained

using the UNPAC solver. Additionally, the sensitivity analysis results using the FDOT

toolbox are presented. Initially, 2D steady and unsteady flow cases are considered. For this

purpose, inviscid transonic flow around the NACA0012 airfoil and turbulent transonic flow

over the RAE2822 airfoil are presented. Additionally, the steady subsonic flow around the

S809 airfoil is investigated to demonstrate the importance of modeling transitional effects

for certain cases. Next, unsteady flows around pitching NACA0012 airfoils are studied to

verify the implementation of the harmonic balance method. Following 2D validation results,

the attention is shifted to 3D flow cases. First, 3D flow around an extruded airfoil is studied

and the numerical results are compared to the 2D solutions. Next, the steady flow around a

3D ONERA M6 wing is simulated. Finally, the flow around a rotor in hover is studied using

the rotating frame of reference capability of the UNPAC solver. Throughout this chapter,

r-adaptation as well as the ROM-based convergence acceleration methods are applied to

selected test cases in order to demonstrate the effectiveness and robustness of the proposed

methodologies.
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5.1 2D Steady: Inviscid Flow Around NACA0012

Airfoil

The first test case studied here is the steady inviscid flow over the NACA0012 airfoil. The

free-stream Mach number is M = 0.8 with the angle of attack set to α = 1.25 degree. These

settings lead to a transonic flow with shocks forming on both the pressure and the suction

sides of the airfoil. The relatively weak shock on the pressure side is located at around 35%

chord length while the strong shock on the suction side is situated at about 65% of the chord

length from the leading edge of the airfoil.

The “baseline” grid used for this case is made of 129× 129 nodes and is generated using

the Karman-Trefftz conformal transformation [216]. In the framework of our unstructured

solver and in the absence of a branch-cut, the baseline grid has 128 × 129 = 16512 nodes,

32, 896 edges, and 16, 384 quadrilateral cells as shown in Figure 5.1.
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Figure 5.1: Near-field view of the baseline grid used for NACA0012 airfoil with 16512
nodes.

The second-order Roe scheme with Venkatakrishnan’s limiter is used for the calculation

of convective fluxes. The pressure coefficient distribution on the surface of the airfoil as well

as the pressure contour field are shown in Figure 5.2. Also, the Cp results are compared
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against the numerical results of Swanson and Turkel [201] obtained using a comparable flux

method in a structured solver. As can be seen, shocks on both sides of the airfoil are captured

with a good resolution and there is a good agreement between the results from UNPAC and

those reported in the literature.
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(a) Cp vs x/C

X

Y

­0.5 0 0.5 1 1.5

­0.5

0

0.5

1

(b) pressure field

Figure 5.2: Surface pressure distributions and the pressure contour field for the inviscid
transonic flow (steady) past NACA0012 airfoil.

In order to make sure that the results are grid-independent, a grid convergence study

is performed. Therefore, four different grids with successively increased resolutions, namely

with 65 × 65, 129 × 129, 257 × 257, and 513 × 513 computational nodes, are considered.

To quantify solution errors, the drag coefficient is chosen and the result of Yano and

Darmofal [233] based on an adaptive discontinuous Galerkin-FE method is considered as

the most accurate solution and the convergence results are shown in Figure 5.3.

Here, first-order and second-order Roe fluxes are considered and the rest of the solver

settings are kept to be identical. For grid convergence analysis, the predicted drag coefficients

using UNPAC are compared to the results of Yano and Darmofal [233] while progressively

increasing the grid resolution. Additionally, in order to predict the convergence rate, the

calculated errors for the first- and second-order methods are presented in a log-log plot during

the grid refinement process.
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Figure 5.3: Convergence rate analysis for the inviscid transonic flow past NACA0012 airfoil.
Theoretical 1st and 2nd order convergence rates are shown with dashed lines.

As can be seen in Figure 5.3, the first-order results exhibit a semi-linear convergence which

agrees well with the truncation errors of the upwind Roe scheme. On the other hand, the

convergence of the second-order method is initially quadratic while it gradually approaches

to a first order convergence as the grid resolution is increased. This can be associated with

the fact that the Roe scheme switches to a first-order upwind scheme at the discontinuities

due to the Venkatakrishnan’s limiter function [136].

5.1.1 Grid Adaptation using AMR1

In order to study the performance of the proposed framework for the r -adaptive AMR

technique, the present case is considered. The goal here is to determine the capability of the

r -adaptive approach in redistributing grid nodes by clustering them around regions of high

1This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3245 titled
“An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers” (2018).
Authors: Reza Djeddi and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Reza Djeddi and Kivanc Ekici.
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gradients. Therefore, two sets of grids with 128×129 (baseline) and 256×257 (fully-refined)

nodes are used [216]. Both of these grids are shown in Figure 5.4.
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(b) Fully-Refined Grid

Figure 5.4: Baseline and fully-refined grids for NACA 0012 airfoil with 128 × 129 and
256× 257 nodes, respectively.

Our goal in using the r -adaptive AMR approach is to increase the accuracy of our CFD

solver by clustering the nodes around regions with large flow gradients and curvatures while

keeping the number of grid nodes exactly the same. Therefore, the AMR technique is applied

to the original grid and its performance is assessed by comparing the flow field, surface

pressure distributions as well as the force coefficients to those reported in the literature [233,

217]. For comparison purposes, the results from the fully-refined grid are also included.

In order to define the driving force for the r -adaptive AMR technique presented in this

work, static pressure value and its gradients are used. The AMR threshold is setup such

that the r -adaptive process is initiated after 5 orders of magnitude drop in the flow residual.

Initially, the pressure field and its gradients are smoothed using 2 Laplacian smoother

iterations with the smoothing coefficient set to 0.4. Here, the gradient and curvature force

coefficients are taken to be Cf, gradient = 2.0 and Cf, curvature = 6.0. Our numerical tests

have shown that usually a ratio of Cf, gradient/Cf, curvature ≈ 1/3 leads to an efficient node

clustering which has also been reported by Jones [119]. In addition, smaller force coefficients

normally lead to a gradual node clustering. The AMR iterations are continued until 4
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orders of magnitude drop in the nodal displacements have been achieved. Moreover, the

AMR process is repeated every 500 iterations for 10 cycles. Finally, the r -adapted grid is

smoothed using a Laplacian smoother with 2 passes and a smoothing coefficient of 0.5. The

geometry preserving shape parameterization process described in Section 3.11 is also applied

while keeping the trailing edge node fixed.

Table 5.1: Lift and drag coefficients for the inviscid transonic flow past NACA 0012 at
M = 0.8 and α = 1.25 deg using baseline, fully-refined, and r -adapted grids as well as those
of Yano and Darmofal [233].

Grid CL Error Error (rel.) CD Error Error (rel.)
Yano & Darmofal [233] 0.35169 - - 0.02262 - -

Fully-Refined 0.35096 0.20% - 0.02349 3.84% -
Baseline 0.34820 0.99% 1.64% 0.02445 8.09% 4.08%

r -adapted (AMR) 0.35024 0.41% 0.20% 0.02302 1.76% 2.00%

The numerical results in terms of lift and drag coefficients are presented in Table 5.1 for

the cases using the baseline, fully-refined, and r -adapted grids and are compared against

those of Yano and Darmofal [233]. Here, the error values are once again calculated based on

the numerical results of Yano and Darmofal [233]. Additionally, the errors are calculated by

comparing the results of the baseline and r -adaptive grids to those obtained using the same

solver but with the fully-refined grid (referred to as relative errors). As can be seen in Table

5.1, the application of the r -adaptive AMR leads to a significant increase in the accuracy of

the numerical results. In fact, there is more than four-fold decrease in the numerical errors

for the lift coefficient when applying the r -adaptive approach to the baseline mesh compared

to the results presented in the literature [233]. This drop in the numerical error is even larger

when comparing the r -adaptive results to the ones obtained from the same solver but using

the fully-refined grid. Furthermore, the over-prediction of the drag coefficient is significantly

reduced with the application of the AMR technique. In fact, comparing to the results of

Yano and Darmofal [233], a much better agreement is obtained using the r -adapted grid

than the fully-refined grid.

Next, the surface pressure coefficients are compared for the cases studied using the

UNPAC solver with three different grid resolutions, i.e., baseline, fully-refined, and r -adapted

grids. These results are shown in Figure 5.5. It can be easily noticed that the surface pressure
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Figure 5.5: Surface pressure distributions for the inviscid transonic flow (steady) past
NACA0012 airfoil using the baseline, fully-refined, and r -adapted grids.

coefficient results for the r -adapted case exhibit a much sharper shock on the suction side

compared to the results obtained using the same number of nodes but with the baseline

grid resolution. In the close-up view at the location of the strong shock, it can be seen that

there is a very good agreement between the results using the r -adapted and fully-refined

grids while the captured shock using the AMR grid is sharper than that obtained using the

fully-refined grid.
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Figure 5.6: Pressure contour plots for the inviscid transonic flow (steady) past NACA 0012
airfoil using the baseline and r -adapted grids.

It is also possible to visually compare the flow solution in terms of the pressure contours as

well as the numerical grid for cases with the baseline and the r -adapted grids. These results
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are shown in Figures 5.6 and 5.7. As can be seen in Figure 5.7, the present r -adaptive

AMR approach is capable of efficiently clustering the nodes around the strong shock on the

suction side as well as the weak shock on the pressure side. Additionally, there is a significant

improvement in the shock capturing using the r -adapted grid with the AMR flow results

leading to a much higher shock resolution [see Figure 5.6].
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Figure 5.7: Baseline and r -adapted grids for the inviscid transonic flow (steady) past
NACA 0012 airfoil.

So far, the presented numerical results using the r -adaptive approach indicate that the

proposed AMR technique is capable of efficiently increasing the accuracy of the numerical

solver by node redistribution and clustering. However, another important aspect of the r -

adaptive approach is that the improved accuracy is generally achieved without increasing

the size of the grid data structure. Therefore, in order to further study the performance

of the AMR technique, the computational cost of the numerical solver for the different

grids studied here are compared. In this regard, the CPU times for the cases with the

baseline, fully-refined, and r -adapted grids are compared and presented in Table 5.2. Also,

the convergence histories for the cases with the baseline, fully-refined, and the r -adapted

grids are presented in Figure 5.8.

Since for this particular case 10 AMR cycles are applied every 500 iterations, there will

be an increase in CPU times for the case with the r -adapted grid. Also, the AMR iterative
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Figure 5.8: Convergence histories for the inviscid transonic flow (steady) past NACA0012
airfoil using the baseline, fully-refined, and r -adapted grids.

Table 5.2: CPU times for the three different grid resolutions (baseline, fully-refined, and
r -adapted) used for the inviscid transonic (steady) flow over NACA0012 airfoil.

Grid CPU Time (s) Normalized CPU Time
Baseline 215.58 1.00

Fully-Refined 2037.60 9.45
r-adapted (AMR) 306.27 1.42

process, post-AMR grid smoothing and grid pre-processing also contribute to a CPU time

overhead. However, compared to the computational cost of the fully-refined grid case, there

are significant savings in the CPU time. Note that, there is a decrease in the convergence rate

for the fully-refined grid case, which is expected. Moreover, this translates into an almost

quadrupled CPU time per iteration. In fact, with the application of the present r -adaptive

AMR technique, a significantly higher level of accuracy has been achieved compared to the

baseline grid at a much lower computational cost compared to the fully-refined grid.
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5.1.2 Convergence Acceleration using ROM-based approach2

As discussed in Chapter 3, one the main contributions of the present work is a novel ROM-

based convergence acceleration technique. In this section, the proposed technique is used to

accelerate the convergence of the UNPAC solver to steady-state solution. Due to the high

non-linearity of the present transonic case, a significant number of solution snapshots should

be considered. As explained in Section 3.10, the effectiveness and robustness of the proposed

acceleration technique are directly related to the amount of information that the collected

snapshots provide. Therefore, the performance of the acceleration process can be greatly

enhanced by taking the snapshots at the best possible stages during the convergence of the

CFD solver. One way of achieving this goal is to follow the guidelines for snapshot selection

presented in Section 3.10.3. Additionally, one of the attractions of the present technique

is that increasing the number of snapshots over a fixed cycle, thus reducing the snapshot

interval, can be also very helpful in achieving enhanced performance.

Here, the covariance-based acceleration technique is used over a cycle of 2,000 iterations.

Also, the snapshot collection is lagged by 1,000 iterations to make sure that the system is

linearly convergent. In order to study the effects of oversampling, the number of snapshots

is successively increased and four cases with 10, 20, 40, and 80 equally-spaced snapshots are

considered. Obviously, the snapshot intervals for these oversampling cases will be 200, 100,

50 and 25 iterations, respectively. The convergence history plots are compared against each

other and are shown in Figure 5.9.

It can be seen in Figure 5.9 that the performance of the proposed acceleration technique

can be greatly improved by simply increasing the number of snapshots over a fixed cycle.

This way, not only more snapshots are included in the process which can increase the amount

of useful information for extrapolation, but also the chances of having the best possible set

of snapshots for a more effective projection will be increased. The reductions achieved in

the required number of iterations to reach machine accuracy as well as those in CPU times

are presented in Table 5.3. The acceleration results exhibit a steady improvement in the

2This section, in part, is a reprint of the material as it appears in AIAA Journal 55 (9), 3059-3071 titled
“Convergence Acceleration of Fluid Dynamics Solvers Using a Reduced–Order Model” (2017). Authors:
Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici. The dissertation author was the primary investigator
and author of this paper. Copyright is held by Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici.
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Figure 5.9: Convergence history plots for the original and accelerated solutions with
oversampling approach for the inviscid transonic flow past NACA0012 airfoil.

Table 5.3: Reductions in the number of iterations and CPU times for Case 3 with
oversampling of covariance-based acceleration.

Test Iterations Reduction CPU time (s) Reduction
No Acceleration 14,899 - 215.58 -

10 - 200 - 2K (L-1K)a 12,930 13.21% 188.09 12.75%
20 - 100 - 2K (L-1K) 10,451 29.86% 154.64 28.27%
40 - 50 - 2K (L-1K) 8,699 41.61% 131.59 38.96%
80 - 25 - 2K (L-1K) 5,788 61.15% 93.28 56.73%

a 10 snapshots every 200 iterations during a cycle of 2,000 itrs. and lagged by
1,000 itrs.

performance as the number of snapshots is increased. Also, the CPU time results show that

the speed-ups of up to about 57% are possible when more snapshots are included in the same

acceleration cycle.

One can always argue about the memory affordability especially in the case of

oversampling. However, in general, the proposed technique can be performed using two

different approaches: (1) Input/Output (I/O) efficient and (2) memory efficient. In the first

approach, which has been used primarily in this work, the entire solution and residuals are

written into external files at each snapshot. When the sanpshot collection cycle ends and

the acceleration procedure is started, the recorded solutions and residuals are loaded into

random-access-memory (RAM) to start the computations. This process requires the storage

of N × (M + 2) values into the RAM where N is the number of degrees of freedom (DOF),
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i.e., number of computational nodes times the number of equations, and M is the number of

snapshots. Therefore, as an example for a case with 10 million DOF and 10 snapshots using

double precision, only 915 MBytes of RAM is required which is easily affordable in a standard

workstation. This memory footprint will be increased to about 1.7 GBytes for 20 snapshots,

3.2 GBytes for 40 snapshots, and 6.2 GBytes for 80 snapshots which would still be affordable.

Moreover, the number of I/O operations is only 2M in this case which only includes one

set of write-out and another set of read-in per snapshot. An alternative approach would be

to load snapshots one at a time during the formation of the reduced-order model and the

corresponding linear system. This approach which is called “memory efficient” only requires

the storage of 5N values in the RAM and is independent of the number of snapshots which

makes it suitable especially for cases with a large number of snapshots. However, the number

of I/O operations in this case would be M2 + 2M and there would be a trade-off between

the memory footprint and I/O operations. It is worth noting that using the direct access

and buffered I/O capabilities of the programming language, the efficiency of I/O operations

can be further enhanced.

5.2 2D Steady: Turbulent Flow Around RAE2822

Airfoil

In order further validate the UNPAC solver, turbulent and transonic flow past the RAE2822

airfoil (Case-9) is considered [43] next. This test case exhibits a strong shock wave and

boundary layer interaction which makes it a challenging flow problem for any CFD solver [54].

The freestream Mach number is set to 0.734 and the angle of attack based on the wind tunnel

correction is taken to be 2.79 degrees. Also, the Reynolds number based on the chord length

is Re = 6.5 million. The computational grid used for this case has 258×128 = 33, 024 nodes

and 32, 768 quadrilateral elements and it extends to a far-field boundary approximately

150 chord lengths away from the airfoil. A close-up view of the grid is shown in Figure

5.10 and, although not presented here, grid independence studies have shown less than 2%
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variation in the lift and moment coefficients when the grid resolution is doubled indicating

grid convergence.

