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Abstract 

Marine sediments contain more microorganisms than all of the world’s oceans, with 

current of estimates of 1×1029 microorganisms. Despite marine sediments being replete with 

microbial cells, the majority of these microorganisms remain uncultured in the laboratory. At 

present, it is estimated that over 99% of all microorganisms have evaded culture, although truer 

estimates likely depend upon environment. Factors responsible for the intractability of these 

microorganisms include very slow doubling times, predicted to be on the orders of years to 

centuries, as well as special physiological needs of extremophiles. Unsuccessful laboratory 

growth of these microorganisms requires us to rely on culture-independent tools, including 

molecular techniques, metagenomics, and bioinformatic tools to glean insight into their 

ecological structure and function. 

This dissertation combines molecular and bioinformatic techniques to evaluate the 

biosphere within deeply buried sediments of the Baltic Sea and shallow sediments in Arctic 

fjords. Quantification of microbial biomass within marine sediments lays the groundwork for 

questions related to organic carbon and element cycling. Although essential, reliable and 

reproducible estimates of microbial biomass within deeply buried sediments has proved 

challenging. Here we present an interlaboratory comparison of quantification results from 

International Ocean Discovery Program Exp. 347 sediments that allowed us to define best 

practices that lead to meaningful quantification estimates. We then transferred these best 

practices to marine sediments in a Svalbard fjord (Van Keulenfjorden) to understand how glacial 

proximity influences microbial communities. Through 16S rRNA gene libraries, organic 

geochemistry, and genome reconstruction, we illustrate that cross-fjord trends in organic matter 

influence community structure in the sediment. In addition, we argue that biological iron and 
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sulfur cycling facilitates rapid recycling of electron acceptors crucial for carbon oxidation. We 

delved deeper into their metabolic pathways with metagenomic sequencing and contig binning. 

We reconstructed several genomes of the Woeseiaceae clade that can act both as a sink and a 

source of carbon. Ultimately, our work provides a framework for understanding how glacial 

proximity influences microbial community composition and metabolic function, which is 

important and timely with ongoing climate change and a strong threat of severe glacial retreat in 

this region. 
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Tools for Estimating Abundance of Subsurface Microorganisms  
Estimates suggest that the quantity of living microorganisms in deep marine sediments is 

greater than that in all the world’s oceans (1-3). Although the subsurface biosphere is the largest 

habitat for bacteria and archaea on Earth (as reviewed in (4)), scientists have only recently begun 

to elucidate these microorganisms’ role in organic matter degradation (5-7) and have a limited 

understanding of the strategies that have allowed these microorganisms to subsist across 

geological time scales (8, 9). Accurate quantification of these buried microorganisms is 

important for reliable models of carbon cycling and gas flux (7), as well as cell-specific rate 

calculations (10, 11). Models of cell-specific energy flux require accurate abundance estimates of 

cells performing a particular metabolism, including metal reduction (7), sulfate reduction (12, 

13), and methanogenesis (14, 15), which together make up the main terminal processes by which 

organic carbon (Corg) is degraded in marine sediments. The availability of the Corg that fuel these 

populations is controlled by sediment accumulation rate (16), the amount of primary productivity 

in surface waters (17), and overlying water depth. Therefore, the biogeographic distribution and 

abundance of subsurface microorganisms is highly variable.  

The range of microbial biomass in marine sediments worldwide is extremely vast and 

tied closely to geography. Deep-sea sediments within the South Pacific Gyre, characterized by 

low surface water phytoplankton and sediment accumulation rates, have the lowest microbial cell 

density at only 1x102 cells cm-3 (18). By contrast, coastal sediments in the eutrophic Baltic Sea 

have abundances ~1x1010 cm-3 (19). Microbial abundance in marine sediments has been 

quantified mainly through direct count microscopy techniques using general DNA stains, such as 

4 ,6-diamidino-2-phenylindole (DAPI) or acridine orange. In extremely low biomass samples 

and/or ones in which sediment causes non-specific binding of dyes, cell separation techniques 
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(20) coupled to dyes like SYBR green which are used to discriminate between biological and 

non-biological fluorescent particles (SYBR-spam) (21) aid in microscopic quantitation of buried 

cells.  

Phylogenetic identification of microbes in marine sediment requires additional methods 

beyond direct counting with a general DNA stain. Biomass-replete sediments or sediments 

containing an abundance of active microorganisms with cellular ribosome content can be 

examined microscopically with fluorescent in situ hybridization (FISH). This method allows the 

identification of specific taxa with a rRNA-targeted oligonucleotide probe linked to a 

fluorophore which fluorescently labels the ribosomes of target microorganisms. However, the 

energy-limitation of deeply buried marine sediments (22) necessitates alternative means of 

quantifying specific taxa, as energy-starved cells have low ribosomal contents. The use of 

enzymatic signal amplification with catalyzed-reporter deposition fluorescent in situ 

hybridization (23) is a useful alternative to circumvent the problems common to FISH 

(Reviewed in (24)). CARD-FISH was used for the single-cell identification of bacteria within 

deeply buried sediments of the Peru Margin (25, 26), but the notable failure to detect any archaea 

in these samples caused researchers to speculate that lack of detection was an artefact of 

enzymatic permeabilization protocols (27). Using domain-specific enzymes for cell wall 

permeabilization of cells in Baltic Sea sediments, Buongiorno et al. (2017) demonstrated that 

bias against archaea is not a methodological artefact and determined the quantification limit of 

CARD-FISH is actually much higher than previously recognized. As an alternative means for 

taxon-specific quantification, quantitative PCR (qPCR) showed to be more reliable and relatively 

reproducible across laboratories (19). New advances in culture-independent means for measuring 

cellular activity, such as biorthogonal non-canonical amino acid tagging (BONCAT) coupled to 
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FISH, show promise for answering questions related to substrate preference, relative activity 

levels, and phylogenetic identity of active members of marine sediment communities (28-30). 

Although these methods allow quantification, these techniques provide limited understanding of 

their physiology and genetic potential.  

Metagenomics and Genome Reconstruction 
The majority of microorganisms remain uncultured in the laboratory (31-33). The 

standing estimate suggests that over 99% of all microbial diversity evades culture. However, this 

estimate is currently being challenged, and truer estimates may be environment-specific (34). 

Factors responsible for the intractability of these microorganisms include special physiological 

needs of extremophiles who require conditions outside of what could easily be simulated in a 

laboratory for growth, including very slow doubling times. These doubling times have been 

predicted to be on the orders of years (35) to centuries (36). Unsuccessful growth of these 

microorganisms under laboratory settings requires reliance on culture-independent tools, such as 

metagenomics and bioinformatics, which can help us glean insight into the genomes of 

individual populations of bacteria and archaea.  

Instead of assessing the genetic information from one microorganism or synthetic 

community grown in the lab, metagenomic sequencing allows the assessment of genetic 

information within an entire natural sample. Once enough DNA is extracted from an 

environmental sample for sequencing, sequenced reads can be fed into a number of downstream 

applications depending on the desired dataset. Metagenomes, for example, have come to replace 

the time-consuming method of generating clone libraries for Sanger sequencing. The low costs 

of sequencing coupled to availability of bioinformatic tools allows the separation, classification, 

and clustering of microbial 16S rRNA SSU sequences (37, 38). Additionally, mapping tools such 
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as Bowtie2 (39) that align short sequencing reads onto long genomic contigs allow high-

throughput assessment of microbial diversity, as sequencing parameters such as read coverage 

help to calculate the abundance of each represented taxon. In addition to microbial community 

structure, functional potential of a sample can be accomplished with gene annotation followed by 

subsequent metabolic pathway mapping with tools such as KEGG (40). As a result, novel genes 

may be discovered to participate in unexpected pathways, or mis-annotation of genes may 

generate new hypotheses about the function of novel taxa. Finally, the clustering of sequences 

with similar genetic signatures, such as kmer frequency (gene motifs of size k) and coverage, 

allow the reconstruction of individual pan-genomes, or genomes of populations, from an 

environmental sample called a metagenome assembled genome (MAG). This sophisticated 

binning method of similar sequences is a more cost-effective method than single cell genomics 

(SAG), whereby individual cells are physically separated, lysed, and sequenced for their genetic 

information. The insights provided with these new sequencing approaches allows us to 

interrogate standing questions of how microorganisms will respond to, and potentially participate 

in, climate feedbacks.  

‘Omics for Understanding the Roles of Microorganisms in Climate Feedbacks 
In addition to understanding the genetic potential of microorganisms, metagenomics can 

contribute to our understanding the reciprocal feedbacks between microorganisms and their 

environment as it relates to climate change. Microorganisms are one of many powerful agents of 

atmospheric change (reviewed in (41)); however, their environmental impact in the wake of a 

warming climate is difficult to predict. The trajectory of greenhouse gases, such as carbon 

dioxide and methane, is largely dependent upon differences in local soil organic matter content 

(42, 43), latitude (44), and microbial community composition (45, 46). In areas that are 
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especially sensitive to climate change feedbacks, such as high-latitude permafrost/soils (47, 48) 

and the Arctic marine realm (49), metagenomics is proving to be an increasingly useful tool for 

the development of better predictive climate change models (42, 50), although their predictive 

power has yet to be tested.  

Despite advances in sequencing technology and bioinformatic tools, the vast diversity 

and complexity of climate-affected systems presents problems for straight-forward interpretation 

of metagenomics data alone. Interpretation of metagenomics data is enhanced when analyzed 

alongside a suite of complementary ‘omic datasets inside a genome-based (MAG/SAG) 

framework. The ongoing development of metatranscriptomics, metaproteomics, and 

metametabolomics along with their respective databases has allowed researchers to detect the 

steps and products of microbial activity, beginning with DNA encoding and ending with 

metabolite production. Such corresponding datasets provide the necessary bridges between 

genetic potential of a genome to metabolite production useful in making predictions about 

substrate utilization, greenhouse gas emissions, and fluxes (50). 
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Chapter 2: Inter-laboratory quantification of Bacteria and Archaea in deeply buried 

sediments of the Baltic Sea (IODP Exp. 347) 
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Abstract 
Two common quantification methods for sub-seafloor microorganisms are catalyzed 

reporter deposition fluorescence in situ hybridization (CARD-FISH) and quantitative PCR 

(qPCR). Using these methods, we quantified bacteria and archaea in Baltic Sea basin (IODP 

Exp. 347) sediments down to 90 meters below sea floor (mbsf), testing the following in an inter-

laboratory comparison: 1) proteinase K permeabilization of archaea increases CARD-FISH 

accuracy, and 2) qPCR varies by more than an order of magnitude between laboratories using 

similar protocols. CARD-FISH counts did not differ between permeabilization treatments. Thus, 

proteinase K did not increase accuracy of CARD-FISH counts, however, 91% of these counts 

were below the quantification limit of 1.3 × 107 cells cm-3. qPCR data varied between 

laboratories but were largely within the same order of magnitude if the same primers were used, 

with 88% of samples being above the quantification limit. Yields were elevated by preparing a 

sediment slurry before DNA extraction: 3.88 ×106 to 2.34 ×109 copies cm-3 vs. 1.39 × 107 to 1.87 

× 109 total cells cm-3. By qPCR, bacteria were more abundant than archaea, although they 
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usually were within the same order of magnitude. Overall, qPCR is more sensitive than CARD-

FISH, but both require optimization to consistently achieve both precision and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

Introduction 
Estimates of the global distribution and abundance of microorganisms suggest that there is 

nearly as much living microbial matter in deep marine sediments as there is in all of the world’s 

oceans (1). Energetic considerations of the subseafloor biosphere are giving great insights into 

the range of possibilities for life on Earth (2). Although presumably very energy limited, this 

expansive subsurface microbiome has been suggested to play key roles in global biogeochemical 

cycles (3, 4). The deeply buried bacteria and archaea within marine sediments remain elusive, as 

they are dominated by clades with no cultured representatives (5, 6). Because of this, our current 

understanding of the subsurface biosphere is based on information obtained from culture-

independent molecular techniques, which have revealed that the microbial community is 

composed of phylogenetically and physiologically diverse members. Differences in 

physiological characteristics of bacteria and archaea may define their relative abundance within 

marine sediments, however, a consistent method for their quantification has yet to be established 

(7, 8).  

Three methods are commonly used to quantify specific bacteria and archaea in marine 

environments; fluorescence in situ hybridization (FISH) (9), catalyzed reporter deposition FISH 

(CARD-FISH) (10), and quantitative PCR (qPCR). In FISH and CARD-FISH, individual cells 

that fluoresce with a DNA probe matching the target ribosome primary sequence can be 

enumerated using a microscope. This allows the recognition of taxonomically identifiable 

targets. In CARD-FISH, the fluorescence is amplified when a large horseradish peroxidase 

bound to the DNA probe affixes fluorescent tyramides to cellular proteins. CARD-FISH appears 

to be necessary to visualize cells from low activity marine sediments and requires that cell walls 

be permeabilized with an enzyme to allow the large enzyme to enter (10). Biomass can also be 
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estimated from qPCR when physiologically or taxonomically diagnostic genes are amplified 

from DNA extracts and quantified with automated fluorescence measurements.  

Because CARD-FISH and qPCR can be used to quantify phylogenetically or 

physiologically distinct microorganisms, these data are crucial for precise estimates of cell-

specific maintenance requirements and energy flux in the deep subsurface (11). Calculations of 

cell turnover and element cycling within complex subseafloor communities have demonstrated 

that there is a spectrum of cell-specific metabolic capabilities coinciding with sedimentary 

organic matter content (12), sediment age (13, 14), and temperature. Greater precision in cellular 

rates is especially important for cells that are presumed to have turnover rates on the scale of 

hundreds to thousands of years in sediment habitats (11, 15-17). Energetic considerations of 

microbial life in the deep subsurface have shed light onto the maintenance requirements for life 

on Earth (see (2, 18) for review). However, few studies undertake cell-specific rate calculations, 

which require reliable quantification of cells performing a particular metabolism (19-21) as well 

as reliable measurement of the metabolism in question. Some specific energy flux calculations, 

such as those related to sulfate reduction, are based on assumptions about the relative proportion 

of sulfate reducers within the sedimentary microbial community (4). While this is a valid 

assumption when making first order approximations of energetic limitation, greater precision in 

cell-specific energy flux is achieved when geochemical speciation data is coupled to cell 

quantification data (20, 22-24).  

Each of the cell quantification techniques useful in energetic models provides their own 

set of limitations that possibly lead to over- or under-estimating the numbers of living cells. For 

example, inadequate permeabilization of archaea during CARD-FISH (8), variable extraction 

efficiencies of DNA (25, 26), and biased primers used in qPCR (6) could potentially lead to the 
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over- or under-representation of community members. Because of this, we quantified bacteria 

and archaea in sediment samples collected from IODP Expedition 347, Baltic Sea 

Paleoenvironment in three separate laboratories to assess the degree of replicability in 

independently-working groups. The Baltic Sea contains a sedimentological record spanning the 

transition from the last glacial maximum to the current interglacial period, allowing the 

investigation of any shifts in microbial abundance in accord with climate shifts.  

We examined microbial abundance across four sites (five bore holes) within the Baltic 

Sea basin through qPCR and CARD-FISH, as compared to total cell counts. We compared 

results obtained from overlapping sediment samples examined by three independent laboratories 

employing similar analytical procedures. Specifically, we tested the following hypotheses that 

were proposed from a recent meta-analysis of published CARD-FISH and qPCR data (27): i) 

proteinase K permeabilization of archaea increases CARD-FISH accuracy over the more 

commonly used permeabilization with lysozyme, and ii) qPCR varies by more than 10-fold 

between laboratories using similar DNA extraction protocols due to the random variability of 

DNA extraction efficiencies. In addition, we applied a new non-enzymatic whole-cell reporter 

method called fluorescence in situ hybridization chain reaction (DNA-HCR) to assess its utility 

for cell detection in marine sediment samples (28, 29).  

Methods 
Sample collection  

Samples were collected during IODP Expedition 347 at Baltic Sea sites M0059 (Little 

Belt; holes C and E), M0060 (Anholt Loch; hole B), M0063 (Landsort Deep; hole E), and 

M0065 (Bornholm Basin; hole C) (Figure 2.1; 30) in 2013. Latitude and longitude data for each 

site can be found on the Biological and Chemical Oceanography Data Management Office 
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(BCO-DMO) website (http://www.bco-dmo.org/dataset/641342/data). Site M0060 had very 

low organic matter content (<1% TOC), whereas the other sites were organic-rich upper marine 

deposits (3-8 % TOC) overlying organic-poor (<0.5% TOC) lacustrine deposits (30). Onboard 

ship, perfluorocarbon tracer (PFC) testing was conducted in order to assess contamination. 

Because all core exteriors contain known contamination  (30), the samples in this study were 

collected only from the interior of cores where contamination was minimal. Whole round cores 

were frozen at -80°C shipboard for later DNA extraction and qPCR in Hannover (Germany), 

Cardiff (UK), and Knoxville (TN, US) or shipped at 4°C and stored under nitrogen in sealed 

aluminum bag within one week to Hannover (Germany), where they were fixed for CARD-FISH 

with 4% formaldehyde solution following previously published protocols (20). A subset of the 

samples fixed in Hannover were shipped at 4°C to Knoxville (TN) for comparison analyses.  

Total cell counts and CARD-FISH 
Total cell numbers were determined for fixed sonicated samples through direct cell 

counts with SYBR Gold, SYBR Green I, and 4’, 6-diamidino-2-phenylindole (DAPI) DNA 

staining. Epifluorescence microscopy was conducted on a Zeiss Axio Imager M2 with Axiocam 

MRM (Lloyd lab) and an Olympus BX60 (Schippers Lab). Probes ARCH915 and EUB338 (I – 

III mix) were used for archaea and bacteria, respectively (Table 2.1). Permeabilization of cell 

membrane to allow the entrance of the horseradish peroxidase (HRP) enzyme was carried out at 

either 37°C for 30 min (10 mg ml-1 proteinase K, (31)) or 1 h (10 mg ml-1, lysozyme, Pernthaler 

et al. 2002) (Schippers Lab) or at room temperature for 20 min (Lloyd lab).  Filter sections were 

treated with either lysozyme, proteinase K, or both enzymes together. For each sample and 

treatment (lysozyme, proteinase K), three separate filters were analyzed (Schippers Lab). The 

Lloyd lab did not count replicate filters. Cell disruption by permeabilization treatment was tested 
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on triplicate DAPI-stained filters. Counts were performed blind for the permeabilization 

treatment experiment. NON338, which is antisense to EUB338, was used as negative control 

(32). 

Cell counts below the quantification limit for CARD-FISH were not considered in any 

comparison analyses, although they are plotted for completeness. The quantification limit for 

CARD-FISH is defined as falling within the 95% confidence interval around 30% of the mean 

(33). We therefore defined our quantification limit as 30 cells counted per 30 fields of view for 

one sample, or 1.3x107 cells/cm3. Depths for which either bacteria or archaea was below 

quantification limit were not evaluated for relative archaeal abundance. Raw counts were 

transformed to milliliters of wet sediment by dividing raw counts by depth-specific density to 

account for porosity of clay-rich sediment ((30); Lloyd lab).  

To test the agreement of total cell counts obtained in the lab with those acquired 

shipboard, SYBR Green I and SYBR Gold datasets (reported from the Schippers and Lloyd 

Labs, respectively) were tested against AODC shipboard counts using a paired Wilcoxon singed 

rank test in the R package, version 3.1.1 (34). In the same manner, SYBR Green I and SYBR 

Gold counts were also tested. Values were considered to be significantly different when p ≤ 0.05.  

To assess the degree of CARD-FISH success, yield was determined for CARD-FISH 

counts relative to total cell numbers (27). A yield of 1 denotes that 100% of the microbial 

biomass is accounted for. Using the R package, permeabilization treatment for CARD-FISH was 

tested with a two sample Welch t-test on log-transformed data of yield. Yield was defined as the 

sum of bacteria and archaea counts divided by the total cell counts detected within the same 

laboratory through a non-specific DNA stain, SYBR Gold (27) for all sites except M0063E, for 
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which SYBR Green I counts were used (Schippers Lab). Welch t-test was used because of 

variability in sample size, and transformations were performed to make data normally 

distributed. An additional Wilcoxon signed rank test, which does not assume normality of data, 

was performed on raw counts above the quantification limit produced from each treatment. 

Values were considered to be significantly different when p ≤ 0.05. 

DNA extraction and qPCR analyses 
Genomic DNA was extracted from Baltic Sea basin sediments using the FastDNA® Spin 

Kit for Soil (MP Biomedicals) by all three laboratories. However, a slightly modified version of 

the kit protocol was used by the Schippers and Weightman Labs (35). The Schippers Lab added 

poly-adenylic acid to the lysis mixture. Further, the Weightman and Schippers Labs tested an 

additional step by creating a slurry with the sediment before beginning the extraction. Therefore, 

0.5 g of sediment was placed in a lysing matrix E tube (MP Biomedicals) with 200 µl of sodium 

phosphate buffer (MP Biomedicals) and then shaking for 10 min on a wrist action shaker at 

maximum speed (to break-up the ‘sticky’ Baltic clay sediments). The resulting sediment slurry 

was then further shaken for 5 min with 800 µl of sodium phosphate buffer and 120 μl MT buffer 

(MP Biomedicals) before lysis in a FastPrep® 24 instrument (MP Biomedicals) for 2x 30s, speed 

5.5 m *s-1. All remaining steps followed the manufacturer’s protocol, except that some spin and 

incubation times were extended. DNA was eluted in 75 μl (Schippers Lab) or 100 μl molecular 

grade water (Severn Biotech Ltd.) and stored at -20°C (Schippers Lab) or -80°C until required. 

In an additional experiment, the Schippers Lab used the modified slurry extraction method and 

additionally treated samples with either hydrochloric acid, hydroiodic acid (25), or without acid 

addition. For all extraction protocols a non-sample control was extracted. 
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Total bacterial and archaeal 16S rRNA gene copy numbers were quantified with qPCR 

using primers listed in Table 2.1. Extracted DNA was amplified with a StepOnePlusTM Real-

Time PCR System (Schippers Lab; Applied Biosystems, Carlsbad, California), BioRad iQ5 

(Lloyd lab; Applied Biosystems, Foster City, California), and Mx3000P QPCR System 

(Weightman Lab; Agilent Technologies UK). Serial dilutions of full-length 16S rRNA gene PCR 

products from Anaerolinea thermophile DSM 14523 and Methanococcoides methylutens DSM 

2657 (Weightman Lab), plasmids containing amplified partial 16S rRNA genes (Lloyd lab), and 

16S rRNA gene PCR products of Escherichia coli (36), Methanohalobium evestigatus (37), and 

Methanosarcina barkeri (38) (Schippers Lab) were used as standards for bacteria and archaea for 

qPCR. Sterilized sand or water was used as a negative control. Results of qPCR were rejected if 

the R2 of the standard curve was below 0.95, or if the melt curve showed evidence of primer 

dimers. The quantification limit was defined as having fluorescence threshold cycle numbers 

(Ct) well within those of the simultaneously-run standard curve and being at least 3 Ct below the 

non-template control Ct. TaqMan assays were used in the Schippers lab (36, 37) and SYBR 

green chemistry was used for all other reactions. Different master mixes were used from the 

companies Invitrogen (Lloyd and Schippers Labs), Quanta Biosciences (Schippers Lab, assay 

(37), or PCR Biosystems Ltd (Weightman Lab). Gene copy numbers were corrected for non-

sample extraction control (Schippers Lab and Weightman Lab) and were converted into copies 

cm-3 wet sediment. This conversion was carried out by multiplying copy number g-1 dry weight 

by the sample's dry weight in g and the depth-specific density (g cm-3; (30)), the product of 

which was then divided by the sample's wet weight in g. qPCR results were directly compared to 

total cell counts for assessment of qPCR accuracy. As copy number of 16S rRNA gene varies 

both phylogenetically (39) and with lifestyle (40), multiplicities of the 16S rRNA gene for 
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bacteria and archaea were taken into account (3.04 to 24 copies per genome; c.f. (27)). qPCR 

data from the Lloyd lab have been deposited in the databank managed by BCO-DMO 

(http://www.bco-dmo.org/dataset/641358/data).  

The relative fraction of archaea within the community was determined by dividing the 

number of archaea reported across laboratories by the sum of bacteria and archaea counts from 

qPCR (27). Because the Schippers Lab used two primer sets for archaea, we used the larger of 

the two values for archaea in our computation. For comparison of qPCR data across laboratories, 

paired Wilcoxon signed rank test was performed on non-transformed qPCR copy numbers. 

Because qPCR was conducted on different whole round cores in the separate laboratories, copy 

numbers from the same 5 m intervals were compared (see Table 2.4 footnote for depths). Yield is 

defined as the combination of bacterial and archaeal 16S rRNA gene copy numbers divided by 

SYBR Gold or SYBR Green I (M0063E) cell counts.  

DNA-HCR 
DNA-hybridization chain reaction (HCR) was conducted in the Schippers and Lloyd 

Labs according to Yamaguchi et al. (2015) with the following modifications: both bacteria and 

archaea initiator probes were designed to hybridize the same amplifier C1 and C2 probes; one 

new mismatch probe was designed to test specificity (Table 2.1); and, when noted in the results, 

10% blocking reagent was added to hybridization buffer to enhance stringency in the mismatch 

probe experiment. Fixed cells were embedded with 0.1% low melting point agarose on 0.2 µm 

polycarbonate filters (Whatman). Cells were permeabilized for 30 min at 37°C with either 1 mg 

ml-1 lysozyme (bacteria) or 1 mg ml-1 proteinase K (archaea). Following a 15 min rinse in Tris-

NaCl-Tween buffer (TNT), filters were rinsed with MilliQ and 95% ethanol and allowed to air 

dry. Hybridization buffer (1 ml 1 M Tris-HCl pH 7.5, 0.9 M NaCl, 25 µl 20% SDS, and X% 
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formamide [see Table 2.1 for the value of X], and 0.5 µM initiator probe) was placed on 

parafilm-covered microscope slides. Dry filters were placed face-down on hybridization probe 

mix and hybridization was allowed to take place overnight at 47°C in a sealed humidification 

chamber. Excess hybridization probe was removed by washing filters for 30 min at 48°C in 

warm washing buffer (0.5 ml 0.5M EDTA pH 8.0, 1 ml 1M HCl pH 8, 25 µl 20% SDS, and 

either 2,150 µl (bacteria) or 460 µl (archaea) 5M NaCl). Separate tubes each containing 5 µM C1 

and C2 amplifier probes were prepared with amplification buffer (0.9 M NaCl, 0.67 g 

Na2HPO4.7H2O, 25 µl 20% SDS) and heated for 90 s at 95°C, then kept at 25°C for 30 min. 

Amplifier tubes were then mixed together for a final probe concentration of 2.5 µM each. After 

formamide was removed from filters with a brief wash in amplification buffer (without probe), 

filters were placed face-down on new parafilm-covered microscope slide containing the 

amplification probe mix. Hybridization occurred in a sealed humidification chamber for two 

hours at 46°C. Probe dissociation was prevented with 30 minute rinse in wash buffer at 4°C. 

Finally, filters were rinsed with MilliQ water and 95% ethanol and allowed to air dry before 

mounting on microscope slide with Vectashield (Vector Laboratories, California). All solutions 

were autoclaved and filter-sterilized.  Hybridization with amplifier probes in the absence of 

initial initiator, with NON338 or with EUB338 with three mismatches were carried out to test 

specificity of signal amplification in DNA-HCR. 

Results 
Total cell counts 

Cells were detected with DAPI and SYBR Green I or SYBR Gold at all depths that were 

analyzed at sites M0059, M0060, M0063, and M0065 of IODP Leg 347 (Figure 2.2).  Cell 

morphology was dominated by cocci, although rods and Vibrio-shaped cells were also common 

in shallower (< 10 mbsf) depths (Figure 2.3a and 2.3b). Total cell counts for all sites showed 
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high microbial abundance, often exceeding 1 x 109 cells cm-3 in sediments shallower than 10 

mbsf (Figure 2.2, Row A; Table 2.2). These cell counts exceed the global predicted regression 

for cell abundance with depth (41)(Parkes et al. 2000), as was also observed with flow cytometry 

and acridine orange direct counts (AODC) acquired on board during Expedition 347 (30). 

Total cells produced using SYBR Green I in the Schippers Lab accounted for 74 ± 75% 

of shipboard AODC (Figure2. 2), with slightly diminished yields likely due to two additional 

washing steps introduced to samples. The Lloyd lab had similarly high yields relative to AODC 

of 129 ± 164% with SYBR Gold. SYBR Green I counts are not statistically different from 

AODC counts (paired Wilcoxon signed rank test p = 0.053; Figure 2.2, Row A). However, 

SYBR Gold counts were found to be statistically different from AODC values (p = 0.026). 

Despite this, the SYBR Gold and SYBR Green I datasets are statistically similar to each other (p 

= 0.098), indicating low operator bias during counting in the Lloyd and Schippers Labs.  

CARD-FISH 
Out of summed total of 716 samples and replicates examined between the two labs, only 

67 were above the quantification limit of 30 cells per field of view (Lloyd 2014). Downcore 

counts are shown in Figure 2.4; however, the failure of CARD-FISH counts to reach the 

quantification limit in the majority of cases (as illustrated by empty symbols) prevents the 

interpretation of a true downcore profile. Further, no single overlapping depth was 

simultaneously above the quantification limit for CARD-FISH of either bacteria or archaea in 

both labs, precluding any interlab comparison for CARD-FISH (Figure 2.4; Table 2.3). No 

statistically significant difference was detected for the numbers of DAPI-stained cells treated 

with lysozyme or proteinase K, indicating permeabilization treatments did not differentially or 

detrimentally disrupt cells (p value of Welch two-sample-tests > 0.1, n = 33, data not shown). In 
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all samples, CARD-FISH counts with the NON338 rRNA probe were below the quantification 

limit. The number of samples above the quantification limit slightly increased by 4% for 

bacterial counts using lysozyme and about 5% for archaeal counts using proteinase K (Figure 

2.5A), but these differences are not statistically significant (Welch two-sample-tests p > 0.1; 

Table 2.3). Interestingly, using lysozyme and proteinase K together decreased the proportion of 

samples meeting the quantification limit (Figure 2.5A); however, no significant yield differences 

were observed for lysozyme, proteinase K, or both together (Wilcoxon signed rank test p > 0.05 

in all comparisons). In addition, no significant difference for percent archaea was observed 

across treatments (Figure 2.5B). CARD-FISH suggests that bacteria and archaea are equally 

distributed (Figure 2.4). However, because very few depth intervals contained counts where both 

domains were found to be above the limit of quantification, we cannot assess the relative 

abundance of bacteria and archaea. 

 When considering the data above the quantification limit, combined bacteria and archaea 

counts provide low yield relative to SYBR Green I counts, accounting only for 10% ± 13% of 

total cells (n = 15). The effect of cell loss during CARD-FISH processing was assessed by 

comparing DAPI cells counted after performing the CARD-FISH procedure to AODC counts. 

The DAPI cells were statistically lower than AODC counts (Figure 2.2, Row C, paired t-test p = 

0.01), indicating that cell loss during CARD-FISH processing is a factor that decreases yield. 

However, when CARD-FISH bacteria and archaea counts above the quantification limit are 

combined and compared to DAPI counts, CARD-FISH yield increased to 67% ± 75%, indicating 

that cell loss during processing alone does not account for low yield.  

The choice of permeabilization solution played no role in yield loss, with post-CARD-

FISH DAPI counts being significantly lower than AODC for both lysozyme (p = 0.0128) and 
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proteinase K (p  = 0.0122) treatments. Cell numbers decreased during CARD-FISH processing at 

all sites, and in both the Lloyd and Schippers Labs (Figure 2.2, gray and black squares). 

However, it should be noted that the Lloyd lab did not count triplicate filters, and so error bars 

are not reported in Figure 2.2. To test whether transport and shipment results in similar yield 

loss, we compared the yields before (n = 45) and after CARD-FISH processing with different 

permeabilization solutions (lysozyme, n = 22; proteinase K, n = 22). Results of the Welch two-

sample t-tests show that yields acquired before and after CARD-FISH are statistically different 

from each other. This is true when considering both permeabilization treatments separately 

(lysozyme, p < 0.001; proteinase K, p = <.001) or together (p < 0.001, n = 44).  

qPCR 
The majority of qPCR counts of bacterial and archaeal 16S rRNA gene copies were 

above the quantification limit for all runs combined (87% of archaea and 100% of bacteria for 

the Lloyd lab, 77% of archaea and 67% of bacteria for the Schippers Lab, and 100% of both 

archaea and bacteria for the Weightman Lab; Figure 2.6). Only qPCR results for the Lloyd and 

Schippers Labs using the same primer sets (Bac340/Bac806r with Bac probe and 

Arch915f/Arch1059r) and the basic extraction protocol (Fast DNA Spin kit) were included in the 

inter-laboratory comparison for qPCR. Since the Weightman Lab used a slightly different 

extraction protocol, these results will be discussed below. There was decent agreement between 

the Schippers and Lloyd lab qPCR measurements for both bacterial and archaeal 16S rRNA gene 

copy numbers (Figure 2.6, purple triangles and orange squares). When samples within 5 meters 

of vertical depth from each other are binned, the Schippers and Lloyd Lab qPCR copy numbers 

are not statistically different from each other for bacteria in 1/3 cases and in 2/3 cases for archaea 

(p > 0.05; Table 2.4). However, bacterial and archaeal qPCR measurements from the Schippers 
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lab were generally lower than those of the Lloyd lab (14/18 and 17/20 measurements, 

respectively), and were 30 and 38% of Lloyd values, respectively. Lower values recorded by the 

Schippers Lab may be due to the Schippers Lab’s use of a more specific TaqMan assay instead 

of SYBR green chemistry. These results show that while it is possible to reproduce copy 

numbers within the same order of magnitude in independent laboratories, results are not 

consistently reproducible, and therefore, precision is lost. Smaller variability in archaeal copy 

numbers was also observed between primer sets. Depths for which archaeal 16S rRNA genes 

were amplified with both Arch915f/Arch1059r and Arch349f/Arch806r primer sets by the 

Schippers Lab demonstrated that the Arch915f/Arch1059r primer set produced higher copy 

numbers (29/32 depths); however, the difference was too small to be significant (paired t-test for 

all sites, p > 0.1).  

The methodological changes introduced by the Weightman Lab, which included an 

additional slurry preparation step, increased copy numbers of bacteria and archaea at most sites 

relative to the Schippers and Lloyd datasets (Figure 2.6). In some cases, this improvement was 

exceptionally great (e.g. M0060B), resulting in statistical differences between Weightman values 

and those of the Lloyd and Schippers Lab (Table 2.4). Although some sites had no improvement, 

with copy numbers that were statistically the same as those measured in the Lloyd and Schippers 

Labs (pluses in Table 2.4), at none of the sites was the Weightman data significantly lower than 

those of the Schippers and Lloyd Labs for bacteria or archaea. In fact, when compared to the 

combined quantification efforts of the Lloyd and Schippers Labs, the Weightman Lab had the 

highest abundances of bacteria and archaea in 100% and 74% of the cases, respectively. 

