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Abstract

This work explores, for the first time, the calculation of HNO molar absorptivities
using methods that go beyond the double harmonic approximation. Accurate molar
absorptivities of HNO are essential for the kinetic interpretation of recent experiments
that studied tunneling-mediated chemistry of H + NO reactions at low temperatures.
This work will show that the double harmonic approximation for computing molar
absorptivities is not sufficient to obtain accurate molar absorptivities for HNO. Since the
only published molar absorptivities for HNO are computed using the double harmonic

approximation, they cannot be used to interpret the experimental data.

First, we compute the molar absorptivity values using the double harmonic
approximation with several combinations of basis sets and theories. With the double
harmonic approximation, we also calculate the vibrational frequency shifts with isotopic
substitutions of the individual atoms within the HNO molecule. After comparing double
harmonic results to experimental results, we consider extensions to this approximation.
By including anharmonic effects, we first consider electrical anharmonicity alone, and
then consider the combination of electrical and mechanical anharmonicity. With the
inclusion of both forms of anharmonicity, the molar absorptivity values change greatly
from the double harmonic molar absorptivity values. Lastly effects of mechanical

coupling are investigated. Results from this investigation encourage future work that



would include mechanical coupling, and also consider electrical coupling, in accurate

calculations of HNO molar absorptivities.

This work will show that large basis sets are required for the theoretical
calculation of the molar absorptivities of HNO, and that the double harmonic
approximation is unreliable for this molecule. In particular, the NH stretching mode is
very anharmonic. The computed isotopic shifts in the vibrational frequencies of HNO are
found to be very sensitive to the way in which electron-electron correlation is treated.
This indicates that very high level electron correlation models may be important for
accurate theoretical studies of HNO. Finally, the extension beyond the double harmonic
approximation and treatment with anharmonic effects are proven to be extremely

valuable in describing the true mechanical and electrical properties of HNO.
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Chapter 1

Introduction



1.1 Importance of Nitrosyl Hydride

The nitrosyl hydride molecule, HNO, was first experimentally observed in 1958
(Dalby 1958). This molecule over the past century has been studied experimentally and
theoretically due to its involvement in several areas. The breakdown of stratospheric
ozone has been suggested to involve HNO as an intermediate (Patrick and Golden
1984). In 1977, HNO was first reported to be detected from interstellar emissions, which
was important to the astrochemical community as it confirmed the first detection of the
NO bond in interstellar molecules (Ulich, Hollis et al. 1977). HNO has also been
expected to have an application towards heart failure treatment (Miranda, Katori et al.

2005). Ongoing research of this molecule continues.

HNO molecules can be produced from reactions of hydrogen radicals with NO
molecules. As shown in Table 1.1.1 (Bozkaya, Turney et al. 2012), these reactants can
result in four possible products, which are "THNO, *HNO, '"NOH, and *NOH. All of these
product formations are exothermic, so the resultant molecule formed is lower in energy
than that of the hydrogen radical and NO molecule from which they were produced. As
seen from this table, all of the products but '"HNO have a classical energy barrier that
must be overcome by the reactants before the products can be formed. To surpass this
barrier, the reactants must have enough kinetic energy, and this energy increases with
the temperature of the environment. The distribution of kinetic energies at a specific

temperature is described by the Maxwell-Boltzmann distribution.



Table 1.1.1. Listing of all four possible products from the reaction of a hydrogen
radical with a NO radical, and literature values of exothermicity from formation of

products and the activation energy for each product. (Bozkaya, Turney et al. 2012)

Product | Exothermicity (kcal/mol) | Activation Energy (kcal/mol)
'HNO 47 .48 None
*HNO 29.03 3.38
'NOH 5.25 2.63
*NOH 21.3 12.37




1.2 Experimental Background

David Anderson from the University of Wyoming Department of Chemistry
studies low temperature reaction kinetics. Reactions between hydrogen atoms and
several co-reagents are being studied within a para-hydrogen matrix at extremely low
temperatures between 1 and 5 Kelvin. By studying the several hydrogen atom reactions
that occur with these co-reagents at such low temperatures, Anderson aims to gain an
understanding of the reaction rate and mechanism through which these reactions take
place. Spectroscopic analysis aids in understanding these reactions (Ruzi and

Anderson 2015).

Para-hydrogen molecules have a rotational state of j = 0 at ground state,
whereas the rotational state of ortho-hydrogen molecules is j = 1 at ground state. The
rotational quantum number, j, is determined from the nuclear spin. The antisymmetric
para nuclear spin state is composed of the two hydrogen atoms in the H, molecule with
opposite spins, resulting in j of 0, 2, 4, and other even state numbers. The symmetric
ortho nuclear spin state is composed of the two hydrogen atoms in the H, molecule with
the same spins, resulting in j of 1, 3, and other odd state numbers. A para-hydrogen
molecule with j of 0 is the lowest in energy, and hence is the most stable hydrogen spin
state. Nuclear spin state conversions between ortho and para are forbidden except in
the presence of a substance that can act as a converter. Anderson utilizes matrix

isolation of para-hydrogen complexes at low temperatures.

Anderson has been studying the kinetics of low temperature reactions,

particularly at 1.8 and 4.3 K, of nitric oxide (NO) radical dopants in a predominately
4



para-hydrogen crystal matrix after a portion of the crystal is irradiated with ultraviolet
light. The NO radicals that were struck with this light then dissociate into N and O
atoms. Each of these atoms react with their neighboring hydrogen molecules to

produce, as one of the products, a hydrogen atom.

An ortho-para converter is used to insure 99.97% of the hydrogen gas molecules
are in the para-hydrogen state. The NO-doped solid para-hydrogen crystal is prepared
by codeposition of both NO and para-hydrogen gas onto a BaF, substrate. Ultraviolet
light is passed through the doped crystal at a wavelength of 193 nm, producing the
nitrogen and oxygen atoms that then react with H, molecules to produce hydrogen
atoms. The hydrogen atoms then diffuse through the crystal. Electron Spin Resonance
(ESR) spectroscopy studies have concluded that this hydrogen atom diffusion occurs in
solid para-hydrogen through reactive tunneling (Kumada, Sakakibara et al. 2002,
Kumada 2003). Quantum tunneling refers to reactions that occur by passing through a
potential energy barrier. This type of reaction neglects the requirement of having or
supplying enough energy to overcome the potential energy barrier. The hydrogen atom
diffusion through the para-hydrogen matrix involves an exchange reaction between the

para-hydrogen molecules and the hydrogen atoms.
H+H, - H,+H

The energy barrier between the reactants and products in the above reaction is ~10 kcal
mol” (Ruzi and Anderson 2015). At Anderson’s experimental temperature of 4.3 K,

integration of the tail of the Maxwell-Boltzmann distribution shows that less than 1



hydrogen atom out of 10%*° atoms will have 10 kcal mol™ of kinetic energy (Benderskii,
ydrog

Goldanskii et al. 1993), therefore the reaction must occur through tunneling.

Anderson studies the bimolecular reactions that occur with the hydrogen atoms
and the NO dopants. Completing these studies at low temperatures allows
immobilization of certain species, thus preventing reactions from taking place between
these species and others within the matrix, or reactions between the same species.
Once a hydrogen radical is in proximity to a NO dopant, a reaction occurs. As expected
from Table 1.1.1, HNO is a product. Although this reaction also takes place at the same
low temperatures, this reaction occurs without tunneling, as this is a barrierless

exothermic reaction.
H + NO - HNO

Surprisingly, the other product that is formed is NOH. Due to the high energetic
barrier to produce *NOH and the low temperatures at which Anderson performs his

experiments, the production of *NOH occurs through tunneling.

A fourier transform infrared (FTIR) spectrometer records spectra at the onset of
irradiation and at subsequent times for a period of up to 5 hours. The three peaks in the
'HNO spectra represent the NH stretch, NO stretch, and molecular bend vibrations. The
FTIR peak intensities are shown to increase over time following photolysis, indicating a
growth in the amount of "HNO and *NOH produced since the initial production of the
nitrogen and oxygen atoms. If the peak intensities can be converted to concentrations,

then Anderson’s group can follow the growth rate of the "HNO and *NOH products



during the experiment. An accurate growth rate is required for kinetic analysis of this

reaction.
1.3 Theoretical Background

Once the doped para-hydrogen crystal is irradiated, HNO production is initiated.
To calculate the kinetics of the HNO production, accurate absorption coefficients are
needed that represent the absorbance per unit concentration for this molecule. The
pattern of growth of HNO over time using previously calculated absorption coefficients
indicates a first-order reaction (Lee 1993). The exact concentration of HNO can be
calculated from any of the HNO FTIR peaks by considering the integrated absorption
coefficients (¢) and the absorbances (4) of the peaks, where A = log,,(l,/1), where I, is
the light intensity initially striking the crystal and I is the light intensity remaining after
passing through the crystal. V, has a set value of 23.16 cm® mol™ which represents the
molar volume of the solidified para-hydrogen at the temperature of liquid helium, and [ is

the path length the infrared light travels through the crystal.

2.303 [logyo(lo/Ddv

[HNO] = >

Vo(10%)

The only previously published integrated absorption coefficients available prior to
this work were reported in 1993 by T.J. Lee (Lee 1993), using a computational
approximation called the double harmonic approximation and using a comparatively
small basis set as to those easily available today. A basis set is a set of basis functions
to be used to model the electronic wave function of an atom. The specific basis set used

by Lee was the triple-zeta double polarized (TZ2P) basis set. The double harmonic
7



approximation treats potential energy functions as second-order polynomials to describe
each vibrational motion. Additionally, the double harmonic approximation also treats
dipole moment functions as first-order polynomials to describe each vibrational motion.
These simplifications greatly simplify the work required to obtain molar absorptivity

values.

When Anderson’s group uses these absorption coefficients, the resultant HNO
concentration determined from the NH stretch vibration differs from that calculated from
the molecular bend vibration by a factor of two. This means that the HNO
concentrations produced in Anderson’s experiments are still too uncertain to allow a
kinetic analysis of the reaction. This large disagreement of the HNO concentration
makes it essential to explore absorption coefficients computed with larger basis sets

and with calculations that are beyond the double harmonic approximation.

1.4 Overview of Work

The following chapters will detail our work to obtain more accurate absorption
coefficients than those currently available. All of this work was completed through ab
initio calculations and through code written in Maple. All of the calculations in this

dissertation were for singlet HNO.

In chapter 2 we will detail our work testing the double harmonic approximation,
which was completed through ab initio calculations with use of modern basis sets, as
well as with different levels of theories. Chapter 3 will include results of the double

harmonic approximation and analysis of these results. Harmonic frequencies were



obtained for the HNO molecule, along with harmonic frequencies following substitution
of different isotopes of the atoms within the molecule for analysis of the kinetic isotope
effect. Using these vibrational frequencies and further ab initio work, we obtained
harmonic potential energy functions and dipole moment functions to describe each
vibrational motion. This allowed us to compute the double harmonic molar absorptivity
of each vibrational motion. The measurement by which our values were determined

accurate was by comparison to experimental work by Anderson.

In chapter 4 we will detail our work for extending potential energy functions and
dipole moment functions beyond the double harmonic approximation to see the effects
of including anharmonicity to compute molar absorptivites. After this we will consider
including coupling between different vibrational motions to see the effect of more than

one vibrational mode influencing the molecule at one time.

Chapter 5 includes details of how to further extend this work. Lastly, a summary

of the importance of this work and the results of this work will be provided.



Chapter 2

Double Harmonic

Approximation
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2.1 Introduction

Prior calculations of molar absorptivity for the vibrational motions of HNO have
treated the molecule using only the double harmonic approximation (Lee 1993). This
approximation is frequently used to avoid extra computational cost, but for certain
molecules the vibrational behavior requires an extension to the double harmonic
approximation to describe more accurately behaviors such as the potential energy
change and dipole moment change with each vibrational motion, which in turn has an
effect on the molar absorptivity. The double harmonic approximation assumes non-
coupling of vibrational modes; that is that each vibration has an independent effect on
the molecule. The number of vibrational modes for a nonlinear molecule is (3N-6),
where N represents the total number of atoms within the molecule. For the nonlinear
HNO molecule there are a total of three vibrational modes, labeled g1, 92, q3, in order
of decreasing frequency. Each vibrational mode is described by the -collective
displacements of the H, N, and O atoms. Three geometric parameters are affected by
these normal modes, which are the NH bond length, NO bond length, and the HNO

bond angle.

The potential energy function of the molecule is dependent on each of the normal
modes. In the double harmonic approximation, each potential energy function is
assumed to be symmetric and quadratic in the minimum vicinity of the potential energy.
The dipole moment function of the molecule is also dependent on each of the normal
modes, and in the double harmonic approximation each dipole moment function is

assumed to be a linear function of the normal mode coordinates. As will be discussed in

11



section 2.2, the molar absorptivity computed within the double harmonic approximation
requires components from accurate potential energy functions and dipole moment
functions. The calculations for the optimization of HNO, as well as for potential energies
and dipole moments of the HNO structures, will be completed through ab initio
molecular orbital theory calculations. The ab initio optimization adjusts the geometrical
parameters, such as bond lengths and bond angle, calculating the potential energy after
each adjustment, and repeats this process though several iterations until a minimal

energy is found.
2.1.1 Optimization

To compute the optimized geometry of HNO and the potential energy of this
optimal geometry, which corresponds to the minimal energy along the potential energy
curve, an optimized ab initio calculation was completed. Geometric optimization of HNO
is simplified by treating this 2-dimensional molecule in the (x, y) plane. Past work by
Bozkaya studied the energetics of HNO and its isomer, NOH, and the kinetics of the
HNO < NOH isomerization (Bozkaya, Turney et al. 2012). Our work initialized the
placement of each atom in the HNO structure by using Bozkaya’s computed geometry,
although we used a different basis set than used by Bozkaya, and we converted this
geometry to coordinates of each of the H and O atoms while placing the N atom at the
origin and the NO bond along the x-axis. Optimization of this initial geometry yielded

optimal bond lengths, bond angle, and potential energy.

12



2.1.2 Basis Sets and Theory

In order to test the dependence of our optimization and the work that followed the
optimization on the basis set, two basis sets were used. Our work employed augmented
correlation-consistent polarized valence basis sets, specifically aug-cc-pVTZ and aug-
cc-pVQZ. The basis set for each atom is made up of a number of Gaussian functions
and when implemented for each atom in our molecule, it provides a close approximation
to the molecular orbitals. Increasing from triple zeta to quadruple zeta raises the number
of basis functions significantly, and this large increase of basis functions results in a
considerable increase in computational cost. Augmentation of these basis sets adds
diffuse functions to more accurately describe the outer regions of the atoms, which is
necessary for the correct description of weak bonds, such as the NH bond in the HNO
molecule, as well as for correct calculations of certain properties such as dipole

moment.

Several computational theories were used in our calculations, specifically
Hartree-Fock (HF), second-order Mgller-Plesset theory (MP2), and coupled-cluster
theories, including CCSD and CCSD(T). The Hartree-Fock theory treats the electrons of
an orbital in an average manner and neglects instantaneous interactions between
electrons in other orbitals known as electron-electron correlation. This neglect of
electron correlation enables the Hartree-Fock method to conserve computational cost,
and this method is correct to the first order of energies. Mgller-Plesset includes an
approximate treatment of electron correlation using perturbation theory, and MP2 is
correct to the second order in the perturbation. Coupled-cluster models excitation of
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electrons into virtual orbitals using the cluster operator, and includes increasing
amounts of electron correlation. CCSD treats single and double excitations, and
CCSD(T) includes, in addition, a non-iterative treatment of triple excitations, which
reduces computational cost significantly compared to the CCSDT method. The mean
absolute error of standard dipole moment calculations of relatively small molecules was
found to be 0.16 D with Hartree Fock, 0.048 D with MP2, 0.025 D with CCSD, and less
than 0.01 D with CCSD(T) (Bak, Gauss et al. 2000). A similar pattern is observed for the
mean absolute error of bond lengths and bond angles of relatively small molecules that

contain atoms from the second row of the period table (Coriani, Marchesan et al. 2005).
2.2 Molar Absorptivity and the Double Harmonic Approximation

The formula for calculating the molar absorptivity (4) of a specific vibrational
mode considers both its vibrational frequency (v) and the absorption intensity (Gj;),
where i and j represent the initial and final vibrational levels, respectively (Cohen, et al.

2008).

A Gjiv
"~ 16.60540

Gj; is a function of the transition dipole moment (M;;). The transition dipole moment,
squared, is made up of a sum over the Cartesian components of the integral of the

dipole moment operator p,(q), squared, over vibrational levels i and j.

G = 8’ M, |° = 41.6238|M..|°
j'—m| i|” = 41.6238|Mj|
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The double harmonic approximation assumes equal spacing between each energy level
and limits transitions to between the ground state, i = 0, and the first excited energy

level, j = 1.