Figure 5.10: Viscous grid used for the turbulent and transonic flow over the RAE2822
airfoil.

The contour plots of the Mach number as well as the pressure are presented in Figure

5.11 for the fully converged flow field. In order to further validate the obtained numerical

results, the surface pressure coefficients are compared to the experimental data [43] and the

results are shown in Figure 5.12. As can be seen, the numerical results prove that there is

good agreement between the present results and those reported in the literature [201].

5.2.1 Convergence Acceleration using POD3

As discussed earlier in detail for the previous flow problem, in the case of complex flow

features with strong non-linearities and discontinuities such as those seen in transonic and

turbulent flows, finding the set of the best possible snapshots for the projection can be

challenging. However, as shown in Section 5.1.2, the proposed ROM-based convergence

acceleration approach is found to be a simple but elegant tool to accelerate convergence to

steady state solution. For this case, the nominal solver requires about 90,000 iterations to

3This section, in part, is a reprint of the material as it appears in AIAA Journal 55 (9), 3059-3071 titled
“Convergence Acceleration of Fluid Dynamics Solvers Using a Reduced–Order Model” (2017). Authors:
Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici. The dissertation author was the primary investigator
and author of this paper. Copyright is held by Reza Djeddi, Andrew Kaminsky, and Kivanc Ekici.
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Figure 5.11: Contour plots of Mach number (left) and pressure for the turbulent and
transonic flow past the RAE2822 airfoil: M = 0.734, α = 2.79◦, Re = 6.5 million.
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Figure 5.12: Comparison of surface pressure coefficients with the experimental results [43]
for the turbulent and transonic flow past the RAE2822 airfoil: M = 0.734, α = 2.79◦,
Re = 6.5 million.

converge to machine accuracy. Once again, following the rule of thumb that was discussed

earlier, the acceleration process is lagged for 5000 iterations in order to have 2 orders of

magnitude drop in the maximum residual in the entire flow field. To get started, 10 snapshots

are taken every 1500 iterations for a cycle of 15,000 iterations. Next, the duration of the

convergence cycle is fixed while increasing the number of snapshots by gradually reducing

the snapshot interval. Therefore, cases with 20, 40 and 80 snapshots are considered that use
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snapshots recorded every 750, 375 and 187 (next integer number) iterations, respectively.

The convergence acceleration results for these cases are shown in Figure 5.13.

Table 5.4: Reductions in the number of iterations and CPU times for the RAE2822 case
with oversampling of covariance-based acceleration.

Test Iterations Reduction CPU time (s) Reduction
No Acceleration 87,681 - 517.32 -

10 - 1500 - 1.5K (L-5K)a 67,113 23.45% 424.56 17.93%
20 - 750 - 1.5K (L-5K) 55,894 36.25% 372.42 28.01%
40 - 357 - 1.5K (L-5K) 50,135 42.82% 336.67 34.92%
80 - 187 - 1.5K (L-5K) 47,926 45.34% 334.55 35.33%

a 10 snapshots every 1500 iterations during a cycle of 15,000 itrs. and lagged by
5,000 itrs.

0 20 40 60 80

No. of Iterations x 10
3

-18

-16

-14

-12

-10

-8

-6

-4

L
2

 N
o

rm
 o

f 
T

o
ta

l 
R

e
s
id

u
a

ls
 -

 L
o

g
1
0

No Acceleration
10 Snaps - 2000 - 20K (Lagged 5K)

20 Snaps - 1000 - 20K (Lagged 5K)

40 Snaps -   500 - 20K (Lagged 5K)

80 Snaps -   250 - 20K (Lagged 5K)

Figure 5.13: Convergence history plots for the original and accelerated solutions with
oversampling approach for the turbulent and transonic flow past the RAE2822 airfoil: M =
0.734, α = 2.79◦, Re = 6.5 million.

As can be seen, the performance of the convergence acceleration technique is incremen-

tally improved as the number of snapshots included in the projection is increased. These

results once again prove the earlier assertion regarding the effectiveness of oversampling

process for complex flow problems. Moreover, the reductions that are obtained in terms

of the required number of iterations to reach machine accuracy as well as CPU times are

presented in Table 5.4.

The presented results show a steady improvement in the performance of the convergence

acceleration process as the number of snapshots is increased. Additionally, reductions of
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Table 5.5: Memory footprints of the acceleration technique using I/O efficient approach
for the RAE2822 case with oversampling of covariance-based acceleration.

No. of Snapshots memory (MB) scale-up I/O count scale-up
10 15.11 - 20 -
20 27.71 1.8x 40 2x
40 52.91 1.9x 80 2x
80 103.3 2.0x 160 2x

Table 5.6: Memory footprints of the acceleration technique using memory efficient approach
for the RAE2822 case with oversampling of covariance-based acceleration.

No. of Snapshots memory (MB) scale-up I/O count scale-up
10 6.30 - 120 -
20 6.30 1x 440 3.7x
40 6.30 1x 1680 3.8x
80 6.30 1x 6560 3.9x

23% to 45% in the number of iterations and 17% to 35% in the CPU time are achieved.

Finally, the memory footprints (in MBytes) and I/O counts for the proposed acceleration

technique are given in Tables 5.5 and 5.6 using the two approaches discussed in the previous

section. The present convergence acceleration technique is relatively affordable in terms of

the memory footprint while the memory efficient approach can also be used as an alternative

for cases with degrees of freedom in the order of O(108) or higher with a large number of

snapshots.

5.3 2D Steady: Transitional Flow Around S809 Airfoil

So far, the UNPAC solver has been validated for inviscid and viscous transonic flow cases. As

for the turbulence transonic flow past the RAE2822 airfoil, a fully-turbulent flow assumption

was used in the solution of the RANS-SA equations. However, as discussed previously in

Chapter 2, the use of a transition model can be useful in improving the stall predictions

for cases involving flow separation. This was shown by Howison [105] where a two-equation

γ–Reθt transition model [129, 104] was used to study the transitional flow past a S809 airfoil.

Howsion and Ekici [104] have shown that the lift force in the post-stall regime can be over-

predicted to a large extent in the absence of a transition model.
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In order to study the effects of the transition model in enhancing the eddy viscosity

predictions, a transitional flow is considered. The S809 airfoil is selected for this reason

as it is one of the most well-known airfoils developed by the National Renewable Energy

Laboratory (NREL) for the horizontal-axis wind turbine (HAWT) applications. This case is

studied for a Mach number of M = 0.1 and Reynolds number of one million. Here, two cases

are analyzed for angles of attack set to AoA = 4.1◦ and AoA = 12.2◦. The data of Ramsay

et al. [171] from wind tunnel tests at the Ohio State University are used for comparison. A

computational grid with 53, 146 nodes and 52, 600 quadrilateral elements is considered that

has 366 nodes on the surface of the airfoil (shown in Figure 5.14). This grid has a minimum

spacing of 2 × 10−6 near the wall, which corresponds to y+ ≈ 0.1 which is small enough to

capture all turbulent flow features inside the boundary layer in the absence of a wall function.

Although not shown here, our numerical results have proven to be grid-independent.
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Figure 5.14: The far-field and near-field views of the computational grid used for the S809
airfoil case with 53, 146 nodes.

In order to validate the obtained numerical results, a comparison of the computed surface

pressure coefficients with the experimental data is presented in Figure 5.15.

It is necessary to carefully investigate the surface pressure results presented in Figure 5.15

in order to have a good understanding and interpretation of the transition phenomenon. In

the regions close to the leading edge of the airfoil, the flow remains attached, and therefore,
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Figure 5.15: Surface pressure coefficients for steady transitional flow past S809 airfoil
with fully-turbulent assumption (RANS-SA) and enhanced with transition model (RANS-
SA-TM).

RANS-SA and RANS-SA-TM results agree well. The fully turbulent boundary layer on both

sides of the airfoil remains attached up to about half of the chord after which the transition

model predicts the laminar separation bubble and the following turbulent reattachment.

This phenomenon can be clearly seen in Figure 5.15a on the lower surface for the case at

AoA = 4.1◦ [105, 128]. In fact, it is downstream of this location where the transition model

clearly exhibits its effects.

(a) fully-turbulent (b) transitional

Figure 5.16: The near-field contour plot of SA turbulent eddy viscosity, ν̃ for steady
transitional flow past S809 airfoil (AoA = 4.1◦) with (a) fully-turbulent assumption (RANS-
SA) and (b) enhanced with transition model (RANS-SA-TM).
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When the flow separates, the surface pressure coefficient using the transition model gets

much closer to those from the experimental data. This is even more pronounced in the case

of AOA = 12.2◦ where there is a very good agreement between the UNPAC results using

RANS-SA-TM model and the experimental data of Ramsay et al. [171]. In general, the

transition model controls the amount of turbulent eddy viscosity mostly based on the local

flow features including pressure acceleration, vorticity magnitude, etc.

(a) fully-turbulent (b) transitional

Figure 5.17: The near-field contour plot of SA turbulent eddy viscosity, ν̃ for steady
transitional flow past S809 airfoil (AoA = 12.2◦) with (a) fully-turbulent assumption (RANS-
SA) and (b) enhanced with transition model (RANS-SA-TM).

For the AoA = 4.1◦ flow case, due to the mostly-laminar flow features, this process

leads to a reduction of the eddy viscosity compared to the fully-turbulent boundary layer

assumption (see Figure 5.16). On the other hand, as the angle of attack is bumped to 12.2

degree, an opposite trend is observed where the turbulent eddy viscosity is increased due to

the transition phenomenon. In fact, a fully-turbulent assumption for this case leads to an

under-prediction of the flow separation and thus weaker eddy viscosity field compared to the

transitional flow case (RANS-SA-TM) [104] (see Figure 5.17).
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5.4 2D Unsteady: Inviscid AGARD-702-CT5 Case4

In order to validate the implementation of the harmonic balance (HB) method in UNPAC,

Euler-HB solutions are sought for the inviscid flow past pitching NACA0012 airfoil. The fluid

flow settings are according to AGARD-702 (Landon) [127]. Here, case CT5 from Landon’s

report is selected and the flow conditions are given in Table 5.7 where α0 and αp are the

mean angle of attack and the pitching amplitude, respectively. Also, k is reduced frequency

defined based on the half-chord length according to

k = ωc/2U∞

where ω is the fundamental frequency of excitation (pitching frequency). It must be noted

that the airfoil undergoes a sinusoidal oscillation with amplitude αp.

Table 5.7: Description of the AGARD-702-CT5 conditions for the NACA0012 airfoil [127].

Mach∞ α0 (deg) αp (deg) k
0.755 0.016 2.51 0.0814

The AGARD-702-CT5 case involves a non-linear flow field with an oscillating shock on

both sides of the airfoil. This shock moves downstream on the suction side with the increase

in the angle of attack and a similar but reversed process is observed on the pressure side. The

oscillating shock can travel as far as 0.45-c downstream of the leading edge before moving

back toward the leading edge. This non-linear process makes CT5 case a suitable candidate

for the validation and verification of the high-dimensional harmonic balance (HDHB) method

implemented in UNPAC.

As discussed in Chapters 2 and 3, the harmonic balance method uses the solutions at

2N+1 equally-spaced sub-time levels coupled together via the HB pseudo-spectral operator.

Therefore, different number of harmonics, N , can be retained in the truncated Fourier series

to study the time-periodic flow problem. For this case, a fully unstructured grid is used which

4This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3245 titled
“An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers” (2018).
Authors: Reza Djeddi and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Reza Djeddi and Kivanc Ekici.
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includes 5, 233 nodes where 200 of those are on the surface of the airfoil. The unstructured

grid used, which has 10, 216 triangular elements, is shown in Figure 5.18. It must be noted

that, the RBF method with a support radius equal to the radius of the far-field boundary is

used to model the mesh motion. Therefore, in the grid shown in Figure 5.18, airfoil is at the

maximum pitching amplitude where the incidence flow angle is α∞ = α0 + αp = 2.526 deg.
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Figure 5.18: The near-field view of the unstructured grid used for the pitching NACA0012
airfoil case with 5, 233 nodes (first sub-time level, ST1).

As the first step, the HB solutions are required to be independent of the grid resolution

and the number of harmonics used. While not shown here, the grid convergence studies

have shown less than 2% variation in the mean lift and moment coefficients when the grid

resolution is doubled. Next, a mode convergence study needs to be performed in order to

make sure that the HB results are harmonic-independent meaning that increasing the number

of harmonics any further would not change the HB solutions. For the CT5 case studied here,

the number of harmonics retained in the HB solver is varied between N = 1, 3, 5, 7, and 9

(namingly NH1 through NH9).

In Figure 5.19, the convergence history of the HB solver and the integrated moment

coefficients are presented for five different runs that have successively increasing number
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of harmonics. As expected, the inclusion of more harmonics in the HB system leads to

numerical stiffness which decreases the convergence rate. On the other hand, from Figure

5.19b, it is clear that more harmonics are required to capture the non-linearities in the flow

field. This is mainly due to a strong shock that forms on the suction and pressure sides of

the airfoil. Also, it can be seen that 5 to 7 harmonics are enough to achieve mode-converged

HB solutions for this case.
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Figure 5.19: Convergence history and unsteady pitching moment coefficients for different
numbers of harmonics retained in the HB solver.

Following the mode convergence study presented, numerical results obtained using the

HB method will be investigated next. For verification purposes, the time accurate results of

Da Ronch et al. [44] are compared to the present results with 5 and 7 harmonics retained in

the model. The unsteady lift and moment coefficients are presented in Figure 5.20 and HB

results show a good agreement with the available time-accurate solutions [44].

To gain further insight on the performance and accuracy of the current HB implemen-

tation, pressure coefficient Cp distributions on the surface of the airfoil are studied. In this

regard, the zeroth and first harmonic of the unsteady Cp are plotted in Figure 5.21 and

compared to the computations of Da Ronch et al. [44]. As can be seen, there is a very

good agreement between the HB results obtained using UNPAC and those reported in the

literature which verifies the HB solver implementation in this work.

Finally, the flow field solutions are examined for the instantaneous Mach number contour

plots at various sub-time levels during one period. These results, as plotted in Figure 5.22, are
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Figure 5.20: Unsteady lift and moment coefficient results of the HB method for AGARD-
702-CT5 case. UNPAC results are obtained using 5 and 7 harmonics.
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Figure 5.21: Zeroth and first harmonic (real and imaginary parts) of the unsteady
surface pressure coefficient for AGARD-702-CT5 case. UNPAC results are obtained using 7
harmonics.

obtained using 7 harmonics retained in the HB solver and clearly depict the shock oscillation

over the pitching period.

5.4.1 Grid Adaptation using AMR

As demonstrated earlier, the AGARD-702-CT5 case involves a non-linear flow field with an

oscillating shock on both sides of the airfoil. The shock moves downstream on the suction side

with an increase in the angle of attack, and travels as far as 45% of the chord before moving

back towards the leading edge and later appearing on the pressure side of the airfoil. This
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(a) t = 0 (b) t = T
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(d) t = 3T
5 (e) t = 4T

5

Figure 5.22: Instantaneous Mach number contour plots at 5 different sub-time levels during
a single period of the unsteady flow past pitching NACA0012 airfoil (AGARD-702-CT5) case.
Results are obtained using 7 harmonics.

highly non-linear phenomenon makes CT5 a suitable candidate for validation and verification

of the harmonic balance-based AMR procedure.

As discussed previously, the harmonic balance method uses the solutions at 2N + 1

equally-spaced sub-time levels coupled together via the HB pseudo-spectral operator.

Therefore, different number of harmonics, N , can be retained in the truncated Fourier series

to study the time-periodic flow problem. The CT5 case studied here has a relatively high free-

stream Mach number which leads to the formation of strong dynamic shocks. Additionally,

numerical results show that there is shocked flow around the pitching airfoil for almost 90%

of the oscillation period.

The computational grid used in the previous section is considered the “fully-refined”

(or fine grid) here. The strategy is to apply the AMR approach to a coarser grid with

the goal of improving the numerical accuracy by reducing the discretization errors at a low
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computational cost overhead. Therefore, the “baseline” (or coarse grid) used for this test case

has 1, 837 nodes and 3, 542 triangular elements. The baseline (coarse) and the fully-refined

(fine) grids used for the CT5 case are shown in Figure 5.23.

(a) “baseline” grid (b) “fully-refined” grid

Figure 5.23: The “baseline” and “fully-refined” unstructured grids used for the CT5 case.

In order to study the effects of the proposed AMR technique in the framework of the

harmonic balance solver, the “baseline” grid is adapted to increase the solution accuracy

by clustering grid nodes around regions of large flow gradients. Similar to the steady grid

adaptation case that was studied earlier, the static pressure value and its gradients are used

as the driving force for r -adaptation. The AMR threshold is set such that the adaptation is

initiated after about 5 orders of magnitude drop in the flow residual. A 2-pass pre-smoothing

is applied to the pressure field and its gradients. Unlike the steady case, the gradient and

curvature force coefficients are taken to be Cf, gradient = 10, and Cf, curvature = 30 since

the goal here is to have rapid clustering in a single AMR cycle. The AMR iterations are

continued until 4 orders of magnitude drop in the nodal displacements have been achieved.