Although relatively greater copy numbers were produced by the Weightman Lab overall, qPCR 

results for archaea were statistically the same as those measured in the Lloyd Lab (Table 2.4). 
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The main differences in the Weightman data compared to the Lloyd and Schippers datasets lie 

with bacterial copy numbers, which were statistically different in the majority of cases (3/5 

comparisons; Table 2.4).  

The yield of qPCR counts was highly variable with depth, as well as across labs and 

cores. For example, the Weightman data had relatively high yields for all qPCR measurements 

made for site M0063E (between 0.01 and 1.7). However, qPCR measurements of site M0059E 

within the same lab demonstrate that bacterial and archaeal 16S rRNA gene copy numbers 

converge on total cell counts only in the upper sediment layers (Figure 2.6). Despite diminishing 

accuracy of measurements with depth, the Weightman Lab yield average for site M0059E is 

0.94, considerably higher than that of the Schippers (0.03) or Lloyd Labs (0.14). Consistent with 

yield values, the Weightman Lab demonstrates the most accurate quantification across 

laboratories. Nine out of 22 measurements fall either on the black 1:1 line (Figure 2.6) or within 

the known range of copy numbers of 16S rRNA genes in a genome (average 3.04, dark blue, 

maximum 24, light blue; cf. (27)).  

Efforts to raise the yield of qPCR measurements were performed by incorporating 

additional wash and slurry preparation steps in the Schippers Lab on site M0063E samples. 

Archaeal 16S rRNA gene copy numbers increased with the addition of a slurry step in 12 out of 

the 14 depths examined with both archaeal primers (Arch915f/Arch1059r and 

Arch349f/Arch806r) (Figure 2.5A). Notably, however, yields were systematically diminished 

with the addition of a preceding hydrochloric acid or hydroiodic acid wash step (red and green 

symbols in Figure 2.7, respectively). In contrast, bacterial 16S rRNA gene copy numbers were 

not improved from original values (black diamonds, Figure 2.7B) with any protocol 

modification.  
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Across all sites, bacteria are usually higher in qPCR abundance relative to archaea and 

their dominance did not follow a pattern downcore (black line, Figure 2.6). However, archaea 

regularly comprise up to 50% or higher of total qPCR counts, suggesting that archaea, although 

in lower abundance than bacteria, are nevertheless a numerically significant portion of the 

subsurface population. 

DNA-HCR 
The three types of negative controls for DNA-HCR (NON338 and two EUB338 probes 

each with 3 mismatches) yielded statistically indistinguishable cell counts from EUB338 on 

sample 1H-2 site 59E, 2.05 mbsf (Table 2.5). Furthermore, for cell-like particles that were 

positive for EUB338 with DNA-HCR, the corresponding DAPI counterstain was not visible, 

although other DAPI-stained cells that were not DNA-HCR positive could be visualized. Also, 

bright signals were not visible with E. coli cultures. These problems were replicated in the 

Schippers and Lloyd Llabs. Adding blocking reagent did not prevent the non-specific binding 

(Table S1). For these reasons, we conducted no further experiments with DNA-HCR. 

Discussion 
The heightened sensitivity of CARD-FISH relative to FISH makes it an attractive option 

for uncovering cellular abundance and community structure in the marine subsurface, where 

energetic limitations contribute to low microbial activity. CARD-FISH studies of the subsurface 

have typically revealed that archaea represent a quantitatively negligible fraction of the 

biosphere, outnumbered by the more dominant bacteria (7, 42, 43). In fact, a collection of all 

published marine sediment CARD-FISH counts suggested that the log-log decrease in cells 

observed with depth (44) does not apply to bacteria counted by CARD-FISH, in which bacterial 

cell numbers do not decrease below ~10 mbsf (27). This meta-analysis also investigated 

methodological artefacts that could result in low yields of sediment archaea. Archaeal 
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permeabilization procedure was identified as a possible cause of low archaeal cell counts of deep 

subsurface (>10 mbsf) marine sediments (27). This is because lysozyme, which is commonly 

used for cell permeabilization in archaea, breaks down peptidoglycan, which has only been 

observed in bacteria. Because some archaeal cell walls have a large protein component in their S-

layer, Lloyd and coauthors hypothesized that, as described earlier in Teira et al. (2004), 

proteinase K as a permeabilization procedure would increase archaeal CARD-FISH counts and 

therefore total CARD-FISH yields. On the contrary, we found that no matter which 

permeabilization method was used (lysozyme, proteinase K, or both enzymes together), nearly 

all CARD-FISH counts from the Baltic Sea sediments were below the quantification limit, 

independent of the site or the sample organic matter content. We therefore reject the hypothesis 

that use of proteinase K alone is sufficient to overcome low yields of bacteria and archaea 

counted by CARD-FISH in deep subsurface sediments in the Baltic Sea. Furthermore, the values 

of the bacterial counts included in the meta-analysis (27) were often close to the quantification 

limit identified in our current study (107 cells per cm3 of sediment) suggesting that the observed 

lack of a downcore trend in Lloyd et al. (2013) was an artefact due to non-robust cell counts. 

Therefore, the quantification limit for CARD-FISH appears to be much higher than that of total 

cell counts. Separating cells from their sediment matrix before quantification has been useful in 

decreasing the detection limit of total cells (45). Perhaps similar techniques would be useful for 

bringing CARD-FISH above quantification limits even in relatively high biomass samples, such 

as the Baltic Sea basin.  

Much of the low CARD-FISH yields in this study overall appear to be due to cell loss 

associated with washing steps during CARD-FISH processing. However, loss of cells during 

washing steps alone does not entirely account for the low yields since nearly a third of cells 
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remaining after processing are unaccounted for by combined CARD-FISH counts of archaea and 

bacteria. The low CARD-FISH cell counts may indicate that the ribosomal contents of these 

bacteria and archaea were too low to allow sufficient probe binding, ribosomal sequences 

mismatched the probes, or that detrital grains were mistaken for cells during total cell counting 

but not CARD-FISH counting, thereby inflating total cell counts.  

It has been suggested previously that deep subsurface cells likely have very low 

ribosomal contents due to their low in situ metabolic activity (4). In agreement with this, 

starvation experiments in pure culture have shown that FISH hybridization of species-specific 

probes declines strikingly with starvation time relative to a DNA stain (46), highlighting the 

impact that cellular physiological condition has on hybridization efficacy. This could indicate 

that the ribosomal contents of energy-starved cells in the deep subsurface may drop below the 

limit of quantification, despite CARD-FISH being able to amplify signals even from very low 

ribosomal contents in theory (10). CARD-FISH yield may also be affected by relative 

differences in ribosomal contents between archaea and bacteria; however, our understanding of 

the protein content of members of subseafloor sediment communities is limited. Insufficient 

probe coverage of target cells should not be responsible for low CARD-FISH yield, as our in 

silico analysis showed that the probes used in this study match >90% and 84% of bacterial and 

archaeal clades in the Silva database, respectively. Furthermore, the probes used in this study 

match bacterial and archaeal groups that typically compose deep sediment communities (15). 

The third option of overcounting is also an implausibility because the high consistency in total 

cell counts between labs makes it unlikely that large, variable numbers of false positives were 

included. For these reasons, coupled with the fact that all samples were above the detection (but 

not quantification) limit for both archaea and bacteria, suggests that a failure of the CARD-FISH 
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method for these samples can be attributed to significant cell loss during processing of samples 

that contain an already low number of ribosomes.  

qPCR measurements have been used previously to calculate metabolic rates, including 

nitrification in estuaries (47), and sulfate reduction in sediments of the Baltic Sea (23, 24), the 

Black Sea (48, 49), and the forearc basins off Sumatra (50). In the upper 20-30 meters of the 

Baltic Sea sediments, the percentage of archaea as revealed through qPCR increased at sites that 

contained enough data to show a trend (M0060B, M0059C, and M0063E). This agrees with the 

global average, which shows a slight increase in percent archaea in the upper ~10 meters of 

marine sediments (27). Below these depths, however, the trends of archaea with depth are 

different by site. The percentage of archaea relative to total cells increases with depth at 

M0060B, and decreases with depth at M0059C. No robust depth trend can be observed below 

~30 meters at sites M0059E or M0063E, although M0063E has a consistently lower average 

percentage of archaea below 30 mbsf. The data from M0059C suggest that bacteria are more 

numerous, and more stable over time in the lacustrine samples relative to the overlying marine 

sequence. M0060B, on the other hand, is a fully marine sequence, although the %TOC is as low 

as that of the lacustrine portion of M0059C. Since the percentage of archaea increase slightly 

with depth at M0060B, but not M0059C, this suggests that the source of the material (marine vs. 

lacustrine) is more important than total amount of organic matter, with marine sediments 

favoring the archaea. On average, archaea comprise 20 ± 16% of total 16S rRNA gene copies, 

agreeing with the suggestion that bacteria and archaea can be in the same order of magnitude in 

anoxic marine sediments (7).  

Our qPCR data suggest that, while it is possible to reproduce quantification results within 

one order of magnitude in laboratories working independently, reproducibility depends heavily 
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upon uniformity in extraction protocols and primers for amplification. The copy number 

reproducibility was better than what has been shown in other studies that demonstrate that even 

within a single laboratory, wide variability in DNA extraction efficiencies (Mumy and Findlay 

2004) and hampering effects of qPCR inhibitors (15) contribute to poor reproducibility in results. 

The Lloyd and Schippers Labs reproduced each others’ qPCR values well because they used 

nearly identical methods and primer sets. The Weightman Lab’s values were systematically 

higher, both for bacteria and archaea. This was likely due to the use of different primer sets and 

addition of a slurry step before DNA extraction. When the Schippers Lab replicated the slurry 

step on a subset of samples, they also observed an increase in qPCR values. Our results suggest 

that, across independent laboratories, DNA extraction yields from deep subsurface marine 

sediments may actually be precise, if methods are standardized.  

The relatively high degree of precision for these qPCR results, however, was not matched 

by high accuracy relative to SYBR Green I or SYBR Gold cell counts. This indicates that qPCR 

values are best interpreted as a relative measure of abundance rather than absolute abundance. 

This interpretation is in agreement with meta-analysis of qPCR data produced from a wide 

variety of marine sediments (27). The qPCR values across all three laboratories were closer to 

each other than they were to total cell counts at most sites, even when potential multiplicities of 

16S rRNA gene operons were considered (39, 40). The qPCR values were systematically lower 

than total cell counts, suggesting that extraction inefficiencies, or coextraction of PCR inhibitors, 

decreased values. Further, at sites M0060B, M0059C, and M0065C, the qPCR values were not 

only lower than total cell counts, they also did not correlate with them. This lack of correlation 

was consistent across laboratories, suggesting that it was intrinsic to the samples, not to the 

laboratories or their methods. Yield of qPCR values relative to total cell counts appeared to be 
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higher in organic rich samples of 5-8% TOC: site M0063E, and the upper ~50 meters of sites 

M0059C, M0059E, and M0065C. Site M0060B was highly re-worked before long-term burial, 

resulting in < 1% TOC content throughout the core, and sites M0059C and M0059E experience a 

transition to < 1% TOC content at the lacustrine interface just below 50 mbsf. In these low 

organic matter samples, the qPCR values were much lower than total cell counts, the values of 

which were not much lower than cell counts at higher % TOC intervals. Since this effect was 

true for all laboratories, it is likely that our qPCR methods simply worked better in the organic 

rich sediments than in the organic poor ones. This agrees with previous studies showing variable 

DNA extraction efficiencies with sample type (51), although elevated organic matter content is 

typically associated with increased qPCR inhibition (26). Interestingly, it appears that the 

percentages of archaea relative to total cells are higher in marine sequences characterized by low 

amounts of organic matter, in agreement with previous findings (25). 

High yield loss associated with CARD-FISH observed in this study drove us to explore the 

utility of a new fluorescent, non-enzymatic quantification technique, DNA-HCR (29). This 

technique employs chain reaction binding of fluorescently-tagged oligonucleotides to linearly 

amplify signals for whole cell detection with microscopy. It has been successfully applied to 

environmental samples collected from anaerobic sludge and seawater and with the use of domain 

specific probes, it has been shown to produce high yield quantifications of both bacteria and 

archaea (29). DNA-HCR was attractive for use in marine sediments because it was less 

dependent on cell permeabilization and had less washing steps relative to CARD-FISH. 

Unfortunately, despite strong fluorescent signals of cell-like particles, counts with DNA-HCR 

did not have good DAPI counterstaining. Additionally, negative control experiments with 

mismatched probes and antisense probes suggest that unspecific binding of probe to non-targets 
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occurred in these sediments. It is possible that the lack of blocking reagents in the DNA-HCR 

protocol allowed non-target binding of probes to silica mineral grains; however, addition of 

blocking reagents did not alleviate the problems. Although DNA-HCR appears to be useful on 

many environmental samples (29), our results suggest that major modifications are required 

before it can be successfully applied to marine sediments. 

Conclusion 
In conclusion, although promising in theory, CARD-FISH appears to suffer from large 

yield losses that are not overcome by changing the cell permeabilization procedure, and at the 

moment DNA-HCR does not appear to be a viable alternative. Therefore, CARD-FISH is mainly 

useful for non-quantitative visualization of cells in their natural sediment environment and is not 

a reliable means to acquire abundance estimates of specific microbial taxa. By contrast, the 

values of qPCR were commonly above the limit of quantification and comparison across 

laboratories shows this method provided relatively precise biomass estimates of specific 

microbial taxa. However, comparison of qPCR results with direct cell counts indicates that qPCR 

estimates of cell density commonly underestimated total cellular abundance in this and other 

studies. Thus, qPCR is the most reliable and precise quantification technique for deep marine 

sediments, although it is not very accurate and is therefore most useful for relative comparisons 

of microbial taxa.   

Dependable alternative means for assessing absolute in situ cellular abundance in marine 

sediments are not yet available; however, new advances in culture-independent measures of 

cellular activity, such as biorthogonal non-canonical amino acid tagging (BONCAT), show 

promise in being able to address questions regarding active members of marine sediment 

communities (52). An attractive alternative to CARD-FISH, BONCAT is a newly developed 
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microscopy technique which requires few steps for the fluorescent tagging of proteins. BONCAT 

can be coupled to FISH for the phylogenetic identification of active cells, in turn providing 

information about the most abundant active members of a marine sediment community. 

However, although BONCAT may serve as a semiquantitative means for comparing cells across 

target clades, the absolute abundance of those cells is likely not yet achievable due to the non-

uniform nature of fluorescent incorporation across proteins (53, 54). 

 Our qPCR data suggested that the samples from IODP Expedition 347 contain both 

bacteria and archaea at all depths measured (down to 90 mbsf). Measurements compared across 

laboratories show varying degrees of inter-lab precision that were not matched by accuracy 

relative to total cell counts, which remains low at all sites analyzed. Accuracy increased with 

amendment of DNA extraction protocols, highlighting the importance of sample-specific 

modifications to maximize the yield of DNA extracted from deep marine sediments. Models of 

cellular functions and respiration in the marine subsurface often use qPCR to determine cell-

specific rates from reactive-transport models, so it is important that qPCR values accurately 

quantify the target subsurface community members. Ineffective or incomplete extractions may 

lead to specific rate calculations that either under- or overestimate cell-specific reactions, and in 

this way, hinder our understanding of cellular maintenance states in energy-limited marine 

sediments. 
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Appendix I: Tables and Figures 
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Table 2.1. Primers and probes used in this study. 

  Target  Coveragea   

Primer/probe Sequence (5’-3’1) group [FA] target, non-
target 

Lab Source 

Bac340f TCCTACGGGAGGCAGCAGT Bacteria  89%, 0% 1, 2 Nadkarni et al. (2002) 

Bac806r GGACTACCAGGGTATCTAATCCTGTT Bacteria  79%, 0.1% 1, 2 Nadkarni et al. (2002) 

Bac (TaqMan probe) CGTATTACCGCGGCTGCTGGCAC Bacteria  79%, 0% 2 Nadkarni et al. (2002) 

Bac534f GCCAGCAGCCGCGGTAAT Bacteria 87%, 0.3% 3 Muyzer et al. (1993) 

Bac907r CCGTCAATTCCTTTGAGTTT Bacteria  75%, 0% 3 Muyzer and Smalla 
(1998) 

Arch915f AGGAATTGGCGGGGGAGCAC Archaea  84%, 0% 1,2 Stahl and Amann 
(1991) 

Arch1059r GCCATGCACCWCCTCT Archaea  83%, 0% 1,2 Kubo et al. (2012) 

S-D-Arch-0025-a-S-17f CTGGTTGATCCTGCCAG Archaea  3%, 0% 3 Vetriani et al. (1999) 

S-D-Arch-0344-a-S-20r ACGGCTACCTTGTTACGACTT Archaea  38%, 0% 3 Vetriani et al. (1999) 

Arch349f GYGCASCAGKCGMGAAW Archaea  81%, 0% 2 Takai and Horikoshi 

      (2000) 

Arch516f (TaqMan 
probe) 

TGYCAGCCGCCGCGGTAAHACCVGC Archaea  83%, 0% 2 Takai and Horikoshi 

      (2000) 

Arch806r GGACTACYVGGGTATCTAAT Archaea  88%, 89% 2 Takai and Horikoshi 

      (2000) 

Arch915 GTGCTCCCCCGCCAATTCCT Archaea 55% 84%, 0% 1, 2 Stahl and Amann 
(1991) 

EUB338 GCTGCCTCCCGTAGGAGT Bacteria 45% 90%, 0% 1, 2 Amann, Krumholz and 

      Stahl (1990) 

EUB338 II GCAGCCACCCGTAGGTGT Bacteria 45% 0.8%, 0% 1, 2 Daims et al. (1999) 

EUB338III GCTGCCACCCGTAGGTGT Bacteria 45% 1.3%, 0% 1, 2 Daims et al. (1999) 

EUB338-initiatorCo CCAGTTATCAGTAGTCC- Bacteria 20%  1, 2 Yamaguchi et al. 
(2015) 

 GTCCTTCATTTTTTGCTGC-      

 CTCCCGTAGGAGT      

Arch915-initiatorCo CCAGTTATCAGTAGTCC- Archaea 40%  1, 2 Yamaguchi et al. 
(2015) 

 GTCCTTCATTTTTTGTGCT-      

 

 

CCCCCGCCAATTCCT      
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Table 2.1 Continued.  

  Target  Coveragea   

Primer/probe Sequence (5’-3’1) group [FA] target, non-target Lab Source 

Amplifier C1o ATGAAGGACGgactactgataactgg-  0%  1, 2 Yamaguchi et al. 
(2015) 

 GACTTCCATAccagttatcagtagtc∗      

Amplifier C2o ∗ccagttatcagtagtcCGTCCTTCAT-  0%  1, 2 Yamaguchi et al. 
(2015) 

 gactactgataactggTATGGAAGTC      

NON338 CCGAATACAAAGCATCAAGC-  45%  1, 2 Wallner, Amann and 

 ACTAGAAAAAAACTCCTACGG-     Beisker (1993) 

 

MMA 

GAGGCAGC 

 

 

  

45% 

 

, 0% 

 

1 

 

Yamaguchi et al. 
(2015) 

MMB  

 

 45% , 0% 1 Yamaguchi et al. 
(2015) 

aResults of Silva TestProbe 3.0 analysis at the time of publication. No mismatches allowed. 

∗indicates the side on which the fluorophore is attached. 

oindicates probe exclusively used for  DNA-HCR. [FA]—formamide concentration for DNA-HCR or CARD-FISH, v/v. 1—Lloyd Lab; 
2—Schippers Lab; 3—Weightman Lab. 

Single underlined letters indicate DNA-HCR probe for rRNA. 

Double underlined letters indicate DNA-HCR initiator 
sequence for chain reaction. Lowercase letters indicate the 
stem structure of DNA hairpin. 

Bold letters are complimentary to the initiator sequence on 
initiator probe. Highlighted letters are locations of 
mismatches to EUB338 probe. 
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Table 2.2. Total cell counts from all sites in this study.  Results are presented as cells per cubic 

cm (cm3), with values adjusted for depth-specific density.  

Core Depth Avg. DAPI          Avg. DAPI  

(M00-, sample) (mbsf) AODC SYBR Gold∗ 1 SYBR Green I∗ 2 lysozyme                proteinase K0 

    59C, 1-1 1.4 4.91E+08 1.14E+09 4.01E+08          4.64E+08 

59C, 1-1 1.53 1.37E+09 

59C, 1–2 2.96 1.40E+09 

59C, 2-2 4.53 1.44E+09 

59C, 2-2 5.96 1.17E+09 

59C, 3-1 7.7 3.67E+08 1.26E+09 3.76E+08         3.86E+08 

59C, 3-2 7.83 1.15E+09 

59C, 3-2 8.2 4.98E+08 1.49E+09 2.86E+08        4.49E+08 

59C, 3-2 9.26 5.52E+08 

59C, 4-1 11 

59C,4-2 11.13 6.41E+08 

59C, 5-1 14.05 5.04E+08 4.57E+08 2.17E+08        1.64E+08 

59C, 5-2 14.43 6.87E+08 

59C, 6-1 17.6 3.22E+08 5.70E+08 1.32E+08         1.20E+08  

59C, 6-2 17.73 5.66E+08 

59C, 9-1 27.5 3.87E+08 3.12E+08 5.48E+07         5.79E+07  

59C, 9-2 27.63 3.00E+08 

59C, 12-2 37.5 6.04E+08 3.93E+08 2.57E+07        2.82E+07 

59C, 12-2 37.53 9.03E+08 

59C, 15-1 44.6 1.20E+08 1.24E+08 2.81E+07        1.49E+07 

59C, 15-2 45.02 2.08E+08 3.04E+07        1.20E+07 

59C, 15-2 45.05 1.81E+08 

59C, 18-2 54.95 1.15E+08 7.59E+08 1.49E+07 3.37E+06       2.13E+06  

59C, 20–1 61.57                                                                                                                                                                  4.64E+08  

59C, 21–2 64.85 8.15E+07 

59C, 21–2 65 3.42E+08 

59C, 22-1 68.02                                                                                                                                                                   3.86E+08  

59C, 24-1 74.62 6.61E+07                                                                                            4.49E+08 
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Table 2.2 continued. 

Core Depth Avg. DAPI           Avg. DAPI  

(M00-, sample) (mbsf) AODC SYBR Gold∗ 1 SYBR Green I∗ 2 lysozyme                proteinase K0 

59C, 24-1 74.75                1.14E+08                                                                                                                                      1.64E+08 

59C, 25-1 77.92  

59C, 25-1 77.93 1.90E+08 

59E, 1-1 1.41 5.79E+08 1.27E+09 1.08E+09          6.97E+08  

59E, 1-1 1.52 2.52E+09 

59E, 1–2 2.05 7.39E+08 8.11E+08 5.61E+08            5.12E+08  

59E, 2-2 2.96 1.61E+09 

59E, 2-2 4.82 1.47E+09  

59E, 2-2 6.26 8.45E+08 

59E, 4-2 11.42 9.52E+08 4.52E+08 6.61E+08 2.91E+08           2.39E+08  

59E, 6-2 18.02 1.04E+09 

59E, 7-1 21.2 3.96E+08 3.54E+08 1.34E+08         1.23E+08 

59E, 7-2 22.4 4.25E+08 3.954E+08 1.15E+08        6.60E+07  

59E, 10–2 31.62 3.07E+08 3.31E+08 1.21E+08          1.12E+08 

59E, 13-2 42.3 6.23E+08 2.72E+08 5.08E+07         4.63E+07  

59E, 13-2 41.1 9.12E+08 1.07E+08 6.92E+07         6.19E+07  

59E, 16-2 51 4.08E+08 2.83E+07 2.30E+07         1.78E+07  

59E, 16-2 52.47 3.43E+08 

59E, 17-2 54.33 5.85E+07 

59E, 17-2 55.76 1.02E+08 

59E, 18-2 59.05 1.04E+08 

59E, 19-2 60.9 2.32E+08 

59E, 19-2 60.93 1.44E+08 

59E, 19-2 62.15 2.72E+08 

59E, 19-2 62.36 2.94E+08 

59E, 20–2 65.66 9.27E+07 

59E, 22-2 70.81 1.64E+08 

59E, 22-2 71.64 1.57E+08 

59E, 24-2 77.42 3.52E+07 

59E, 25-2 80.72 1.97E+08 
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Table 2.2 continued. 

Core Depth Avg. DAPI           Avg. DAPI  

(M00-, sample) (mbsf) AODC SYBR Gold∗ 1 SYBR Green I∗ 2 lysozyme                proteinase K0 

59E, 25-2 81.7 6.55E+07 

60B, 1–2 2.58 1.57E+07 

60B, 3-2 4.33 2.80E+07 

     60B, 5-2 10.93 8.26E+08 

60B, 6-2 14.23 3.00E+08 

60B, 6-2 14.3 9.29E+08 

60B, 9-1 24 5.40E+08 

60B, 9-2 24.13 6.26E+08 

60B, 12-2 34 6.93E+08 

60B, 12-2 34.03 5.85E+08 

60B, 13-2 37.35 3.00E+08 

60B, 14-2 40.6 4.19E+08 

60B, 15-2 43.9 3.73E+08 

60B, 15-2 43.93 2.17E+08 

60B, 18-2 53.8 2.44E+08 

60B, 18-2 53.83 1.04E+09 

60B, 21–2 63.7 3.13E+08 

60B, 21–2 63.73 5.58E+08 

60B, 23-2 69.55 2.97E+08 

60B, 24-2 72 4.33E+08 

60B, 24-2 72.03 4.24E+08 

60B, 27-2 81.1 5.12E+08 

60B, 27-2 81.13 3.14E+08 

60B, 27-2 81.5 4.34E+08 

60B, 28-1 84.42 2.91E+08 

60B, 28-2 84.43 2.07E+08 

63E, 1-1 1.1 1.40E+09 7.02E+07            2.04E+08  

63E, 1–2 1.12 4.17E+08 3.66E+08             5.09E+08  

63E, 1–2 1.22 8.26E+09 

63E, 1–2 1.65 1.63E+09 

63E, 1–2 2.65 1.09E+10 
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Table 2.2 continued. 

Core Depth Avg. DAPI           Avg. DAPI  

(M00-, sample) (mbsf) AODC SYBR Gold∗ 1 SYBR Green I∗ 2 lysozyme                proteinase K0 

63E, 2-2 3.52 5.98E+09 

63E, 2-2 4.95 9.06E+09 

63E, 3-1 5.02 1.87E+09 3.34E+08          1.35E+08  

63E, 6-1 10.83 9.33E+08 3.87E+07          4.62E+07  

63E, 6-2 11.8 1.75E+08 9.27E+08 1.68E+07          4.19E+07  

63E, 8-2 15.44 5.85E+09 

63E, 9-1 17.04 6.47E+08 6.34E+06           4.18E+07  

63E, 10–2 19.03 2.86E+09 

63E, 10–2 19.86 3.14E+09 

63E, 12-2 23.5 4.35E+08 6.36E+08 1.16E+08           7.40E+07  

63E, 12-2 24.29 2.13E+09 

63E, 13-2 25.03 1.60E+09 

63E, 14-3 28.22 2.07E+09 

63E, 15-2 29.03 1.04E+09 

63E, 15-2 29.4 5.35E+07 9.03E+06 6.96E+06           3.24E+06  

63E, 15-2 30.25 9.90E+08 

63E, 16-2 31.53 1.14E+09 

63E, 17-2 33.4 6.26E+08 

63E, 18-2 35.46 2.27E+07 5.81E+07 2.35E+06          3.68E+06  

63E, 18-2 35.49 2.17E+08 

63E, 19-2 37.53 4.75E+08 

63E, 20–2 39.5 1.06E+09 

63E, 21–2 41.1 9.25E+07 

63E, 21–2 41.28                     1.73E+07 2.04E+05  3.35E+06 

63E, 22-2 43.52 2.69E+08 

63E, 25-2 49.52 9.93E+07 

63E, 26-2 51.52 2.67E+08 

63E, 27-2 53.97 2.56E+08 

63E, 28-2 55.52 3.52E+08 

63E, 29-2 57.52 2.80E+08 

63E, 30–2 59.52 4.96E+08 
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Table 2.2 continued. 

Core Depth Avg. DAPI           Avg. DAPI  

(M00-, sample) (mbsf) AODC SYBR Gold∗ 1 SYBR Green I∗ 2 lysozyme                proteinase K0 

63E, 32-2 63.53 9.48E+07 

    63E, 35-2 69.53 1.85E+08 

63E, 36-2 71.52 6.01E+07 

63E, 39-2 76.82 8.26E+07 

63E, 41–2 83.42 8.65E+07 

63E, 42-2 87.02 6.12E+07 

65C, 2-2 3.5 3.81E+08 1.63E+08 8.53E+07          5.26E+07 

65C, 2-2 3.53 1.54E+10 

65C, 4-2 8.06 2.93E+09 

65C, 4-1 10 5.13E+08 1.60E+08 4.97E+06           2.04E+07 

65C, 4-2 10.13 2.74E+09 

65C, 4-2 10.65 8.68E+07 2.21E+07         7.49E+06  

65C, 4-2 11.46 3.37E+08 

65C, 5-2 13.43 7.71E+07 

65C, 5-2 14.76 2.44E+08 

65C, 6-2 16.73 2.92E+08 

65C, 7-2 20.03 1.54E+08 

65C, 7-2 20.6 7.77E+08 

65C, 8-2 23.33 2.27E+08 

65C, 10–1 29.8 6.29E+08 

65C, 10–2 29.93 2.58E+08 

65C, 11–2 33.23 1.81E+08 

65C, 12-2 36.53 2.74E+08 

+Samples directly fixed in FA without washing. 

∗Samples fixed in FA. Washed twice and stored in PBS/ethanol. Single filters counted. 

oSamples fixed in FA. Washed twice and stored in PBS/ethanol, whole CARD-FISH 

permeabilization and hybridization procedure. Triplicate filters counted. 1—Lloyd Lab; 2—

Schippers Lab. 
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Table 2.3. CARD-FISH counts above the quantification limit for the different permeabilization 

treatments  (lysozyme, proteinase K and both together). The quantification limit was defined as 

being able to count more than 30 cells within 30 fields of view. Not all treatments yielded counts 

above the quantification limit within a single depth. These treatments are indicated as BQL 

(below quantification limit). Dashes indicate that CARD-FISH was not attempted with the 

permeabilization solution indicated. 

 

 

  

Site 

 

Lab 

 

Sample 

Depth 
(mbsf) 

 

Target 

Lysozyme 
(cells cm−3) 

Proteinase K (cells 
cm−3) 

Both 

(cells cm−3) 

59C 

59C 

59C 

59C 

59C 

59E 

59E 

59E 

Lloyd 
Lloyd 
Lloyd 
Lloyd 
Lloyd 
Schippers 
Schippers 
Schippers 

1-1 

9-1 

12-2 

1-1 

12-2 

1-1 

4-2 

7-1 

1.4 

27.5 

37.5 

1.4 

37.5 

1.41 

11.42 

21.2 

Bacteria 
Bacteria 
Bacteria 
Archaea 
Archaea 
Archaea 
Archaea 
Archaea 

1.39E+07 

1.43E+07 

6.54E+06 

9.54E+06 
BQL 

BQL 
3.77E+07 

2.47E+07 

1.06E+07 

6.75E+06 
BQL 
1.36E+06 

6.75E+07 

2.91E+07 

2.83E+07 

4.12E+07 

9.00E+06 

6.14E+06 

BQL 

– 

– 

– 

59E 

59E 

59E 

59E 

63E 

63E 

63E 

63E 

63E 

63E 

63E 

Schippers 

Schippers 

Schippers 

Schippers 

Lloyd 

Lloyd 

Lloyd 

Lloyd 

Lloyd 

Lloyd 

Lloyd 

7-2 

10-2 

13-2 

16-2 

1-1 

1-2 

3-1 

1-1 

1-2 

3-1 

6-2 

22.4 

31.62 

42.3 

51 

1.1 

1.12 

5.02 

1.1 

1.12 

5.02 

11.8 

Archaea 

Archaea 

Archaea 

Archaea 

Bacteria 

Bacteria 

Bacteria 

Archaea 

Archaea 

Archaea 

Archaea 

2.55E+07 

2.47E+07 

3.42E+07 

1.49E+07 

1.21E+07 

2.76E+07 

1.27E+07 
BQL 
2.68E+07 

1.34E+07 

BQL 

BQL 

1.41E+07 

1.65E+07 
BQL 

BQL 
1.39E+07 

1.25E+07 

1.41E+07 

2.29E+07 

1.36E+07 

– 

– 

– 

– 
8.79E+06 

1.86E+07 

2.21E+07 

BQL 

65C 

65C 

Schippers 
Schippers 

2-2 

4-1 

3.5 

10 

Bacteria 
Archaea 

1.22E+07 
BQL 

BQL 
1.22E+07 

BQL 
BQL 
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Table 2.4. Results of statistical comparison of binned qPCR copy numbers of Bacteria and 

Archaea between laboratories. Symbols represent results of paired Wilcoxon signed rank testing, 

with pluses (+) indicating no statistical difference and minuses (–) indicating statistical 

difference at the 0.05 significance level. Blank fields indicate data for comparison was either 

absent (Weightman values M0059, C; Lloyd values M0059E) or insufficient for analysis (n < 3; 

M0065C, except for Archaea in Weightman and Schippers labs).  

 

Lloyd Schippers 

Bacteria, Bacteria, 

Site, hole Archaea Archaeab 

 
 

Schippers M0059,C –, – – 

M0059,E – 

M0060,B +, + – 

M0063,E –, + – 

M0065,C – 

Weightman M0059,C 

M0059,E +, –  

M0060,B –, + +, –  

M0063,E –, + –, + 

  M0065,C , +  
aBins are as follows: 

60B: 14.3–14.9, 20.8–21.3, 24.6–27.9 (Archaea only), 27.42–29.9, 78.3–81.5, 84.42– 

85.4 mbsf 

59C: 4.6–8.2, 11.2–17.2, 24.2–27.1, 30.5–30.8, 37.4–38.1, 43.1–44.5, 61.5–64.3, 74.6– 

75.3, 77.5–77.9 mbsf 

59E: 2.0–5.3, 22.2–22.3, 41.9–42.2, 48.5–51.8, 61.5–62.1, 71.6–75.1 mbsf 

63E: 1.1–5.8, 6.5–11.8 (6.53–10.8 for Archaea), 14.5–18.7, 19.5–23.5, 27.7–31.6, 33.8–35.4, 39.6–41.1, 46–
47.9, 54.9–55.5, 69.9–71.7, 76.8–80.2, 87.6–90.1 mbsf 

bArchaeal copy numbers with primer set Arch915f/Arch1059r was used when comparing values from the 
Schippers lab. 
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Table 2.5. Cell counts obtained through DNA-HCR after hybridization with initiator probes 

EUB338 (I-III) mix, NON338, or EUB338 containing 3 mismatches (MMA, MMB in Table 2.1). 

