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ABSTRACT 
 
Bauxite residue is an industrial waste generated from the alumina refining 

industry, raising great concerns about environmental pollution. The primary 

problem for bauxite residue is its high alkalinity and salinity. This beneficial reuse 

of bauxite residue is desirable for the sustainable management of this waste 

stream. Bauxite residues can be used as an option of flue gas desulfurization to 

reduce the toxicity associated with high alkalinity. In this dissertation, it was first 

identified the linkage between the characteristics of the bauxite residues and 

their acid neutralization capacity (ANC). Further options of beneficial use were 

investigated according to the characteristics of bauxite residues. With the iron 

oxide-rich mineralogy, bauxite residue exhibited excellent capabilities to remove 

aqueous phosphate at environmentally relevant concentrations. Given that 

phosphate is an important nutrient, the removal and concentration of phosphorus 

with bauxite residue could be a strategy for the recovery of phosphorus as a 

resource. With its cation exchange capacity, bauxite residues were also found to 

be able to remove ciprofloxacin as an extensively used antibiotic and potential 

water pollutant. These findings show that bauxite residues could be used as 

feasible sorbents for pollution mitigation as well as resource recovery. The 

beneficial use was further demonstrated in the utilization of bauxite residues as 

an additive in anaerobic digestion, which is frequently implemented for the 

stabilization of organic waste and the production of biogas as a renewable 

energy source. My work shows that bauxite residues could be readily neutralized 
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by the buffering capacity of the digestate in the anaerobic digestion without 

negatively impacting process performance. More importantly, the addition of 

bauxite residue could enhance the availability of phosphorus in the digestate 

which is desirable for the land application of anaerobic digestate as a soil 

supplement. In summary, this work has developed multiple pathways for the 

sustainable management of bauxite residue as a hazardous material with 

integrated applications in pollution mitigation and resource recovery.  
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Introduction  

The origin and characteristics of bauxite residue 

Bauxite residue (red mud) is a type of industrial waste from the alumina refining 

process. To produce per ton alumina, 1-2.5 tons of bauxite residue is generated 

based on the origin of bauxite ore (Paramguru et al., 2005). The alumina industry 

started to develop over one century ago. Predictions by Power et al. (2011) 

suggest that over 3.9 billion tons of bauxite residue are stored in the earth until 

2017. The Bayer process as the main way for extraction of alumina utilizes the 

sodium hydroxide to treat the bauxite ore, leading to the production of caustic 

bauxite residue. With high alkalinity and high salinity, the disposal and storage of 

bauxite residue remain an important issue. The 2010 dam failure incident in Ajka, 

Hungary unleashed about 600,000-700,000 m3 bauxite residue, causing severe 

injury, property damage and environmental contamination (Ruyters et al., 2011). 

The main characteristic of bauxite residue is high alkalinity (pH ≈ 11.3) 

derived from some alkaline anions, such as HCO3
−/CO3

2−, Al(OH)4
− and OH−, 

and high salinity (electrical conductivity ≈ 7.4 mS cm−1) contributed by 

exchangeable sodium ([Na+] ≈ 101.4 mmol L−1) (Grafe et al., 2011). The dried 

bauxite residue is the fine-grained particle with particle sized ranged from 2 to 

100 μm. The average specific surface area is 32.7 m2 g−1 and bulk density is 2.5 

g cm−3 (Santini and Banning, 2016). 

Bauxite ore origin impacts the chemical and mineralogical composition of 

bauxite residue. Bauxite residue is commonly comprised of ferric oxide (Fe2O3), 
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aluminum oxide (Al2O3), silicon oxide (SiO2), titanium oxide (TiO2), calcium oxide 

(CaO), sodium oxide (Na2O) paired with a wide range of other oxides (Klauber et 

al., 2011). Using the powder X-ray diffraction (powder-XRD), the crystalline 

components and the amorphous fraction can be identified. From the 

mineralogical view, bauxite residue consists of different minerals, like goethite (α-

FeOOH), hematite (α-Fe2O3), gibbsite (Al(OH)3), boehmite (γ-AlOOH), sodalite 

(Na8[Al6Si6O24][(OH)2]), cancrinite (Na6[Al6Si6O24]∙2CaCO3), perovskite (CaTiO3) 

(Grafe et al., 2011). 