As mentioned earlier, the desired clustering can be achieved in a single cycle when larger

force coefficients are considered. Additionally, the AMR process is followed by a Laplacian

grid smoothing process with a smoothing coefficient of 0.5. Finally, the geometry preserving
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shape parameterization described in Section 3.11 is applied to each sub-time level grid to

ensure that the surface topology is not altered.

Next, the baseline and r -adapted grids are shown in Figure 5.24 for the sixth sub-time

level corresponding to t = T
3
, where T is the period of excitation. Additionally, the r -

adapted grids for different sub-time levels of case CT5 using seven harmonics are presented

in Figure 5.25. As can be seen, the nodes are efficiently clustered around the dynamic shock

as it oscillates between the suction and pressure sides of the airfoil.

(a) Baseline Grid (t = T
3 ) (b) r -adapted Grid (t = T

3 )

Figure 5.24: Close-up view of the leading edge region for the baseline and r -adapted grids
used for the CT5 case at the sixth sub-time level corresponding to t = T

3
.

Next, the Mach number contour plots for the baseline, r -adapted, and fully-refined

grid cases are shown in Figures 5.26 and 5.27 for the sixth and twelfth sub-time levels

corresponding to t = T
3

and t = 11T
15

. Once again, based on the flow solutions, it can be

inferred that the r -adaptive technique leads to a higher resolution of the dynamic shock

without increasing the computational cost of the CFD solver per iteration.

The CPU times for the cases with the baseline, fully-refined, and r -adapted grids are

compared and presented in Table 5.8. Also, the convergence histories for the three different

grid settings are presented in Figure 5.28. As can be seen, the AMR process leads to only

about 31% increase in the computational cost compared to about ten-fold increase in CPU

time for the case of the fully-refined grid.
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(a) ST1. (b) ST3. (c) ST5. (d) ST7.

(e) ST9. (f) ST11. (g) ST13. (h) ST15.

Figure 5.25: r-adapted grids at different sub-time (ST) levels for the AGARD-702-CT5
case.

(a) Baseline Grid (b) Fully-refined Grid (c) r -adapted Grid

Figure 5.26: Mach number contours obtained using the baseline, fully-refined, and the
r -adapted grids for the CT5 case at the sixth sub-time level, i.e., t = T

3
.

Table 5.8: CPU times for the three different grid resolutions (baseline, fully-refined, and
r -adapted) used for the AGARD-702 CT5 case.

Grid CPU Time (s) Normalized CPU Time
Baseline 1,749.1 1.00

Fully-Refined 12,671.2 7.24
r-adapted (AMR) 2,207.2 1.26
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(a) Baseline Grid (b) Fully-refined Grid (c) r -adapted Grid

Figure 5.27: Mach number contours obtained using the baseline, fully-refined, and the
r -adapted grids for the CT5 case at the twelfth sub-time level, i.e., t = 11T

15
.
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Figure 5.28: Convergence histories for the AGARD-702-CT5 case using the baseline, fully-
refined, and r -adapted grids.
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Figure 5.29: Unsteady lift and moment coefficient results for the AGARD-702-CT5 case
using the baseline, fully-refined, and r -adapted grids.
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The improvements in the accuracy of the results obtained using the coarse baseline grid

can be demonstrated in more detail by considering the unsteady lift and moment coefficients

over the entire cycle of pitching. Here, the numerical results obtained using the baseline and

the r -adapted grids are compared to those from the fully-refined grid for the CT5 case. As

demonstrated in Figure 5.29, the AMR clustering can lead to significantly higher numerical

accuracy without increasing the number of nodes in the computational grid. It is clear that

the r -adapted grid results have a much better agreement with the results of the fully-refined

grid although the number of nodes are not changed and only node clustering is performed

using the AMR approach.
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Figure 5.30: Numerical errors for the unsteady lift and moment coefficients for the
AGARD-702-CT5 case using the baseline and r -adapted grids (compared to the fully-refined
grid results).

Here, the numerical results obtained using the fully-refined grid are considered as the

benchmark and the errors for the baseline and r -adapted grid results are calculated for both

unsteady lift and moment coefficients. These errors are presented in Figure 5.30 and clearly

exhibit that the numerical errors for the r -adapted grid are orders of magnitude lower than

those of the baseline grid with the same number of grid nodes. Additionally, the L2 norm

of these unsteady errors are given in Table 5.9.

As shown here, the application of the AMR approach to the CT5 case has enabled

us to obtain more accurate numerical results from the HB solver at the cost of a small

computational overhead.
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Table 5.9: L2 norm of the errors (Log10) for the unsteady lift and moment coefficients
obtained using the baseline and r -adapted grids compared to those of the fully-refined grid
for the AGARD-702 CT5 case.

Coefficient Baseline Grid r -Adapted Grid
Cl -2.878065 -5.792785
Cm -1.992387 -5.063434

5.5 2D Unsteady: AGARD-702-CT1 Case5

In the previous section, the HB method was used to study the unsteady periodic flow past the

pitching NACA0012 airfoil. As discussed, the problem of transonic flow over a pitching airfoil

includes a strong non-linearity due to shock oscillations. According to McCroskey [149],

shock oscillation is the main source of non-linearity in periodic transonic flow cases in the

absence of boundary layer separation. When the two are combined, i.e., turbulent transonic

flow past pitching airfoils, the non-linearities get even stronger and high fidelity methods are

vital for solving the governing equations.

In this section, the CT1 case from AGARD-702 report is considered with the experimental

results due to Landon [127]. According to the non-linear frequency domain (NLFD) results

of McMullen [150] for the CT1 case, the movement of the shock in this test case is about 7.9%

of the chord length. In general, the transition from linear to non-linear regime in problems

involving shock oscillations happens when the movement of the shock has exceeded about

0.05-c (or 5% chord-length) according to Dowell et al. [56]. This puts the flow field of the

CT1 case well into the non-linear regime. The movement of the shock varies as a function of

the pitching amplitude, αp, and the reduced frequency, k. Generally speaking, the increase

in the pitching amplitude or the decrease in the reduced frequency can lead to stronger

non-linearities such that linear flow assumptions can be made at very small rotation angles

or very large reduced frequencies [150]. The flow settings for the case AGARD-702-CT1 are

presented in Table 5.10.

5This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3245 titled
“An Adaptive Mesh Redistribution Approach for Time-Spectral/Harmonic-Balance Flow Solvers” (2018).
Authors: Reza Djeddi and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Reza Djeddi and Kivanc Ekici.
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Table 5.10: Description of the AGARD-702-CT1 conditions for the NACA0012 airfoil [127].

Mach∞ α0 (deg) αp (deg) k Reynolds number
0.6 2.89 2.41 0.0808 4.8 × 106

Compared to the CT5 case studied previously, the CT1 case leads to a maximum flow

incidence angle of 5.3 degree which leads to boundary layer separation downstream. Due

to the shock-boundary-layer interaction that happens for the CT1 case, the HB-RANS-SA

capability of the UNPAC solver has been employed and the Euler and Navier-Stokes solutions

are compared. Additionally, observations are made regarding the effects of the solver fidelity

on the numerical results compared to the available experimental data.
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Figure 5.31: Convergence history and unsteady pitching moment coefficients for different
numbers of harmonics retained in the HB solver (case AGARD-702-CT1 Euler).

5.5.1 Euler Solutions

Inviscid periodic flow past the pitching NACA0012 airfoil is considered according to the

CT1 case [127]. The same unstructured grid used for the CT5 case is utilized here and a

similar mode convergence analysis has been pursued. In this regard, the HB solver has been

setup using 1, 2, and 3 harmonics and the pitching moment coefficient results for these three

cases are compared to the NH4 results to verify mode-converged solutions. These results are

presented in Figure 5.31.

As can be seen in Figure 5.31b, the unsteady pitching coefficient is no longer changing

when 4 harmonics are retained in the HB solver which hints to the mode convergence of
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the harmonic balance solutions at NH3. Next, the unsteady lift and moment coefficients are

plotted at different pitching angles and the NH2 and NH3 results obtained using UNPAC are

compared to the experimental results [127] as well as the numerical results of McMullen [150]

using the NLFD method 2 harmonics (NH2).
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Figure 5.32: Unsteady lift and moment coefficient results of the HB method for the
AGARD-702-CT1 case (Euler solutions).

The Euler solutions for the unsteady lift and moments coefficient are shown in Figure

5.32. It can be seen that while the lift coefficients obtained from UNPAC using Euler

solutions agree well with the available experimental data, the agreements between the

moment coefficients for the present results and the experimental measurements [127] are not

acceptable. This was also shown by the numerical results of McMullen [150] using the NLFD

method. Based on the steady simulations of this airfoil at pre- and post-stall conditions,

McMullen [150] has suggested that this agreement can be associated with the lack of viscous

effects in the unsteady simulations. Therefore, focus is now shifted to obtaining HB-RANS-

SA solutions for the AGARD-702-CT1 case.
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5.5.2 Navier-Stokes Solutions

Steady turbulent flow tests of McMullen [150] have shown that a small separation zone

appears right before the shock as the angle of attack is increased. While flow reattachment

occurs aft of the shock, it separates once again at the trailing edge (TE). This separation

zone at the trailing edge is relatively large and it can be seen on the suction side during half

of the oscillation period [150]. Therefore, the same case (AGARD-702-CT1) is now studied

using the RANS-SA solver enhanced with the HB method to handle the unsteady periodic

flow.
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Figure 5.33: Convergence history and unsteady pitching moment coefficients for different
numbers of harmonics retained in the HB solver (case AGARD-702-CT1 Navier-Stokes).

The computational grid used for this work has 14, 576 nodes and 14, 336 quadrilateral

elements with 128 nodes on the surface of the airfoil. Also, the minimum wall spacing is set

such that y+ ≈ 0.5. Although not shown here, this grid provides results that are independent

of the grid resolution. Next, the mode convergence study is performed with the results shown

in Figure 5.33. As can be seen, mode-converged results are obtained with only 3 harmonics

retained in the HB solver.

Next, the unsteady lift and moment coefficients are compared against the experimental

results of Landon (AGARD Report) [127] as well as the numerical results of McMullen [150].

These results are presented in Figure 5.34 and suggest that while the agreements for the lift

coefficient are similar to those using Euler solutions, the prediction of the pitching moment

coefficients are greatly improved when viscous effects are accounted for. Also from Figure
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Figure 5.34: Unsteady lift and moment coefficient results of the HB method for the
AGARD-702-CT1 case (Navier-Stokes solutions).

5.34b, it can be seen that there is a much better agreement between the UNPAC results and

the experimental results [127] compared to the NLFD results of McMullen [150].

5.5.3 Effects of Solver Fidelity

Finally, the HB-Euler and HB-RANS-SA solutions are compared and the effects of using a

high fidelity solver (HB-RANS-SA) are studied for highly non-linear unsteady transonic flow

fields involving shock-boundary-layer interaction. Therefore, the unsteady lift and moment

coefficient results are compared using Euler and Navier-Stokes solutions and the results are

shown in Figure 5.35.

As it was shown in Section 5.4, Euler solutions for the AGARD CT5 case were sufficient

to capture the flow features and a good agreement between the UNPAC results using HB

model and the experimental data was achieved. However, as discussed previously, the CT1

case exhibits flow separation and reattachment as well as a shock-boundary-layer interaction

which requires a higher fidelity CFD solution. As shown in Figure 5.35, the agreement

between the UNPAC results and those calculated experimentally is significantly improved

when HB-RANS-SA solutions are considered.
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Figure 5.35: Comparison of Euler and Navier-Stokes solutions in terms of the unsteady
lift and moment coefficient for the AGARD-702-CT1 case. Note that the UNPAC results
are obtained using 3 harmonics and McMullen NLFD results include 2 harmonics.

McMullen [150] has also reported similar trends between the Euler and Navier-Stokes

equations. However, the agreement of the HB-RANS-SA results obtained using UNPAC

solver with the experimental data of Landon [127] are much better compared to McMullen’s

results and the improvements achieved by switching to HB-RANS-SA solutions are much

more pronounced that those reported by McMullen [150]. This can be associated with the

fact that the zero-equation (algebraic) turbulence model of Baldwin-Lomax [9] has been

used by McMullen [150] who also states that the predictions of the eddy viscosity using

the Baldwin-Lomax turbulence model are not reliable in cases involving flow separation and

reattachment.

5.5.4 Grid Adaptation using AMR

Finally, the performance of the r -adaptive AMR technique in the ALE framework is assessed.

For this reason, the Euler solutions for the CT1 case are reconsidered and the “fully-refined”

unstructured grid with 10, 216 triangles (5, 233 nodes and 15, 449 edges) is used here. Due

to the cosine motion of the airfoil, a dynamic shock is formed at the first sub-time level that
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corresponds to a 5.3 degree angle of attack with the airfoil pitching downward. Previously,

it was shown that retaining 3 harmonics in the HB solver leads to mode-converged results

and therefore, the exact same flow and solver settings are considered herein.

(a) “baseline” grid (b) “fully-refined” grid

Figure 5.36: The “baseline” and “fully-refined”unstructured grids used for the CT1 case.

Additionally, a coarsened version of the “fully-refined” grid with 2, 450 triangles (1, 308

nodes) is generated where the edge lengths are doubled. Therefore, the number of nodes in

the “baseline” grid is almost quadrupled to obtain the “fully-refined” grid. The unstructured

fully-refined and the baseline grids at the first sub-time level with α = 5.3 deg are shown in

Figure 5.36. It must be noted that for all unsteady grid results presented here, the mean

angle of attack is prescribed at the free-stream flow while the airfoil is allowed to pitch

according to the unsteady angle of attack. Therefore, in the case of the first sub-time level

grids presented in Figure 5.36, the airfoil is only rotated for 2.41 degrees while the incidence

flow angle is kept at 2.89 degrees. Once again, the coarse baseline grid is used with the

goal of increasing numerical accuracy by clustering nodes around important regions using

the AMR approach.

Similar to AGARD-702-CT5 case that was presented earlier, the coarse baseline grid is

used with the goal of increasing numerical accuracy by clustering nodes around important

regions using the AMR approach. Here, the exact same settings of the AMR process used
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earlier for the CT5 case are considered and the grid adaptation is initiated after about five

orders of magnitude drop in the flow residual.
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Figure 5.37: Surface pressure distributions (−Cp) for the CT1 case (NH3) using the
baseline, fully-refined, and r -adapted grids at the first sub-time level, i.e., α = 5.3◦ ↓.

According to the NH3 results obtained using the fully-refined grid, the first sub-time level

solution includes a dynamic shock on the suction side at around 13% chord length from the

leading edge. Thus, after applying the r -adaptive technique, the surface pressure coefficient

distributions are presented for the first sub-time level using the baseline, r -adapted, and the

fully-refined grids as shown in Figure 5.37. As can be seen, the application of the r -adaptive

AMR leads to a sharper shock, which is comparable to that obtained using the fully-refined

grid.

Next, the close-up view of the leading edge region for the baseline grid as well as the

r -adapted grid are provided in Figure 5.38 for the first sub-time level of the HB solver. As

can be seen, the nodes are efficiently clustered around the shock on the suction side of the

airfoil. Also, the Mach number contour plots for the baseline, r -adapted, and fully-refined

grid cases are shown in Figure 5.39 for the same sub-time level.

The visual (qualitative) comparison of the flow solutions shown in Figure 5.39 proves

that the r -adaptive technique leads to a higher resolution of the dynamic shock. This is

achieved without increasing the number of grid nodes which results in identical CPU times

per iteration. Obviously, there is a CPU time overhead for the application of the AMR

technique and the necessary processes that follow in addition to a slow down due to a jump
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(a) Baseline Grid (b) r -adapted Grid

Figure 5.38: Close-up view of the leading edge region for the baseline and r -adapted grids
used for the CT1 case at the first sub-time level (α = 5.3◦ ↓).

(a) Baseline Grid (b) Fully-refined Grid (c) r -adapted Grid

Figure 5.39: Mach number contours obtained using the baseline, fully-refined, and the
r -adapted grids for the CT1 case at the first sub-time level (α = 5.3◦ ↓).

in the residual right after AMR is applied. However, as shown previously for the steady

case, this overhead is relatively small compared to the significant accuracy improvement

gained from the r -adaptive AMR approach. The CPU times for the cases with the baseline,

fully-refined, and r -adapted grids are compared and presented in Table 5.11. Also, the

convergence histories for the cases with the baseline, fully-refined, and the r -adapted grids

are presented in Figure 5.40. As can be seen, the AMR process is initiated after about five

to six orders of magnitude drop in the flow residual and a single cycle of AMR is applied to

achieve the desired node clustering.
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Figure 5.40: Convergence histories for the AGARD-702 CT1 case using the baseline, fully-
refined, and r -adapted grids.