Sample is M0059E-1-2 (2.05 mbsf). Error ranges represent standard deviations of counts from 

30 fields of view. Blocking reagent was not used in NON338 measurements.  

 

Probe   Cells cm-3 (without blocking reagent)  Cells/ cm-3 (with blocking reagent) 

EUB338 mix   5.32E+07 ± 4.32E+07    3.58E+08 ± 2.56E+08 

NON338   9.38E+07 ± 4.13E+07   

MMA (3 mismatches)  9.25E+07 ± 5.55E+07    1.01E+08 ± 5.66E+07 

MMB (3 mismatches)  7.59E+07 ± 5.36E+07    1.21E+08 ± 7.07E+07 
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Figure 2.1. IODP Leg 347 Baltic Sea Paleoenvironment sites M0059, M0060, M0063 and 

M0065 are distributed around the Baltic Sea. Modified from Andren et al. (2015). 
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Figure 2.2. Total cell counts. Row A contains downcore profiles of SYBR Green I (blue 

diamonds) and SYBR Gold (teal circles) from the Schippers and Lloyd Labs, respectively. 

AODC shipboard counts (green squares) are published elsewhere and are shown here, with 

permission from the authors for comparison (30). The solid line is the global average regression 

with 95% confidence intervals (dashed lines; Parkes, Cragg and Wellsbury 2000). Row B 

illustrates the yield loss associated with CARD-FISH relative to unbinned AODC cell counts. 

DAPI data points represent either single counts (gray triangles; Lloyd Lab) or average counts of 

triplicate filters treated with either lysozyme (gray squares) or proteinase K (black squares; 

Schippers Lab), from which standard deviation was calculated and plotted as error bars. SYBR 

Green I, SYBR Gold and DAPI values have been adjusted for depth-specific density. Post-

CARD-FISH counts were not conducted for Site M0060B. 
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Figure 2.3. Photomicrographs of cells in sediment.  (A) SYBR Gold stained cells from 23.5 mbsf 

in M0063E. (B) DAPI-stained cells from 1.1 mbsf in M0059C. Panels (C) and (D) show a 

dividing cell identified using (C) ARCH915 CARD-FISH probe and (D) DAPI in the same field 

of view. Arrows indicate examples of cells. 
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Figure 2. 4. CARD-FISH cell counts performed in the Schippers and Lloyd labs. Counts are 

reported as cells cm−3 and are adjusted for depth-specific density. Bacteria (shades of red) and 

Archaea (shades of blue) probes were applied to cells permeabilized with either lysozyme 

(squares), proteinase K (triangles) or both (diamonds). Total direct cell counts (purple crossed-

boxes) are Lloyd Lab SYBR Gold counts for all samples except 63E, where the SYBR Green I 

counts are from the Schippers Lab. Error bars represent standard deviation from triplicate filter 

counts, which were only acquired in the Schippers Lab. Filled symbols indicate that at least one 

of the technical replicates was above the quantification limit of 30 cells counted per sample. 

Only one filter per sample was treated with both lysozyme and proteinase K treatments. 
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Figure 2.5. CARD-FISH yields relative to total cells as determined through DAPI direct counting 

for each treatments for both Bacteria and Archaea (A) and Archaea only (B). Boxes extend from 

the 25th to the 95th percentile and blue squares indicate data means.  
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Figure 2.6. Comparison of qPCR with total cells. Downcore qPCR data for Bacteria (row A) and 

Archaea (row B) is reported in copy number cm−3 from all laboratories for each core. Total 

SYBR Gold (or Green I) cells are as described in Figure 2.2 and expressed in cells cm−3. Black 

line in row B represents average fraction of Archaea (scale at top). Dashed lines in rows A and B 

indicate the depth boundary between lacustrine and overlying marine sediments. Schippers and 

Lloyd Bacteria copy numbers reflect quantification using Bac340f/Bac806r primers. Results of 

qPCR from both archaeal primer sets (Arch915f/Arch1059r and Arch349f/Arch806r) are 

reported for the Schippers Lab. Note x-axis for Site 65C is not shared. In row C, the solid line is 

the 1:1 line indicating a match between Bacteria and Archaea combined copy number cm−3 and 

total cell counts reported in cell cm−3 provided through SYBR Gold (or Green I for M0063E). 

Shaded areas indicate the known ranges of 16S rRNA gene copies per genome (3.04 copies, dark 

blue; 24 copies, light blue). Asterisk in row B, Site M0059E, indicates where percentage Archaea 

is greater than 100%. Asterisk in row C M0059C, E and M0063E indicate where 

Arch349f/Arch806r datapoints are hiding Arch915f/Arch1059r datapoints. 
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Figure 2.7. Slurry experiment results for Archaea (A) and Bacteria (B). 
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Chapter 3: Methanogen genome from Antarctic permafrost reveals cold adaptation and 

multiple pathways of methane formation 
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This chapter is a revised version of two published works: 

Buongiorno J., Bird J.T., Lloyd K. G., Vishnivetskaya. T. (2016). Draft Genome Sequence of 

Antarctic Methanogen enriched from Dry Valley Permafrost. Genome Announcements. 

4(6): e01362-16. 

Vishnivetskaya, T. A., Buongiorno, J., Bird, J., Krivushin, K., Spirina, E. V., Oshurkova, 

V., ... & Rivkina, E. M. (2018). Methanogens in the Antarctic Dry Valley Permafrost. FEMS 

microbiology ecology. 

My primary contributions to this work include: (i) genome reconstruction, (ii) mapping and 

diagram of methanogenetic pathways, (iii) phylogenetic analysis, (iv) protein modeling and 

comparative structural analysis, and (v) writing the results of genome content, cold adaptation, 

and methanogenesis pathways.  

 

Abstract 
Permafrost accounts for nearly a quarter of all naturally-sourced methane produced 

globally. Permafrost covers over 25% of Earth’s surface and is likely to produce more methane 

as it thaws with climate change. To understand how a warming climate may affect global 

methane dynamics, we first must have a greater understanding of the modern production of 

methane in permafrost. The biogenicity and timing of methane accumulation is not yet 

understood in permafrost affected soils. Here, we examined the metagenome of a methanogenic 

enrichment from the McMurdo Dry Valley. In order to test for the modern activity of 

methanogens in permafrost, incubations containing permafrost layers from Miers Valley, 

Antarctica, were created and monitored for methane production over 12 years. Only the 

enrichments containing inoculum from permafrost with in situ methane produced methane in the 
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incubation. Methane accumulation was only detected after a year of incubation. A single clade of 

Methanosarcina sp. dominated incubations characterized by methane accumulation. This shows 

that in situ methane observed in Miers Valley is likely to be biogenic in nature and not of ancient 

or abiotic origin. Genetic evidence suggests that this active methanogen uses cold adaptation 

strategies for maintaining biological function in the harsh condition of the Dry Valleys, including 

structural modification of key enzymes. Despite being from a different continent, the Miers 

Valley methanogen shares key genomic features with methanogens isolated from a Moscow fen 

and a Swiss lake. 
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Introduction 
Permafrost currently contributes nearly 25% of all naturally sourced methane (1), a value 

that is predicted to rise significantly in coming decades (2). However, methane accumulation in 

permafrost environments is complex and geographically variable, making the trajectory of 

climate-affected methane dynamics hard to predict. Late Pleistocene permafrost from the Miers 

Valley (McMurdo Dry Valleys) contained methane in shallow horizons, where isotopic 

signatures suggested biogenic methane sources (3). In order to determine the biogenicity and 

timing of methane accumulation, incubation experiments were conducted. Here, we announce a 

nearly complete genome reconstructed from those methane-producing enrichments and describe 

genomic adaptations to the permanently cold permafrost environment.  

Methods 
Sampling, DNA extraction, and sequencing.  

Anaerobic incubations of permafrost consisted of phosphate- buffered basal medium (4) 

and gas mixture of H2/CO2 (80/20) at 20°C. Methane production was first observed after one 

year of incubation and is ongoing today (11 years later). After seven years, samples were 

collected for metagenome sequencing. The total community genomic DNA from the enrichment 

was extracted using the PowerSoil DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA, 

USA), and the DNA library was prepared using the TruSeq DNA sample prep kit version 2 

without whole-genome amplification. The Illumina HiSeq 2000 platform was used to acquire 

paired-end 2 X 100-bp metagenomic reads.  

Genomic reconstruction  
Adaptors and low-quality reads were trimmed with the Trimmomatic software (5) and 

metagenomic reads were assembled using the metaSPAdes assembler v.3.7 with k-mer size set to 

21, 33, 55 and 77 (6). Contigs below 1000 bp were culled after assembly. Quality of the 
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assembly was assessed using the QUAST (7). The VizBin application (8) was used for 

visualization and subsequent binning of metagenomic sequences based on similar coverage and 

k-mer frequency. Gene calling and annotation of protein coding sequences was conducted with 

Prokka v.11 using combined curated versions of the Uniprot databases for archaea, bacteria and 

viruses as a reference for the BLAST alignment-based annotations (9) . The quality of the binned 

genome with respect to completeness and contamination was assessed using the archaeal set of 

single copy marker genes within CheckM (10). The 16S rRNA gene sequences were identified 

using RNAmmer (11).  

Protein structure reconstruction 
To construct ribbon depictions of the elongation factor 2 (EF2), DeepViewer (12) was 

used. The structural model was generated with SwissModeller and ProMod3 Version 1.0.0 (13) 

using automated homology modeling. Homology modeling was conducted by aligning the target 

EF2 sequences to the amino acid sequence of a Sacchromyces cerevisiae EF2 template from the 

SWISS-MODEL Template Library (14, 15). All target EF2 sequences had at least 30% sequence 

identity and 98% coverage to the template. 

Phylogenetic analyses 
Relationships between the 16S rRNA gene and mcrA gene within the genomic bin and 

other methanogens were inferred by using the Neighbor-Joining method. The sequences from 

Methanospirillium hungatei strain JF-1 and Methanomicrobium mobile strain BP were used as 

outgroups for analyses. Bootstrap percentages after 1000 replicates were calculated in MEGA 

7.0 (16). Sequences were obtained by megablast with Blastn 2.4.0 (NCBI) and selected partial 

and complete 16S rRNA ribosomal sequences were aligned with MUSCLE (EMBL). 
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Results  
Genome statistics and phylogeny 

The final product of binning (Figure 3.1) contained 342 contigs over 1,000 bp in length, 

with an average coverage of 570X and 38% GC content, which we designated as 

Methanosarcina sp. strain Ant1 (17). The Methanosarcina sp. strain Ant1 genome contained 

3,593 coding regions, 53 tRNAs, 11 predicted CRISPR regions, and several cytochromes. The 

16S rRNA gene sequence found within the Methanosarcina sp. strain Ant1 genome has 97% 

nucleotide sequence identity and 100% coverage to Methanosarcina lacustris, a psychrotolerant 

methanogen isolated from a fen in Moscow (18) (Figure 3.2A). Close cultured relatives are M. 

subterranea strain HC-2 and M. soligelidi strain DSM 26065, isolated from a deep-subsurface 

diatomaceous shale formation and Siberian permafrost-affected soil, respectively (19, 20). 

Methane metabolism 

Methanogenesis metabolism can likely be achieved through several pathways (21) (Figure 

3.3). The entire operon encoding methyl coenzyme M reductase (Mcr) and genes for 

hydrogenotrophic methanogenesis (fmd, ftr, mch, mtd, mer, mtrABCDEFGH, and hdrABCDE) 

were present. Acetoclastic genes encoding carbon monoxide dehydrogenase, acetate kinase, 

acetyl-coenzyme A synthetase, phosphate acetyltransferase, and the acetyl-CoA 

decarbonylase/synthase complex provide evidence that this organism is capable of acetoclastic 

methanogenesis. Methanol metabolism genes encoding the three subunits of methanol— 

corrinoid protein comethyltransferase— show potential for growth with methanol. 

Methanosarcina sp. strain Ant1 contains monomethylamine methyltransferase and 

dimethylamine corrinoid protein genes, suggesting growth with methylamines. An incomplete 

formate dehydrogenase operon suggests that growth with formate is not likely. 
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Cold adaptation strategies 
Studies on elongation factor 2 (EF2) from the model archaeal 

psychrophile Methanococcoides burtonii showed the enzyme activity dependence on 

temperature (22, 23). The EF2 protein coding sequence was found in Methanosarcina sp. strain 

Ant1. A three-dimensional ribbon model of EF2 enzyme (GTPase) from the genome (Figure 3.4) 

was compared to EF2 (GTPase) models from Methanosarcina lacustris, the closest relative to 

Methanosarcina sp. strain Ant1 by 16S rRNA, a mesophilic relative Methanosarcina 

acetivorans, and a psychrophilic isolate Methanolobus psychrophilus. The EF2 model of 

Methanosarcina sp. strain Ant1 had a higher alpha helical content compared to its mesophilic 

relative, M. acetivorans, but was similar to other psychrophilic or psychrotolerant relatives 

(Table 3.1).  

A previous study showed that the psychrophile M. burtonii generates unsaturated lipids by 

selective saturation (24). The Methanosarcina sp. strain Ant1 genome contains evidence for de 

novo synthesis of unsaturated diether lipids through a functional mevalonate pathway (21, 25). 

Genes encoding the DNA DSB repair Rad50 ATPase, 15 heat shock proteins and 2 cold-shock 

DEAD-box proteins were detected in Methanosarcina sp. strain Ant1, indicating that several 

defense strategies against environmental stresses are available to this strain. In comparison, the 

mesophilic Methanosarcina barkeri DSM 804 contained 10 heat shock proteins, though no cold-

shock proteins were detected. In addition, adaptation to low water activity can be achieved 

through accumulation of compatible solutes (26). The Methanosarcina sp. strain Ant1 genome 

contains several different transporters for common compatible solutes on the same contig, 

including glycine betaine/carnitine/choline transport ATP-binding protein opuCA, glycine 
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betaine/carnitine/choline transport system permease protein opuCB and choline-binding protein 

precursor. 

Discussion 
The close phylogenetic relationship of the genome reconstructed in this study to modern 

psychrophilic taxa pointed us toward investigating genomic adaptations that make possible the 

ability for a microorganism to remain viable after being locked away in -17°C permafrost for 

thousands of years (3). Permanently cold environments, such as permafrost, present distinct 

stressors to cellular functions. Challenges to maintaining membrane fluidity and substrate 

affinity can be overcome by structural modifications to lipids and proteins, respectively. In 

Methanosarcina sp. Ant1, genomic adaptations to the stress of the permafrost environment 

include de novo synthesis of unsaturated diether lipids through a functional mevalonate pathway, 

including acetyl-CoA transferase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and 

mevalonate kinase (21). This is perhaps a strategy novel to psychrophilic Methanosarcina, as the 

psychrophile Methanococcoides burtonii performs selective saturation instead of forming 

unsaturated lipids de novo (24).  

Another adaptation within the Methanosarcina sp. Ant1 genome includes protein structural 

modification. Three-dimensional modeling of the EF2 protein found within the genome 

illustrated that Methanosarcina sp. Ant1 contains increased alpha helical content relative to its 

mesophilic counterpart, Methanosarcina acetivorans (Figure 3.3), with numbers similar to other 

psychrophilic and psychrotolerant methanogens (Table 3.1). Modifications, such as increased 

alpha helical content, increased substrate affinity, stronger polar and weakened hydrophobic 

interactions, allow for greater flexibility in cold environments (27, 28). 
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Finally, other genomic adaptations include the presence of genes involved in the repair of 

DNA double strand breaks, which threaten microbial cell viability and are lethal if not repaired 

(29). The genes encoding the break repair system essential in the recognition and repair of DNA 

double strand breaks, endonuclease Mre11 and ATPase Rad50, were in the Methanosarcina sp. 

Ant1 genome. The conservation of this system within archaea has been noted previously (30), 

which expands from distantly related thermophilic archaeon, Pyrococcus furiosus (31), to our 

psychrophilic Methanosarcina genome.  

Metabolic versatility regarding pathways and substrates available to Methanosarcina sp. 

Ant1 for methanogenesis was detected in the genome, suggesting the distinct possibility of 

methane production shortly after the onset of thawing conditions when organic material becomes 

bioavailable. However, because Methanosarcina sp. Ant1 is adapted to cold conditions, the 

question of whether these cold adaptations—including the structural modification of specially 

modified, heat-labile enzymes—will prevent this and other cold-adapted microorganisms from 

thriving under conditions of thaw. It remains to be seen whether warmer temperatures will 

induce protein denaturation and/or kinetic instability, or if microbes can quickly adapt to their 

warming environment. The enrichment condition under which this strain was grown (20°C) is 

certainly evidence that growth and energy generation are possible at higher temperatures, but 

without the context of a natural setting, predictions are not straightforward. 

Conclusion 
 In conclusion, we have shown the ability of a methanogenic archaeon to remain viable 

after consistent burial within permafrost for thousands of years. Such long-term viability is likely 

attributable in part to the adaptations to cold detectable within its genome.  Metabolic versatility 

in the way of methanogenesis suggests that with the onset of warming and permafrost melting, 
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there is the distinct possibility for elevated methane production and accumulation. The question 

remains if this production will be mitigated by oxidation before emission to the atmosphere. 
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Appendix I: Tables and Figures 
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Table 3.1. Number of predicted EF2 alpha helical domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organism Relation to 
temp. 

Number of alpha 
helices 

Methanosarcina sp. strain Ant1 Antarctic 
permafrost at 
−18°C  

23 

Methanolobus psychrophilus Psychrophilic 21 
Methanosarcina lacustris Psychrotolerant 22 
Methanosarcina acetivorans Mesophilic 18 



80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Scatter plot visualization in VizBin of the metagenomic dataset Ant1. Coverage and 

k-mer frequency were used to produce two-dimensional representation of bins within the 

metagenome Ant1. The stars highlight contigs that contain a homolog for the gene mcrG, which 

is important for the metabolism of methanogens. The red polygon was manually placed around a 

selection of contigs, which contained a nearly complete genome of the novel uncultured 

methanogen Methanosarcina sp. Ant1. 
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Figure 3.2. Phylogenetic tree for the 16S rRNA gene sequence (a) and mcrA amino acid 

sequence (b) showing the relationship between the metagenomic bin in this study and relatives of 

the Methanosarcina. Relationships were inferred by using the Neighbor-Joining method. The 

sequences from Methanospirillium hungatei strain JF-1 and Methanomicrobium mobile strain BP 

were used as outgroups for both trees. Accession numbers are in parentheses and numbers at 

nodes indicate the bootstrap percentages after 1000 replicates calculated in MEGA 7.0 (16). 

Sequences were obtained by megablast with Blastn 2.4.0 (NCBI) and selected partial and 

complete 16S rRNA ribosomal sequences were aligned with MUSCLE (EMBL). The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site. Triangles 

indicate psychrophilic or psychrotolerant isolates.  
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Figure 3.3. Comparative analysis of the presence (red) or absence (white) of genes involved in 

methane metabolism as detailed in KEGG reference pathway map 00680. Genes to the left of the 

columns were identified through the pathway reconstruction feature of KEGG and by manual 

inspection of the genomes. Different colored dots are used to indicate substrate specificity, 

although some genes are universal to all pathways (mcr operon, for example). The genome’s 

subunit composition for the enzymes CoB—CoM heterodisulfide reductase, acetyl-CoA 

decarbonylase/synthase, formylmethanofuran dehydrogenase, and formate dehydrogenase 

demonstrate the largest differences compared to its more distant relatives in Methanosarcina. 
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Figure 3.4. Models of Elongation Factor-2 (EF2) using the automated homology server, 

SwissModeller. Models were generated from the same template (2p.8y in PDBe), which had at 

least 30% sequence identity and 98% coverage across each target. Models had good quality 

scores and analysis of ramachondron plots within DeepViewer (12) showed that nearly all 

dihedral angels were within acceptable limits. DeepViewer was used to construct ribbon models 

of the figure, with alpha helices in red, beta sheets in blue, and loops in black.  

Methanosarcina sp. 
strain Ant1 
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Chapter 4: Cross-fjord trends of complex microbial communities control subsurface iron 

and sulfur cycling in Arctic sediments 
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This chapter is a revised version of work submitted previously for publication: 

Under revision, Buongiorno, J., Herbert, L., Wehrmann L., Michaud A., Laufer K., Roy H., 

Jorgensen B.B., Szynkiewicz A., Faiia A., Yeager K., Schindler K., Lloyd K.G., Cross-

fjord trends of complex microbial communities control subsurface iron and sulfur cycling 

in Arctic sediments. (Applied and Environmental Microbiology). 

My primary contributions to this paper include: (i) field sampling, (ii) microbiology/organic 

geochemistry/hydrogen sample processing and DNA extraction, (iii) organic 

geochemistry/hydrogen measurement collection, (iv) data analysis and network building, 

and (v) writing of manuscript.  

 

Abstract 
In anoxic marine sediments worldwide, complete organic matter oxidation to carbon 

dioxide is achieved mostly through microbial sulfate reduction, although sediments with high 

iron content allow substantial dissimilatory iron reduction to occur in upper sediment layers. The 

relative contribution of iron and sulfate reducers involved in carbon oxidation is controlled by 

the availability of organic carbon and oxidized iron. In many fjords in the Svalbard archipelago, 

iron delivery may allow iron reducers to compete successfully with sulfate reducers for common 

substrates. Here, we explore the biological catalysts that drive iron and sulfur cycling in 

sediments of Van Keulenfjord, Svalbard. We examined 16S rRNA gene libraries across sediment 

depth and with increasing distance from the main glacier. Near the main glacier, we found a 

diverse and abundant iron reducing community above 10 cm depth. Below this, the dominance of 

sulfate reducers increased. In contrast, at the fjord mouth, iron reducers were restricted to the 
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upper 5 cm and abundant sulfate reducing bacteria were supported by more labile and higher 

total organic carbon compared to the middle site. Microbial network analysis demonstrated that 

station was a strong control on co-occurrence patterns between microbial taxa and that 

uncultured Sva1033 was interacted with more taxa at station AC. Differences in sulfur and iron 

microbial communities between the studied sites point to cross-fjord trends in organic 

geochemistry and microbial community composition that may become increasingly important 

with changes in sediment loading and primary productivity brought on by glacial retreat. 
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Introduction 
In marine sediments, the complete anaerobic remineralization of organic matter to carbon 

dioxide is achieved through a complex assemblage of microbial sulfate reducers and iron 

reducers (1-5). Electron donors for dissimilatory sulfate and iron reduction come from H2, 

formate, acetate, or volatile fatty acids produced by microbial fermenters (6, 7). The resulting 

reduced iron and sulfur compounds interact to form pyrite minerals. When pyrite is buried 

without further resuspension, sulfate is depleted to free sulfide, which outcompetes microbial 

iron reducers in the reduction of iron oxides. In Svalbard, however, glacially-derived iron-rich 

plumes deliver poorly crystalline, biologically available iron oxides to fjord sediments with 

seasonal melting. This rejuvenates pools of bioavailable iron that could then stimulate iron 

respiration coupled to organic matter remineralization (8).  

Despite being permanently cold (2.6 to -1.7°C (9)), Svalbard sediments demonstrate rates 

of sulfur cycling (9-12) and microbial activities (13) that are comparable to those of temperate 

sediments. The combination of the deposition of sediments with high iron to organic matter 

ratios and heterotrophic communities fueled by rapid iron and sulfur cycles, results in sediments 

with very low total organic carbon (<1%). Although the geochemical processes have been well-

described in Svalbard fjords, the biological catalysts that drive them alongside organic matter 

remineralization have only been explored in Smeerenburgfjord, which has 16S rRNA from 

organisms capable of sulfate reduction, iron reduction, fermentation, aerobic heterotrophy, and 

sulfur oxidation (14). The sulfate reducing community of Svalbard, although diverse, is 

dominated by Desulfosarcina/Desulfococcus groups (15), and oxidation of free sulfide is 

performed by large filamentous Beggiatoa, which are absent in some of the other Svalbard fjord 

sediments (16). Bacterial isolates from Smeerenburgfjord include the genera Desulfuromusa, 
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Desulfuromonas, Shewanella, and Desulfovibrio which are capable of sulfate, sulfur, and iron 

reduction (sometimes with multiple electron acceptors used by the same isolate) (17). A high 

diversity of extracellular enzyme targets is paralleled by a high diversity of heterotrophs, 

demonstrating a robust organic matter-remineralizing community fueled by the removal of 

fermentative products by the rapid iron and sulfur reduction (18, 19).  

Van Keulenfjorden (Figure 4.1), which is heavily influenced by hematite bedrock, 

contains sediments characterized by high iron accumulation which predicts enhanced iron-

mediated recycling of sulfur species (20). However, the bioavailability of iron deposits, gradients 

of sedimentary organic carbon, and bioirrigation in sediments in the middle and outer reaches of 

the fjord (eg (4)) likely support a diverse subsurface community of iron and sulfur cyclers (20). It 

remains unknown how biological catalysts shape the geochemical environment and here we aim 

to understand the abundance and diversity of iron and sulfur cycling clades in Van Keulenfjorden 

sediment. We used qPCR to map patterns of microbial abundance across the fjord and 16S 

libraries to understand the depth profiles of clades involved with iron and sulfur cycling in 

sediments from varying distance from the main glacier. Because the main glacier has been 

surging (21), we sought to map the depth layer over which the suboxic zone extends with 

distance from the glacier. In addition, we trace changes in organic geochemistry along a spatial 

transect through the fjord and with depth. Finally, we predicted the members of these 

communities have synergistic or antagonistic relationships with each other and geochemical 

parameters that ultimately influence ecological structure in Van Keulenfjorden sediments. To test 

this, we use network analyses to unravel the connections between microbial taxa and 

environmental measurements. In recent years, network analysis has been shown to be an 
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effective tool to get at emergent properties of complex and dynamic microbial ecosystems (22, 

23). 

Results and Discussion 
Sediment characteristics and glacial history 
 Three separate cores from stations AB and AC in Van Keulenfjorden (Figure 4.1) were 

collected only cm apart in August 2016. Sediment of Van Keulenfjorden was dark gray to black, 

sticky and fine-grained; sulfide smell was never detected. Gamma activity was detected for age 

dating, but non-steady state input of radioisotopes precluded use of 210Pb for age dating (Figure 

4.2A). A distinct 137Cs peak at 16 – 17 cm below seafloor (cmbsf), however, indicated the year 

1963 (Figure 4.2B)(24), giving a mean sediment accumulation rate of 0.31 ± 0.02 cm y-1 over the 

last ~50 years. Previous measurements in the area have shown a similar sediment accumulation 

rate of 0.06 cm y-1 (21, 25). The near absence of 137Cs coincided with a layer of coarse material, 

and this layer could have been deposited near instantaneously.  

Organic and isotope geochemistry 
 Total organic carbon (TOC) values averaged 1.4 ± 0.08 wt % at inner station HA, 1.4 ± 

0.07 wt % at middle station AC, and 1.5 ± 0.09 wt % at the outer station AB (Figure 4.3A; Table 

4.1). In the upper 8 cm, TOC concentrations increased with increasing distance from the glacier. 

After statistical outliers are removed (Figure 4.4) and when all data from each core are pooled, 

TOC was statistically higher at outer station AB than at middle station AC (P value of Welsh 

two-sample t-test = 0.004) and inner station HA (P value of Welsh two-sample t-test = 0.0002). 

Low TOC content is typical of Svalbard fjords (20, 26, 27) and the pattern of increased TOC 

with increasing distance from glacial outflow reflects physical processes that hinder the 

production of autochthonous marine organic material at fjord heads. First, surface water turbidity 

associated with the suspended load of glacial outflow during summer months limits light 
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penetration and, in turn, primary production in surface waters closest to this zone of runoff (28). 

In addition, these low salinity glacial meltwaters create freshwater conditions for which marine 

zooplankton are not suited (29-31). The limitations brought about by turbidity and low salinity 

conditions are alleviated further toward the fjord mouth, where phytoplankton readily bloom 

(28). Because of tight pelagic-benthic coupling (28, 32, 33), cross-fjord signatures of increased 

water column productivity toward the fjord mouth are captured in the sediment geochemistry 

(eg. (20)). 

 The average isotope compositions of carbon (δ13Corg) within organic matter of Van 

Keulenfjord sediment were -26.1 ± 0.24 ‰ at HA, -26.0 ± 0.34 ‰ at AC, and -25.3 ± 0.76 ‰ at 

AB (Figure 4.2B; Table 4.1). Carbon to nitrogen ratios (C/N) averages were 13.4 ± 0.47 at HA, 

13.4 ± 0.52 at AC, and 12.9 ± 0.47 at AB (Figure 4.2C; Table 4.1), with an overall average value 

of ~13. When C/N was plotted against δ13Corg, an overall seaward trend of higher isotope values 

was observed. At the inner (HA) and middle (AC) sites, organic matter signatures related to 

terrestrially-derived coal (average -26‰)(34), soil (average -25 ‰)(34) and C3 land plants (-25 

to -35 ‰) (35-37) were detected, while signals of relatively labile, marine phytoplankton, from -

22 to -25 ‰ (32, 38), were exclusive to outer site AB (Figure 4.2D). Like δ13Corg, C/N ratios can 

be used to identify the relative contribution of marine versus terrestrial sources to organic carbon 

pools, with allochthonous, terrestrially-derived organic matter typically ~20 and marine-derived 

organics ~6 (26, 38). There is general agreement with respect to organic matter source between 

isotope signals and C/N signals; however, at AB, C/N ratios are greater than average 

phytoplankton values (32), which we interpret as the preferential removal of nitrogen from bulk 

organic matter during early diagenesis in the seabed (39).  
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The seaward gradient of increased carbon amount and lability along the long axis of the 

fjord has been suggested previously for this and other nearby fjords (20, 26, 28). Previous 

geochemical measurements demonstrated that increased primary production coupled with 

decreased sedimentation rates toward the mouth of Van Keulenfjorden results in elevated 

subsurface aerobic respiration and a shallower zone of metal reduction coupled to organic matter 

remineralization (20). However, the composition and structure of the microbial communities 

potentially participating in these metabolic processes in the sediment have not been examined. 

This drove us to explore how the observed spatial variability in organic matter amount and 

quality may influence microbial abundance and community structure. 

Quantitative PCR 
Low DNA extraction yields from station HA sediments prevented us from obtaining 

quantitative PCR (qPCR) values for this station, despite having used the same methods 

successfully at stations AB and AC. Either the microorganisms at station HA were in lower 

abundance, or these sediments had higher concentrations of coextracted inhibitors than sediments 

at stations AC and AB.  At station AB, average bacterial 16S rRNA gene copy numbers ranged 

from 1.05×108 at 18-19 cmbsf to 1.33×1011 16S rRNA gene copies g fresh sediment-1 at 0-1 

cmbsf (Figure 4.5; Table 4.2). At AB, most 16S rRNA gene copy numbers are above the range 

captured in our standard curve (1×109 copies, black dashed line), and extrapolated values are 

high, even compared to temperate, eutrophic sediments (40). High copy numbers could be due, 

in part, to differences in 16S rRNA gene copies per cell, which has been shown to average 3.04 

copies per cell (41), or difficulties in absolute versus relative quantification with qPCR (42). The 

high copies of the 16S rRNA gene observed here is supported by previous high rRNA recovery 

from sediments Hornsund, Svalbard (13), although significant correlation between the number of 
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prokaryotic cells and rRNA contents was only observed below 6 cm depth. Archaeal 16S rRNA 

gene copy numbers were lower than bacteria, ranging from 7.42 × 104 16S rRNA gene copies g 

fresh sediment-1 at 18-19 cmbsf in core to 3.92 × 108 16S rRNA gene copies g fresh sediment-1 

at 4-5 cmbsf (Figure 4.5). These values were congruent with qPCR measurements of archaea 

within Smeerenburgfjord, Svalbard, which averaged 1.9 × 108 16S rRNA gene copies g 

sediment-1 in the first 7 cm (43). Despite differences in values, bacteria and archaea had similar 

16S rRNA gene copy patterns with depth within each core, and both exhibited only gradual 

changes with depth. However, these trends differed for the two AB cores which had opposite 

depth trends over the upper 5 cm, and then values diverged for the deeper depths.  

In contrast to site AB, bacterial and archaeal 16S rRNA gene copies were much more 

dynamic with depth at AC, differing by as much as two to four orders of magnitude in adjacent 

depth layers. Maximum values were similar at the two sites, but minimum values were much 

lower at AC than AB. These large oscillations with depth were likely not due to experimental 

error, since replicate measurements were not statistically significantly different. The patterns of 

bacterial gene copy numbers were largely synced between the two AC cores in sediments above 

15 cm, while the AB cores exhibited low variability between depths using the same measurement 

techniques. Given the high variability of bacteria and archaea at station AC, it is not clear 

whether the overall values decrease with depth, as is observed for station AB.  

The seaward increase in 16S rRNA copy numbers observed here may reflect the increase 

in the quality and quantity in organic matter we detected along the long axis of the fjord. Because 

of tight benthic-pelagic coupling, higher primary productivity at the fjord mouth may support a 

higher sediment community that receives seasonal input of labile organics relatively undiluted by 

terrigenous sediment. Further, differences in downcore profiles between the two sites may result 
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from physical processes that disrupt sediment communities and prokaryote abundance in the 

middle and inner fjord, such as highly episodic deposition of sediments with meltwater plumes 

(20), bioturbation (4, 44, 45), and glacial surge events (21).  

Community composition 
 After normalization, we generated a total of 52 libraries across the two stations that 

produced amplifiable DNA, AB and AC. Rarefaction profiles of 16S rRNA gene sequences 

never plateaued (Figure 4.6), suggesting that we did not sequence enough to capture the entire 

breadth of diversity in these sediments. Despite this, our ability to achieve our aim of identifying 

the distribution and co-occurrence patters of the most abundant sequences was not diminished.  

 Across all libraries, the majority of reads were identified as bacteria (96 – 97% versus 

archaea at 3 – 4%). At the phylum level, most sequences were identified as Proteobacteria, 

making up ~25 to 42% of relative sequence abundance at both stations (Figure 4.7). The relative 

abundance of Plactomycetes sequences (~10 – 20%) remained steady downcore at both stations 

compared to other phyla, such as Bacteroidetes. Sequences from Bacteroidetes decreased from 

16% in surface sediments to 3% relative abundance at both stations.  

