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Abstract

Emergent biological phenomena, although observed experimentally, are often not easily

characterized or understood. Biological systems are often comprised of many interacting

components, which may yield highly complex dynamics. A thorough understanding of

these systems often requires a multi-faceted approach involving both experimental and

computational techniques. Computer simulation allows for precise definition of system

components and facilitates a wider exploration of the system parameter space, often leading

to accelerated scientific discovery. In this thesis, we apply stochastic simulation methods

to characterize the spatiotemporal behavior of three distinct biological systems. We first

explore the role of spatial confinement and diffusion in a bistable reaction network with

positive feedback. We find that confined systems with high molecular mobility promote

the active steady state, and stochastic switching occurs unidirectionally by nucleation and

growth of single active clusters. The results provide a general framework for studying

geometry and diffusion in positive feedback networks, and suggest that confinement can be

used to initiate the formation of localized active clusters of molecules that then propagate

to activate a system. Next, we study transport properties of single molecular motors

traversing cytoskeletal networks with random filament configuration. We find that systems

containing few, long filaments exhibit slow and highly variable transport. Particular filaments

are capable of having an outsized influence on first-passage times by acting as lynchpins

that transport motors to and from regions of the system that act as traps that promote

extended occupancy. Finally, we use two distinct models to explore the dynamics of protein

organization along an actomyosin ring. We find that a positive feedback circuit can be used

to establish and maintain polarized protein distributions, and clustering is suppressed by

endocytosis and fast diffusion. In the absence of positive feedback and dissociation from
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the ring, we find that slow association of large patches leads to clustered distributions of

higher variability. These results suggest that homogeneous spatial distribution of proteins in

mature actomyosin rings may depend on frequent association of small protein clusters. Taken

collectively, these findings suggest that stochastic computational modeling can facilitate the

elucidation of key mechanistic features of emergent biological phenomena.
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Chapter 1

Introduction

1.1 Computational Modeling in Biology

Emergent biological phenomena, although observed experimentally, are often not easily

characterized or understood. Biological systems are typically comprised of many interacting

components, which may yield highly complex dynamics. A thorough understanding of

these systems often requires a multi-faceted approach involving both experimentation and

computational modeling. In vivo and in vitro experiments are useful in elucidating key

features and behavior of biological systems under certain conditions, but application of

in silico methods expands capability by facilitating a wider exploration of the system

parameter space and underlying biological mechanisms [82]. Computer simulation allows

for precise definition of system components and testing of a wide variety of conditions. The

growing availability of a wide array of computational resources renders computer simulation

increasingly useful as a method of research. Through successful implementation of these

complementary methods, underlying biological mechanisms can be better understood and

predictions under alternate conditions can be effectively extrapolated.

A particular challenge of research on living systems is the inherent dependence of system

behavior on spatiotemporal factors. For example, a cell may exhibit drastically different

behavior over time as the spatial distribution of specific signaling molecules on its membrane

undergoes changes. At the cellular population level, the stochasticity in protein copy

number and in protein motion allow for genetically identical cells to exhibit phenotypic
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differences, even in the same environment. Spatial inhomogeneity often accompanies critical

cellular processes such as cytokinesis [154] and immune cell activation [30], which are

characterized by large changes in spatial organization over relatively short timescales. A

thorough understanding of these processes and other stochastic biological phenomena is often

not attainable through simple observation, and so theoretical and computational methods

become important tools for gaining insight [99].

The most useful and sustainable paradigm for computational modeling in biological

systems research involves a recurring iterative feedback loop between in silico models and in

vivo / in vitro experiments. Fundamentally, a model that does not incorporate biologically

relevant parameters or display consistency with experimentally observed phenomena will not

be readily accepted by experimentalists who study biological systems. The first challenge in

constructing a computational model is deriving a quantitative description of a biophysical

system. Appropriate molecular sizes, diffusion coefficients, kinetic rates, and other such

quantities must be implemented to accurately simulate system behavior. While many of

these values have been discovered and well documented through classical experimentation

and measurement, some remain unknown and are unattainable by available experimental

methods. In these cases, approximations of reasonable parameter ranges must be made.

Parameter sweeps can then be employed to identify most likely parameter values that

correspond to a given observation in system behavior, thus providing useful feedback for

laboratory experiments. This two-way feedback between experimentally observed results and

computationally simulated results allows for successive and educated hypothesis refinement,

and thus can effectively lead to accelerated scientific discovery.

1.2 Simulation of Biophysical Processes

In a broad context, computational models fall into one of two categories: deterministic or

stochastic.
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1.2.1 Deterministic Modeling

In deterministic models, the output of the model is fully determined by the parameter values

and the intial conditions. In other words, a deterministic model that uses the same given

set of parameter values and initial conditions will always produce the same output result. A

simple illustration of a deterministic model can be seen in traditional chemical kinetics. Here,

the populations of N different chemical species evolve in time in a well-stirred, thermally

equilibrated chemical system according to a set of coupled ordinary differential equations

(ODEs) of the form:
dXi

dt
= fi(Xi, ..., XN) (i = 1, ..., N) (1.1)

where Xi represents the number of molecules of species i and the functions fi are inferred

from the specifics of the interactions between various chemical species and include kinetic

parameter values. For systems of size on the mL scale or greater, this set of ODEs

approximates the system behavior quite well [90]. However, for smaller systems containing

relatively small numbers of molecules of one or more reactant species, discreteness and

stochasticity may play critical roles in determining the emergent system behavior. Since

this situation often arises in the context of subcellular and cellular systems [100, 21, 116,

124, 16, 39, 38], the use of stochastic models becomes especially appropriate in computational

biology.

1.2.2 Stochastic Modeling

Spatiotemporal dynamics of stochastic cellular processes are commonly studied using a

variety of stochastic methods that fall under the broad classification of kinetic Monte Carlo

algorithms [45, 85]. These computational algorithms rely on repeated random sampling to

obtain numerical results, and intend to simulate the time evolution of some process occurring

in nature. Stochastic models have been used to study a variety of biological processes

including gene expression [39, 100], bacterial chemotaxis [42], and stem cell proliferation

[137].

Stochastic models possess inherent randomness, and so the same set of parameter values

and initial conditions will lead to an ensemble of outputs. Analysis of the collection of
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outputs will then yield a probabilistic characterization of system behavior for a given set of

input values. We use the case of chemical kinetics in a well-mixed reaction volume as an

illustrative example. To first construct the stochastic model, each species Si and potential

event j in the system is identified. The state of the system x(t) at any given time t is

completely specified by the positions of all molecules, and the rate of transitioning to a new

state is dependent only on the current state. Each potential reaction event j is represented by

its individual state-change vector νj and propensity function aj(x). The state-change vector

νj defines the change in the state of the system that occurs as result of the completion of one

instance of event j. The state-change vector for a system of N chemical species is defined

as:

νj = (ν1j, ..., νNj) (1.2)

where νij is the change in the molecular population of species Si. When an event occurs,

the state of the system x is instantaneously changed to state x + νj.

Propensity functions are defined such that aj(x)dt is equal to the probability of one

instance of reaction j occuring in the reaction volume Ω sometime in the infinitesimal interval

[t, t+dt). In the case of chemical kinetics, the propensity functions would include all the rate

law equations that govern the population of each species over time. The sum of all aj(x)dt

is denoted as the total propensity a0(x), and each ratio
aj(x)

a0(x)
represents the probability of

event j occurring within the next infinitesimal time interval [t, t+ dt).

The time evolution of the probability of reaching state x at time t given that the state at

t0 is x0 is derived using the laws of probability. The results is the chemical master equation

(CME), which is expressed as a partial differential equation (PDE) that can be written as:

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)] (1.3)

Equation 1.3 is only analytically solvable in rare simple cases, and in other cases can

even be prohibitively difficult to solve numerically [57]. Also, this equation can rarely be

solved for the probability density function of the state vector X(t), and so instead simulated

trajectories of X(t) vs. t are generated to represent a random sample of X(t). To do this, a

4



new probability function p(τ , j | x, t)dτ is defined as the probability, given X(t) = x, that

the next reaction j in the system will occur in the infinitesimal time interval [t + τ , t +

τ + dτ). This function represents the joint probability density fuction of the two random

variables τ (time to the next reaction) and j (index of the next reaction). Applying the

laws of probability, we are able to derive an expression for this function, which serves as the

mathematical basis for the SSA:

p(τ, j|x, t) = aj(x)exp(−a0(x)τ) (1.4)

This expression implies that τ is an exponential random variable with rate 1/a0(x).

Throughout the course of a simulation, to determine the value of the time interval τ between

successive events and which event j is chosen to occur, two random numbers r1 and r2 are

drawn from the uniform distribution in the unit interval [0,1] and applied such that:

τ =
1

a0(x)
ln(

1

r1

) (1.5)

j = min
j
{

j∑
j′=1

a′j(x) > r2a0(x)} (1.6)

Thus, beginning from an initial time t = t0 and state of the system x = x0, the stochastic

simulation algorithm (SSA), also known as the Gillespie algorithm [55], can be written as:

1. Evaluate all aj(x) and their sum a0(x)

2. Generate values for τ and j using Equations 1.5 and 1.6

3. Update the system by replacing t ← t+ τ and x← x + νj

4. Record (x, t) as desired and return to Step 1

The SSA is typically executed until either a specific state is reached (e.g., a cell is

activated) or a specified end time is reached. By running many independent trajectories

with the same parameter values and initial conditions, one can gain information regarding

the probability a specific state will be reached after a given amount of time. If all trajectories
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obtained using the SSA closely resemble the deterministic ODE trajectory, one can conclude

that random fluctuations of small molecule numbers is negligible. If instead there are

noticeable differences in the two models, small molecule number randomness is a significant

factor and a deterministic approach in modeling would not reflect the true behavior of the

system.

1.2.3 Spatially Resolved Systems

A natural extension to the SSA is applied to systems that are not considered well-mixed in

the specified system volume. For example, two molecules may have to diffuse appreciable

distances to reach each other in order to initiate a molecular reaction [10]. In such cases, the

system space can be partitioned into a collection of adjacent lattice sites of equal edge length

h. The choice of lattice site size and shape is made to be most appropriate for the system

being modeled. For example, the size of a lattice site may be defined to be on the same

scale as the size of a typical molecule that occupies it, and an entire eukaryotic cell can be

discretized with a hybrid mesh of triangles and tetrahedra [76]. Each individual lattice site

is approximated as a well-mixed reaction subvolume, and molecules can hop from one lattice

site to adjacent sites with a prescribed kinetic diffusive parameter khop to model diffusion.

The event of hopping from one lattice site to another is included as an additional propensity

function, and for square lattice sites the kinetic rate of hopping khop is related to the diffusion

coefficient Di of species i in the reaction volume Ω by the relation:

khop =
(2d)Di

h2
(1.7)

Where d represents the dimensionality of the system. Alternatively, space can be modeled

as continuous rather than discrete. Rather than hopping to a neighboring lattice site, the

modeled particle can hop a prescribed distance h in a randomly chosen direction determined

by the angle θ selected from a uniform distribution on the interval [0, 2π]. Whether applying

discrete or continuous space, another consideration in these systems is spatial boundary

conditions. Regardless of initial starting position, particles in systems of finite system size

are often able to reach system boundaries through a series of successive diffusive moves at
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relatively small timescales. These events are typically handled by the application of periodic

or reflective (hard-walled) boundary conditions at the system boundary.

1.2.4 Studies on Spatiotemporal Behavior in Living Systems

With stochasticity being a common feature in many diverse biological systems, stochastic

modeling approaches have been taken to study many observed phenomena including bursty

eukaryotic gene expression [120, 149], bistability in bacteriophage infected E. Coli [67],

bacterial chemotaxis [92, 104], and stem cell proliferation [137]. The spatially resolved

extension to the Gillespie algorithm has also been widely used to explore spatiotemporal

behavior in living systems. One such study found that rapid rebindings of enzyme molecules

to substrate molecules caused by spatio-temporal correlations can speed up the response

of a mitogen-activated protein kinase (MAPK) pathway and lead to loss of ultrasensitivity

and bistability [135]. Another study looked at the dynamics behind irregular relocations

of Bacillus subtilis Soj proteins from nucleoid to nucleoid [34]. From spatial modeling,

it was shown that the irregularity may be due to the stochastic nature of the underlying

Spo0J/Soj interactions and diffusion. Heterogeneity in embryonic stem cell differentiation

was explained in a recent study by Sturrock et. al [133]. A spatial stochastic model of the

Hes1 gene regulatory network was able to reproduce the variability in Hes1 oscillations seen

in experiments and led to the conclusion that intrinsic noise is the main driving force for the

observed heterogeneity in cell differentiation response.

Employing the Gillespie algorithm in the well-mixed or spatially resolved regime,

we can model a wide array of biological processes that involve any combination of

biochemical reactions, diffusion, active transport, binding and unbinding interactions,

molecular recruitment, endocytosis, etc. Through systematic variation of model parameters,

we can characterize system behavior under a variety of conditions. By studying multiple

biological systems, we are able to gain broad insight regarding the spatiotemporal effects of

kinetic transport and network topology in living systems.
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1.3 Outline of Thesis

In this thesis, we use computational methods to characterize the behavior of three distinct

biological systems that involve spatiotemporal effects of transport and network topology:

1. A simple biochemical reaction network with positive feedback (Ch. 2).

2. Molecular motors on a cytoskeletal network of actin filaments (Ch. 3).

3. Cell division proteins organizing on the cytokinetic ring (Ch. 4).

In each project, biologically relevant kinetic parameters and reasonable conditions are

employed to simulate the spatiotemporal dynamics of a living system. Systematic variation

of select parameters and conditions reveal nontrivial coupling with emergent system behavior.

1.3.1 Confinement and Diffusion in a Reaction Network with

Positive Feedback (Chapter 2)

Positive feedback is a common feature in signal transduction networks and can lead to

phenomena such as bistability and signal propagation by domain growth. Physical features

of the cellular environment, such as spatial confinement and the mobility of proteins, play

important but inadequately understood roles in shaping the behavior of signaling networks.

Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a

positive feedback network as a function of system size, system shape, and mobility of

molecules. We show that these physical properties can markedly alter characteristics of

bistability and stochastic switching when compared with well-mixed simulations. Notably,

systems of equal volume but different shape can exhibit qualitatively different behavior under

otherwise identical conditions. We show that stochastic switching to a state maintained by

positive feedback occurs by cluster formation and growth. Additionally, the frequency at

which switching occurs depends nontrivially on the diffusion coefficient, which can promote

or suppress switching relative to the well-mixed limit. Taken together, the results provide

a framework for understanding how confinement and protein mobility influence emergent

features of the positive feedback network by modulating molecular concentrations, diffusion-

influenced rate parameters, and spatiotemporal correlations between molecules.
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1.3.2 First Passage of Molecular Motors on Networks of Cy-

toskeletal Filaments (Chapter 3)

Molecular motors facilitate intracellular transport through a combination of passive motion

in the cytoplasm and active transport along cytoskeletal filaments. Although the motion

of motors on individual filaments is often well characterized, it remains a challenge to

understand their transport on networks of filaments. Here, we use computer simulations

of a stochastic jump process to determine first-passage times (FPTs) of a molecular

motor traversing an interval containing randomly distributed filaments of fixed length.

We characterize the mean first-passage time (MFPT) as a function of the number and

length of filaments. Intervals containing moderate numbers of long filaments lead to the

largest MFPTs with the largest relative standard deviation; in this regime, some filament

configurations lead to anomalously large FPTs due to spatial regions where motors become

trapped for long periods of time. For specific filament configurations, we systematically

reverse the directionality of single filaments and determine the MFPT of the perturbed

configuration. Surprisingly, altering a single filament can dramatically impact the MFPT,

and filaments leading to the largest changes are commonly found in different regions

than the traps. We conclude by analyzing the mean square displacement of motors in

unconfined systems with a large density of filaments and show that they behave diffusively

at times substantially less than the MFPT to traverse the interval. However, the effective

diffusion coefficient underestimates the MFPT across the bounded interval, emphasizing the

importance of local configurations of filaments on first-passage properties.

1.3.3 Protein Organization Along the Actomyosin Ring During

Cytokinesis (Chapter 4)

Cytokinesis is the final step in cell division and is essential in regulating cell growth and

development. In eukaryotes, this process involves the assembly of an actomyosin ring

followed by a maturation period prior to constriction. While it is known that a homogeneous

spatial distribution of key proteins on the ring is necessary to ensure proper concentric

constriction, the mechanism by which these proteins arrange themselves on the ring is
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not well understood. Here, we introduce two distinct models of protein organization on

the actomyosin ring and use computer simulations to characterize emergent behavior. In

the first model, a positive feedback circuit was implemented along with lateral diffusion

and protein exchange between the ring and a bulk cytoplasmic pool via association and

dissociation reactions and endocytosis. It was found that positive feedback was necessary to

establish polarity in protein distribution, and clustering is suppressed by endocytosis and fast

diffusion. Clustering analysis via the spatial descriptive statistic of the Ripley’s K function

revealed that an increase in feedback strength does not necessarily lead to an increase in

protein clustering. In the second model, groups of proteins associate to the ring at fixed

rate via endocytic patches. After association, they laterally diffuse and engage in binding

and unbinding interactions, but don’t dissociate for the duration of the maturation period.

We found that fast diffusion and weak binding promote homogeneous protein distributions

on the ring while slow association of patches containing large number of molecules lead to

spatial heterogeneity. Our results suggest that even distributions of proteins on the ring may

rely on frequent association of small-sized protein clusters.
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Chapter 2

Confinement and Diffusion in a

Reaction Network with Positive

Feedback

Summary: This chapter is based on the published paper [103]:

Mlynarczyk, Paul J., Pullen III, Robert H., and Abel, Steven M. Confinement and

diffusion modulate bistability and stochastic switching in a reaction network with positive

feedback. Journal of Chemical Physics, 144(1):015102, 2016.

2.1 Introduction

Cells detect environmental stimuli by means of membrane receptor proteins that bind

external ligands. Resulting cellular responses are controlled by signal transduction processes

that involve the modification of intracellular molecules via biochemical reaction networks.