Table 5.11: CPU times for the three different grid resolutions (baseline, fully-refined, and
r -adapted) used for the AGARD-702 CT1 case.

Grid CPU Time (s) Normalized CPU Time
Baseline 801.9 1.00

Fully-Refined (Fine) 7,447.5 9.28
r-adapted (AMR) 1,109.9 1.38
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(b) pitching moment coefficient, Cm

Figure 5.41: Unsteady lift and moment coefficient results for the AGARD-702-CT1 case
using the baseline, fully-refined, and r -adapted grids.

171



The improvements in the accuracy can be shown in more detail by considering the

unsteady lift and moment coefficients. Here, the numerical results obtained using the baseline

and the r -adapted grids are compared to those from the fully-refined grid in order to show

that the node clustering achieved using AMR technique can lead to significantly higher

numerical accuracy without increasing the number of nodes in the computational grid. These

comparisons are provided in Figure 5.41. As can be seen, the r -adapted grid results have

a much better agreement with the results of the fully-refined grid although the number of

nodes are not changed and only node clustering is achieved using the AMR approach.
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(a) unsteady errors of lift coefficient, Cl
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Figure 5.42: Numerical errors for the unsteady lift and moment coefficients for the
AGARD-702-CT1 case using the baseline and r -adapted grids (compared to the fully-refined
grid results).

Next, the numerical results obtained using the fully-refined grid are considered as the

benchmark and the baseline and r -adapted grid results are used to calculate the numerical

errors for each case which are provided in Table 5.12. These unsteady lift and moment

coefficient errors are provided in Figure 5.42. Clearly, the numerical errors for the r -adapted

grid are orders of magnitude lower than those of the baseline grid with the same number of

grid nodes. Also, for both unsteady lift and the unsteady moment coefficients, the numerical

errors are significantly lower when grid adaptation is used.
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Table 5.12: L2 norm of the errors (Log10) for the unsteady lift and moment coefficients
obtained using the baseline and r -adapted grids compared to those of the fully-refined grid
for the AGARD-702 CT1 case.

Coefficient Baseline Grid r -Adapted Grid
Cl -2.894424 -4.667339
Cm -1.734874 -3.138296

5.6 3D Steady: Flow Around Extruded NACA0012

Airfoil

As the first three-dimensional test case studied in this work, the flow around an extruded

NACA0012 airfoil is considered. In fact, the flow around extruded 2D airfoils can be used as

an elegant tool to verify the implementation of the 3D solver as well as a mean for validating

the obtained numerical results.

(a) near-field grid (2D) (b) far-field grid (3D)

Figure 5.43: Near-field view of the hybrid 2D and far-field view of the hybrid 3D grids
used for the NACA0012 (2D and extruded 3D) airfoil case.

For this reason, the same case studied initially in Section 5.1 is reconsidered. However,

this time a new and hybrid grid is utilized that can serve as an example of the mixed-

grid capabilities and grid-transparency of the UNPAC solver. The initial 2D grid around the

NACA0012 airfoil consists of a structured domain with 128×35 nodes and 4, 480 quadrilateral

elements that is extended about 5 chord lengths in normal direction. Following this inner
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structured block, the computational domain is extended further for about 20 chord lengths

in an unstructured region with 930 nodes and 1, 694 triangular elements. Finally, the 2D

grid is extruded in z-direction for 5 chord lengths with 20 extrusion levels (21 nodes in z-

direction). This extrusion process transforms the quadrilateral and triangular elements of

the 2D grid into hexahedral and prism (wedge) elements in 3D, respectively. Overall, the

3D grid for this case has 113, 610 nodes and a total of 123, 480 cells (89, 600 hexahedral and

33, 880 prism elements). The near-field view of the 2D grid as well as the far-field view of

the 3D grid are shown in Figure 5.43.
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Figure 5.44: Surface pressure coefficient distributions for the inviscid transonic flow past
NACA0012 airfoil (2D and extruded 3D).

Here, the inviscid transonic flow over the NACA0012 airfoil and the NACA0012 extruded

wing are considered (see section 5.1) and the computed Cp distributions are compared to

each other for the 2D and 3D cases. This comparison is shown in Figure 5.44 which proves

that the numerical results for the 2D airfoil and the extruded wing (3D) are identical. It

must be noted that for this case, symmetry boundary conditions are imposed at the ends of

the wing to ensure that the 3D simulations “mimic” the 2D case.

Finally, the Mach number contours around the 2D airfoil, iso-value contour planes of

Mach number around the 3D wing, as well as the pressure contours on the surface of the

wing are shown in Figure 5.45. These results clearly exhibit the formation of the strong and

weak shock on the suction and pressure sides of the NACA0012 extruded wing, respectively.
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(a) Mach number contours (2D)

(b) Mach number contour field (3D) (c) Pressure contour field (3D)

Figure 5.45: Mach number contours for the inviscid transonic flow past the 2D NACA0012
airfoil and the 3D extruded NACA0012 wing.

5.7 3D Steady: Flow Around ONERA M6 Wing

The flow past the ONERA M6 wing is the first 3D test case investigated for validation

and verification of the UNPAC solver. This configuration has been studied extensively and

often used as a classical benchmark test case to validate three-dimensional CFD solvers.

The aerodynamics of this wing involve a region of supersonic flow as well as a special shock

formation known as the lambda shock [61, 105]. The geometry of the transonic M6 wing is

based on the symmetric airfoil sections of type ONERA D which have a maximum of 10%
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thickness-to-chord ratio. The M6 wing has a sweep angle of 30 degrees at the leading edge

and an aspect ratio of 3.8 and is also tapered with a ratio of 0.562. The flow conditions are

set according to the experiments carried out by Schmitt and Charpin [180] with a free-stream

Mach number of 0.8395 and an angle of attack of 3.06◦. Also, the Reynolds number based

on the mean aerodynamic chord length for this case is 11.72 million.

(a) Computational domain with 341, 797 tetrahedra (b) Surface mesh with 52, 856 triangles

Figure 5.46: Volume and surface meshes used for the transonic flow past ONERA M6
wing.

Here, a rectangular block computational domain is used which extends about 15 chord

lengths on each side in the cross-sectional planes and for about 5 chord lengths in the span-

wise direction. The far-field and near-field views of the grid used for the ONERA M6 wing

case is shown in Figure 5.46. This grid is made of 72, 791 nodes and 341, 797 tetrahedral

elements. Also, 52, 856 triangular faces are defined on the surface of the wing with y+ ≈ 1.0.

A symmetry boundary condition is used on the root-plane and far-field boundary conditions

are used for the rest of the outer boundaries. Here, the viscous (no-slip) wall boundary

condition is imposed on the surface of the wing. Also, while not shown here, the obtained

numerical results are grid-converged.

Numerical results obtained using the UNPAC solver are compared against the experi-

mental data of Schmitt and Charpin [180] as well as the RANS solutions obtained using the

NASA WIND solver [188]. These solutions are reported at 6 different sections along the
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span of the wing and the distribution of the surface pressure coefficient at each section are

shown in Figure 5.47 and compared to the benchmark data.
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(b) 44% span
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(c) 65% span
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Figure 5.47: Surface pressure coefficients for turbulent transonic flow past ONERA M6
wing compared to experimental data [180] and results of NASA WIND [188].

As can be seen in Figure 5.47, there is a very good agreement between the UNPAC solver

results and the experimental data. It must be noted that in many CFD solutions [206, 61,

105] reported in the literature including those with NASA WIND solver [188], the double

shock at the 80% span is not captured accurately or there are some disagreements with the

experimental results. However, the numerical results using the UNPAC solver have proven to

be highly accurate with reasonable agreements between UNPAC, experimental, and NASA

WIND results.

Finally, the pressure contours on the surface of the wing as well as on the symmetry

boundary are presented in Figure 5.48. The pressure distribution on the suction side of the

wing clearly depicts the formation of the lambda shock as well as the supersonic flow regime.

Also, at the root of the wing, a strong and high resolution shock is captured which agrees

well with the CFD results available in the literature [61, 105].
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Figure 5.48: Pressure contours on the wing surface and the symmetry boundary for the
turbulent transonic flow past ONERA M6 wing.

5.8 3D Steady: Caradonna-Tung Rotor

As the last test case and in order to validate the relative frame of reference feature of

the UNPAC solver, the flow around a helicopter rotor in hover is considered. Based on

the experiments carried out by Caradonna and Tung [38], the rotor geometry consists of

two untapered and untwisted blades with NACA0012 profile. Here, two lifting cases are

considered with a collective pitch angle of θc = 8 degrees and a pre-cone angle of β = 0.5

degrees as shown in Figure 5.49. Also, the rotor blades have an aspect ratio of 6 and a unit

span.

The axis of rotation is aligned with the x-axis with the rotor blades spanning in z-

direction. Two rotational speeds of Ω = 1250 rpm and Ω = 2500 rpm are considered which

correspond to tip Mach numbers of Mtip = 0.439 and Mtip = 0.877, respectively. The rotor

is in hover mode which means that the free-stream Mach number in the inertial frame of

reference would be zero.

A cylindrical computational domain is chosen for this case which spans four units in each

direction. A hybrid mesh with 4, 692 quadrilateral cells on the top and bottom surfaces and

408 triangular cells on the root and tip surfaces of each blade is used. The hybrid volume

mesh consists of 9, 384 pyramid and 458, 375 tetrahedral cells for a total of 467, 759 grid cells
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Figure 5.49: Schematic of the Caradonna-Tung rotor with twin blades.

(84, 953 nodes and 563, 978 edges). The near-field and far-field views of the computational

mesh are shown in Figure 5.50. Although not shown here, the numerical results are grid

independent with less than 5% difference in the predicted lift and drag coefficients when the

grid resolution is doubled.

Here, only Euler solutions are considered and the contours of static pressure on the top

and bottom surfaces of each blade are shown in Figures 5.51 and 5.52. As can be seen, the

flow remains subsonic on the entire blade for the 1250 rpm case. On the other hand, for the

2500 rpm case, the flow is subsonic for almost 80% of the span before becoming transonic in

the region closer to the tip of the blade.

In order to validate the numerical results obtained using the UNPAC solver, the surface

pressure coefficients, Cp, at different spanwise locations are compared to the experimental

data. Here, the dynamic pressure used for calculating the pressure coefficient is defined as

pdynamic = 1
2
ρ∞(Ωr)2 where r is the radial distance of each cross-section from the axis of

rotation. The results in terms of the Cp distributions at three spanwise locations, i.e., 80%,
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Figure 5.50: Near-field and far-field views of the computational domain depicting the
surface and volume meshes for the Caradonna-Tung rotor case.
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Figure 5.51: Contours of static pressure on the suction (top) and pressure (bottom) sides
of the Caradonna-Tung rotor blade for the 1250 rpm case.
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Figure 5.52: Contours of static pressure on the suction (top) and pressure (bottom) sides
of the Caradonna-Tung rotor blade for the 2500 rpm case.

89%, and 96% span, are shown in Figures 5.53 and 5.54 for the 1250 rpm and 2500 rpm

cases, respectively.
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Figure 5.53: Coefficient of pressure distribution for the Caradonna-Tung rotor in hover at
1250 rpm (tip Mach number of 0.439).
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Figure 5.54: Coefficient of pressure distribution for the Caradonna-Tung rotor in hover at
2500 rpm (tip Mach number of 0.877).

As can be seen, for the hover case at the lower rotational speed, the flow remains subsonic

on the entire blade and a very good agreement is obtained between the UNPAC results

and the experimental data [38]. As for the 2500 rpm case with the tip Mach number of

Mtip = 0.877, the flow becomes transonic near 80% span. Once again, a reasonable agreement

is achieved for the Euler solutions obtained using the UNPAC solver and the experimental

results. The only exception is in the vicinity of the shock which is captured at a further

downstream location. This is consistent with the other Euler solutions reported in the

literature [61, 58]. Additionally, a comparison is made between the UNPAC results and

those using the Stanford University Unstructured (SU2) solver with the same mesh. As can

be seen in Figure 5.54, the UNPAC results show a better agreement with the experimental

data.
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Chapter 6

Sensitivity Analysis Results

In this chapter, the proposed FDOT toolbox is applied to a few different numerical solvers

to demonstrate its advantages. The goal here is to calculate the sensitivities of the cost

function with respect to the design variables using FDOT. Different test cases based on

various numerical solvers are presented here. Herein, the validation of the sensitivity analysis

results obtained using the FDOT toolbox applied to several different test cases with various

levels of complexity is sought.

As the first test case, a simple iterative process based on Newton’s method is

considered. A non-linear objective function is defined and the entire process is differentiated

algorithmically using FDOT. Additionally, other test cases including two-dimensional heat

diffusion and quasi-1D inviscid compressible flow through a nozzle are investigated. For

the case involving compressible flow through a converging-diverging nozzle, the sensitivities

calculated with the present method are compared to those obtained using a continuous

adjoint approach for verification purposes. In all cases, the efficiency and the ease of

use/integration of the FDOT module are demonstrated. Finally, the FDOT toolbox is

coupled with a 2D structured RANS/Euler solver and adjoint solutions are obtained for an

inviscid transonic flow past NACA0012 airfoil.
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6.1 Newton’s Iteration

Here, a simple iterative algorithm is considered to demonstrate our proposed automatic

differentiation approach based on operator overloading. As discussed earlier, most CFD

procedures can be viewed as a three-step process involving an iterative core that potentially

converges to a final numerical solution used in the calculation of the objective or the cost

function. Therefore, in general the entire solver would consist of (1) pre-iterative, (2) iterative

and (3) post-iterative procedures followed one after the other. For the first test case, a simple

pre-iterative process is assumed that consists of a non-linear function, u, operating on the

input variable, x, such that

x⇒ input variable

pre-iterative: u = u(x) = x2 (6.1)

Next, an iterative process working on variable y whose fully converged solution is assumed

available, i.e., y∗, along with x and u are used to define an objective. For simplicity, the

fully converged solution of the iterative variable is assumed which is basically the solution

to nonlinear equation:

f(y, u) = (y − u)2 = 0 (6.2)

The above equation can be solved using Newton’s method with the initial guess y1. That is,

yk+1 = yk −
f(yk, u)

f ′(yk, u)
with k = 1, 2, ... (6.3)

so that

yk+1 = yk −
(yk − u)2

2(yk − u)
= yk −

1

2
(yk − u) =

1

2
yk +

1

2
u (6.4)

The analytical solution of Eq. (6.2) is clearly y = u and the Newton’s method will

converge to this solution assuming that the initial guess, y1, is close enough to u. Finally,
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the iterative process is followed by a post-iterative procedure that calculates the arbitrarily

chosen nonlinear cost function given as

c = g(y∗, u, x) = sin(y∗) + u (6.5)

where y∗ is the fully converged solution.

Based on the definition of the pre-iterative function and the solution of f(y, u) = 0, one

can show that the final cost function will only depend on the input variables such that

c = sin(y∗ = u) + u = sin(u) + u = sin(x2) + x2 (6.6)

The goal here is to find the gradient of the cost function with respect to the input variable,

x. Using the above equation, the exact derivative is

dc

dx
= 2x

[
cos(x2) + 1

]
(6.7)

Further assuming that x = 1.0, the exact gradient value can be computed as

u = y∗ = 1.0 ⇒ dc

dx
= 2 [cos(1) + 1] = 3.080604611736280

The entire process explained here can be simply coded using Fortran (or C++) as

the primal solver where the Newton’s method is performed for N iterations. One of the

many attractive features of the proposed technique is the ease of implementation. Since

all operators are overloaded to handle the derived-type variable computations, the tape

automatically records the expression tree for all instructions. Therefore, one only needs to

follow the steps discussed in Section 4.2.3 to use FDOT for adjoint computations. First, all

real-typed variables are replaced with variables of type AReal. Next, the iterative variable,

y, is flagged and the checkpoints are set before and after the iterative loop. Finally, after the

post-iterative process, the adjoint value of the cost function is set to unity and the recorded

tape is evaluated in reverse by accumulating all adjoint variables. The nominal code for this

simple problem is provided below in its entirety.
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1 integer :: k, N

2 real :: x, u, y, c

3

4 x = 1.0

5 u = x**2

6 y = 2.0 ! initial guess for Newton ’s iterations

7

8 do k = 1,N

9 y = 0.5*y + 0.5*u

10 enddo

11

12 c = sin(y) + u

Pseudo-code 6.1: Simple iterative process (primal code)

There are two important issues that must be noted here. First, as mentioned earlier,

the adjoint code must be initiated using the fully converged solution from the primal solver.

Second, the iterative loop only needs to be executed for a single pass. This is the biggest

advantage of the proposed technique to significantly reduce the size of the recorded tape,

thus decreasing the memory footprint and increasing the computational efficiency. As a

result, the adjoint code based on the nominal solver needs only the minor modifications that

are presented below.