 Ordination analysis showed that most of the variability in community composition 

between sites can be explained by TOC, especially within shallow sediment depths (Appendix 

III). With increasing sediment depth, communities converge on similar compositions. Deeper 

sediment communities move in ordination space close to vectors related to C/N, δ13Corg, and 

hydrogen . This suggests either that community composition is driven by a combination of 

effects related to these geochemical parameters, or perhaps that like geochemistry, differences in 

microbial communities between stations can only be strongly observed in shallow sediment 

layers.  
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 At both stations, sequences related to anaerobic bacteria likely participating in in situ 

cycling of iron and sulfur species were present, including the Deltaproteobacterial families 

Desulfobacteraceae and Desulfobulbaceae. High Desulfobacteraceae relative abundance was 

shown previously in Smeerenburgfjord sediment, with the genera Desulfosarcina, Desulfofrigus, 

and Desulfococcus the most abundant sulfate reducers (14, 15). Unlike Smeerenburgfjord, 

however, where Desulfobulbaceae were not able to be detected, Desulfobulbaceae sequences 

were in high relative abundance across all sites in Van Keulenfjorden. This family has members 

that can grow through both sulfate (46) and iron reduction (47), suggesting that Van 

Keulenfjorden sediment, rich in both sulfate and potentially metabolizable iron (20), is perhaps 

better suited for supporting this clade.  

Although there was overall good agreement between the two cores sequenced at each 

site, minor local heterogeneity in sediment communities was observed at site AB. For example, 

the 12 – 13 cm interval in core AB.1 had a library composition similar to more shallow depth 

layers (Figure 4.7). Because this feature was not station-wide (i.e., not also observed in core 

AB.2), it may have been related to infaunal burrowing/bioturbation (cf (4, 44)). Despite minor 

core to core variability, little difference in sequence composition and relative abundance was 

observed between the two sites at the family level. At the genus level, however, we observed 

clear differences in downcore relative sequence abundance between stations, especially in 

shallow depths. For example, Desulfococcus and Desulfosarcina, are more abundant in shallow 

depths of station AB compared to shallow depths at station AC. Specifically, while at both 

stations the relative sequence abundance of Desulfococcus reads at the 0 – 1 cm interval was 

0.03 %, rapid increases at station AB allowed relative abundance to exceed 0.1 % at 4 – 5 cm 

depth, whereas at station AC, relative read abundance did not reach this point until 12 – 13 cm 
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depth (Figure 4.8A, B). Both Desulfococcus and Desulfosarcina are able to couple reduction of 

oxidized sulfur compounds, such as sulfate and sulfite, to the oxidation of volatile fatty acids (48, 

49), aromatic compounds (50-52), and H2 (49, 53). The rapid increases in relative read 

abundance for genera related to sulfate reducers at station AB was congruent with sulfate 

reduction rates, which were highest within the first 5 cm, exceeding 50 nmol cm -3 d -1 (Figure 

4.9). High sulfate reduction rates at this interval corresponded with the highest TOC values 

(Figure 4.2A), suggesting ample electron donors were available to stimulate sulfate reduction. 

However, sulfate reduction rates at station AC remained low, never exceeding 5 nmol cm -3 d -1 

on average.  

The depth distribution of sequences for genera within the closely related 

Desulfuromonadaceae (Desulfuromusa) and Geobacteraceae (Geopsychrobacter, 

Geothermobacter, and Geobacter) were similarly distinct between stations. The relative 

abundance of these sequences was highest above ~10 cm in station AB (Figure 4.8A), whereas at 

station AC, sequence abundance for these genera only slightly decreased or remained steady 

downcore (Figure 4.8B). Specifically, at station AC, the relative read abundance for 

Desulfuromusa displayed no observable trend with depth, while sequences of Geobacteraceae 

genera decreased slightly. Desulfuromusa and its relatives use various terminal electron 

acceptors for growth, including Fe(III), Mn(IV), elemental sulfur, and nitrate (54-56). This 

highlights metabolic plasticity that may allow the use of variable electron acceptors experienced 

throughout the depth of the core. Similarly, Geobacteraceae contain numerous adaptations that 

allow them to thrive in iron-rich anoxic marine sediments, including low maintenance energy 

(57) and the ability to oxidize common fermentation products while reducing Fe(III) or Mn(IV) 

(56, 58, 59). Differences in depth gradients in the same core between these closely related clades 
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suggests the potential for metabolic niche differentiation. Further, our genetic data suggests that 

reducible iron (ferrihydrite, hematite, goethite, and iron carbonates) is present deeper at station 

AC sediment than at station AB. One potential cause for a deepening of the iron reduction zone 

is a high sediment deposition rate at AC compared to outer station AB. Spatial differences 

between middle and outer fjord sediments related to iron accumulation have been suggested to 

play an important role in biogeochemical cycling of iron and sulfur within nearby Van 

Mijenfjorden (6) and the same drivers may be at work in Van Keulenfjorden. 

 At both stations, the vertical zonation between sequences related to iron reducers and 

those related to sulfur reducers agrees with what is predicted through thermodynamic sorting and 

energy yield of reduction with Fe(III) and sulfur species (60, 61). However, recent studies have 

shown that the distribution of iron-cycling bacteria is decoupled from traditional geochemical 

zonation in sediments and may be driven instead by microniche distribution and metabolic 

flexibility (62). Increased abundance of sequences related to sulfur reducers below ~5 cm depth 

at station AB and ~12 cm at station AC is likely an artifact of an absolute decrease in iron-

cycling bacteria, as can be interpreted from decreases in bacterial 16S rRNA gene copies past 

these depths (Figure 4.3A, C). Decreased absolute abundance of clades that reduce iron may 

occur because of the decreasing availability of high-energy, bioavailable iron (oxyhydr)oxides or 

manganese oxides with depth (20). In particular, oxidized iron depletion could occur through 

dissimilatory iron reduction or through abiotic interactions with sulfide generated from microbial 

sulfate reduction (63, 64). The rapid decline at station AB in Desulfuromonas and 

Geobacteraceae sequences with depth suggests that oxidized iron is quickly exhausted in shallow 

depths, perhaps from a combination of high rates of dissimilatory iron reduction and sufficient 

sulfide from sulfate reduction for the chemical scavenging of oxidized iron.  



97 

 

Clades with cultured representatives that oxidize reduced forms of sulfur were also 

present at both sites, but more abundant at station AC. Sequences for Arcobacter, Sulfurimonas, 

Sulfurovum (Epsilonproteobacteria), Cocleimonas (Gammaproteobacteria), and Thiobacillus 

(Betaproteobacteria) all maintained relatively high sequence abundance with depth at AC (Figure 

4.8). These populations could be supported though the presence of sulfur intermediates that are 

likely generated through abiotic interactions with reducible iron. Specifically, if reducible iron 

penetrates deeper in station AC sediment, redox conditions remain suboxic in a cryptic iron-

sulfur cycle wherein reduced sulfur intermediates, such as elemental sulfur and thiosulfate, 

become replenished (65-67). This cryptic iron-sulfur cycle then could provide a consistent source 

of sulfur intermediates that are useful in biological sulfur oxidation for groups like Cocleimonas 

and Sulfurovum (68-71). The biological reoxidation of reduced sulfur species and abiotic 

reoxidation with reducible iron and manganese together may explain the conservation of pore 

water sulfate with depth previously noted within Van Keulenfjorden sediments (20).  

Inconsistent depth trends in the relative abundance of Mariprofundus sequences may be 

related to the distribution of suboxic microniches. Like sequences related to clades known to 

oxidize sulfur compounds, Mariprofundus sequences were more abundant and penetrated deeper 

in station AC. The two isolates from this group, Mariprofundus ferroxydans and Mariprofundus 

micogutta, oxidize Fe(II) with molecular oxygen under microaerophilic conditions (72-74). 

Gallionella sequences were more abundant at station AC and were present at nearly every depth 

where Mariprofundus was found. However, while Mariprofundus sequences extended to 15 

cmbsf at AB, Gallionella sequences were mostly restricted to the first 2 cm at this station (Figure 

4.8A). Because station AB is situated near the source of marnie waters to the fjord, these 

observations agree with environmental studies suggesting that Mariprofundus is a strict marine 
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iron oxidizer, while Gallionella is restricted to freshwater systems or maintains low abundance in 

marine systems (75-77).  

Desulfobulbus sequences were highly abundant at both stations and generally increased 

with depth (Figure 5). Desulfobulbus contains members with diverse metabolism, including 

Desulfobulbus propionicus, which can grow while performing dissimilatory iron reduction (47) 

and Desulfobulbus alkaliphilus, which can grow using sulfate and sulfite in the complete 

oxidation of organic matter (78). Because of this metabolic flexibility, we consider this genus to 

reduce either iron or sulfur species. Sequences of the uncultured Sva1033 unclassified group 

displayed depth gradients very similar to Desulfobulbus sequences at both stations. Sva1033 was 

first identified through gene clone libraries of Smeerenburgfjord sediment, where it 

phylogenetically grouped within the order Desulfuromondales (14). This study found that its 

closest relative by 16S rRNA gene identity (93.7%) is Desulfuromonas palmitatis, a 

dissimilatory iron reducer capable of oxidizing long-chain fatty acids (79). Sva0081 sediment 

group sequences increased with depth at both sites. 16S rRNA gene clones of Sva0081 sediment 

group from Smeerenbergfjord sediment were identified as members of the Desulfobacteraceae 

(14) and has since been identified in diverse sediment habitats, including from the North Pacific 

(80), the North Sea (81), and in the Wadden Sea (81). Metagenomic and single cell genome 

analysis suggests that Sva0081 sediment group is an important scavenger of H2 in marine 

sediments (81). 

Microbial networks 
Networks were built to understand how the most abundant (top 30) operational 

taxonomic units (OTUs) and those with cultured representatives that cycle iron and/or sulfur 

occur together and with geochemistry (cf (82)). Individual microbial co-occurrence networks 
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were generated for each core (Figure 4.11) and then merged to find replicated patterns (Figure 

4.12). Neither geochemistry (TOC, δ13Corg, C/N, H2) nor SRR were found to have statistically 

significant relationships, and instead connections were limited to interactions between microbial 

taxa. Most nodes in both networks represent phylogenetically diverse members of the 

Deltaproteobacteria which mainly have positive co-occurrence relationships between them. This 

indicates similar abundance patterns among the Deltaproteobacteria at the two stations. This 

agrees with observations of relative abundance for Desulfococcus and SEEP-SRB1 which 

showed increased relative abundance with sediment depth, likely related to favorable anoxic 

conditions (Figure 4.8).  

 Within the AB network, 53% of nodes were among the most abundant OTUs, including 

Desulfobulbus, Desulfococcus, and Geopsychrobacter. By contrast, within the larger AC 

network, most nodes were relatively rare abundance OTUs. We tested if relatively rare taxa are 

important members of the community by calculating betweenness centrality, or average number 

of shortest paths. The betweenness centrality metric can be used to identify key members of a 

microbial community and help generate hypotheses about the functional role of these 

microorganisms in situ (83, 84). At station AB, a relatively low-abundance Nitrosomonas OTU 

had the highest betweenness centrality (Figure 4.12A). Members of the Nitrosomonas are 

chemolithoautotrophs that gain energy through the oxidation of ammonia to nitrate (85, 86) and 

are crucial nitrogen cyclers in marine sediments (87-89). Nitrate generated by Nitrosomonas 

could perhaps benefit members of the community that rely on nitrate for their metabolism, 

allowing this relatively rare OTU to impart control on how other members of its community 

occur together. At station AC, a Desulfobulbus OTU had the highest betweenness centrality and 

the highest relative sequence abundance (Figure 4.12). Further, this OTU had the most 
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connections with other taxa, suggesting that this OTU represents a “hub” that connects many 

nodes that aren’t directly connected (90). Future work should explore the in situ metabolic 

activity of Desulfobulbus and its potential interactions with microbial counterparts in these 

sediments using targeted genomics and/or incubation approaches.  

Epsilonproteobacteria were more represented in the AC network, agreeing with relative 

sequence abundance for genera like Arcobacter, Sulfurimonas, and Sulfurovum, which were 

more abundant at station AC (Figure 4.8). However, sequence abundance did not always predict 

network results. For example, although no clear distinction in sequence abundance between 

stations was observed for Sva1033, their OTUs were exclusive to the AC network, in which they 

only positively correlated with each other and members of Desulfobulbaceae and 

Desulfobacteraceae, Some genera that were more prevalent at station AC, like Geothermobacter 

and Geopsychrobacter, were present in both networks, while others, such as Gallionella and 

Mariprofundus, did not appear in our networks at all. Further, station-specific co-occurrence 

patterns observed for the same OTUs, such as Desulfococcus and Geopsychrobacter, suggests 

that distance from the glacier was a strong control on interactions between microbial taxa.  

Conclusions 

In conclusion, the sediments of Van Keulenfjorden contain a highly abundant and diverse 

consortium of bacteria and archaea that is supported by a cross-fjord gradient of increasing 

amount and bioavailability of organic matter moving toward the mouth of the fjord. Our work 

supports previous hypotheses that glacial proximity predicts sediment microbial community 

composition and structure. Sequence analysis suggested that the upper sediment carbon oxidizing 

niches between the outer and middle stations were occupied by sulfate reducers and iron 

reducers, respectively. Interactions between iron and sulfur chemistry in the sediment 
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encouraged high rates of sulfate reduction in shallow depths at station AB, which was matched 

by our sequence analysis. At station AC, low rates of sulfate reduction and sulfide production 

allowed a deeper zone of reducible iron available for dissimilatory iron reduction, which agreed 

with sequence analysis that showed that iron cycling genera penetrated deeper in station AC 

sediments. Interaction networks suggested that co-occurrence patterns between microbial taxa 

are not strongly influenced by glacial proximity for most taxa, with the notable exception of the 

uncultured Sva1033 clade, which network connections allow us to hypothesize occupies a 

similar ecological niche as members of Desulfobulbaceae and Desulfobacteraceae.  More work is 

necessary to uncover the biological and environmental conditions that favor members of 

Sva1033. 

Our results support the hypothesized alteration in reduced iron delivery to the open ocean 

along Western Svalbard predicted by Wehrmann et al. (2014). Enhanced sulfate reduction 

occurring farthest from the glaciers chemically binds up any free reduced iron that is generated 

through iron reduction with the generation of iron sulfide minerals. As glaciers continue to 

recede, we predict that conditions that prevail at AB will also characterize AC, and thus the 

delivery of reduced iron to the open ocean will further decline. Limited export of reduced iron 

may impact primary production along the shelf, where removal of this key micronutrient will 

decrease phytoplankton populations that represent a large sink for carbon dioxide in the 

atmosphere.  

Material and methods 
Sample collection 

Cores from stations AB and AC in Van Keulenfjorden were collected in August 2016. 

Poly-carbonate core liners were used to subsample HAPs corers (91) at each site, with each core 
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(AB.1, AB.2 at site AB and AC.1, AC.2 at AC) taken centimeters apart, down to a depth of ~20 

cm below sea floor (cmbsf). Cores were stored at 4°C until they were ready for processing within 

8 hours. A metal plate and collar were used to section at 1 cm intervals. Cores destined for 

molecular work were processed sterilely outside, where air temperatures remained near in situ 

temperatures (~4°C). Cores for geochemical analyses were processed inside the Kings Bay 

Marine Lab at room temperature. Sediment samples for organic geochemistry were stored at -

80°C until processed.  

Sedimentation accumulation rate 
Frozen sediment was shipped on dry ice to University of Kentucky for analysis of natural and 

anthropogenic ɣ-emitters via low-level ɣ-spectroscopy. Sediment accumulation was then 

calculated from the depth where the maximum activity of 137Cs was found, divided by the time 

since 1963. This model is based on the assumption of limited vertical mobility of cesium in 

sediments (92-94). 

 Organic and isotope geochemistry 
Sediment for analysis of organic matter was freeze-dried after thawing from -80°C and 

subjected to acid fumigation overnight before analysis (95). Total organic carbon as well as 

isotope composition of carbon and nitrogen from bulk organic matter was measured using a 

Thermo-Finnigan Delta XL mass spectrometer coupled to an elemental analyzer at The 

University of Tennessee, Knoxville. Carbon to nitrogen (C/N) ratios were calculated by dividing 

percent C by percent N. Isotopic values were calibrated against the USGS40 and USGS41 

international standards. In-house standard sets were run every 12 samples. Outliers were 

determined using Cook’s distance (96) in R (97). Across multiple runs, one standard deviation 

was 0.1-0.2 ‰ for δ13Corg, 1.1-1.8 % for mgN, and 1.0-2.2 % for mgC. 
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Quantitative PCR  
Genomic DNA was extracted from approximately 2 g of Svalbard sediment per depth 

using the RNeasy Power Soil kit for RNA extraction with the DNA accessory kit (QIAGEN, 

Valencia, CA). DNA extracts were stored at -80 °C until required. We tested 1:1 dilutions and 

1:40 dilutions to identify the most suitable concentrations of DNA for qPCR, but found that 

undiluted DNA extracts provided the lowest Ct values. Total 16S rRNA gene copy numbers of 

bacteria and archaea were quantified with qPCR using domain-specific primers. The sequence 

for the bacterial primer pair Bac340f/Bac515r was, 5’- TCCTACGGGAGGCAGCAGT-3’ for 

the forward primer, and 5’GGACTACCAGGGTATCTAATCCTGTT-3’ for the reverse primer 

(74). The sequence for the archaeal primer pair Arch806f/Arch915r was 5’-ATT AGA TAC CCS 

BGT AGT CC-3’ for the forward primer and 5’- GTG CTC CCC CGC CAA TTC CT-3’ for the 

reverse primer (75, 76). Extracted DNA was amplified with a BioRad DNA Engine Option 2 

system (Applied Biosystems, Foster City, CA) using SYBR Green chemistry (Invitrogen master 

mix). Serial dilutions of extracted plasmids containing amplified partial 16S rRNA genes were 

used as standards for bacteria and archaea, ranging from 1. Nuclease free water was used as a 

negative control and undiluted DNA extracts were used as templates. Results of qPCR were 

rejected if the R2 of the standard curve was below 0.95, or if there was evidence of primer dimers 

within the melt curve. The quantification limit of qPCR was defined as having fluorescence 

threshold cycle numbers (Ct) well within those of the simultaneously run standard curve and 

being at least 3 Ct below the non-template control Ct. Across multiple runs, the standard curve 

ranged in copy numbers from 1 × 102 and 1 × 109. Gene copy numbers were converted into gene 

copies g -1 fresh sediment by accounting for how much sediment was used for each extraction. 

For most depths within each core, two technical replicates were performed.  
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16S rRNA gene libraries  
Taxonomic diversity of Svalbard sediments was evaluated using 16S rRNA gene library 

sequencing. Genomic DNA extracts from AB.1, AB.2, AC.1, and AC.2 were used to generate 

16S rRNA amplicon libraries. The Phusion Master Mix (Thermo Fisher) was used with the 

primer set 515F/806R (98) at the Center for Environmental Biology at The University of 

Tennessee, Knoxville for amplification. Reads were sequenced with Illumina MiSeq and 

trimmed for quality with Trimmomatic using a window 10 base pairs wide and a minimum phred 

score of 28 (99). Trimmed reads were then processed in mothur 1.35.1 (100) using the 

computational cluster at the Bioinformatics Resource Facility at The University of Tennessee, 

Knoxville. OTUs were clustered de novo at the 97% similarity level with the SILVA release 123 

(101). Rarefaction analysis was calculated in mothur with “rarefaction.single” and reads were 

normalized with “normalize.shared” (norm = 60000).  

Hydrogen 
Samples for hydrogen analysis consisted of 1 mL of sediment placed into a dark glass 

serum vial which was then crimp sealed, hand shaken, and gassed with N2 for 15 min prior to 

storage at 4°C. Headspace was measured with glass syringes on a Peak Performer GC at The 

University of Tennessee, Knoxville after 4 days. 

Microbial network analysis 
To evaluate the co-correlation of target OTUs, we generated microbial networks using 

relative abundance at the OTU level from all four cores with the Pearson correlation coefficient 

calculated in the extended local similarity analysis (eLSA) program (81, 82). While abundance 

measures with 16S rRNA genes are likely not true measures of total abundance, as primer bias 

can underrepresent or overrepresent specific sequences (102), relative sequence abundance may 

still be related to actual abundance in situ. Networks excluded OTUs whose sum did not reach 
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0.1% of reads across all libraries from a core. PercentileZ normalization was used in network 

construction and a strict P-value cutoff of <0.001 was used to determine statistically significant 

co-occurrence patterns, which ranged in Pearson’s r values from -0.95 to 1. At this P-value, the 

false discovery rate, or q-estimation, was 0. 

Networks were visualized with the organic layout in Cytoscape 3.5.1 (103). Betweenness 

was calculated with the Analyze Network module in Cytoscape by treating edges as undirected 

(85). The randomness of the generated networks was tested through examination of the degree 

distribution. Degree is a node attribute that is simply the sum of all direct connections involving 

that node. As random networks are characterized by a degree distribution fitting a Poisson 

distribution (104), we used a Chi Square (χ2) test to determine the goodness of fit between 

observed and expected degree distributions if originating from a Poisson distribution and found 

that our networks were not random (105).  

Sulfate reduction rates 
In situ sulfate reduction rates (SRR) were determined via the whole-core injection 

method (106) in 2.5 cm wide and ca. 20 long sub-cores that were taken from a HAPs core. Per 1-

cm depth interval, 50 kBq of 35S-SO4
2- was injected through pre-drilled holes in the coring tube 

that were sealed with polyurethane-based elastic glue. Whole cores were incubated for 14 to16 

hours at 2°C. The incubation was stopped by splicing the core in 1cm sections and mixing each 

section with 10 ml of 10% zinc acetate. Samples were stored at -20°C before radiolabeled total 

reduced inorganic sulfur (TRIS) was recovered and separated from 35S-SO4
2- using the cold 

chromium distillation method (107). Radioactivities of the distillate and of sulfate in the sample 

were analyzed using scintillation counting and sulfate reduction rates were calculated according 

to Jørgensen (1978). 
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Appendix I: Tables and Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

Table 4.1. Geochemistry on bulk sedimentary organic matter. Data for replicate measures shown. 

Asterisks indicate data points that are statistical outliers. 

Stn.core Depth 
(cmbsf) 

TOC (wt%) δ13Corg 

(‰ vs. 
VPDB) 

C/N 

AB.2 1-2 1.7 -29.8* 12.0 
AB.2 3-4 1.6 -24.7 12.7 
AB.2 4-5 1.6 -25.3 12.5 
AB.2 5-6 1.9* -24.2 9.2* 
AB.2 6-7 1.6 -24.3 13.7 
AB.2 7-8 1.5 -24.9 12.6 
AB.2 8-9 1.4 -27.0 12.3 
AB.2 9-10 1.6 -27.0 13.5 
AB.2 11-12 1.5 -25.0 12.7 
AB.2 11-12 1.5 -25.0 13.0 
AB.2 12-13 1.5 -25.0 12.7 
AB.2 13-14 1.5 -24.8 13.2 
AB.2 14-15 1.4 -25.5 12.5 
AB.2 16-17 1.5 -24.8 13.6 
AB.2 17-18 1.4 -25.6 12.9 
AB.2 18-19 1.4 -25.9 13.0 
AB.2 19-20 1.5 -25.4 13.5 
AC.2 0-1 1.4 -26.3* 13.4 
AC.2 1-2 1.5 -25.6 11.5* 
AC.2 2-3 1.4 -25.6 13.1 
AC.2 3-4 1.5 -26.0 13.8 
AC.2 4-5 1.4 -25.7 12.2 
AC.2 5-6 1.4 -25.9 12.5 
AC.2 6-7 1.5 -26.0 12.7 
AC.2 7-8 1.6 -25.8 13.4 
AC.2 8-9 1.4 -25.9 13.4 
AC.2 9-10 1.5 -25.9 12.8 
AC.2 10-11 1.5 -26.4 13.9 
AC.2 11-12 1.4 -26.0 13.2 
AC.2 12-13 1.3 -25.9 14.2 
AC.2 12-13 1.4 -25.7 14.0 
AC.2 13-14 1.4 -26.0 13.0 
AC.2 15-16 1.3 -25.9 13.7 
AC.2 16-17 1.5 -26.2 13.7 
AC.2 17-18 1.4 -27.1 13.6 
AC.2 19-20 1.4 -25.9 13.8 
AC.2 19-20 1.3 -26.3* 13.3 
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Table 4.1 continued. 

Stn.core Depth 
(cmbsf) 

TOC (wt%) δ13Corg 

(‰ vs. 
VPDB) 

C/N 

HA.2 0-1 1.4 -26.2 13.2 
HA.2 1-2 1.4 -26.2 13.7 
HA.2 2-3 1.3 -26.2 13.6 
HA.2 3-4 1.4 -26.3 14.2 
HA.2 3-4 1.3 -26.2 13.4 
HA.2 4-5 1.2 -26.4 13.1 
HA.2 5-6 1.3 -26.2 14.1 
HA.2 7-8 1.4 -26.4 14.1 
HA.2 8-9 1.4 -25.8 13.5 
HA.2 8-9 1.3 -26.6 12.7 
HA.2 9-10 1.3 -26.2 13.9 
HA.2 10-11 1.4 -26.1 13.5 
HA.2 11-12 1.5 -25.7 12.9 
HA.2 12-13 1.5 -27.0* 13.3 
HA.2 13-14 1.4 -25.7 13.3 
HA.2 14-15 1.5 -26.0 14.5* 
HA.2 15-16 1.3 -26.5 12.6 
HA.2 16-17 1.4 -26.0 12.7 
HA.2 17-18 1.4 -26.1 13.2 
HA.2 18-19 1.4 -26.0 13.2 
HA.2 22-23 1.5 -26.2 13.3 
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Table 4.2. Results of qPCR quantification of two cores taken at stations AB and AC. Values are 

reported in copy numbers g-1 sediment for each station (Stn) and depth (in cmbsf). Average copy 

numbers are taken from technical replicates Rep A and Rep B. Depths for which values are 

missing are attributed to either a missing sample (*) or results being below the quantification 

limit (+). ND = not determined. 

Stn. 
core 

Depth Bacteria 
Rep A 

Bacteria 
Rep B 

Average 
Bacteria 

Archaea 
Rep A 

Archaea 
Rep B 

Average 
Archaea 

AB.1 0-1 1.66E+09 2.69E+08 9.65E+08 2.29E+07 8.05E+07 5.17E+07 
AB.1 1-2 4.52E+09 4.26E+09 4.39E+09 1.31E+08 + 1.31E+08 
AB.1 2-3 7.01E+09 1.18E+10 9.41E+09 2.45E+08 1.46E+08 1.96E+08 
AB.1 3-4 2.21E+10 4.13E+10 3.17E+10 5.75E+07 2.55E+08 1.56E+08 
AB.1 4-5 8.27E+10 5.62E+10 6.95E+10 3.62E+08 4.22E+08 3.92E+08 
AB.1 5-6 + 2.90E+10 2.90E+10 7.91E+07 1.79E+08 1.29E+08 
AB.1 6-7 1.55E+10 2.01E+10 1.55E+10 1.70E+08 5.56E+07 1.13E+08 
AB.1 7-8 3.38E+10 + 3.38E+10 1.02E+07 7.98E+06 9.07E+06 
AB.1 8-9 + 2.45E+10 2.45E+10 3.07E+06 3.82E+06 3.45E+06 
AB.1 9-10 3.28E+10 2.81E+10 3.05E+10 1.07E+07 1.94E+07 1.51E+07 
AB.1 10-11 1.85E+10 1.29E+10 1.57E+10 6.06E+06 8.80E+06 7.43E+06 
AB.1 11-12 1.04E+10 9.84E+09 1.01E+10 8.06E+06 8.19E+06 8.13E+06 
AB.1 12-13 2.12E+10 6.91E+09 1.40E+10 1.43E+07 1.29E+07 1.36E+07 
AB.1 13-14 2.06E+10 1.88E+10 1.97E+10 5.06E+05 5.90E+07 2.98E+07 
AB.1 14-15 1.28E+10 1.35E+10 1.32E+10 3.48E+06 2.87E+06 3.18E+06 
AB.2 0-1 1.39E+11 1.28E+11 1.33E+11 2.74E+07 3.38E+07 3.06E+07 
AB.2 1-2 6.64E+10 + 6.64E+10 1.77E+07 2.58E+07 2.17E+07 
AB.2 2-3 + 6.50E+09 6.50E+09 2.40E+06 2.26E+06 2.33E+06 
AB.2 3-4 2.49E+09 4.86E+09 3.67E+09 1.08E+06 8.34E+05 9.55E+05 
AB.2 4-5 5.24E+09 3.48E+10 2.00E+10 4.51E+06 3.91E+06 4.21E+06 
AB.2 5-6 1.58E+11 1.34E+10 8.56E+10 2.19E+06 ND 2.19E+06 
AB.2 6-7 4.70E+09 1.67E+09 3.18E+09 1.87E+05 1.34E+05 1.61E+05 
AB.2 7-8 1.11E+09 1.66E+09 1.38E+09 3.26E+06 3.10E+05 1.79E+06 
AB.2 8-9 1.48E+08 4.97E+08 3.22E+08 + + + 
AB.2 9-10 1.53E+09 1.06E+09 1.30E+09 3.80E+05 + 3.80E+05 
AB.2 10-11 5.68E+08 1.68E+09 1.12E+09 4.46E+05 ND 4.46E+05 
AB.2 11-12 * * * * * * 
AB.2 12-13 3.74E+09 9.29E+08 2.33E+09 6.07E+04 2.69E+05 1.65E+05 
AB.2 13-14 1.46E+09 2.98E+09 2.22E+09 1.07E+06 ND 1.07E+06 
AB.2 14-15 2.24E+08 3.63E+08 2.93E+08 3.94E+05 ND 3.94E+05 
AB.2 15-16 * * * * * * 
AB.2 16-17 3.07E+08 9.26E+07 2.00E+08 + + + 



123 

 

Table 4.2 continued. 

Stn. 
core 

Depth 
 

Bacteria 
Rep A 

Bacteria 
Rep B 

Average 
Bacteria 

Archaea 
Rep A 

Archaea 
Rep B 

Average 
Archaea 

AB.2 17-18 1.27E+09 1.04E+09 1.15E+09 4.26E+06 1.14E+06 2.70E+06 
AB.2 18-19 5.48E+07 1.55E+08 1.05E+08 7.42E+04 ND 7.42E+04 
AC.1 0-1 9.68E+07 1.55E+08 1.26E+08 2.21E+06 8.33E+09 4.17E+09 
AC.1 1-2 7.37E+09 4.48E+07 3.71E+09 6.25E+06 3.90E+06 5.07E+06 
AC.1 2-3 2.15E+09 + 2.15E+09 2.73E+07 1.10E+07 1.92E+07 
AC.1 3-4 2.85E+09 2.79E+09 2.82E+09 5.06E+06 4.64E+06 4.85E+06 
AC.1 4-5 + + + + + + 
AC.1 5-6 3.71E+08 3.94E+08 3.83E+08 4.10E+05 4.56E+05 4.33E+05 
AC.1 6-7 7.02E+08 7.26E+08 7.14E+08 6.01E+06 1.86E+06 3.94E+06 
AC.1 7-8 2.84E+09 3.45E+09 3.14E+09 1.49E+07 2.83E+07 2.16E+07 
AC.1 8-9 1.17E+10 1.03E+10 1.10E+10 2.82E+07 2.51E+07 2.66E+07 
AC.1 9-10 + + + + + + 
AC.1 10-11 3.42E+07 3.38E+07 3.40E+07 4.41E+05 2.45E+05 3.43E+05 
AC.1 11-12 3.42E+07 5.29E+07 4.36E+07 1.23E+05 1.85E+05 1.54E+05 
AC.1 12-13 1.76E+09 2.77E+09 2.26E+09 3.83E+06 3.30E+06 3.56E+06 
AC.1 13-14 7.33E+07 4.78E+07 6.05E+07 7.78E+04 2.10E+05 1.44E+05 
AC.1 14-15 5.64E+07 6.18E+07 5.91E+07 5.11E+05 6.86E+05 5.99E+05 
AC.1 15-16 1.69E+09 + 1.69E+09 3.23E+06 5.41E+06 4.32E+06 
AC.1 16-17 + + + + + + 
AC.1 17-18 7.77E+06 7.92E+06 7.85E+06 2.28E+06 2.05E+06 2.17E+06 
AC.1 18-19 5.69E+06 5.72E+06 5.70E+06 3.36E+06 1.10E+06 2.23E+06 
AC.1 19-20 3.73E+09 3.60E+09 3.67E+09 1.32E+06 1.24E+06 1.28E+06 
AC.2 0-1 4.05E+06 3.31E+06 4.05E+06 3.67E+04 + 3.67E+04 
AC.2 1-2 1.00E+11 8.09E+10 1.00E+11 3.79E+07 2.64E+07 3.21E+07 
AC.2 2-3 6.46E+10 4.78E+10 6.46E+10 1.32E+07 1.23E+07 1.27E+07 
AC.2 3-4 1.04E+09 1.41E+09 1.04E+09 1.60E+06 2.12E+06 1.86E+06 
AC.2 4-5 5.35E+08 2.38E+09 5.35E+08 1.60E+06 2.12E+06 5.87E+06 
AC.2 5-6 + + + + + + 
AC.2 6-7 1.29E+10 8.93E+09 1.09E+10 4.34E+06 1.66E+11 8.32E+10 
AC.2 7-8 5.82E+09 6.40E+09 6.11E+09 2.51E+07 4.93E+07 3.72E+07 
AC.2 8-9 4.76E+09 4.49E+09 4.62E+09 6.28E+06 4.12E+06 5.20E+06 
AC.2 9-10 7.66E+07 1.21E+07 4.43E+07 1.51E+04 2.67E+04 2.09E+04 
AC.2 10-11 2.51E+07 2.17E+07 2.34E+07 1.02E+06 1.75E+05 5.99E+05 
AC.2 11-12 4.41E+09 + 4.41E+09 1.05E+07 4.71E+06 7.62E+06 
AC.2 12-13 4.88E+08 2.68E+09 1.58E+09 2.67E+06 2.86E+06 2.76E+06 
AC.2 13-14 7.19E+09 8.95E+09 7.19E+09 3.16E+07 5.90E+07 4.53E+07 
AC.2 14-15 * * * * * * 
AC.2 15-16 4.26E+06 2.07E+06 3.17E+06 7.52E+04 + 7.52E+04 
AC.2 16-17 + + + + + + 
AC.2 17-18 6.70E+09 5.08E+09 5.89E+09 7.71E+07 2.89E+07 5.30E+07 
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Table 4.2 continued. 