In cellular environments, stochastic effects in the reaction networks are often important due

to small numbers of molecules involved and fluctuations in the intracellular and extracellular

environments [17, 43]. Additionally, both the shape of the region in which the reactions take

place and the mobility of reactants can significantly influence the emergent properties of the

reaction networks. For example, recruitment of proteins to the membrane leads to a number

of important physical changes, such as increased effective concentrations, decreased mobility,
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and altered spatiotemporal correlations between molecules [1, 135]. The role of geometry

and diffusion in modulating signaling networks has received relatively little attention, yet

may play an important role in structures such as membrane nanotubes (quasi-1D) [108],

membranes (2D) [1, 6, 37, 69, 115], organelles (spatially confined) [18], the space between

the nucleus and plasma membrane (moderately confined in some cell types) [107], complex

fabricated environments [29], etc.

Biochemical reaction networks commonly contain network motifs that exhibit specific

patterns of activation and inhibition among interacting molecular species. These motifs can

play a critical role in regulating the dynamics and steady states of networks [5, 22, 80, 141].

Positive feedback is a common motif that is characterized by interactions in which the

activation of a particular species further enhances its activation. Positive feedback can give

rise to bistability, in which a system can reside in one of two stable steady states. This

behavior is useful as the two states can be associated with a binary (on or off) response

[46]. Bistability is an important feature of numerous cell signaling networks involving binary

decisions, including those that regulate cell division and proliferation, apoptosis, and immune

cell activation [30, 44, 111, 140]. In bistable networks, external perturbations (such as ligands

that bind to protein receptors) can bias the network toward one of the steady states, thus

allowing the network to act as a switch. The network confers memory of the perturbation,

since the state will persist even after the perturbation is removed [56].

Bistable networks can also switch between states by means of spontaneous stochastic

fluctuations. Stochastic switching can lead to phenotypic diversity in an otherwise identical

population of cells, and it can also lead to unwanted cell behavior such as the accidental

activation of immune cells [128]. Understanding stochastic switching in many cellular systems

requires an understanding of stochastic chemical kinetics as well as the role of space and

diffusion. For example, previous studies have shown a nontrivial interplay between spatial

clustering of active molecules and subsequent propagation of an active domain in positive

feedback networks [31, 68, 77, 83, 153]. Nontrivial coupling of spatial structure and chemical

kinetics, along with more conventional modifications such as the diffusion influence of kinetic

parameters, make stochastic switching in bistable systems an interesting physical problem

with importance in cell biology.
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There is no general framework for understanding the role of geometry and diffusion in

signal transduction networks [1, 18]. Valuable insight can be gained through the study

of reaction-diffusion models of simple reaction networks [134, 138]. In this study we use

computational methods to investigate the effects of space and diffusion on a two-component

positive feedback network that exhibits bistability. We use kinetic Monte Carlo computer

simulations to generate simulation trajectories consistent with the reaction-diffusion master

equation describing the spatiotemporal dynamics. We also analyze deterministic descriptions

of the dynamics to complement the stochastic results [8, 73]. The organization of the

paper is as follows: We first introduce the network and the simulation approach. We then

compare the system in the well-mixed limit to spatially resolved simulations. Characteristics

of bistability and stochastic switching are explored by systematically varying the system

geometry and molecule mobility. We then study fixed-volume systems of varying shape and

perturb the inactive state with localized pulses of active molecules to investigate switching to

the active state. We conclude by discussing how the underlying physical constraints imposed

by confinement, system shape, and diffusion influence the behavior of the positive feedback

network.

2.2 Methods

We consider a two-component reaction network with positive feedback:

A
k1

GGGGGBFGGGGG

k2

X

A+ 2X
k3

GGGGGBFGGGGG

k4

3X

This network is relatively simple yet exhibits the key feature of systems with positive

feedback: The presence of active molecules (denoted by X) further enhances the production

of active molecules. This network and similar variants have been used widely to explore

bistability [52, 145]. We use rate constants that give dynamical responses on biologically

relevant time scales and that support bistability. These rate constants are summarized

in Table 2.1. The third-order rate constants k3 and k4 are defined for three-dimensional
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Table 2.1: Bistable kinetic parameters

Parameter Description Value

k1

unimolecular
forward rate constant 0.05 s−1

k2

unimolecular
reverse rate constant 40 s−1

k3

trimolecular
forward rate constant 5× 10−8 µm6s−1

k4

trimolecular
reverse rate constant 1× 10−8 µm6s−1

volumes. We adopt the language that the active species is X and the inactive species is A.

Thus an active state is one that contains many X and few A molecules whereas an inactive

state is one that contains few X and many A molecules. Note that a system governed only

by the first-order reactions would have an average steady state ratio of A to X molecules

given by k2/k1 = 800. The third-order reactions allow the system to reach large numbers of

X molecules when the total concentration is sufficiently large.

We seek to explore the spatial and temporal dynamics of the positive feedback network

as a function of system size, system shape, and mobility of molecules. We employ a slab-

like geometry to study the effects of system shape and confinement. Initially, the effect of

confinement is explored by fixing the total number of molecules in a simulation box of size 1

µm ×1 µm ×L. Two sides are held at fixed length, while L, which we call the confinement

length, is systematically varied. The total population is 104 molecules. Unless otherwise

noted, initial configurations are obtained by placing the molecules uniformly at random. To

investigate the effect of system shape without changing molecular concentration, we perform

additional simulations using various system shapes of equal volume. The diffusion coefficient

is systematically varied to study the effects of protein mobility.

We consider discrete-space, continuous-time stochastic dynamics. The time evolution

of the system is governed by a reaction-diffusion master equation. Space is discretized

into a cubic lattice with lattice spacing a = 0.01 µm. Multiple molecules are allowed to

occupy a single site, reactions occur only between molecules occupying the same lattice site,

and each lattice site is modeled as a well-mixed reaction volume. Diffusion is modeled by
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allowing molecules to hop to nearest neighbor lattice sites at a rate specified by the diffusion

coefficient. Periodic boundary conditions are employed. At any given time, the positions

of all molecules completely specify the state of the system. We use the Gillespie algorithm

to generate stochastic simulation trajectories consistent with the reaction-diffusion master

equation [57].

Simulation trajectories are generated using the standard stochastic simulation algorithm,

with reaction rates defined as follows [57]. Consider a well-mixed volume (Vi) containing nX

X molecules and nA A molecules. The reaction volume corresponds to a single lattice site

in the spatially resolved case and the entire system in the well-mixed case. The propensity

(rate) of each reaction within the volume is given by

a1(nA) = k1nA

a2(nX) = k2nX

a3(nA, nX ;Vi) = k̃3nA
nX(nX − 1)

2

a4(nA, nX ;Vi) = k̃4
nX(nX − 1)(nX − 2)

6

We have defined k̃i = ki/V
2
i . The rate at which a molecule hops to a particular neighboring

lattice site is given by D/a2. In the limit of large D, spatial degrees of freedom become

irrelevant and the system is assumed to be well mixed. We distinguish between well-mixed

and spatially resolved stochastic simulations by referring to them as as either “stochastic,

well-mixed” or “stochastic, spatially resolved” in the results that follow.

We are interested in probing whether the system exhibits bistability. In the spatially

resolved system, it is difficult to know a priori whether a system will be bistable, and if so,

the relative population of each steady state. To test for bistability, we consider two different

initial states that bias the system toward different steady states if the system is bistable:

Starting with all A molecules targets the inactive state, while starting with all X molecules

targets the active state. If the system is monostable, both sets of initial conditions converge

to the same state.
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2.3 Results

2.3.1 Bistability in the well-mixed regime

We begin by characterizing bistability and stochastic switching in the well-mixed limit. Here,

changing the confinement length L changes the volume of the system, with decreasing L

leading to increased concentration. In the positive feedback network, the first two reactions

are first order, and thus are not affected by the system volume. The third and fourth

reactions, which are third order and encompass the positive feedback effect, demonstrate

a strong dependence on volume. This is illustrated by the ordinary differential equations

(ODEs) associated with deterministic well-mixed kinetics, in which these terms involve a

product of three terms (written in terms of discrete molecular populations):

dNA

dt
= −dNX

dt
= −k1NA + k2NX −

k̃3

2
NANX(NX − 1) +

k̃4

6
NX(NX − 1)(NX − 2) (2.1)

Here, k̃3 = k3/V
2 and k̃4 = k4/V

2, where V is the system volume. Thus, it is expected that

decreasing L, and hence decreasing V , will increase the relative importance of the third and

fourth reactions. Smaller L is expected to promote an active state.

Figure 2.1 demonstrates the effect of confining the system with a fixed total number of

molecules. The deterministic description given by Eqn. 2.1 yields the steady state results

shown in the figure, with behavior spanning a monostable (active) regime for small L,

a bistable regime for intermediate L, and a monostable (inactive) regime for sufficiently

large L. Stochastic, well-mixed simulations were conducted at values of L corresponding to

integer multiples of the lattice spacing. For each value of L and for each initial condition

(either all A or all X), we generated 1000 independent trajectories of duration 100 s. The

mean inactive and active steady state values obtained from the stochastic simulations are

in close agreement with the deterministic solutions. The stochastic results in Fig. 2.1B

again illustrate the presence of monostable regimes at both sufficiently small and sufficiently

large system volumes, with bistability present at intermediate volumes. From a physical

standpoint, at L = 0.01 µm, the concentration of X due to the first-order reactions is
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Figure 2.1: (A) Schematic of the system geometry. (B) Behavior of the reaction network in
the well-mixed limit. The bistable regime is present at intermediate values of L. Steady state
solutions of the deterministic well-mixed equations are shown as black lines (stable states)
and a grey line (unstable state). Results from stochastic simulations (circles) demonstrate
bistability at values of L between 0.02 and 0.12 µm. The standard deviation is smaller than
the symbols for each case. Stochastic switching was observed only for L = 0.02 µm (from
the inactive to active steady state) and is attributed to the inactive state being close to the
unstable steady state. (C) Well-mixed, stochastic simulation trajectories starting from the
all-A initial condition for L = 0.02 µm. Multiple simulation trajectories are shown, and
each near-vertical line represents a transition to the active state for a different trajectory.
Stochastic switching is observed only for this value of L in the well-mixed regime.

sufficiently large so that a small number of X molecules can significantly engage the third-

order reactions that produce additional X molecules. As these reactions occur, the X

population increases, which in turn increases the propensity associated with the third-order

reaction producing additional X molecules. This effectively engages the positive feedback

loop and quickly leads the system to the active state.

In the well-mixed stochastic simulations, we observe stochastic switching only at L = 0.02

µm, with switching occurring from the inactive state to the active state (Fig. 2.1C). Typically,

the stochastic switching studied here involves at most a single switching event per trajectory.

This is in contrast with some studies in which a single trajectory switches between states

many times [4]. At the confinement length of L = 0.02 µm, in the deterministic case the

inactive steady state lies close to the unstable steady state. Thus, stochastic fluctuations

in the number of X molecules for a system in the inactive steady state can readily exceed

the number of X molecules associated with the unstable steady state and enter the basin

of attraction for the active state. The standard deviation in the number of molecules in

the active state increases as L increases, indicating larger fluctuations in numbers of active

molecules at larger volumes. However, even at L = 0.12 µm, we do not observe stochastic
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transitions from the active to the inactive state since the characteristic number fluctuations

are small compared with the difference in the number of X molecules in the active and

unstable steady states. Stochastic switching from the active to inactive state is observed

only in a narrow range of L near the transition from bistable to monostable behavior that

occurs at L ≈ 0.1211 µm.

2.3.2 Confinement and diffusion in spatially resolved systems

We now consider spatially resolved stochastic simulations to probe the impact of confinement

and mobility on the positive feedback network. We generate stochastic simulation trajectories

for various values of the confinement length (L) and the diffusion coefficient (D). For

each pair of values, we generate 25 independent trajectories of duration 5 s for each initial

condition (all X and all A). This time is sufficiently long to assess whether the system is

bistable, noting that in the well-mixed, monostable activate state (L = 0.01 µm), trajectories

starting with all A molecules reach the active state within 0.2 s.

Figure 2.2 shows individual simulation trajectories for conditions that give bistable

behavior in the well-mixed regime. It is immediately evident that changing the diffusion

coefficient can lead to qualitatively different behavior from the well-mixed case. For example,

sufficiently slow diffusion at the larger values of L abrogates bistability and leads to a

monostable, inactive state. When bistability is present, increasing the diffusion coefficient

monotonically increases the average number of X molecules in the active steady state.

Stochastic switching is clearly evident in the systems with L = 0.02 µm and L = 0.03 µm.

Both systems exhibit behavior in which the average waiting time before switching occurs

is nonmonotonic in D. Within the bistable regime, switching is infrequent at small D and

initially becomes more frequent as D increases. However, switching in the well-mixed regime

is again relatively infrequent, implying that at sufficiently large D the average waiting time

before switching occurs increases. This observation is explored in more detail later, when

we discuss spatiotemporal aspects of the switching event, which occurs by the growth of a

cluster of active molecules.

Figure 2.3 summarizes the behavior of the positive feedback network for a range of

parameters, with cases characterized as monostable or bistable. At some conditions,
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Figure 2.2: Representative trajectories for various system sizes and diffusion coefficients.
Each plot displays 25 trajectories from each initial condition (all A in grey and all X in
black). The average number of X molecules in the inactive state is small, and due to the
vertical scale, trajectories in the inactive state appear coincident with the horizontal axis.
Increasing the diffusion coefficient (D) leads to larger numbers of X molecules in the active
state. At larger values of the confinement length, larger values of D are required to achieve
the active state.
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Figure 2.3: Bistability diagram for the spatially resolved system. Results are obtained
using stochastic, spatially resolved simulations and summarize behavior of the system at
fixed number of molecules as a function of the confinement length (L) and the diffusion
coefficient (D). The active state is promoted by small values of L (high concentration) and
large values of D (high mobility). For each value of L, there exists a value of D below which
the system is inactive (monostable). The dashed line illustrates the approximate transition
line between the monostable inactive regime and a regime in which the active state is stable.
In the parameter regime displayed in the figure, stochastic switching is observed only at
smaller values of L, as the observed mechanism of cluster formation and growth is promoted
by increased concentration and intermediate diffusion coefficients.

distinguishing between bistable and monostable behavior can be difficult because trajectories

starting in one steady state rapidly switch to the other steady state. With limited simulation

data, it can be difficult to distinguish this from a monostable case. To call a system bistable,

we require that some trajectories must reside around a plateau value (associated with a steady

state) for at least 0.3 s before initiating a switching event. This is longer than the maximum

time observed for a transition to the active state in well-mixed stochastic trajectories at

L = 0.01 µm, and thus provides a useful heuristic for identifying bistable systems.

More confined systems with larger values of D promote the active state. Confining the

system with a fixed number of molecules increases the concentration and thus promotes

the reactions involved in positive feedback. This has the effect of promoting the active

state, as in the well-mixed case. Diffusion plays an important role by influencing encounter

times between molecules initially on different lattice sites. Encounter times are also affected
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by concentration and system geometry, which affect the distribution of distances between

molecules. At sufficiently slow diffusion, decreased encounter times can lead to decreased

effective kinetic rates, which are often called diffusion-influenced parameters. Analytical

approaches to calculating diffusion-influenced kinetic parameters are technically difficult and

have been limited to simple reaction schemes in infinite spatial domains [87, 134, 138]. As

such, computer simulations provide an essential tool for understanding the effect of diffusion

in more complicated systems.

At small values of the diffusion coefficient, there is insufficient mixing to sustain the

positive feedback reaction, and the system is monostable and inactive (corresponding to

the region below the dashed line in Fig. 2.3). It is instructive to consider the limiting case

of D → 0, in which molecules do not move from their initial position on the lattice. In

the most confined case (L = 0.01 µm), there is one molecule per lattice site on average.

If we assume the number of molecules at each site is distributed according to a Poisson

distribution, then with an average occupancy of 1 the fraction of sites having three or more

molecules is approximately 0.08. Thus, finding three or more molecules on a single lattice

site is relatively rare even in the most concentrated case and most molecules are governed

solely by first order reaction kinetics. Additionally, starting from the master equation for a

fixed number of molecules in a well-mixed volume, the steady state probability distribution

of X molecules can be solved exactly. This calculation is detailed in Appendix A. At least

six molecules must be present on a lattice site for a greater than 2% probability that at

least one X molecule is present. Thus for immobile molecules, the expected number of X

molecules is small and consistent with an inactive state.

The transition from the monostable inactive regime to the bistable regime in Fig. 2.3

occurs at larger D as L increases. This is a consequence of molecules having to diffuse

farther on average to encounter one another. Within the bistable regime, there is a nontrivial

interplay between diffusion and stochastic switching. In particular, as illustrated in Fig. 2.4,

switching from the inactive to active state occurs by the growth of a cluster of X molecules.

The two trajectories shown are representative of all stochastic switching events observed from

the inactive to active state. The cluster growth mechanism is also observed in transitions
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Figure 2.4: Representative spatial snapshots of stochastic switching events. Snapshots
from two trajectories show the spatial distribution of X molecules (grey) during a stochastic
transition to the active state. A single active cluster is formed and then grows in size (the
approximate formation time is defined as ti = 0). Analogous behavior is observed in other
trajectories that switch from the inactive to active state. (A) 1 µm× 1 µm× 0.01 µm with
D = 0.00833 µm2/s. (B) 1 µm× 1 µm× 0.02 µm with D = 0.0417 µm2/s. The images are
two-dimensional projections of the system.

from the initial condition with all A to the active state in the cases characterized as

monostable (active).

Within the bistable regime, stochastic switching is relatively infrequent at small values of

the diffusion coefficient, as molecules have a limited range of interaction and are influenced

by other molecules in small, effectively local domains. The size of the domain is a single

lattice site as D → 0, and can be thought of as the volume accessible to an isolated X

molecule before it transitions to an A molecule (since X molecules serve to initiate positive

feedback). Within small domains, relatively large effective concentrations are needed to

promote the active state. We discuss this quantitatively in Appendix A using the exact steady

state solution of the chemical master equation. Thus, large and relatively rare localized

fluctuations in concentration are needed to nucleate a cluster of active molecules. Hence,

switching is slow, as nucleation of an active domain is needed before it can spread in space. As
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the diffusion coefficient increases, X molecules can sample larger effective volumes that are

still small compared with the system size. In Appendix A.2, we show how the concentration

required to activate a domain depends on the domain size, and we use this to determine

an approximate value of D at which stochastic switching becomes likely. Faster diffusion is

required to promote switching at larger values of L.