During the adjoint computations (reverse tape evaluation), changes in the adjoints of

the solution variable (y) are monitored for convergence. Here, the initial condition for the

Newton’s solver is taken to be y1 = 2.0. As a result, the nominal solver takes about 50

iterations to converge to machine accuracy. For adjoint computations, a similar convergence

limit is used, i.e., log10(|yk − yk+1|) ≈ −15. Figure 6.1 presents the convergence histories for

the primal and adjoint solvers for the simple problem considered here. While theoretically

the Newton’s method should have a quadratic convergence rate, since the solution has a

double root, the solver exhibits a linear convergence.
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1 integer :: k

2 type(areal) :: x, u, y, c

3

4 x = 1.0

5 u = x**2

6 y = 1.0 ! solution from the primal solver

7 call set_input_variable(y.index)

8 !

9 call set_checkpoint

10 !

11 do k = 1,1

12 y = 0.5*y + 0.5*u

13 call set_output_variable(y.index)

14 enddo

15 !

16 call set_checkpoint

17 !

18 c = sin(y) + u

19 !

20 tape(c.index). adjoint = 1.0

21 !

22 call evaluate_tape

Pseudo-code 6.2: Simple iterative process (FDOT-enabled code)

In any case, the adjoint solver has the same convergence rate as the nominal solver, which

is expected.

Table 6.1 shows that the sensitivity value obtained using the FDOT toolbox is in close

agreement (up to 13 decimal places) with the exact value. In order to further analyze the

robustness of the proposed technique, the same case is automatically differentiated using
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Figure 6.1: Convergence histories of the nominal and adjoint solvers for the simple iterative
problem

Table 6.1: Comparison of sensitivity values between FDOT and exact solutions for the
simple iterative case.

Sensitivity Exact FDOT

dc

dx
3.080604611736280 3.080604611736272

the conventional operator overloading approach. In the conventional approach, the entire

iterative convergence loop is unrolled and all the instructions are recorded in the tape. This

significantly increases the memory footprint as well as the overhead in writing and reading

the tape. Timing results for the nominal solver and two different versions of the OO/AD-

based adjoint solver are given in Table 6.2. Also presented are the memory requirements for

recording the tape. Note that in the current implementation, each tape entry requires 32

bytes of memory (integers and reals only).

For the case considered here, it is seen that the proposed technique can greatly reduce the

memory footprint (for more than 20 times compared to a traditional OO/AD approach) and

the computational cost of adjoint computations is about 1.1 times the cost of the nominal

solver. In contrast, the computational cost of the traditional OO/AD approach is around

2.8 times the cost of the nominal solver. One thing to note here is that for most problems
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Table 6.2: CPU timings and memory footprints for the nominal and adjoint solvers using
conventional and the proposed approaches; simple iterative case.

Solver CPU Time Normalized Tape Normalized
Type (ms) CPU Time Memory Memory

Nominal Solver 1.68 1.0 - -
Conventional OO 4.74 2.82 9888 Bytes 20.6

FDOT 1.81 1.08 480 Bytes 1.0

of interest there is no need for sensitivities to be accurate to machine precision. Generally

speaking, sensitivities that are accurate up to six or seven significant digits would be enough

to be used in the gradient-based optimization process. In such cases, the computational

times using FDOT would be even lower than what is presented.

6.2 Heat Diffusion

The second test case studied is the two-dimensional, steady, constant property heat diffusion

problem that is governed by an elliptic partial differential equation (Laplace equation). Thus,

using Dirichlet boundary conditions and no internal heat generation, the governing equation

is given as

∂2T

∂x2
+
∂2T

∂y2
= 0 , 0 < x < L ; 0 < y < H (6.8)

subject to

T (x = 0, y) = T (x = L, y) = T (x, y = 0) = Tside

T (x, y = H) = Ttop

where T is the temperature, L is the length and H is the height of the plate.

First, using an equally-spaced grid in each direction, a uniform mesh of size M is created

for the physical domain with L = H = 1.0 unit length. Next, central finite-difference

approximations are used to discretize the governing equation over the computational domain.
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Finally, a Jacobi iteration approach is used to solve the penta-diagonal system of equations.

Assuming that Tside = 100 and Ttop = 0, one can determine the temperature distribution

at the interior nodes. Finally, using the fully converged temperature distribution along the

horizontal axis a cost function, CT (in unit temperature times unit length) is defined as

CT =

∫ L

0

T (x, y =
H

2
) dx (6.9)

The goal here is to calculate the sensitivities of this cost function with respect to the

top and side face temperature values, i.e., ∂CT/∂Ttop and ∂CT/∂Tside. Next, FDOT is used

to iteratively evaluate the discrete adjoint sensitivities. Similar to the first case, the main

changes to the primal code can be listed as:

1- Change real-typed variables to type AReal.

2- Read in the fully converged solution (from the primal solver).

3- Flag the iterative variables whose values change during iterations (temperature at the

interior nodes for the present case).

4- Set checkpoints before and after the iterative loop.

5- Set the adjoint of the cost function to unity and evaluate the tape.

To study the effects of grid size on the timing results and memory footprints, three

different grid resolutions of 10× 10, 50× 50, and 100× 100, are considered. It is useful to

note again that the computational effort to obtain all sensitivities is almost independent of

the number of design variables. However, only two sensitivities (∂CT/∂Ttop and ∂CT/∂Tside)

are considered here for the purpose of verification. Note that the sensitivities can also be

calculated using finite differences. This can be done either with a 1st order forward difference

or a 2nd order central difference approximation. The perturbation parameter for both

schemes is taken to be 10−8 (unit temperature). The sensitivity values from FDOT toolbox

are compared against those from finite difference (FD) approximations and the obtained

results are shown in Table 6.3 for all three grid resolutions. As can be seen, the sensitivity

values obtained using FDOT agree very well with the finite difference approximations for
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Table 6.3: Comparison of sensitivity values obtained from FD approximations (1st and 2nd
order) and FDOT toolbox for the 2D heat diffusion problem.

M Sensitivity FD (1st order) FD (2nd order) FDOT

10
∂CT/∂Ttop 0.11338314651 0.11338304934 0.11338304969
∂CT/∂Tside 0.88661691002 0.88661693185 0.88661693184

50
∂CT/∂Ttop 0.15141975823 0.15141974288 0.15141974285
∂CT/∂Tside 0.84854972047 0.84854972204 0.84854972201

100
∂CT/∂Ttop 0.15663158512 0.15663158601 0.15663158608
∂CT/∂Tside 0.84265874150 0.84265874049 0.84265874047

all grid resolutions. As noted in the introduction, the finite difference approximations are

highly dependent on the value of the perturbation parameter while AD-based adjoints are

accurate to machine precision.

Next, the CPU timings are investigated for the nominal and adjoint solvers and compare

the memory footprints for the conventional OO-based adjoint evaluations and the novel

approach introduced in this work (see Table 6.4). The results presented clearly show that

Table 6.4: CPU timings and memory footprints for the nominal and adjoint solvers using
conventional and the proposed approaches; 2D heat diffusion case.

Grid Solver CPU Normalized Memory Normalized
Size Type Time CPU Footprint Memory
M (ms) Time (Tape only) Footprint

10
Nominal CFD 9.51 1.0 - -

Conventional OO 54.6 5.74 11.25 MBytes 443
FDOT 10.85 1.141 26 KBytes 1.0

50
Nominal CFD 385 1.0 - -

Conventional OO 2853 7.41 7.5 GBytes 11,331
FDOT 565 1.467 694 KBytes 1.0

100
Nominal CFD 2,895 1.0 - -

Conventional OO 25,436 8.78 60.1 GBytes 22,625
FDOT 5,535 1.911 2.72 MBytes 1.0

the approach is not only efficient computationally but it also offers huge memory savings.

For this particular example, the total adjoint computation time is not more than 2 times

that of the nominal PDE solver, while the memory requirement can be as little as 1/20,000
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of the traditional OO adjoint approach. These features are essential for application of this

technique to larger scale CFD solvers.

Next, convergence histories for the nominal and the adjoint solvers are compared in

Figure 6.2 for cases with M = 50 and M = 100. Both solvers have the same convergence

rate as expected.
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Figure 6.2: Convergence histories of the nominal and adjoint solvers for the 2D heat
diffusion problem.

6.3 Quasi-1D Euler Solver

Next, compressible flow inside a nozzle is investigated which is governed by the quasi-1D

Euler equations given in their conservation form as

∂~U

∂t
+
∂ ~F

∂x
= ~S (6.10)

where ~U is the vector of conservation variables, ~F is the convective flux vector and ~S is the

vector of source terms defined as

~U =




ρ

ρu

ρE


 ; ~F =




ρu

ρu2 + p

ρuh


 ; ~S = −




ρu

ρu2

ρuh




1

A

dA

dx
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where ρ is the fluid density, u is the fluid velocity, p is the pressure, E is the total energy

and h is the specific enthalpy. Using the ideal gas assumption, the pressure can be related

to conservation variables through

p = (γ − 1)

[
ρE − ρu2

2

]
(6.11)

where γ is the specific heat ratio. The specific enthalpy is also defined as

h =
ρE + p

ρ
(6.12)

The cross-sectional area of the nozzle A defines the geometry. The governing equations

given in Eq. (6.10) are first discretized using a cell-centered finite-volume approach over

an equally-spaced computational grid with M cells. To obtain the steady-state solution,

the governing equations are marched in pseudo-time using a 4-stage explicit Runge-Kutta

scheme. To eliminate the odd-even decoupling due to the central difference approximation

and to capture shocks, the artificial viscosity of Jameson-Schmidt-Turkel [117] is added to the

inviscid flux terms. Additionally, the convergence is accelerated using local time stepping.

For the purpose of sensitivity analysis, an objective function is defined which is taken to be

the integral of pressure along the nozzle

I =

∫

Ω

p dx (6.13)

Adjoint Sensitivity Analysis for a Diverging Nozzle

As the first nozzle flow test case studied here, a diverging nozzle with length L = 10 is

considered with its cross-sectional area given by

A(x) = 1.398 + 0.347 tanh(0.8x− 3.2) ; 0 ≤ x ≤ 10 (6.14)

Also the following physical boundary conditions for this problem are considered

Min = 1.25 at (x = 0.0) Mexit = 0.45 at (x = 10.0)
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Although the optimization process is not pursued here, the derivatives of the cost function

with respect to the design variables are required in the framework of a gradient-based

optimization algorithm. Needless to say, for the 1D case with M grid cells, M + 2 grid

nodes are defined and two of these nodes are at the fixed boundary locations which leaves us

with M interior nodes. Thus, the goal here is to find the derivatives of the pressure integral

[see Eq. (6.13)] with respect to all interior grid nodes, xi, with i = 1, ..., M .

Table 6.5: Comparison of sensitivity values obtained from FD approximation (2nd order)
and FDOT toolbox for the quasi-1D flow through a divergent nozzle.

M Sensitivity FD (2nd order) FDOT

10
∂I/∂p1 -0.139789975312287 -0.139789975373139
∂I/∂p2 -1.356323834140714 -1.356323834370082
∂I/∂p3 1.696427703508123 1.696427703869594

100
∂I/∂p1 -0.133166153668953 -0.133166153653033
∂I/∂p2 0.220898422092250 0.220898422049454
∂I/∂p3 0.009573344132422 0.009573344110879

500
∂I/∂p1 -0.031511299293331 -0.031511299293867
∂I/∂p2 0.051404115718564 0.051404115792566
∂I/∂p3 0.001922663915125 0.001922663910520

Once again, in order to study the effects of the grid size on the performance of the AD

toolbox, three different grid resolutions with M = 10, 100, and 500 are considered. As

explained earlier, the adjoint method is capable of evaluating the derivatives of the cost

function with respect to all input as well as intermediate variables in a single evaluation

of the recorded tape in the reverse order. However, the sensitivity results of the objective

function at three equally spaced locations along the nozzle length, specifically p1 at x = L/4,

p2 at x = L/2, and p3 at x = 3L/4, are presented here. Again, for verification purposes

second-order finite difference approximations are calculated and compared to those from

the FDOT toolbox. Here, the discrete adjoint runs are stopped when the adjoint residuals

reach 10−12. Numerical tests have shown that such tolerance guarantees sensitivities that

are adequate for gradient-based aerodynamic optimization. As can be seen in Table 6.5,

the obtained results from FDOT are in excellent agreement with those from finite difference

approximations for all three grid resolutions.
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Figure 6.3: Convergence histories of the nominal and adjoint solvers for the quasi-1D nozzle
flow with M = 500

Next, the convergence of the nominal and adjoint solvers are plotted against each other

in Figure 6.3 for the finest grid case with M = 500. Once again, it can be seen that the

adjoint solver has the same convergence rate as the nominal solver.

Finally, the CPU times for the nominal and adjoint solvers are measured. Moreover,

the memory required to store the recorded tape for each case using our novel approach

is presented. As shown in Table 6.6, the proposed technique is quite efficient since the

sensitivity of the objective function to 500 design variables can be computed at a cost that

is only 3 times that of the CFD solver. In addition, the tape size is quite manageable

requiring less than 16 MB of RAM storage in all cases. These results once again demonstrate

the memory and computational efficiency of the developed technique. Similar to previous

examples, the adjoint solver was developed by adding less than 10 lines of code to the CFD

solver.

6.3.1 Adjoint Sensitivity Analysis for a Converging-Diverging

Nozzle

To further analyze the accuracy of the new discrete adjoint approach, a series of standard

converging-diverging nozzle flow test cases are presented next. For the purpose of validation
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Table 6.6: CPU timings and memory footprints for the nominal and adjoint solvers using
the proposed approaches, quasi-1D nozzle flow case.

Grid Size Solver CPU Time Normalized Memory
M Type (ms) CPU Time (Tape only)

10
Nominal 79.02 1.0 -
FDOT 81.26 1.028 379 KBytes

100
Nominal 471 1.0 -
FDOT 945 2.006 3.2 MBytes

500
Nominal 3,944 1.0 -
FDOT 11,956 3.031 15.7 MBytes

and verification, the sensitivity results from a continuous adjoint approach [120] and finite

difference approximations are compared to our discrete adjoint results. For these cases, area

variation of the converging-diverging nozzle is given by

A(x) =





2 0 ≤ x ≤ 0.5

1 + sin2(π(x− 1.0)) 0.5 < x < 1.5

2 1.5 ≤ x ≤ 2.0

(6.15)

Characteristic-based boundary conditions with prescribed stagnation pressure and

stagnation temperature at the inlet and prescribed static pressure at the exit are used here.

Three cases that have been previously studied by Kaminsky et al. [120] are considered.

These include fully subsonic flow, subsonic-to-supersonic flow and transonic flow with shock

cases. The boundary condition settings for these cases are presented in Table 6.7.

Table 6.7: Boundary conditions for the three converging-diverging nozzle flow cases.

Case p0 T0 pexit

1 1.0 1.0 0.9899
2 1.0 1.0 0.5200
3 1.0 1.0 0.8432

It is worth mentioning that the same cases were also studied by Giles and Pierce [77],

and Lozano and Ponsin [139] using a continuous adjoint approach. To be able to compare

our discrete adjoint sensitivity results to those from the continuous adjoint approach, the

196



process of evaluating derivative information using the continuous adjoint solution needs

to be discussed first. As explained earlier, in the continuous adjoint approach, the flow

equations are linearized and the resulting analytic adjoint equations are discretized and

solved numerically to obtain the adjoint solutions. Compared to the discrete adjoint method,

the continuous approach requires a more complicated process that includes development of

somewhat complex boundary conditions. Moreover, the numerical adjoint solutions, ψ,

must be post-processed to compute the desired sensitivities. Having the continuous adjoint

solution, ψ, the derivatives of the cost function with respect to the design variables can be

found via [139]

∂I

∂~αN
=

M∑

i=1

~ψ T
i

(
~Ri(~U(x), ~αN + ε)− ~Ri(~U(x), ~αN)

ε

)
(6.16)

where ~αN are the N design variables.

Here, the design variables are taken to be the cross-sectional area at each discrete x

location, i.e., A(xM). For simplicity, the number of design variables is taken to be equal to

the number of cells, i.e., N = M . However, in a practical application, shape parameterization

techniques such as Hicks-Henne bump functions, Bezier or B-Spline functions are normally

used to reduce the number of design variables. Similar to finite difference approximations,

the perturbation parameter ε is tuned over a large range of values to ensure the independence

of the obtained results. Additionally, the residual vectors ~R(~U(x), ~αN) and ~R(~U(x), ~αN + ε)

refer to the residuals of the flow solver for the original geometry and the geometry perturbed

at the N -th design variable, respectively. As explained by Lozano and Ponsin [139] both

residual vectors should be obtained using the unperturbed fully converged flow solution.