The management of bauxite residue 

Storage and disposal of bauxite residue pose a great challenge due to the large 

amounts of production and high environmental risk. Prior to the 1970s, marine 

discharge and lagooning were the only two available disposal methods and use 

of these methods gradually decreased and ceased due to potential 

environmental impact (Power et al., 2011). The current method has shifted from 

the wet treatment toward dry stacking or dry cake disposal (Nikraz et al., 2007). 

Drying treatment can reduce the moisture content and diminish the leachability of 

bauxite residue. As the ultimate way, “cap and store” strategies and in situ 

remediation approaches are considered as the most promising management of 

bauxite residue by converting wastes to novel geological materials (Santini and 

Banning, 2016). 

Neutralization is also an important management approach for remediating 

the alkaline hazard. Many materials have been studied and developed as the 
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neutralizing agent. Seawater has been verified to effectively neutralize the 

alkalinity of bauxite residue (Despland et al., 2010; Couperthwaite et al., 2014). 

Seawater neutralization primarily eliminates carbonate and bicarbonate alkalinity 

by forming insoluble solids. Besides seawater, gypsum (CaSO4) can also 

neutralize the alkalinity of bauxite residue by precipitating carbonate (Kopittke et 

al., 2004). The acid material is another sort of neutralizing agent. Mineral acid 

remediation using hydrochloric, nitric or sulfuric acid has been investigated 

(Liang et al., 2014). These strong acids can rapidly neutralize the alkalinity of 

bauxite residue and extent of neutralization can be effectively controlled by the 

acid consumption. The acid gas such as CO2 (Bonenfant et al., 2008; Yadav et 

al., 2010) or SO2 (Wang et al., 2015) was also the remediation materials. These 

processes not only remediate the alkalinity of bauxite residue but also fulfill the 

desulfurization. The bauxite residue desulfurization system had been 

successfully applied in Japan (Sumitomo) and Italy (Eurallumina) for flue gas 

treatment (Grafe et al., 2011). Besides chemical neutralization, bioremediation by 

fermentation and extracellular polymeric substance production are also the 

promising ways of neutralizing the alkalinity for bauxite residue (Santini et al., 

2015). 

Utilization of bauxite residue 

Recycle and reuse of bauxite residue can exploit more value of the waste stream 

and facilitate the sustainable management. To date, the attempts to reuse of 

bauxite residue can be classified into three categories, including building 
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construction and industrial material, metal recovery and environmental pollutant 

treatment listed in Table 1.1. Bauxite residue could be used as the additive to 

Portland cement (Tsakiridis et al., 2004). The stabilized bauxite residue could 

enhance performance as a road base material (Jitsangiam et al., 2008). The 

bauxite residue has also been investigated to apply for the ceramic brick 

construction industry (Dodoo-Arhin, 2013) and geopolymers (Dimas et al., 2009). 

For industrial material, bauxite residue has been explored in different aspects, 

such as pigments (Pera et al., 1997) and catalysts (Kim et al., 2015). Moreover, 

metal recovery is another important recycle approach, including major metal 

(iron, aluminum, and titanium) (Paramguru et al., 2005, Kumar et al., 2006) and 

minor metal (rare earth elements) (Smirnov and Molchanova, 1997). 

Recent efforts have focused on applying bauxite residue in pollution 

mitigation. Using its alkalinity, bauxite residue can be applied not only for flue gas 

desulfurization as described above but also for the amendment of acid mine 

drainage and acid soils (Klauber et al., 2011). Moreover, using the excessive 

surface area, and high quantity of aluminum oxide and ferric oxide, bauxite 

residue can be utilized for wastewater treatment as adsorbents, coagulants, and 

flocculants (Wang et al., 2008). 

As a low-cost adsorbent, bauxite residue exhibits strong removal capacity 

for some pollutants that makes it possible for effective wastewater treatment 

(Wang et al., 2008; Bhatnagar et al., 2011). As nutrient pollutants, phosphate (Li 

et al., 2006; Huang et al., 2008) and nitrate (Cengeloglu et al., 2006) can be 
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adsorbed by bauxite residue. The removal of toxic anions by bauxite residue, 

such as fluoride (Cengeloglu et al., 2002; Tor et al., 2009) and arsenate (Genc-

Fuhrman et al., 2003; Genc-Fuhrman et al., 2004; Genc-Fuhrman et al., 2005) 

have also been given more concerns. Heavy metal such as copper, cadmium, 

chromium, lead, and zinc can also be removed from the solution with bauxite 

residue (Gupta and Sharma, 2002; Bertocchi et al., 2006; Garau et al., 2007; 

Nadaroglu et al., 2010). Bauxite residue can additionally be used to remove the 

organic compounds such as dyes (Wang et al., 2005; Ratnamala et al., 2012; 

Shirzad-Siboni et al., 2014), phenol (Tor et al., 2006) and chlorophenol (Gupta et 

al., 2004). 