As D increases further, molecules eventually interact over a substantial fraction of the

system volume and the system approaches a well-mixed state. As is seen in Fig. 2.1B, within

the bistable regime, the steady states become well-separated relative to typical number

fluctuations. Localized fluctuations of X molecules are rapidly dissipated, and growth of

localized domains no longer promotes activation. Taken together, these physical reasons

underlie the non-monotonic average switching time as a function of D within the bistable

regime: (i) at small D, the small effective range of interactions requires large effective local

concentrations for activation, (ii) at intermediate D, interactions in moderate-sized domains

promote the formation of spatially-localized clusters of active molecules that then spread in

space, and (iii) at large D, the large number of molecules in the well-mixed limit stabilizes

each steady state and suppress switching.

2.3.3 System shape influences stochastic switching at fixed con-

centration

In the previous sections, changing the system shape also changed the concentration of

molecules. Here we investigate changes in system shape while keeping the number of

molecules and system volume constant. Thus, these results probe a purely geometrical

effect of the environment. We focus on a specific case with D = 0.0833 µm2/s and a volume

of 0.04 µm3. This corresponds to the system studied in Figs. 2.2 and 2.3 with L = 0.04 µm,

which is bistable in the slab geometry with no observed stochastic transitions. Changing the

shape of a system with fixed volume can generate systems with markedly different degrees

of confinement (examples include a one-dimensional line of lattice sites, a two-dimensional

array of lattice sites, and a nearly cubic domain). We find that systems of dimensions 400

µm × 0.01 µm × 0.01 µm and 2 µm × 2 µm × 0.01 µm are monostable and inactive, even
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though they have the same concentration as the slab geometry with L = 0.04 µm. These

geometries highlight an important feature associated with molecular transport and encounter

times. The expected time for a molecule to diffuse across the longest dimension of the system

scales as τ ∼ ξ2/D, where ξ denotes the distance. In the two-dimensional system this gives

τ2 ∼ 50 s and in the one-dimensional system it gives τ1 ∼ 2 × 106 s, highlighting markedly

different timescales.

In the examples above, purely one- and two-dimensional systems exhibit monostable

behavior while a less confined system exhibits bistability. This indicates that system

geometry alone can control the steady state behavior of the network. To further probe

the effect of geometry on stochastic switching, we consider an initial condition with mostly

A molecules and a small number of clustered X molecules. The A molecules are distributed

uniformly at random and the X molecules are localized at a single lattice site. We refer to

this as a pulse of X molecules. Biologically, this is representative of a localized stimulus

(such as a receptor bound to a ligand) that locally activates a number of molecules. Figure

2.5A shows the fraction of trajectories that switch to the active state as a function of the

number of X molecules in the pulse. The number of X molecules required to activate the

system depends on system shape, with less confined systems requiring larger pulses to initiate

switching. Distributing the initial pulse of X molecules over a slightly larger domain does

not substantially change the results. Fixing the number of X molecules and increasing the

spatial extent of the pulse eventually decreases the likelihood of switching (see Fig. 2.5B).

Two physical mechanisms contribute to the observations in Fig. 2.5. The first is that

changing the distribution of distances between molecules affects the diffusion-influenced

rates. This is reflected by the average number of X molecules in the active steady state:

More confined systems have smaller numbers of X molecules (see Fig. 2.5 caption for details).

This has the effect of making the active steady state easier to reach from the inactive state

in the more confined systems. The second mechanism is that confinement helps to keep

the pulse of X molecules spatially localized, since there are fewer degrees of freedom by

which molecules can diffuse away. This has the effect of sustaining clusters of X molecules

for a longer period of time. In less confined systems, X molecules originating in a pulse

may diffuse away more easily, thus reducing the likelihood of nucleating growth of an active
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Figure 2.5: (A) Likelihood of switching as a function of pulse size (number of X molecules)
at fixed total concentration. Trajectories are generated using stochastic, spatially resolved
simulations with a pulse of X molecules initially localized within a single lattice site and
the remaining molecules inactive and randomly distributed throughout the system. Results
are shown from simulations in four different geometries (described by the number of lattice
sites in each dimension of the simulation box). The switching fraction is calculated using
25 trajectories. Each case considered exhibits bistability, and less confined systems require
larger pulses to induce switching. From left to right, the active steady state contains on
average the following number of X molecules: 6766, 7098, 7178, and 7179. (B) Likelihood of
switching as a function of the linear size of a pulse in stochastic, spatially resolved simulations.
The initial number of X molecules is fixed at 48 and the spatial extent of the pulse is
varied. The switching fraction for a slab geometry with L = 0.04 µm is calculated using
25 trajectories. The X molecules are initially uniformly distributed within a region with
dimensions l µm× l µm× 0.04 µm, where l denotes the pulse width.
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domain by positive feedback. Similarly, if diffusion is too fast, pulses of X molecules will

dissipate rather than propagate as a growing cluster.

2.3.4 Fast diffusion suppresses pulse-induced switching in the

bistable regime

Here we investigate how switching to the active state depends on sustaining the spatial

localization of a cluster, but without complications arising from the diffusion-influence

of kinetic parameters. To do this, we consider the partial differential equations (PDEs)

governing the deterministic evolution of molecular concentrations:

∂CX
∂t

= D∇2CX + k1CA − k2CX +
k̂3

2
CAC

2
X −

k̂4

6
C3
X

∂CA
∂t

= D∇2CA − k1CA + k2CX −
k̂3

2
CAC

2
X +

k̂4

6
C3
X

We specifically consider the slab geometry with L = 0.04 µm and assume the system is

well-mixed in the narrow dimension only. Then CX = CX(x, y, t) is a two-dimensional

concentration and k̂i = ki/L
2 is the appropriate rate parameter for two dimensions. Note

that there is no effect of diffusion on the kinetic rates and that the system shape does not

affect the steady state concentrations. Solutions are obtained numerically using a finite

difference scheme. As before, we consider the effect of starting with a spatially localized

pulse of X molecules with all other molecules inactive and spatially homogeneous. Figure

2.6 shows the concentration of X molecules within the pulse needed to transition to an

active state as a function of the linear size of a pulse. Highly localized pulses and larger

diffusion coefficients require larger concentrations in order to reach the active steady state.

Confining the system in an additional dimension further decreases the concentration needed

for a pulse of a particular linear size. This is consistent with stochastic simulations, in which

decreased diffusion coefficients can (i) destabilize the active steady state due to decreased

diffusion-influenced parameters and (ii) promote active domain formation by sustaining X

interactions at the site of a pulse of molecules.
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Figure 2.6: Pulse concentration required for activation. Numerical solutions to
the deterministic, spatially resolved PDEs are obtained for various pulse widths and
concentrations (CX), with the long-time behavior characterized as active or inactive. Lines
mark the transition from inactive to active final states for D = 0.0833 µm2/s (squares,
lower) and D = 0.833 µm2/s (diamonds, upper). A square pulse of a given width requires
a concentration higher than the transition line in order to activate the system. Note that
CXa

2 measures the number of molecules in a projected area the size of a single lattice site
in the stochastic simulations.
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2.4 Discussion

We used stochastic computer simulations to explore a simple two-component network with

positive feedback as a function of system size, system shape, and protein mobility. These

physical features are important in many biological contexts. For example, membranes are

often associated with changes in confinement and diffusion: Membrane-associated proteins

diffuse slowly in an effectively two-dimensional environment and membranes can confine

cytoplasmic reactants within small vesicles [107, 115]. The stochastic switching studied here

is typically unidirectional, with one steady state having a higher relative stability than the

other [48]. Biological examples of rare stochastic switching include spurious immune cell

activation [60], decisions in developmental pathways [94], and changing stem cell lineage

commitment [41].

The positive feedback network studied here exhibits feedback-mediated bistability, and

it additionally exhibits a clustering mechanism whereby spatially localized active molecules

form a self-sustaining and growing domain. This mechanism is observed in other biologically-

inspired networks of varying complexity and can be viewed as a generic feature of the network

topology [31, 68, 77, 83, 153]. Thus, we expect the physical mechanisms explored in this

study to be relevant to a broad class of positive feedback networks, given that they support

bistability and have sufficiently slow diffusion to allow active domain formation. We have

identified various mechanisms by which the physical features of the system affect bistability

and stochastic switching in the positive feedback network:

Steady state behavior. Confining a system with a fixed number of molecules increases

the concentration of molecules and hence promotes positive feedback through mass-action

effects. This is reflected in the well-mixed and spatially resolved simulations. However,

spatially resolved systems are also influenced by the mobility of molecules and the shape of

the system. Changing the diffusion coefficient affects steady state behavior by modulating

effective kinetic rates and altering spatiotemporal correlations. At slow diffusion, reaction

rates (higher than first order) are effectively reduced because of increased time between

molecular encounters. Additionally, once molecules are close together in space, they are

more likely to stay in close proximity for a longer time. Changing the shape of the system
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alters the distribution of distances between molecules, with more confined systems (at fixed

concentration) having molecules that are farther apart on average. This affects diffusion-

influenced rates since it affects the distribution of encounter times between molecules [1].

Stochastic switching. The concentration of molecules, modified in this work through

the confinement length, influences stochastic switching between states in the bistable regime.

In the limit of fast diffusion, the likelihood of switching is governed by characteristics of the

basin of attraction for each steady state. Interestingly, in the spatially extended system, there

is a nontrivial interplay between diffusion, system shape, and spatiotemporal correlations.

Both diffusion and system shape modulate stochastic switching by changing properties of

the steady states (e.g., by the modulation of effective kinetic rates), which can affect number

fluctuations and the regions of state space that act as attractors for each steady state. At

sufficiently slow diffusion, the system is inactive due to insufficient mixing of molecules.

This can be regarded as an extreme diffusion-influence of kinetic rates. At sufficiently high

diffusion coefficients, the system is effectively well-mixed, and there is no spatial structure.

However, at intermediate diffusion coefficients, stochastic switching is observed to occur by

a mechanism of cluster formation and growth.

Starting from an inactive state, the formation of clusters of active molecules is the result of

spontaneous fluctuations in the system. Diffusion plays an important role and can promote

or suppress stochastic switching relative to the well-mixed state. Even though the total

number of molecules is large, cluster formation is dominated by localized number fluctuations

involving small numbers of molecules. Slow diffusion limits the ability of X molecules to

interact over large distances, and hence restricts the spatial range over which a spontaneous

fluctuation of X molecules must occur. As mobility increases, an active cluster can initially

interact over a larger spatial range, yet relatively slow diffusion prevents the molecules

from dissipating in space. Sustaining a cluster for a sufficiently long time is necessary to

promote cluster growth. At larger diffusion coefficients, even though spontaneously formed

X molecules can interact over longer ranges, large diffusion disrupts cluster formation and

hence suppresses a local enhancement of positive feedback. This leads to the nonmonotonic

average waiting time for switching as a function of the diffusion coefficient. System shape

also plays a role by influencing the degrees of freedom by which molecules can diffuse away.
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Biological significance. Positive feedback is a common feature in signal transduction

networks. Cells often modify the distribution of molecules and their physical shape

in response to environmental cues, and hence can modulate properties of the effective

environment experienced by a signaling network [87]. This work provides a framework

for thinking about the roles of confinement, geometry, and protein mobility in modulating

properties of a positive feedback network. Because we have chosen a simple network that

captures key features of positive feedback, the results are expected to be relevant to other

networks exhibiting positive feedback. This network also suggests the utility of confinement

and protein localization in activating a network. For example, recruitment of molecules

to the membrane, followed by spatially localized activation, can lead to rapid signaling by

propagation of a growing cluster of active molecules. Additionally, compartmentalization

within a cell can lead to localized confinement within a particular region such as the nucleus,

which can promote the initiation and subsequent spreading of an active signal [66]. The

physical mechanisms explored in this work are also expected to play a role in other signal

transduction networks.
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Chapter 3

First Passage of Molecular Motors on

Networks of Cytoskeletal Filaments

Summary: Sections 3.1 - 3.3.6 of this chapter are based on the submitted paper:

Mlynarczyk, Paul J. and Abel, Steven M. (2018) First passage of molecular motors on

networks of cytoskeletal filaments. Manuscript submitted for publication.

3.1 Introduction

Active intracellular transport is essential for proper cellular function in eukaryotes, with

defects resulting in various types of disease [15]. Passive diffusion is often too slow for

transport across cellular distances, so biological cargo such as vesicles and organelles are

commonly transported via active processes [14, 24, 147]. Active transport is facilitated by

molecular motor proteins that bind cargo and generate directed motion along cytoskeletal

filaments by converting energy obtained from the hydrolysis of ATP into mechanical work

[125, 143, 72, 53]. The cytoskeleton of the cell is comprised of a network of filamentous

protein assemblies and serves as a substrate for the movement of motor proteins in the

cytoplasm [121, 11]. Individual filaments have a polarity that dictates the direction in which

a motor protein moves.

Myosins are a class of molecular motors that travel along actin filaments [156]. The

organization of the actin cytoskeleton is controlled by many accessory proteins; commonly,
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it can be found arranged in an approximately random configuration, with little correlation

between filaments [95, 3]. In traversing a cytoskeletal network, active transport along

filaments is interspersed with passive cytoplasmic motion [71]. Although the biophysical

properties of many types of myosin motors on single actin filaments have been well

characterized [97, 74, 123, 84, 102, 122], the influence of various features of the cytoskeletal

network on transport is not as well established.

Experimental and theoretical studies have shown that an actin network of sufficient

filament density can effectively transport material, with transport controlled by motors

switching from one filament to another rather than by means of spontaneous changes in

network structure [93, 129, 96]. Theoretical studies have demonstrated that intermittency

in passive versus active transport can increase the efficiency of transport by decreasing

the amount of time required to traverse a given intracellular distance [65, 19]. Thus, the

spatial organization of the filament network can significantly affect the transport of molecular

motors. In addition, the local organization of filaments can have outsized influence on

transport over larger length scales in some cases. Experimental and theoretical studies

have shown that motors can become trapped at junctions of multiple filaments, leading to

unproductive cycling states [126, 9].

In some cases, filaments are capable of arranging in such a way to produce a large degree

of spatial heterogeneity in network structure. For instance, bundles of many individual actin

filaments are commonly seen in large eukaryotic cells and function to facilitate transport

of molecular species and organelles at relatively high speeds [58, 59]. This phenomenon is

relevant in many plant organisms such as the aquatic alga Chara corallina, which possess

exceptionally large intermodal cells that undergo rotational streaming driven by vesicles

coated with motor proteins sliding along cables of bundled actin filaments [157]. The presence

of these filamentous bundles in a network of otherwise randomly oriented filaments may

significantly alter the emergent transport properties in the cell [40].

In the field of stochastic processes, first-passage processes are a class of problems that

have been useful in the study of many physical and biological systems [19, 117]. Applications

in biology include problems involving molecular search, transcription, channel transport, and
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evolution (reviews of biological applications can be found in Refs. [28] and [131]). The first-

passage time (FPT) is the time to first reach a specific state (or set of states) starting from

a specified initial condition. Because FPTs reflect the underlying stochastic process, they

provide a useful way to characterize properties of the process and are often directly related

to physical properties of interest. For the case of coupled active and passive motor transport,

characterizing FPTs gives insight into the timescales and variability of transport. For the

example of a motor crossing an interval, a small mean first-passage time (MFPT) and low

variability would represent fast and reliable transport; in contrast, a large MFPT and high

variability would represent slow, unreliable transport. In this context, Ando et al. used

simulations to characterize the FPTs of motors moving from the nucleus to the cell surface

and determined that the MFPT was largely determined by the total length of all filaments

in the system [9].

Recent experimental and theoretical work has shown intriguing coupling between motor

transport and the structure of the underlying cytoskeletal network [126, 9]. However, much

remains unknown about the relationship between configurations of filaments and the large-

scale transport of motors [11, 23, 132, 81]. In this work, we use stochastic computer

simulations to study the transport of single motors traversing random configurations of

filaments. We systematically vary the number and length of filaments and characterize the

first-passage times for a motor to traverse an interval of fixed length. We examine the FPT

distributions of select cases, investigate the impact of net filament polarity, and determine

the MFPT that results from reversing the polarity of all filaments of a given configuration.

For specific filament configurations, we assess the impact of individual filaments by reversing

their polarity and determining the change in MFPT; we then compare the location of high-

impact filaments with regions of space in which motors spend large amounts of time. To

further characterize cytoskeletal network transport, we assess whether the transport of a

motor across a domain with many filaments can be treated as a diffusive process with an

effective diffusion coefficient. We then introduce filamentous bundling and investigate its

impact on MFPT and FPT variability. Finally, we characterize motion of motor-organelle

complexes and the impact of cytoskeletal traffic in multiple motor systems.
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3.2 Methods

A molecular motor is represented as a particle that diffuses, reversibly binds to filaments,

and undergoes directed motion when bound to a filament. We consider a single molecular

motor as it traverses a two-dimensional rectangular system containing static, fixed-length

filaments that are randomly distributed in the system space. The dynamics are described

by a continuous-time stochastic jump process.

The system is 20 µm by 5 µm with hard-wall boundary conditions. Filaments are

represented as line segments with a fixed directionality for motor motion (we refer to this

as the polarity of the filament). The filaments are placed by selecting a random point in

the system, extending a line segment of a prescribed length at a random angle, and then

assigning a polarity at random. Filaments are truncated if they cross a boundary. The

number and length of filaments are both systematically varied. The choice of system size is

motivated by plant cells, in which motors often traverse large cellular dimensions (∼ 10 to

∼ 100 µm) with a third dimension that is substantially restricted (∼ 1 µm) due to the close

proximity of a large vacuole and the cell membrane [146].

When the particle is not bound to a filament, it hops at rate khop = 270 s−1 with a step

length of 100 nm in a randomly chosen direction. This gives a diffusion coefficient of D

= 0.675 µm2 s−1. When unbound, the motor has a binding rate of kon = 6 s−1 with each

filament located within 100 nm of the particle. This is the approximate size of a myosin

motor. When the motor is bound to an actin filament, it takes 100 nm steps along the

filament in the direction prescribed by the filament’s polarity. The hops occur at a rate of

kfil = 60 s−1, giving an average speed of 6 µm s−1. The motor unbinds from the filament either

spontaneously (koff = 2 s−1) or when the end of the filament is reached. The rate constants

were chosen to be physiologically relevant and were motivated by in vitro experiments with

myosin and kinesin [159]. We use the Gillespie algorithm to generate independent stochastic

simulation trajectories using various filament network configurations [57].