Finally, the calculated sensitivities using the FDOT toolbox for the cost function with

respect to all design variables along the nozzle are compared against those evaluated using

the continuous adjoint solutions and the finite difference approximations. These results as

well as the flow solution (Mach number variation along the nozzle) are shown in Figures 6.4

through 6.6 for all three cases studied. As can be seen, there is close agreement between the

discrete adjoint sensitivities obtained from our proposed technique and the finite difference

approximations, which are determined at every 10 grid nodes. Moreover, a very good
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Figure 6.4: (a) Mach number distribution for the fully subsonic nozzle flow (case 1)
with pexit = 0.9899; (b) comparison of sensitivity results using the present discrete adjoint
approach (FDOT toolbox), continuous adjoint [120], and finite difference approximations.
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Figure 6.5: (a) Mach number distribution for the transonic nozzle flow (case 2) with
pexit = 0.52; (b) comparison of sensitivity results using the present discrete adjoint approach
(FDOT toolbox), continuous adjoint [120], and finite difference approximations.

agreement between the discrete and continuous adjoint results is observed. It must be

noted that the sensitivity results from the discrete and continuous approaches might vary

due to the fact that the discretization and linearization steps are generally non-commutative

[139, 120]. Since the discrete adjoint method calculates the exact derivatives of the discrete

governing equations, the discrete adjoint results are suspected to be slightly more accurate

compared to the continuous adjoint results. For brevity, the CPU time comparisons are not

included for these cases because they are nearly identical to those reported in Table 6.6.
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Figure 6.6: (a) Mach number distribution for the nozzle with shocked flow (case 3) with
pexit = 0.84317; (b) comparison of sensitivity results using the present discrete adjoint
approach (FDOT toolbox), continuous adjoint [120], and finite difference approximations.

6.4 2D Euler Solver

Finally, and as the last test case for adjoint sensitivity calculations, the inviscid transonic flow

past the NACA0012 airfoil is considered. For this case, the FDOT toolbox is coupled with

a 2D structured compressible Navier-Stokes solver. This solver is based on the finite-volume

discretization of the Euler and Navier-Stokes equations on cell-vertex-based overlapping

control volumes and the details of the numerical procedure are presented by Djeddi et

al. [53, 54].

Figure 6.7: Near-field view of the structured grid used for the sensitivity analysis of flow
past NACA0012 airfoil with 193× 49 nodes.
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Here, the FDOT module is added to the data structure of this CFD solver for the

purpose of adjoint-based sensitivity analysis. An O-type grid with 193 × 49 nodes in the

circumferential and radial directions is used (see Figure 6.7).
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Figure 6.8: Convergence histories of the nominal and adjoint solvers for inviscid transonic
flow past NACA0012 airfoil.

The drag coefficient, CD, which is calculated in the post-processing stage is chosen as

the cost function and is marked and passed to the FDOT toolbox. It takes about 40,000

iterations for the nominal CFD solver to converge to machine accuracy. With the fully-

converged solution obtained, it is then passed to the FDOT toolbox for adjoint sensitivity

calculations.

As discussed in the previous test cases, the first step in the FDOT module is to run

one iteration of the overloaded converged CFD solution so as to record the expression tree

into a tape. This tape is then rewound for the same number of iterations (40,000) and the

sensitivity (gradient) information is calculated for all intermediate and design variables (all

the AReal variables in the data structure). The convergence of the nominal and adjoint

solvers are shown in Figure 6.8.

It must be noted that for this case with 37,828 degrees-of-freedom (DOF), the size of

the recorded tape is only about 800 MBytes which is quite manageable by any standard

workstation. In order to verify the accuracy of the computed sensitivities, a finite-difference

approximation is performed using the nominal solver for the Mach number as the design

variable. Therefore, using a first-order forward difference approximation with a perturbation

of ε = 10−8, the sensitivity of the drag coefficient to the Mach number is calculated. The
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results from the FDOT solver and the finite-difference approximation are compared against

each other and are shown in Table 6.8.

Table 6.8: Sensitivity results using FDOT compared to finite-difference approximation for
the inviscid transonic flow past NACA0012 airfoil.

Sensitivity FD (1st order) FDOT

dCD
dM∞

0.520899829 0.520898019

As can be seen, there is a good agreement between the two results and the sensitivity

values match up to five decimal places. It must be added that, the sensitivity results of

FDOT are non-approximative, and therefore, supposedly much more accurate than the finite-

difference result which is only a first-order accurate approximation.
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Figure 6.9: Sensitivities of the cost function (CD) with respect to the flow variables on (a)
the top surface and (b) bottom surface of the NACA0012 airfoil (inviscid transonic case at
M = 0.8 and AOA = 1.25 deg.

Finally, the sensitivities of the conservation variables on the surface of the airfoil are

presented. The distribution of these sensitivities on the suction and pressure sides of the

airfoil are presented in Figure 6.9. As discussed in Section 5.1, the inviscid transonic flow

past the NACA0012 at M = 0.8 and AOA = 1.25 degree leads to the formation of two shocks

where a weak shock is at about 15% chord length from the leading edge on the pressure side

and a strong shock is located at about 60% chord length on the suction side.

It can be clearly seen in Figure 6.9 that the sensitivities of the conservation variables on

the surface of the airfoil also show discontinuities at the location of the two shocks. This
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is even more pronounced for the continuity and momentum equations and agrees well with

flow solution.

(a) near-field view (b) upstream view

Figure 6.10: Contour field of ρ =
∂CD
∂ρ

for the inviscid transonic flow past NACA0012

airfoil at M = 0.8 and AOA = 1.25 deg.

Finally, the contour plots of the ρ, i.e.,
∂CD
∂ρ

, are shown in Figure 6.10. A very interesting

feature that is visible in these contour fields is that the flow sensitivities are stronger in the

upstream rather than downstream of the airfoil. Obviously the drag coefficient, which is

defined based on the integration of the pressure distribution on the surface of the airfoil, is

mostly dependent on the free-stream velocity and the flow incidence angle. Therefore, as

expected the magnitude of sensitivities are larger in the upstream. In other words, in the

adjoint field, the wake is upstream of the airfoil while in the nominal flow field the wake

is downstream. In fact, not only the location of the wake is reversed but the entire flow

field also appears to be flipped [122]. This is consistent with the property of the adjoint

characteristics, which have an opposite direction to the flow characteristics. Additionally,

the upstream wake found in the adjoint sensitivity contour is typical of adjoint sensitivity

contours as also seen in the literature [222, 122].
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Chapter 7

Aerodynamic Shape Optimization

As discussed in the earlier chapters, the ultimate goal of this work is to develop an

optimization framework for aerodynamic design applications. This framework will couple

the UNPAC solver and the FDOT toolbox to offer a robust and efficient design tool based

on discrete adjoint analysis. In what follows details of the UNPAC design optimization

framework, UNPAC-DOF, are presented and several optimization test cases are considered.

7.1 Design Optimization Framework

Traditionally, aerodynamic design process has heavily relied on experimental wind tunnel

tests and engineering judgment. With the advent of computational fluid dynamics,

numerical shape optimization has been made possible without expensive and cost-prohibitive

experiments and wind tunnel tests. Over the years, robust design methodologies have been

proposed and used in aerodynamic shape optimization. Additionally, a whole field has

been devoted to developing algorithms and black-box software packages used for numerical

optimization [143].

In this work, the gradient-based optimization approach is considered. The UNPAC solver

is used for obtaining nominal flow solutions. Furthermore, the FDOT toolbox and the CFD

code are integrated into the UNPAC-AD framework to compute the gradient information.

Finally, the UNPAC-OPT wrapper program is developed that couples the two solvers to

perform design optimization.
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Figure 7.1: Flowchart of the UNPAC Design Optimization Framework (UNPAC-DOF)
and its three main components: UNPAC, UNPAC-AD, and UNPAC-OPT.
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The UNPAC-OPT program uses a quasi-Newton method for optimization in both

unbounded and bound constrained modes subject to upper and/or lower bounds for the

design variables. The schematic of the present UNPAC Design Optimization Framework

(UNPAC-DOF) is provided in Figure 7.1.

The optimization framework seeks for optimal designs via an iterative process in which

the following steps are considered for each design cycle:

1. The nominal CFD solver (UNPAC) is run to obtain the flow solution. In the first

cycle, the initial design variables are used while in the subsequent cycles, the new

values for the design variables (solution of the optimizer) are utilized. In the case of

shape optimization, the design variables define the new geometry which will then be

used to deform the computational mesh. This process is described in Section 7.1.1.

2. Using the flow solution, the UNPAC-AD solver is initiated which runs one pass of the

CFD solver to record the expression tree as a tape. This tape is then rewound in the

reverse mode with a novel iterative approach to evaluate the adjoints of all derived-type

variables (including intermediate and ultimately design variables).

3. The adjoint solutions obtained from the UNPAC-AD solver are then returned back to

the UNPAC-OPT program. Here, the gradient information is passed on to a quasi-

Newton optimizer, details of which are presented in Section 7.1.2, to achieve the new

set of design variables. The new solution is then returned back to the UNPAC solver

to perform the next design cycle. The optimization process is repeated until either

the desired number of design cycles is reached or the desired tolerance for the optimal

solution has been achieved.

In general, any set of design variables can be used for the optimization process. For

certain optimization problems, these variables can be the angle of attack, free-stream Mach

number, etc. For the case of shape optimization, the design variables are taken to be the

surface points defining the geometry. Compared to the cases where shape parameterization

is utilized, the surface points can, theoretically, offer a complete design space. However, the

surface mesh points as design variables can potentially lead to unsmooth surface profiles due
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to high frequency modes. This problem is circumvented using a smoothing approach similar

to that proposed by Huang and Ekici [108].

As for the objective function, although any desired definition can be easily implemented,

three possible options are considered in this work. These are namely the:

1. Drag coefficient, CD (minimized by default)

2. Lift coefficient, CL (maximized by default)

3. Lift-to-drag ratio or efficiency, CL/CD (maximized by default)

The wrapper program for the design optimization framework uses bash scripts to

automate the process of running nominal and adjoint solvers. Additionally, it runs scripts

to organize solution data into different folders for each design cycle. It must be noted that

the nominal solver can be run in serial or parallel mode while the adjoint solver is currently

run only in serial mode. The parallelization of the adjoint solver is the subject of ongoing

research and will be addressed in future works.

7.1.1 Shape Deformation

In aerodynamic shape optimization, it is common to use shape parameterization techniques

where the focus is shifted from the actual grid points defining the geometry to a certain

number of variables controlling the parameterized geometry. In this approach, the number

design variables that can be in the order of hundreds to tens of thousands of variables will

be reduced down to a fraction of that at the expense of limiting the design space.

In practice, Hicks-Henne bump functions [97], B-Spline (NURBS) [134], and Free

Form Deformation (FFD) [40] techniques are commonly used for the purpose of shape

parameterization. However, if not tuned correctly, these geometrical representation tools can

lead to cases where the design variables would not form a complete design space, causing the

optimizer getting trapped at local optima. As an alternative, the mesh points can be directly

used as the design variables given the fact that the cost of the adjoint solver is independent

of the number of design variables.
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As discussed earlier, the use of mesh points can lead to unsmooth geometrical profiles

which, at extreme conditions, can even cause convergence issues for the nominal solver. In the

framework of steepest descent optimizers, Jameson [114] and Castonguay and Nadarajah [39]

have utilized a smoother technique based on the Sobolev inner product to smooth the

gradient information. However, for the Newton and quasi-Newton optimizers, smoothing

the gradient information can cause gradient inaccuracies that can negatively affect the

performance of the optimization algorithm. In this regard, Huang and Ekici [108] have

proposed smoothing the surface perturbations using an implicit smoother before applying

them to the design variables from the previous design cycle. In this work, a similar approach

is utilized which follows the same procedure as described in Section 3.7.3 for the implicit

residual smoothing. First, the perturbation of the design variable i is described as

∆xi = xn+1
i − xni (7.1)

where xn and xn+1 are the design variables at two subsequent design cycles n and n + 1,

respectively. Here, the smoothed perturbation at node i is defined based on a pseudo-

Laplacian of the perturbations at neighboring nodes via

∆x∗i + ε

Ngbi∑

j=1

[∆x∗i −∆xj] = ∆xi (7.2)

where ∆xi and ∆x∗i are the original (unsmoothed) and smoothed perturbations of the design

variable i, respectively. It is worth mentioning that the pseudo-Laplacian only includes

neighbors of node i that lies on the surface and hence included in the set of design variables.

Finally, the design variables at design cycle n+ 1 are updated via

~xn+1 = ~xn + ~∆x
∗

(7.3)

It must be noted that the smoothing parameter, ε, is taken to be 0.3 ≤ ε ≤ 0.8 with

larger values of ε leading to more smoothing of the perturbations. In this work, a smoothing

parameter of 0.5 is used. As will be shown later in this chapter, the proposed approach
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can efficiently smooth the design variables that ultimately result in a smooth geometry

deformation during design updates.

In addition to the smoothing process described here, an under-relaxation approach is used

to limit the node movements around the trailing edge. Numerical tests performed in this

work have shown that it is necessary to limit the movement of the mesh points in the vicinity

of the sharp trailing edge due to the fact that strong singularities can be observed in this

region. These modes around the sharp trailing edge have significantly higher frequencies

than those in other parts of the airfoil and can lead to rapid node movements. In some

severe cases, these movements can cause the top and bottom surfaces to cross each other.

To avoid such issues an under-relaxation parameter is applied to the surface perturbations

before they are used to update the design variables. As a rule of thumb, a variable under-

relaxation parameter, ω, is applied to the last 10%-chord length with a value of ω = 1.0 (no

relaxation) at 90%-chord length up to a value of ω = 0.0 (full relaxation) at the trailing edge

to fix this node. Additionally, the leading edge is also fixed so that the flow incidence angle

remains constant throughout the shape optimization process.

The smoothed (and under-relaxed) design variables are then passed on to the nominal

solver to obtain the flow solution in the next design cycle. A radial basis function (RBF)

approach is used to perform volume mesh deformation considering the displacements of the

design variables as the control points of the RBF system of equations (see Section 3.8.1).

7.1.2 Optimization Algorithm

In general, most numerical optimization techniques involve an iterative process by consid-

ering a sequence of intermediate solutions for design variables, ~x n, that will theoretically

converge to the minimizer of function f(~x) at an optimal solution, ~x opt. The goal here is to

use the information at ~x n to find the next estimate ~x n+1 such that f(~x n+1) < f(~x n).

Newton and Quasi-Newton Optimization Methods

One of the most widely used gradient-based optimization algorithms is the Newton’s method

which uses a quadratic approximation of the objective function (assuming that the function

208



f is twice-differentiable). Thus, the Taylor series expansion of the objective function around

the fixed point, ~x, can be written as

f(~x+ ∆~x) ≈ f(~x) + ∆~x T∇f(~x) +
1

2
∆~x T

(
∇2f(~x)

)
∆~x ; O(∆~x 3) (7.4)

where ∇f(~x) and ∇2f(~x) are the first and second derivatives (Jacobians and Hessians) of

the objective function. The goal here is to find the perturbation ∆~x such that f(~x n+1 =

~x n + ∆~x) < f(~x n). Without loss of generality, Eq. 7.4 can be written for a quadratic

approximation, hn, as a function of the perturbation, ∆~x, via

hn(∆~x) = f(~x n) + ∆~x Tgn +
1

2
∆~x THn∆~x (7.5)

where, gn and Hn are the gradient and Hessian of the objective function at ~x n, respectively.

In order to find ∆~x that would minimize the local quadratic approximation, the partial

derivative of h n(∆~x) with respect to ∆~x is set to zero, i.e.,

∂h n(∆~x)

∂∆~x
= gn + Hn∆~x = 0 (7.6)

knowing that any ∆~x that yields
∂h n(∆~x)

∂∆~x
= 0 would be a local extrema of the quadratic

approximation. Assuming that the Hessian matrix is positive definite, then the solution to

Eq. (7.6) will be a global minimum which can be defined as

∆~x = −H−1
n gn (7.7)

Equation (7.7) describes the search direction that can move the design toward the optimal

solution. In practice, however, the new iterate is calculated based on

~x n+1 = ~x n − αH−1
n gn (7.8)

where α is a step-size defined using a “line search” algorithm. A robust line search technique

tries to find the optimal step-size that can rapidly and efficiently lead to the optimal solution.
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As can be seen, the main issue with the Newton’s method is the computational cost

associated with the calculation of the inverse Hessian matrix. Therefore, quasi-Newton

methods have been introduced to approximate the inverse Hessian matrix, thus eliminating

the need for providing the second-derivative information to the optimizer. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [230] is a well-known quasi-Newton optimizer

that addresses this issue by approximating the inverse Hessian matrix using the gradient

information from previous iterations.

The original BFGS algorithm involves storing a dense N ×N matrix that is used for the

approximation of the inverse Hessian matrix. This requirement can lead to a significant

memory footprint in large scale optimization problems. Therefore, the limited-memory

BFGS (L-BFGS) [138] has been introduced where the gradient history size is limited to

only M vectors (M � N), thus reducing the memory requirement significantly.