The dipole moment functions for each normal mode are polynomial functions of
the normal mode. These polynomial functions essentially form a Taylor expansion of the
dipole moment function for each Cartesian component.
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2.3 Mass-weighted Hessian Matrix and Dimensionless Normal Mode

Displacements

To find the harmonic frequencies of each normal mode, the Hessian matrix will
need to be formed and diagonalized. The individual entries for the Hessian matrix will
consist of second derivatives of the energies of the structure with respect to the
Cartesian coordinates of one or two atoms. We estimated these derivatives as
described below using a finite difference approach that required adjustments along the
Cartesian coordinates of each atom, and attempted to conserve computational cost by

considering adjustments along internal coordinates in place of Cartesian coordinates.
2.3.1 Cartesian Coordinates

The harmonic vibrational frequencies are found through diagonalization of a
mass-weighted Hessian matrix. The Hessian matrix (D) is composed of second-order
partial derivatives of the molecular potential energy surface with respect to one or two
Cartesian coordinates of the atoms. For the HNO molecule, the Hessian matrix is a 9x9
square matrix. Laying the 2-dimensional HNO molecule along the xy-plane eliminates
the translational motion along the z-axis and rotational motions of both the x-axis and y-
axis. Considering only terms with x and y components reduces the matrix size to 6x6.

The numbering 1-3 represent each of the three atoms in the HNO molecule.
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The Hessian matrix is converted into a mass-weighted Hessian matrix (D') with use of

the diagonal mass-weighting matrix (M1/2).
D' =M~Y2pM~1/2

Diagonalization of the mass-weighted matrix produces multiple eigenvalues (1). Three
of these eigenvalues are essentially zero, which come from the translational motion
along the x-axis, the translational motion along the y-axis, and the rotational motion
around the z-axis. The three non-zero eigenvalues represent the vibrational motion for
each of the three normal modes. This follows the (3N-6) rule for number of vibrational
modes in a non-linear molecule, such as HNO. These eigenvalues can be converted to

vibrational frequency (hw) by a direct relation to the eigenvalue.
w =21

Also produced by the diagonalization of D' are dimensionless normalized eigenvectors,
one for each normal mode. These eigenvectors are converted to Cartesian

displacement coordinates through a product of multiple matrices,

M—l/Z Qw—l
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Where Q is the matrix of the normalized eigenvectors, and W is the diagonal matrix of
\/ (l)l/h

The partial second derivatives of the Hessian matrix were approximated with the
finite central difference method. For the diagonal Hessian entries, the coordinate of
interest is adjusted from its optimized geometry by a small amount (h), which represents
a “finite difference”, in both the positive and negative directions and the energies for
these new geometries are obtained and then inputted into the following formula to

calculate the partial second derivative with respect to one coordinate.

0x,2 h2

For the off-diagonal Hessian entries, a similar approach is used but considering

adjustments of two different coordinates by this finite difference.

x1+h>_ (x1+h>_ (xl—h> (xl—h>
02U _U(y2+h Uy, —n) YNy, +0) 7O\, -

0x,0y, 4h?

This central difference method is exact for a purely quadratic energy surface.

Although the 6x6 Hessian matrix contains 36 entries, the upper triangle of the
matrix can be duplicated to make the lower triangle, which is a benefit of a symmetric

matrix, such as the Hessian matrix when computing for the HNO molecule. This can be

2%U 02U
0x10y, 0y,0x1

seen by noticing the finite difference formula is the same for
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2.3.2 Internal Coordinates

The Hessian matrix entries of HNO consists of second derivatives of potential
energy with respect to the 21 unique combinations of the six x- and y-Cartesian
coordinates of individual atoms. To reduce computational cost, we computed the
Hessian matrix with each entry consisting of second derivatives of potential energy with
respect to the 6 combinations of the three internal coordinates. The three internal
coordinates that describe the geometry of the HNO molecule are HN bond length, NO
bond length, and the cosine of the bond angle. This essentially reduces our need of 72
ab initio calculations to 18 ab initio calculations for the Hessian matrix with this internal

coordinate method.
2.4 Isotopic Effect

The quantitative displacement of each atom for a normal mode is described by
the eigenvector of that normal mode. In experimental spectroscopy, when two
vibrational frequencies are nearly equal to each other, it is possible that there will be
strong coupling of the corresponding normal modes. Replacing one of the H, N, or O
atoms with the next largest isotopes of H, "N, or 'O will shift certain vibrational
frequencies and could decouple the normal modes that previously had nearby
frequencies. H substitution will have the largest effect in vibrational frequency shifts
due to the large increase in reduced mass of the atoms involved in a vibration. Currently
Anderson et al is experimenting with the ®N isotope in HNO to determine the kinetic

distinction between the "N and "°N isotopomers. Performing isotopic substitution will

19



aid in Anderson’s analysis of experimental spectroscopic data, as well as possibly

confirm our vibrational normal mode assignments.

Each electronic energy is independent of the atomic masses of each atom.
Therefore the isotopic effects yielding new harmonic frequencies, eigenvalues, and
eigenvectors for selected isotopes can be studied without requiring new energetic
calculations. Instead, the energetic calculations performed earlier for the Hessian matrix
were used, and the only adjustment was altering the isotopic masses in creating the

mass-weighted Hessian matrix (D') from the Hessian matrix.
2.5 Potential Energy Functions

The potential surface is important for the molar absorptivity calculations in
providing the energy levels, the frequency, and force constants along each normal
mode. The double harmonic approximation limits the potential energy as a function of

each normal mode coordinate q to be a second-order function.

V(q) = Vq:o + constant * q2
2.6 Dipole Moment Vectors

The other crucial component to calculating the molar absorptivity for each normal
mode is the transition dipole moment which is comprised of dipole moment functions
along each Cartesian direction. To find the dipole functions, the molecule was stretched
and compressed along each normal mode. For each normal mode, the eigenvectors,

once converted to Cartesian displacement coordinates, describe the amount of
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displacement along each Cartesian coordinate that is attributed to the stretching or

compression of that normal mode.

The molecule is initially at the optimized geometry. For each normal mode
analysis, varying magnitudes of the normal mode are applied to the geometry by
multiplying the unitless normal mode displacement with the eigenvector associated with
a particular normal mode, and the initially optimized geometry is adjusted with this
amount. Ab initio calculations at this new geometry provide the potential energy as well
as dipole moment of this new configuration. This process is repeated along multiple
amounts of the normal mode, including fractions of the normal mode. The resulting

dipole moments are plotted against the normal mode.

With lower levels of theories in the ab initio calculations, such as MP2 and
CCSD, a command can be directly inserted into the input file to retrieve the dipole
moment of the new geometry in the output file. Higher levels of theory, like CCSD(T),
however, require a different approach for the dipole moment. The new geometry must
be placed in a uniform electric field oriented along the x- or y-axis, and these electric
fields influence the potential energy of the molecule. The strength of the electric field is
varied. The potential energy at each field strength is plotted against the strength of
electric field (EF), and the negative first derivative of the potential energy with respect to
the electric field at the field strength of zero gives the dipole moment vector of p, where

p=xory.

. Jav
S 77N
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The dipole moments for a normal mode are then fit to a polynomial equation and
the coefficient leading the linear term is proportional to the first derivative of the dipole
moment with respect to the normal mode. This derivative is inserted into the double
harmonic approximation of the transition dipole moment, which then, along with the
harmonic frequency found previously from the Hessian matrix, gives the double
harmonic molar absorptivity value for that specific normal mode. Anderson’s
experimental results are not directly comparable to our molar absorptivity values, but
instead to a ratio of each pair of molar absorptivities. Hence, after having retrieved the
theoretical molar absorptivity for each normal mode, such a ratio was created and

compared to Anderson’s results.
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Chapter 3

Double Harmonic Results
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3.1 Optimization and Harmonic Frequencies

The normal modes and vibrational frequencies of the HNO molecule were
calculated through the double harmonic approximation and compared to those of T.J.
Lee. However, Lee’s data used a smaller basis set than the basis sets we considered
(Lee 1993). The results that will be shown in this chapter and the next chapter will

indicate that the double harmonic approximation breaks down for the HNO molecule.

The molecule was optimized using the aug-cc-pVTZ or aug-cc-pVQZ basis sets,
with either the Hartree Fock, MP2, CCSD, or CCSD(T) levels of theory. The bond
lengths and bond angle which yielded the minimal potential energy for each basis set
and theory combination are detailed in Table 3.1.1. One clear pattern from the
optimization results is that increasing the basis set with each theory results in a small
change in the bond lengths and bond angle to yield the optimal energy. As basis set is
increased, the decrease in optimal energy from Hartree-Fock to the electron-electron
correlation considering methods (MP2, CCSD, CCSD(T)) is greater than the differences
in energy between the electron correlation methods, which demonstrates the
importance of including electron correlation in the ab initio calculations. Within each
basis set, the minimal energy decreases when considering Hartree Fock to MP2 to

CCSD to CCSD(T), thus showing consistency across the theories.

After obtaining the optimal bond lengths and bond angle and placing the atoms
on a xy-plane, as described in Chapter 2, the x- and y- coordinates of each atom were
displaced by a small value of h = 0.01 A. As expected, each adjustment of a coordinate

resulted in a new and higher energy than the energy for the optimized geometry. The
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Table 3.1.1. HNO optimization results for each basis set and theory. Optimal
parameters listed are NH bond length (A), NO bond length (A), bond angle (in degrees),

and optimal energy (Hartrees).

Basis Set Theory | Rnu(A) | Rno (A) | bond angle (°) Energy (Ha)
aug-cc-pVTZ HF 1.03034 1.16610 109.38 -129.84295114
MP2 1.05068 1.22167 107.65 -130.28424878
CCSD | 1.05173 1.20371 108.25 -130.28878822
CCSD(T) | 1.05527 1.21518 107.98 -130.30975046
aug-cc-pvVQZ HF 1.02986 1.16468 109.40 -129.85158882
MP2 1.04924 1.21773 107.77 -130.31997667
CCSD | 1.04979 1.19972 108.35 -130.32035738
CCSD(T) | 1.05331 1.21104 108.10 -130.34262935
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central difference method used these energies to formulate an approximation for the
second derivatives of the potential energy of HNO with respect to the x- and y-
coordinates of each atom. The diagonalization of the 6 x 6 Hessian matrix yielded six
eigenvalues, three of which were zero, specifically for the x-translational mode, y-
translational mode, and the z-rotational mode. The three non-zero eigenvalues were for
the three vibrational modes, which is consistent with the (3N-6) rule. The vibrational
eigenvalues were converted to the three harmonic vibrational frequencies. Table 3.1.2
shows the harmonic frequencies obtained from each basis set and computational
theory. The first labeled frequency, w,, is the highest in wavenumbers and the third
labeled frequency, ws, is the lowest, and this notation will be consistent throughout this

document.

Just as with the results of optimization, Table 3.1.2 shows that for the vibrational
frequencies there is more disagreement between levels of theory than between basis
sets. For both basis sets, as theory increases from Hartree Fock, which does not take
into account the electron-electron correlation, to MP2, all of the vibrations display a
distinctly large decrease of several hundred wavenumbers in harmonic frequency. This
large decrease in frequency from Hartree-Fock to MP2 resulted in more agreement to
experimental frequencies (Ruzi and Anderson 2015). This demonstrates the importance

of including electron correlation to correctly describe each vibrational behavior.

w, and w5 exhibit an increase of just below 100 cm™ as the theory changes from
MP2 to CCSD. The CCSD(T) frequency values for w, and w5 are between the MP2 and

CCSD values. Similar to the lower vibrational frequencies, w, shows a decrease as
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Table 3.1.2. Harmonic frequency (cm™) results for each normal mode using each

basis set and theory. These results are from Hessian entries of second derivatives

with respect to Cartesian coordinates of the atoms.

Basis Set Theory w, W, w3
aug-cc-pVTZ HF 3307.3 19349 1706.2
MP2 30311 1577.7 14758
CCSD | 3003.6 1662.0 1582.7
CCSD(T) | 2950.4 15934 1535.7
aug-cc-pvVQZ HF 3307.1 1939.0 1708.3
MP2 3037.9 1583.8 1490.2
CCSD | 3018.7 1677.4 1586.8
CCSD(T) | 2964.6 1602.1 1544.2
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theory is adjusted from MP2 to CCSD, but with a smaller shift in wavenumbers of less
than 30 cm™. Unlike with w, and ws, the frequency of w; continues to decrease when

coupled-cluster theory considers a perturbative treatment of triple excitations.

The eigenvectors that were calculated for each mode from the diagonalization of
the mass-weighted Hessian matrix described the displacement of each atom along the
x- and y-directions. To get a general depiction of which vibration was described by
which normal mode, multiples of each normal mode were applied by positive and
negative magnitudes and the resulting changes in the NH bond length, NO bond length,
and the HNO bond angle were noticed. The q1 mode almost entirely described the NH
bond length. The g2 and g3 modes, however, had a great influence on both the NO

bond length and the HNO bond angle.

3.2 Isotope Substitution Effect

The vibrational frequencies with isotopic substitution of >N with differing basis
sets and theories are listed in Table 3.2.1. All three vibrational modes were expected to
be affected by the >N substitution, as nitrogen is the central atom of the triatomic
molecule and has contribution to the NH stretch, NO stretch, and HNO bend. As
expected, Table 3.2.1 shows this trend. Although w; experiences an almost constant
decrease with the "N substitution, the other modes experience an inconsistent shift
depending on computational theory applied. At times w, experiences a larger decrease
while w; experiences a lower decrease, and at other times w, experiences a lower

decrease while w; experiences a larger decrease. Due to this inconsistent behavior of
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Table 3.2.1. Harmonic frequency (cm™) results for each normal mode using each
basis set and theory for the HNO molecule with the BN isotopic substitution.
These results are from Hessian entries of second derivatives with respect to Cartesian
coordinates of the atoms. Values in parenthesis are the frequency shifts from the

'H'N'®0 molecule using the same basis set and theory.

Basis Set Theory W, w, w3
aug-cc-pVTZ HF 3300.2 (-7.1)  1901.2(-33.7)  1700.2 (-6.0)
MP2 3024.3 (-6.8) 1572.7 (-5.1)  1450.0 (-25.8)
CCSD | 2997.0 (-6.6) 1640.2 (-21.8) 1570.5(-12.1)
CCSD(T) | 2943.9 (-6.5) 1584.4 (-9.0) 1512.5(-23.1)
aug-cc-pvVQZ HF 3300.0 (-7.1)  1905.2 (-33.8) 1702.3 (-6.0)
MP2 3031.1 (-6.8) 1578.2 (-5.6)  1464.6 (-25.6)
CCSD | 3012.1(-6.5) 1653.7 (-23.8) 1576.3 (-10.6)
CCSD(T) | 2958.1 (-6.5) 1589.9 (-12.2) 1523.8 (-20.3)
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these shifts in frequency between w, and ws, it is may be beneficial to include a higher
level theory until consistency is found. After including a full treatment of triple
excitations, as in CCSDT, if frequencies are found to agree between CCSD(T) and

CCSDT, this can assure us that CCSD(T) level of theory is sufficient.

The vibrational frequencies with isotopic substitution of 'O are listed in Table
3.2.2. As stated previously, the NH stretch was most largely attributed to arise from the
g1 mode, while g2 and q3 were both found to a great contribution to both the NO stretch
and the HNO bend. As the NO stretch and HNO bend both involve oxygen directly, the
80 substitution was predicted to have the greatest influence on the g2 and g3 modes.
This expected behavior is shown in Table 3.2.2, however the magnitude of shifts are

inconsistent, as was noted earlier with the nitrogen substitution.

The resulting frequencies from the 2H substitution in the HNO molecule are
shown in Table 3.2.3. Hydrogen is major component in both the HN stretch and the
HNO bend. Since the HN stretch is most affected by the q1 mode, the vibrational
frequency of the g1 mode is expected to be largely altered by the ?H substitution. The
HNO bend, however, was shown to be largely affected by both the g2 and q3 modes.
As seen in Table 3.2.3, the highest frequency is now nearly 800 cm™ lower than highest
frequency of the non-isotopically substituted molecule, and the lowest frequency is now
nearly 300-400 cm™' lower than the lowest frequency of the non-isotopically substituted
molecule. It is not clear which of the q2 and g3 modes from the non-isotopically
substituted molecule resulted in the lowest frequency with the 2H substitution. If
identification of the modes is an interest in the future, the HNO molecule should be
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Table 3.2.2. Harmonic frequency (cm™) results for each normal mode using each
basis set and theory for the HNO molecule with the '®0 isotopic substitution.
These results are from Hessian entries of second derivatives with respect to Cartesian
coordinates of the atoms. Values in parenthesis are the frequency shifts from the

'H'N'®0 molecule using the same basis set and theory.