The primary quantity of interest is the first-passage time (FPT) for the motor to cross

the rectangular interval in the longer (20 µm) dimension, starting from one boundary. The

motor starts at the center of the boundary in an unbound state, and the simulation runs until
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Figure 3.1: (a) Random configuration of filaments for a system containing 100 filaments
of length 2 µm. Filaments possess either positive (blue) or negative (green) polarity, which
specifies whether a motor bound to a filament moves in the positive or negative x-direction.
(b) Sample path of a motor traversing the system from left to right.

the motor reaches the opposite boundary. The motor crosses the interval by a combination

of passive diffusion and active transport along filaments. Figure 3.1 shows a sample filament

configuration along with the path taken by a motor traversing the system from left to right

in a sample simulation trajectory. Longer line segments on the path correspond to periods

of directed transport. Each independent trajectory results in a different path.

Areas in which the motor spends the most time are characterized by discretizing the

system and measuring the time spent in each discrete lattice site. The relative effect of an

individual filament on the FPT in a network is investigated by reversing the polarity of that

filament and measuring the resulting MFPT.
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3.3 Results and discussion

3.3.1 The length and number of filaments influence first-passage

properties

We begin by systematically varying the number (Nf ) and length (Lf ) of filaments in the

system. For each case, we generate 10,000 network configurations, each of which is used to

obtain a single stochastic trajectory. The mean first-passage time (MFPT) is obtained by

averaging the FPTs of these trajectories, and the relative standard deviation is the associated

standard deviation (σ) divided by the MFPT.

Figure 3.2 shows that the largest MFPTs with the highest variability occur in systems

containing a relatively small number of long filaments; the smallest MFPTs occur in systems

with large numbers of long filaments. Systems with many short filaments also have large

MFPTs, but they exhibit less relative variability than systems with relatively few long

filaments. It is interesting to note that systems with many short filaments exhibit larger

MFPTs than pure diffusion (Nf = 0).

3.3.2 First-passage times can vary widely for networks with the

same number and length of filaments

Figure 3.3 shows the full distribution of FPTs for three cases appearing in Fig. 3.2. This

includes the case with no filaments (Nf = 0) in which the particle moves by diffusive motion

only. The smallest MFPT is associated with large numbers of long filaments (Nf = 3000,

Lf = 3 µm). The FPT distribution for this case has a peak at relatively short times and is

somewhat right-skewed, with the peak occurring at a time moderately lower than the mean.

The case with 100 filaments of length 3 µm exhibits the largest MFPT. Interestingly, this

case has a peak in the FPT distribution at shorter times than the purely diffusive case, but

the MFPT is more than twice as long. Although there is a relatively narrow distribution

around the peak, the large MFPT is caused by the long tail of the distribution in which

FPTs are anomalously large but relatively rare (Fig. 3.3, inset). The overall distribution

reflects the time for a motor to traverse many different underlying filament configurations,
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Figure 3.2: Mean first-passage time (MFPT, top) and relative standard deviation
(σ/MFPT, bottom) for various numbers (Nf ) and lengths (Lf ) of filaments. Each value
is obtained from 10,000 independent trajectories, each generated with a different filament
configuration.
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Figure 3.3: Probability density of first-passage times (FPTs) in systems with no filaments
(blue, MFPT = 298.9 s), 3000 filaments of length 3 µm (red, MFPT = 95.2 s), and 100
filaments of length 3 µm (purple, MFPT = 633.8 s). The tails of the distributions at longer
times are shown in the inset. Each distribution is constructed from 10,000 trajectories.

suggesting that typical configurations lead to relatively fast transport, but that a small

fraction of configurations produce very slow transport. Others cases from Fig. 3.2 with a

large relative standard deviation have similar distributions of FPTs.

To investigate the influence of specific filament configurations, we also determine the

distribution of FPTs for fixed configurations. When sampling over independent, randomly

generated filament configurations, we refer to the resulting FPT distribution as “annealed.”

The results shown in Figs. 3.2 and 3.3 were obtained in this manner. In contrast, when

determining the distribution of FPTs for a specific filament configuration, we refer to the

distribution as “quenched.” To illustrate the difference, Fig. 3.4 compares annealed and

quenched FPT distributions for a system consisting of 100 filaments of length 3 µm. Each

quenched distribution was obtained using a different filament configuration. Pronounced

differences are evident when comparing results for the three configurations and for the

annealed case. In particular, the third quenched distribution is strikingly flat with a long

tail. The MFPT associated with this configuration is 1,111 s, in comparison with 634 s for

the annealed case and 156 s for the first quenched configuration. This indicates that the

filament configuration, even with the same network properties, can markedly influence the

ability of a motor to traverse the system.

38



Figure 3.4: Annealed versus quenched FPT distributions. The probability density
is generated from independent, randomly generated network configurations (“Annealed,”
MFPT = 633.8 s) and for fixed filament configurations (“Quenched 1 - 3” for three different
configurations; MFPT = 155.7 s, 257.1 s, and 1,111.3 s, respectively). Each network contains
100 filaments of length 3 µm. Each distribution is constructed from 10,000 trajectories.

Differences between quenched distributions of FPTs result from differences in the

configurations of filaments. In the following, we explore both “bulk” properties that

reflect the entire filament configuration and “local” properties that involve specific local

arrangements of filaments.

3.3.3 The MFPT is correlated with net filament polarity

The random generation of a filament configuration can lead to a net filament polarity, which

we characterize in terms of the fraction of filaments oriented toward the initial boundary.

We refer to configurations with a fraction greater than 0.5 as having “net negative polarity,”

meaning that more than half of the filaments are negatively polarized and point away from

the target boundary. Because motors bound to these filaments move away from the target

boundary, a larger fraction of negatively polarized filaments is expected to increase transit

times on average.

Figure 3.5 shows the MFPT as a function of the net filament polarity for various numbers

and lengths of filaments. The dominant trend is that a larger fraction of negatively polarized

filaments leads to a larger MFPT. For the case with a large number of short filaments

(Nf = 3000, Lf = 1 µm), the MFPT increases by approximately a factor of two when the
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Figure 3.5: Scaled MFPT versus the fraction of negatively polarized filaments in the
network. Different combinations of filament length (Lf ) and number (Nf ) are shown. Each
curve is constructed with data from 10,000 independent trajectories (each with a randomly
generated filament network). For each case, the MFPT for all trajectories is scaled to
1 (horizontal dashed line). The fraction of negative filaments is binned so that each bin
contains many samples; the scaled average MFPT for each bin is shown.

fraction of negatively polarized filaments increases from 0.5 to just 0.52. The magnitude of

the change in MFPT highlights the sensitivity to net filament polarity.

The results in Fig. 3.5 are consistent with trends in Fig. 3.2: Cases with a larger relative

standard deviation (Fig. 3.2) exhibit a more pronounced increase in MFPT as the fraction of

negatively polarized filaments increases. For example, systems with relatively few filaments

(Nf = 100) exhibit greater sensitivity to the net polarity when filament lengths (Lf ) are

greater, which is the regime in which they have a large relative standard deviation. In

contrast, systems with larger numbers of filaments (Nf = 1000 and 3000) are most sensitive

to net polarity when filaments are short.

When there is a net filament polarity in the system, the MFPT can be impacted in two

ways. The first is that there is a net bias in the transport of the motor across the system.

One can think of this as a drift term in a diffusion equation or as a bias in the steps of

a random walk. The second is that an increased number of negatively polarized filaments

increases the likelihood of local filament configurations that impact the first passage of the

motor, for example by locally trapping the motor in a specific region [126, 9] or by acting as

a barrier through a particular interval in the system.
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3.3.4 Reversing the polarity of filaments can significantly impact

the MFPT

We now explore the relationship between the layout of filaments and how each filament

is polarized. Given a particular filament configuration, we first determine its MFPT; we

then reverse the polarity of all filaments in the system and determine the resulting MFPT.

Figure 3.6a shows one example configuration (Nf = 100, Lf = 3 µm) and its counterpart

with reversed polarity. Here the original filament configuration has an anomalously large

MFPT of 5484 s while the network with reversed polarity has a MFPT of 46 s. The original

configuration has a large fraction of negatively polarized filaments (0.63), and it is likely

that local structures involving small numbers of filaments contribute to the large MFPT.

For example, all filaments near the starting position are negatively polarized, thus effectively

trapping the motor near its starting location. Reversing the polarity of all filaments alters

this local structure and eliminates its ability to trap the motor, thereby significantly reducing

the MFPT.

Figure 3.6b shows the correspondence between the quenched MFPTs of randomly

generated configurations and the configurations obtained by reversing the polarity of all

filaments (each MFPT was obtained using 1000 trajectories). The general trend is an inverse

relationship between the MFPT in the original and “reversed polarity” networks. Reversing

the polarity can dramatically impact the MFPT, particularly for configurations initially

having anomalously large MFPTs. This is particularly evident in the case with relatively

few filaments (Nf = 100). Here, reversing polarities of all filaments can change the MFPT

by over 3 orders of magnitude. Several large changes in the MFPT (> 1000 s) were identified

in configurations with no net polarity, indicating that changes in local organization — and

not just net polarity — can strongly influence the MFPT.

3.3.5 Identifying traps and high-impact filaments

To probe local effects involving specific arrangements of filaments, we first identify where

motors spend the most time by characterizing the average residence time as a function of
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Figure 3.6: (a) Original and reversed filament configurations (Nf = 100, Lf = 3 µm)
producing abnormally large and small MFPTs, respectively. (b) A comparison of the MFPT
for random filament configurations (“initial configuration”) and the configurations generated
by reversing the filament polarity (“reversed polarity”). Dashed lines represent the MFPT
obtained from the annealed average. Filaments are 3 µm in length.

position. For a given filament configuration, we discretize the system into 0.01 µm2 square

regions and determine the average time spent in each region over 10,000 trajectories.

Figure 3.7 shows the mean residence time for a system with no filaments and for the

filament configuration shown in Fig. 3.6a. For the purely diffusive case, the residence time

decays from left to right in an approximately linear manner. Cases with filaments typically

look qualitatively different because of the spatial heterogeneity imposed by the filaments.

Given a filament configuration, the map of residence times highlights the particular filaments

and regions of space where a motor spends the most time. Regions with large residence times

that are surrounded by small numbers of frequently-occupied filaments indicate local filament

structures that promote extended occupancy. These filaments constitute a “trap” in which

a motor remains confined for extended periods of time [9]. The example in Fig. 3.7b shows

that filaments trap the motor near the starting position.

The emergence of traps suggests that small numbers of localized filaments have a

disproportionately large influence on the overall MFPT. To probe this idea, we systematically

perturb the network structure by reversing the polarity of each filament (one at a time)

while keeping all others in their original state. For each perturbed network, we compute the
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Figure 3.7: Average residence times (a) for diffusive motion only (no filaments) and (b)
for the filament configuration shown in Fig. 3.6a. The heat maps show the average residence
time in each square lattice site when the space is discretized; each site has area 0.01 µm2.
The corresponding line plots show the average residence time in each vertical slice of width
∆x = 0.1 µm. Results are averaged over 10,000 trajectories.

43



Figure 3.8: (a) The MFPT obtained when reversing the polarity of each filament (one
at a time) from the configuration in Fig. 3.6a. Results are sorted in order of increasing
MFPT for filaments that were initially negatively (green) and positively (blue) polarized.
The MFPT of each new configuration is averaged over 100 independent trajectories (shown
with the standard deviation). The MFPT of the initial configuration is indicated by the
dashed horizontal line. (b) Filaments colored according to their impact on the MFPT when
their polarity is reversed: The fold-decrease in MFPT for filaments changing from negative
to positive polarity (left) and the fold-increase in MFPT for filaments changing from positive
to negative polarity (right).

resulting MFPT using 100 independent trajectories. Figure 3.8a shows the results for the

filament network presented in Fig. 3.6a. The network contains 100 filaments of length 3 µm,

so reversing the polarity of each results in 100 new configurations.

Figure 3.8a shows that changing the polarity of filaments that were initially negatively

polarized typically leads to a decrease in MFPT; changing the polarity of filaments that

were initially positively polarized typically increases MFPT. The change in MFPT due to a

single filament can be quite substantial, as evidenced by the greater than 4-fold decrease and

4-fold increase in MFPT for the most extreme cases. It is interesting to note that reversing

the polarity of negatively (positively) polarized filaments can increase (decrease) the MFPT.

This further indicates the importance of local filament structures on transport.
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The previous results suggest that certain filaments have outsized influence on the first-

passage properties of motors crossing the interval. Given the trap regions previously

identified, it is interesting to characterize where the most impactful filaments are located.

Figure 3.8b shows the location of filaments and their influence on the MFPT when their

original polarity is reversed. Interestingly, the highest impact filaments are not located near

the areas of high residence time but instead are found “downstream.” In this case, the

filaments whose reversal cause the largest increase in MFPT appear to form a bridge that

link the trap with a region of the system closer to the final boundary. The other filaments in

this region are polarized toward the origin; thus, the high-impact filaments provide the only

clear path from one side to the other. When one of them is reversed, the bridge is broken,

and the motor is forced to traverse a field of filaments that are polarized toward the origin.

Thus, even when the motor exits the initial trap, it is likely to be transported back to the

trap.

This suggests that filaments most critical in determining transit times for a system with

a large MFPT are not necessarily those that constitute a trap, but instead can be those

providing a path away from one. These filaments act as lynchpins connecting different

regions and facilitate transport of a motor to or away from areas of prolonged occupancy.

This suggests that a motor enters and escapes trapping regions multiple times in a typical

trajectory for a filament configuration with a large MFPT, thus producing a recurring

unproductive cycling state.

We have focused on a single filament configuration with a large MFPT. As a step toward

generalizing the results, we consider additional configurations that are characterized by

MFPTs that are slow, typical, and fast compared with the annealed average. Figure 3.9

shows an additional configuration with anomalously slow transport. Traps can again be

identified by inspection of the spatially resolved residence times. In this case, the most

impactful filament whose reversal leads to an increase in MFPT is located near the end of

the trap. The filaments leading to the largest decrease in MFPT are located downstream of

the area with large residence time. The next two figures in Fig. 3.9 have intermediate MFPTs

that are close to the annealed average. These also exhibit areas with enhanced occupancy,

but the time spent in these regions is less pronounced than in the slow cases. Flipping
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Figure 3.9: Residence times and impact of single-filament reversal for five configurations
of filaments with Nf = 100 and Lf = 3 µm. The configurations are categorized as slow,
typical, and fast in comparison to the MFPT for the annealed case. From left to right, the
MFPT values for the initial configurations are 7960 s, 250 s, 251 s, 46 s and 98 s. The
first two rows show average residence times (analogous to Fig. 3.7). Rows 3 and 4 show the
fold-increase and fold-decrease in MFPT, respectively, resulting from changing the polarity
of single filaments (analogous to Fig. 3.8b).

individual filaments can still significantly influence the MFPT, but to a lesser relative degree

than in the slow cases. High-impact filaments are located both within and downstream of

traps. The final two configurations in Fig. 3.9 have fast MFPTs. In the first, the residence

time is relatively constant throughout, in contrast with the diffusive case, which decays

linearly. In the second, the motor spends substantially more time in the first half of the

domain than the second half. There is a single filament whose reversal leads to a substantial

change in MFPT; it is located just beyond the high-residence time area.

Collectively, the results in Figs. 3.8 and 3.9 show that altering single filaments can

dramatically influence the MFPT and that the most impactful filaments can be located

in areas that are not associated with traps. For cases in which the high-impact filaments

are downstream of traps, they appear to serve as lynchpins that connect trap regions with

regions further downstream; other filaments in their vicinity are typically polarized in the

opposite direction. For anomalously slow FPTs, the physical picture that emerges is that

the motor escapes and re-enters trap regions multiple times.
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3.3.6 Do motors behave diffusively when the number of filaments

is large?

In the previous section, we focused on a regime with moderate numbers of long filaments. We

established that the configuration of filaments plays a large role in dictating FPTs, and that

averaging over different configurations leads to broad distributions of FPTs. In this section,

we consider a regime with large numbers of filaments. We investigate whether motors behave

diffusively in this regime at sufficiently long times, and if so, whether the effective diffusion

coefficient produces the MFPT obtained from an annealed average over configurations of

filaments.

With a large density of filaments, a motor will spend most of its time bound to filaments

because it is typically within binding range of multiple filaments. Additionally, a large

density reduces correlations in the motion of a motor imposed by rebinding to recently-

traversed filaments. Thus, in a large isotropic system, the motor is expected to undergo a

random walk with a step size dictated by the filament length. An effective diffusion coefficient

for this motion would be given by De ≈ (1/2d) l2/τ , where l2 is the characteristic square

distance traveled between each filament binding, τ is the characteristic time to bind and

traverse a single filament, and d = 2 is the dimensionality. Given sufficiently long filaments,

the motor would rapidly bind to a new filament once unbinding from another. Thus, it would

spend most time on filaments and, assuming the dissociation rate of the motor is small, l2

would be given by averaging over the square distance from a random binding position to the

end of the filament, l2 ≈ L2
f/3. The characteristic time, τ ≈ (Lf/2)∆x−1k−1

fil , is the average

time required to traverse half the distance of the filament, giving De ≈ Lf ∆x kfil/6. Thus,

De is expected to scale linearly with the filament length for sufficiently long filaments.

To test the whether motors behave diffusively, we calculate the mean-square displacement

(MSD) of a motor as a function of time in a larger system (100 µm× 100 µm) with 200,000

filaments. This gives the same filament concentration (20 filaments/µm2) as for the interval

with Nf = 2000. We vary the length of filaments and fit the long-time behavior of the MSD

to a power-law to assess whether it scales linearly in time, as expected for diffusive behavior.

Figure 3.10 shows the MSD for two different filament lengths, with the complete results shown
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Figure 3.10: Mean square displacement (MSD, blue line) of motors in a 100 µm× 100 µm
domain with 200,000 filaments of length Lf = 0.3 µm (left) and Lf = 2 µm (right). Dashed
lines are power-law fits to long-time (10 s < t < 80 s ) data obtained from 1000 trajectories
of length 100 s. The exponents are 0.99 (left) and 1.03 (right), indicating approximately
diffusive motion.

in Figure B.1 of Appendix B. The case with short filaments (Lf = 0.3 µm) is approximately

linear over the entire time domain. The case with long filaments (Lf = 2 µm) exhibits

superdiffusive behavior at short times (< 1 s) and diffusive behavior at longer times. This is

consistent with ballistic-like motion when motors are bound to filaments and to random-walk

behavior at longer times. The diffusive behavior emerges at times considerably shorter than

the typical first passage times obtained for a motor crossing a 20 µm× 5 µm interval.