Stn. 
core 

Depth 
 

Bacteria 
Rep A 

Bacteria 
Rep B 

Average 
Bacteria 

Archaea 
Rep A 

Archaea 
Rep B 

Average 
Archaea 

AC.2 18-19 * * * * * * 
AC.2 19-20 3.95E+08 3.58E+08 3.76E+08 ND ND ND 
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Figure 4.1. Map of field site in Svalbard. Locations of towns are noted for reference. Van 

Keulenfjorden is enclosed in red box. Scale bar is 200 km (A). Locations of stations within the 

fjord, with station AC in the middle of the fjord, and AB at the outer mouth. Scale bar is 20 km 

(B). 
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Figure 4.2. Results of age dating for site AC using 210Pb (A) and 137Cs (B). The sediment 

profile was too mixed for reliable 210Pb ages. 
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Figure 4.3. Organic geochemistry data. Downcore profiles of total organic carbon (TOC) (A), 

δ13Corg (B), and carbon to nitrogen ratios (C/N) (C) for sites AB (salmon circles) and AC (purple 

triangles). All values are reported in Table 4.2. 
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Figure 4.4. Outliers determined with Cook’s distance measure for TOC (top row), carbon 

isotopes (middle row) and C/N ratio (bottom row) for the outer site AB (left column), middle site 

AC (middle column), and inner site HA (right row). 
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Figure 4.5. qPCR data. Downcore results of abundance of the 16S rRNA gene for bacteria (A, C) 

and archaea (B, D) reported in copies g fresh sediment-1. Average values between technical 

duplicates are shown for replicate cores AB.1 and AB.2 (salmon) and AC.1 and AC.2 (purple). 

All values are reported in Table 4.2. 
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Figure 4.6. Measurement of alpha diversity of 16S rRNA gene amplicon libraries for core AB.1 

(A), core AB.2 (B), core AC.1 (C), core AC.2 (D). Number of observed OTUs is plotted on the 

y-axis and number of sequences is on the x-axis. 
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Figure 4.7. Community composition of iron and sulfur families.16S rRNA gene libraries for 

outer station AB (A and C) and middle station AC (C and D) are reported along a depth axis 

downward for two cores at each site. Only families with summed abundance greater than 1% are 

shown. Colors of families are shared between stations and are in order of relative abundance for 

each station. The x-axis scale of abundance does not reach 100% because reads are dominated by 

families other than those with iron and sulfur cycling representatives. 
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Figure 4.8. Relative abundances of sequences of iron and sulfur taxa in site AB (A) and AC (B). Sequences are sorted by metabolic 

guild: Sulfate reducers (green), sulfate/iron reducers (purple), iron reducers (yellow), sulfur oxidizers (pink), and iron oxidizers (teal), 

and uncultured (peach). The number next to the genus name on the x-axis indicates which core the sequences are from (e.g. AB.1 or 

AB.2, AC.1 or AC.2).  
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Figure 4.9. Sulfate reduction rates  in sites AB (A) and AC (B). Note x- and y- axes are not 

shared between panels. 
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Figure 4.10. Hydrogen data for sites AB (A) and AC (B). Note x- and y- axes are not shared 

between panels. 
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Figure 4.11. Individual microbial interaction networks for cores AB.1 (A), AB.2 (B), AC.1 (C), 

and AC.2 (D). Node color indicates taxonomy. 
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Figure 4.12. Merged microbial co-occurrence networks. Individual network characteristics have 

been combined to show merged networks for outer station AB (A) and middle station AC (B) to 

get at the core microbiome features at each site. Isolated nodes have been removed for clarity. 

Node color indicates taxonomy at the class level and edge relationships are indicated with solid 

and dashed lines for positive and negative connections, respectively.  
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Appendix II: R Code 
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R scripts for qPCR figures 
######## downcore plots for qPCR figure ################ 

qPCR_melted<-read.csv("qPCR_geochem.csv", header=TRUE, stringsAsFactors = FALSE) 

AB_Bac<-subset(AB_vals, Domain %in% c("Bacteria")) 

AB_Arc<-subset(AB_vals, Domain %in% c("Archaea")) 

VK_Bac<-subset(qPCR_melted, Domain %in% c("Bacteria")) 

VK_Arc<-subset(qPCR_melted, Domain %in% c("Archaea")) 

library(scales) 

library(ggplot2) 

library(plyr) 

show_col(hue_pal()(9)) 

cols<-c("AB.2" = "#F8766D","AB.1" = "#F8766D", "AC.1" = "#C77CFF", "AC.2" = "#C77CFF", "AB" = 
"#F8766D", "AC" = "#C77CFF", "HA" = "#00B9E3") 

AB_Bacteria<-ggplot(AB_Bac[!is.na(AB_Bac$Average),], aes(x=Depth, y=Average, color=Subcore, 
Shape=Subcore)) + 

  geom_point(aes(fill=Subcore, shape=Subcore),colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21,22)) + 

  scale_fill_manual(values=cols) + 

  scale_colour_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_x_reverse(limits=c(20,0)) + 

  geom_line(aes(color=Subcore)) + 

  scale_y_log10(limits = c(1e4,1.5e11)) + 

  geom_line(size=1.5) + 

  labs(x="Depth (cmbsf)", y= "Bacteria (average copies/g sediment)") + 

  coord_flip() 

 

AC_Bacteria<-ggplot(AC_Bac[!is.na(AC_Bac$Average),], aes(x=Depth, y=Average, color=Subcore)) + 

  geom_point(aes(fill=Subcore, shape=Subcore), colour="black", size=4, stroke=2) + 

  scale_colour_manual(values=cols) + 

  scale_shape_manual(values = c(23,24)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 
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  scale_x_reverse(limits=c(20,0)) + 

  geom_line(aes(color=Subcore)) + 

  scale_y_log10(limits = c(1e4,1.5e11)) + 

  geom_line(size=1.5) + 

  labs(x="Depth (cmbsf)", y= "Bacteria (average copies/g sediment)") + 

  coord_flip() 

AB_Archaea<-ggplot(AB_Arc[!is.na(AB_Arc$Average),], aes(x=Depth, y=Average, color=Subcore)) + 

  geom_point(aes(shape=Subcore), colour="black", size=4, stroke=2) + 

  scale_colour_manual(values=cols) + 

  scale_shape_manual(values = c(21,22)) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_x_reverse(limits=c(20,0)) + 

  geom_line(aes(color=Subcore)) + 

  scale_y_log10(limits = c(1e4,1.5e11)) + 

  geom_line(size=1.5) + 

  labs(x="Depth (cmbsf)", y= "Archaea (average copies/g sediment)") + 

  coord_flip() 

AC_Archaea<-ggplot(AC_Arc[!is.na(AC_Arc$Average),], aes(x=Depth, y=Average, color=Subcore)) + 

  geom_point(aes(shape=Subcore), colour="black", size=4, stroke=2) + 

  scale_fill_manual(values=cols) + 

  scale_shape_manual(values = c(23,24)) + 

  scale_colour_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_x_reverse(limits=c(20,0)) + 

  geom_line(aes(color=Subcore)) + 

  scale_y_log10(limits = c(1e4,1.5e11)) + 

  geom_line(size=1.5) + 

  labs(x="Depth (cmbsf)", y= "Archaea (average copies/g sediment)") + 

  coord_flip() 
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R scripts for geochemistry  
######## Cook’s distance test on organic chemistry data ################ 

org_chem<-read.csv("TOC.csv") 

# Isolate geochem from each station: 

VK<-org_chem[27:84,] 

VKAB<-VK[which(VK$Station == "AB"), names(VK) %in% c("Fjord", "Station", "Depth", "TOC", "CtoN", 
"d13C", "d15N")] 

VKAC<-org_chem[44:63,] 

VKHA<-VK[which(VK$Station == "HA"), names(VK) %in% c("Fjord", "Station", "Depth", "TOC", "CtoN", 
"d13C", "d15N")] 

# Cook's distance to determine outliers, change data set each time to create plots  

mod<-lm(CtoN ~ Depth , data=VKHA) 

cooksd<-cooks.distance(mod) 

plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance, CtoN in HA")  # plot cook's 
distance 

abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line 

text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, 
na.rm=T),names(cooksd),""), col="red")  # add labels) 

influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])  # influential row 
numbers from original data frame 

#t tests for data without outliers: 

org_chem_no_out<-read.csv("TOC_outliers_removed.csv") 

VK_no_out<-org_chem_no_out[27:84,] 

VKAB_no_out<-VK_no_out[which(VK_no_out$Station == "AB"), names(VK_no_out) %in% c("Fjord", 
"Station", "Depth", "TOC", "CtoN", "d13C", "d15N")] 

VKAC_no_out<-org_chem_no_out[44:63,] 

VKHA_no_out<-VK_no_out[which(VK_no_out$Station == "HA"), names(VK_no_out) %in% c("Fjord", 
"Station", "Depth", "TOC", "CtoN", "d13C", "d15N")] 

shapiro.test(VKAB_no_out$TOC) 

shapiro.test(VKAC_no_out$TOC) 

shapiro.test(VKHA_no_out$TOC) 

 

t.test(VKAB_no_out$TOC,VKAC_no_out$TOC) #Welsh two sample t test -  0.004435 

t.test(VKAB_no_out$TOC, VKHA_no_out$TOC) #Welsh two sample t test - 0.0002843 

t.test(VKHA_no_out$TOC, VKAC_no_out$TOC) #Welsh two sample t test - 0.228 

 

t.test(VKAB_no_out$d13C,VKAC_no_out$d13C) #Welsh two sample t test - 0.005297 

t.test(VKAB_no_out$d13C, VKHA_no_out$d13C) #Welsh two sample t test - 0.0006274 

t.test(VKHA_no_out$d13C, VKAC_no_out$d13C) #Welsh two sample t test - 0.06565 
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t.test(VKAB_no_out$CtoN,VKAC_no_out$CtoN) #Welsh two sample t test - 0.05487 

t.test(VKAB_no_out$CtoN, VKHA_no_out$CtoN) #Welsh two sample t test - 0.005338 

t.test(VKHA_no_out$CtoN, VKAC_no_out$CtoN) #Welsh two sample t test - 0.558 

 

# downcore plots for figure, outliers removed:  

library(ggplot2) 

VK_cton_plot<-ggplot(VK_no_out, aes(x=Depth, y=CtoN, shape=Station, color=Station)) + 

  geom_point(aes(shape=Station, fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21, 24, 23)) + 

  scale_fill_manual(values=cols) + 

  scale_colour_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_x_reverse() + 

  geom_line(aes(color=Station, linetype=Station), size=0.75) + 

  labs(x="Depth (cmbsf)", y="CtoN") + 

  coord_flip() 

 

VK_d13C_plot<-ggplot(VK_no_out, aes(x=Depth, y=d13C, shape=Station, color=Station)) + 

  geom_point(aes(shape=Station, fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21, 24, 23)) + 

  scale_fill_manual(values=cols) + 

  scale_colour_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_y_continuous(limits=c(-28, -24)) + 

  scale_x_reverse() + 

  geom_line(aes(color=Station, linetype=Station), size=0.75) + 

  labs(x="Depth (cmbsf)", y=expression(paste(delta^{13}, "C (\u2030 vs. PDB)"))) + 

  coord_flip() 

 

VK_TOC<-ggplot(VK_no_out, aes(x=Depth, y=TOC, shape=Station, color=Station)) + 
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  geom_point(aes(shape=Station, fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21, 24, 23)) + 

  scale_x_reverse() + 

  scale_fill_manual(values=cols) + 

  scale_colour_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_line(aes(color=Station, linetype=Station), size=0.75) + 

  labs(x="Depth (cmbsf)", y= "TOC (wt%)") + 

  coord_flip() 
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R script for relative abundance plots of 16S rRNA gene amplicon data 
######## Relative abundance bubble plots ########## 

library(tidyr) 

library(dplyr) 

library(plyr) 

library(ggplot2) 

 

norm_AB<-read.csv("AB_norm.csv") 

head(norm_AB) 

norm_AB_tidy<-gather(norm_AB, depth, abundance, X0.5:X18.5) 

head(norm_AB_tidy) 

write.csv(norm_AB_tidy, "norm_AB_tidy.csv") 

 

bub_cols<-c("1"="#01b64e", "2"= "#6346f2", "3"="#cbc600", "4"="#cb0049", "5"="#3aedc7", 
"6"="#ffb89c") 

 

############### AB bubble plot ############# 

norm_AB_tidy_fixed<-read.csv("norm_AB_tidy_fixed.csv", stringsAsFactors = FALSE) 

head(norm_AB_tidy_fixed) 

norm_AB_tidy_fixed$Genus <- reorder(norm_AB_tidy_fixed$Genus,norm_AB_tidy_fixed$guild) 

norm_AB_tidy_fixed$Percent_Abundance<-
as.numeric(as.character(norm_AB_tidy_fixed$Percent_Abundance)) 

norm_AB_tidy_fixed$guild <- as.factor(norm_AB_tidy_fixed$guild) 

 

 

ggplot(norm_AB_tidy_fixed, aes(x=depth, y=Genus, color=guild, size=Percent_Abundance)) + 

  geom_point(aes(fill=guild)) + 

  scale_color_manual(values=bub_cols) + 

  scale_size(range = c(0,10), breaks = c(0.001, 0.01, 0.1, 1, 1.5, 2)) + 

  coord_flip() + 

  theme_bw(base_size = 20) + 

  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 

  labs(x="Depth (cmbsf)", y= "Genus") + 

  scale_x_reverse(limits= c(20,0)) 

 

 

############################################## 
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norm_AC<-read.csv("AC_norm.csv") 

head(norm_AC) 

norm_AC_tidy<-gather(norm_AC, depth, abundance, X0.5:X19.5) 

head(norm_AC_tidy) 

write.csv(norm_AC_tidy, "norm_AC_tidy.csv") 

 

###################AC Bubble plot ############ 

norm_AC_tidy_fixed<-read.csv("norm_AC_tidy_fixed.csv", stringsAsFactors = FALSE) 

head(norm_AC_tidy_fixed) 

norm_AC_tidy_fixed$Genus <- reorder(norm_AC_tidy_fixed$Genus,norm_AC_tidy_fixed$guild) 

norm_AC_tidy_fixed$Percent_Abundance<-
as.numeric(as.character(norm_AC_tidy_fixed$Percent_Abundance)) 

norm_AC_tidy_fixed$guild <- as.factor(norm_AC_tidy_fixed$guild) 

 

ggplot(norm_AC_tidy_fixed, aes(x=depth, y=Genus, color=guild, size=Percent_Abundance)) + 

  geom_point(aes(fill=guild)) + 

  scale_color_manual(values=bub_cols) + 

  scale_size(range = c(0,10), breaks = c(0.001, 0.01, 0.1, 1, 1.5, 2)) + 

  coord_flip() + 

  theme_bw(base_size = 20) + 

  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 

  labs(x="Depth (cmbsf)", y= "Genus") + 

  scale_x_reverse(limits= c(20,0)) 
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R script for sulfate reduction and hydrogen plots 
######## Sulfate reduction plots ########## 

# figure of SRR with depth # 

library(ggplot2) 

SRR<-read.csv("SRR.csv", header=TRUE) 

 

# Both together: 

ggplot(SRR, aes(x = Depth, y = SRR, color=Station, shape= Station)) +  

  geom_point(aes(fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21, 24)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_colour_manual(values=cols) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse() + 

  geom_line(aes(color=Station, linetype=Station)) + 

  geom_line(size=1) + 

  labs(x="Depth (cmbsf)", y= "Sulfate Reduction Rate (nmol cm-3 d-1)") + 

  coord_flip() 

 

# separated: 

SRR_AB<-subset(SRR, Station %in% c("AB")) 

ggplot(SRR_AB, aes(x = Depth, y = SRR, color=Station, shape= Station)) +  

  geom_point(aes(fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(21)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_colour_manual(values=cols) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse(limits=c(25, 0)) + 

  geom_line(aes(color=Station, linetype=Station)) + 

  geom_line(size=1) + 
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  labs(x="Depth (cmbsf)", y= "Sulfate Reduction Rate (nmol cm-3 d-1)") + 

  coord_flip() 

 

SRR_AC<-subset(SRR, Station %in% c("AC")) 

ggplot(SRR_AC, aes(x = Depth, y = SRR, color=Station, shape= Station)) +  

  geom_point(aes(fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(24)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_colour_manual(values=cols) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse(limits=c(25, 0)) + 

  geom_line(aes(color=Station, linetype=Station)) + 

  geom_line(size=1) + 

  labs(x="Depth (cmbsf)", y= "Sulfate Reduction Rate (nmol cm-3 d-1)") + 

  coord_flip() 

 

####### Hydrogen ########### 

library(ggplot2) 

hyd<-read.csv("Hydrogen.csv") 

H_AB<-subset(hyd, Station %in% c("AB")) 

 

ggplot(H_AB, aes(x = Depth, y = Hydrogen, color=Station, shape= Rep)) +  

  geom_point(aes(fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(23, 22)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_colour_manual(values=cols) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse(limits=c(30, 0)) + 

  geom_line(aes(color=Station, linetype=Station)) + 

  geom_line(size=1) + 
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  labs(x="Depth (cmbsf)", y= "Hydrogen (nM)") + 

  coord_flip() 

 

 

H_AC<-subset(hyd, Station %in% c("AC")) 

 

ggplot(H_AC, aes(x = Depth, y = Hydrogen, color=Station, shape= Rep)) +  

  geom_point(aes(fill=Station), colour="black", size=4, stroke=2) + 

  scale_shape_manual(values = c(23, 22)) + 

  scale_fill_manual(values=cols) + 

  theme_bw(base_size = 20) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  scale_colour_manual(values=cols) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse(limits=c(30, 0)) + 

  geom_line(aes(color=Station, linetype=Station)) + 

  geom_line(size=1) + 

  labs(x="Depth (cmbsf)", y= "Hydrogen (nM)") + 

  coord_flip() 

 

 

Code for analyses within Appendix III 
getwd() 

library(ggplot2) 

library(vegan) 

library(dplyr) 

library(scales) 

library(grid) 

library(reshape2) 

library(phyloseq) 

theme_set(theme_bw()) 

sharedfile = 
"Sva_All.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.opti_mcc.unique_list.0.
03.pick.shared" #shared file for the overall sequencing depth (not just Fe/S groups) was 
“Shared_all.shared” 
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taxfile = 
"Sva.trimmed.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.opti_mcc.unique_lis
t.0.03.cons.taxonomy" 

mapfile = "Metadata.csv" 

mothur_data <- import_mothur(mothur_shared_file = sharedfile, mothur_constaxonomy_file = taxfile) 
# Import mothur data 

map <-read.csv(mapfile) # Import sample metadata (organic geochem, hydrogen, site, replciate, 
fjord, Fe and Mn concentrations) 

head(map) 

map <- sample_data(map) 

rownames(map) <- map$Sample.Id # Assign rownames to be Sample ID's 

moth_merge <- merge_phyloseq(mothur_data, map) # Merge mothurdata object with sample metadata 

moth_merge 

colnames(tax_table(moth_merge)) 

colnames(tax_table(moth_merge)) <-c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus") 

colnames(tax_table(moth_merge)) 

sample_sum_df <- data.frame(sum = sample_sums(moth_merge)) # Make a data frame with a column for 
the read counts of each sample 

ggplot(sample_sum_df, aes(x = sum)) +  

  geom_histogram(color = "black", fill = "indianred", binwidth = 2500) + 

  ggtitle("Distribution of sample sequencing depth") +  

  xlab("Read counts") + 

  theme(axis.title.y = element_blank()) 

# mean, max and min of sample read counts 

smin<-min(sample_sums(moth_merge)) 

smin #2 for library AB0-1, when this lib removed, min is 1,936 

smax<-max(sample_sums(moth_merge)) 

smax #49166 

smean<-mean(sample_sums(moth_merge)) 

smean #23289.94, when AB0-1 removed = 23803 

sva_phylum<- moth_merge %>% 

  tax_glom(taxrank = "Phylum") %>% 

  transform_sample_counts(function(x) {x/sum(x)} ) %>% 

  psmelt() %>% 

  filter(Abundance > 0.02) %>% 

  arrange(Phylum) 

phylum_colors <- c( 

  "#CBD588", "#5F7FC7", "orange","#DA5724", "#508578", "#CD9BCD", 



149 

 

  "#AD6F3B", "#673770","#D14285", "#652926", "#C84248",  

  "#8569D5", "#5E738F","#D1A33D", "#8A7C64", "#599861" 

) 

ggplot(sva_phylum, aes(x = Sample, y = Abundance, fill = Phylum)) +  

  facet_grid(Station~.) + 

  geom_bar(stat = "identity") + 

  scale_fill_manual(values = phylum_colors) + 

  # 

  guides(fill = guide_legend(reverse = TRUE, keywidth = 1, keyheight = 1)) + 

  ylab("Relative Abundance (Phyla > 2%) \n") + 

  ggtitle("Phylum Composition of Svalbard sediments \n Bacterial Communities by Sampling Site") + 

  theme(axis.text.x = element_text(angle =90, hjust = 1)) 

###### ordination 

 

# Source code files downloaded from ~/git_repos/MicrobeMiseq/R/miseqR.R 

source("C:/Users/JoySpin/Documents/miseqR.R") 

 

minlib = 15000 #minlib for all sequences (not just Fe/S) was 60000 

sva_scale<-scale_reads(moth_merge, minlib) #scale reads to even depth 

sample_data(sva_scale)$Depth <- factor( 

  sample_data(sva_scale)$Depth, 

  levels = c(0.5, 

             1.5, 

             2.5, 

             3.5, 

             4.5, 

             5.5, 

             6.5, 

             7.5, 

             8.5, 

             9.5, 

             10.5, 

             11.5, 

             12.5, 

             13.5, 

             14.5, 
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             15.5, 

             16.5, 

             17.5, 

             18.5, 

             19.5) 

) 

require(devtools) 

 

install_version("vegan", version ="2.4-5", repos = "http://cran.us.r-project.org") #Phyloseq qas 
written with dependency on an older Vegan package 

#Restart R 

library(vegan) 

 

sva_pcoa<-ordinate( 

  physeq = sva_scale, 

  method = "PCoA", 

  distance = "bray" 

) 

palette<-colfunc <- colorRampPalette(c("lightpink", "brown")) 

 

plot_ordination( 

  physeq = sva_scale, 

  ordination = sva_pcoa, 

  color = "Depth", 

  shape = "Station", 

  title = "PCoA Bray Curtis" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size=3) + scale_color_manual(values = palette(c(20))) 

 

otu_table(sva_scale) 

 

############### PCoA is the same if only samples with > 15000 read are examined  

sva_15000<-prune_samples(sample_sums(moth_merge)>15000, moth_merge) 

sva_15000 
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otu_table(sva_15000) 

sva_15000_pcoa<-ordinate( 

  physeq = sva_scale, 

  method = "PCoA", 

  distance = "bray" 

) 

 

plot_ordination( 

  physeq = sva_15000, 

  ordination = sva_15000_pcoa, 

  color = "Depth", 

  shape = "Station", 

  title = "PCoA Bray Curtis" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size=3)  

 

 

write.csv(sva_15000_pcoa$vectors, file = "sva_15000_pcoa.csv") 

########################### PCoA of individual sites 

sva_AB<-moth_merge %>% 

  subset_samples(Station=="AB") 

sva_AC<-moth_merge %>% 

  subset_samples(Station=="AC") 

 

sva_AB_pcoa<-ordinate( 

  physeq = sva_AB, 

  method = "PCoA", 

  distance = "bray" 

) 

 

plot_ordination( 

  physeq = sva_AB, 

  ordination = sva_AB_pcoa, 

  color = "Depth", 
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  title = "PCoA of VK stn AB communities Bray Curtis" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4) + scale_colour_gradient(high = "brown", low = "lightpink") 

 

 

sva_AC_pcoa<-ordinate( 

  physeq = sva_AC, 

  method = "PCoA", 

  distance = "bray" 

) 

 

plot_ordination( 

  physeq = sva_AC, 

  ordination = sva_AC_pcoa, 

  color = "Depth", 

  title = "PCoA of VK stn AC communities Bray Curtis" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4) + scale_colour_gradient(high = "brown", low = "lightpink") 

 

############# Prune samples with small libraries 

 

sample_data(sva_15000) 

write.csv(sample_data(sva_15000), file = "sva_15000.csv") 

sva_AB_15000<-prune_samples(sample_sums(sva_AB)>15000, sva_AB) 

sva_AB_15000_pcoa<-ordinate( 

  physeq = sva_AB_15000, 

  method = "PCoA", 

  distance = "bray" 

) 

 

plot_ordination( 

  physeq = sva_AB_15000, 
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  ordination = sva_AB_15000_pcoa, 

  color = "Depth", 

  shape = "Station", 

  title = "PCoA of VK stn AB prokaryotic communities, >15000 reads" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4, shape=19) + scale_colour_gradient(high = "brown", low = "lightpink") + 

  geom_text(mapping = aes(label = Depth), size = 5, vjust = 1.5)  

 

sva_AC_15000<-prune_samples(sample_sums(sva_AC)>15000, sva_AC) 

sva_AC_15000_pcoa<-ordinate( 

  physeq = sva_AC_15000, 

  method = "PCoA", 

  distance = "bray" 

) 

 

plot_ordination( 

  physeq = sva_AC_15000, 

  ordination = sva_AC_15000_pcoa, 

  color = "Depth", 

  shape = "Station", 

  title = "PCoA of VK stn AC prokaryotic communities, >15000 reads" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4, shape=17) + scale_colour_gradient(high = "brown", low = "lightpink") + 

  geom_text(mapping = aes(label = Depth), size = 5, vjust = 1.5)  

 

set.seed(1) 

#################### NMDS plot updated 11/16/17 ################################### 

sva_nmds<-ordinate( 

  physeq = sva_15000,  

  method = "NMDS", 

  distance = "bray" 

) 
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plot_ordination( 

  physeq = sva_15000, 

  ordination = sva_nmds, 

  color = "Depth", 

  shape = "Station", 

  title = "NMDS of Svalbard bacterial Communities" 

) + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4) + scale_colour_gradient(high = "brown", low = "lightpink") + 

  geom_text(mapping = aes(label = Depth), size = 5, vjust = 1.5)  

 

stressplot(sva_nmds) 

 

 

########### Doing new distance matrix only on libraries with more than 15,000 reads (Nov. 16th, 
2017) ################### 

VK_15000_not_na<-sva_15000 %>% 

  subset_samples( 

    !is.na(Hydrogen) & 

      !is.na(d13Corg) &  

      !is.na("%C") &  

      !is.na("C/N") 

  ) 

colnames(sample_data(VK_15000_not_na)) <-c("Sample Id", "Fjord", "Station", 
"Replicate", "Depth", "Proximity_to_glacier", "Hydrogen", "d13Corg", "Percent_C",
 "CtoN", "Fe", "Mn") 

VK_bray_15000_not_na<-phyloseq::distance(VK_15000_not_na, method = "bray") 

sampledf_VK_15000<-data.frame(sample_data(sva_15000))   

adonis(VK_bray_15000_not_na ~ Station, data= sampledf_VK_15000)   

beta_VK_15000<-betadisper(VK_bray_15000_not_na, sampledf_VK_15000$Station)   

permutest(beta_VK_15000) 

sva_15000_bray<-phyloseq::distance(physeq=sva_15000, method="bray") 

 

############ CAP ord plot ################### 

cap_ord_VK <- ordinate( 
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  physeq = VK_15000_not_na,  

  method = "CAP", 

  distance = VK_bray_15000_not_na, 

  formula = ~ Hydrogen + d13Corg + Percent_C + CtoN + Proximity_to_glacier + Depth + Fe + Mn) 

 

cap_plot <- plot_ordination( 

  physeq = VK_15000_not_na,  

  ordination = cap_ord_VK,  

  color = "Depth", 

  axes = c(1,2) 

) +  

  aes(shape = Station) +  

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) + 

  geom_point(size = 4) + scale_colour_gradient(high = "brown", low = "lightpink") + 

  geom_text(mapping = aes(label = Depth), size = 5, vjust = 1.5)  

arrowmat <- vegan::scores(cap_ord_VK, display = "bp") 

arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat) 

arrow_map <- aes(xend = CAP1,  

                 yend = CAP2,  

                 x = 0,  

                 y = 0,  

                 shape = NULL,  

                 color = NULL,  

                 label = labels) 

label_map <- aes(x = 1.3 * CAP1,  

                 y = 1.3 * CAP2,  

                 shape = NULL,  

                 color = NULL,  

                 label = labels) 

arrowhead = arrow(length = unit(0.02, "npc"))  

 

cap_plot +  

  geom_segment( 

    mapping = arrow_map,  

    size = .75,  
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    data = arrowdf,  

    color = "black",  

    arrow = arrowhead 

  ) +  

  geom_text( 

    mapping = label_map,  

    size = 5, 

    data = arrowdf, 

    color = "dodgerblue3", 

    show.legend = FALSE 

  ) 

 

anova(cap_ord_VK, by="terms", perm.max=500) 

anova(cap_ord_VK, by = "margin") 

anova(cap_ord_VK) 

 

 

sample_dist<-vegdist(tax_table(sva_15000), method = "bray") 

mantel(sva_bray, bray_not_na) 

 

 

########## diversity 

 

pal="Set1" 

moth_merge 

plot_richness(sva_15000) 

plot_richness(sva_15000, measures = c("Chao1", "Shannon")) 

plot_richness(sva_15000, x="Depth", measures = c("Chao1", "Shannon")) 

sample_data(sva_15000)$fjord<-get_variable(sva_15000, "Station") %in% c("AB", "AC") 

plot_richness(sva_15000, x="Depth", color="Station", measures = c("Chao1", "Shannon")) 

sample_data(sva_15000)$fjord<-get_variable(sva_AB_AC, "Station") %in% c("AB", "AC") 

plot_richness(sva_15000, x="Depth", color="Station", measures = c("Chao1","Shannon")) 

number_ticks<-function(n) {function(limits) pretty (limits, n)} 

p<-plot_richness(sva_15000, x="Depth", color="Station", measures = c("Chao1", "Shannon", 
"Simpson")) + geom_line() + 

  scale_x_reverse() + 
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  coord_flip() 

plots<-layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE),  

       widths=c(3,1), heights=c(1,2)) 

 

 

#### plots used in Appendix 

d<-plot_richness(sva_15000, x="Depth", color="Station", measures = c("Shannon")) +  

  geom_line() + 

  geom_point(aes(size=7)) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse() + 

  coord_flip() + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) 

 

K<-plot_richness(sva_15000, x="Depth", color="Station", measures = c("Chao1")) +  

  geom_line() + 

  geom_point(aes(size=7)) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse() + 

  coord_flip()+ 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) 

 

L<-plot_richness(sva_15000, x="Depth", color="Station", measures = c("Simpson")) +  

  geom_line() + 

  geom_point(aes(size=7)) + 

  theme(text = element_text(size=20)) + 

  scale_x_reverse() + 

    coord_flip() + 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

        panel.background = element_blank(), axis.line = element_line(colour = "black")) 

 

richness_AB_AC<-estimate_richness(sva_15000) 

write.csv(richness_AB_AC, "Richness_AB_AC.csv") 
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Appendix III: Alpha Diversity and Ordination of 16S rRNA Gene Amplicon Libraries 
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Sample sequencing depth and alpha diversity  
Using the Phyloseq package for R (1, 2), we calculated the distribution of sample 

sequencing depth (Figure 4A-III.1). The largest sample read counts was 49,166 and the average 

was 23289. All samples were dominated by Proteobateria (Figure 4A-III.2). Marine sediments 

represent one of the most diverse habitats for bacteria and archaea (3). To understand if 

microbial diversity within Van Keulenfjorden differed according to 16S rRNA gene amplicon 

analysis between sites or with depth, we calculated several different measures of alpha diversity 

(Shannon, Simpson, Chao1, Figure 4A-III.2).  

Ordination analysis 
To understand the differences across samples, unconstrained ordination analyses (Principle 

Coordinates Analysis or PCoA and Non-Metric Multidimensional Scaling or NMDS) on Bray-

Curtis dissimilarity were applied to samples >15,000 reads. The main difference between these 

two measures is that PCoA solves an eigenvalue equation associated with a linear system, and 

NMDS can better accurately preserve high-dimensionality of complicated systems in its 

projections (4). NMDS ranks the distance between samples and preserves these ranks when 

placing them into two-dimensional ordination space (5, 6). The goodness of fit between the 

original NMDS plot (with n dimensions) into the final two-dimensional projection is captured 

with a stress plot.  

Across both stations AB and AC in Van Keulenfjorden, partitioning between samples 

largely occurred along a depth gradient (Figure 4A-III.3 and Figure 4A-III.4). This result is not 

surprising considering typical niche partitioning according to rapid changes in redox conditions 

that is typical of shallow marine sediment (7, 8). A more detailed look into how environmental 

parameters may have influence over the community structure was achieved with constrained 

ordination (4). We used Canonical Analysis of Principal Coordinates (CAP) analysis to see 
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which environmental parameters have influence over Bray Curtis dissimilarity. The results show 

that shallow AC samples are influenced heavily by proximity to the main glacier (Figure 4A-

III.5). Deeper samples (>12 cm depth) in AC are influenced by Fe2+ concentrations, which only 

begin to pick up in concentration (> 200 µM) after 10 cmbsf likely because of abiotic 

interactions with Mn. (unpublished data, Lisa Herbert). Importantly, shallow samples in AB 

appear to be driven by C/N ratios and TOC amounts while deeper samples (> 16 cmbsf) only 

appears to be strongly influenced by depth. Taken together, these results support our hypothesis 

that differences in community structure within shallow sediments is driven by organic matter 

amount and lability, both of which are environmentally determined by spatial gradients along the 

long axis of the fjord. Anova testing of the model wherein distance is a function of the 

environmental parameters shown in Figure 4A-III.5 was found to be significant (Tables 4A-III.1 

through 4A-III.3).  
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Table 4A-III.1. Initial Anova testing of the model “distance ~ Hydrogen + d13Corg + Percent_C 

+ CtoN + Proximity_to_glacier + Depth + Fe + Mn” 

 

 Df SumOfSqs       F  Pr(>F) Signif. code 
Model 8 3.5437 9.9614   0.001 *** 
Residual 45 2.0011    

 

F : The ratio produced by dividing the Mean Square for the Model by the Mean Square for Error. 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 4A-III.2. Secondary Anova with terms added sequentially for the model “distance ~ 

Hydrogen + d13Corg + Percent_C + CtoN + Proximity_to_glacier + Depth + Fe + Mn” 

 Df SumOfSqs F Pr(>F) Signif. code 
Hydrogen 1 0.10248 2.3045 0.087 . 
d13Corg 1 0.19158 4.3083 0.014 * 
Percent_C 1 0.12806 2.8799 0.034 * 
CtoN 1 0.09975 2.2431 0.086 . 
Proximity_to_glacier 1 1.92746 43.3449 0.001 *** 
Depth 1 0.68151 15.3259 0.001 *** 
Fe 1 0.08668 1.9492 0.103  
Mn 1 0.32619 7.3354 0.001 *** 
Residual 45 2.00106    

 

F : The ratio produced by dividing the Mean Square for the Model by the Mean Square for Error. 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 4A-III.3. Final Anova testing with marginal effects of terms in the model “distance ~ 

Hydrogen + d13Corg + Percent_C + CtoN + Proximity_to_glacier + Depth + Fe + Mn” 

 Df SumOfSqs F Pr(>F) 
Signif. 
code 

Hydrogen 1 0.04282 0.963 0.386  
d13Corg 1 0.0231 0.5194 0.685  
Percent_C 1 0.08147 1.8321 0.128  
CtoN 1 0.10525 2.3668 0.082 . 
Proximity_to_glacier 1 1.20108 27.0101 0.001 *** 
Depth 1 0.23357 5.2524 0.005 ** 
Fe 1 0.07301 1.6419 0.166  
Mn 1 0.32619 7.3354 0.002 ** 
Residual 45 2.00106    

 

F : The ratio produced by dividing the Mean Square for the Model by the Mean Square for Error. 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 4A-III.1. Distribution of sequencing depth for all AB and AC amplicon libraries 

considering all sequences (A) and only those sequences identified as iron and/or sulfur groups 

(B).  