Optimizer Toolbox in the UNPAC-OPT Program

The UNPAC-OPT wrapper program developed in this work utilizes a quasi-Newton

optimization algorithm for the following bound constrained minimization problem

min f(~x) (7.9)

subject to ~l ≤ ~x ≤ ~u

where ~x is the vector of N design variables bounded by the lower, ~l, and upper, ~u, bounds

and f is a differentiable scalar objective or cost function. The L-BFGS-B [31] tool written in

Fortran 77 language is used as a black-box optimizer which is based on the bound constrained

version of the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [138]. Using

an efficient Hessian approximation technique, this optimizer is suitable for large-scale

optimization problems with limited memory footprint.

Additionally, the toolbox can be used for both unbounded as well as bound constrained

problems. For bound constrained optimization, the method uses a simple gradient technique

to determine free and fixed variables (according to the per-variable constant lower and upper
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bounds). Ultimately, the L-BFGS method is applied to the free variables via an iterative

process. An integer array, nBD(:), of size N is used that can have values between 0 and 3

for each design variable. These values determine whether either (nBD = 1 or nBD = 3) or

both (nBD = 2) bounds are applied and a value of (nBD = 0) assumes an unbounded design

variable. At each optimization cycle, the L-BFGS-B optimizer receives the current design

variables and their bounds (if any), the gradient vector, and the value of the cost function.

Upon successful termination, the optimizer returns the new values of the design variables or

solutions.

7.2 Shape Optimization Results

In this section, the UNPAC-DOF framework is used for aerodynamic shape optimization of

two well-known airfoils. First, the lift-to-drag ratio or the efficiency of a NACA0012 airfoil

operating at inviscid subsonic flow regime is maximized. For this purpose, the unbounded

as well as bound constrained optimization techniques are considered. Next, the drag of

a NACA0012 airfoil operating at inviscid transonic flow regime is minimized. Finally,

the turbulent flow past the National Renewable Energy Laboratory (NREL) S809 wind

turbine cross-section is considered and the shape optimization is carried out with the goal of

increasing the efficiency of the blade section by maximizing the lift-to-drag ratio at a certain

operating condition.

7.2.1 Subsonic NACA0012 Airfoil

As the first optimization test case, the lift-to-drag maximization of the NACA0012 airfoil

is sought. Here, the inviscid subsonic flow at M = 0.5 with an angle of attack of α = 2.0

degrees is considered. The computational grid used for this case is the same unstructured

mesh shown previously in Section 5.1. For the purpose of this optimization test case, the

first-order Roe scheme is used for the discretization of the convective fluxes.

Initially, the unbounded or unconstrained efficiency maximization is considered. For this

reason, the objective function is taken to be the ratio of lift coefficient, CL, to drag coefficient,

CD, which is also known as the aerodynamic efficiency. Since the optimizer, in general, solves
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a standard minimization problem, here the cost function is taken to be negative of the ratio

in order to maximize its value, i.e.,

f(~x, ~U(~x)) = −CL
CD

(7.10)

where ~x and ~U(~x) are the design variables and the flow solutions at the corresponding design

cycle, respectively. Design variables are taken to be the y-coordinates of the grid nodes on

the surface of the airfoil which result in vertical movement of these node throughout the

design optimization process.
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Figure 7.2: Convergence history of the lift-to-drag ratio for the unbounded efficiency
optimization of NACA0012 airfoil.

As will be shown later, unbounded lift-to-drag ratio maximization can lead to extreme

deformations in the airfoil geometry that can eventually cause a zero thickness at some

point along the airfoil chord. As a result, for the first unbounded optimization case, the

optimizer is intentionally setup in a way that will slow down the line search toward optimal

solution. Convergence history of the unbounded optimization test case for the NACA0012

airfoil operating at inviscid subsonic flow regime is shown in Figure 7.2.

For the unbounded optimization case and after six design cycles, the airfoil becomes

significantly thinner and has an apparent camber. The lift-to-drag ratio increases for almost

110% after 6 design cycles. The contour plots of pressure for the original and optimized

(design cycle 6) airfoils are shown in Figure 7.3.

Additionally, the comparison between the geometry as well as the surface pressure

coefficients for the original and optimized airfoils are shown in Figure 7.4. As can be
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(a) Original Design

X

Y

0 0.5 1

­0.5

0

0.5

Pressure

1.22

1.2

1.18

1.16

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

(b) Unbounded optimized (design cycle 6)

Figure 7.3: Contour field of pressure for the inviscid subsonic flow past NACA0012 airfoil
at M = 0.5 and AOA = 2.0 deg.
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Figure 7.4: Comparison of airfoil shape and the surface pressure coefficients for the original
and unbounded optimized geometries.

seen, there is an extreme movement close to the trailing edge region which proves the fact

that under-relaxing surface perturbations in this region is necessary. Moreover, the airfoil

thickness is reduced for about 18% from its original value after 6 design cycles.

As shown earlier, for the unbounded optimization case, the sixth design cycle was chosen

as the final optimized design although the value of the cost function is still increasing in the

subsequent design cycles before starting to decrease at design cycle 9. The contour plots
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(a) Design cycle 7
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(b) Design cycle 8
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(c) Design cycle 9

Figure 7.5: Contour field of pressure for the inviscid subsonic flow past NACA0012 airfoil
at M = 0.5 and AOA = 2.0 deg.

of pressure for design cycles seven, eight, and nine are also shown in Figure 7.5. It can be

clearly seen that the airfoil thickness decreases significantly around 10% chord length.
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Figure 7.6: Comparison of surface perturbations for the original (unsmoothed) and the
smoothed cases in vector notation at the first design cycle for the NACA0012 airfoil geometry
(lift-to-drag maximization case).

As discussed earlier, a necessary step to preserve a smooth geometry throughout the

optimization process is to smooth the surface perturbations obtained at the end of each

design cycle. The original unsmoothed perturbations are compared against the ones after

smoothing and the results are presented as perturbation vectors in Figure 7.6. It can be

clearly seen that the magnitude of perturbations are very large in the sharp trailing edge
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region. Also, both leading and trailing edges have very sharp node movements initially.

After the smoothing, these perturbations become much smoother and their magnitudes get

smaller, leading to a more gradual surface deformation. Additionally, the effect of the under-

relaxation approach applied to the 10% chord length region close to the trailing edge can be

seen in Figure 7.6. This under-relaxation approach has proven to be necessary for bounding

the node movements close to the trailing edge in order to avoid infeasible or non-physical

shape deformations.
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Figure 7.7: Convergence history of the lift-to-drag ratio for the bounded and unbounded
efficiency optimization of NACA0012 airfoil.
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Figure 7.8: Convergence histories of the lift and drag coefficients for the bounded and
unbounded efficiency optimization of NACA0012 airfoil.

Next, the bound constrained optimization test cases are considered. Here, the original

unbounded test case is once again included for the sake of comparison. However, unlike the
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previous unbounded test case, optimal line search settings are utilized here. Three bound

limits are used for the constrained optimization test cases where the y-coordinates of the

grid nodes are bounded by 10%, 20%, and 50% of their original value. The convergence

history of the objective function for the unbounded and the three bound constrained tests

are shown in Figure 7.7.

It is apparent that the increase in the bound limit results in a more optimal geometry.

However, the significant reduction in the airfoil thickness can make the unconventional design

unfit for manufacturing. Additionally, while the unbounded case results in a highly optimal

solution after 6 design cycles, the value of the cost function drops dramatically right after

this point and the solution becomes infeasible. The convergence histories for the lift and

drag coefficients are also presented in Figure 7.8.
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Figure 7.9: Convergence histories of the objective function, lift, and drag coefficients for
the 10% bound constrained efficiency optimization of NACA0012 airfoil.

While the objective for these optimization test cases was to maximize the lift-to-drag

ratio, it can be seen in Figure 7.8 that the 10% bounded case results in an increase in

the lift coefficient and a decrease in the drag coefficient which is exactly what is desired in

aerodynamic shape optimization. The convergence histories for the lift-to-drag ratio, lift

coefficient, and drag coefficient for this bounded case are plotted separately from the other

optimization test cases and are shown in Figure 7.9.

Next, the comparison between the geometry as well as the surface pressure coefficients

for the original and optimized airfoils are shown in Figures 7.10 through 7.12 for the three

bound constrained test cases studied here. As intended, in all three cases the final airfoil

shape is bounded by the upper and lower bounds specified for the optimizer. Additionally,
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Figure 7.10: Comparison of airfoil shape and the surface pressure coefficients for the
original and 10%-bounded optimized geometries (lower and upper bounds are shown in
dashed lines).
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Figure 7.11: Comparison of airfoil shape and the surface pressure coefficients for the
original and 20%-bounded optimized geometries (lower and upper bounds are shown in
dashed lines).

the movements in the trailing edge region are much larger in the case of 50%-bound since

the node movements are much less limited for this case compared to the other two bounded

test cases.

Additionally, the contour plots of pressure for the original, 10% bounded, 20% bounded,

and 50% bounded optimized airfoils are shown in Figure 7.13. Once again, it is noted

that after each design update, the existing computational mesh is deformed based on the

topological changes on the surface. This approach eliminates the need to generate a new mesh

after each design cycle. Similar to what is used in the r-adaptive mesh relocation technique
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Figure 7.12: Comparison of airfoil shape and the surface pressure coefficients for the
original and 50%-bounded optimized geometries (lower and upper bounds are shown in
dashed lines).
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Figure 7.13: Contour field of pressure for the inviscid subsonic flow past NACA0012 airfoil
at M = 0.5 and AOA = 2.0 deg.
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developed in this work, the mesh deformation for design optimization is performed using

the RBF approach with a support radius that can efficiently relocate grid nodes to conform

the deformed geometry of the airfoil. As an example, the original and deformed grids for

the 50%-bounded case are shown in Figure 7.14. Since no re-meshing is required in this

approach, the quality of the original mesh is preserved. Additionally, for the turbulent test

cases, the initial y+ value is retained throughout the design cycles which is necessary for

accurate turbulent solutions. As shown earlier in this work, the present RBF-based mesh

deformation approach is capable of efficiently relocating grid points without leading to any

inverted cells.
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Figure 7.14: Original and deformed grids obtained using the RBF technique for the
NACA0012 airfoil in the 50%-bounded optimization test case.

Finally, it must be mentioned that the memory footprint of the adjoint solver for this

test case is about 200 MBytes and the computational cost of running the adjoint solver in

each design cycle is about 1.5 times that of the nominal flow solver for the same number of

iterations.
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7.2.2 Optimization of the NACA0012 Airfoil in the Transonic

Regime

The next optimization test case considered here is the drag minimization of a NACA0012

airfoil subject to an inviscid transonic flow. This case, which was extensively studied in earlier

parts of this dissertation, has a free-stream Mach number of 0.8 and an angel of attack of

1.25 degrees. The same unstructured grid and solver settings used earlier are adopted here.

The cost or the objective function is taken to be the drag coefficient, CD, which is sought

to be minimized and the design variables are also taken to be the y-coordinates of the grid

points on the surface of the airfoil. Additionally, only the unconstrained optimization is

considered in this section.

First, the history of the objective function (CD) is plotted for different design cycles in

Figure 7.15. As can be seen, there is a steady drop in the drag coefficients with a 95% drop

in the drag force in the first 5 design cycles. Here, the optimization process is continued for

20 design cycles although most of the reduction in the drag coefficient has been achieved

within the first 5 cycles.
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Figure 7.15: Convergence history of the objective function for the unbounded drag
minimization of NACA0012 airfoil.

The contour plots of pressure for the original and the optimized airfoils are shown in

Figure 7.16. Also, the comparison between the geometry as well as the surface pressure

coefficients for the original and optimized airfoils are shown in Figure 7.17.
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Figure 7.16: Contour field of pressure for the inviscid transonic flow past NACA0012 airfoil
at M = 0.8 and AOA = 1.25 deg.
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Figure 7.17: Comparison of airfoil shape and the surface pressure coefficients for the
original and optimized geometries.

As shown earlier in this work, the inviscid transonic flow past the NACA0012 airfoil leads

to the formation of a strong shock on the suction side and a weaker shock on the pressure

side. As can be seen in Figures 7.16 and 7.17, the drag minimization leads to the elimination

of these shocks on both sides of the airfoil.

Due to the fact that the mesh nodes are used as the design variables, it is again necessary

to perform a smoothing process before applying the surface deformations. Therefore, the

original unsmoothed perturbations are compared against the ones after smoothing iterations

and the results are shown in terms of perturbation vectors in Figure 7.18. As can be seen, the
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unsmoothed perturbations have high frequency modes that can lead to unsmooth or jagged

surface deformation. With the use of the smoothing procedure, these surface perturbations

are smoothed significantly while the overall geometry deformation features are retained.

Additionally, an under-relaxation is applied to the 10% chord length region close to the

trailing edge, and its effects can be clearly seen in Figure 7.18. Again, this under-relaxation

approach has proven to be necessary for bounding the node movements close to the sharp

trailing edge in order to avoid non-physical shape deformations.
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Figure 7.18: Comparison of surface perturbations for the original (unsmoothed) and the
smoothed cases in vector notation at the first design cycle for the NACA0012 airfoil geometry
(drag minimization case).

Once again, it must be noted that the memory footprint of the adjoint solver for this

case is about 800 MBytes and the computational cost of running the adjoint solver in each

design cycle is about 2.5x that of the nominal flow solver for the same number of iterations.

7.2.3 NREL S809 Wind Turbine Blade Section

Finally, the efficiency maximization of a wind turbine blade section is considered. The

National Renewable Energy Laboratory (NREL) Phase VI wind turbine has been widely

used as a test bed for CFD analysis as well as design optimization [186]. This particular

horizontal-axis wind turbine (HAWT) is made of two tapered-twisted blades with an S809
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airfoil cross-section. This airfoil has been developed by Airfoils, Inc. [190] and has been

optimized with the goal of maximizing wind energy power production. As a result of these

optimization studies, the NREL Phase VI wind turbine blade has been designed with a

linear taper and a nonlinear twist distribution along the span while using the S809 airfoil

exclusively from the root all the way to the tip of the blade.

Figure 7.19: Geometry of the NREL Phase VI horizontal-axis wind turbine (HAWT) blade
with S809 airfoil as blade cross-section.

The geometry of the NREL Phase VI wind turbine blade is shown in Figures 7.19 and

7.20. As can be seen, 75% of the span length is covered with the standard S809 airfoils while

15% of the span length has a semi-S809 cross-section in an area that is formed by lofting an

S809 airfoil into a circular section.

The standard S809 airfoil has a 21% maximum thickness at 39.5% chord length and is

designed as a laminar flow airfoil. Previously and in Section 5.3, UNPAC solver was used to

study the turbulent and transitional flows past the S809 airfoil at two angles of attack of 4.1

and 12.2 degrees. In this section, the goal is to maximize the efficiency or the lift-to-drag

ratio of the S809 airfoil operating at the same conditions while only considering the 4.1

degree angle of attack case. Here, the Mach number is 0.1 and the Reynolds number is 1.0

million. The computational grid used for this with a y+ value of less than 0.5 is shown in

Figure 7.21.
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Figure 7.20: S809 cross-sections of the NREL Phase VI horizontal-axis wind turbine
(HAWT) blade.
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Figure 7.21: Computational grid used for the lift-to-drag maximization test case for the
S809 airfoil.

Here, an unconstrained optimization is considered and the objective function is once again

taken to be f = −CL/CD in order to maximize the lift-to-drag ratio. The optimization

process is continued for 10 design cycles and the convergence histories of the objective

function as well as the lift and drag coefficients are shown in Figures 7.22 and 7.23.

As can be seen in Figure 7.22, there is a steady increase in the lift-to-drag ratio with a

maximum of 6.2% increase the efficiency of the S809 airfoil. Similarly, the lift coefficient is

increased 2.7% whereas the drag coefficient is decreased about 4.6% compared to the original

values.
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Figure 7.22: Convergence history of the lift-to-drag ratio for the unbounded efficiency
maximization of the S809 airfoil.
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Figure 7.23: Convergence histories of the lift and drag coefficients for the unbounded
efficiency maximization of the S809 airfoil.

The contour plots of pressure and non-dimensional eddy viscosity for the original and

optimized airfoils are presented next in Figures 7.24 and 7.25. It is seen that the aerodynamic

shape optimization leads to a reduced turbulent intensity. As shown earlier in Section 5.3,

the flow past the S809 airfoil at an angle of attack of 4.1 degree remains mostly laminar and

the fully-turbulent RANS solutions lead to an over-prediction of the turbulent boundary

layer. For this case and with the same fully-turbulent flow assumption, the decrease in

the turbulence intensity can be associated with the delay in laminar-turbulent transition.

This is mainly due to the fact that the optimized airfoil has a slightly thicker profile aft of

the maximum thickness location (39.5% chord-length) which results in a reduced adverse

pressure gradient around this region.
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(b) Unbounded optimized

Figure 7.24: Contour field of pressure for the turbulent flow past S809 airfoil at M = 0.1,
Re = 106, and AOA = 4.1 deg.