To improve the capacity of wastewater treatment, bauxite residue can be 

modified by some activation approaches. After acid and heat activation, bauxite 

residue can show more surface adsorption sites and positive charge in surface 

area to improve the phosphate adsorption (Li et al., 2006; Huang et al., 2008; 

Antunes et al., 2012). Some research attempted to treat the bauxite residue by 

different types of acids such as hydrochloric, nitric acid (Huang et al., 2008), or 

sulfuric acid (Koumanova et al., 1997). The combined acid-heat activation could 

obviously improve the efficiency of wastewater treatment (Liu et al., 2007; Ye et 

al., 2015). Furthermore, the bauxite residue granular adsorbents were made by 

sintering with additives such as bentonite, starch, straw, and hydroxypropyl 

methylcellulose (HPMC), further increasing adsorption capacity for phosphate 

(Yue et al., 2010; Zhao et al., 2012; Ye et al., 2015).  
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Introduction to anaerobic digestion 

Anaerobic digestion is the only biological waste treatment technology that 

produces energy in the form of biogas (methane). Anaerobic digestion can utilize 

the agricultural, industrial, and municipal wastes under anaerobic digestion 

(Angenent et al., 2004; Hartmann and Ahring, 2006). The significant benefit of 

anaerobic digestion is to stabilize the organic waste and to produce renewable 

energy. Other benefits include reductions of odors, pathogens, and greenhouse 

gas emissions during the storage of organic waste (Mitchell et al., 2013). 

Moreover, extracting nitrogen and phosphorus from anaerobic digestion can 

recover the nutrient (Li et al., 2015). The digestate as digested residue can be 

used as fertilizer for plant growth that can reuse the nutrients from anaerobic 

digestion.  

Buffering capacity in anaerobic digestion 

Anaerobic digestion consists of four pivotal procedures, hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis. Methanogenesis mainly involves two 

pathways, i.e., acetolactic methanogenesis and hydrogenotrophic 

methanogenesis (Appels et al., 2008). The hydrolysis step degrades the 

insoluble organic materials into soluble organic matter such as amino acids and 

fatty acids. Due to the existence of some complex resistant organic matter, such 

as cellulose, semicellulose and lignin, the hydrolysis is commonly considered as 

the rate-limiting step. Then acidogenesis step converts these soluble organic 

substances into volatile fatty acid. The organic acid and alcohol are converted 
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into acetic acid, carbon dioxide, and hydrogen gas by acetogenesis. Finally, 

methane and carbon dioxide are produced via methanogenesis. The four 

procedures require four special microbial groups, hydrolyzing bacteria, 

fermenting bacteria, acetogenic bacteria and methanogenic archaea (Angenent 

et al., 2004). Anaerobic digestion strongly relies on syntrophic processes among 

the involved microorganisms. 

Carbonic acid and bicarbonate mainly contribute to the buffering capacity 

in anaerobic digestion. The percentage of carbon dioxide in biogas is 

approximately 40%. According to pH in the solution, carbonic acid and 

bicarbonate concentration change to adjust the buffer capacity in anaerobic 

digestion. Volatile fatty acid can also adjust the alkalinity in anaerobic digestion. 

Fermentative microorganisms have been studied to remediate the alkalinity of 

bauxite residue by producing some organic acids (Santini et al., 2016).  

Critical factors in anaerobic digestion 

Although anaerobic digestion is an attractive technique with many benefits, 

applications are still limited by low methane yields and process instability. 

Instability is caused by reaction complexity and strict requirements of operation 

condition such as temperature, organic loading rate, solids and hydraulic 

retention time (Gunaseelan, 1997; Mata-Alvarez et al., 2000). Temperature 

needs to be controlled between 30 °C and 38 °C for the mesophilic digester, and 

between 50 and 57 °C for the thermophilic digester (Appels et al., 2008). pH is 

another important factor for the anaerobic microbial community and the optimal 
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pH for anaerobic digestion is between 6.8 and 7.2 (Ward et al., 2008). 

Methanogenic microbes with an optimum pH between 6.5 and 7.2 are more 

sensitive to pH than other microorganisms in anaerobic digestion (Appels et al., 

2008). 