Basis Set Theory W, w, w3
aug-cc-pVTZ HF 3307.1 (-0.2) 1883.2(-51.7) 1701.4 (-4.8)
MP2 3030.9 (-0.2) 1563.2 (-14.5) 1445.7 (-30.0)
CCSD | 3003.3(-0.3) 1619.0(-43) 1577.0 (-5.6)
CCSD(T) | 2950.1 (-0.3) 1571.5(-21.9) 1511.5(-24.2)
aug-cc-pvVQZ HF 3306.9 (-0.2) 1887.2(-51.8) 1703.4 (-4.8)
MP2 3037.7 (-0.2) 1568.0 (-15.8) 1461.0 (-29.2)
CCSD | 3018.4(-0.3) 1632.6 (-44.8) 1582.5(-4.4)
CCSD(T) | 2964.3 (-0.3) 1574.1 (-28)  1525.5(-18.7)
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Table 3.2.3. Harmonic frequency (cm™) results for each normal mode using each

basis set and theory for the HNO molecule with the 2H isotopic substitution.

These results are from Hessian entries of second derivatives with respect to Cartesian

coordinates of the atoms. Values in parenthesis are the frequency shifts from the

'H'N'®0 molecule using the same basis set and theory.

Basis Set Theory w, w, w3

aug-cc-pVTZ HF 2416.8 (-890.5) 1934.2 (-0.7)  1289.9 (-416.2)
MP2 2217.4 (-813.7) 1498.4 (-79.4) 1169.7 (-306.1)

CCSD | 2196.4 (-807.2) 1653.5(-8.5) 1198.7 (-394.0)

CCSD(T) | 2158.1 (-792.3) 1563.1 (-30.3) 1178.4 (-357.3)

aug-cc-pvQZ HF 2416.6 (-890.5) 1938.3 (-0.6)  1291.6 (-416.7)
MP2 2222.3 (-815.6) 1514.4 (-69.4) 1173.4 (-316.8)

CCSD | 2207.1(-811.6) 1670.7 (-6.8)  1201.4 (-385.4)

CCSD(T) | 2168.4 (-796.3) 1580.3 (-21.8) 1179.4 (-364.8)
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studied with several small incremental hydrogen mass changes until reaching the H
mass. Then, the observation of the smaller frequency shifts with each mass adjustment

will help understand the frequency behavior each mode experiences.
3.3 Internal Coordinates

Changing the entries of the Hessian matrix from second derivatives of the
potential energy with respect to two Cartesian coordinates to matrix entries expressed
in terms of derivatives with respect to the internal coordinates reduces the
computational time substantially, as there are far more deviations to consider when
considering the six Cartesian coordinates than when considering only three internal
coordinates. The three internal coordinates were the NH bond length, NO bond length,
and cosine of the molecular angle. Table 3.3.1 lists the frequencies of the HNO
molecule and the frequencies of the molecule’s isotopic substitutions. The largest
disagreement from the Hessian resultant frequencies calculated using internal
coordinates compared to using Cartesian coordinates is less than 3.0 cm™. This
indicates a good agreement of frequencies between internal and Cartesian coordinates,
as much larger differences in frequencies were noticed earlier when studying the effect
of basis sets and computational theories with Cartesian coordinates alone. The
agreement of frequencies from using internal coordinates compared to using Cartesian
coordinates for the Hessian calculation, along with the benefit of four times reduction of
computational cost, motivates us to consider future work with the Hessian matrix to be
from computations of geometries adjusted along internal coordinates in place of

Cartesian coordinates.
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Table 3.3.1. Harmonic frequency (cm™) results for each normal mode considering

internal coordinates, using aug-cc-pVQZ and CCSD(T) for the HNO molecule

without isotopic substitution, and for the molecule with the 24 isotopic

substitution, with the '>N isotopic substitution, and with the '®0 isotopic

substitution. These results are from Hessian entries of second derivatives with respect

to internal coordinates of the atoms. Values in parenthesis are the frequency shifts from

the same isotopes using aug-cc-pVQZ and CCSD(T) with considering Cartesian

coordinates.

wq W, w3
'H"“N'"0 | 2963.0 (-1.6) 1600.2 (-1.9) 1542.2 (-2.0)
H™N'0 | 2167.4 (-1.0) 1579.7 (-0.6) 1176.7 (-2.7)
'H™N'0 | 2956.5 (-1.6) 1587.6 (-2.3)  1522.4 (-1.4)
"H“N"0 | 2962.8 (-1.6) 1571.2(-2.9) 1524.5 (-1.0)
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3.4 Double Harmonic Potential Energy Functions

It is assumed in the double harmonic approximation that potential energies that
are functions of normal modes can be sufficiently described by a quadratic function. The
coefficient leading the normal mode is the harmonic force constant. Manipulation of the
harmonic frequency that was retrieved from diagonalization of the Hessian matrix yields
the harmonic force constant. The optimal energy and force constant of each normal

mode would create the quadratic potential energy function of each normal mode.

Figures 3.4.1, 3.4.2, and 3.4.3 show data points for ab initio potential energies
resulting from the geometrical changes from the HNO optimal geometry by normal
modes 1, 2, and 3, respectively. As described above, to model the double harmonic
potential energy certain parameters are already set, specifically the optimal energy and
the harmonic force constant. For each figure, the line in red is a best fit sixth-power
polynomial function that best describes the trend set by the collection of the individual
potential energies. To see the quantitative influence of the higher polynomials in
describing the trend of the collective potential energies, the sixth-power potential energy

expression is given in each figure.

Figure 3.4.1 shows the potential energy behavior for the g1 mode, and this
mode, as described earlier, predominately describes the HN bond vibration. By visual
inspection alone it can be seen that the behavior of the energies would not be explained
well by a symmetric quadratic function. This indicates that the next several orders
beyond the second order are important to accurately describe the potential energy

function.
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Figure 3.4.1. Aug-cc-pVQZ, CCSD(T) ab initio potential energies vs. q1 mode for
the g1 mode resultant from internal coordinate Hessian matrix. The sixth order

polynomial fit is an expansion to the double harmonic potential energy function.
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Figure 3.4.2. Aug-cc-pVQZ, CCSD(T) ab initio potential energies vs. g2 mode for
the g2 mode resultant from internal coordinate Hessian matrix. The sixth order

polynomial fit is an expansion to the double harmonic potential energy function.
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Energy vs. g3
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Figure 3.4.3. Aug-cc-pVQZ, CCSD(T) ab initio potential energies vs. q3 mode for
the g3 mode resultant from internal coordinate Hessian matrix. The sixth order

polynomial fit is an expansion to the double harmonic potential energy function.
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The quantitative contributions of higher orders are not as significant in the
potential energy functions which describe the g2 and q3 modes, given in Figures 3.4.2
and 3.4.3, respectively. However it is apparent from a visual inspection of both of the
potential energy behaviors relative to their normal modes that terms beyond the second

order are necessary to correctly describe the functions.
3.5 Double Harmonic Dipole Moment Functions

The transition dipole moment is made up x- and y-components of the dipole
moment functions of normal modes. The double harmonic approximation assumes a

linear function to adequately describe the behavior of these dipole moments.

The x-component of the dipole moments with geometrical changes of q1, g2, and
g3 modes are displayed in Figures 3.5.1, 3.5.2, and 3.5.3, respectively. The red line is a
fifth-power function best fit to the ab initio data of the x-component dipole moments. It is
both visually and quantitatively clear that the x-component dipole moments for the g1

and g3 modes, especially, have a great contribution from the higher powers.

The y-component of the dipole moments with geometrical changes of q1, g2, and
g3 modes, displayed in Figures 3.5.4, 3.5.5, and 3.5.6, respectively, give a similar trend
as that described for the x-component dipole moment, except the y-component dipole
moment for q2 shows an especially stronger non-linear behavior than for the x-

component dipole moment for g2.
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x-component of Dipole Moment vs. gl

-4 -2 0 2 4
i il i L

1 (g) =-0.357725 + 0.0380130 g + 0.00996687 &°
— 0.000295982 ¢ — 0000109344 4" — 30950910 % ¢

Figure 3.5.1. Aug-cc-pVQZ, CCSD(T) ab initio x-component of dipole moment vs.
q1 mode for the q1 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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x-component of Dipole Moment vs. g2

[ ]
o

_|:||5 .
1 (g) =-0357725 — 0.0636210 ¢ + 0.00342970 ¢°

— 0000221774 ¢ + 0.0000128940¢" — 99130 107" ¢

Figure 3.5.2. Aug-cc-pVQZ, CCSD(T) ab initio x-component of dipole moment vs.
g2 mode for the q2 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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x-component of Dipole Moment vs. g3

i (g) =—0357725 — 0.00549511 ¢ + 0.00654864 ¢°
+ 000106551 4° + 0000152683 4" + 636951 107 %4

Figure 3.5.3. Aug-cc-pVQZ, CCSD(T) ab initio x-component of dipole moment vs.
q3 mode for the g3 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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v-component of Dipole Moment vs. gl

4 -2 0 2 4

1,(g) = 0560625 — 00550488 ¢ — 0.0140932 ¢
+ 0000313411 ¢° + 0000171847 4" + 927933 1075 ¢

Figure 3.5.4. Aug-cc-pVQZ, CCSD(T) ab initio y-component of dipole moment vs.
q1 mode for the q1 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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v-component of Dipole Moment vs. g2

L

0 2 4
u,(g) = 0560625 + 0.0235823 g — 0.00428905 ¢*

+ 0.000306325 4 — 0.0000585216¢4" + 60120 1075 ¢

Figure 3.5.5. Aug-cc-pVQZ, CCSD(T) ab initio y-component of dipole moment vs.
g2 mode for the q2 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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v-component of Dipole Moment vs. g3

W

0.5 1
0.4 1

0.3 A

—4 -2 0 2 4
1, (g) = 0560625 — 0.0177716 g — 0.00944899 ¢

— 0001278174 — 0.00002731354" + 573148 10~ 84

Figure 3.5.6. Aug-cc-pVQZ, CCSD(T) ab initio y-component of dipole moment vs.
q3 mode for the g3 mode resultant from internal coordinate Hessian matrix. The

fifth order polynomial fit is an expansion to the double harmonic dipole moment function.
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Chapter 4

Anharmonicity and Coupling
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4.1 Introduction

The potential energy and dipole moment behaviors of each normal mode were
graphically shown in Chapter 3 to not be described sufficiently well by the double
harmonic approximation. This chapter explores expanding the potential energy function
beyond a quadratic function and the dipole moment function beyond a linear function,
and including these expanded functions in the determination of the transition dipole
moment. The inclusion of these expanded functions is known as considering effects of
both mechanical and electrical anharmonicity. Mechanical anharmonicity is the potential
energy anharmonicity, and electrical anharmonicity is the dipole moment anharmonicity.

This chapter will also look into coupling of normal modes.
4.1.1 Complete Potential Energy

The true potential energy of the HNO molecule is a system of contributions from
all three vibrational normal modes. The double harmonic approximation has a very
simple potential energy equation. Below, V,,, represents the minimal energy found at

the optimal geometry, where q1 = g2 =q3 = 0.

hw, hws
a2+ Tsz + — 4

hw,
2

Vorna(919293) = Vope + 2

The harmonic frequencies were found from diagonalizing the Hessian matrix. The
computational cost to formulate this equation is near equivalent to the sum of the cost of
individual ab initio calculations required to formulate the Hessian matrix. As mentioned
earlier, computing the Hessian matrix with internal coordinates reduces the

computational cost by 75% when compared to Cartesian coordinates. The Cartesian
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coordinates require 72 ab initio calculations, whereas using internal coordinates

requires only 18 ab initio calculations.

The full potential energy, however, is composed of terms higher than quadratic
for each individual mode. Including mechanical anharmonic contributions from each
normal mode extends the potential energy equation to include individual mode

contributions beyond the second power.

Vorna+anuarm(919293) = VDHA(‘I1‘I2‘I3)+k111CI13 + kzzzQ23 + k333¢133 + k1111¢114 + -

Here, the coefficients leading the individual normal modes represent the powers to
which the normal mode was applied. For example, kq11 represents the coefficient

leading the g1 mode to the third power.

The full potential energy equation also includes an additional important concept
that is ignored in the double harmonic approximation, which is the coupling between
normal modes. The mechanical coupling of two or more modes will affect the potential
energy of the molecule, with differing effects that depend on the modes that are
coupled. Generally, modes are more likely to couple the closer the vibrational

frequencies of the modes are to one another.

Vona+anuarm+covrLing (919293)
= Vpraranaarm(@19293) + k112G1%2q2 + k1229142 + k113G1%q3 + k1339193°

+ k223022 q3 + k233G2G3% + k112201°42% + -+
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4.1.2 Complete Dipole Moment

The dipole function for each Cartesian component, p, assumed by the double harmonic

approximation is limited to a first power.

HDHA,p(ChQZ%) = Uopt T €141 + C2q2 + €343

Moving beyond this approximation and including electrical anharmonicity leads to the

individual normal modes contributing higher powers to the dipole function.

Hpra+anaarm,p(@10293) = Upuap(9102q3) + c11G1% + €222 + €33q3% + €111q1° + -

And finally, including electrical coupling between the normal modes gives the full dipole

function for each Cartesian component, p.

UpHA+ANHARM+COUPLING,p (919293)

= Upra+anuarm,p(419293) + C1201q2 + €1391G3 + €2392q3 + €11201°q2 + -
4.2 Anharmonicity

The anharmonic wavefunction (Y unarm) fOr each vibrational level consists of a
linear combination of harmonic oscillator wavefunctions (¢,.-») at vibrational states v=0
through v=n. Due to Anderson’s kinetic infrared studies specializing specifically in the i =
0 to j = 1 transitions, we only considered the anharmonic wavefunctions for the v=0 and

v=1 vibrational states.
lpanharm,v:O(Q) = b0¢harm,v=0(q) + b1¢harm,v=1(Q) + et bn(pharm,v:n(q)

lpanharm,v:l(q) = C0¢harm,v=0(q) + Cld)harm,v:l(Q) + ot Cnd)harm,v:n(q)
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The b coefficients represent the contributions of each harmonic oscillator
vibrational level function needed for defining the anharmonic wavefunction at v=0, and
the ¢ coefficients represent the same but for defining the anharmonic wavefunction at
v=1. The sum of the coefficients squared is equal to one, and the value of each
coefficient squared represents the weighted contribution from each harmonic

wavefunction towards the anharmonic wavefunction.

For the following anharmonic work, we used expanded potential energy functions
to the sixth power. Lower polynomial expansions were also tested but each next higher
expansion resulted in a more accurate fit to the ab initio results. The sixth order
functions’ mean absolute deviation values were 9.8x10™ Ha for q1, 9.0x10® Ha for q2,
and 2.7x10° Ha for g3. As with the harmonic potential energy functions in Chapters 2
and 3, the optimal energy and Hessian-derived harmonic frequency converted to the
second order force constant were used to make up the harmonic portion of the potential
energy function of each mode. The expanded dipole moment functions we used were to
the fifth power. As mentioned previously, we considered harmonic wavefunctions of the

ground vibrational state and up to and including the third harmonic vibrational state.
4.2.1 Electrical Anharmonicity

We first considered contributions from electrical anharmonicity alone. Since
mechanical anharmonicity was not yet considered, only the harmonic wavefunction at
the vibrational state of the anharmonic wavefunction will contribute to the anharmonic
wavefunction. That is for Yaunarmv=0(q), ONlY ¢parmv=0(q) Will contribute, and similarly

for Yannarmwp=1(q), only éparmv=1(q) will contribute. Therefore b, and c¢; will have full
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weight on the Yanarmp=0(9) and Yannarmp=1(q) anharmonic wavefunctions,

respectively. Since the potential is still harmonic, a harmonic Hamiltonian is computed.

With considering electrical anharmonicity, the dipole moment function can be

treated as a Taylor expansion.