 

 

 

 

 

 



166 

 

 

 

 

 

 

 

 

Figure 4A-III.2. Phylum distributions across all libraries.  
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Figure 4A-III.3. Alpha diversity with depth for stations AB (salmon) and AC (teal). Results are 
for iron and sulfur groups only.  
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Figure 4A-III.4. Principle coordinates analysis on Bray Curtis dissimilarity for iron and sulfur 

taxa within sites in Van Keulenfjorden. Panel A contains both sites together, while panels B and 

C show individual results for stations AB and AC, respectively.  
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Figure 4A-III.5. NMDS for stations iron and sulfur groups in AB and AC (A) and stress plot for 

goodness of fit (B). 
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Figure 4A-III.6. Canonical Analysis of Principal Coordinates (CAP) plot with environmental 

variables as vectors describing compositon of iron and sulfur taxa within each depth.  
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Chapter 5: Genomic and transcriptional evidence for physiological responses to burial of 

the dominant carbon-fixing clade Woeseiaceae in Arctic fjord sediment 
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Abstract 
 Dark carbon fixation within marine sediments is performed largely by chemoautotrophic 

gammaproteobacteria. The most abundant and widely-distributed of these is the clade JTB255, 

recently identified as being a member of the Woeseiaceae. Single cell genomic sequencing and 

metagenomic binning of this group showed the potential for both chemolithoautotrophy and 

heterotrophy, highlighting the potential for Woeseiaceae to act as both a carbon source and a 

carbon sink in its environment. However, the only cultured representative of the Woeseiaceae 

was identified as a non-spore forming obligate chemoheterotroph. This suggests that uncultured 

Woeseiaceae clades may have fundamentally different physiologies compared to this isolate. 

Further, although community composition studies suggest that the Woeseiaceae are extremely 

abundant in marine sediments worldwide, very little is known about their transcriptional activity 

in situ, especially in Arctic marine sediments where understanding climate-affected carbon 

dynamics is important and timely. We used 16S rRNA gene sequencing, metagenomic binning, 

and transcriptomics (at 1 cm depth intervals) to uncover the in situ abundance, genomic content, 

and activity in fjord sediments of Svalbard (79°N). We reconstructed 5 Woeseiaceae genomes, 

whose phylogenetic placement was in the Steroidobacterales, updating previous phylogenies 

which placed them into Chromatiales. The genomes encoded a truncated Sox pathway for the 

oxidation of diverse sulfur intermediates linked to a reverse dissimilatory sulfide reductase 

(rDSR) pathway for the complete oxidation of thiosulfate. In addition, sulfur oxidation could 

generate ATP for the reduction of inorganic carbon with a complete Calvin Benson Cycle. 

Transcriptional recruitment is relatively high among these genomes. With increasing sediment 

depth, anoxic conditions appeared to stimulate the transcription of nitrite reductase (nirS) 

involved in denitrification. The cytochromes encoded in the genomes span a vast range of redox 

potential, suggesting that Woeseiaceae have flexible redox preferences within microaerobic to 
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anoxic conditions. Importantly, as Woeseiaceae continued to be buried, they increased 

transcription of genes related to stress-mitigation and sporulation while simultaneously 

decreasing transcription of genes related to growth. Sequencing at high depth resolution allowed 

us to capture nuanced changes that highlight the delicate interplay between redox conditions and 

transcriptional activity of redox-sensitive enzymes and the strategies Woeseiaceae use for 

subsiting after burial for future population re-seeding.  
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Introduction  
In marine sediments worldwide, chemoautotrophic bacteria perform carbon fixation in 

the absence of light, which has been estimated to total at least 0.11 Pg C y-1 (1). Among these 

microorganisms, the gammaproteobacterial clade JTB255 have been shown through isotope 

labeling and FACS sorting studies to contribute nearly 20% of total microbial carbon fixation in 

marine sediments (2). This coastal group has a worldwide distribution (as reviewed by (2)) and 

are consistently among the most abundant groups by sequence abundance (3-5). Single cell 

genomic sequencing and metagenomic binning of this clade showed the potential for 

chemolithoautotrophy as well as heterotrophy (3). Phylogenomic analysis allowed JTB255 to be 

designated as a member of the recently established Woeseiaceae, which has only one cultured 

representative, Woeseia oceani XK5 (3, 6). Contrary to both laboratory and genomic evidence 

that suggested that Woeseiaceae fix inorganic carbon, Woeseia oceani XK5 was shown to be a 

non-spore forming, obligate heterotroph and therefore incapable of autotrophic growth (6), 

suggesting that it may have a fundamentally different physiology than the uncultured 

Woeseiaceae clades that are abundant in marine sediments. 

For a clade such as this with a worldwide distribution and evidence for vast metabolic 

versatility, surprisingly little is known about the activity of Woeseiaceae in situ. Here, we aim to 

understand the in situ transcriptional activity of Woeseiaceae populations in Arctic coastal 

sediments where the presence of Woeseiaceae/JTB55 has been noted previously (5). We 

hypothesize that depth-resolved transcriptional evidence will shed light how this clade 

physiologically responds to changing conditions with burial. We used 16s rRNA gene libraries to 

determine sequence abundance with depth and metagenomically assembled genomes (MAGs) to 

understand if the genomic contents of these Arctic Woeseiaceae genomes are in any way tailored 



175 

 

to its cold, organic carbon-limited environment compared to other published genomes. Our new 

phylogenetic analysis showed that Woeseiaceae belong within the Steroidobacterales instead of 

the previously-assigned Chromatiales. The MAGs contained mechanisms for carbon oxidation 

through the oxidation of reduced sulfur species as well as evidence for a truncated denitrification 

pathway that could lead to the release of nitric oxide. Next, we used transcriptomics to uncover 

the transcriptional landscape in this enigmatic group related to energy metabolism, carbon 

fixation, and spore formation. Our work suggests that redox-sensitive regulators help 

Woeseiaceae perform metabolic switching from sulfur oxidation coupled to carbon fixation 

through the Calvin Benson Cycle to nitrite reduction with changing respiratory conditions 

according to sediment depth. We also present the evidence for expression of spore forming 

proteins that may aid in this group’s ability to re-seed its populations after periods of suboptimal 

conditions. We place our findings within the context of total organic geochemistry measurements 

to understand how feedbacks associated with a warming climate may impact this key group. 

Methods 
Sediment collection  

Sediment for sequencing analyses was collected in the summer of 2016 from different 

stations within Svalbard fjords (79°N). Sediments included in this study are from Stations AB 

(77°35.249’ N, 15°05.121’E) and AC (77°32.260’ N, 15°39.434’ E) in Van Keuelenfjorden 

(outer and middle stations, respectively) and Stations F (78°55.075’ N, 12°15.929’ E) and P 

(78°57.915’N, 12°15.600’E) in Kongsfjorden (both located at areas of glacier outflow) (Figure 

5.1). Smeerenbergfjoren Station J (79°42.8’N, 11°05.9’E) sediment was also used to supply 

additional sequencing information for the construction of higher quality draft genomes only and 

genomes reconstructed from Station J are not included here.  
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Geochemistry  
Sediment was collected with a HAPS corer and subsectioned every 3 cm down to a depth 

of ~30 cm. Samples for hydrogen analysis consisted of 1 mL of sediment placed into a dark glass 

serum vial which was then crimp sealed, hand shaken, and gassed with N2 for 15 min prior to 

storage at 4°C. Headspace was measured with glass syringes on a Peak Performer GC at The 

University of Tennessee, Knoxville after 2 days. Sediment for analysis of organic matter was 

freeze-dried after thawing from -80°C and subjected to acid fumigation overnight before analysis 

(88). Total organic carbon as well as isotope composition of carbon and nitrogen from bulk 

organic matter was measured using a Thermo-Finnigan Delta XL mass spectrometer coupled to 

an elemental analyzer at The University of Tennessee, Knoxville. Carbon to nitrogen (C/N) 

ratios were calculated by dividing percent C by percent N. Isotopic values were calibrated 

against the USGS40 and USGS41 international standards. In-house standard sets were run every 

12 samples. Across multiple runs, one standard deviation was 0.1-0.2 ‰ for δ13Corg, 1.1-1.8 % 

for mgN, and 1.0-2.2 % for mgC. 

DNA extraction 
Cores for molecular analyses were subsectioned at 1 cm depth intervals in the Ny-

Ålesund Marine Lab down to ~20 cm depth. Sediment was frozen immediately on dry ice and 

remained frozen during transport. Sediment was stored at -80°C until processing. Nucleic acids 

were extracted by both the Lloyd (Stations AB, AC, P, F) and Loy (Station AC at 18 cm depth, 

Station J) laboratories using the Qiagen RNeasy Powersoil® Kit for RNA with the DNA 

extraction accessory according to manufacturer’s instructions. RNA extracts were treated with 

DNase in-house (Qiagen) and further DNase treatment was performed at MRDNA (Shallowater, 

TX), followed by sequencing of metatranscriptomic libraries with Illumina HiSeq 2500, PE 

2x250 bp. Individual 1 cm-depth resolved metatranscriptomic libraries were generated with RNA 
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extracts from the first 5 to 6 cm of sediment from stations AB, AC, F, and P, for a total of 20 

metatranscriptomes. Metagenomic libraries were generated from the combined extracts from the 

first 5 cm (spanning 0 to 5 cm downcore) in Stations AB and F with MRDNA with Illumina 

HiSeq 2500 PE 2x250 bp. The Loy Lab sequenced DNA extracts from Station AC at 18 cm 

depth using Illumina HiSeq 3000, PE 2x250 at The University of Vienna.   

Prior to metagenomic assembly, raw reads were trimmed for quality and adapters were 

removed using in-house scripts in the Loy Lab (which removed the leading eight 5’ bases, bases 

with QC < 15 and reads below 50 bp in length). The Lloyd Lab used Trimmomatic (7) for 

trimming both metagenomes and metatranscriptomes, with a sliding window of 10 and a Phred 

cut off score of 28 for all reads above 90 bp. The quality of trimmed reads was assessed with 

Quast 4.5 (8). 

16S rRNA gene amplicon libraries 
Taxonomic diversity of Van Keulenfjord sediments was evaluated using 16S rRNA gene 

library sequencing. Genomic DNA extracts from duplicate cores at each were used to generate 

16S rRNA gene amplicon libraries. Sequencing from Stations P and F failed and are therefore 

not presented here. The Phusion Master Mix (Thermo Fisher) was used with the primer set 

515F/806R (9) at the Center for Environmental Biology at The University of Tennessee, 

Knoxville for amplification. Reads were sequenced with Illumina MiSeq and trimmed for quality 

with Trimmomatic (7) using a window 10 base pairs wide and a minimum phred score of 28. 

Trimmed reads were then processed in mothur 1.35.1 (10) using the computational cluster at the 

Bioinformatics Resource Facility (BRC) at The University of Tennessee, Knoxville. Operational 

taxonomic units (OTUs) were clustered de novo at the 97% similarity level with the SILVA 

release 123 (11). Recent analysis suggests that clutering at ~100% similarity is appropriate to 
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identify OTUs with high taxonomic resolution (12), however, work at the BRC with controlled 

mixed communities identified high sequencing error rates that would preclude higher similarity 

cutoffs suggested by Edgar (2018). OTU counts were normalized in mothur with the 

normalized.shared command with a minimum library size of 60,000 sequences. 

Metagenomic assembly  
MetaSPAdes. Metagenomic assembly was accomplished using metaSPAdes (13) both locallyfor 

Linux and in KBase, browser interface with bioinformatics modules and applications (14). 

Station F was the only metagenome that was assembled via SPAdes version 3.11 locally. The 

metaSPAdes option was utilized with kmer sizes of 21, 33, 55, 77, 99, and 127. Assembled 

contigs were then filtered to contain only contigs with more than 5x coverage and 1000bp length 

using in-house scripts. All other metaSPAdes assemblies were completed on KBase with the 

default parameters (1000bp length and kmer sizes of 21, 33, and 55). 

IDBA and Megahit. To reduce RAM utilization and wall clock time, larger sequence datasets 

were normalized with bbnorm in the Loy lab. Station F and Station AB metagenomes were 

assembled with IDBA version 1.1.3 with default settings in the Lloyd lab (on KBase) and in the 

Loy lab (via command line). Asemblies with Megahit were completed either locally or on KBase 

by the Lloyd lab. All assemblies were generated with 1000 minimum contig length, except IDBA 

assembly in the Loy lab, which used a 500 bp cutoff.  

Taxonomic binning of contigs into metagenome assembled genome (MAGs) 
Contig binning was carried out with MaxBin2 v. 2.2.3 (15), CONCOCT (16) and 

MetaBAT (17) in command line. Each of these binning tools utilizes genomic signatures within 

contigs, such as coverage and kmer frequency, to identify discrete clusters of contigs that likely 

represent a population’s genome. MaxBin2 and CONCOCT binning were performed with default 
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parameters and 1000 bp minimum contig length. MetaBat binning was conducted with an 

interactive pipeline that applies decreasing levels of stringency within each successive iteration, 

collecting the best bins and their contigs each time. The remaining contigs are then placed into 

the next step with a lower stringency (see batch script in Appendix I).  

To achieve the highest quality genomes possible, DAS Tool  (18) was applied to each set 

of binned contigs. This bioinformatic tool takes several different MAGs as input and identifies a 

consensus, non-redundant genome for each MAG, leading to higher quality genomes. Quality 

was determined for our MAGs by categorizing CheckM (19) completeness and contamination 

according to Bowers et al. (2017). In brief, medium quality drafts have completeness and 

contamination values of ≥ 50% and <10%, respectively whereas high quality MAGs have 

completeness and contamination values >90% and contamination <5%. Taxonomic assignment 

was determined through phylogenetic analysis using a concatenated alignment of single copy 

marker genes included in the CheckM suite and a tree was built with FastTree (21). 

Phylogenetic analysis of Woeseiaceae MAGs 
 Phylogenetic analysis of Woeseiacea genomes was conducted with the phylogenomic 

workflow in Anvi’o v. 5.1 (22) with publicly available Woeseiacea genomes downloaded from 

NCBI or IMG. A total of 49 ribosomal genes were identified, concatenated and aligned with 

Clustal in Mega v. 7 (23), wherein a maximum-likelihood tree was built with 1000 bootstraps. 

Members of the Rhodbacterales were used as outgroups.  

RubisCO sequence analysis 
 Publicly available full length (> 480 aa) sequences for large and small chains of ribulose 

bisphosphate carboxylase (RubisCO) were downloaded from NCBI and compared with 

sequences annotated in our MAGs. Alignments were conducted in Mega v. 7 using Clustal. 
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Mega was also used to construct the neighbor-joining tree and topologies shown have >80% 

support after 1000 bootstraps.  

Pangenomic analysis 
The pangenomic workflow was implemented in Anvi’o v. 5.1 in combination with the 

phylogenomics workflow (22). The 5 MAGs reconstructed in this study were evaluated 

alongside the 5 Woeseiaceae genomes available on NCBI or IMG. Independent gene annotation 

was performed on these genomes alongside ours with Prokka (24) (alongside the MAGs in this 

study using a curated database including information for both bacteria and archaea). 

Transcripts, mapping and annotation 
Ribosomal sequences were identified and removed using all bacterial, archaeal, and 

eukaryotic databases included in SortmeRNA (25). To understand how mRNA recruited to MAG 

contigs, filtered transcripts were mapped to MAGs using Bowtie2 (26) with sensitive local 

mapping. Mapping files, Prokka gene calls, and fasta files for each MAG were then used in the 

metagenomics pipeline of Anvi’o v 5.1 (22) for COG identification, transcript abundance, 

coverage estimates, and visualization. Regression analysis on transcript coverage was performed 

in R (27)(R script is contained within Appendix II).  

Results and Discussion 
Geochemistry  
 Hydrogen within Kongsfjorden Stations P and F showed no clear trend with depth after 

an initial drop from ~1.2 nM to ~0.75 nM at both stations (Figure 5.2A). These values are too 

low for methanogenesis but may support sulfate reduction (28). Total organic carbon was overall 

very low (<1 wt %), characteristic of Kongsfjorden (Figure 5.2B) (29) and Svalbard fjords in 

general (30). Low surface water productivity near the fjord head, coupled to high rates of 

terrigenous clastic sediment results in low organic carbon contents in these sediments. In support 
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of this, previous organic geochemistry work showed a seaward increase in both organic matter 

quantity and quality in Van Keulenfjord (31). As both Stations P and F in Kongsfjord are 

situated at the fjord head (Figure 5.1), the organic matter that is delivered to the sediment is less 

labile than freshly deposited algal material. This is demonstrated with high C/N values that reach 

near 14 (Figure 5.2C), in line with previous C/N measurements made in Kongsfjorden (29). 

Isotopic signatures of organic matter (δ13Corg) range between -23 ‰ (vs. VPDB) and -26 ‰ (vs. 

VPDB). These values are more depleted in 13C than the δ13Corg of primary producers in Svalbard, 

which ranges from -15.7 to -19.7 ‰ in ice algae (32, 33) and from -22 to -24 ‰ in marine 

phytoplankton (34, 35). Instead, δ13Corg signatures at Stations P and F may reflect terrestrial 

material, such as soil and coal, which have δ13Corg averages of -26 and -25 ‰, respectively (34). 

Together, this suggests very low amounts of organic matter are delivered to the seabed to fuel 

subsurface communities, and the organic carbon that does reach the seabed is ancient and 

therefore largely not bioavailable (29).   

Relative sequence abundance by 16S rRNA gene amplicon libraries 
16S rRNA gene amplicon library surveys of two stations within Van Keulenfjorden 

showed that Woeseiaceae is consistently within the top three most abundant families, making up 

between 2 and 4% of reads in each of our libraries (Figure 5.3). These results are consistent with 

findings from recent meta-analyses, which highlighted the broad biogeographic distribution and 

consistently high sequence abundance of this clade (2, 3). In fact, across 65 separate studies 

across the globe, sequences for the Woeseiaceae were detected 92% of the time and were reliably 

found to be among the most abundant bacteria (2). Our sequencing data showed that the relative 

abundance of Woeseiaceae sequences did not have observable depth trends at site AB (Figure 

5.2 A) and slightly increased with depth at site AC (Figure 5.2 B).  



182 

 

Despite their suspected metabolic versatility, little is known about the ability of 

Woeseiaceae to respond to stress associated with nutrient-depleted conditions and the question 

remains if these populations continue to metabolize and grow as they become buried. Microbial 

populations in deeply buried sediments, for example, adopt a subsistence strategy of remaining 

in a state of dormancy until conditions are again suitable, even in million-year-old sediments 

(36). These populations may remain on metabolic “standby”, whereby they subsist after burial by 

slowing down metabolism and spending more energy on maintenance metabolism rather than 

growth (37, 38). To test if the relative increase in sequence abundance with depth is associated 

with enhanced growth, we performed metagenomic and metatranscriptomic sequencing within 

the first 5 cm where Woeseiaceae sequence abundance increases. 

Summary of assemblies and Woeseiaceae MAGs 
After binning with these assemblies and dereplication of similar contigs, 49 high and 

medium quality draft genomes were recovered from Stations AB, AC, and F (Table 5.1). 

Completeness ranged from 51% to 98% based upon single copy marker genes in the CheckM 

suite (19) (Table 5.2). Phylogenetic analysis with a concatenated alignment of CheckM genes in 

FastTree (21) allowed us to determine that binning efforts captured diverse bacterial genomes 

across the alpha-, delta-, and gamma-proteobacteria and as well as an archaeal genome. 

Importantly, we reconstructed four medium quality and one high quality genome from the 

Woeseiacaeae/JTB255 clade across stations AB, AC, and F (Table 5.2). 

Phylogenomic analysis 
 A concatenated ribosomal protein alignment including Woeseia sp. genomes from the 

IMG and NCBI databases (Table 5.3) showed that these genomes grouped with the 

Steroidobacterales (Figure 5.4). This supports the most current Silva taxonomy and updates 

previous studies which classify Woeseiaceae as grouping within the Chromatiales (4, 6). 
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Read recruitment to Woeseiaceae genomes 
Cumulative read recruitment to all reconstructed MAGs varied slightly, from 18.3% 

recruitment in the AC metagenome to 24.1% recruitment in the AB metagenome (metaSPAdes 

assemblies). Interestingly, recruitment was dominated by Woeseiaceae genomes (Figure 5.5). To 

determine how the Woeseiaceae genomes recruited transcripts from Stations P, F, AC, and AB, 

we determined abundance, or the mean coverage of MAG contigs divided by the transcriptome’s 

overall mean coverage (22). In this way, transcript recruitment is normalized within a sample. 

This means that abundance patterns cannot be interpreted across metatranscriptomic samples; 

however, the relative abundance of transcript recruitment across MAGs within a sample can be 

determined. Read abundance for all MAGs in metatranscriptome samples is reported in Figure 

5.6 to provide context for abundance within the Woeseiaceae genomes. The 5 Woeseiaceae 

genomes (marked with asterisks in Figure 5.6) had low transcript abundance within the first 2 cm 

at Stations F and P. At AB, the highest abundance for these genomes was observed at 2-3 cm, 

and there was good agreement between the two biological replicates for this depth interval.  

Increased transcript abundance with depth relative to other MAGs is observed at both 

Kongsfjorden sites for several Woeseiaceae genomes, even those with very low transcript 

abundance overall, such as Woeseia_stnAC. This would seem to confirm our 16S rRNA gene 

sequence analysis, which showed an increase in abundance with depth; our transcript abundance 

data likewise suggested an increase in activity at the individual population genome level. 

However, it is still uncertain to what genes the transcripts are recruiting—whether they are tied 

to metabolism, growth, or stress responses is unclear from transcript abundance alone. To answer 

this question, coverage for pathway- and enzyme-specific genes were analyzed after 

reconstructing the main respiratory and carbon fixing pathways encoded in the genome.  
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Carbon fixation under low oxygen conditions  
 Reduction of CO2 can occur via either the reverse TCA (rTCA) cycle or the Calvin 

Benson–Bassham Cycle (CBB) cycle. None of our genomes contain evidence for an rTCA cycle. 

Instead, our genomes encode the genes for the CBB cycle. Ribulose bisphosphate carboxylase 

(RubisCO, cbbM) was detected within all Woeseiaceae genomes and transcribed by the MAG 

Woeseia2_stnAC in Van Keulenfjorden and Woeseia_stnAB in both fjords (see Appendix III for 

heatmap of genomic and transcript content of the other non-Woeseiaceae MAGs). In support of a 

functional CBB cycle, we found either a complete (Woeseia_stnAB, Woeseia_stnF, 

Woeseia2_stnF) or nearly complete (Woeseia_stnAC, Woeseia2_stnAC) CBB pathway, with 

gylceraldehyde-3-phosphate dehydrogenase (GADPH, encoded with gap), phosphoglycerate 

kinase (PGK, encoded with pgk), and phosphoribulo kinase (PBK, encoded with cfxP) all 

detected and transcribed in some genomes in both fjords. Further, co-localization analysis of 

contigs showed that RubisCO genes are often nearby other CBB cycle genes.  

Despite the presence of the CBB pathway, carbon fixation in these MAGs may be 

hampered by a few of the problems notable with the RubisCO enzyme. First, molecular oxygen 

competes for the active site of RubisCO, which leads to costly side-reactions associated with 

photorespiration. Specifically, 2-phosphoglycolate (2-PG) is a toxic side product of RubisCO 

during O2 fixation that forms when the enzyme acts as an oxygenase instead of a carboxylase 

(39, 40). To prevent 2-PG from inhibiting CBB pathways, cells can metabolize it with 

phosphoglycolate phosphatase (cbbZC) which converts 2-PG to glycolate (41). In our 

Woeseiacceae genomes, contigs containing RubisCO or PBK always contain cbbZC. 

Participation of phosphoglycolate phosphatase in substrate generation for either the glyoxlate 

cycle or photorespiration is not supported in the genomes, and so cotranscription of 
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phosphoglycolate phosphatase with RubisCO is a proactive means of removing any 2-PG that 

may arise through oxygenase activity. 

Another way to circumvent the oxygenase activity of RubisCO is to increase its affinity 

toward CO2 compared to O2. Type I RubiCOs, widely distributed across the alpha-, beta-, and 

gammaproteobacteria (42, 43), have a higher affinity for CO2 compared to O2 (44, 45). Sequence 

analysis of the RubisCO genes in our genomes indicate that all are Type II RubisCOs (Figure 

5.7). Type II have a similarly wide distribution across prokaryotes, although a lower affinity for 

CO2 must be overcome by alternative strategies. Higher oxygenase activity in RubisCO Type II 

can be mitigated by carbon dioxide-concentrating mechanism proteins (CCMs), which facilitate 

the active uptake of inorganic carbon species, including both bicarbonate and CO2 (45-47). 

Genes encoding these proteins (ccmL and ccmK) were detected in nearly all of our Woeseiaceae 

genomes. Evidence for cotranscription of CCMs with CBB cycle genes, as has been observed in 

some Synechococcus species (48), was not detected in our Woeseiaceae genomes.  

The detection of genes associated with strategies to circumvent molecular interactions 

with oxygens suggest that the microorganisms in our system are exposed to low levels of 

oxygen. Previous microelecrode studies of the oxygen penetration depth in and around Svalbard 

show that average oxygen penetrates only 6 to 8 mm within the sediment (49, 50). We searched 

for genes in the genomes that would provide evidence for aerobic lifestyle or microaerophily. 

While we were able to identify the presence of 8 genes considered to be oxygen-specific encoded 

in the genomes (51), none were transcribed. Likewise, we did not find evidence for the high-

redox potential cytochrome c oxidase aa3 -type (respiratory complex IV) (52), which has been 

suggested to be used in oxygen respiration in Woeseiaceae (3). Instead, we detected the presence 

of three subunits encoding the functional core and catalytic units of cytochrome c oxidase cbb3-
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type (ccoN1, ccoO, and ccoP). With a high affinity for oxygen, cbb3-type oxidases are used for 

respiration under low oxygen conditions and have been implicated in aerobic respiration in 

Rhodobacter sphaeroides (53), nitrogen fixation in endosymbionts (54), and sulfur oxidation by 

uncultured bacteria in microbial mats (55), all under microaerobic conditions. Transcription of 

cbb3-type oxidases is found in Woeseia2_stnAC and Woeseia2_stnF, the latter of which encodes 

the membrane-associated subunit of the aerobic respiration control sensor protein complex 

(arcB) on the same contig as cbb3-type oxidase. This complex is responsible for transcriptional 

regulation of enzymes involved in aerobic versus anaerobic pathways in facultative anaerobic 

bacteria (56, 57). ArcAB senses and responds to changing respiratory conditions, therefore 

preventing the unnecessary translation of enzymes involved in respiratory pathways for which 

the terminal electron acceptor is not present. Most of our Woeseiaceae genomes have the arcB 

gene, suggesting this clade can switch between multiple respiratory capabilities. In fact, arcB is 

co-localized together with RubisCO and nitrite reductase (NirS) in Woeseia2_stnAC, which also 

has sulfur oxidation genes (sox). To understand the potentially modular metabolic capabilities of 

Woeseiaceae under different conditions, we reconstructed sulfur oxidation and nitrite reduction 

pathways in relation to carbon fixation.  

Sulfur oxidation fuels the CBB cycle 
In sulfur oxidizing microorganisms, carbon fixation coupled to the oxidation of reduced 

sulfur hinges on the production of ATP and reducing equivalents. The generation of reducing 

equivalents is carried out via membrane-associated reverse electron transport reactions involving 

the oxidation of H2S to either zero-valent sulfur or sulfate as end products. These reactions occur 

through either the consumption of ATP, or through the proton motive force generated when 

reduced sulfur is oxidized exergonically with oxygen (58). We detected in our genomes several 
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mechanisms by which reduced sulfur intermediates can be completely oxidized to sulfate to 

generate ATP. The rarest method among our genomes is the traditional Sox pathway 

(soxBCDXAYZ) that leads directly to the complete oxidation of reduced sulfur species 

(thiosulfate, hydrogen sulfide, elemental sulfur, and sulfite) to sulfate (58-60) (Figure 5.8). All 

subunits necessary for the complete Sox pathway were found only in Woeseia_stnF (Table 5.4), 

although none were transcribed. In some genomes, we also found evidence for the coupling of 

formate dehydrogenase and polysulfide reductase in the reduction of polysulfides, generating 

reduced sulfur. This reduced sulfur can be fed into the branched/truncated Sox pathway involved 

in thiosulfate oxidation.  

In a truncated system, one in which soxCD are missing and soxYZ cannot be regenerated, 

elemental sulfur will accumulate without being oxidized to sulfate (61, 62), leading to an 

inefficient source of energy. To circumvent this loss of energy, lithotrophic bacteria, such as the 

common marine uncultured SUP05 group, are thought to run enzymes used in dissimilatory 

sulfate reduction in reverse (63, 64). Reverse dissimilatory sulfite reductase (rDSR), 

adenylylsulfate reductase (aprAB), and sulfate adenylyltransferase (sat) are required to complete 

thiosulfate oxidation to sulfate and generate ATP (58, 65, 66). In our genomes, both aprAB and 

sat are almost always present (sometimes, but not always, encoded on the same contig) and have 

transcripts in some cases (Table 5.4). The only two genomes with dsrAB—Woeseia_stnF and 

Woeseia2_stnAC—share 88% and 85% amino acid sequence identity to the rDSR of an 

uncultured bacterium as shown through blastp, respectively. In addition, the dsrAB operon in 

Woeseia_stnF is located on the same contig as the soxAX gene, suggesting cotranscription and 

use of rDSR to complete sulfur oxidation in a truncated Sox pathway. However, identity and co-

localization do not allow us to say with confidence that these dsrAB genes were in fact encoding 
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reverse Dsr enzymes, and questions of functionality can be answered in part by phylogenetic 

analysis with published databases (67). Our genomes also contained an additional means of 

bringing sulfide into the rDSR pathway, with sulfide-quinone oxidoreductase (sqr) and 

flavocytochrome c (fccA). Together, these allow sulfide species (S-, H2S, HS-) to be brought into 

the rDSR sulfur oxidation pathway through the initial oxidation to elemental sulfur. Sulfide-

quinone oxidoreductase and flavocytochrome c were present either simultaneously or alone in 

our genomes (Table 5.4), presenting an extra way to circumvent potential loss of energy with a 

truncated Sox pathway. 

Respiratory switching and nitrite reduction 
All genomes had the gene for NO-forming nitrite reduction, nirS (cytochrome cd1), 

which catalyzes the second step in denitrification in facultative anaerobes (68, 69). This NADH-

dependent nitrite reductase had a systematic increase in transcript coverage with depth some 

genomes (Tables 5-9). Transcripts for NirS were found at the deepest intervals in our cores from 

both stations F (Kongsfjord) and AB (Van Keulenfjord), while genes for sulfur oxidation 

(dsrAB) were restricted to the top 2.5 cm on average. The increase with depth is likely a 

response mediated in part by the NirS-specific transcriptional response regulator encoded by 

narL which is sensitive to changing respiratory conditions from oxygen to nitrate and nitrite (70, 

71), found encoded in the Woeseia_stnF genome.  

Woeseiacea may contribute to the high rates of denitrification that has been observed in 

Svalbard fjord sediment, which have benthic N2 production similar to temperate sediments (72). 

However, we did not detect other denitrification genes (nor, noz) in the genomes, a feature 

common among denitrifyers with nearby microbial counterparts that would facilitate complete 

reduction to N2 (73). An incomplete denitrification pathway was also noted in previous genomic 
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work on Woeseiaceae (3). Our genomes did however contain the genes encoding for the protein 

translocases necessary to move the cofactor-free NirS from the cytosol to the periplasm (secY 

and secA), maturation proteins (ccmEFH), and a heme transporter (ccmA) (73, 74). Nitrite 

reductase does not oxidize quinones directly, but instead receives electrons from the cytochrome 

bc1 complex by way of cytochrome c intermediates that are not membrane-bound (75). Each 

Woeseiaceae genome encoded one or more genes for cytochrome c-552, cytochrome c-554, 

and/or cytochrome c-555 (Table 5.4). Electrons are initially passed to these intermediates by 

respiratory complex I, NADH-quinone oxidoreductase, or by hydrogenases, all of which were 

encoded in our genomes (Figure 5.8).  

Our genomes did not contain evidence for complex II genes encoding for succinate 

dehydrogenase, in contrast to what has been found previously in other Woeseiaceae genomes (3). 

However, in addition to nuo and nqo genes encoding for respiratory complex I, all genomes had 

two copies of nqrABCDEF, encoding for Na+-translocating-NADH-quinone reductase, as well 

as respiratory complex III, also called cytochrome bc1 complex. The cytochrome bc1 complex 

can be encoded either with the fbcH gene, or in pieces with the petABC operon (73, 76). Most of 

our genomes contained fbcH, which encodes the cytochrome b component at its 5’ end and the 

cytochrome c1 component at its 3’ end, (77). In addition, petABC genes were also encoded in our 

genomes, which encodes the Rieske protein, cytochrome b and cytochrome c components 

separately. This shows that these genomes have multiple biogenesis pathways for key 

cytochromes needed for respiration. 

Most genomes have an energy-conserving, Na+ translocating protein complex encoded as 

rnf (rnfCEG). This protein complex can pump out Na+ ions through the energy generated from 

reducing NAD+ with ferredoxin and is commonly found in nitrogen fixers (78, 79). Although we 
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have no evidence of nitrogen fixation, our genomes contained evidence for ferredoxin generation 

and can likely couple the oxidation of ferredoxin with the generation of NADH (80, 81). 