The long-time behavior of the MSD is approximately linear for all values of Lf . We

use the slope of linear regime with the expression MSD(t) = 4Det to determine De, the

effective diffusion coefficient. The results are shown in Fig. 3.11a. The diffusion coefficient

is nonmonotonic as a function of Lf , as De decreases between Lf = 0 and Lf = 0.3 µm

and increases beyond Lf = 0.3 µm. This is likely a consequence of short filaments having

truncated steps (< 100 nm) near the ends of filaments and more frequent rebinding. The

behavior of De at larger values of Lf increases in an approximately linear manner, which

is consistent with the scaling arguments above. However, the slope of the line (≈ 0.81) is

smaller than the value of 1 that emerges from the scaling analysis. This may be because we
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Figure 3.11: (a) Effective diffusion coefficient (De) obtained from the MSD for various
filament lengths (Lf ) for a system with 20 filaments/µm2. The diffusion coefficient of the
motor in the cytoplasm is indicated by the dashed line. The solid line is a linear fit to the
data (Lf ≥ 1 µm), De = 0.81Lf . (b) Comparison of MFPTs obtained in original simulations
with filaments and in simulations without filaments using the effective diffusion coefficient.
Cases with a filament network contained 2,000 filaments of various lengths. Cases without
filaments used the effective diffusion coefficient from (a). All data points represent averages
over 10,000 trajectories.

are not probing sufficiently large values of Lf or because not all of the assumptions (e.g.,

negligible rebinding) hold.

Using the effective diffusion coefficients from Fig. 3.11a, we finally determine the MFPT

for a motor traversing the original interval (20 µm × 5 µm) in the absence of filaments.

The results, shown in Fig. 3.11b, are consistent with the effective diffusion coefficient, with

a maximum MFPT coinciding with the local minimum in De. However, when compared

with the MFPT obtained from the simulations with explicit filament networks, it is evident

that the effective diffusion coefficient underestimates the MFPT for most filament lengths.

Thus, the behavior of the motor in the interval used to obtain FPTs is not well-described

by purely diffusive motion governed by the effective diffusion coefficient. This suggests that

local filament configurations impact the FPTs in nontrivial ways.
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Figure 3.12: Random configuration of filaments for a net neutral polarity system containing
100 filaments of length 2 µm and 50% (a) positively polarized and (b) negatively polarized
bundling.

3.3.7 Bundling of filaments decreases FPT variability

In the previous sections, all networks consisted of randomly oriented filaments of random

polarity. Now we consider networks consisting of a portion of bundled filaments: horizontal

filaments confined to a narrow horizontal band of width 0.5 µm located in the vertical center

of the system. The previous non-bundled networks considered applied random polarity to

each filament, and thus on average contained 50% negatively polarized and 50% positively

polarized filaments. Thus, to preserve a net neutral filament polarity in the system while

maximizing the fraction of bundled filaments, we consider the cases of 50% bundled filaments

with the remaining 50% of filaments randomly oriented and polarized opposite to the bundle.

Sample configurations for both negative and positive polarization variations of a system

containing 100 filaments of length 2 µm are shown in Fig. 3.12. In these systems, the

progression of a motor toward the end boundary via active transport within the bundle is

counteracted by active transport outside the bundle.

As in Section 3.3.1, we again systematically vary Nf and Lf and compute the resulting

MFPT and FPT variability for both bundling cases. Figure 3.13 shows that the MFPT

for a system with 50% positive bundling decreases as the filament number Nf or length

Lf increases. However, FPT variability for this case is highest in systems of many long

filaments. This suggests that faster, more reliable transport relative to the no bundling case

can be acheived with lower filament densities in these systems. In the 50% negative bundling

case, an MFPT gradient profile emerges at low filament densities (small Nf or small Lf and

NfLf < 1000) similar to that seen in the no bundling case shown in Fig. 3.2 but in reverse

direction. Here, the MFPT decreases along this gradient in the transition from a many,
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Figure 3.13: Mean first-passage time (MFPT, top) and relative standard deviation
(σ/MFPT, bottom) for various numbers (Nf ) and lengths (Lf ) of filaments for the cases
of 50% positively polarized bundled filaments (left) and 50% negative polarized bundled
filaments. All non-bundled filaments are randomly oriented and polarized opposite to the
bundle. Each value is obtained from 10,000 independent trajectories, each generated with a
different filament configuration.

short filament regime to a few, long filament regime. Relative to the no bundling case, the

MFPT is higher for systems of many short filaments and the MFPT and FPT variability is

lower for systems of few long filaments. For these latter systems, the positive polarization

of all filaments outside the bundle combined with the low density of filaments in the system

(1 filament/µm2) increases the likelihood that a motor will be transported away from the

bundle region and spend a greater fraction of time in the low filament density bulk region of

the system. The horizontal orientation of the negatively polarized bundle filaments leads to

large horizontal displacements and thus prevents the formation of the previously discussed

local trap regions composed of a small number of filaments that would lead to anomalously

large FPTs. This further supports the finding that local filament configurations in randomly

oriented networks can have an outsized impact on FPT.

Since a high concentration of filaments exist in a confined horizontal region in these

bundled systems, motors within this bundle region are more likely to rebind to other bundle
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Figure 3.14: Fraction of time spent in bundle region (0.5 µm horizontal band in the vertical
center of the system) for systems of net zero filament polarity of various numbers of 2 µm
long filaments. Each value represents an average over 10,000 independent trajectories, each
generated with a different filament configuration.

filaments and remain in this bundle region for extended periods of time. To investigate the

impact of this heterogeneous filament density on residence time within the bundle region

(vertical center 10% of system space), we discretize the system space and compute the total

occupancy time in the bundle and non-bundle regions for 10,000 independent trajectories.

The fraction of time spent in the bundle region for systems of various numbers of filaments

is shown in Fig. 3.14.

In the 50% positive bundling case with Lf = 2 µm, motors spend more than 40% of

their time in the bundle region for moderate to high Nf (> 700). In the equivalent negative

bundling case, motors spend more than 33% of their time in the bundle region for this same

regime. The reason for the discrepancy can be largely attributed to the condition that a

motor must exit the bundle region to reach the end boundary in the negative bundling case,

while a motor may remain in the bundle region to reach the end boundary in the positive

bundling case. In both cases, however, the amount of time spent in this center 10% of the

system space is 2-4 times greater relative to the equivalent non-bundled system case. This

disproportionately large fraction of time the motor spends traveling in the same direction

when bound to a filament contributes to the decreased FPT variability in bundled systems,

and thus produces more reliable transport.
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Table 3.1: Base parameters used for motion of motor-organelle complexes on
actin filaments

Parameter Description Value
khop Diffusive hopping rate 1728 s−1

kfil Filament-bound hopping rate 480 s−1

kon Binding rate to filament 0.1 s−1

koff Unbinding rate from filament 0.5 s−1

d hopping distance 0.0125 µm
D Diffusion coefficient 0.27 µm2s−1

Norg Number of organelles 200
Nf Number of filaments 20

3.3.8 Movement of Motor-Organelle Complexes on Filament Net-

works

Thus far, we have considered systems of varying filament density and orientation to study

transport properties of single motors on networks of filaments. In most real intracellular

systems, many motors work cooperatively to transport biological cargo. One example is

the transport of organelles during cytoplasmic streaming in plant cells. Through the use of

fluorescence microscopy, the movement of individual organelles can be tracked over time.

To model the movement of individual organelles on actin filaments, we implement model

parameter values consistent with experimental observations provided by our collaborators

in the Nebenführ research group. Specifically, the mean velocity of a bound organelle on a

filament is fixed at 6 µm/s, and on and off rates are chosen such that approximately 10%

of organelles are bound to filaments at any given time. Organelles are equally sized with a

diameter of 0.3 µm and can bind to a nearby filament only if it is located within a threshold

binding distance of 0.15 µm. The system size is 10 µm × 10 µm, and filaments are assumed

to span from boundary to boundary. We use periodic boundary conditions. Excluded volume

effects apply to organelles bound to filaments, so an attempted move by an organelle on a

filament resulting in spatial overlap with another organelle is rejected. No excluded volume

effects are implemented in the cytoplasm. The model parameters used are summarized in

Table 3.1.
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Figure 3.15: Schematic diagram for turning angle and displacement rate calculations.
θ ranges from -π to +π, and is computed using a vector dot product with the x and y
coordinates of consecutive position points ri−1, ri, and ri+1. Displacement rate is computed
over the entire time interval 2∆t using ri−1 and ri+1.

We are interested in the motion of individual organelles in a given time interval, which can

be characterized by the distance it moves and the angle by which it turns. For consistency

with experimental measurements, we compute a single displacement rate and turning angle

for each time interval, which is illustrated by the schematic shown in Fig. 3.15.

The turning angle θ during each interval 2∆t is computed as the angle between the

vector displacement during the first timestep ∆t and the vector displacement during the

second timestep ∆t. The associated displacement rate is computed over 2∆t as:

|∆r|
∆t

=

√
(xi+1 − xi−1)2 + (yi+1 − yi−1)2

2∆t
(3.1)

where xi and yi represent the Cartesian coordinates of position ri.

Applying different values of the full timestep 2∆t, we observe the short-time and

moderate-time behavior of organelle motion. Larger time intervals would include more

diffusive and/or filament hops and more turns unless the organelle is continuously bound

over the entire interval, thus producing different characteristic motion. The distribution of

turning angles and associated displacement rates for time intervals of 0.1 s, 0.2 s, and 0.5 s

are shown in Fig. 3.16.

Each heat map displays a low |∆r|/∆t regime with wide range of θ, and a high |∆r|/∆t

regime with θ ≈ 0. The low |∆r|/∆t regime represents diffusive organelles that spend
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Figure 3.16: Distribution of motor turning angles and associated displacement rates over
half-time intervals of 0.1 s, 0.2 s, and 0.5 s. Turning angle is defined as shown in Fig. 3.15
and displacement rates are computed using Equation 3.1. Data is obtained from each of 200
individual organelles from 25 independent trajectories over 1000 s each. The number of data
points contained in each heat map is approximately 2.3 × 107 (top), 1.1 × 107 (center), and
3.9 × 106 (bottom). The frequency of each displacement rate and turning angle combination
is log-transformed.
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the majority of the time interval unbound, or the ”passive regime”. Since these organelles

undergo diffusive motion, they turn at random angles and thus have a wide θ range. An

inverse correlation between |θ| and |∆r|/∆t emerges in the low displacement rate regime

since an angle of ±π would indicate the organelle hopped forwards and backwards along the

same path, which would yield a displacement of 0.

The high frequency of points in the high |∆r|/∆t regime represent organelles that are

bound and move along filaments for the majority of the time interval, or the ”active regime”.

The turning angle is approximately zero since the organelle moves along a consistent vector

while on a filament. As the time interval ∆t increases, the passive and active regimes shrink

in size and the maximum |∆r|/∆t decreases. For small ∆t, a small number of total moves

occurs and thus the probability of being bound for the entire ∆t interval increases. Thus,

the relative frequency of θ = 0 is highest at low ∆t values.

Taken together, these results reveal that the largest organelle displacement rates are

observed in the short-time regime, and passive and active regimes are clearly discernible over

both short and moderate-time intervals. This suggests that organelle motion in a network

of filaments, much like single motors on networks of finite-length filaments as detailed in

Section 3.3.6, would not be well-approximated by purely diffusive motion. This is especially

noteworthy given the relatively low filament binding rate leading to a steady state fraction

of only 10% of organelles bound.

3.3.9 Cytoskeletal traffic in multiple motor systems

To study the effect of motor traffic on transport properties, we again apply excluded volume

effects to motors bound to filaments and revert to the kinetic rates listed in Sec. 3.2 to increase

motor movement on filaments. To characterize the transport properties of a given multiple

motor system, we measure the normalized motor current for a given set of conditions, which

is computed as the number of filament-bound motor moves per unit length per unit time.

We begin by investigating the dependence of current on the number of motors. We

systematically increase the number of motors in a 10 µm × 10 µm system of 20 randomly

oriented filaments of indefinite length. Since kinetic rates are kept constant, the number

of bound motors increases with the total number of motors in the system up to the point
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Figure 3.17: Motor current per µm of filament versus number of motors in a 10 µm × 10
µm system of 20 randomly oriented filaments of indefinitely length. Each data point shows
the mean and standard deviation over 25 independent trajectories of 100 s each. The binding
rate kon is fixed at 6 s−1 and the unbinding rates koff used are 2 s−1 and 0.2 s−1 . The lower
kon/koff ratio reveals non-monotonic behavior of current with respect to Nm while a 10-fold
decrease in unbinding rate leads to monotonically decreasing current with increasing Nm.

where filaments become saturated with motors. In the extreme case, a system that has every

filament completely saturated with bound motors will have zero current unless unbinding

events first occur to make segments of filament accessible to motor motion. At high motor

densities, excluded volume effects on filaments are significant in that ”traffic” limits motor

moves on filaments. To investigate the effect of motors being bound to filaments for longer

time periods, the kon to koff ratio is altered by decreasing koff by a factor of 10. The motor

current per length of filament as a function of the number of motors in the system for both

of these sets of kinetic rates is shown in Figure 3.17.

For the lower kon/koff ratio, the current is maximized at an intermediate value of motor

population. A 10-fold decrease in the off rate leads to monotonically decreasing current in the

motor population regime considered. This can be understood intuitively since a decreased

unbinding rate implies a higher number of motors bound at steady state and consequently

an increased incidence of ”traffic jams” that limit current. These jams are only successfully

alleviated with readjustments of motor positions on the filament, which is often achieved

through an unbinding event followed by a binding event at a different filament site. In

effect, systems that are more densely populated with molecular motors, and thus possess a
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higher propensity for traffic jams, achieve greater current when unbinding is more frequent.

Figure 3.17 confirms that greater current is achieved in the high motor density regime for

the system with greater unbinding rate.

To probe the effect of having a network of filaments versus a single filament, we consider a

single filament in which motors always remain bound. The length of filament was fixed at 10

µm to correspond to the characteristic length of the multiple filament system. Motors were

first placed on the filament at random positions, and periodic boundary conditions on the

filament were applied to measure motor current over extended time periods. Next, motors

were placed immediately adjacent to each other. Since all motor moves occur with equal

displacement, the latter case represents a situation in which motors are either immediately

adjacent or separated by an integer number of motors moves. The number of motors bound

to the filament was systematically increased to match the average number of motors bound

at steady state per 10 µm of filament in the filamentous network. The motor current as

a function of the number of bound motors per filament for these two single filament cases

along with the filament network case are shown in Figure 3.18.

Motor current is greatest in the close-packing configuration for higher filament density

cases. When filament density is low, motors are less likely to encounter traffic on a filament

and so all three cases have approximately equal current. The randomly positioned motor

configuration is similar to the filamentous network configuration since positions at which

binding occurs are determined stochastically. The filamentous network achieves greater

current only at high values of motor density on the filament. As the filament approaches

saturation, the randomly positioned motors on a single filament system reach a fixed upper

limit in current while the filamentous network is able to achieve larger current up to an

elevated upper limit because of unbinding and binding events. In this way, the effects of a

network configuration of filaments are observed most prominently at high motor densities.
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Figure 3.18: Motor current per µm of filament as a function of average number of bound
motors per filament for single filament and network cases. Each data point represents the
mean and standard deviation over 1000 independent trajectories of 100 s each. Maximum
current is achieved when motors are positioned immediately adjacent to each other on a
single filament. Relative to randomly positioned motors on a single filament, the filament
network achieves greater current as filaments approach their saturation point.
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3.4 Conclusions

We used stochastic computer simulations to explore the transport of molecular motors

traversing a two-dimensional interval with random configurations of cytoskeletal filaments.

The motors undergo a combination of diffusion in the cytoplasm and active transport when

bound to filaments. We varied the length and number of filaments and characterized the

mean first-passage time (MFPT) for a motor to traverse the interval. As shown in Fig. 3.2,

cases with relatively small numbers of long filaments had large MFPTs with high variability.

This was a consequence of anomalously large first-passage times associated with particular

network configurations. Cases with large numbers of short filaments also produced large

MFPTs relative to pure diffusion, although with less relative variability. Large numbers of

long filaments decreased the MFPT relative to the case of purely diffusive motion. The fact

that MFPTs for systems of many short filaments were larger than those for purely diffusive

motion suggests that a minimum filament length is needed for active transport to enhance

transport across a domain.

We further investigated the source of large, highly variable FPTs, finding that specific

filament configurations produced localized spatial ”traps” in which motors spend most of

their time. Additionally, we systematically perturbed the polarity of each filament to

assess the impact on the MFPT. Surprisingly, perturbing certain filaments produced large

changes in MFPT. Some of these were found “downstream” of traps, suggesting that high

residence times in traps were not only the consequence of the filament configuration in the

immediate vicinity, but also of filaments that linked the trap to other spatial regions. These

filaments typically provided the only clear path through a region that was otherwise filled

with filaments polarized in the opposite direction. We also showed that in cases with large

numbers of filaments, the mean square displacement of unconfined motors can be used to

determine an effective diffusion coefficient. However, this diffusion coefficient underestimates

the MFPT to traverse a confined interval, again suggesting the importance of local filament

organization when confined in a finite domain.

The potential for local filament structures to lead to increased FPTs was highlighted by

the introduction of a long and narrow bundle region of horizontally oriented like-polarized
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filaments while preserving net zero filament polarity. Occupancy within a bundle region leads

to larger horizontal displacements that allow a motor to bypass local structures composed

of a small number of filaments. In the regime of few long filaments, bundling of filaments of

either polarity leads to lower MFPTs compared to the non-bundled case. An effective way to

mitigate slow transport is in the bundling of filaments with positive polarity, which was shown

to consistently produce lower MFPTs with increasing filament density. Bundling, whether

it be in the negatively or positively polarized direction, was shown to increase reliability of

transport by decreasing FPT variability in low to moderate filament density regimes.

We briefly studied the motion of motor-organelle complexes on networks of filaments using

parameters consistent with experimental observations from a collaborating research group.