N q (9u,(q) q? (0%u,(q) q" (0™u,(q)
o(@) = Hp(Da=y +F< dq > =0 +5< 0q? >q=0 + +§<6—q">q

=0

Now the transition dipole moment becomes more intricate than earlier with the double
harmonic approximation. Assuming that we allow both the x and y dipole moment
functions to include up to nth order contributions, and considering harmonic
contributions up to the vibrational state of 3, the transition moment squared becomes

the following.

ou, " u,

n

3 3
9q ), aqn ), _
2 s =0 ,. . =0 ,. .
Ml = DT> b | (), il + — 2l + o+ =il )
p

i=0 j=0

The integrals up to (ilq™|j) were simplified by defining the g operator using ladder
operators. Using raising and lowering operators resulted in each integral becoming a
constant multiplied by a much simpler integral of the form (i|m) where m represented

some additive of j.
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3

|ﬂ@42==:E::£: bi* ¢
p

3
i=0 j=0

Oty 97Ky
aqt

=0, const'(ilm")

aq /-
* (,up)q=0(i|j) + % x const(ilm) + --- +
Since these harmonic wavefunctions are orthonormal to each other, the integrals result
in a value of 1 or 0 using Kronecker delta. The molar absorptivities of each normal
mode were calculated using this transition dipole moment, along with the harmonic

frequency.
4.2.2 Electrical and Mechanical Anharmonicity

Next we included both electrical and mechanical anharmonicity. The
combinations of the harmonic components of the Hamiltonian matrix with the
anharmonic components gave us the anharmonic vibrational state eigenvalues and the
corresponding eigenvector. The eigenvector corresponding to the lowest energy
eigenvalue gave us the contribution of each harmonic wavefunction for the ground state
v=0 anharmonic wavefunction. Similarly, the eigenvector corresponding to the second
lowest eigenvalue gave us the contribution of each harmonic wavefunction for the v=1
anharmonic wavefunction. As described earlier, the linear combination of these
coefficients multiplied by the corresponding harmonic wavefunction gave us the

anharmonic wavefunction for the particular vibrational level.
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Table 4.2.1 lists the resultant b and ¢ eigenvectors for each normal mode when
considering contributions from the ground vibrational state (v=0) up to and including the
third excited vibrational state of v=3. As seen for each mode, the anharmonic
wavefunction for the ground vibrational state has the largest coefficient coming from the
v=0 harmonic vibrational state, which indicates the v=0 harmonic wavefunction has the
most contribution to the ground state anharmonic wavefunction. There is a considerable
contribution from each of the excited harmonic wavefunctions as well, with the largest of
these from the v=1 harmonic wavefunction. The highest contribution from the v=1
harmonic wavefunction towards the anharmonic ground state wavefunction comes from

the g1 mode.

The anharmonic wavefunction for the first excited vibrational state is mostly
made up of the v=1 vibrational state harmonic wavefunction. The largest contribution
from other harmonic wavefunctions comes from the g1 mode. The largest anharmonic
effects for both v=0 and v=1 anharmonic wavefunctions come from the q1 normal mode.
Table 4.2.2 shows the bi*c; multiplied by the corresponding integral that contributes to
|I\/,ji|2. As expected bp*cq has the largest contribution towards the transition moment for
the anharmonic wavefunctions, but several anharmonic transitions given by other bi*c;

combinations make large contributions of approximately 10% that of by*c;.

See Appendix 1 for the Maple code that calculated the eigenvectors for the v=0
and v=1 anharmonic wavefunction, and Appendix 2 for the Maple code that used the
calculated eigenvectors and the calculated v=0 to v=1 anharmonic vibrational frequency
to calculate the square of the transition dipole function.
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Table 4.2.1. This table lists, for each mode, the contributions from each harmonic
wavefuction in the linear combination of harmonic wavefunctions to form the
anharmonic wavefunctions. The harmonic frequencies required for these calculations
came from the internal coordinate Hessian matrix. Ab initio results came from aug-cc-
pVQZ and CCSD(T).

Anharmonic vibrational Harmonic vibrational

state state q1 q2 q3
0 0 0.9913 0.9988  0.9999
1 0.1264 0.0470 -0.0158
2 0.0147 0.0026  0.0001
3 0.0335 0.0127 -0.0042

Anharmonic vibrational Harmonic vibrational

state state q1 q2 q3
1 0 -0.1255 -0.0471  0.0158
1 0.9323 0.9902  0.9989
2 0.3355 0.1313  -0.0443
3 0.0492 0.0090 0.0007
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Table 4.2.2. This table lists, for the q1 mode, the integral of the anharmonic

wavefunctions with the x- and y-components of the dipole moment operator,

multiplied by the products of b; and c;. The harmonic frequencies required for these

calculations came from the internal coordinate Hessian matrix. Ab initio results came

from aug-cc-pVQZ and CCSD(T).

bi
0 1 2 3

-6.10E-04 | -4.21E-04 | -1.26E-05 | 1.14E-06

8.61E-04 6.17E-04 1.78E-05 | -3.00E-07

2.46E-02 1.71E-03 5.10E-04 3.60E-04

_ -3.59E-02 | -2.41E-03 | -7.54E-04 | -5.06E-04
“ 2.27E-03 1.57E-03 1.18E-04 5.04E-04
-3.19E-03 | -2.33E-03 | -1.66E-04 | -7.53E-04

-1.33E-05 | 7.17E-05 3.25E-05 5.41E-05

3.48E-06 | -1.01E-04 | -4.86E-05 | -7.60E-05
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To test the maximum vibrational state for the linear combinations of harmonic
wavefunctions, we varied the maximum vibrational state for each mode. The v=0 to v=1
anharmonic vibrational frequencies are listed in Table 4.2.3. Modes g2 and q3 were
shown to converge using a maximum vibrational state of 5. Mode g1 was still changing
at this vibrational state. We continued increased the maximum vibrational state for g1
until reaching maximum of v=9, by which point the frequency had changed from the v=8
by only 0.32 cm™. For all of the normal modes, the anharmonic v=0 to v=1 frequencies
with the above maximum vibrational states are lower than the harmonic frequencies, as
shown in Table 4.2.4. The biggest shift in frequency is from g1 with a decrease of 176.5

cm’’, whereas the smallest decrease of less than 1 cm™ is from the g3 mode.

Our calculated molar absorptivities, considering double harmonic approximation
and differing amounts of anharmonicities, are given in Table 4.2.5. This table also
includes, for comparison, the molar absorptivities of Lee which considered the double
harmonic approximation with the TZ2P basis set (Lee 1993). Our double harmonic
molar absorptivities differ greatly from Lee’s double harmonic values, which must be
mostly due to the difference in basis sets. This large difference shows the importance of
performing calculations with our much larger aug-cc-pVQZ basis set compared to Lee’s
TZ2P basis set. Considering the electrical anharmonicity alone gives only a slightly
different molar absorptivity than with our use of the double harmonic approximation, as
the difference in molar absorptivity values are only around £1 km/mol. The molar
absorptivity from considering both mechanical and electrical anharmonicity resulted in

the largest difference for g1 and g2 modes compared to our double harmonic
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Table 4.2.3. Anharmonic frequency (cm™) of each mode, considering mechanical

and electrical anharmonicity with different amounts of maximum vibrational

states for the harmonic wavefunctions. Ab initio results came from aug-cc-pVQZ and

CCSD(T).

Maximum v vi v2 v3
1 3253.28 1616.91 1544.78
2 2861.98 1588.99 1541.75
3 2857.90 1589.51 1541.83
4 2814.82 1586.36 1541.52
5 2793.66 1586.14 1541.51
6 2790.60
7 2788.15
8 2786.86
9 2786.54
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Table 4.2.4. Anharmonic frequency (cm™) of each mode, considering mechanical
and electrical anharmonicity. Values in parenthesis is the difference of the
anharmonic frequency from the harmonic frequency for the v=0 to v=1 transition.
Experimental frequencies are listed for comparison. The harmonic frequencies required
for these calculations came from the internal coordinate Hessian matrix. Ab initio results
came from aug-cc-pVQZ and CCSD(T).

q1 q2 q3
Mechanical and Electrical Anharmonicity
(q1: vmax=9; q2,q3: vmax=5) 2786.5 1586.1 1541.5
A from Harmonic Potential (-176.5) (-14.1) (-0.7)
Experiment (Ruzi and Anderson 2015) 2694.5 1563.3 1500.9
Experiment (Johns, McKellar et al. 1983) 2684.0 1565.4 1500.8
Experiment (Jacox and Milligan 1973) 2717.0 1563.5 1505.0
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Table 4.2.5. Molar Absorptivity (km/mol) of each mode. The anharmonic calculations

specify maximum vibrational state of harmonic wavefunctions that were considered.

q1 q2 q3
Lee 126 43 17
Double Harmonic 107.46 59.69 4.32
Electrical Anharmonicity (q1,92,q3: vmax=3) 106.39 60.54 5.02
Mechinlcal & Electrical Anharmonicity (q1,92,93: 136.39 5854 4.73
vmax=3)
Mech?nlcal E. Electrical Anharmonicity (q1: vmax=9; 137.69 5844 473
g2,93: vmax=5)
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calculations. This large change in molar absorptivity values demonstrates the
importance of including anharmonic effects for the vibrational analysis of the HNO
molecule. Including larger harmonic vibrational states had a small but still important

impact on all three modes, where the most impacted mode was mode 1.

Anderson measures the ratios of the integrated intensities of the observed
vibrational infrared peaks, which are equal to the ratio of the vibrational molar
absorptivities. Table 4.2.6 lists theoretical ratios from the molar absorptivities of mode 2
to mode 1 and of mode 3 to mode 1 from the molar absorptivities listed in Table 4.2.5,
and also lists Anderson’s experimental ratios for comparison (Anderson 2014). Our
work has resulted in ratios much closer to Anderson’s experimental work. Our
anharmonic molar absorptivity ratios still are in need of improvement, which highlights

the importance to consider coupling of normal modes.
4.3 Coupling

This chapter so far has discussed and explored the effects on frequency,
eigenvectors, potential energy functions and dipole moment functions, and molar
absorptivities with inclusion of anharmonic effects. The last topic we will briefly consider
is the coupling of two or more normal modes. We explored the coupling between two
modes. Figures 4.3.1, 4.3.2, and 4.3.3 show contour plots consisting of MP2, aug-cc-
pVTZ potential energies of q1 with g2 coupling, g1 with g3 coupling, and g2 with q3
coupling, respectively. For this analysis only mechanical coupling was considered, and
in the future electrical coupling will also need to be investigated for the HNO molecule.

For each point on the potential energy graphs, the optimal HNO geometry was altered
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Table 4.2.6. Molar absorptivity ratios, which are equal to the relative integrated

intensities from an infrared spectrum.

v2/v1 v3/ivi

Lee 0.341 0.134
Double Harmonic 0.555 0.040
Electrical Anharmonicity (q1,92,93: vmax=3) 0.569 0.047

Mechanical & Electrical Anharmonicity (q1,92,93: vmax=3) 0.429 0.035

Mechanical & Electrical Anharmonicity (q1: vmax=9; q2,q3:
vmax=5) 0.424 0.034

Anderson - Experimental 0.694 0.018
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Figure 4.3.1. Potential energies contour plot of q1 vs. q2. Left graph: Full potential
energy curve from the contributions of q1 and g2. Each line is 0.003 Ha apart. The
higher red character of a line indicates a lower energy, and the higher blue character of
a line indicates a higher energy. Spacing between lines is 0.003 Ha. Right graph:
Coupling contributions alone to the potential energy. The higher red character of a line
indicates a lowering of the energy, and the higher blue character indicates a raising of
the energy. Spacing between lines is 0.0003 Ha. Energies are resultant from ab initio

calculations with aug-cc-pVTZ, MP2.
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)

Figure 4.3.2. Potential energies contour plot of q1 vs. q3. Left graph: Full potential
energy curve from the contributions of q1 and 3. Each line is 0.003 Ha apart. The
higher red character of a line indicates a lower energy, and the higher blue character of
a line indicates a higher energy. Spacing between lines is 0.003 Ha. Right graph:
Coupling contributions alone to the potential energy. The higher red character of a line
indicates a lowering of the energy, and the higher blue character indicates a raising of
the energy. Spacing between lines is 0.0003 Ha. Energies are resultant from ab initio

calculations with aug-cc-pVTZ, MP2.
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Figure 4.3.3. Potential energies contour plot of q2 vs. q3. Left graph: Full potential
energy curve from the contributions of g2 and 3. Each line is 0.003 Ha apart. The
higher red character of a line indicates a lower energy, and the higher blue character of
a line indicates a higher energy. Spacing between lines is 0.003 Ha. Right graph:
Coupling contributions alone to the potential energy. The higher red character of a line
indicates a lowering of the energy, and the higher blue character indicates a raising of
the energy. Spacing between lines is 0.0003 Ha. Energies are resultant from ab initio

calculations with aug-cc-pVTZ, MP2.
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by displacements along both normal modes before computing the potential energy of

the new geometry.

The left graph in each of these figures show the behavior of the true potential
energy, which has contributions from the harmonic quadratic force constant, the
anharmonic effects, and possible coupling effects. These figures considered up to the
fourth power of anharmonic and coupling contributions. The graph on the right subtracts
the harmonic and anharmonic contributions, and any remaining effects to the potential
energy are from the coupling contributions. The higher red character of a line indicates
the coupling contributes a lowering of the potential energy, and the higher blue
character of a line indicates the coupling contributes a raising of the energy. It is clear
from these graphs that coupling is occurring from each combination of two normal
modes. Future work can include a similar analysis to study the coupling between all
three normal modes. Future work can also study the coupling at higher powers, as well
as at different basis sets and theories. Including coupling contributions results in
understanding more of the true behavior of these normal modes and should lead to
more agreement between the theoretical molar absorptivity ratios and Anderson’s

experimental ratios.

65



Chapter 5

Conclusions and Future Work
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5.1 Importance of Work

For Anderson to correctly understand the results of his experimental work with
the para-hydrogen matrix doped with NO radicals and the reactions through which HNO
molecules and NOH molecules are formed, accurate molar absorptivities for each HNO
vibration are needed. Currently the only available HNO molar absorptivities were
calculated using a small basis set and assumed the double harmonic approximation.
Anderson’s use of those previously computed molar absorptivities along with the peak
intensities in his infrared spectra gives vastly large disagreements of the HNO
concentration depending on whether he uses the HN stretching mode or the bending
mode to calculate concentrations. This called our attention to explore how to improve

the molar absorptivities.
5.2 Double Harmonic Results

Chapters 2 and 3 tested the double harmonic approximation with aug-cc-pVTZ
and aug-cc-pVQZ basis sets and the Hartree Fock, MP2, CCSD, and CCSD(T)
theories, and our results were compared to each other, as well as to previous results by
Lee which were obtained from ab initio calculations using the smaller TZ2P basis set
with the CCSD(T) theory (Lee 1993). The Hessian matrix was first calculated with
respect to Cartesian coordinates. The diagonalization of this matrix provided the
harmonic frequencies and eigenvectors to describe each normal mode. It was
discovered that the g1 mode was most attributing to the stretch of the NH bond, while

the g2 and g3 modes both had large effects on the NO bond stretch and the HNO bond
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angle bend. Due to the close proximity of the frequencies of the g2 and q3 modes,

coupling of these normal modes may be seen in spectroscopic data.

Isotopic substitution in computing the mass-weighted Hessian matrix gave us
insight to the frequency shift of each normal mode when the ?H, "N, or '®0 isotopes are
substituted into the molecule. The largest shift in frequencies, as expected due to the
mass percentage increase of the isotope, was in substituting ?H for 'H. The "N to "°N
isotopic substitution was especially important to test due to both of these nitrogen

isotopes being included in Anderson’s experiments.

To reduce computational cost, we investigated completing the Hessian matrix
through calculations with respect to internal coordinates. The Hessian matrix results
proved to have minimal differences between the internal coordinate technique and the
Cartesian coordinate technique. Future Hessian calculations for the HNO molecule are,

therefore, recommended to be completed through the internal coordinate technique.

Lastly, the behavior of the ab initio potential energies and dipole moments

indicated the breakdown of the double harmonic approximation with the HNO molecule.
5.3 Anharmonic Effects

Mechanical and electrical anharmonicities were considered by expansion of the
potential energy functions and dipole moment functions, respectively. The largest shift
in the molar absorptivity when including anharmonicities was for the g1 mode. Molar
absorptivity ratios with including anharmonic effects agreed much more to Anderson’s

experimental results than the ratios from Lee’s work. This proves the importance of
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including larger basis sets and anharmonic effects in future work with the HNO

molecule.

5.4 Conclusions

This work has shown that the TZ2P basis set that was used for previous molar
absorptivity calculations does not consider enough basis functions to compute an
accurate HNO molar absorptivity. In addition, even with the inclusion of larger basis

sets, the double harmonic approximation is shown to break down for HNO.

With the inclusion of both mechanical and electrical anharmonicity effects, it was
shown that there is an especially large anharmonicity in the q1 mode that describes the
NH stretch, while the other modes are less anharmonic. As a result, we found that the
amount of mode q1 harmonic functions required to describe the anharmonic
wavefunction and energy levels of g1 must be substantially higher than the amount of

harmonic wavefunctions for g2 and g3.

The theoretical isotopic substitutions of the atoms within HNO have shown the g2
and q3 shifts in frequencies to be very sensitive to the level of electron-electron
correlation within the theory. Consideration of higher electron correlated theories should

provide a convergence of the frequencies of each mode.