Coupled reactions with ferredoxin and the RNF complex have been shown to be involved in 

ATP synthesis (82), reverse electron transfer (78), and reduction of both inorganic and organic 

electron donors in acetogens (83). The RNF complex also has a role in carbon reduction, 

whereby the NADH and hydrogen produced from Na+ transport can be used to reduce CO2 (81), 

providing an additional means by which carbon may be fixed.   

Preference for microaerobic to anoxic conditions 
The vast redox potential spanned by the cytochromes encoded in these genomes ranges 

from +420 mV with cbb3-type cytochrome c (75) to as low as -500 mV with ferredoxin oxidation 

with RNF (83). Despite this broad range, evidence for respiration in fully oxygenated conditions 

is not supported. Instead, the evidence suggests that these Woeseiaceae genomes have flexible 

redox preferences within microaerobic to anoxic conditions. Interestingly, transcripts for NADH-

quinone oxidoreductase subunits were more than three times higher in Kongsfjorden compared 

to Van Keulenfjorden, suggesting overall respiration activity is higher within Kongsfjorden 

sediment. This may be due to the differing conditions dominating site AB, located at the mouth 

of Van Keuelenfjord, compared to conditions at site AC of Van Keulenfjord and sites P and F in 

Kongsfjorden, all situated at the head of their respective fjords. Although sulfate does not 

become depleted with depth at any of these sites (29), site AB sees increased delivery of labile 

organic matter to surface sediments (29, 31) bringing about a shallower zone of iron reduction 

based on community structure analysis (31). However, transcripts for the cytochrome bc1 

complex were not found and transcripts for the high-redox potential cbb3-type cytochrome c 

complex were found equally in both fjords, limiting our ability to interpret in a straight-forward 
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way the potential differential transcriptional activity of respiratory complexes as it relates to 

prevailing geochemical conditions.  

Metabolic “lock down” and sporulation 
Across both stations F and AB (where simultaneous metagenomes and 

metatranscriptomes were generated), the percentage of genes with corresponding transcript 

coverage (or the percentage of genes “turned on”) varied across the Woeseia genomes, ranging 

from 13% (417 out of 3,110 genes in Woeseia_stnAB) to 22% (774 genes out of 3,406 in 

Woeseia2_stnF) (Table 5.10). Interestingly, out of the several hundred genes with transcripts 

across all genomes, very few had significant trends in transcriptional coverage with depth. This 

was surprising, as we anticipated to observe clear redox shifts in our transcripts. Instead, 

transcriptional coverage of genes implicated in transcription, growth, hydrolases, and vitamin 

transporters decreased in transcriptional coverage with increasing sediment depth (Tables 5.5-

5.9; Figures 9-13). This included genes encoding for DNA-directed RNA polymerase, 50S 

ribosomal protein L10, 60kDa chaperonin, and elongation factor tu. Most genomes had 

decreasing transcript coverage for arylsulfatase (atsA), a hydrolase involved in the breakdown of 

phenol sulfates delivered to the seabed with phytoplankton blooms (86, 87). Lon protease, which 

is required for survival from DNA damage due to its role in the selective degradation of 

abnormal and/or mutant proteins (88, 89), also decreased with depth. Aging has been shown to 

decrease Lon protease expression, and so the depth signal we observed in transcript coverage 

likely is related to cell aging with burial (89). Stress mitigation pathways, such as DNA-binding 

protein HU and rubrerythrin, increased with depth, suggesting that these aging cells are primed 

for dealing with sub-optimal conditions deeper in the sediment.  
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Most notably, regression analysis showed that nearly all genomes had considerably high 

positive slopes for spore protein SP21 at both stations AB and F (Figures 9-13, Tables 5-9). The 

occurrence of highly transcribed spore proteins in our other reconstructed (non-Woeseiaceae) 

genomes was not observed and additional network analysis does not indicate significant 

correlations with other taxa (Appendix VI). The key spore protein transcribed in our genomes 

was SP21 (hspA), which is responsible for fruiting body development in Myxobacteria (90, 91). 

Spores of Myxobacteria, called myxospores, develop under nutrient-limited conditions as a 

means for persisting until nutrients once again become plentiful (92, 93). SP21 expression has 

also been observed to occur after oxygen depletion, although it was not clear if oxygen depletion 

was the trigger for expression, or if it was more directly tied to metabolic slow-down. As our 

transcript evidence demonstrated the decreased expression of genes related to growth with depth, 

the expression of SP21 in Woseiaceae is likely tied more directly to metabolic slow-down rather 

than oxygen depletion. These myxospores are separate from the diverse array of sulfate reducing 

Firmicutes that endospore germination studies have shown to be active when induced under high 

temperatures in Svalbard fjord sediment (94, 95). The ability to form spores was not observed in 

the culture Woeseia oceani (6) and the potential for spore formation in this clade has not been 

noted previously. To determine if this feature is unique to our genomes, we performed 

pangenomic analysis with the other Woeseiaceae genomes in the NCBI database. SP21 genes are 

not enriched in our genomes compared to others (see Appendix V for detailed discussion of 

pangenomic and enriched functions). The formation of myxospores in these genomes is evidence 

that Woeseiaceae have a mechanism for persisting though conditions that are not optimal for 

growth until they become exposed once again to nutrients and preferable redox conditions, 

perhaps resulting from an episode of bioturbation. This provides to them an avenue for 
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continuing their populations through re-seeding and is perhaps a dominant control on their 

ubiquitous global distribution and high abundance.  

Conclusion 
 Genomic content suggested that Woeseiaceae/JTB255 are fine-tuned for microaerobic to 

anoxic conditions and can serve primary producers in carbon-limited Arctic sediment 

environments. In addition to coupling sulfur oxidation to the fixation of inorganic carbon, 

transcriptional evidence demonstrated that these Woeseiaceae switch their respiratory 

metabolism to denitrification as they become buried within the sediment. Continued burial 

results in increased transcription of stress-mitigation proteins and spore-forming proteins. 

Together, these may prepare the cell for a period of dormancy while it continues to generate 

nitric oxide at depth. By sequencing at 1 cm depth resolution, we were able to capture nuanced 

changes that highlight the delicate interplay between redox conditions and transcriptional activity 

of redox-sensitive enzymes. Climate change in the Arctic threatens to remove the direct conduit 

of oxidized terrestrial material that allows the deeper penetration of highly oxidized conditions in 

fjord sediment. Glacial retreat therefore threatens to alter the sediment ecosystem for which these 

genomes are optimized, and although they have a mechanism for re-seeding their population, it is 

uncertain if conditions will remain optimal for re-establishment in the shallow subsurface.  
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Table 5.1. Assembly statistics, including the number of contigs, the largest contig, the N50 (the 

length for which the collection of all contigs of that length or longer covers at least half an 

assembly), and L50 (the number of contigs equal to or longer than N50, aka the minimal number 

of contigs that cover half the assembly).  

Metagenome Assembler 

No. 
contigs 
> 1000 

bp 

Largest 
contig 
(bp) 

 

N50 L50 
AC_18cmbsf metaSPAdes 47,245 161,849  3,492 13,636 
AC_18cmbsf Megahit 51,025 208,964  3,385 15,352 
AC_18cmbsf IDBA 142,046 158,899  1,408 76,848 
AB_Lloydlab_0-5cmbsf metaSPAdes 36,489 92,139  4,982 9,188 
AB_Lloydlab_0-5cmbsf Megahit 532,416 52,817  1,676 167,575 
AB_Lloydlab_0-5cmbsf IDBA 167,814 72,311  2,225 46,030 
F_Lloydlab_0-5cmbsf metaSPAdes 6,714 188,610  7,634 7,634 
F_Lloydlab_0-5cmbsf Megahit 255,297 77,432  1,535 1,199 
F_Lloydlab_0-5cmbsf IDBA 13,731 103,160  3,999 3,422 
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Table 5.2. Statistics for all MAGs. Woeseiaceae MAGs are in bold print. Completeness and contamination from CheckM are used to 

determine genome draft quality according to Bowers et al., (2017).  

 

MAG name Length 
(bp) 

Number 
contigs 

Compl. Contam. Strain 
heterogeneity 

Quality 

Acidimicrobiia_stnAC 1,169,838 291 64.85 1.28 0 Medium 
Acidobacteria_stnAC 3,608,277 144 95.73 5.98 0 Medium 
Akkermansiaceae_stnF 2,887,821 224 98.34 0.14 100 High 
Akkermansiaceae2_stnF 3,011,311 738 96.42 1.36 0 High 
Anaerolineae_stnAC 1,682,520 309 72.12 7.9 26.67 Medium 
Anaerolineae_stnAC 1,423,899 176 54.55 3.18 14.29 Medium 
Chromatiales_stnAB 2,205,383 297 85.61 8.69 4 Medium 
Dadabacteria_stnAB 2,092,273 157 92.35 2.57 0 High 
Desulfobacteraceae_stnAC 3,349,224 623 86.8 0.04 0 Medium 
Desulfobacterales_stnF 2,907,775 192 53.82 0.07 0 Medium 
Desulfosarcina_stnAB 1,156,346 321 83.74 0.56 66.67 Medium 
Flavobacteria_stnAB 3,507,500 605 80.02 5.09 14.29 Medium 
Gemmatimonadetes_stnAB 1,446,593 371 60.29 0 0 Medium 
Gemmatimonadetes_stnAC 1,833,525 420 76.64 3.27 50 Medium 
Geobacter_stnAC 2,846,301 514 70.17 2.5 25 Medium 
Halieaceae_stnAB 1,382,038 391 71.35 7.12 12.12 Medium 
Labilibaculum_stnF 1,309,716 349 54.54 3.66 5 Medium 
Latescibacteria_stnAB 3,013,289 327 55.7 0.68 0 Medium 
Lentisphaerae_stnAB 1,903,818 262 60.74 4.04 5.56 Medium 
Lentisphaerae2_stnAB 1,272,728 212 92.91 5.1 0 Medium 
Lentisphaerae3_stnAB 1,019,905 223 80.95 2.94 0 Medium 
Lentisphaerae4_stnAB 1,996,229 354 64.78 0 0 Medium 
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Table 5.2 continued.       
MAG name Length 

(bp) 
Number 
contigs 

Compl. Contam. Strain 
heterogeneity 

Quality 

Lentisphaerae5_stnAB 1,678,967 398 54.01 0.98 56.25 Medium 
Lentisphaerae6_stnAB 2,656,030 555 75.55 1.77 23.81 Medium 
Myxococcales_stnAB 1,699,629 288 67.09 4.52 14.29 Medium 
Nitrosomonadaceae_stnAB 1,907,502 429 77.51 1.54 16.67 Medium 
Nitrospina_stnAB 1,344,434 295 74.01 6.64 15.38 Medium 
Nitrospina_stnAC 1,920,139 407 58.38 0 0 Medium 
Nitrospinae_stnAC 778,268 195 66.13 2.1 0 Medium 
Nitrospiraceae_stnAC 895,756 231 57.68 1.21 50 Medium 
Nitrospirae_stnAC 3,738,793 535 55.21 0.06 100 Medium 
Olavius_Gamma_stnAC 2,609,566 576 80.24 4.72 42.11 Medium 
Olavius_Gamma2_stnAC 1,237,209 328 90.07 7.95 26.53 Medium 
Phyciphaerae_stnF 3,229,210 615 79.59 6.92 30 Medium 
Phycisphaerales_stnAC 1,235,250 306 82.95 1.22 25 Medium 
Planctomycetales_stnAC 2,902,147 460 53.42 4.55 0 Medium 
Rhodobacterales_stnAB 1,792,237 415 63.2 1.98 50 Medium 
Scalindua_stnAC 904,834 229 51.02 4.65 60 Medium 
Syntrophaceae_stnAB 1,492,049 323 66.08 4.48 44.44 Medium 
Syntrophaceae_stnF 602,754 166 71.56 3.58 57.14 Medium 
Thiohalomonas_stnAC 1,425,011 294 68.71 4.28 53.57 Medium 
Thiotrichaceae_stnAB 1,757,957 383 57.97 2.34 9.09 Medium 
Thiotrichaceae_stnAC 2,156,343 305 89.45 3.62 3.7 Medium 
Verrucomicrobia_stnAB 2,142,440 341 79.39 5.1 0 Medium 
Woeseia_stnAB 2,732,782 388 83.46 6.31 28.57 Medium 
Woeseia_stnAC 3,122,991 331 80.8 9.52 18.64 Medium 
Woeseia2_stnAC 4,237,456 684 80.09 4.66 54.55 Medium 
Woeseia_stnF 2,489,600 421 94.83 7.59 50 Medium 
Woeseia2_stnF 3,504,067 339 90.79 2.97 22.22 High 
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Table 5.3. Genome statistics for publicly available Woeseiaceae genomes and the genomes in this study. Completeness and 

contamination determined for each genome with CheckM. 

Genome name Accession 
Sampe 
source 

Size 
(mbp) 

No 
contigs Completeness Contamination 

WOR SG8 31a NCBI LJTI00000000 
Estuarine 
sediment 5.9 266 100 97 

JSS Woes1b IMG 2695420981 
Tidal 

sediment 8.1 607 91 89 

20 j1b IMG 2651869885 
Tidal 

sediment 2.4 298 44 6 

SAG 1868 Bb IMG 2651869504 
Tidal 

sediment 2.2 358 51 0.4 

Woeseia_oceani 
XK5c NCBI NZ_CP016268 

 
Culture from 

coastal 
sediment  4.0 1 

 
 
 

91 

 
 
 
2 

 

Woeseia_stnABd IMG 2802428844 
Arctic 

sediment 2.7 388 

 

83 

 

6 

Woeseia_stnACd IMG 2802428845 
Arctic 

sediment 3.1 331 
 

80 
 
9 

Woeseia2_stnACd IMG 2802428847 
Arctic 

sediment 4.2 684 
 

80 
 
4 

Woeseia_stnFd IMG 2802428846 
Arctic 

sediment 2.4 421 
 

94 
 
7 

Woeseia2_stnFd* IMG 2802428848 
Arctic 

sediment 3.5 339 
 

90 
 
2 
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Table 5.4. Genome content and transcription of genes for sulfur oxidation, carbon fixation, and 

denitrification in the Woseiaceae MAGs. 

Gene or cytochrome name Number of 
genomes 

Number of 
genomes with 

transcripts in KF 

Number of 
genomes with 

transcripts in VK 
soxA  5 0 0 
soxB 3 0 0 
soxC 1 0 0 
soxD 1 0 0 
soxX  4 0 0 
soxY  4 0 0 
soxZ 4 0 0 
Cytochrome c-555 5 0 0 
Cytochrome c-554(548) 2 0 0 
Cytochrome c-552 2 0 1  
ccoN1 4 1 2 
ccoO 4 1 1 
ccoP 4 1 1 
fccA 3 2 1 
sqr 3 0 0 
Sat 5 0 0 
aprB 4 1 2 
aprA 5 1 2 
dsrA 2 1 1 
dsrB 2 1 1 
psrA 5 0 0 
fdhA 5 2 3 
fdhC 5 0 0 
fdhD 5 1 0 
fdhF 5 1 0 
cbbM 5 1 2 
gap 3 1 1 
pgk 5 0 0 
cfxP 5 0 0 
nirS 5 3 2 
secA 5 0 0 
sescY 5 0 0 
NADH oxidoreductase subunits of 
nuo, nqr, and nqo 

5 5 5 

fbcH 4 0 0 
petA 4 0 0 
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Table 5.4 continued.    
    
Gene or cytochrome name Number of 

genomes 
Number of 

genomes with 
transcripts in KF 

Number of 
genomes with 

transcripts in VK 
petB 5 0 0 
petC 5 0 0 
ccmA 4 0 0 
ccmE 3 0 0 
ccmF 4 0 0 
ccmH 4 0 0 



213 

 

Table 5.5.Woeseia_stnAB regression statistics for transcripts with depth in alphabetical order. 

Gene_name_gene_id Slope Intercept R2 Station 
60 kDa chaperonin_5902 -0.037 0.265 0.954 AB 
Colicin I receptor_5875 -0.175 0.664 0.803 AB 
None_5471 -0.03 0.249 0.23 AB 
None_6158 -0.017 0.076 0.553 F 
None_6257 0.046 0.029 0.88 AB 
None_6260 -0.111 0.635 0.733 AB 
None_6325 -0.043 0.544 0.656 F 
None_7593 -0.1 0.391 0.995 AB 
None_7607 0.096 0.334 0.822 AB 
None_7630 -0.01 0.084 0.927 F 
None_7796 7.684 3.28 0.919 F 
None_7796 2.433 3.993 0.131 AB 
Pesticin receptor_5933 -0.007 0.149 0.162 F 

RNA polymerase-binding 
transcription factor 
DksA_5868 

0.039 0.125 0.387 

 
 

F 

Spore protein SP21_5904 13.883 -5.956 0.908 F 
Spore protein SP21_5904 12.054 -6.023 0.691 AB 
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Table 5.6.Woeseia_stnAC regression statistics for transcripts with depth in alphabetical order. 

Gene_name_gene_id Slope Intercept R2 Station 
60 kDa chaperonin_89881 0.023 0.157 0.328 F 
None_87630 0.017 0.039 0.981 AB 
None_88605 -0.091 0.982 0.971 F 
None_88605 -0.051 0.509 0.232 AB 
None_89268 -0.069 0.981 0.232 F 
None_89268 -0.579 2.293 0.696 AB 
Spore protein SP21_89878 28.051 -21.52 0.91 F 
Spore protein SP21_89878 12.986 -6.037 0.544 AB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



215 

 

Table 5.7.Woeseia_stnF regression statistics for transcripts with depth in alphabetical order. 

Gene_name_gene_id Slope Intercept R2 Station 

50S ribosomal protein L10_107515 
0.255 0.083 0.995 AB 

60 kDa chaperonin_108179 -0.091 0.419 0.418 
AB 

Arylsulfatase_110079 -0.024 0.377 0.37 F 
DNA topoisomerase 1_107545 -0.005 0.056 0.486 F 
Elongation factor Tu_107510 0.08 0.074 0.528 AB 

Elongation factor Tu_107522 
-0.025 0.357 0.29 AB 

Isocitrate lyase_107433 0.025 0.042 0.999 F 

Lon protease_109799 -0.009 0.133 0.968 F 
Methylmalonate semialdehyde 
dehydrogenase [acylating]_109966 

0.041 -0.001 0.928 AB 

Nitrite reductase_108935 0.041 0.131 0.934 F 
Nitrite reductase_108935 0.038 0.209 0.255 AB 
None_108374 -0.15 0.957 0.97 F 
None_108905 -0.08 0.757 0.251 F 
None_109691 0.338 -0.651 0.699 F 
None_109809 1.991 0.571 0.713 F 
None_109809 1.06 -0.181 0.357 AB 
None_109908 -0.048 0.8 0.301 F 

None_110192 -0.106 0.38 0.973 
AB 

None_111027 -0.087 0.553 0.47 
AB 

None_111104 -0.041 0.715 0.858 
F 

Rubrerythrin_108041 0.08 0.606 0.779 
F 

Spore protein SP21_108144 40.521 100.458 0.456 
F 

Spore protein SP21_108144 55.331 63.789 0.183 
AB 

Spore protein SP21_109810 65.103 48.737 0.594 
F 

Spore protein SP21_109810 35.296 10.432 0.282 
AB 

Spore protein SP21_110867 16.249 -17.732 0.917 
F 

Spore protein SP21_110867 10.773 -14.451 0.979 
AB 

Uptake hydrogenase large subunit_107812 
-0.026 0.186 0.585 F 

Vitamin B12 transporter BtuB_107397 
-0.015 0.113 0.514 F 

Vitamin B12-dependent ribonucleoside-
diphosphate reductase_107318 

-0.023 0.152 0.409 AB 
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Table 5.8.Woeseia2_stnAC regression statistics for transcripts with depth in alphabetical order. 

Gene_name_gene_id Slope Intercept R2 Station 
CoB--CoM heterodisulfide 
reductase iron-sulfur subunit 
D_64380 

0.002 0.18 0.481 F 

DNA-binding protein 
HU_64400 0.207 0.521 0.536 

F 

DNA-directed RNA 
polymerase subunit 
beta'_63721 

-0.01 0.047 0.959 F 

DNA-directed RNA 
polymerase subunit 
beta'_63721 

-0.02 0.09 0.643 AB 

Lon protease_64401 -0.025 0.239 0.154 F 
Nitrite reductase_64141 0.031 0.118 0.982 F 
None_63420 0.02 0.085 0.254 F 
None_64185 43.254 -7.19 0.854 F 
Spore protein SP21_65543 10.681 3.374 0.907 F 
Spore protein SP21_65543 4.411 4.325 0.093 AB 
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Table 5.9.Woeseia2_stnF regression statistics for transcripts with depth in alphabetical order. 

Gene_name_gene_id Slope Intercept R2 Station 

60 kDa chaperonin_103085 -0.08 0.529 0.909 F 

Arylsulfatase_103780 -0.127 0.627 0.879 AB 

DNA-directed RNA 
polymerase subunit 
beta'_102956 

-0.016 0.074 0.436 AB 

DNA-directed RNA 
polymerase subunit 
beta_102957 

0.025 0.046 0.999 AB 

Fimbrial protein_102898 -0.188 1.039 0.822 AB 
None_102101 -0.233 0.924 0.872 F 
None_102610 -0.202 1.454 0.13 AB 
None_103289 -0.231 0.804 0.971 AB 
None_104127 0.173 -0.137 0.277 AB 
Protein translocase subunit 
SecY_101612 

0.028 0.084 0.691 AB 

RNA polymerase-binding 
transcription factor 
DksA_101664 

0.009 0.141 0.119 F 
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Table 5.10.Transcript statistics at stations AB and F combined for each Woeseia genome. 

 

Genome Number of genesa Number of genes 
with transcript 
coverageb  

Percentage of 
genome “turned on” 

Woeseia_stnAB 3,110 417 13% 
Woeseia_stnAC 2,603 417 16% 
Woeseia2_stnAC 329 2,819 12% 
Woeseia_stnF 863 4,370 19% 
Woeseia2_stnF 774 3,406 22% 

 

 a Number of genes determined through counting annotations in Prokka output. 

b Number of genes with transcripts determined through manual inspection of coverage files 
output by Anvio.  
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Figure 5.1. Map of field areas in Spitzbergen (A). Red box in overview map indicates 

Kongsfjorden (B) and green box indicates Van Keulenfjorden (C). Images taken from USGS 

Land Look web server (https://landlook.usgs.gov/viewer.html).  
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Figure 5.2. Geochemistry results. Results for hydrogen (A), total organic carbon (B), C/N (C), 

and carbon isotopes in bulk organic matter (D) are shown for Stations F in salmon and P in teal 

in Kongsfjorden. Measurements for Van Keulenfjorden are reported in the previous chapter. 

Note y-axis is not shared between A and B-D. 
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Figure 5.3. Relative 16s rRNA gene amplicon sequence abundance for Woeseiaceae in outer 

Station AB (A) and middle Station AC (B). Results from two different cores are shown.  
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Figure 5.4. Phylogenetic tree for Woeseiaceae. Maximum likelihood was calculated in Mega v. 7 

with 1000 bootstraps on a concatenated alignment of 49 ribosomal proteins. Only nodes with 

>75% support are shown. Genomes from the database are indicated with teal squares and MAGs 

from this study are indicated with magenta circles. Details about Woeseiaceae genomes included 

in this analysis can be found in Table 5.3. 
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Figure 5.5. Read recruitment for each reconstructed MAG.  Woeseiaceae genomes are 

highlighted with a red bracket. The size of each metagenome is indicated below each item in the 

legend, as well as number and percentage of reads mapped to all MAGs combined.   
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Figure 5.6. Visualization of transcript abundance for each MAG. Kongsfjorden (KF) samples 

include transcripts from stations F shown in pink and P shown in blue. Van Keulenfjorden (VK) 

samples include transcripts from stations AB shown in green and AC shown in orange. MAGs 

are ordered by abundance and Woeseiaceae genomes are highlighted with orange asterisk. The 

total number of reads mapped is noted on the right. 
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Figure 5.7. Sequence analysis of RubisCO in Woeseiaceae MAGs. Tree was built with full 

length (> 480 aa) sequences for large and small chains of ribulose bisphosphate carboxylase 

(RubisCO) were downloaded from NCBI and compared with sequences annotated in our MAGs. 

Alignments were conducted in Mega v. 7 using Clustal. Mega was also used to construct the 

neighbor-joining tree and topologies shown have >80% support after 1000 bootstraps.  
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Figure 5.8. Metabolic cartoon of sulfide oxidation coupled to the Calvin Benson Cycle and 

denitrification. Redox potential indicated at the top taken from Rauhamaki et al., 2009 (cbb3-type 

cyt c = +420 mV), Trumpower 1990 (cyt bc1 complex = +265 mV), and Biegal et al., 2011 (Rnf 

= -500 mV).  
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Figure 5.9. Transcriptional coverage across the genome of Woeseia_stnAB at each depth interval in stations AB (circles) and F 

(triangles). The y-axis is the coverage value and discreet genes are positioned across the x-axis. Only genes with a significant increase 

or decrease in transcriptional coverage as detected with regression analysis are annotated. Rectangles above each gene indicates that 

an R2 > 0.1 was detected for station AB (blue) or F (red). Details about regression statistics can be found in Table 5.5.  
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Figure 5.10. Transcriptional coverage across the genome of Woeseia_stnAC at each depth interval in stations AB (circles) and F 

(triangles). The y-axis is the coverage value and discreet genes are positioned across the x-axis. Only genes with a significant increase 

or decrease in transcriptional coverage as detected with regression analysis are annotated. Rectangles above each gene indicates that 

an R2 > 0.1 was detected for station AB (blue) or F (red). Details about regression statistics can be found in Table 5.6.  
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Figure 5.11.Transcriptional coverage across the genome of Woeseia2_stnAC at each depth interval in stations AB (circles) and F 

(triangles). The y-axis is the coverage value and discreet genes are positioned across the x-axis. Only genes with a significant increase 

or decrease in transcriptional coverage as detected with regression analysis are annotated. Rectangles above each gene indicates that 

an R2 > 0.1 was detected for station AB (blue) or F (red). Details about regression statistics can be found in Table 5.7.  
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Figure 5.12.Transcriptional coverage across the genome of Woeseia_stnF at each depth interval in stations AB (circles) and F 

(triangles). The y-axis is the coverage value and discreet genes are positioned across the x-axis. Only genes with a significant increase 

or decrease in transcriptional coverage as detected with regression analysis are annotated. Rectangles above each gene indicates that 

an R2 > 0.1 was detected for station AB (blue) or F (red). Details about regression statistics can be found in Table 5.8.  
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Figure 5.13. Transcriptional coverage across the genome of Woeseia2_stnF at each depth interval in stations AB (circles) and F 

(triangles). The y-axis is the coverage value and discreet genes are positioned across the x-axis. Only genes with a significant increase 

or decrease in transcriptional coverage as detected with regression analysis are annotated. Rectangles above each gene indicates that 

an R2 > 0.1 was detected for station AB (blue) or F (red). Details about regression statistics can be found in Table 5.9. 
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Appendix II: Script for Metabat Binning 
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Script for metagenomic binning with MetaBat: 
 
MetaBat steps:   
 
# run ridiculously extreme specific binning 
minLength=2000 
minSamples=5 
p1=99 
p2=98 
minProb=99 
minCorr=99 
minBinned=40 
 
# run a slightly less ridiculous extreme specific binning 
minLength=2000 
minSamples=5 
p1=98 
p2=96 
minProb=99 
minCorr=99 
minBinned=40 
 
# run extremely specific binning 
minLength=2000 
minSamples=5 
p1=95 
p2=90 
minProb=99 
minCorr=99 
minBinned=40 
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Appendix III: R Code 
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R script for relative abundance by 16S rRNA gene libraries 
#JTB255 relabund 

 

library(plyr) 

library(dplyr) 

library(ggplot2) 

library(tidyr) 

 

JTB255<-read.csv("JTB255_abund.csv") 

head(JTB255) 

JTB255_tidy<-gather(JTB255, depth, abundance, X0.5:X19.5) 

write.csv(JTB255_tidy, "JTB255_tidy.csv") # remove X's in front of depths and add 
replicate numbers in new column 

JTB255_tidy_fixed<-read.csv("JTB255_tidy_fixed.csv") 

 

library(scales) 

show_col(hue_pal()(4)) #make a palette 

cols<-c("AB" = "#7CAE00", "AC" = "#C77CFF") 

 

d <- JTB255_tidy_fixed 

head(d) 

make_plot <- function(d, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) { 

  p <- ggplot(d, aes(x=depth, y=abundance, color=Site, shape=Replicate)) +  

    geom_point(aes(fill=Site), colour="black", size=1, stroke=1) + 

    scale_fill_manual(values=cols) + 

    scale_colour_manual(values=cols) + 

    scale_shape_manual(values = c(21,22)) + 

    theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), 

          panel.background = element_blank(), axis.line = element_line(colour = 
"black")) + 

    geom_line(size=0.5) + 

    scale_x_reverse() + 

    coord_flip() + 

    ylim(0,3)+ 

    labs(y="Relative abundance (%)", x = "Depth (cmbsf)") 
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  # Do you want to print the plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(d$Site[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one Station that I pull out manually 

test_set <- d[d$Site== unique(d$Site)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(d, c("Site"), make_plot, save_plot=TRUE, print_plot=FALSE, 
height=4, width=3, units="in", dpi=300) 

 

# Later on you can do other things, like print them 

l_ply(plot_list, print) 
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R script for regression analysis of transcripts:  
library(plyr) 

library(dplyr) 

library(ggplot2) 

#### regression function 

regression=function(df){ 

  #setting the regression function.  

  reg_fun<-lm(formula=df$Value ~ df$Depth) #regression function 

  #getting the slope, intercept, R square and adjusted R squared of  

  #the regression function (with 3 decimals). 

  slope<-round(coef(reg_fun)[2],3)   

  intercept<-round(coef(reg_fun)[1],3)  

  R2<-round(as.numeric(summary(reg_fun)[8]),3) 

  R2.Adj<-round(as.numeric(summary(reg_fun)[9]),3) 

  c(slope,intercept,R2,R2.Adj) 

} 

############# Genome: Woeseia_stnAB 

# Station AB 

 

WoeseiaAB<-read.csv("Woeseia_both_sorted.csv") 

WoesAB_AB<-subset(WoeseiaAB, Station=="AB") 

WoesAB_AB<-subset(WoesAB_AB, Type=="Coverage") 

head(WoesAB_AB) 

 

WoesAB_regression <- ddply(WoesAB_AB, ~ Gene_name, regression) 

colnames(WoesAB_regression)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesAB_regression, "WoesAB_regression_stationAB.csv") 

 

make_plot <- function(WoesAB_AB, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- WoesAB_AB %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 
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    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesAB_AB$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesAB_AB[WoesAB_AB$Gene_name == unique(WoesAB_AB$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesAB_AB, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

# Station F 

WoesAB_F<-subset(WoeseiaAB, Station=="F") 

WoesAB_F<-subset(WoesAB_F, Type=="Coverage") 

 

head(WoesAB_F) 

 

WoesF_regression <- ddply(WoesAB_F, ~ Gene_name, regression) 
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colnames(WoesF_regression)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesF_regression, "WoesAB_regression_stationF.csv") 

 

make_plot <- function(WoesAB_F, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- WoesAB_F %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesAB_F$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesAB_F[WoesAB_F$Gene_name == unique(WoesAB_F$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesAB_F, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 
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#############Woeseia_stnAC########## 

#Station AB 

Woeseia_AC<-read.csv("WoeseiaAC_both_sorted.csv") 

WoesAC_AB<-subset(Woeseia_AC, Station=="AB") 

WoesAC_AB<-subset(WoesAC_AB, Type=="Coverage") 

head(WoesAC_AB) 

 

WoesAC_regression <- ddply(WoesAC_AB, ~ Gene_name, regression) 

colnames(WoesAC_regression)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesAC_regression, "WoesAC_regression_stationAB.csv") 

 

make_plot <- function(WoesAC_AB, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- WoesAC_AB %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesAC_AB$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 
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  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesAC_AB[WoesAC_AB$Gene_name == unique(WoesAC_AB$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesAC_AB, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#Station F 

WoesAC_F<-subset(Woeseia_AC, Station=="F") 

WoesAC_F<-subset(WoesAC_F, Type=="Coverage") 

head(WoesAC_F) 

 

WoesAC_F_regression <- ddply(WoesAC_F, ~ Gene_name, regression) 

colnames(WoesAC_F_regression)<-c ("value","slope","intercept","R2","R2.Adj") 

head(WoesAC_F_regression) 

write.csv(WoesAC_F_regression, "WoesAC_regression_stationF.csv") 

 

make_plot <- function(WoesAC_F, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- WoesAB_F %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 
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  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesAB_F$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesAB_F[WoesAB_F$Gene_name == unique(WoesAB_F$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesAB_F, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#############Woeseia2_stnAC 

#Station AB 

Woes2AC<-read.csv("WoeseiaAC2_both_sorted.csv") 

Woes2AC_AB<-subset(Woes2AC, Station=="AB") 

Woes2AC_AB<-subset(Woes2AC_AB, Type=="Coverage") 

head(Woes2AC_AB) 

 

WoesAC2_regression_AB <- ddply(Woes2AC_AB, ~ Gene_name, regression) 

colnames(WoesAC2_regression_AB)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesAC2_regression_AB, "WoesAC2_regression_stationAB.csv") 

 

make_plot <- function(Woes2AC_AB, save_plot=TRUE, print_plot=FALSE, filename=NULL, 
...) { 

  p <- Woes2AC_AB %>% 
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    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(Woes2AC_AB$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- Woes2AC_AB[Woes2AC_AB$Gene_name == unique(Woes2AC_AB$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(Woes2AC_AB, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#Station F 

Woes2AC_F<-subset(Woes2AC, Station=="F") 

Woes2AC_F<-subset(Woes2AC_F, Type=="Coverage") 

head(Woes2AC_F) 
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WoesAC2_regression_F <- ddply(Woes2AC_F, ~ Gene_name, regression) 

colnames(WoesAC2_regression_F)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesAC2_regression_F, "WoesAC2_regression_stationF.csv") 

 

make_plot <- function(Woes2AC_F, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- Woes2AC_F %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(Woes2AC_F$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- Woes2AC_F[Woes2AC_F$Gene_name == unique(Woes2AC_F$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 
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plot_list <- dlply(Woes2AC_F, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#########Woeseia_stnF 

Woeseia_F<-read.csv("WoeseiaF_both_sorted.csv") 

WoesF_AB<-subset(Woeseia_F, Station=="AB") 

WoesF_AB<-subset(WoesF_AB, Type=="Coverage") 

head(WoesF_AB) 

 

WoesF_regression_AB <- ddply(WoesF_AB, ~ Gene_name, regression) 

colnames(WoesF_regression_AB)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesF_regression_AB, "WoesF_regression_stationAB.csv") 

 

make_plot <- function(WoesF_AB, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- WoesF_AB %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesF_AB$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 
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  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesF_AB[WoesF_AB$Gene_name == unique(WoesF_AB$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesF_AB, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#Station F 

WoesF_F<-subset(Woeseia_F, Station=="F") 

WoesF_F<-subset(WoesF_F, Type=="Coverage") 

head(WoesF_F) 

 

WoesF_regression_F <- ddply(WoesF_F, ~ Gene_name, regression) 

colnames(WoesF_regression_F)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(WoesF_regression_F, "WoesF_regression_stationF.csv") 

 

make_plot <- function(WoesF_F, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) { 

  p <- WoesF_F %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 
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    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(WoesF_F$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- WoesF_F[WoesF_F$Gene_name == unique(WoesF_F$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(WoesF_F, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

######Woeseia2_stnF 

#Station AB 

Woeseia2_F<-read.csv("WoeseiaF2_both_sorted.csv") 

Woes2F_AB<-subset(Woeseia2_F, Station=="AB") 

Woes2F_AB<-subset(Woes2F_AB, Type=="Coverage") 

head(Woes2F_AB) 

 

Woes2F_regression_AB <- ddply(Woes2F_AB, ~ Gene_name, regression) 

colnames(Woes2F_regression_AB)<-c ("value","slope","intercept","R2","R2.Adj") 

 

write.csv(Woes2F_regression_AB, "Woes2F_regression_stationAB.csv") 

 

make_plot <- function(Woes2F_AB, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- Woes2F_AB %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 
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    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(Woes2F_AB$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- Woes2F_AB[Woes2F_AB$Gene_name == unique(Woes2F_AB$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(Woes2F_AB, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 

 

#Station F 

Woes2F_F<-subset(Woeseia2_F, Station=="F") 

Woes2F_F<-subset(Woes2F_F, Type=="Coverage") 

head(Woes2F_F) 

 

Woes2F_regression_F <- ddply(Woes2F_F, ~ Gene_name, regression) 

colnames(Woes2F_regression_F)<-c ("value","slope","intercept","R2","R2.Adj") 
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write.csv(Woes2F_regression_F, "Woes2F_regression_stationF.csv") 

 

make_plot <- function(Woes2F_F, save_plot=TRUE, print_plot=FALSE, filename=NULL, ...) 
{ 

  p <- Woes2F_F %>% 

    ggplot(aes(x = Depth, y = Value)) + 

    geom_point() + 

    geom_smooth(method = "lm", se = F) 

   

  # Do you want to print hte plot to the screen? 

  if(print_plot) { 

    print(p) 

  } 

   

  # Do you want to save the plot? 

  if(save_plot) { 

    if(is.null(filename)) { # create a filename for the plot automatically, if one 
hasn't been specified, and add .png 

      filename <- paste0(Woes2F_F$Gene_name[1], ".png") 

    } 

    ggsave(filename, p, ...) 