We found that passive and active motion regimes exist at small and moderate time intervals

even for low filament binding rates. Sampling at higher time intervals leads to a smaller

range of displacement rates in both regimes as probabilities of being bound to a filament

for a large fraction of the time interval decrease. The short to moderate time behavior of

organelle motion on a network of filaments, much like the movement of individual motors,

would not be well-approximated by purely diffusive motion.

We modeled cytoskeletal traffic by considering multiple motors moving on individual

filaments, finding that motor current may be optimized at intermediate motor densities

since saturation of motors on filaments effectively limits motor movement due to excluded

volume effects. In comparison to randomly placed motors on single filaments, we found that

the use of a filament network is effective in attaining higher motor current in the high motor

density regime. This suggests that a network configuration is most effective in achieving

faster transport when many motors cooperatively interact in the system space.

Overall, we identified general parameter regimes and mechanisms by which intracellular

transport of a single molecular motor on a static filament network in two dimensions can

become slow and/or unreliable. Many cells have quasi-two-dimensional regions in which

motor transport occurs. For example, some plant cells have highly-constricted regions due

to the close proximity of a vacuole and plasma membrane. However, understanding transport

in less confined regions is also of interest, and extending to three dimensions may reduce

the likelihood of traps due to the additional degree of freedom for escape. Additionally,
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the actin cytoskeleton is regulated by myriad proteins that organize it into structures such

as actin bundles [78, 79], which can vary in thickness and density. It will be of interest

to understand effects of actin organization on intracellular transport. In this context,

understanding dynamic changes in the cytoskeleton [89, 70, 47], crowding effects due to

many motors [155, 2, 106, 136, 148, 33, 112], and the effects of multiple motors associated

with individual cargo [126] will be interesting avenues of future research. This study provides

a foundation for investigating these future directions.
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Chapter 4

Protein Organization Along the

Actomyosin Ring

Summary: Sections 4.4 - 4.5 of this chapter are based on the submitted paper:

Onwubiko, U., Mlynarczyk, P. J., Wei, B., Habiyaremye, J., Clack, A., Abel, S. M., and

Das, M. E. (2018) The Cdc42 GEF, Gef1, promotes uniform protein distribution along the

actomyosin ring to enable concentric furrowing. Manuscript submitted for publication.

4.1 Introduction

4.1.1 Cell polarity by positive feedback

The establishment of cell polarity is another important biological process involving heteroge-

neous distributions of proteins, in which an asymmetric accumulation of proteins such as Rho

GTPases serves to define a unique cellular axis. It has been shown that regions with high

density of proteins can spontaneously arise, and these protein clusters can persist for long

periods of time [35, 36], even in the apparent absence of pre-existing cues [130, 152]. Abrupt

transitions in protein spatial patterns can activate cellular pathways and subsequently

direct downstream cellular processes [27], and so precise regulation of spatial pattering and

formation of protein clusters is crucial in ensuring proper cellular function.

63



Experimental and theoretical studies have suggested that several distinct mechanisms

may contribute to the establishment and preservation of cell polarity. Mechanisms involving

directed transport utilize the cytoskeleton to preserve polarity by directing signalling

molecules to specific locations on the membrane [151, 98]. Positive feedback has been shown

to be capable of amplifying stochastic fluctuations to produce clusters of active molecules

[31, 50, 63, 103], and thus play a central role in dynamically stable spatial pattern formation.

Activation of positive feedback circuits can induce spontaneous cortical polarization in cells

[152, 75], and so it has been hypothesized that positive feedback alone can enable the

recruitment of signaling molecules to localized regions on the plasma membrane and thus

establish sustained cell polarity [7]. However, it has also been shown that regulation of spatial

patterning can be achieved through the coupling of positive feedback with other proposed

mechanisms such as coupled activation-dependent inhibitors [139, 110], long-range negative

feedback [54], molecular noise regulation [91], feedback component sequestration [64], or

endocytosis [142]. Besides these potential mechanisms, proteins also undergo diffusive motion

while on the plasma membrane. Lateral diffusion can strongly influence spatial distributions

of proteins [62, 142] and reduce polarized distributions even in the presence of positive

feedback circuits.

Budding yeast is an established model system that utilizes a simple actin-independent

positive feedback circuit for establishment of spontaneous polarization of the GTPase Cdc42

[7, 77]. In this system, the GTPase Cdc42, a major regulator of cell growth and shape, can

recruit other Cdc42 molecules to the plasma membrane via its interactions with the guanine

nucleotide exchange factor (GEF) Cdc24 and the adaptor protein Bem1 [152, 25, 75, 127].

This leads to a state of cell polarization that is maintained in a state of dynamic equilibrium

with rapid protein exchange between the membrane and the cytoplasm, and polarization

sites are found to incur occasional drifting [152]. The degree of polarization was found to be

maximized at intermediate total protein numbers [77], but the influence of parameters such

as feedback strength and endocytosis rate were not explored.

In this work, we first explore a model of cell polarity by means of a simple self-recruitment

positive feedback mechanism coupled with lateral diffusion and spontaneous association and

dissociation from a ring. We examine the influence of the diffusion coefficient, feedback
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strength, and endocytosis rate on spatial clustering by systematically varying each of these

parameters. We also explore collective protein-protein interactions by means of a modified

diffusion mechanism and explore the resulting influence of endocytosis rate. We analyze

the clustering of proteins using the a spatial descriptive statistic that measures the average

fraction of proteins within a given distance from a protein, normalized to the circumference

of the ring.

4.1.2 Protein organization during cytokinesis

Cytokinesis is the final step in the cell division process in which a cell divides into

two daughter cells. In animal and fungal cells, this typically involves the assembly and

constriction of an actomyosin ring and formation of a cleavage furrow [113]. In order to

orchestrate cytokinesis, proteins within a cell dynamically localize to different areas at

different times. In some cases, proteins aggregate at specific areas to form clusters while

in others they distribute evenly along the ring. Proper concentric constriction and successful

completion of cytokinesis relies on precise spatial organization of proteins on the mature

actomyosin ring. Understanding the underlying mechanisms of protein organization remains

an active area of research, in part because failure to complete cytokinesis has been implicated

in tumorigenesis and the onset of cancer [49, 51, 26].

A model organism for the study of eukaryotic cytokinesis is the fission yeast Schizosac-

charomyces pombe. There has been significant progress made in the understanding of the

mechanisms behind assembly and constriction of the actomyosin ring using fission yeast as a

model system [113]. In S. pombe cells, proteins are recruited to the division site at the onset

of anaphase to form cytokinetic nodes, which in turn recruit cytoskeletal proteins to form

an actomyosin ring [113, 88]. The ring hosts many of the proteins involved in cell division

and acts as a substrate for protein binding and movement. After the ring is assembled, it

undergoes a maturation phase [86] during which an indentation on the cell surface known as

a cleavage furrow forms on the membrane and a wall structure known as the septum ingresses

[61, 144]. Successful cytokinesis occurs when constriction of this ring occurs concentrically,

which requires the formation of a concentric membrane furrow [150]. Proteins associated to

the ring before and during ring constriction may serve a role in ensuring timely and concentric
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ring constriction. Experimental studies have shown that several cytokinetic proteins localize

to the division site during the maturation phase [13, 20, 105, 118, 154] and contribute to

ring constriction, including the F-BAR-domain-containing scaffold protein Cdc15.

The regulation of Cdc15 localization on the ring is achieved through cooperativity of

multiple genes. The guanine nucleotide exchange factor (GEF) Gef1 activates the small

GTPase Cdc42 at the actomyosin ring to promote ring constriction [32, 114]. Formins

also have a role in ring assembly, as they associate to actin filament ends to regulate actin

polymerization. Recent experimental studies have shown that cells containing a gef1 deletion

mutation combined with an activated allele of the formin cdc12 exhibit non-concentric

membrane furrowing [109]. In these gef1∆cdc12∆503 mutant cells, Cdc15 is unevenly

distributed along the cytokinetic ring which in turn contributes to an uneven rate of furrowing

[109]. A potential source of Cdc15 on actomyosin rings is from endocytic actin patches. These

patches are composed of branched actin and contain associated proteins including Cdc15.

During endocytosis, many of these endocytic proteins are internalized into the cell, but some

are left on the assembled actomyosin ring. It is possible that assembled actomyosin rings

recruit groups of Cdc15 from these endocytic patches. The size and association rate of these

patches of Cdc15 proteins could influence the resulting spatial distribution on the mature

ring.

We explore a second model involving explicit interactions via protein binding and

unbinding on the actomyosin ring along with spontaneous association of patches of molecules

(rate kpatch). We investigate the interplay between diffusion (coefficient Dm) and binding

strength (rate kb) by systematically varying both parameters and observing the resulting

spatiotemporal behavior. The molecules represent Cdc15 proteins in fission yeast, and

unique patch size and association rate parameter sets are selected for each of four genotype

cases: gef1+cdc12+, gef1∆cdc12+, gef1+cdc12∆503, and gef1∆cdc12∆503. These genotypes

correspond to the wild-type, single mutant gef1 deletion, single mutant activated cdc12

deletion, and double mutant strains, respectively. Data for parameter estimation has been

obtained by Cdc15 fluorescence intensity measurements and provided by the M. Das research

group [109]. We characterize the degree of clustering for each of the four different simulated

genotype cases by computing the coefficient of variation (CV ) in protein population across
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four equal ring quadrants after 20 minutes for many independent simulations. Finally, we

compute a statistical average of the CV values for each modeled genotype and infer the

potential mechanism underlying the observed phenotypic behavior of Cdc15 distribution on

the actomyosin ring in the different strains.

4.2 Methods: Positive feedback model

We first consider a simple model of protein recruitment to the membrane that involves

positive feedback. This model, illustrated in Figure 4.1, is adapted from a previously

published model [7, 77]. Proteins can be either located in the cytoplasm or associated

with a spatially resolved actomyosin ring of circumference 30 µm. Positions on the ring are

discretized into individual lattice sites of length 0.1 µm, and multiple proteins are allowed

to occupy a single lattice site. A protein can transition from the cytosol to the ring either

by spontaneous association (rate kon) or recruitment by another protein (rate kfb). While

associated with the ring, lateral diffusion occurs at a specified rate khop. Dissociation from

the ring can occur either spontaneously by individual proteins (rate koff) or by endocytosis

(rate ke), in which proteins associated with multiple lattice sites are removed. We model

endocytosis as occurring across three consecutive lattice sites, which is meant to correspond

to the approximate size of an endosome internalizing the proteins from the membrane. The

probability of endocytosis occurring at a given set of three given adjacent sites is taken to

be directly proportional to the fraction of the total ring protein population contained across

the given set of three adjacent sites. The propensity equations for this model are described

in Appendix C.1.

Additionally, we also consider protein-protein interactions by means of a modified

diffusion mechanism (coefficient Dm’) in which a lateral hop to a neighboring site is equally

likely to occur from any occupied lattice site regardless of its protein population. This

mechanism effectively reduces the hopping rate of any single protein on the ring, and accounts

for slower diffusion of oligomers that may form from protein binding interactions on the

membrane. With this assumption, proteins at a given site hop to adjacent lattice sites at a
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Figure 4.1: Schematic of the positive feedback circuit used to model protein organization
along an actomyosin ring. Proteins are either in the cytoplasm (green) or associated
with the ring (red). Transitions between the cytoplasm and ring occur by spontaneous
association (kon), active recruitment (kfb), endocytosis (ke), and spontaneous dissociation
(koff). Molecules diffuse along the membrane with diffusion coefficient Dm. At times we
consider modified protein diffusion, in which molecules that are clustered diffuse more slowly
(Dm’ < Dm).

rate that is inversely proportional to the number of proteins at the site. This causes proteins

to diffuse more slowly when they accumulate at a site (Dm’ < Dm).

Stochastic simulations using the Gillespie algorithm are then used to characterize the

spatiotemporal behavior of proteins on the ring with respect to the lateral diffusion coefficient

Dm, feedback strength kfb, and endocytosis rate ke. We systematically vary each of these

parameters by multiple orders of magnitude and study the resulting distribution of proteins

over time. Since protein motion is effectively 1D, the spatiotemporal behavior can be

visualized via 2D kymograph plots. Spatial descriptive statistics are then applied over

multiple independent trajectories to compare the level of clustering observed under different

parameter values.

4.3 Results

We begin by carrying out simulations using kinetic parameter values consistent with the

previously published model [7, 77], as shown in Table 4.1.
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Table 4.1: Base parameters used for positive feedback model

Parameter Description Value
koff Spontaneous off rate 9 min−1

kon Spontaneous on rate 0.0005 min−1

kfb Feedback rate 0.01 min−1

ke Endocytosis rate 0 min−1

Dm Lateral diffusion coefficient 1.2 µm2min−1

N Total number of molecules 2000
L Ring circumference 30 µm

Figure 4.2: Kymographs representing the number of proteins across the ring with respect
to time using parameters from Table 4.1 and varying diffusion coefficient (Dm = 0.12, 1.2,
12 µm2min−1).

4.3.1 Large diffusion coefficients promote homogeneous spatial

distributions

The influence of diffusion on the ability of the system to sustain polarity is apparent through

observation of the behavior that results from varying Dm by a single order of magnitude.

In the absence of protein-protein interactions, lateral diffusion distributes proteins along the

ring, with higher diffusion coefficients leading to more protein movement.

As seen in Figure 4.2, fast protein diffusion leads to more even spatial distributions of

protein. However, at low values of Dm, the positive feedback mechanism of protein self-

recruitment leads to proteins recruiting other proteins to localized areas before they diffuse

away. In this parameter regime, relatively large protein clusters form and persist for extended

periods of time.
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4.3.2 Feedback is necessary for polarization

We vary the feedback strength by three orders of magnitude and observe the time evolution

of protein distributions on the ring, samples of which are shown in Figure 4.3a. Feedback

is necessary for polarization in this model, and increasing feedback strength leads to more

recruitment of proteins to the ring. However, high feedback strengths facilitate recruitment

to any occupied site. When several proteins have associated to the ring at distinct locations,

this leads to recruitment to multiple independent sites and thus decreases polarization. Also,

since a finite total number of proteins N exists in the system, an upper limit in protein

population on the ring is eventually reached at high feedback strength. When the cytoplasmic

pool of proteins has been depleted and all protein is associated to the ring, recruitment only

happen when preceded by a dissociation event. With diffusion being at higher propensity

at these conditions, diffusive moves will be favored over dissociation and thus the spatial

distribution will be more homogenized. The largest levels of polarity are instead acheived at

intermediate values of kfb.

4.3.3 Endocytosis in the presence of feedback suppresses cluster-

ing

We also include endocytosis with rates on the same order as those for the positive feedback,

and vary the rate of endocytosis, ke, across multiple orders of magnitude. Representative

kymographs of protein organization are shown in Figure 4.3b. Increasing ke leads to more

proteins transitioning to the cytosol, and thus fewer proteins on the membrane. Clustering

also decreases with increasing ke since larger clusters on the ring are preferentially engulfed

and removed. Since multiple proteins occupy single lattice sites and endocytosis dissociates

all proteins from three consecutive sites, increasing feedback strength in the presence of

relatively slow diffusion would not offset the low fraction of membrane-bound proteins or

low levels of clustering achieved as a consequence of high endocytosis rates.
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Figure 4.3: Kymographs representing the number of proteins across the ring with respect
to time for cases in which (a) feedback strength is increased from left to right (kfb = 0.005,
0.1, 1.0, 10.0 min−1), (b) endocytosis rate is increased from left to right (ke = 0.01, 0.1, 1.0,
2.0 min−1) with constant feedback strength of kfb = 0.1 min−1, and (c) modified diffusion, in
which the rate of diffusion Dm’ for a given molecule is inversely proportional to the number
of molecules in the given lattice site, is used and the endocytosis rate is again increased from
left to right (ke = 0, 0.01, 0.1, 0.5 min−1)
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4.3.4 Endocytosis abrogates large clusters formed from protein

binding interactions

Finally, diffusion is modified so that proteins that are clustered diffuse more slowly. This is

meant to mimic the effects of binding interactions between membrane-bound proteins, since

proteins that bind to each other to form oligomers would be more resistant to lateral diffusive

motion. With this assumption, the rate of endocytosis is again varied across multiple orders

of magnitude, with representative kymographs shown in Fig. 4.3c. As seen in the leftmost

panel, the system exhibits clustering in the absence of endocytosis. Sustained cluster size

is significantly higher since proteins within the cluster are less likely to diffuse away as the

cluster grows. However, clustering is quickly abrogated with the introduction of endocytosis

since the largest clusters are preferentially targeted for complete dissociation. Clustering

and the number of membrane-bound proteins further decrease with increasing ke since this

again leads to larger clusters on the membrane being engulfed at a higher rate.

4.3.5 Analysis of clustering

As proteins bind to the membrane, positive feedback promotes the recruitment of more

proteins to the protein-containing sites, thus creating a spatial clustering effect. Clustering

at select regions of the ring gives rise to polarity. To quantify the extent of clustering in a

system, various spatial descriptive statistics can be used. One common measure to detect

deviations from spatial homogeneity is Ripley’s K function, which in one dimension can be

expressed as:

K(r, t) =
l

N

N∑
i=1

N∑
j=1

I(dij(t) < r)

N
(4.1)

Where N is the number of membrane-bound proteins, l is the circumference of the ring,

dij is the distance between the ith and jth proteins, I is an indicator function that is 1 if

the argument is true and 0 if it is false. The K function measures the average fraction of

proteins within a given distance r from a protein, normalized to the circumference of the

ring. A spatially uniform Poisson process produces a linear K vs. r relationship. In the case
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Figure 4.4: Ripley’s K curves for rings of 30 µm circumference with positive feedback
in recruitment at (a) varying lateral diffusion coefficients Dm and (b) varying rates of
endocytosis. Parameters from Table 4.1 are used for all non-varied parameters, and each
curve represents data averaged over 100 minutes for 100 independent cells. The K curve for
a spatially uniform ring (dotted gray) is shown for reference.

of a 1D ring, this curve can be expressed by the equation K(r) = 2r. By definition, every

membrane-bound protein on the ring is within a measuring distance r = l/2 of each other,

so K evaluated at this distance is:

K(l/2) = (l)
N2

N2
= l

A system that exhibits some level of clustering, however, will have a higher fraction of

proteins within small distances of each other, and thus have a K curve that lives above

the K(r) = 2r line. Two distinct regimes of increasing and then decreasing slope would

indicate multiple clusters in the associated spatial pattern, with the second peak indicating

the minimum distance between clusters. When applied to protein position data acquired from

simulations or experiments, the Ripley’s K function can be useful in quantifying clustering

in the system at any point in time. By averaging K(r) over many time points and many

independent trajectories, one can characterize clustering behavior for a given parameter set.