The contour plots have provided graphical evidence of coupling between the
three modes. This coupling work was completed with aug-cc-pVTZ, MP2 energies.
Similar work with aug-cc-pVQZ and CCSD(T) will provide a better understanding of the

coupling between the modes within HNO.
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5.5 Future Work

In addition to the earlier expressed importance of calculating Hessian matrices
through internal coordinates in future work with HNO, it is also extremely important to
consider coupling of normal modes in future work. The inclusion of coupling along with
anharmonic effects will improve the molar absorptivities of the normal modes and the

ratios of these molar absorptivities to be compared to experimental ratios.
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# APPENDIX |

# Maple worksheet 1o fit potential energies to a 6th order polynomial.

# This worksheet then uses the force constants from the potential energy functions (not considering
coupling force constanis) in Hamiltonian matvic to calcwlate the anharmonic eigenvalues, the
anharmonic v=0--=v=1 frequency from these eigenvalues, and eigenvector of each harmonic
ascillator wavefunciion that make wp each overall anharmonic wavefunciion,

# Each time this is run, we will need to provide:

# - the maximum vibrational levels we've considering for each normal mode (nlmax, ndmax, n3max)

# - the data file for xpts (amount of normal modes applied) and ypts for each mode (potential energies at
those applied normal modes)

# - the Hessian frequencies for each mode (vi_freq, v2_freq, v3_freg)

£
ff

# restart Maple to clear the memory
restart,

# Load linear algebra package

with{ linalg);

[ BlockDiagonal, GramSchmidy, JordanBlock, LUdecomp, ORdecomp, Wronskian, addeol, 1)
addrow, adj, adioint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmal,
charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto,
crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals, eipenvalues,
eigenvectors, eigenvects, enfermaltrix, equal, exponential, extend, ffgausselim, fibonacci,
Jorwardsub, frobenius, gausselim, gaussiord, genegns, genmairix, grad, hadamard, hermite,
hessian, hilhert, htranspose, ithermite, indexfunc, innerprod, inthasis, inverse, ismith,
issimilar, iszero, fjacobian, jordan, kernel laplacian, leasisgrs, linsolve, matadd, marix,
minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, permanent,
pivar, potential, randmatriv, randvector, rank, ratform, row, rowdim, Fowspace, rowspan,
rref, scalarmud, singwlarvals, smith, stackmatrix, submatrix, subvecior, sumbasis, swapcol,
swaprow, svivester, toeplitz, trace, franspose, vandermonde, vecpolent, vecidim, vector,
wronskian |

# load the fitting package
with( stets | with{ plois); with{ PolynomialTools ) ;
[ anava, describe, fit, importdata, random, statevalf, statplots, transform |

[ animale, animate3d, animatecurve, arrow, changecoords, complexplot, complexploi3d,
conformal, conformal 3d, contowrplot, contourplotdd, coordplol, coordplot3d, densityplat,
display, dualaxisplot, fieldplot, fieldploi3d, gradplot, gradplei3d, implicitplor, impliciiplot3d,
inegual, interactive, interactiveparams, intersectplot, listcontplot, listconiplot3d,
listdensityplot, listplot, lisiplot3d, loglogplon, logplor, matrixplot, multiple, odeplot, pareio,
platcompare, poiniplot, pointplot3d, pelarplot, polvgorplol, polygonploiid,
polyhedra supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
setopiions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplol, texiploiid,
tubeplot|
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LAnnifilatingPolvnomial, CoefficientList, CogfficientVector, FromCoefficientList,
FromCoefficientVector, GedFreeBasis, GreatestFactorial Factorization, Homogenize,
Hurwitz, IsHomogeneous, IsSelfReciprocal, MinimalPolvnomial, PDETaPalynomial,
Polynomial ToPDE, ShiftEguivalent, Shififess Decomposition, Shorten, Shorter, Sort, Split,
Splits, SquareFreePart, Transiate |

@)

# Parameters fo setl. ni, n2, n3 represents the vibrational energy levels for each mode.
# Set maximum nd (nlmax), maximum n2 (n2max), maximum n3 (n3max),
nlmax = 3; n2max = 0, n3max =0

nimax =3

fdmax = 1)

m3max =1

nl = [seglseq(segind, nf =0 nlmax), n2 =0.n2max), n3 =0 .n3max) |
nf=1[0,1,2 3]

n2 = [seglseq(seqin, n] =0 _ nlmax), n2 =0 ndmax), n3 =0 nImax) ]
nd = [0,0,0,0]

ni = [seg(seg(seg(nd, nl =0 _nlmax), n2 =0 _n2max), n3 =0 n3max) |
nd = [0,0,0,0]

# number of points (nops) here represents the size of each side of the mairix
nisize = nops(nl); n2size = nops(n2); nisize = nops(ni);

nisize == 4

nlsize == 4

Hisize =4

# these are the x values: x=normal mode

xpls =
readdata | "C:/Users/Kirano/Documents/Research/ Theories AndBasisSets/cosd(t)
faug—cc—pvgz/InternalCoordinates/ql/V —vs—q/g—range.txt", 1)

apts = | —=5.0, —4.5, —4.0, —3.5, —3.0, =25, =20, —1.5, —1.0, —0.5, 0, 0.5, 1.0, 1.5, 2.0,
2.5,30,35 40,45 507

nops{xpis);
21

Digits :== 13
Digits = 13

it these are the y values; y=Potential Energy
wpts_vi =

3)

4

S

(6)

(8)

©)

(10)
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readdata{"C:/Users/Kirano/Doecuments/Research/TheoriesAndBasisSets/cesd(t)/aug-ce-
pvgz/InternalCoordinates/ql/V—vs—qTPotE.txt", 1)

vpis vl = | —120.2684311470, —130. 2809089089, —130.2927740085, —130.30374785066,

— 1303136076294, —130.3221863270, —130.3293656003, — 1303350629274,
—130.3392144984, —130.3417597355, —130.3426293322, —130.3417410978,
— 1303390041430, —130.3343301564, —130.3276487796, — 1303189235390,
—130.3081652155, —130.2954403905, —130.2808734052, —130.2646393635,
—130.2469443680

vpis vl =
readdata("C:/Users/Kirano/Doecuments/Research/ Theories AndBasisSets/cesd(t)/aug-ce-
pvaz/InternalCoordinates/q2/V—vs—q/PotE.txt", 1)

ypts v = [—130.2016986454, —130.2331479762, —130.2597168002, —130. 2818188423,

—130.2998528 166, —130.3142007879, —130.3252257596, —130.3332704432,
— 1303386563754, —130.3416833821, —130.34262093322 — 1303417501428,
—130.3392800269, —130.3354319790, —130.3303985020, —130.3243525800,
— 1303174489357, —130.3098256174, —130.3016059945 —130.2929012902,
—130.28381383094

vpis w3 =
readdata|"C:/Users/Kirano/Documents/Research/Theories AndBasisSets/cesd(t)/aug-ce-
pvaz/InternalCoordinates/q3/V—vs—g/PotE.txt", 1)

ypis vl = [—129. 5172460596, —129.7903 199020, —129.978444579], — 1301078961035,
—130.1963467288, —130.2558932730, —130.2949542699, —130.3194728555,
—130.3336931811, —130.3406729555, —130.3426293322, —130.341 1763569,

— 1303374899417, —130.3324235075, —130.3265900330, — 1203204216919,
—130.3142147896, —130.3081647185, —130.3023935636, —130.2969T1 837,
—130.2919352895

(11)

(12)

(13)

# "a" value can be sel to the minimum value of the energy (all modes showld have the same min E), a.k.

a. the optimum energy (OptE), which is the energy at x=0.
miniypts_vl); min{vpts_v2); min ypis_v3)
—130.3426293322
—130.3426293322
—130.3426293322
OptE = min(ypts vi);
Ol = —130.3426293322

nopsiyeis vl nops{vpts v2); nops(ypis v3)
21

21
21

(14)

(15)

(16)

# I atomic units : hbar=[1 Ha - a.utime] = constant, Eigenvalue = lambda = [a.u.n’me_z] = ﬁ"Ec;‘2; {({

in atomic units, freg = [a.u.lfme_l ]} }
hbar == 1
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hi=1 an

i Give the frequencies {in cm-1) of the three modes
vi_jfreg = 1534218025 ; v2_freg == 1600228641 ;v3_freq == 2963.03259

vl freq == 1542.18025

vl freg = 1600.228641

v3 freg = 2963.03259 (18)
[ vl freg

wi = |

L 21947463

wl = 0.007026690253063 (19)

e |f£ﬁ'_fq_‘
L 219474.63

w2 = 0.007291178214994 (20)

Wi e |-" vd freg
T L 21947463 ]
wi = 0.01350056992920 (21)

# Define the vesults of the integral <vl q"|u2 =, where g is defined using ladder operators.
#tgllis <vi qn|v2 =,ogfis < w‘|q] vd =, .. Definegl), gl, g2, g3, gd.

gl == (nl,n2)— ilnl =n2 then | else0 fi
gl == (nl,n2) = ilnl =n2 then | else 0 end il (22)

gl == (nl, n2)—ifnl < 0 then 0 elif n2 < 0 then 0 elif abs(n/ —n2) =1 then sqrt[
else 0 fi

max(nl, n2) ]
2

e 7 &%
gl == (nl,n2) = ifn! < 0then 0 elifn2 < 0 then 0 elif n/ —n2| =1 then | —mm‘“f’”‘?-' (23)
y
else O end if

g2 = (nl,n2) — add{gl(nl,i)-gl{i,n2),i=n2—1.n2+1)

g2 = (nl,n2) v~ addigl(nl, i) gl{in2),i=n2—1.n2+1) (24)
g3 = (nd, n2) = add{g2{nd, i)-giiin2), i=n—1.n2+1)

gd = (nl,n2) v addig2nl, i) gl{in2),i=n2—1.n2+1) (25)
gd = (nl, n2)— addig3inl,i)-gl{in2),i=n2—1.n2+1)

gd == ind,n2) — addig3nd, i) gl{in), i=n2—1.n2+1) (26)
g3 = (nl,n2)— add{gd(nl,i)-gl(in2),i=n2—1.0n2+1)

g¥ = (nl,nd) — addigdinl, i) gliind),i=n2—1.n24+1) (27)
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gti = (ni,n2)— addigi(nl, i)-ql{in2),i=n2 —1.n2+1)
gt == (nl,n2) — add({g5inl, i) gl{in2),i=n2—1.n2+1)

3%

hbar:sqrt| eigval)

it Quadratic force constant is equal to » where each eigenvalue is equal

2
re Y
to [ 319474.63 J cand 21947463 converts to Ha from cm — 1.
hbar-vl freg 1 3 3 4 5 LB
! Ean = 4 : el e £
vi Egn == (pt [ 5 2194?4I53]x falh o X +ex +fx

vl Egn:=-130.3426293322 + 0.003513345141532 " + ¢ ¥’ +dx +ex +f1°

# recalculate the fit
vl Func = rhsi fit[leastsquare[ [x, v], y=vi Egn]l{ [xpis, vpis w11 ),

vi Func i=-130.3426293322 + 0.003513345141532 x" + 0.0001072187911663 x°
| 4.089828590046 107 1! — 8.609888690258 10~ x° — 3.505288048860 10~ x°

printf|"OptE, linear coefficient (should be zero), b, ¢, d, e, fare:") : const vl =
CoefficientListiv] Func, x)

OptE, linear coefficient (should be zero}, b, c, d, & , £ are:

const vl = | —130.3426293322, 0, 0.003513345141532, 0.0001072187911663,
4089828590046 107, —8.609888690258 1077, —3.505288048860 1077 ]

const vl
— 71
—130.3426293322
const_vl,
0
const_vi,
0.003513345141532
const_vig
0.0001072187911663
const vl
4.089828590046 10~°
const vi,
—8 609888690258 10
const_vi,

—3.505288048860 10~

# Calculate the deviations between the actual energies and the predicted anes
it AND isolate the Maximum Absolute Deviation

(29)

(30)

@)

(32)

(33)

(37)

(38)

vl devi= [seqiypts vi[i] —subs{x=xpts[i], vl Func),i=1 . nops{xpts)) |, max|seg(abs{%[i]), i



| nops{xpts) )]
vl devi= | —2.8149 1{]_6, — 6d6d ]{:l_ﬁ, CO000109213, 00000124310, 000001 15430,
1.6302 107°, —2.5135107°% —8.6 107", 41072 107 43857 1075, 0., —3.7274 107°,

1.7470 107°, 00000221118, 0.0000539698, 0.0000819928, 0.0000823827, 0.0000363007,

—0.0000491754, —0.0001031944, 00000604467 |

0.0001031944 (39)
# Calenlate the Mean Absolute Deviation
add (abs( vl dev[i]), i=1 _ nops{xpis))
nops xpis )
0.00002672621428571 (40)
# Caleulate the Root Mean Sguare Deviation
. rt[ (mml: (vl df.-.'v[f]J:, i=1..hops|{xpis) ) ] ]
q nops|xpis
0.000041253259324581 (41)
. hbar-v2 freg ) 1 2,3 4 5 -
v2 Egn e DpLE+[ 2 2194?4.63]X ox” +d-x +ex +fx
v2 Eqn =-130.3426293322 + 0.003645589107497 x" + cx” +dx" +ex +fx" (42)
# recalculate the fit
v2 Func = rhs fit| leastsquare| |x, v ], vy =v2_Egn]|{ [xpts, ypis v2]) ),
w2 Fune ==-1303426293322 + 0.003645589107497 X —0.0003246477232452 (43)
+ 0.00001465079109528 x* — 1,5471 78080177 1077 x* —2.713685859482 107 +°
printf{"OptE, linear coefficient (should be zero), b, ¢, d, e, Fare") : const_v2 =
CoefficientList(v2_Func, x|
OptE, linear coefficient (shouwld ke zero), kb, c, 4, & , £ are:
const v2 = [ —130.3426293322, 0, 0.003643589107497, —0.0003246477232452, (44)
0.00001465079109528, —1.547178080177 1077, —2.713685859482 10—F)
const_v2,
—130.3426293322 (45)
const v,
0 (46)
const_vl,
0.003645580107407 (47)
const_v.Z,
—L0003246477232452 (48)
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const_vig

0.00001465079100528
const_v2,

—1.547178080177 10~/
const_v2,

—2.713685859482 107"

# Caleulate the deviations between the actual energies and the predicted ones
# AND ivolate the Maximum Absolute Deviation

(49)

(50)

(51)

v2 dev = [seg{ypis v2[i] —subs(x =xpis[i], v2 Func), i=1 nops{xpis) ) | maxiseg(abs( ®a[i]), i

=1 .nops{xpis) ) ),
w3 devi= [ —6.2305 107 6.7530 10", 7.6711 10", 2.8420 10", —3.8026 107,

—5, 7888 107", —0.0000135925, —0.0000144080, —0.0000120584, —6.9483 107, 0.,
74626 1070, 0.0000138949, 0.00001 77782, 0.0000179307, 0.0000138789, 6.2481 1077,
—2.8695 107°, —9.6526 107%, —8.5176 107, 7.4927 1079]

0.0000179307

it Calculate the Mean Absolute Deviation

add [abs(v2 dev[i]), i=1 _nops{xpis))
nopsi xpis)

9.039095238095 10"

it Calculate the Root Mean Square Deviation

. IL[ [sum( f:'ué‘ r:i"m'[fljz, i=1 ..naps{xpz‘sjl] ] ]
4 rops|(xpis)
0.00001022543070636

hbar-vi_freq 1 2, .3, .4, 5, o6
> 2194?4.63]'; cx” +dx tex +fx

v3 Egn i=-130.3426293322 4 0.006750284964599 " + ¢ +dx +ex +/x"

v3_Egn = OptE + [

it recalculate the fit
v3 Func = rhsi fit| leastsquare| [x, v], v=v3 _Egn]{ | xpts, ypis v3])};

v3_Fune = -130.3426293322 + 0.006750284964599 X —0.001591041803368 x°
+0.0002594445982952 x* — 0.00005986640415720 x + 6.830689208016 107" x°

printf{"OptE, lincar coctficient (should be zero), b, ¢, d, ¢, Fare:") : const v3 =
CoefficientList(v3 Func, x)
OptE, linear coeffiecient (should ke zero), b, e, 4, = .,

(51}
il
H
i

(52)

(33)

(55)

(56)
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const_v3 = [ —130.3426293322, 0, 0.006750284964599, —0.001591041803368,
0.0002594445982952, —0.00005986640415720, 6.830689208016 107°]

const_v3,
— 1303426293322
consi_v3,
0
const v,
- ]
0.006730284964500
const Vi,
—0.00159104 1803368
const v
0.0002594445982052
const v,
—0.00005986640415720
const_v3,