  } 

   

  p 

} 

# Test this function on one GENE that I pull out manually 

test_set <- Woes2F_F[Woes2F_F$Gene_name == unique(Woes2F_F$Gene_name)[1], ] 

test_plot <- make_plot(test_set) 

print(test_plot) 

 

# Use dlply to make a list of each data set, and save them 

plot_list <- dlply(Woes2F_F, c("Gene_name"), make_plot, save_plot=TRUE, 
print_plot=FALSE, height=10, width=8, units="in", dpi=300) 
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R script for metabolite heatmaps 
library(gplots) 

library(ggplot) 

library(RColorBrewer) 

Metabo_palette<-colorRampPalette(c("white", "lightpink", "black"))(n=299) 

#across all samples 

Metabo_all<-read.csv("Metabolites_all.csv") 

Metabo_all_names<-Metabo_all[,1] #assign metabolite names as labels 

Metabo_all_matrix<-data.matrix(Metabo_all[,2:ncol(Metabo_all)]) #make the dataframe 
into a matrix 

rownames(Metabo_all_matrix) <-Metabo_all_names #assign row names for matrix 

 

 

heatmap.2(Metabo_all_matrix, 

          main = "All sites", # heat map title 

          notecol="black",      # change font color of cell labels to black 

          density.info="none",  # turns off density plot inside color legend 

          trace="none",         # turns off trace lines inside the heat map 

          scale = c("row"), na.rm=TRUE, 

          margins =c(12,9),     # widens margins around plot 

          col=Metabo_palette,  # use on color palette defined earlier 

          dendrogram='none',      

          Rowv=FALSE, 

          Colv="NA")            # turn off column clustering 

 

 

 

# KF stnF 

 

Metabo<-read.csv("Metabolites_F.csv") 

Metabo_names<-Metabo[,1] #assign metabolite names as labels 

Metabo_matrix<-data.matrix(Metabo[,2:ncol(Metabo)]) #make the dataframe into a matrix 

rownames(Metabo_matrix) <-Metabo_names #assign row names for matrix 
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heatmap.2(Metabo_matrix, 

          main = "Kongsfjord Stn F metabolites", # heat map title 

          notecol="black",      # change font color of cell labels to black 

          density.info="none",  # turns off density plot inside color legend 

          trace="none",         # turns off trace lines inside the heat map 

          scale = c("row"), na.rm=TRUE, 

          margins =c(12,9),     # widens margins around plot 

          col=Metabo_palette,  # use on color palette defined earlier 

          dendrogram='none',      

          Rowv=FALSE, 

          Colv="NA")            # turn off column clustering 

 

# VK stnAB 

 

Metabo_AB<-read.csv("Metabolites_AB.csv") 

Metabo_AB_names<-Metabo_AB[,1] 

Metabo_AB_matrix<-data.matrix(Metabo_AB[,2:ncol(Metabo_AB)]) 

rownames(Metabo_AB_matrix) <- Metabo_AB_names 

 

heatmap.2(Metabo_AB_matrix, 

          main = "Van Keulenfjord Stn AB metabolites", # heat map title 

          notecol="black",      # change font color of cell labels to black 

          density.info="none",  # turns off density plot inside color legend 

          trace="none",         # turns off trace lines inside the heat map 

          scale = c("row"), na.rm=TRUE, 

          margins =c(12,9),     # widens margins around plot 

          col=Metabo_palette,  # use on color palette defined earlier 

          dendrogram='none',      

          Rowv=FALSE, 

          Colv="NA")            # turn off column clustering 

 

# VK stnAC 
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Metabo_AC<-read.csv("Metabolites_AC.csv") 

Metabo_AC_names<-Metabo_AC[,1] 

Metabo_AC_matrix<-data.matrix(Metabo_AC[,2:ncol(Metabo_AC)]) 

rownames(Metabo_AC_matrix) <- Metabo_AC_names 

 

heatmap.2(Metabo_AC_matrix, 

          main = "Van Keulenfjord Stn AC metabolites", # heat map title 

          notecol="black",      # change font color of cell labels to black 

          density.info="none",  # turns off density plot inside color legend 

          trace="none",         # turns off trace lines inside the heat map 

          scale = c("row"), na.rm=TRUE, 

          margins =c(12,9),     # widens margins around plot 

          col=Metabo_palette,  # use on color palette defined earlier 

          dendrogram='none',      

          Rowv=FALSE, 

          Colv="NA")            # turn off column clustering  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



253 

 

Appendix IV: KEGG Pathways 
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Peptide and carbohydrate metabolism in Woeseiaceae MAGs 
The evidence we found for sulfur oxidation and denitrification support recent work on the 

metabolic versatility in Woeseiaceae, which highlighted its ability to function both as a 

chemolithoautotroph (1) and as a key driver of carbon fixation in marine sediments (2). 

However, because the only cultured representative of this clade was identified as a 

chemoheterotroph (3), we searched for genes related to carbon and peptide oxidation metabolism 

in the genomes (4). We examined our genomes with Kegg Decoder, which takes amino acid 

sequences as input and annotates these sequences with KO ontology. These KO annotations were 

placed into a published pipeline for the reconstruction of key metabolic KEGG pathways. A full 

description of the KOs used for each pathway can be found at 

https://github.com/bjtully/BioData/tree/master/KEGGDecoder.  

All genomes encoded a diversity of peptidase genes (Figures A3-1, A3-2), including 

peptides within the family M28 containing aminopeptidases and carboxypeptidases, and M50, 

which is a family of metalloendopeptidases with a subclass (M50B) related to sporulation 

factors. In addition, all or most genomes encode genes for di- and tripeptidases, oligopeptidase F, 

phosphoserine aminotransferase, and/or peptidase S26. Transcription for peptidases was 

restricted to aminopeptidase N by Woeseia2_stnAC at Kongsfjorden, Xaa-Pro aminopeptidase 

by Woeseia2_stnF and phosphoserine aminopeptidase by Woeseia_stnAC in Van Keulenfjorden. 

Consistent with our findings, the isolate Woeseia oceani XK5, displayed proteolytic enzyme 

activity in culture (3).  

Annotation with dbCAN2 (5) showed the presence of diverse carbohydrate-active 

enzymes, including glycosyltransferases, as well as auxiliary activity enzymes and carbohydrate 

binding proteins (Table 5A-III.1). This agrees with the genomic contents of other Woeseiaceae 
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representatives, although our genomes appear to be less enriched with respect to glysoside 

hydrolases compared to those genomes (1). Woeseia2_stnF also contained polysaccharide lyases. 

Transporters for organic molecules were only encoded in MAGs recovered from station F and 

beta-glucanase in the Woeseia2_stnF and Woeseia_stnAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



256 

 

References 
1. Mußmann M, Pjevac P, Krüger K, Dyksma S. 2017. Genomic repertoire of the 

Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in 

marine sediments. The ISME journal 11:1276. 

2. Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, Pjevac P, 

Probandt D, Richter M, Stepanauskas R. 2016. Ubiquitous Gammaproteobacteria dominate dark 

carbon fixation in coastal sediments. The ISME journal 10:1939. 

3. Du Z-J, Wang Z-J, Zhao J-X, Chen G-J. 2016. Woeseia oceani gen. nov., sp. nov., a 

chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov. 

International journal of systematic and evolutionary microbiology 66:107-112. 

4. Graham E, Heidelberg J, Tully B. 2018. Potential for primary productivity in a globally-

distributed bacterial phototroph. The ISME journal:1. 

5. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. 2018. 

dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids 

Research 46:W95-W101. 

 

 

 

 

 

 

 

 

 



257 

 

Table 5A-III.1. Results from dbCAN2 annotation of genomes for carbohydrate-active enzymes.  

Genome AA CBM CE GH GT PL 
Woeseia_stnAB 9 5 10 14 12 0 
Woeseia_stnAC 5 3 5 10 7 0 
Woeseia2_stnAC 7 2 7 14 7 0 
Woeseia_stnF 11 9 15 27 21 0 
Woeseia2_stnF 10 5 7 16 10 6 

 

AA = Auxiliary activities 

CBM = Carbohydrate binding modules 

CE = Carbohydrate esterases 

GH = Glycoside hydrolases 

GT = Glycosyltransferases 

PL = Polysaccharide lyases 
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Figure 5A-III.1. Heatmap of genomic contents and expression of genes in Kongsfjorden  (all depths) across all MAGs reconstructed in 

this study.  
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Figure 5A-III.2. Heatmap of genomic contents and expression of genes in Van Keulenfjorden  (all depths) across all MAGs 

reconstructed in this study. 
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Appendix V: Pangenomic Analysis 
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Pangenomic analysis and enriched functions 
 Comparisons of the presence or absence of gene clusters was determined for our 5 

Woeseiaceae genomes alongside the 5 publicly available genomes from NCBI and IMG (Figure 

5A-IV.1). Genome statistics can be found in Table 5.3 in the main text. We used the 

pangenomics workflow in Anvi’o (1) and implemented the ‘anvi-get-enriched-functions-per-pan-

group’ program to identify the enrichment or relative depletion of genes in our genomes 

compared to those in the database. Each gene was assigned an enrichment score, which is a 

metric for determining how unique a function/gene call is to the genomes that are assigned to a 

specific group compared all other genomes included in the pangenome analysis. Specifically, the 

enrichment score is “the test statistic for a two sample Z-test for proportions. It takes the 

proportion of times the function is observed in the group, subtracts the proportion of times the 

function is observed outside the group, and re-scales this difference to reflect the number of 

samples observed in each group. The adjustment for group size means that larger scores are 

given when groups are larger – essentially, a difference between groups can be considered more 

robust when there are more representatives of each group” 

(http://merenlab.org/2016/11/08/pangenomics-v2/).  

We found that among the core, highly-enriched functions in our genomes were genes 

encoding for cytochrome b6. (Table 5A-IV.1). Cytochrome b6 is used as a means for passing 

electrons between photosystem II and I in chloroplasts of plants and cyanobacteria (2, 3) as well 

as in green sulfur bacteria (4). Our genomes do not contain strong evidence for functional 

photosystems I and/or II, and because the gene encoding for cytochrome b6, petB, also annotates 

in our genomes as cytochrome b (part of the respiratory complex III or cytochrome bc1 complex), 
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due to its structural similarity and sequence homology (5), we interpret the cytochrome b6 

annotation to be incorrect.   

Another highly-enriched gene was ornithine carbamoyltransferase, which is part of the 

detoxifying urea cycle and involved in the de novo synthesis of arginine through the conversion 

of ornithine and carbamoyl phosphate (CP) into citrulline and inorganic phosphate. This enzyme 

has been found to contain species-specific structural adaptations to allow function at both high 

(6) and low temperatures (7). No transcripts were found for the gene encoding ornithine 

carbamoyltransferase (argF) in our genomes, making it hard to interpret the cause for such 

enrichment of this gene.  

Depleted genes 
Among the depleted genes in our genomes, nitric oxide reductase subunits b and c (norB 

and norC) were at the top of the list. This is interesting, as nitric oxide reductase would continue 

the process of intracellular denitrification that is begun by NirS encoded and transcribed in our 

genomes. However, the notable lack of NorB and NorC within all of our genomes suggests that 

nitric oxide is transferred out of the cell instead of being dealt with internally.  

It is also worth noting that several copies of genes/functions may be found in the 

genomes, and so enrichment scores may vary according to which copy the program is testing. 

For example, cytochrome c-554(548) is listed as being depleted in our genomes (Table 5A-IV.2), 

with 0/5 MAGs in this study encoding for it; however, as written in the main text, nearly all 

MAGs do in fact have cytochrome c-554(548) encoded in their genome. Another point for 

concern is that this program does not take the completeness of each genome into account when 

performing enrichment analysis. These points, coupled with the possibility of misannotations 
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discussed above, indicates that data resulting from enrichment analysis within Anvi’o should be 

interpreted with caution. 
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Table 5A-IV.1. Enriched genes in our Woeseiaceae MAGs according to pangenomic analysis in Anvi’o. WES = Weighted enrichment 

score. Core genes are genes that are found in all 5 of the MAGs in this study.  

Prokka:Prodigal call 
WES Wilcoxon 

p-val 
Occurrence in 
our genomes 

(out of 5) 

Occurrence 
outside of 

our genomes 
(out of 5) 

Core in our 
genomes? 

Cytochrome b6-f complex iron-sulfur subunit 1 10 0.01 5 0 TRUE 
Cytochrome b6 10 0.01 5 0 TRUE 
Ornithine carbamoyltransferase 10 0.01 5 0 TRUE 
Dehydrosqualene desaturase 8 0.04 4 0 FALSE 
HTH-type transcriptional regulator CdhR 8 0.04 4 0 FALSE 
O-acetyltransferase OatA 8 0.04 4 0 FALSE 
Polysulfide reductase chain A 8 0.04 5 1 TRUE 
Aldehyde oxidoreductase 8 0.04 5 1 TRUE 
NADPH-Fe(3+) oxidoreductase subunit beta 8 0.04 5 1 TRUE 
D-hydantoinase/dihydropyrimidinase 8 0.04 5 1 TRUE 
Thiamine kinase 8 0.04 5 1 TRUE 
3-hydroxy-5-methyl-1-naphthoate 3-O-
methyltransferase 8 0.04 4 0 FALSE 
ABC transporter permease YtrF 8 0.04 5 1 TRUE 
Pyruvate kinase 8 0.04 5 1 TRUE 
Sulfate/thiosulfate import ATP-binding protein 
CysA 8 0.04 5 1 TRUE 
Ribulose bisphosphate carboxylase 8 0.04 5 1 TRUE 
Nicotinate dehydrogenase FAD-subunit 8 0.04 5 1 TRUE 
Hdr-like menaquinol oxidoreductase iron-sulfur 
subunit 2 8 0.04 5 1 TRUE 
Cytochrome b561  8 0.04 5 1 TRUE 
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Table 5A-IV.1 continued.      

Prokka:Prodigal call 
WES Wilcoxon 

p-val 
Occurrence in 
our genomes 

(out of 5) 

Occurrence 
outside of 

our genomes 
(out of 5) 

Core in our 
genomes? 

SCO1 protein  8 0.04 5 1 TRUE 
Purine catabolism protein PucG 8 0.04 4 0 FALSE 
Carboxypeptidase G2 8 0.04 5 1 TRUE 
putative iron export permease protein FetB 8 0.04 5 1 TRUE 
Carbon dioxide concentrating mechanism 
protein CcmL 8 0.04 4 0 FALSE 
putative protease YhbU 8 0.04 4 0 FALSE 
Sporulation initiation phosphotransferase F 8 0.04 4 0 FALSE 
Electron transport complex subunit RnfC 8 0.04 5 1 TRUE 
Adenylylsulfate reductase subunit alpha 8 0.04 5 1 TRUE 
Histone deacetylase-like amidohydrolase 8 0.04 5 1 TRUE 
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Table 5A-IV.2. Depleted genes in our Woeseiaceae MAGs according to pangenomic analysis in Anvi’o compared to other genomes. 

WES = Weighted enrichment score. 

Prokka:Prodigal call WES Wilcoxon 
p-val 

Occurrence in 
our genomes 

(out of 5) 

Occurrence outside of 
our genomes (out of 5) 

Nitric oxide reductase subunit B 10 0.01 0 5 
Superoxide dismutase [Fe] 10 0.01 0 5 
Glutamate--tRNA ligase 10 0.01 0 5 
Phage shock protein B 10 0.01 0 5 
Asparagine synthetase [glutamine-
hydrolyzing] 1 10 0.01 0 5 
tRNA 2-thiocytidine biosynthesis protein 
TtcA 8 0.04 0 4 
putative Ni/Fe-hydrogenase B-type 
cytochrome subunit 8 0.04 1 5 
Poly-beta-1,6-N-acetyl-D-glucosamine N-
deacetylase 8 0.04 0 4 
Universal stress protein 8 0.04 0 4 
Alpha-agarase 8 0.04 0 4 
HTH-type transcriptional repressor CarH 8 0.04 0 4 
Major cardiolipin synthase ClsA 8 0.04 0 4 
Biosynthetic arginine decarboxylase 8 0.04 0 4 
Na(+)/H(+) antiporter subunit C1 8 0.04 0 4 
Cytochrome c' 8 0.04 0 4 
N-acetylglucosaminyldiphosphoundecaprenol 
N-acetyl-beta-D-mannosaminyltransferase 8 0.04 0 4 
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Table 5A-IV.2 continued.     

Prokka:Prodigal call WES Wilcoxon 
p-val 

Occurrence in 
our genomes 

(out of 5) 

Occurrence outside of 
our genomes (out of 5) 

Cytochrome c-554(548) 8 0.04 0 4 
Glutaredoxin 3 8 0.04 1 5 
Na(+)/H(+) antiporter subunit G 8 0.04 0 4 
Deoxyribodipyrimidine photo-lyase 8 0.04 1 5 
Amino-acid carrier protein AlsT 8 0.04 1 5 
Glutaredoxin arsenate reductase 8 0.04 0 4 
L-arginine-specific L-amino acid ligase 8 0.04 0 4 
Putative aldehyde dehydrogenase AldA 8 0.04 0 4 
Alanine racemase, biosynthetic 8 0.04 1 5 
DNA protection during starvation protein 2 8 0.04 0 4 
Polysialic acid transport protein KpsD 8 0.04 1 5 
Diguanylate cyclase DosC 8 0.04 0 4 
Carbon storage regulator 8 0.04 0 4 
High-potential iron-sulfur protein isozyme 2 8 0.04 0 4 
Undecaprenyl-phosphate alpha-N-
acetylglucosaminyl 1-phosphate transferase 8 0.04 0 4 
Na(+)/H(+) antiporter subunit D 8 0.04 0 4 
Putative agmatine deiminase 8 0.04 0 4 
Bifunctional transcriptional activator/DNA 
repair enzyme Ada 8 0.04 0 4 
Endonuclease 8 8 0.04 0 4 
Immunogenic protein MPB70 8 0.04 0 4 
Nitric oxide reductase subunit C 8 0.04 0 4 
Inner membrane protein YecN 8 0.04 0 4 
L-2-hydroxyglutarate oxidase LhgO 8 0.04 0 4 
putative FAD-linked oxidoreductase 8 0.04 1 5 
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Table 5A-IV.2 continued.     

Prokka:Prodigal call WES Wilcoxon 
p-val 

Occurrence in 
our genomes 

(out of 5) 

Occurrence outside of 
our genomes (out of 5) 

Protease HtpX 8 0.04 1 5 
Oxygen sensor protein DosP 8 0.04 1 5 
Cycloserine biosynthesis protein DcsG 8 0.04 0 4 
Ferric enterobactin receptor 8 0.04 0 4 
Deoxyribose-phosphate aldolase 8 0.04 0 4 
Renalase 8 0.04 0 4 
Zinc transporter ZupT 8 0.04 0 4 
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Figure 5A-IV.1. Pangenomic analysis of gene clusters in genomes from this study (pink) and 

those in the database (black). The tree on the right is a neighbor-joining tree using a concatenated 

alignment of 49 ribosomal proteins. The presence of carbon fixing and sulfur oxidizing genes is 

noted in green, as is the presence of high spore protein SP21 expression in our transcriptomes. 

The red lines at the bottom indicate the locations of highly enriched genes, including ornithine 

carbamoyltransferase and carbon dioxide concentrating mechanisms.  
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Appendix VI: Metabolites 
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Overall results 
 Metabolite data were generated in collaboration with Dr. Campagna’s lab. The results 

presented in this appendix are average data from three technical replicates performed on two to 

three biological replicates from sediment samples collected during the 2016 campaign. The co-

extraction of DNA, RNA, and metabolite data from the same samples allowed us to compare 

side-by-side the 16S rRNA gene amplicon library data, transcriptional coverage, and metabolite 

abundances for sediment from sites AC, AB, and F down to ~ 6 cm depth.  

 Over 50 metabolites were detected across all sites, with most metabolites represented in 

all sites. The metabolites detected were involved in amino acid metabolism (Figures 5A-VI.1 – 

5A-VI.5), nucleic acid biosynthesis (Figure 5A-VI.6 – 5A-VI.7), the TCA cycle (Figure 5A-

VI.8), signaling (Figure 5A-VI.9), iron uptake, sporulation, oxidative stress (Figure 5A-VI.10), 

vitamins (Figure 5A-VI.11) and uric acid (Figure 5A-VI.12). Heatmaps were generated to view 

global trends in metabolites with depth at each site (Figures 5A-VI.13 – 5A-VI 15).  

DHPS and sulfolactate 
Site AB had clear depth trends for some metabolites (Figure 5A-VI.13), including 2,3-

dihydroxypropane-1-sulfonate (DHPS) and sulfolactate. DHPS has been shown to have a role in 

the Roseobacter marine food web (1) and can be used as the sole carbon source for Ruegeria 

pomeroyi  DSS-3 (2). In addition, DHPS is an immediate precursor to sulfolactate, which can be 

excreted by cells and then remineralized by other bacteria through the Entner–Doudoroff 

pathway for sulfoquinovose degradation (3) or an alternative bifurcated pathway (4), 

representing a potential crucial and often overlooked link in the sulfur cycle (5). Sulfolactate has 

also been shown to play a role in the formation of spores in Bacillus subtilis and up to 5% of the 

dry weight of spores can be accumulated sulfolactic acid (6). The structure of sulfolactic acid 

suggests high chelating capacity, much like dipicolinic acid, also involved in spore formation (6). 



273 

 

Because our metabolite data does not discriminate between extracellular and intracellular 

metabolites, it is difficult to interpret the role of sulfolactate and DHPS in our sediments. 

Networks were built to understand the affiliation of metabolites with transcripts and members of 

the microbial community (Figure 5A-VI.16). Interestingly, DHPS is only significantly connected 

in the AB network and sulfolactate is only significantly connected in the AC network. All 

connections are negative, indicating consistent anti-correlations between all nodes in Figure 5A-

VI.16. In AB, DHPS is negatively connected to transcript nodes related to energy and solute 

transport, including a type c cytochrome and a TRAP transporter which allows the uptake of 

succinate and malate. The negative connection to the TRAP transporter is interesting, as co-

localization of genes for DHPS catabolism and transport (including a TRAP transporter) found 

previously in R. pomeroyi DSS-3 suggested co-transcription (2). Sulfolactate in the AC network 

is only negatively connected with a laccase domain protein, which potentially is involved in 

lignin degradation. Our previous observation of enhanced spore protein transcription with depth 

(Chapter 5) will provide a framework for future work aimed at untangling the connections 

between DHPS, energy metabolism, sulfur cycling, and spore formation in these sediments.  

Glutathione disulfide redox coupling 
 Glutathione disulfide, an abundant thiol in proteobacteria, was detected at both F and AC 

(but not AB). Within cells under normal conditions, this metabolite nearly exclusively exists in 

its reduced form called glutathione. However, under conditions of oxidative stress wherein 

reactive oxygen species threaten damage to cellular components, glutathione acts as an 

antioxidant, neutralizing free radicals (7). It is because of this, the ratio of the oxidized form 

(glutathione disulfide) to the reduced form (glutathione) of this thiol acts a redox sensor for cells 

(7-9). Our metabolite data suggest that the glutathione redox couple for dealing with oxidative 
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stress is being induced at sites AC and F, although we were unable to find transcripts for 

glutathione peroxidase at either site. Likewise, we were unable to detect transcripts for 

glutathione reductase, which brings oxidized glutathione disulfide to its reduced state. Network 

analysis showed that in AC, glutathione disulfide is positively connected to kynurenic acid 

(Figure 5A-VI.17), a metabolite generated through tryptophan degradation that has been shown 

to also have antioxidant properties against reactive oxygen species in the mammal model (10). In 

addition, glutathione disulfide is also positively connected in our network to the family 

Bdellvibrionaceae, obligate aerobic bacterial parasites (11). The association between this group 

and mechanisms for free radical detoxification suggest that the Bdellvibrionaceae contain 

adaptive metabolic responses to changing redox conditions in these sediments. Future work will 

address the novelty of the glutathione redox couple in Bdellvibrionaceae and the detection of 

evidence for this in published Bdellvibrionaceae genomes. 

Salicylate and iron uptake 
 Salicylate was detected at all sites. This metabolite is a precursor to siderophores in 

Pseudomonas aeruginosa (12, 13) and Mycobacterium tuberculosis (14). It has also been shown 

to have siderophore activity on its own (15), although its low binding constant at physiological 

pH makes it unlikely to compete successfully with naturally-occurring iron-scavenging ions, 

such as phosphate (16). Microorganisms have several iron-chelating strategies for acquiring the 

iron necessary for proper enzymatic function, and the genes related to these iron-chelating 

molecules are tightly regulated according to environmental concentrations of soluble iron 

(Reviewed in (17, 18)). Sediments at Kongsfjorden and Van Keulenfjorden are heavily 

influenced by bedrock lithology, with iron-rich conglomerates, sandstones, and shales in 

Kongsfjorden and iron-rich sandstones and sub-glacial pyrite oxidation in Van Keulenfjorden 
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supplying oxidized iron to the seabed (19). Across sites, we were not able to identify a clear 

relationship between transcriptional coverage for hemin receptors, siderophores, and 

ferrienterobactins and environmental concentrations of dissolved iron, ranging from 20 to ~200 

µM with depth and across sites (unpublished data, (20)). Transcriptional coverage for the 

siderophore-encoding gene tonB was restricted to the Woeseiaceae, and although network 

analysis did not show a connection between this clade’s relative abundance by 16S, it did show 

that salicylate is negatively correlated with spore protein SP21 (Figure 5A-VI.17). This protein is 

highly transcribed nearly exclusively by the Woeseiaceae at all sites examined (Chapter 5) and 

suggests a connection between spore formation and iron scavenging that will need to be explored 

in future work. Ongoing analysis includes identifying statistical correlations between 

transcriptional coverage of iron-chelating genes and environmental measurements of iron, 

phylogenetic affiliation of iron-chelating molecules, and understanding the role that salicylate 

may play in iron-scavenging within these sediments.  
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Figure 5A-VI.1. Amino acids detected across sites AB, AC, and F. Depth increases across the x-axis. 
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Figure 5A-VI.2. Amino acid derivatives detected in sites AB, AC, and F. Depth increases across the x-axis. 
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Figure 5A-VI.3. Precursors and analogues for glutamate and glutamine detected in metabolite data for sites AB, AC, and F. Depth 

increases along the x-axis. 
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Figure 5A-VI.4. Phenylalanine and tyrosine derivatives detected in metabolite data for sites AB, AC, and F. Depth increases along the 

x-axis.  
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Figure 5A-VI.5. Methionine biosynthesis and scavenging metabolites detected in sites AB, AC, and F. Depth increases along the x-

axis.  
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Figure 5A-VI.6. Nucleic acid metabolites detected in sites AB, AC, and F. Depth increases along the x-axis.  
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Figure 5A-VI.7. Nucleic acid derivatives and intermediates detected in sites AB, AC, and F. Depth increases along the x-axis.  
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Figure 5A-VI.8. TCA cycle metabolites detected in sites AB, AC, and F. Depth increases along the x-axis. 
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Figure 5A-VI.9. Signaling metabolites (cAMP and AMP/dGMP) and nucleotide sugar metabolites (UDP glucose and UDP N-

acetylglucosamine) in sites AB, AC, and F. Depth increases along the x-axis. 
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Figure 5A-VI.10. Oxidative stress, spore formation, iron uptake, and aging metabolites in sites AB, AC, and F. Depth increases along 

the x-axis.  
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Figure 5A-VI. 11. Riboflavin detected in sites AB, AC and F. Depth increases along the x-axis.  
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Figure 5A-VI.12. Uric acid generation metabolites for sites AB, AC, and F. Depth increases along x-axis. 
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Figure 5A-VI.13. Heatmap of metabolite distribution in site AB. Depth increases along the x-axis. Z-scores were calculated for each 

row and indicate the standard deviation from the mean value for each metabolite.  
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Figure 5A-VI.14. Heatmap of metabolite distribution in site AC. Depth increases along the x-axis. Z-scores were calculated for each 

row and indicate the standard deviation from the mean value for each metabolite.  
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Figure 

5A-VI.15. Heatmap of metabolite distribution in site F. Depth increases along the x-axis. Z-scores were calculated for each row and 

indicate the standard deviation from the mean value for each metabolite. 
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 Figure 5A-VI.16. Network associations of DHPS and sulfolactate in sites AB and AC. Networks were built with eLSA using 

transcript coverage, metabolite peak data, and 16S relative abundances at the family level. Transcripts are represented as circles, 

metabolites as pink diamonds, and microbial families are green squares. The first neighbors of DHPS (for AB network) and 

sulfolactate (for AC network) are highlighted in yellow. All edges (lines connecting nodes) represent negative relationships.  
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Figure 5A-VI.17. Networks for glutathione in AC and salicylate in F. 
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Chapter 6: Conclusion 
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Within the past few years, advances in molecular and sequencing techniques have 

allowed us glimpses into the vast subsurface biosphere. Uncovering the abundance, identity, 

metabolic potential, and transcriptional activity of buried microbial populations has applications 

for unlocking the secrets behind microbial subsistence in deeply buried sediment on geological 

times scales, modeling biogeochemical cycling, and predicting the trajectory of ecosystem 

dynamics with continued climate warming.  

We have shown here that quantitative PCR (qPCR) is a reliable means for estimating 

numbers of bacteria and archaea within marine sediments in which fluorescent microscopy 

techniques, such as catalyzed reporter deposition fluorescence in situ hybridization (CARD-

FISH) may be technically challenging. In addition to being higher throughput compared to 

microscopy, qPCR is a relatively reproducible means for estimating abundance if best practices 

are followed.  

Understanding the metabolic and physiological capabilities of subsurface microorganisms 

is often hampered by limited success in culturing efforts. Where isolation techniques failed, 

sequencing and bioinformatics tools succeeded in allowing us to delve into the genomic 

repertoire and adaptations within a member of the methanogenic genus Methanosarcina of 

Archaea enriched from permafrost from the McMurdo Dry Valley. Genome analysis showed that 

Methanosarcina lacustris sp. Ant1 can generate methane from diverse substrates and has 

structural adaptations that allow it to remain viable after being locked away in permafrost on 

geological time scales. Our work provides evidence that the climate-change induced deepening 

of permafrost active layers may provide an additional source of the greenhouse gas methane.  
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Climate change is a severe threat to Arctic ecosystems, in particular. Marine terminating 

glaciers in Svalbard serve as conduits for highly oxidized terrestrial material that make for a 

unique sediment environment. In this environment, differences in the ratio of autochthonous 

(surface water primary productivity) to allochthonous (terrigenous ancient organics and coal) 

material results in different oxidizing conditions for carbon-degrading microorganisms along the 

long axis of fjords. Low ratios of fresh organics to organic-poor sediment at the head of Van 

Keulenfjord, Svalbard provides the suboxic milieu that permits microbial partitioning according 

to redox zonation with depth, with a relatively deep zone of iron reducers and sulfur oxidizers. 

This iron reducing/sulfur oxidizing zone shallows as the organic matter content and lability 

increases at the fjord mouth. Our work served as the first high throughput cross-fjord 

investigation into the sequence abundance of iron and sulfur cycling clades in Van 

Keulenfjorden and lays the groundwork for future work aimed at predicting how glacial retreat 

may affect microbial community structure, metabolic function, and interaction with the carbon 

cycle.  

The Woeseiaceae/JTB255 clade within the Steroidobacterales is a key driver of dark 

carbon fixation in marine sediments worldwide. In Van Keulenfjorden, 16S rRNA gene library 

analysis showed that this group is highly abundant, especially within the first 5 cm of sediment. 

Genomic reconstruction and transcriptome analysis showed that in addition to having broad 

respiratory flexibility under microaerobic to anoxic conditions, the Woeseiaceae transcribe 

stress-mitigation and spore-forming proteins with continued burial. The ability to form spores, 

likely a type of myxospore, is perhaps a clue to the secret behind its high relative abundance 

across a vast, global biogeographical range.  
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