To visualize the effect of diffusion on clustering, K curves are constructed for the

conditions shown in Fig. 4.2 and presented in Fig. 4.4a. The K curves show less deviation

from spatial uniformity as Dm increases, demonstrating that higher diffusion coefficients lead
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Figure 4.5: Ripley’s K curves for rings of circumference 30 µm with positive feedback of
varying strength kfb. Parameters from Table 4.1 are used for all non-varied parameters, and
each curve represents data averaged over 100 minutes for 100 independent cells. The K
curve for a spatially uniform ring (dotted gray) is shown for reference.

to more homogeneous spatial distributions. Endocytosis also has a clear spatial homogenizing

effect as illustrated in Figure 4.4b, where ke = 0.1 min−1 leads to a nearly spatially uniform

protein distribution.

The strength of feedback, however, does not directly correlate with level of clustering. As

seen in Fig. 4.5, the lowest and highest values of kfb (0.01 and 10 min−1) both lead to more

clustered ring configurations than the intermediate kfb value of 1 min−1. This reveals a non-

trivial coupling between self-recruitment feedback and diffusion in the absence of endocytosis,

and suggests that clustering is maximized at intermediate feedback strength.

4.4 Methods: Endocytic patch model

We also consider another model derived from an experimentally motivated hypothesis. In

this model, proteins do not dissociate or recruit other proteins to the ring. Instead, proteins

periodically associate in large groups from internalization of endocytic patches until ring

maturation is complete. This model, illustrated in Figure 4.6, is intended to represent
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Figure 4.6: Schematic of endocytic patch recruitment model (from top down): (i) A small
initial population of Cdc15 proteins (red) are randomly distributed on the ring (ii) Patches
of Cdc15 proteins (from endocytic patches) associate to random locations on the ring at rate
kpatch (iii) Proteins can bind to (rate kb) and unbind from (rate ku) each other and diffuse
along the ring with diffusion coefficient Dm (iv) As time progresses, proteins accumulate and
become distributed along the ring.

the interaction of the protein Cdc15 with the actomyosin ring during maturation prior to

constriction. To elucidate the effect on Cdc15 spatial distribution of the Cdc42 activator

Gef1 and the formin Cdc12, estimated parameters specific to wild-type (gef1+cdc12+) cells

and three mutant genotypes (gef1∆cdc12+, gef1+cdc12∆503, and gef1∆cdc12∆503 ) are

explicitly modeled. The number of Cdc15 molecules present on the ring after assembly and

at constriction for all 4 different strains of yeast are approximated from experimental studies

[158] and implemented as initial and final conditions. The number of Cdc15 molecules

per cortical patch that associates to the ring for each strain is sampled from a normal

(Gaussian) distribution, with the mean and variation in number of Cdc15 molecules taken

from experimental studies [12]. In a single patch association event, all molecules associate to

the same lattice site, which is chosen at random with no correlation with previous locations

of association. We systematically vary the lateral diffusion coefficient Dm and binding rate kb

by multiple orders of magnitude at fixed unbiding rate ku and study the resulting distribution

of proteins over time. We use these results to select appropriate parameter values for use in

subsequent simulations.
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We consider discrete-space, continuous-time stochastic dynamics of Cdc15 proteins on

a one-dimensional actomyosin ring of circumference 10 µm. The ring is again discretized

into lattice sites of length 0.1 µm, and multiple proteins are allowed to occupy a single site.

At the start of the maturation phase (t = 0), 500 Cdc15 proteins are randomly distributed

on the ring. The population then steadily increases as endocytic patches near the ring are

internalized, leaving groups of Cdc15 to associate with the ring. Once associated to the

ring, proteins diffuse along the ring and can bind to other Cdc15 proteins and subsequently

unbind. Only free (unbound) Cdc15 proteins are free to diffuse along the ring. Details of

the propensity equations used in the stochastic simulation are included in Appendix C.2.

We simulate 10,000 individual trajectories for each of the four genotype strains, with

each trajectory corresponding to a unique cell. We visualize spatiotemporal behavior for

select cases using kymographs representing protein position over time. Additionally, we use

a Gaussian kernel to mimic a fluorescence intensity visualization of Cdc15 distribution on

individual mature rings. The variation in spatial distribution of each ring is then quantified

by computing the coefficient of variation (CV ), which is the ratio of the standard deviation

σ to the mean µ, of the protein population across 4 equal quadrants of the ring. We then

group the CV values for each genotype case for comparison.

4.5 Results

Networks with positive feedback are capable of producing cellular polarity. However, there

is still a lack of evidence to support a self-recruitment mechanism for the cell division

control protein Cdc15 in the fission yeast Schizosaccharomyces pombe. In this section,

we explore a model of protein recruitment motivated by recent experimental studies [109].

Groups of Cdc15 molecules present in endocytic patches are recruited to the cytokinetic ring.

Extracting measured values from literature and recent unpublished experimental work, we

identify parameter sets for simulation of each of four distinct genotype strains: gef1+cdc12+,

gef1+∆cdc12+, gef1+cdc12∆503, and gef1∆cdc12∆503. We then simulate the maturation

period of endocytic rings in cells containing each genotype to test whether the hypothesized
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clustered recruitment mechanism can lead to clusters at the end of maturation consistent

with experiments.

4.5.1 Determining strain-specific model parameters

In S. Pombe cells, an actomyosin ring is assembled and undergoes a maturation period before

constricting simultaneously with septum deposition, leading to membrane ingression and

furrow formation. Previous experimental studies have indicated that the number of Cdc15

proteins present on the ring in wild-type S. pombe cells is v500 upon assembly and v2500

after maturation but prior to constriction [158]. Recent experimental work by collaborators

(unpublished) [109] has shown that the number of Cdc15 proteins at maturation is lower

in cells containing the activated formin mutant cdc12∆503 but remains approximately

unchanged in cells containing only a gef1 deletion [109]. Using measured fluorescence

intensity data gathered by collaborators, the approximate number of Cdc15 proteins on the

ring at maturation for the two activated formin mutant cdc12∆503 strains are 1820 and 1760

with and without the additional gef1 deletion, respectively. The mean and variation in sizes

of individual patches for all four strain cases are also estimated from published experimental

data [12] combined with fold-change intensity measurements, and are listed in Table 4.2.

The modeled rate of patch association, kpatch, is computed such that the estimated total ring

population will be acheived on average at a maturation time of tfinal = 20 minutes:

kpatch =
Ntotal −N0

tfinalNpatch

(4.2)

where Ntotal is the total number of Cdc15 molecules on the ring at maturation and N0 is the

Cdc15 population on the ring after assembly. Given that the number of molecules in a patch

is relatively large, the associated molecules on the ring are immediately considered clusters.

4.5.2 Slow diffusion and a large rate of protein-protein binding

promote spatial heterogeneity

Experimental evidence has shown that Cdc15 readily oligomerizes [101], so we explicitly

model protein-protein interactions on the ring in the form of binding (rate kb) and unbinding
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Table 4.2: Individual strain parameters for patch association

Case Genotype
Patch association rate,

kpatch (min−1)
Patch Size,

Npatch

1 gef1+cdc12+ 0.77 130±43
2 gef1∆cdc12+ 0.51 194±69
3 gef1+cdc12∆503 0.41 152±46
4 gef1∆cdc12∆503 0.27 243±98

(rate ku) reactions between Cdc15 molecules. We assume that only free monomers can

laterally diffuse on the ring, so binding limits the number of proteins available to diffuse. To

gauge the interplay between binding and diffusion in our model system, we vary both kb and

Dm by orders of magnitude while keeping ku constant for the wild-type genotype case (Case

1 parameters) and observe the resulting spatiotemporal behavior of ring maturation.

As can be seen in Fig. 4.7, for slow diffusion, spatial behavior is similar across different

binding strengths. Since Cdc15 associates to the ring in large groups at single locations, a

low diffusion coefficient will often prevent proteins from distinct clusters from dispersing

and reaching each other, thus precluding potential binding reactions between proteins

originating from different clusters. Instead, binding reactions only occur between proteins

of the same cluster, causing the positions of most proteins to remain relatively unchanged

during maturation. At intermediate diffusion coefficients, there is noticeably more outward

propagation of newly recruited clusters at low and intermediate binding rates. At very

large Dm and low kb, the initial clusters quickly overlap and the ring becomes spatially

homogeneous by the end of maturation. To ensure that, on average, proteins can traverse

about half the ring circumference on the 20-minute maturation timescale, we use the diffusion

coefficient of 1.2 µm2min−1 used in the previous model [98, 77, 7]. To reflect the tendency

of Cdc15 to readily oligomerize after dephosphorylation during mitosis, [119, 101] a binding

rate on the same order as the diffusive hopping rate (100 min−1) is chosen along with a

much lower unbinding rate of 1 min−1. This relatively high ration of binding to unbinding

ensures that spatiotemporal behavior will be dependent on initial cluster size Npatch and

association rate kpatch, and thus distinct for the 4 different genotype cases. A summary of

these parameters is included in Table 4.3.
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Figure 4.7: Representative 20-minute kymographs for spatial distribution of Cdc15 proteins
during ring maturation at varying diffusion coefficients Dm and binding strength kb.

Table 4.3: Global base parameters used in endocytic patch model

Parameter Description Value
kb Binding rate 100 min−1

ku Unbinding rate 1 min−1

Dm Lateral diffusion coefficient 1.2 µm2min−1

N0 Initial number of molecules 500
L Ring circumference 10 µm
tfinal Maturation time 20 min
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Figure 4.8: Kymographs representing the number of proteins across positions on the ring
with respect to time during maturation for 3 independent cells for each of the 4 simulated
genotype cases. Simulations were carried out using parameter values shown in Tables 4.2
and 4.3. The cells shown were chosen randomly from a larger set of 10,000 simulated cells.

4.5.3 Spatial heterogeneity of Cdc15 is most pronounced when

few, large patches associate

Using the parameters in Table 4.3 and the parameters for different genotypes in Table 4.2,

we simulate the spatial distribution of Cdc15 for many independent cells over a 20-minute

ring maturation period. The spatial distribution at the end of 20 minutes is the Cdc15

distribution on the ring in a mature cell just prior to constriction for the given genotype,

and a statistical analysis of this final distribution performed over many independent cells

can give insight into differences between the distinct genotypes. We simulated 10,000 rings

for each case. Figure 4.8 shows randomly selected examples.

As seen in Figure 4.8, the spatial behavior for a given genotype can vary considerably in

different cells due to stochasticity. For example, in the last cell trajectory shown for Case 2

(2nd row, far right), the first Cdc15 patch associates much later than in the other two cells.

Additionally, fewer total patches associate over the course of the 20-minute maturation
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period. The end result is a ring that appears more heterogeneous due to limited spatial

overlap in fewer clusters. The variation in spatiotemporal behavior increases when comparing

across the different genotype cases. Given that each genotype case has a different association

rate, the average total number of patches varies between cases. In the wild-type case (Case

1), an average of 15.4 patches associate in 20 minutes while in the double mutant (Case 4),

an average of only 5.4 patches associate during maturation. Fewer recruited clusters provide

less opportunity for spatial overlap and thus more spatial heterogeneity. To visualize the

final Cdc15 distribution on the mature ring in a manner resembling fluorescence microscopy,

we first transform 1D linear positions p for each protein i at t = 20 min into 2D circular

coordinates (x(i), y(i)) using the following equations:

x(i) =
dr
2
sin

(
2πp(i)

dr

)
(4.3)

y(i) =
dr
2
cos

(
2πp(i)

dr

)
(4.4)

where dr represents the ring diameter. We then apply a Gaussian kernel with a suitable

standard deviation σ = 0.1 µm to reflect the approximate measurement resolution of a

typical laboratory instrument that measures fluorescence intensity. The mature rings (at

t = 20 min) corresponding to the spatial distributions of the randomly selected cells shown

in Fig. 4.8 are shown in Fig. 4.9.

As seen in the figure, there is considerable variation in the spatial distribution among

the rings, even for cells with the same genotype. The number and width of clusters vary

as a result of stochasticity in number and location of patch association. The rings for the

double mutant (Case 4) appear the most polarized with clusters spanning smaller arclengths

along the ring. Case 4 has the smallest number of associated patches along with the largest

number of Cdc15 proteins per patch. As seen in Figure 4.8, the fewer associated patches tend

to either dissipate or conglomerate to form larger clusters that are more spatially confined

compared to Cases 1-3.
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Figure 4.9: Spatial distributions of Cdc15 along the ring at t = 20 min for the simulated
cells whose kymographs are shown in Fig. 4.8. Rings are constructed using a Gaussian kernel
with standard deviation σ = 0.1 µm to mimic the resolution of experimental measurements.
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Figure 4.10: Box plots of the coefficient of variation (CV ) for 10,000 simulations of each
of the four simulated genotype cases. For each box, the central (red) mark is the median,
the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most
extreme data points not considered outliers. Outliers are plotted individually. The CV
values for Cases 1-4 are 0.3405, 0.4217, 0.4096, and 0.5283, respectively. The differences
between all pairs of cases are significant, with p-values all below 4× 10−7.

4.5.4 Analysis of variation in Cdc15 spatial distribution

To quantify the variation between the four genotype cases, we compute the coefficient of

variation (CV ) of the total Cdc15 population in individual quadrants of the ring at t = 20

min for all 10,000 simulated cells per case. This is done by dividing the ring into 4 equal

segments, summing the total number of Cdc15 proteins in each quadrant, and dividing the

standard deviation (σ) of these quadrant populations by the mean (µ) quadrant population.

For a given total number of simulated cells ncells, the average CV for each genotype can then

be computed as:

CV =

∑ncells

i=1
σi
µi

ncells

(4.5)

A larger CV implies greater variation in population across the four ring quadrants and

therefore suggests a more uneven spatial distribution of Cdc15. The CV distributions for all

4 genotype cases are depicted in the box plots shown in Figure 4.10.

The double-mutant (Case 4) shows the largest CV (0.5283) with most variation while

the wild-type (Case 1) shows the smallest CV (0.3405) with least variation. To test for

significance, we apply the 2-sample t-test between each pair of CV data sets across the 4
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genotypes. Given the large sample size of 10,000 simulated cells, the difference between each

pair of genotype cases is significant, with all p-values falling below 4 × 10−7. These results

suggest that the differences in patch association rate kpatch and patch size Npatch in the four

modeled genotypes produce significant differences in the Cdc15 distribution in the mature

ring.

Experimental results from a recent study show that cells lacking the Cdc42 activator Gef1,

combined with an activated allele of the formin Cdc12, display non-concentric furrowing

[109]. Using fluorescence microscopy, it was shown that these gef1∆cdc12∆503 cells display

normal actomyosin rings but uneven distribution of Cdc15 along the ring. Consistent with

these findings, our simulations also show this genotype (Case 4) to have the greatest amount

of spatial variation, as seen in Fig. 4.10. Slower patch recruitment dynamics for a fixed

maturation time lead to association of a smaller number of recruited patches. Our results

suggest that association of a smaller number of patches containing large numbers of Cdc15

proteins, along with strong binding interactions, could expain the observed phenotype of

uneven Cdc15 distribution in these double mutant cells.

4.6 Conclusions

In this work, we explored two distinct models of protein organization along the cytokinetic

ring. The first model relied on a positive feedback mechanism to create cell polarization.

There was a continual exchange of proteins between the actomyosin ring and a bulk

cytoplasmic pool via spontaneous assocation and dissociation, positive feedback recruitment

of proteins to the ring, and endocytosis. Lateral diffusion was also implemented to allow for

protein movement along the ring. By varying the lateral diffusion coefficient Dm, it was found

that increasing diffusion promotes spatial homogeneity in protein distribution along the ring.

By varying the feedback strength kfb, it was apparent that feedback is necessary to obtain

polarization. However, an increase in feedback strength did not necessarily translate to an

increase in polarization since a high feedback rate could promote recruitment to multiple

distinct local areas on the ring or deplete the cytoplasmic pool of proteins available for
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recruitment. This suggests that the highest levels of polarity are achieved at low diffusion

and intermediate feedback strength.

Endocytosis was found to suppress clustering and lead to a smaller fraction of ring-bound

proteins. Since large numbers of spatially localized proteins are preferentially removed in

an endocytic event, a larger feedback strength was found to be ineffective in offseting the

depleting effects of endocytosis. Even when binding interactions between proteins on the ring

were introduced, endocytosis was found to quickly abrogate any large clusters formed. When

endocytosis was removed in the presence of protein-protein binding interactions, however,

the system sustained clusters of many proteins confined to a smaller area since proteins

are less likely to diffuse away as the cluster grows. A Ripley’s K analysis of the observed

clustering at the various conditions confirmed that clustering is promoted with low diffusion,

low rate of endocytosis, and intermediate feedback strength.

The second model explored was motivated by a recent experimental study on Cdc15

spatial organization on the actomyosin ring in fission yeast [109]. Here, there was no removal

of ring-bound proteins by any means or positive feedback recruitment by ring-bound proteins.

Instead, groups of Cdc15 proteins were recruited to the ring at random locations via endocytic

patches and then allowed to laterally diffuse and bind/unbind to each other. To investigate

the potential roles of the Cdc42 activator gef1 and the formin Cdc12 in establishing concentric

furrowing, parameter sets to represent a wild-type strain along with three mutant strains were

selected from literature and determined from fluorescence intensity measurements. After

simulating rings in many independent cells of each genotype, it was found that the double

mutant gef1∆cdc12∆503 displayed the largest variation in Cdc15 spatial distribution, an

observations that is consistent with experimental findings [109]. The model suggests that

the absence of Gef1 along with an activated allele of Cdc12 may result in the association of a

smaller number of patches containing large numbers of Cdc15 proteins that, in the presence of

strong binding interactions, lead to clustering and uneven distributions of Cdc15 on mature

actomyosin rings. This in turn leads to non-concentric furrowing which compromises the

fitness of the daughter cells after cytokinesis. The advancement of our understanding of

the underlying mechisms behind cellular defect formation can potentially contribute to the

development of improved drug treatments and targeted cell therapies.
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Chapter 5

Conclusions

In this dissertation, we used computational modeling to characterize the behavior of

biological systems. By explicitly defining biological processes in terms of reaction events

and measurable reaction rates, one is able to construct a computational model capable

of simulating the behavior associated with a wide variety of biological systems. Modern

computational resources have made useful and efficient modeling approaches more accessible

and feasible to implement as a primary or auxiliary method of research. The complementary

nature of in silico methods to in vivo and in vitro experiments render them widely applicable

and capable of becoming increasingly more common in biological study.