6.830689208016 107°

# Caleulate the deviations between the actual energies and the predicted ones
it AND isolate the Maximum Absolute Deviation

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

v dev = [seqlypis v3[i] —subs{x=xpis[i], v3 Func),i=1 _.nops{xpis) ) |; max|seglabs{ %[ {]),{

=1 . nops({xpis) )]

vi dev = [0.0017TR10173, —0.0029468805, —0.0013459998, 0.0008938364, 0.0020297889,
00020382182, 0.0014415854, 0.0007327148, 0.0002686826, 0.0000517325, 0.,
—00000501669, —0.0002262616, —0.0005491 840, —0.0009060591, —0.0010774873,
—0.0008269421, —0.0000570280, 0.0009647623, 00013003176, —00009827158]

0.0020468805

# Calenlate the Mean Absolute Deviation

add (abs(v3 dev[i]),i= 1 .nops(xpis))
nops | xpiy |

0.0009762005761905

# Calculate the Root Mean Square Deviation

. rc[ (S!-'m( (v3 dev[f]j:", i=1.nopsixpts) ) ) 1
q naps|{ xpis ) J
0.001236276039002

(65)

(66)

(67)

#Non-coupling anharmonic force constanis. Ex; k300 is the 3vd order force constant for mode [, k030 is
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" for mode 2, ete.
k300 = canst_vl,

300 = 0,000107218791 1663 (68)

kd ) = const_vl,
k400 = 4.089828500046 10° (69)

k300 == const_vi
kSO0 == —8.609888690258 1077 (70)

k60D = const_vl,
K600 == —3.505288048860 1077 (7D

K030 = consi_vi,
k030 = —0.0003246477232452 (72)

K040 = const_v;
K040 == 0.00001465079109528 (73)

kO30 = const_v2,
k050 == —1.547178080177 10~ (74)

K060 = const_v2,
kK060 == —2.713685859482 10" (75)

KOO3 = const_v3,
K003 = —0.001591041 803368 (76)

k004 = const_v3,
k004 = 0.0002594445982952 (7T

kD05 == const v
KORS := —0D.00005986640415720 (78)

k006 = consi_vi,
kD06 == 6.830689208016 107° (79)

# Define the harmonic component of the Hamiltonian matrix

h_harm = matric(4, 4, |seq(seqlg0(nl [i],nd | f]1}-gHn2[i), n2[ ;1) -gin3 il nd|7])-(wl-{nl[i]
+0.5) +w2- (n2[i{] +05) +wd-(n3[{] +05)),7=1.4),i=1.4}]);

h harm == (80)
0.01390921921363 0. 0. 0. ]
0, 0.02003590949669 0. 0.
0. 0. 0.02796259977976 0.
0, 0. 0. 0.03498929006282 |

# Define the anharmonic contributions from mode | alone
h gl == matrix(4, 4, [seq(seq(gq0(n2[i], n2[j])-g0(n3[1], n3[F]1)- (g3 (nl[i], nd[j])-k300
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+gd(nd (i1 nd [ 1) k400 4 g5 (nd [i), nd [ j1)-k3500 + g6(nd (i), nl [ 1) -k600), j=1.4),i=1.4)
1):

h gl = || 2410129933373 10™°, 0.00007879973924530 2 , 4.163018357585 10752, (81)
0.00002572846170530+/2 6 |,
[ 0.000078799739245304/ 2 , 0.00001073616664854, 0.0003119702487224,
5.623880910991 m—*"’\,’?],
| 4163018357585 107" /2, 0.0003119702487224, 0.00002344479102392,
0.0002310180373045 /6 |,
| 0.00002572846170530 2 6 , 5623880910991 1076 , 0.0002310180373045 6 ,
0.00003527807098620 ||

# Define the anharmonic contributions from mode 2 alone

h g2 = matrix(4, 4, [seq{seq(q0{nl[i], nd [ 1) -qO0(n3[i], n3[j1)- (g3 (n2[i], n2[ ;1) kO30
+gd(n2[i], n2[J1) k040 + g5 (n2[i], 02 [ F1) K050 + g6 (n2[i], n2 [ 1) K060}, i=1.4),i=1.4)
1.

B g2 = [[0.00001093721171159, 0., 0., 0.], (82)

[0., 0.00001093721171159, 0., 0. ],
[0., 0., 0.00001093721171159, 0. ],
[0., 0., 0., 0.00001093721171159]]

# Define the anharmonic contributions from mode 3 alone

h_g3 = matrix(4, 4, [seg(seq(g0(nl[i], nd [ 7] -g0n2[i], n2[ 1) - (g3 in3[i], n3]j])-kO03
il;f;d{ni[f],n_?[jlj k004 + g3 (3], n3[ J])-RO05 + g6in3[i], n3[f])-k006), j=1.4),i=1_4)
h_q3 = (83)
[[0.0002073909909864, 0., 0., 0.,
[0., 0.0002073909909864, 0., 0.,
[0., 0., 0.0002073909909864, 0. ],
[0., 0., 0, 0.0002073909909864 | |

# Eigenvalues
elgenvalues| h_harm };

0.0139092192136300, 0.0209359094966900, 0.0279625997797600, 0.0349892900628200 (34)

# Eigenvalues of the anharmonic vibrational states

eigval == eigenvalues(h_harm +h gl +h g2 +h q3);

elgval == 0L0141278182943811, 0.0211529248120400, 0.0281 728715983544, (85)
(.352KE5H5R1T5147

#

# Calcwlate the ANharmonic frequency for the normal mode that included excited states.
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v anharm_freq = (elgval[2] —eigval[1]}-219474.63
v anharm_freg == 1541 83265367378 (86)

B o
# Eigenvectors for each eigenvalue

# For a harmonic wavefunction, each eigenvalue shouwld have total population in one vibrational state,
Reconfirm using command below.
vex harm = eigenvectors(h ham)

vex_harm = [0.03498929006282, 1, {[ 0 0 0 1 ]}] [0.01390921921363, 1, (87)
“ 1 000 ]} [0.0209359:3949559,1,{[ 01 00 }J [9.02?962599??9?6_. 1,

{looro]f

vexharm = [0.03498929006282, 1, {[ 0 0 0 1 [} [0.01390921921363, 1, (88)
{[1 00 0]} [002093590949669. 1. {[ 0 1 0 0 [}] [0.02796259977976, 1,
{{oo 1ol

# For an anharmonic wavefunction, each eigenvalue has population in all vibrational siates, but has an
averwhelming population in the vibrational state describing the eigenvalue,
vexr anham = eigenvectors(h harm +h gl +h g2 + 7 g3}

vex anharm = [ﬂ.[}EElTERTISQEEQ, 1, (89)
([ —0.0002616512585637, —0.044 17870346862, —0.9958318137024,
0.07979456445536 1], [0.02115292481207, 1,
[[0.01582213462534, 0.9988943860429, —0.04426256023948,
0.0007009639895876 11 ], | 0LO1412781829437, 1,
{[0.9998638167623, —0.01583004563139, 0.0001020009946264,
—0.004212804580395 1} ], :Dﬂ:}ﬁ?EESESB]Tﬁl, I,

{[ 0.004235571484453  0.002767191495755 0.07974844308818  0.9968021811827 ]}]

it L B e e
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# APPENDIXN D

# Maple worksheet that uses the 5th order dipole moment function for each vector to caleulate iransition
dipole moments of each normal mode wusing the overall HARMONIC wavefunction for each mode,

that was determined in the "Hamiltonian-Anharmonic-NoCoupling " Maple Sheet.

# Must provide correct:
# —eigenvectors that were found in "Hamiltonian-Anharmonic-No Coupling " Maple Sheet,

# -the ANHARMONIC vibrational frequencies (in cm-1) for each mode, which were calculared from the

energy difference from the ground state to the first excited state in "Hamiltonian-Anharmonic-
NoCaoupling” Maple Sheet,

it -the maximum vibrational state for each mode (nlmax for mode 1, n2max for mode 2, n3max for mode

). Since we are not looking at coupling, only aone nmax showld have an excited maximum
vibrational state, while the others have nmax of zero.

# When looking at multiple vibrational states of a certain mode while the others stay at ground state,
expect the other Molar Adsorptivity from the other modes to be essentially zero. A recalculation
miust be completed using this code by changing which mode has excited states for the Transition
Dipole Maoment of that normal mode, and the Molar Absorptivity af that normal mode.

i restart Maple to clear the memory
resiart,

# Load linear algebra package

with( linalg);

| BlockDiagonal, GramSchmidy, JordanBlock, LUdecomp, QRdecomp, Wransldan, addeol,
addrow, adj, adivint, angle, augment, backsub, band, basis, bezout, Mockmatrix, charmat,
charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, capyinto,
crossprad, curl, definite, delcals, delvows, det, diag, diverge, dotprod, eigenvals, eigenvalues,
eigenvectors, elgenvects, enlermatrix, equal, exponential, extend, [feausselim, fibonacei,
Sorwardsub, fFobenius, gausselim, gaussiovd, genegns, genmaitrix, grad, hadamard, hermite,
hessian, hilbert, hiranspose, ihermite, indexfine, Innerprod, inthasis, inverse, ismith,
issimitlar, iszero, jacobian, jordan, kernel laplacian, leastsgrs, Iinsolve, matadd, mairix,
mtinor, minpoly, mulcol, mulvow, multiply, norm, normalize, nullspace, orthog, permanent,
pival, pofeniial, randmatrix, randvecior, rank, ratform, vow, rowdim, rowspace, rowspan,
rref, sealarmul, singularvals, smith, stackmatriy, submatrix, subvector, sumbasis, rwapcol,
FWaprow, J‘yhm'!ﬁn Ic.rfph'fz_. frace, (ranspose, vandermonde, vecpolent, vectidim, veclor,
wrenskian |

# load the fitting package
with( steds ), withi plots ) with{ Polynomial Tools ) ;
[anova, describe, fit, importdata, random, statevall] stalplots, transform |

[animate, animate3d, animatecurve, arrow, changecoords, complexplor, complexplotd,
conformal, conformal3d, contowrplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplor, fieldplor, fieldplotid, gradplorn, gradplotdd, implicitplor, implicitolor3d,
inegual, interactive, interactiveparams, interseciplot, listcontplot, {istconiplot3d,
lisidensityplot, listplot, lisiplor3d, loglogplot, logplet, matrixpior, multiple, odeplot, parveio,

@

89



plotcompare, poiniplot, poiniplof3d, polarplol, polvgonplol, polygonploi3d,
polvhedra supported, polvhedraplot, vootlocus, semilogplot, setcolors, setoptions,
setoptions 3d, shadebetween, spacecurve, sparvsemairixplor, surfdata, rexiplon, texiploi3d,
fubeplot |

[AnnifiilatingPolvaomial, CoefficientList, CoefficientVector, FromCoefficientList,
FromCoefficientVector, GedFreeBasis, GreatestlFactorialFactorization, Homogenize,
Hurwitz, IsHomogeneous, IsSelfReciprocal, MinimalPolynomial, PDETaPolvaomial,

Polynomial ToPDE, ShiltEquivalent, ShiftlessDecompasition, Shorten, Shorter, Sort, Split,

Splits, SquareFreePart, Translate ]

@)

# Parameters to sel. nl, nl, n3 represenis the vibrational energy levels for each mode.
# Set maximum nl (nilmax), maximum n2 (n2max), maximum n3 {n3max).
nimax = 3; n2max = 0; n3max =0

nimax =32

n2max =0

nimax =10

nl = [seglseg(segind, nl =0 nlmax), n2 =0 .n2max), nd =0 .n3max) |
nf=[0,1,2, 3]

nd = [seqiseq(seqind, nl =0 _ nlmax), n2 =0 n2max), n3 =0 nimax) ]
n2 = [0,0,0,0]

nd = [seg(seg(seg(nd, nl =0 _nlmax), n2 =0_n2max), n3=0_n3max) |
ni=[0,0,0,0]

# number of points (nops) here represents the size of each side of the matrix
nisize == nops(nl); n2size == nops(nl2); n3size == nops(nd);

nlsize =4

nlsize == 4

nisize == 4
Haize =nops| [ %])

size = nlsize
size = 4

3)

@)

)

(6)

(8)

i Define the results of the integral <vi|g’|v2 >, where g is defined using ladder operators.
#glis <vi |qﬂ|u2 =, oqlis < vj|q]|v2 =, ... Defineg, ql, g2, q3, g4,

gt = (nl, n2)— ifnl =n2 then | else( fi
gl == (nl, n2) ~— if nl =n? then | else 0 end if

@
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gl = (nl, n2)—ifn! < 0 then 0 elif n2 < 0 then 0 elifabs(nf —n2) =1 then 5qrt[
else 0 i

2

maxinl, nl

! maxind, n2)

)

gl = (nd,n2) it ni < 0then 0 elifn? < 0 then 0 elif |nf —n2| =1 then | 2 (1)
\
else 0 end if
g2 = (nl,n2)— add(gl{nl, i}-gl{in2),i=n2—1.n2 +1)
g2 = (nl,n2) = gdd{glinl, i) gl{in2),i=n2—1.0n2+1) (11)
g3 = (nl,n2) = add(g2{nd, i}-glin2),i=n2 —1.n2 +1})
gd = (nl,n2) — add{g2inl, i) gl{in2),i=n2 —1.n2 +1) (12)
gd = (nl,n2)— add(g3(nl, i)-gql{ind),i=n2 —1.n2 4+1)
gd == (nl, n2) = add{g3ind, i) gl{in2),i=n2—1.n2 +1) (13)
g3 = (nl,n2) = add(gd(ni i} gl{in2),i=nZ2—1.n2 +1)
g3 = (nl, n2) v add(gd(nl i) gl{in2),i=n2 —1.n2+4+1) (14)
g = (nl, n2) — add(g5ind, i}-glli,n2),i=n2 —1.n2 +1}
gth == (nl,n2) — add{g5inl, i) gl{in2),i=n2—1.0n2 +1) (15)
#
i List the dipole momenis x and v veciors for each mode,
i these are the x values; x=normal mode
xpis =
readdata| "C/Users/Kirano/Documents/Research/ Theones And BasisSets/cesdit)
fang—ce—pvge/IntemalCoordinates/ql/DM—vs—g/g —range txt”, 1}
xpis = [ —5.0, —4.5, —4.0, —3.5, —3.0, =25, =20, —1.5, —1.0, —0.5, 0., 0.5, 1.0, 1.5, 2.0, (16)
2.5,3.0,35, 40,45, 50]
nopsxpis);
il (17
#Igits =13
# these are the y values; y=Dipole Vector
ypis DMx vl =
readdaia("C:/Users/Kirano/Documents/Research/Theories AndBasisSets/cesd(t)/aug-ce-
pvaz/InternalCoordinates/q /DM —vs —g/DMx.txt", 1)
ypis OMx vl = | —0.2243000000, —0.2464500000, —0.2662500000, —0.2841250000, (18)

—0.3002250000, —0.3 146000000, —0,3272500000, —0.3380750000, —0,3470000000,
—0.3330750000, —0.3577250000, —0.3383000000, —0.3552250000, —0.3467300000,
—0.3316000000, —0.3079250000, —0.2733250000, —0.2251250000, —0. 1604750000,
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—0.0770250000, 0.0261000000]

wpts DMy vl =
readdata"C:/Users/Kirano/Documents/Rescarch/TheoriesAndBasisSets/cesd () aug-ce-
pvgz/InternalCoordinates/q 1/DM—vs —g/DMy.txt", 1)

wpts DMy vl = [0.5387730000, 05433250000, 03487000000, 05544000000, 056000000040,
05649500000, 03687730000, 0.53709000000, 0.5707500000, 0.3675500000, 05606230000,
0.5491 230000, (3321250000, 0.5086000000, 04775000000, 04376000000, 03877500000,

03268730000, 0.2543750000, 0.1707000000, 0.0778250000 ]

wpls DMy vl =
readdata | "CyUsers/Kirano/Documents/Research/ Theories AndBasisSets/cesd(1)/aug-ce-
pvgz/InternalCoordinates/q2/DM—vs—g/DMx. ", 1)

wpis OMx v = [0.0849730000, 0.0254000000, —0.0298500000, —0.081 1000004,
—0 1287750000, —0.1732000000, —0.2147500000, —0.2537250000, —0.2904000000,
—0.3250000000, —0.3577250000, —0. 3887250000, —0.4181 300000, —0.4461730000,
—0.4729000000, —0.4984250000, —0.5229000000, —0,5464500000, —0.5692000000,
—{0.3913000000, —0.6128750000 |

wpts DMy vl =
readdata | "C:/UsersKirano/Documents/ Research/ Theones AndBasisSets/cosd(t) aug-ce-
pvaz/InternalCoordinates/q2/ DM —vs —g/DMy.txt", 1)

ypis DMy w2 = [0,2415250000, 0.30497350000, 0.3572250000, 04003500000, 0.4366500000,
04669500000, (4924500000, 0.5140500000, 0.5323000000, 03477000000, 0.56062 30000,
0.5713250000, (L5200250000, 0.5869000000, 0,592 1000000, 05956500000, 05976750000,