X

Y

0 0.5 1 1.5 2

­1

­0.5

0

0.5

1

Chi

50

45

40

35

30

25

20

15

10

5

(a) Original Design

X

Y

0 0.5 1 1.5 2

­1

­0.5

0

0.5

1

Chi

50

45

40

35

30

25

20

15

10

5

(b) Unbounded optimized

Figure 7.25: Contour field of non-dimensional eddy viscosity for the turbulent flow past
S809 airfoil at M = 0.1, Re = 106, and AOA = 4.1 deg.

Also, the comparison between the geometry as well as the surface pressure coefficients

for the original and optimized S809 airfoils are shown in Figure 7.26. Here, the surface

pressure distributions are also compared to the experimental data of Ramsay [171]. For this

case, there is a 4.4% reduction in the maximum thickness after 10 design cycles. Although

an unconstrained optimization was used here, the reduction in the airfoil thickness is well

within the desired bound limits.

Similar to the previous optimization test cases, the effects of surface perturbation

smoothing has been analyzed next. As discussed earlier, it is necessary to perform a
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Figure 7.26: Comparison of S809 airfoil shape and the surface pressure coefficients for the
original and optimized geometries.
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Figure 7.27: Comparison of surface perturbations for the original (unsmoothed) and the
smoothed cases in vector notation at the first design cycle for the S809 airfoil geometry
(lift-to-drag maximization case).

smoothing process before applying the surface deformations in order to preserve a smooth and

non-jagged geometry. Here, the original unsmoothed perturbations are once again compared

to the ones after smoothing iterations and the results are shown in terms of perturbation

vectors in Figure 7.27. Although the magnitudes of the surface perturbations are not large

for this case (compared to the previous test cases), there are high frequency modes involved

which can lead to an unsmooth geometry. With the addition of the smoothing procedure,

these surface perturbations are smoothed significantly while the overall geometry deformation
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features are retained. Additionally, the under-relaxation approach applied to the 10% chord

length region close to the trailing edge has been at play and its effects can be clearly seen in

Figure 7.27. The under-relaxation approach used in this work has proven to be necessary for

bounding the node movements close to the sharp trailing edge while maintaining a smooth

shape deformation near the trailing edge.

Finally, it must be noted that the memory footprint of the adjoint solver for this case is

about 1.4 GBytes and the computational cost of running the adjoint solver in each design

cycle is about 2.8 times that of the nominal flow solver for the same number of iterations.
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Chapter 8

Conclusions

8.1 Summary

A grid-transparent unstructured two- and three-dimensional compressible RANS solver

(named UNPAC) was developed in this dissertation. This solver is also enhanced with

an algebraic transition model that has proven to offer accurate flow separation and

reattachment predictions for the transitional flows. The UNPAC solver uses an explicit

time-marching scheme to obtain steady-state solutions. For the unsteady time-periodic

flows, a harmonic balance method was incorporated that couples the sub-time level solutions

over a single period via a pseudo-spectral operator. The convergence to steady-state

solution was accelerated using a novel reduced-order-model (ROM) approach that has

shown to offer significant reductions in the number of iterations for the explicit solver. An

unstructured grid approach is adapted for both steady and HB problems using an r -adaptive

mesh redistribution (AMR) that can efficiently cluster nodes around regions of large flow

gradients. A novel toolbox for sensitivity analysis based on discrete adjoint method was also

developed as part of this research effort. Unlike currently available operator-overloading-

based differentiation tools, the Fast automatic Differentiation using Operator-overloading

Technique (FDOT) uses a memory-efficient iterative approach to evaluate the sensitivities

of the cost function with respect to the entire design space and requires only minimal

modifications to the available solver. Ultimately, the UNPAC solver and the FDOT toolbox

are coupled together, and with the addition of a wrapper program, a design optimization
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framework, called UNPAC-DOF, has been developed. This framework is used for performing

aerodynamic shape optimization for several inviscid and turbulent flow cases past NACA0012

and the S809 wind turbine blade cross-section. Additionally, the unbounded and bound

constrained optimization algorithms have been implemented and employed for efficiency

maximization of a standard NACA0012 airfoil.

8.2 Future Work

The present work has utilized the UNPAC-DOF program to perform aerodynamic shape

optimization. While numerical results have proven the computational and memory-wise

efficiency of the FDOT toolbox, there is still room for further improvement of this adjoint

sensitivity analysis tool. Additionally, the design optimization framework can be extended

to more complex and three-dimensional test cases in the future. The following are some

suggestions for the extension of the present work to more computationally demanding

aerodynamic shape optimization problems:

1. Application of the design optimization framework to maximize efficiency of a full-body

three-dimensional wind turbine blade.

2. Improving the computational efficiency of the FDOT toolbox in handling passive

variables and semi-passive binary operations.

3. Further improving the memory efficiency of the FDOT toolbox by eliminating

unnecessary adjoint entries in order to reduce the size of the recorded tape.

4. Parallelization the FDOT toolbox by employing a special domain decomposition

technique and MPI tools to further improve the efficiency of the adjoint solver.
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[24] Borland, C., Rizzetta, D., and Yoshihar, H. (1982). Numerical solution of three-

dimensional unsteady transonic flow over swept wings. AIAA Journal, 20(3):340–347.

6

[25] Bottasso, C. L., Detomi, D., and Serra, R. (2005). The ball-vertex method: A new

simple spring analogy method for unstructured dynamic meshes. Computer Methods in

Applied Mechanics and Engineering, 194(39):4244–4264. 14

[26] Brackbill, J. U. and Saltzman, J. S. (1982). Adaptive zoning for singular problems in

two dimensions. Journal of Computational Physics, 46(3):342–368. 14

[27] Browne, P., Budd, C. J., Piccolo, C., and Cullen, M. (2014). Fast three dimensional

r-adaptive mesh redistribution. Journal of Computational Physics, 275:174–196. 12

[28] Budd, C. J., Huang, W., and Russell, R. D. (2009). Adaptivity with moving grids. Acta

Numerica, 18:111–241. 13

[29] Burg, C. O. (2004). A robust unstructured grid movement strategy using three-

dimensional torsional springs. AIAA Paper 2004-2529. 13

[30] Butterfield, C., Musial, W., and Simms, D. (1992). Combined Experiment Phase I:

Final report. Technical report, National Renewable Energy Lab., Golden, CO (United

States). 8

[31] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for

bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

210

234



[32] Cabay, S. and Jackson, L. (1976). A polynomial extrapolation method for finding limits

and antilimits of vector sequences. SIAM Journal on Numerical Analysis, 13(5):734–752.

16

[33] Cakmakcioglu, S. C., Bas, O., and Kaynak, U. (2017a). A correlation-based algebraic

transition model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science. 44, 46

[34] Cakmakcioglu, S. C., Kaynak, U., and Bas, O. (2017b). A zero-equation transition

model depending on local flow variables. In 9th Ankara International Aerospace Conference

(AIAC-2017-205). xii, 44, 45, 46

[35] Campobasso, M. S. and Baba-Ahmadi, M. H. (2012). Analysis of unsteady flows

past horizontal axis wind turbine airfoils based on harmonic balance compressible

Navier–Stokes equations with low-speed preconditioning. Journal of Turbomachinery,

134(6):061020. 8

[36] Campobasso, M. S. and Giles, M. B. (2004). Stabilization of a linear flow solver

for turbomachinery aeroelasticity using recursive projection method. AIAA Journal,

42(9):1765–1774. 17

[37] Caradonna, F., Tung, C., and Desopper, A. (1984). Finite difference modeling of rotor

flows including wake effects. Journal of the American Helicopter Society, 29(2):26–33. 6

[38] Caradonna, F. X. and Tung, C. (1981). Experimental and analytical studies of a model

helicopter rotor in hover. NASA/TM 81232, NASA Ames Research Center, Moffett Field,

CA. 178, 182

[39] Castonguay, P. and Nadarajah, S. (2007). Effect of shape parameterization on

aerodynamic shape optimization. AIAA Paper 2007-59. 207

[40] Chauhan, D., Chandrashekarappa, P., and Duvigneau, R. (2010). Wing shape

optimization using FFD and twist parameterization. In 12th Aerospace Society of India

CFD Symposium. 206

235



[41] Chen, X. (2014). Optimization of Wind Turbine Airfoils/Blades and Wind Farm

Layouts. PhD thesis, Washington University in St. Louis. 9

[42] Clark, W. S. and Hall, K. C. (2000). A time-linearized Navier–Stokes analysis of stall

flutter. Journal of Turbomachinery, 122(3):467–476. 6

[43] Cook, P., McDonald, M., and Firmin, M. (1977). Aerofoil RAE 2822: Pressure

distribution and boundary layer and wake measurements. AGARD AR 138. Technical

report, A6-1-A6-77. xvi, 144, 145, 146

[44] Da Ronch, A., McCracken, A. J., Badcock, K. J., Widhalm, M., and Campobasso, M.

(2013). Linear frequency domain and harmonic balance predictions of dynamic derivatives.

Journal of Aircraft, 50(3):694–707. 154

[45] Dacles-Mariani, J., Kwak, D., and Zilliac, G. (1999). On numerical errors and turbulence

modeling in tip vortex flow prediction. International Journal for Numerical Methods in

Fluids, 30(1):65–82. 40

[46] Dacles-Mariani, J., Zilliac, G. G., Chow, J. S., and Bradshaw, P. (1995).

Numerical/experimental study of a wingtip vortex in the near field. AIAA Journal,

33(9):1561–1568. 40

[47] Dagan, A. (2001). A convergence accelerator of a linear system of equations based upon

the power method. International Journal for Numerical Methods in Fluids, 35(6):721–741.

16

[48] De Boer, A., Van der Schoot, M., and Bijl, H. (2007). Mesh deformation based on radial

basis function interpolation. Computers & Structures, 85(11):784–795. 81, 82

[49] de Boor, C. (1973). Good approximation by splines with variable knots. In Spline

Functions and Approximation Theory, pages 57–72. Springer-Verlag New York Inc. 13

[50] Degand, C. and Farhat, C. (2002). A three-dimensional torsional spring analogy method

for unstructured dynamic meshes. Computers & Structures, 80(3):305–316. 13, 104

236



[51] Djeddi, R. and Ekici, K. (2016). Resolution of Gibbs phenomenon using a modified

pseudo-spectral operator in harmonic balance CFD solvers. International Journal of

Computational Fluid Dynamics, 30(7-10):495–515. 15

[52] Djeddi, R. and Ekici, K. (2018). An adaptive mesh redistribution approach for time-

spectral/harmonic-balance flow solvers. AIAA Paper 2018-3245. 104

[53] Djeddi, R., Howison, J., and Ekici, K. (2016). A fully coupled turbulent low-speed

preconditioner for harmonic balance applications. Aerospace Science and Technology,

53:22–37. 15, 199

[54] Djeddi, R., Kaminsky, A., and Ekici, K. (2017). Convergence acceleration of fluid

dynamics solvers using a reduced-order model. AIAA Journal, pages 1–13. 96, 103, 144,

199

[55] Donea, J., Huerta, A., Ponthot, J.-P., and Rodŕıguez-Ferran, A. (2017). Arbitrary
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A Navier-Stokes Equations in Rotating Frame of Ref-

erence (Special Cases)

Here the Navier-Stokes equations are defined in rotating frame of reference for special cases

where the axis rotation is aligned with one of the main axes in the Cartesian coordinate

system. For each case, equations for the calculation of the relative total energy, rothalpy,

and static pressure as well as the source term vector including the Coriolis and centrifugal

forces are provided.

In general, the Navier-Stokes equations in relative frame of reference for a steady rotation

with constant angular velocity vector, ~ω, are given by

∂

∂t

∫

V

~Urel dV +

∮

∂V

[
~Fcrel − ~Fvrel

]
dS =

∫

V

~Qrel dV (A.1)

where ~Urel is the vector of conservation variables in relative frame of reference defined as

~Urel =




ρ

ρ~vrel

ρErel


 (A.2)

Here, the convective and viscous fluxes are given by Eq. (2.33) and (2.13).

A.1 Rotation about x-Axis

Assuming that the rotation axis coincides with x-coordinate axis, the angular velocity vector,

~ω, for a steady rotation with magnitude Ω (positive according to the right-hand-rule), is given

by

~ω = [Ω, 0, 0]T (A.3)

In such case, the position vector perpendicular to the rotation axis is given by

~rn = [0, y, z]T (A.4)
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where y and z are the y- and z-components of the position vector for an arbitrary point in

space (see Figure 2.2). Therefore, the Coriolis and centrifugal forces can be simplified as

~fCor = −2 (~ω × ~vrel) = −2




0

−Ωwrel

Ωvrel


 (A.5)

~fcent = −~ω × (~ω × ~r) =




0

Ω2y

Ω2z


 (A.6)

The entrainment or rotational velocity vector is given by

~vrot = ~ω × ~r = [0,−Ωz,Ωy]T (A.7)

with its magnitude (squared) being

|~vrot|2 = Ω2(y2 + z2) = Ω2|~rn|2. (A.8)

The above relation is used for the calculation of the relative total energy, rothalpy, and static

pressure which are now given by

Erel = e+
u2

rel + v2
rel + w2

rel

2
− Ω2(y2 + z2)

2
(A.9)

I = Hrel −
Ω2(y2 + z2)

2
(A.10)

p = (γ − 1)

[
ρE − (ρu)2 + (ρv)2 + (ρw)2

2ρ
+ ρ

Ω2(y2 + z2)

2

]
(A.11)

Finally, the source terms vector can be rewritten in a simplified form using the special

Coriolis and centrifugal forces for the case of rotation about x-axis as
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~Qrel =




0

0

ρΩ (Ωy + 2wrel)

ρΩ (Ωz − 2vrel)

0




(A.12)

A.2 Rotation about y-Axis

Similarly, for the cases when the rotation axis coincides with y-coordinate axis, the angular

velocity vector, ~ω, for a steady rotation with magnitude Ω (positive according to the right-

hand-rule), is given by

~ω = [0,Ω, 0]T (A.13)

and the position vector perpendicular to the rotation axis is now given by

~rn = [x, 0, z]T (A.14)

Thus, the Coriolis and centrifugal forces can be simplified as

~fCor = −2 (~ω × ~vrel) = −2




Ωwrel

0

−Ωurel


 (A.15)

~fcent = −~ω × (~ω × ~r) =




Ω2x

0

Ω2z


 (A.16)

The entrainment or rotational velocity vector is now given by

~vrot = ~ω × ~r = [Ωz, 0,−Ωx]T (A.17)

with its magnitude (squared) being
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|~vrot|2 = Ω2(x2 + z2) = Ω2|~rn|2. (A.18)

Therefore, the relative total energy, rothalpy, and static pressure can be calculated using the

following equations

Erel = e+
u2

rel + v2
rel + w2

rel

2
− Ω2(x2 + z2)

2
(A.19)

I = Hrel −
Ω2(x2 + z2)

2
(A.20)

p = (γ − 1)

[
ρE − (ρu)2 + (ρv)2 + (ρw)2

2ρ
+ ρ

Ω2(x2 + z2)

2

]
(A.21)

Eventually, the source terms vector can be rewritten for the case of rotation about y-axis as

~Qrel =




0

ρΩ (Ωx− 2wrel)

0

ρΩ (Ωz + 2urel)

0




(A.22)

A.3 Rotation about z-Axis

Finally, for the cases when the rotation axis coincides with z-coordinate axis, the angular

velocity vector, ~ω, is given by

~ω = [0, 0,Ω]T (A.23)

and the position vector perpendicular to the rotation axis is now given by

~rn = [x, y, 0]T (A.24)

This time, the Coriolis and centrifugal forces can be simplified as
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~fCor = −2 (~ω × ~vrel) = −2




−Ωvrel

Ωurel

0


 (A.25)

~fcent = −~ω × (~ω × ~r) =




Ω2x

Ω2y

0


 (A.26)

with the entrainment or rotational velocity vector being

~vrot = ~ω × ~r = [−Ωy,Ωx, 0]T (A.27)

and its magnitude (squared) being

|~vrot|2 = Ω2(x2 + y2) = Ω2|~rn|2. (A.28)

The relative total energy, rothalpy, and static pressure can be calculated using the following

equations

Erel = e+
u2

rel + v2
rel + w2

rel

2
− Ω2(x2 + y2)

2
(A.29)

I = Hrel −
Ω2(x2 + y2)

2
(A.30)

p = (γ − 1)

[
ρE − (ρu)2 + (ρv)2 + (ρw)2

2ρ
+ ρ

Ω2(x2 + y2)

2

]
(A.31)

while the source terms vector for the case of rotation about z-axis given by
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~Qrel =




0

ρΩ (Ωx+ 2vrel)

ρΩ (Ωy − 2urel)

0

0




(A.32)
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