We applied a stochastic simulation algorithm in modeling three distinct biological

systems. By employing data analysis and visualization methods, we were able to investigate

the spatiotemporal effects of transport and network topology in a simple biochemical reaction

network with positive feedback (Ch. 2), molecular motors on a cytoskeletal network of actin

filaments (Ch. 3), and cell division proteins organizing on the cytokinetic ring (Ch. 4).

In each system, we were able to obtain mechanistic insight regarding observable biological

phenomena. The results found in these studies can be used as a vehicle for further hypothesis

refinement and testing.
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5.1 Confinement and diffusion in a reaction network

with positive feedback (Chapter 2)

Positive feedback is a common motif in a variety of biochemical reaction networks that

regulate key cellular processes including signal tranduction. Bistability is a common feature

of many such networks, and allows for cellular decisions to be made in the form of a binary

response. Stochastic fluctuations in a cellular environment are known to contribute to the

switching between two stable states, and allow for genotypically identical cells to exhibit

phenotypic differences. While many experimental and theoretical studies have advanced

the understanding of the mechanisms responsible for emergent phenomena underlying

networks that exhibit positive feedback and bistability, there is still no general framework

for understanding the role of geometry and diffusion in signal transduction.

We used a simple two-component reaction network with positive feedback to investigate

the effects of space and diffusion on bistability and stochastic switching. We employed a

slab-like system geometry for the system space and varied the diffusion coefficient and level

of confinement in a single dimension. By targeting both the active and inactive steady state

through application of differential initial conditions, we were able to test whether a given

system exhibits bistability and stochastic switching. We found that confined systems with

high molecular mobility promote the active state, and stochastic switching from the inactive

to active state is only observed at high levels of confinement. The activation of a system

occurs via the formation of a single cluster of active molecules that quickly propagates in

space. These results provide a general framework for thinking about the roles of system

geometry and diffusion in positive feedback networks, and suggest that confinement can be

used to initiate the formation of localized active clusters of molecules that then spatially

propagate to activate a system.
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5.2 First passage of molecular motors on networks of

cytoskeletal filaments (Chapter 3)

Active intracellular transport is essential for maintaining proper cellular function and fitness

in many eukaryotic organisms. This mode of transport is often facilitated by molecular

motor proteins that bind cargo and generate directed motion along cytoskeletal filaments

using energy obtained from ATP. Cytoskeletal filaments are typically arranged in a network,

with individual filaments possessing a specific polarity that determines the direction a motor

moves when bound to it. Recent experimental and theoretical studies have shown that the

structure of a cytoskeletal network influences motor transport, but the relationship between

specific filament configurations and large-scale motor transport remains largely unknown.

We used stochastic simulations to study the transport of single motors traversing

cytoskeletal networks with random filament configurations. By systematically varying the

number and length of filaments, we were able to characterize the first-passage times of

motors traversing an interval of fixed length and identify regimes of slow and fast transport.

We found that systems containing few long filaments exhibited slow and highly variable

transport. We found that polarity had a large effect on transport, with the reversal of polarity

on all filaments typically leading to drastic changes in mean first-passage time (MFPT).

For select cases, we examined the effect of individual filaments on collective transport

properties by reversing the polarity on individual filaments and measuring the resulting

MFPT. We found that particular filaments can have an outsized influence on MFPT by

acting as lynchpins that transport motors to and from regions of the system that act as

traps that promote extended occupancy. We also found that bundling of horizontal, like-

polarized filaments in a narrow region spanning the system length can reduce MFPT and

FPT variablity, thus leading to fast, reliable transport.
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5.3 Protein organization along the actomyosin ring

during cytokinesis (Chapter 4)

Cytokinesis is the final step in the cell division process and is essential in the regulation

of cell growth, development, and repair in multicellular organisms. In eukaryotes, this

process typically involves the assembly, maturation, and constriction of an actomyosin

ring along with a spatial coordination of various cytokinetic proteins. The homogeneous

distribution of select protein species on the ring is instrumental in ensuring proper concentric

ring constriction and preventing cellular defects. Recent experimental work has advanced

the understanding of some key proteins and processes responsible for ring assembly and

constriction, but mechanisms behind the spatiotemporal evolution of protein organization

on the ring remain unknown.

We used stochastic computer simulations to explore two distinct models of protein

organization along the cytokinetic ring. In the first, positive feedback resulted from a self-

recruitment mechanism by proteins on the ring. Feedback was necessary to establish a

polarized protein distribution, and protein clustering is suppressed by endocytosis and fast

diffusion. Protein binding interactions were found to increase the number of proteins in a

cluster while confining the size of the cluster region, but only in the absence of endocytosis.

In the second model, groups of cytokinetic proteins associated to the ring via endocytic

patches at specified rates and subsequently diffused and interacted with other proteins along

the ring in the absence of feedback or any form of dissociation from the ring. This mechanism,

along with the associated parameters, was motivated by recent experiments by collaborators

[109]. By systematic variation of the diffusion coefficient and protein-protein binding rates,

we found that fast diffusion and weak binding promote an even protein distribution on the

ring after the maturation period. The largest degrees of clustering with the most spatial

variability was obtained in cells exhibiting slow association of large patches. These results

suggest that homogeneous spatial distribution of proteins in mature actomyosin rings may

depend on frequent association of smaller sized protein clusters.
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5.4 Future prospects

In the area of intracellular transport on filamentous cytoskeletal networks, an extension

to 3D systems could provide more insight into the effects of geometry and confinement

on collective motor transport properties. It would be expected that a decreased level of

confinement would lead to fewer junctions of close proximity filaments, and thus reduce the

likelihood of local trapping regions composed of a small number of filaments. Also, since the

structure of cytoskeletal networks is known to evolve in response to environmental stimuli,

the implementation of continually rearranging filament structures could reveal intriguing

spatiotemporal behavior.

For protein organization along the actomyosin ring, alternate assumptions can be used in

modeling specific interactions between proteins on the ring. For example, limiting the number

of monomer units that bind to form oligomers or allowing oligomers to laterally diffuse at

lower nonzero rates can lead to alternate system behavior. Also, the implementation of

alternate model considerations such as multiple interacting species of proteins or alternate

mechanisms of protein exchange between the ring and cytoplasmic pool may elicudate other

key spatiotemporal features of cells undergoing cytokinesis. Continued collaboration between

computational modelers and experimental biologists can accelerate scientific discovery

regarding the underlying mechanisms behind observed biological phenomena.

5.5 Closing

Computational modeling can be instrumental in elucidating the spatiotemporal effects of

transport and network topology in biological systems. By translating complex biological

processes into simplified, explicitly defined models with measurable parameters, one can

elucidate key mechanistic features of emergent biological phenomena that would be otherwise

unattainable by purely in vitro and in vivo methods. The establishment of an iterative

feedback loop between experimental and computational research can create an efficient and

sustainable model of hypothesis refinement and testing, and thus lead to accelerated scientific

discovery and innovation.
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[14] Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O., and Heinrich, D. (2008). Temporal

analysis of active and passive transport in living cells. Phys. Rev. Lett., 101(24):248103.

31

[15] Aridor, M. and Hannan, L. A. (2000). Traffic jam: a compendium of human diseases

that affect intracellular transport processes. Traffic, 1(11):836–851. 31

[16] Arkin, A., Ross, J., and McAdams, H. H. (1998). Stochastic kinetic analysis of

developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics,

149(4):1633–1648. 3

[17] Artyomov, M. N., Das, J., Kardar, M., and Chakraborty, A. K. (2007). Purely stochastic

binary decisions in cell signaling models without underlying deterministic bistabilities.

Proceedings of the National Academy of Sciences, 104(48):18958–18963. 11

[18] Bénichou, O., Chevalier, C., Klafter, J., Meyer, B., and Voituriez, R. (2010). Geometry-

controlled kinetics. Nature chemistry, 2(6):472. 12, 13

[19] Bénichou, O., Loverdo, C., Moreau, M., and Voituriez, R. (2011). Intermittent search

strategies. Rev. Mod. Phys., 83(1):81. 32

[20] Bezanilla, M., Wilson, J. M., and Pollard, T. D. (2000). Fission yeast myosin-ii isoforms

assemble into contractile rings at distinct times during mitosis. Current Biology, 10(7):397–

400. 66

93



[21] Blake, W. J., Kærn, M., Cantor, C. R., and Collins, J. J. (2003). Noise in eukaryotic

gene expression. Nature, 422(6932):633. 3

[22] Brandman, O. and Meyer, T. (2008). Feedback loops shape cellular signals in space and

time. Science, 322(5900):390–395. 12

[23] Brangwynne, C. P., Koenderink, G. H., MacKintosh, F. C., and Weitz, D. A. (2009).

Intracellular transport by active diffusion. Trends Cell Biol., 19(9):423–427. 33

[24] Bressloff, P. C. and Newby, J. M. (2013). Stochastic models of intracellular transport.

Rev. Mod. Phys., 85(1):135. 31

[25] Butty, A.-C., Perrinjaquet, N., Petit, A., Jaquenoud, M., Segall, J. E., Hofmann, K.,

Zwahlen, C., and Peter, M. (2002). A positive feedback loop stabilizes the guanine-

nucleotide exchange factor cdc24 at sites of polarization. The EMBO journal, 21(7):1565–

1576. 64

[26] Caldwell, C. M., Green, R. A., and Kaplan, K. B. (2007). Apc mutations lead to

cytokinetic failures in vitro and tetraploid genotypes in min mice. J Cell Biol, 178(7):1109–

1120. 65
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A Analysis of the chemical master equation and clus-

ter formation

.

In this section, we provide details of the analysis used in Section 2.3.2. We begin by

solving for the steady state distribution of the Markov chain describing the dynamics of the

stochastic, well-mixed chemical kinetics. We then consider the system in the slow-diffusion

regime and investigate the relationships between D, L (system size), and the likelihood of

stochastic switching.

A.1 Steady state distribution

Consider a system consisting of N molecules. The Markov chain consists of N + 1 states

indexed by k ∈ {0, 1, 2, . . . , N}. State k corresponds to a state with k molecules of type X

and N − k molecules of type A (Fig. A.1). State k can transition only to states k + 1 and

k − 1. The transition rates from k to k + 1 and from k to k − 1 are given, respectively, by

γk,k+1 =
(
N − k

)
k1 +

(
N − k

)(k
2

)
k̃3

γk,k−1 =
(
k
)
k2 +

(
k

3

)
k̃4 ,

where k̃3 and k̃4 are defined as before. Let πk denote the steady state probability of being

in state k. It is straightforward to formally solve for the distribution by balancing fluxes

throughout the Markov chain. Starting with state 0, one can iteratively obtain

πk =

(
γk−1,k

γk,k−1

)
πk−1 = π0

k∏
j=1

(
γj−1,j

γj,j−1

)

Using the normalization condition,
∑N

k=0 πk = 1, one can write

π0 =

(
1 +

γ01

γ10

+
γ01γ12

γ21γ10

+ · · ·+ γ01 · · · γN−1,N

γN,N−1 · · · γ10

)−1
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Figure A.1: Schematic of the Markov chain. States are labeled by the number of X
molecules.

A.2 Cluster formation in the slow diffusion regime

We now wish to explore the system described in Section 2.3.2 in the slow diffusion regime.

We begin by noting that the expected lifetime of an isolated X molecule is τX ∼ k−1
2 .

In this time, the characteristic distance traversed by the molecule is ξ ∼
√
D/k2. This

length scale defines a spatial domain over which the X molecule can interact with other

molecules while it is “active.” The volume sampled by the molecule (assuming no wall

effects) thus scales as Vξ ∼ ξ3 ∼ (D/k2)3/2. With the total concentration of molecules

defined as c, the average number of molecules in the spatial domain is Nξ ∼ cVξ. If the

volume Vξ is small compared with the total system volume, then we can expect the number

of molecules to be approximately Poisson distributed, with number fluctuations characterized

by Nξ ∼ cVξ ±
√
cVξ.

As noted in the Section 2.3.2, in the limit of immobile molecules, a large concentration

of molecules must be present at a single lattice site in order to favor an active state (defined

here as more than half of the molecules being in the X state). We wish to explore the effect

of increasing the diffusion coefficient, and thus expanding the effective range over which

molecules interact, using the scaling arguments introduced in the previous paragraph. For

various values of ξ, we solve the master equation directly and determine the minimum total

number of molecules (N) needed in volume Vξ so that
∑N

k=N/2 πk ≥ 0.9. That is, we seek

the smallest value of N such that a substantial portion of the steady state probability is

associated with the active state (results are similar for values other than 0.9). Figure A.2

shows the effective concentration needed to satisfy this condition as a function of ξ. The

concentration is reported as n = (N/Vξ)a
3, which gives the average number of molecules in a

volume the size of a single lattice site (for perspective, the highest concentration considered
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in the main text gives n = 1 and the concentration at L = 0.1 µm gives n = 0.1). The

curve is a decreasing function of ξ, with large values at small ξ. The range of n spans

concentrations that are both larger and smaller than those considered in Fig. 2.3.

Using the curve constructed above, we now seek insight into the characteristic diffusion

coefficient needed to promote stochastic switching. Letting cL denote the concentration

of molecules in a slab geometry with confinement length L, the average occupancy of

a volume the size of a lattice site is nL = cL(1 ± 1/
√
cLVξ)a

3. As ξ increases, the

concentration required to significantly populate the active state decreases. At sufficiently

large ξ, the required concentration crosses below the value of cL(1 + 1/
√
cLVξ)a

3. Once the

concentration of the domain exceeds the concentration needed to significantly populate the

active state, spontaneous cluster formation is relatively likely to occur (using cL a
3 instead

of the upper fluctuation leads to larger domains but qualitatively similar results). We follow

this procedure for various values of L and determine Dc ∼ k2ξ
2
L as a function of L, where

ξL denotes the length at which the crossover occurs. This is plotted in Fig. A.2B and is

consistent with intuition: As the system concentration decreases (larger L), larger diffusion

coefficients are needed to promote interactions between molecules.
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Figure A.2: (A) Concentration needed to ensure a substantial active state within a system
of volume Vξ = ξ3. Concentration is reported as n = (N/Vξ)a

3. The large circles are
obtained by solving the Markov chain exactly and determining the minimum number of
molecules needed to have at least 90% of the steady state probability in active states. The
solid horizontal line is the concentration (in molecules per lattice site) associated with the
slab geometry with L = 0.04 µm. The dashed lines represent characteristic concentration
fluctuations, nL = cL(1 ± 1/

√
cLVξ)a

3. (B) For various values of L, we plot the diffusion

coefficient (Dc) associated with the value of ξ such that cL(1 + 1/
√
cLVξ)a

3 first exceeds the
curve in (A) obtained by solving the master equation.
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B Mean square displacement curves for De estimation

Here, we extend the results seen in Figure 3.10 to include the mean-square displacement

curves with power-law fits for all filament lengths considered. As described in Section 3.3.6,

motors begin in the center of a 100 µm × 100 µm domain with 200,000 filaments of the

specified filament length randomly dispersed in the system space. This gives a filament

concentration of 20 filaments/µm2, which is equivalent to Nf = 2000 in the 20 µm × 5 µm

system.

Figure B.1: Mean square displacement (MSD) with power-law fits to long time for motors
in a 100 µm× 100 µm domain with 200,000 filaments of varying length. Data for each plot
is obtained from 1000 independent trajectories of 100 s each.

Linear behavior in MSD at sufficiently long times indicates diffusive behavior. The short-

time behavior for longer filaments indicates superdiffusive behavior. As seen in Fig B.1,

motors exhibit diffusive behavior over the entire time interval only for short filament lengths.

The short-time (< 1 s) behavior becomes noticeably superdiffusive when filament lengths

exceed 0.7 µm.
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C Protein organization along the actomyosin ring:

Model propensity equations

In this section, we provide the propensity equations used to implement the Gillespie algorithm

for the two protein organization model constructions described in Chapter 4. Each propensity

equation describes the rate at which a particular reaction event occurs. The probability of

a given reaction i occuring on the time interval [t0, t0+τ ] can be computed as:

P{i, t0 < t < t0 + τ} =
ai(t0)∑n
i=1 an(t0)

C.1 Positive feedback model

Association : a1(t) = konNcyt(t)

Dissociation : a2(t) = koff(N −Ncyt(t))

Recruitment : a3(t) = kfbNcyt(N −Ncyt(t))

Diffusion : a4(t) = khop(N −Ncyt(t))

Endocytosis : a5(t) = ke(N −Ncyt(t))

Where Ncyt(t) represents the number of proteins in the cytoplasm at time t, with N being

the conserved total number of proteins in the system. The rate constants for association,

dissociation, and recruitment are expressed as kon, koff, and kfb respectively. The constant

khop is proportional to the diffusion coefficient Dm and represents the rate at which proteins

hop to nearest neighbor lattice sites.
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C.2 Endocytic patch model

Association : a1(t) =

 kpatch N(t) < Ntotal

0 N(t) ≥ Ntotal

Diffusion : a2(t) =

nsites∑
i=1

Nu(i, t)

Binding : a3(t) = kb

nsites∑
i=1

max{[Nu(i, t)− 1], 0}

Unbinding : a4(t) = ku(N − 1−
nsites∑
i=1

Nu(i, t)

Here, N(t) is the number of Cdc15 molecules on the ring at time t, nsites is the total

number of lattice sites, and Nu(i, t) represents the number of unbound proteins in lattice

site i at time t. Ntotal is the experimentally measured average number of proteins on the ring

at the end of maturation. The rates of patch association and hopping to a nearest neighbor

lattice site are expressed as kpatch and khop, respectively. The propensity of binding, a3(t), is

the product of the binding rate constant kb and the number of potential bonds in the system

while the propensity of unbinding, a4, is the product of the unbinding rate constant ku and

the number of bonds in the system.
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