05982230000, 0.5973750000, 0.5951500000, 0.551 5500000 ]

wpis DMx vi =
readdata | "C/Users/Kirano/Documents/Rescarch/Theories AndBasisSets/cesd(t)/aug-ce-
pvaz/InternalCoordinates/q3/DM—vs—g/DMx txt", 1)

ypis DMy w3 = [ —0.3196250000, —0.3396750000, —0.3569000000, —0.371 1000000,
—0.3820000000, —0.3892500000, —0.3924250000, —0.3911500000, —0.3851000000,
—0.3740000000, —0,3577250000, —0.3362750000, —0.3099750000, —0.2793750000,
—0.2452500000, —0.2087750000, —0.1710750000, —0.1335250000, —0.0972500000,
—0.0633250000, —0.0325750000 |

wpis DMy w3 =
readdata " C:/Users/Kirano/Documents/Research/Theories AndBasisSets/cesd(t)/aug-cc-
pvaz/InternalCoordinates/q 3/ DM —vs—gDMy.txt", 1]

ypis DMy v3d = [0.5566250000, 0.5741500000, 05888500000, 06007000000, 0.6094250000,
0.6145000000, 6152750000, 06109730000, 0.6009000000, 05842750000, 0.56062 30000,
05296500000, 0.4914500000, 04466250000, 0.3962000000, 0.3416750000, 0, 2848500000,
02277250000, 3 17215000040, 0.1 198500000, 0.0721250000 |

# Identifv x and y dipole moment when g=1

(19)

(20)

(21)

(22)

(23)

#t The x-dipole moment ai g=0will be the same for all modes, and the yv-dipole moment at g=0will be

the same for all modes.



r Il' o L
xDM no_q = ypts_DMx_vi t"ﬂp**xgr” 1:']

xDM ne g = —0.3577250000 (24)

- ; -t
VDM no g = ypts DMy vi i Foaps | XS ) 1} ]

2
DM ne g = 0.5606250000 (25)

#

# Give the ANHARMONIC frequencies (in cm-1) of the three modes
vl amharm freq = 15341 83265367378 ;v2 anharm freg :== 158951 100047163 ; v3 anharm freq =
JEST.ROTE20TROLT
wl_anharm_freq = 1541 83265367378

v2 anharm freg = 1380 51100047163
v anharm freg = 2R57.89762078017 (26)

#

vi xDM Egn == xDM no g+ b-x+ ex +dx +ex +_,|"-x5
vl xDM Eqn = ¥ +ex” +dx +cx" +bx—0.3577250000 27

# recalculate the fit
vi xPDM Func = rhs{ fit| leastsquare| [x, v], v=vl xDM Egn| || [xpis, ypts DMx vI1]));

vl xDM Fune == 6.353149572 1070 " 4+ 0.0001527055762 5 + 0.001065994493 + (28)
+ 0.006548132126 " — 0.005497866374 x — 0.3577250000

printf ("xDM no q.b,c. d, e, Tare:") : const vi xDM = CoefficientListiv] xDM Func, x)
®xIM no g, b, ¢, d, & , £ are:

const_vl xDM = [ —0.3577250000, —0.005497866374, 0.006548132126, 0.001065994493 29)
0.0001527055762, 6.353149572 107°]

k vi x ql= const_vi_ xDM,

kvl x gi= —0,3577250000 (30)

k_vi_x_gl = const_vi_xDM,
kvl x gl = —0.005497866374 (31)

k vl x g2 = const_vl_xDM,
& vl x g2:= 0006548132126 (32)

kvi x q3 = const vi xDM,
kvl x gd:= 0001065994493 (33)

kvl x g4 = consi_vl_xDM,
kvl x gd = 00001527055762 (34)

kvl x g5= const_vi xDM,
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k vl x_g5:= 6353149572 107°

B e 0 1 1 e 2 0 2 2

vi vDM Egn = yDM no g+b-x tox +dx +ex +f').‘5
vi yDM Egni=fx +ex’ +dx +cx +bx + 0.5606250000

# recalculate the fit
vl yDM Func = rhs it leastsquare[ [x, v], y = vl DM Egn]]l [xpts, vors DMy v} )

vl wDM Fune = 5728256497 107 x* — 0.00002737681533 x* —0.001278042438 +°
— 0.009447662847 ¥ — 001777263229 ¥ + 0.5606250000

pringf("vDM no q,b,c.d, e, fare:") - consi v! yvDM = CoefficientList{vi vDM Func, x)

vOM no q, b, ¢, d, & , £ are:

congt vi pDM = [0.5606250000, —0.01777263229, —0.009447662847, —0.0012T8042438,
—0.00002737681533, 5.728256497 1077]

k vi v qll= const vi yDM,
k vl y g = 0.5606250000
kvi v gl = const vi vDM,
kvl y gl:==—001777263229
k_vl_y_q2 = const_vI_yDM,
kvl oy g2 = —0.009447662847
k vl v q3 = const vIi yDM,
k vl y g3 = —0.001278042438
k vi v gqd = const vI yDM;
kvl oy gd = —0.0000273768]1532
k_vi_ v g5 = consi_vI_yDM,
kvl y g5:= 5728256497 107°

B o e e e e e 8

vd xDM Egn = xDM no g+bx tox +dx +ex’ +f'15

v2 xDM Egn:=fx +ex’ +dx +cx +bx—0.3577250000

# recalculare the fii
v xDM Func = rhs| fit[ leastsquare [x, v], y = v2 xDM Eqgn]ll [xpts, vors DMx w21} )5

v2 xDM Fune ==-1.102557915 10™° %" + 0.00001292633055 x" — 0.0002182779573 x°
+ 0.003420057780 ¥ — 0.06364249220 x — 03577250000

print("xDM no q,b, ¢, d, e, fare") @ const w2 xDM = CoefficientList(v2 xDM Func, x)

XM no g, b, =, 4, & , £ aze:

const v2 xDM = | —0.3577250000, —0.06364249220, 0.003429057780, —0.0002182779573,

37)

(38)

(39)
(40)
(41)
(42)
(43)

(44)

(45)

(46)

(47
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0.00001292633055, —1.102557915 1077

k v2 x g0 = const_v2 xDM,
k v2 x g0 = —0.3577250000
k v2 x gl = const v2 xDM,
kvl x gl = —0.06364249220
k_v2 x g2 = const_v2_xDM,
K v x g2:= 0003429057780
k v2 x g3 = const_v2 xDM,
k v2 x g3:= —0.0002182779573
k v2 x g4 = const_v2 xDM,
kv x g4 = 0.0000]1292633055
k v2 x g3 = const v2 xDM,
k v2 x g5:= —1.102557915 10~*

B e 1 o i 0 2 2 1

vZ vwDM Egn = yDM no g+b-x tox +dx +ex +f-x5
v2 yDM Egn =¥ +ex' +dx +cx +bx + 0.5606250000

# recalculate the fit
v vDM Func = vhs( fii[ leasisquare] [x, v], vy =v2 DM Egn]]( [xpis. ypis DMy v2]) )

v2 yDM Func = 6,026897780 107 »" — 0.00005854774208 x" + 0.0003058 144811 x’
— 0004288476042 1'2 FOOZ3FES9GTI] x - 05606230000

print("yDM _no q, b, c.d, e, fare:!") @ const vd vDM = CoefficientList{v2 yDM Func, x)
¥yO¥ no q, b, =, 4, & , £ aze:

const v2 vOM = [0.5606250000, 0.02358596791, —0.004288476042, 0.0003058 144811,
—0.00005854774208, 6026897780 107"

k v2 y glh= const v2 yDM,
kw2 y gl = 0.3606230000
k v2 y gl = const_v2_yDM,
kvl v gl == 002358596791
k_v2 y q2 = const_v2_yDM,
kv y g2 = —0.004288476042
k v2 y g3= const v yDM,
k v2 y g3 = 0.0003058144811
k v2 y g4 = const v yDM,
kv y g4 = —0.00005854774208
k_v2 y g5 = const_v2 yDM,
kw2 y g5 = 6.026897780 10"

(48)

(49)

(30)

(51)

(52)

(33)

(54)

(33)

(56)

7
(58)
(59)
(60)
(61)

(62)
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#

v xDM Egn = xDM no g+b-x+ cx +dx +ex + L X
v3 xDM Fgn !=_,.'rx5 tex' +dx +ex +bx—03577250000

it recalculate the fit
v3 xDM Fune = vhs( fit] leastsquare| [x, v], y=v3 xDM Egn]]|([xpis, ypts DMz v3]));

v3_xDM Fune =-2.988556797 1070 " —0.0001093197246 +* — 0.0002993556753 x°
+ 0009966323469 1 4 0.03803436445 ¥ — 0.3577250000

printf ("xDM no g, b, e, d, ¢, Care:") @ const v3 xDM = CoefficientList(v3 xDM Func, x)
®*M no g, b, o, d, & , £ are:

const_vi_xDM = [ —0.3577250000, 0.03803436445, 0.009966323469, —0.0002993556753,
—0.0001093197246, —2. 988556797 lﬂ_h]

kv x g0= const_v3_xDM,

Evd x gh= —0.3577250000
k v3 x gl= const v3_xDM,

k_vi_x_gl = 0.03803430445
k v3 x g2 = const_ vi xDM,

& v3 x g2 = 0009966323469

k_v3_x_q3 = const_vi_xDM,

ke ovi x gd:= —0.0002993556753
k_v3_x_g4 = const_v3_xDM,

k vd x gd == —0.0001093197246
k v x g5 = const vi xDM;

k vi x g5:= —2988556797 10

#

vi vDM Egn = yDM no g+ bx+ ex +dx +ex +f X
v3 vDM Fgn = _ij +ex' +dx +ex” + by +0.5606250000

it recalculate the fit
v3 vDM Func = rhs( fit] leastsquare| [x, v], y=v3 vDM Egn]| | [xpis, ypts DMy v3]) ),

v3 DM Fune = 9.199317679 107" x" + 0.0001718271804 x* + 0.00003630441029 +°
— 0.01409266917 x* —0.05506493094 x + 05606250000

printf ("yDM no g, b, ¢, d, ¢, Fare:"} - const v3 vDM = CoefficientList{vi yDM Func, x)

vIM no g, b, c, d, & , £ are:

consi_vi_yDM = [0.5606250000, —0.05506493094, —0.01409266917, 0.00003630441029,
0.0001718271804, 9199317679 10|

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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k v3 y g0 = const_v3_yDM,

k v3_y_gq0:= 05606250000 (75)

k_vi y gl = const_vi_yDM,
k vi v gl = —0.05506493094 (76)

k v3 v g2 = const vi_yDM,
bovi vy g2= —0.01409266917 (77)

k v3 v g3 = const_vi_yDM,

k v3 vy g3 = 000003630441029 (78)
k_v3 y_g4 = consi_v3_yDM,

k vi y gd = 00001718271804 (79)
k v3 y g3 = const_v3 yDM

k viy g5:=9199317679 10" (80)

#

# List all of the eigenvectors from lowest Energy level (lowest eigenvalue) <-lisi "Eigvect V0", and list
all of the eigenvectors from the next lowest Energy level (recond lowest eigenvalue) <-list
"Eigvect vi"

# The mode that each eigenvector describes will be in title -- > ex, eigenvectors that describe lowest
energy level for novmal mode 1is titled "Eigvect vl model”

it For mode 1

Eigvect state) vi =
[ 0.9998658167623 —0.01583004563139 0.0001020009946264 -0.004212804580395 ] :
Eigvect srare) vi = Matrix{ Figvect starel vi)
Figvect statel] vl = (81)
[ 09998658 167623, —0.01583004563139, (L0001020009946264
—0.0042 12804580395 )
Eigvect stated vl == (0.01582213462534, 0.9988943860429, -0.04426256023948,
0.0007009639895870) : Ligvect stated vi = Matrix| Eigvect stated vli)
0.01582213462534
£ ¢ stated vl 9988943800429 82)
Figveot statel vl =
& —0.04426256023948

0.0007009639895876

# For mode 2

Eigvect siarel) v2 =
[ 0.9982101763001  0.04T7007282606098  0.0025700871858967 0.01272563367080 ] :
Figvect_statel) v2 = Matrix( Eigvect_statell_v2)
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Figvect_statel) v =
[ 0.9988101763001  0.04700728260698 0.002570087188967 0.01272563367080 |

Eigvect_stated v = {-0.04705385068098, 0.9901803313392, 0.1313304274160,
0.0090091841559322) : Eigvect_statel v2 := Muatrix| Eigvect_statel v2)

—0.04705385068098 |
0.9901803313392
0. 0313304274160
0.009009]1 84159322

Eigveetl stated v =

# For mode 3

Eigvect statel]l vii=
[ 0.9913061684432 (L12638347357061 0.01473639167681  0.033498301747350 ] :
Eigvect state) v3 = Matrix{ Eigvect statell v3)

Figvect statel) v3 =

[ﬂ.9913ﬂﬁ1684432 .12638347570601 0.01473639167681 9.033493301?4?50]

Figveel_staled _v3 = (-0.1255163020413, 0.9323459414381, 0.3354943228463,
0.04919616595636) : Eigvect statel v3 = Matrix| Eigvect statel v3)

—0. 1255163020413
0.932345941438]
(.3354943228465

00491961 6595636

Eigvect statel v3 =

+#
it

# 0> = ql%2%3"
mail) = matrix(size, size, [seq(seqlq0ind[r], nl[c]) -q0(n2[r]), n2[c])-ql{n3[r]. n3[c]), c=1
Lwize), r=1 size) ])

matll ==

[ R e R e

1> =ql'g2g3"
matl = matrix|size, size, [segisegigl (nllr],nllc]) gln2|r],n2[c]) glind|r], nilc]l).c=1
size), r=1 _.size) |}

(83)

(84)



0 T 0 0
2
5 0 1 0
matl = (88)

#2->=q1%2'g3"
mat2 i= matrix|size, size, [seq(seq(q0(ni[r], ni[c]) gl (n2[r], n2[c]) -g0ini[r], n3[c]),c=1
_size), r=1 _size) ]}

‘0000
5 0 @& O O
12 =
e 0000 ®)
0o 0 40 0
43> = gl%2%3"
mat3 = matrix|size, size, [seq(seq(g0(nd[r], nilc])-g0{n2[rl n2[c])-gl{n3[rl. n3[cl).c=1
Lafze ), re 1 asize) )
o0 00
3 o0 0 0 (90)
T H—
o0 0 0
o0 0 o0
#11-->=ql°g2"%3"
matll = matriv(size, size, [seglseq(g2 (nl[r], nf[c]) gMn2][r], n2[c])-glin3[r],ni[c]l,c=1
size),r=1_5ize) ]}
1 W2
2 0 2 0
3 V6
0 2 0 2
matl ] = (91)
2 5
P 0 5 i
fr 7
0 5 0 5

#22 - = gl%2%3"
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mat22 = matrix(size, size, [seqlseq(qO(nl[r], nllc]}-q2(n2[r], n2[c])-q0(n3[r], n3[c]).c =1
size), r=1 _.size)])

|
2 o 0 0
0 % a0
malld = , (92)
o 0 E 0
|
o 0o 0 5

33> =g1%2%3"

mati3 = matrix|size, size, |seg(seqiglini[rl, nile]l gO{n2[r],n2[c]) g2 (n3|r],nilc])l,c=1
Ldize), r=1 .5ize) ]}

1
5 ¢ 0 0
0 1 0 0
2
matii = ] (93)
0o o 5 0
1
no o o 5

#1011 —> = gl°g2"g3"

matl 1l == matrix(size, size, [seq{seqiq3(nl[r], nl[c])-q0n2[r], n2[c]]-q0(n3[r],n3lc]),e=1
Laize), k=1 Lsize) 1)

. V2, J2VE
4 4
3‘:’? 0 3 0
matl 1] — (®4)
0 3 0 96
4
FE ., 9E o,
4 3

#HI = qf”qfq.?u
mat222 = matvix(size, size, [seqiseq(q0inl[r], ni[c])-q3(n2[r], n2[c])-g0(n3[r], n3[c]), c=1
Laize ), =1 Lsize) ])
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mat222 =

== T e R B = |
o o o o
=2 2 2 9
o o o o

#333 > = gl"g2%3%
mai3i3 = mairic|size, size, [seg(segigtnd [r], nf[c]) gl{a2|r], n2[c])-g3in3|r], n3lc]).c=1

Lsize),r=1 size) |)

matiii =

[ R e T e R e
L= = R R |

#1111 > = gl'g2% 3"
matl 1] = matvix(size, size, [seglseg(gd(nl (v, nlc]-gin2|r], n2|c])-glind[r],n3lc]),c=1
yize), r=1_5ize) |}

3 342
3 0 5 0
|5 546
0 4 ] 2
matliil = (97)
342 39
i =
5 0 Y 0
s 7
0 552['(: 0 75

#2222 > = q1%2%3"
mat2222 = maiviz|size, size, [seglseg(gMnl[r], ndc])-gdin2|r], nd|c])-glind[r],n3lc]),ec=1
Layize), r=1_.xize) |}

3
n o 0 0
3
{ a 0 0
mat2222 = . (98)
o o n 0
3
o o o0 2

#3333 > = g1 2" 3
mat3333 = matrixisize, size, [seq(seq(q0(nl[vr], nl[c]}-qO0n2[r], n2[e])-g4(n3[r], nilc]), e =1
Lsize), r=1 Lsize) ])
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3
— 0 0 0
4
0 = 0 0
mariiii = (99)
3
0o o a 0
i
o o0 0 =
4

§ 1111 > = glPg2%3"
matd 1111 = matrixisize, size, [seq(seg(gi(nl|r],nle]l-g®ind|r] n2|e])-glin3[r], n3c]le=1
Laize ), r=1 Lxize) |)

1542 50246

1] ]

8 4
|l_ -

152 0 45 0
g 4

mail 1111 = (100)
45 956

0 — 0

4 8

542 6 0 956 5
4 5

#22222 -> = qI"q2%q3"
mat22222 = mairix(size, size, [seq(seq(q0(nl[r], nl{c]) g3 (n2[r],n2|c])-g0ind[r],n3lc]),c=1
Lsize), r=15ize) )

mat22222 = (101)

[ N = R |
[T e T o B = |

33333 > = qi'q2%3°

mat33333 = matrix(size, size, [seq(seq(g0{nl[r], nl[c])-gO0(n2[r], n2[c])-g3(n3[r], n3[c]),c=1
Lyize), r=1 _xizel |}

0000
000

mat3iizzg = (102)
000
0000

it

ittt Caleulating transition dipole moment of gl
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#-—— Calculating the x—vector transition dipole momeni:

mal_sumt vl x o= evalm(k vl x gOmald +&k vl x ql-mat] +k vl x g2-matl] +k vl x g3
smatl 1+ kvl v gdomarl 11D+ & vl x g5 -matl 11T

mat sum vl x = || —0.3543364047, -0.001937525162 2, 0.003503124427 /2, (103)
0.0002744400602 2 6 |,
| -0.001937525162 /2, —0.2473301559, —0.002228409962, 0003655830004 & |,
[U.UUESUBIZMZT \E, — 0002228409962, —0.339H65T903, —0.000275001 9268 ‘-.II'F]
[U.DDDZ?JJM'[]'D&DE JT \,n'? (LO03G55830004 -.,I'T —0.0002750019268 ﬁ
—0.3319433080 ||

# Up to the n-th derivative of dipole function at g=0 fhere labeled "k v1 x gq0" for the zeroth derivative,
"k vl x gl" for the first derivative, etc ) multiplied with the integral of {@_( harm, v =i) | q
S| o (harm, v =5)).

dipintegral vi x = evall(evalm{mal_sum vi x))

dipinfegral vl _x = (104)
—.3543364047  —0.002740074361  0.004954 166074 0.0009506882558
—0.002740074361  —0.3473301559 —0.002228409962 0.00895491 8097

0.004954166074  —0.00222H409962 —0.3398657903 —0.0006T36143990
0.0009306882558  0.008034918097 —0.0006736143990 —0.3319433080

it Make a matrix of the product of the eigenvectors of the lowest energy and the next lowest energy
coeffprod vi = Eigvect state] v« Eigvect state(l vl
coeffprod vl == [[0.0158200115600886, —0.000250465113105128, (105)
1.61387346889748 1077, —0.0000666555612212587 .
[ 09987600351 160060, —0.0158125437119984, 0.000101 888220803103,
—0.004208 14684485238 |,
[ —0.0442566209458382, 0.000700678348353117, —4.51482516913791 107,
0.000186469516516891 |,
[ 0.000700869931969966, —0.0000110962919411329, 7.14990241352247 107F,

—2.95302430602659 107

# Integral of anharmonic wave fimctions with dipole vector aperator multiplied by its product of
eigenvectors, summed.
i This gives the contibrution from the x-dipole vector towardys the transition dipole momeni.
x TDM vi = add{add | dipintegral vl x[i,j]-coeffprod vIi,jl,.j=1.4),i=1.4)
x TDM vl = —0.00310525020779377 (106)

#--— Calculating the v—vector transition dipole moment:

mal_sum_ vl y= evalm(k vl v gOmatl +& vl y gl-matl +k vl y g2matl] +k vl v g3

103



smatd 10+ vl oy gdomarl 1+ & vl v g marl i)
mai sum vl yi— || 05558806360, —0.009834107493 2, —0.004764896647 2 (107)
-0.0003122502889 2 6 |,

[ -0.009834107493 /2, 0.5463508426, —0.02154231671, -0.004792273462 /6 |_.
| -0.004764896647 /2, —0.02154231671, 0.5367389190, -0.01169388858 /6 |,
[ -0.0003123502889 2 6, —0.004792273462 6 , —0.01169388858 /6 ,
0.5270448647 ||

# Up to the n-th derivaiive of dipole function at g=0 (heve labeled "k_vi_y_g0" jor the zeroth derivalive,
"k vl w ql" for the first derivative, etc.) multiplied with the integral of (@_( harm, v=1i) | g
| _(harm, v =)},

dipintegral vl y:= evalf (evalm{mat_sum vi y))

dipintegral vi y = (108)

03558806360 —0.01390752819 —0.006738381460 —0.001082013140
—0.01390752819 03463508426 —0.02134231671 —0.01173862469
—0006TIRSE1460 —0.02154231671 03367359190 —0.02864406013

—0.001082012140  —0.01173862469 —0.028644906013 0.5270448647

# Make a matrix of the product of the eigenvectors of the lowest energy and the next lowest energy
coeffprod vl = Eigvect statel vi -+ Eigvect statel) vl
coeffprod vl = [ 0.01582001 15600886, —0.000250465113105128, (109)
1.61387346889748 ]ﬂ_ﬁ, —0.0000666555612212587 |,
[0.998760351160060, —0.0158125437119984, 0.000101888220903103,
—0.004208 14684485238 |,
[ —0.0442566209458382, 0.000700678348353117, —4.51482516913791 107",
0.000156469516516891 |,

[ 0.000700869931969966, —0.0000110962919411329, 7.14990241352247 107,
—2.95302430602659 107°]]

# Integral of anharmonic wave functions with dipole vector operator multiplied by ity product of
eigenvectors, summed.

# This gives the contibrution from the v-dipole vector towards the transition dipole moment.
y_TDM vl = add{addi dipintegral_vl_y|i, jl-coeffprod_vI[ijlj=1.4),i=1.4)
v TDM vi= —00134115171217542 (110)

##ECalculate the TOTAL transition dipole moment SOQUARED

Tot TDM vi sqr:= (x TDM vi)* + (v TDM vi}?
Tot TOM vI sqr := 0.000189511370360109 (111)

# Plug the squared total transition dipole moment into molar absorprivity equation to gei the Molar
Absorpiivity of gf
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# Use the harmonic frequency of g

41 6238- |{ Tot TOM vi sgr-(2.341765 ]2] vl anharm_freg
66054
Moldbs vI == 4.73190139569590 (112)

Moldbs vi =

#
#tt Calculating transition dipole moment of g2
Homee Calculating the x —vector transition dipole moment:

mat_sum_v2 x = evalm(k v2 x_glmat0 +k v2 x gl-ma2 +k v2 x g2-mat22 +k v2 x g3
smat222 +k v2 x gd-matl222 +k v x giomar22222)

| —0.3560007764 0. 0. i,
0. —(0.3560007764 0. 0.
mat sum v2 oy = _ (113)
0. 0. —0.3560007764 i,
0. 0. 0. —0.3560007764

# Up to the n-th derivative of dipole function ai g=0 (here labeled "k _v2_x_g0" for the zeroth derivative,
"k v2 x gl" for the first derivative, etc ) multiplied with the integral of (p_( harm, v =) | g
| _(harm, v =j)).

dipintegral v2 x:= evalf(evalm{mat_sum_v2 x))

dipintegral v2 x = (114)
—L3560007 764 0. 0. 0. -
0. — 03560007764 0. .
0. 0. —0.3560007764 .
0. (. 0. —0. 3560007764

it Make a matrix of the product of the elgenvectors of the lowest energy and the next lowes! energy
coeffprod v2 = Eigvect statel v2s Eigvect statel) v2
coeffprod v2 = || —0.0469978648942682, —0.002Z1 187365670747, (115)
—0.000120932498826733, —0.000598790066366675 |,
[0.989002191313798, 0.0465456866671349, (.00254454978434198,
0LOI26006721646540 |,
[0.131174167360942, 0.0061 7348651643939, 0.000337530649023422,
0.00167126290912561 |,
[0.00899846481849247, 0.000423497265835577, 0.0000231543887909179,
0.000114647577284306 1]

# Integral of anharmonic wave functions with dipole vector operator multiplied by iis product of
elgenveciors, summed.

# This gives the contibrution from the x-dipole vector towards the transition dipole momeni.

x TOM v2 = add{add{dipintegral v2 x[i, j]-coefforod v2[Ljl,7i=1.4),i=1.4)
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x_TDM_y2 = 2.93924078327047 107" (116)

f-=-= Calculating the y —vector transition dipole moment:

mait sum v2 y=evalm(k v2 v glh-mat® +k v2 v gl-mat2 +k v2 vy g2-mai22 +k v2 y g3
smat222 -k v2 y gdmat2222 kv y ghmat?22227)

05584368512 0. 0. 0.
_ 0. 0.5584368512 0. 0.
mat_sum_v2_y = 0. 0, 05584368512 0. {1
0. 0. 0. 0.5584368512

# Up to the n-th derivative of dipole function at g=0 (here labeled "k v2 vy g0 for the zeroth derivative,
"k v2 y_ql" for the first derivative, etc.) multiplied with the integral of (p_( harm,v=1i) | ¢

n| g_(harm, v =j)).
dipintegral v2 y = evalf | evalm{mat_sum v2 y))

0.5584308512 0. 0. .
0. 0.5584368512 . .
dipintegral vl y = _ (118)
0. 0. 0.5584368512 .
0. 0. . 0.5584368512

# Make a matrix of the product of the eigenvectors of the lowest energy and the next lowest energy
coeffprod_v2 = Eigvect statel 2+ Eigvect statell_v2
cogffprod v2 = || —0.0469978648942682, —0.00221 187365670747, (119)
—0.000120932498826753, —0.000558790066566675 |,
[0.989002191313798, 0.0465456866671349, 0.00254454978434198,
0.0126006721646540 |,
[0 I31174167360942, 0.0061 7348651643539, 0.0003375306490234212,
0.00167126290912561 |,
[0.00899846481849247, 0.000423497265835577, 0.000023 1543887909179,
0.00011464737T284306 | |

# Integral of anharmonic wave fimetions with dipole vector operator multiplied by its product of
elgenvectors, summed.
# This gives the contibrution from the y-dipole vector towards the transition dipole moment.
y TDM v2 = add{adddipintegral v2 y[i, jl-coefforod v2[L 7L 7=1.4),i=1.4}
v TDM v2 = —4.61055672806854 10~ (120)

#i Calowlate the TOTAL transition dipole moment SQUARED

Tot_TDM v2 sqr == (x_TDM v2)* + (v_TDM v2)*
Tot TDM v2 sqr = 2.98963697247785 107 (121)

# Plug the squared total transition dipole momeni into molar absorptivity equation fo gel the Molar
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Absorprivity of g2
# Use the harmonic frequency of g2

Moldbs v2 = 41,6238 ( Tor TDM v2 ﬂ{:éé;;]?ﬁjj ]-vE anharm_freg

Moldbs v2 = 7.69564753580083 102! (122)

ittt Calewlating transition dipole moment of g3
femee Calewlating the x —vector fransition dipole moment:

mal_sum_v3 x= evalm{k v3 x glhmatl +k v3 x gl-mat3 +& v3 x g2mai33 +k v3 x g3
-matdd3 +k vi x gdomat33E33 S+ E vi x gS-mat33izg)

—(0.352823828] 0. 0. 0.
0. —(0.3528238281 0. 0.
piat sum v3 ox o= _ (123)
0. 0. —0.3528238281 0.
0. . 0. —0.35328238281

# Up to the n-th derivative of dipole function at g=0 (here labeled "k_v3_x_g0" for the zeroth derivaiive,
"k v3 x gl" for the first derivative, etc ) multiplied with the integral of {p_{ harm, v = {'] |q
“n|g_(harm, v =7)}.

dipintegral v3 x = evall levalm{mat_sum v3 x))

dipintegral v3 x = (124)
—i.35282382K]1 0. . . ]
0. —(.352823K281 (. 0.
0. 0. —0.35282382581 0.
0. 0. 0. —0.3528238281

#t Make a matrix of the product of the eigenvectars of the lowest energy and the next lowest energy

coeffprod v3 := Figvect state]l v3« Eigvect state(l v3

coeffprod vi = [[ —0.124425084453720, —0.015863 1865172871, —0.00184965738870538, (125)
—0.004204 558296000982 |,

[0.924240282870571, 0.117833120695364, 0.0137394149713160, 0.0312320056793504 |,
[0L332577591715410, 0.0424009386211348, 0.00494397574681217,

001 12384900612852 1,

[ 0.0487684627T62950, 0.00621758244793066, 0.000724973970530267,

0001 647TORRO1202623 ||

# Integral of anharmonic wave fimctions with dipole vector operator multiplied by ity product of
elgenvectors, summed.

# This gives the contibrution from the x-dipale vector towards the transifion dipole moment.

x TDM vi:= add|add|dipintegral v3 x[i, j]-coefiprad vi[i jl,i=1.4}),1=1.4)
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x_TDM_v3 = —1.69965712511211 107" 126)
== Caleulating the v—vector fransition dipole momeni;

mat sum v3 yi=evalm(k v3 v glmatl +& v vy gl-matd +& v3 vy g2-mai3d + & vi v g3
mat333 bk w3 y gdomai33I33 Lk v3 vy gi-mat3izigg

0.5537075358 0 0. 0.
_ 0. 0.5537075358 0. 0.
mat_sum_v3_y = 0. 0. 0.5537075358 0. (127)
0. 0. 0. 0.5537075358

it Up to the n-th derivative of dipole function at g=0 (here labeled "k v3 v g0" for the zeroth derivative,
"k v3 v gl" for the first derivative, eic.) multiplied with the integral of (p_{ harm, v =i) |q
| o_(harm, v =j)}.

dipintegral vi y = evall {evalmmal_sum vi y))

0.5537075338 0. 0. 0.
0. 0.5537075358 0. 0.
dipintegral vi y= (128)
0. 0. 0.5537075358 0.
. 0. 0. 05537073338

# Make a mairix of the product of the eigenvectors of the lowest energy and the next lowest energy
coeffprod_v3d = Eigvect statel v3 « Eigveci statell v3
coeffprod v3 = [ —0.124425084453720, —0.0158631865172871, —0.00184965738870538, (129)
—0.00420458296000982 |,
[0.924Z2402828T0571, O.11T7833120695364, 0.0137394149713160, 0.0312320056793504 7,
[0.332577591715410, 0.0424009386211348, 0.00494397574681217,
0.0112384900612852 ],
[0.4ET6R462TTH2950, 0.00621758244793066, 0.000724973970530267,
0.00164798801202623 1)

it Integral of anharmonic wave functions with dipole vector aperator multiplied by ity product of
eigenvectors, summed.

i This gives the contibrution from the y-dipole vector towards the transition dipole moment.
v TDM vi = add{add(dipintegral v3 y[i, ] coeffprod vi|i jl,j=1.4),i=1.4)
v TDM vi:= 2.66735526895101 107" (130)

# Calculate the TOTAL transition dipole moment SQUARED

Tot TDM vi sgr:= (x TDM 1.'3]:" + (y TDM vj‘J'j'
Tot TDM v3 sqr == 1.00036184737451 1075 (131)

#t Plug the sguared total transition dipole moment into molar absorptivity equation to get the Molar
Absorptivity af g3
i Use the harmonic frequency of g3
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41.62384{?’9! T w3 Sqr'[lSMTﬁS]I]'v_‘T anharm_freg
16.6054

Moldbs v3 = 4.62985043703483 1077 (132)

Moldhs vi =
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