Besides of reaction complexity and strict requirements of operation 

condition, another primary problem in anaerobic digestion is the process 

inhibition (Chen et al., 2008). One of the most important inhibitors is ammonia, 

which can significantly inhibit the growth of methanogens (Kayhanian, 1994). 

Ammonia is derived from the degradation of substrates with high protein and 

urea (Kayhanian, 1999), such as poultry waste (Kelleher et al., 2002). The 

toxicity is made by free ammonia nitrogen compared to the ammonium ion, thus 

ammonia inhibition is subjected to pH and temperature that can determine the 

balance of ammonia and ammonium in solution (Rajagopal et al., 2013). 

Associated with operation condition, the threshold concentration of ammonia 

inhibition ranged from 2500 mg/L to 6000 mg/L of total ammonia nitrogen 

(Rajagopal et al., 2013; Yenigun and Demirel, 2013). Antibiotics are also 

important inhibitor due to the antibiotics are widely used for animal husbandry 

and can be detected in the animal waste (Kemper, 2008). Antibiotics can 

obviously inhibit the methane yield and microbial community (Alvarez et al., 

2010; Mitchell et al., 2013). High concentrations of cations and heavy metal can 

cause the bacterial cells to dehydrate and affect the enzyme activity (Sterritt and 

Lester, 1980; Yerkes et al., 1997). The overproduction of short chain fatty 
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alcohols and acids, and aromatic organic compounds were also found as 

inhibitors in anaerobic digestion (Heipieper et al., 1994; Blume et al., 2010). 

Approach to improve anaerobic digestion 

Optimizing of operation is the primary way to maintain the stability of anaerobic 

digestion. Anaerobic co-digestion that simultaneously treat different wastes is 

considered as the most valid way to improve biogas yield and substrate 

utilization (Mata-Alvarez et al., 2014). Some biological or chemical additives are 

added to enhance biogas yield in anaerobic digestion. Biological additives, such 

as microbial consortium and enzymes, can be used to increase cellulose and 

hemicellulose availability (Mao et al., 2015). On the other hand, alkali reagent, 

acid reagent, and oxidative reagent can be also used for pretreatment of 

lignocelluloses, improving the biodegradation and bioavailability of 

lignocelluloses (Mao et al., 2015). The addition of macronutrients and trace 

elements can also stimulate the treatment efficiency by stimulating the growth of 

microorganisms (Banks et al., 2012). Adding rusty scrap iron into anaerobic 

digestion was proposed to enhance anaerobic sludge digestion as induced 

microbial iron reduction accelerated the anaerobic hydrolysis–acidification 

processes (Zhang et al., 2014). To recover from ammonia inhibition, zeolite, 

glauconite, and activated carbon were considered as the additives (Yenigun and 

Demirel, 2013). Biochar used as an adsorbent can mitigate inhibition by 

adsorbing the inhibitor and supply a habitat for the methanogenic microflora 

(Mumme et al., 2014; Fagbohungbe et al., 2016). 
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Land application of digestate 

Land application of digestate can bring various benefits, such as nutrient 

recycling, reduction of mineral fertilizer consumption, and water pollution 

mitigation (Holm-Nielsen et al., 2009). As compared with undigested manure, 

Insam et al. (2015) concluded that digestate had more positive effects on the 

climate, environment, and agriculture. Animal waste is an important source of 

atmospheric methane (Sommer et al., 2007). After anaerobic digestion, animal 

waste is converted into digestate, and organic carbon is reduced and stabilized. 

Therefore, the land application of digestate mean the reduction of greenhouse 

gas production from manure (Insam and Wett, 2008); however, the land 

application of digestate is limited by the regulations from different countries due 

to the negative effects on the environment, such as heavy metals, pathogens, 

antibiotics, and overloading of nutrients (Insam et al., 2015). Therefore, the 

ecological influence should be considered when the digestate is used as 

fertilizer. The seed germination and elongation of root and shoot tests are 

primary approaches for phytotoxicity assessment, of which seed germination test 

is the fastest test (Di Salvatore et al., 2008). These methods can be easily used 

for evaluating the environmental risk of land application of digestate. 

Overview 

 
Solid waste management is an important issue for the sustainable development 

of society. The solid waste comes from the municipal, agricultural and industrial 

activities. To treat these wastes appropriately, waste management needs to 
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follow the basic “three R’s” principle, i.e. reduce, reuse and recycle. Integrated 

solid waste management meets the great challenge. This study is aimed to 

explore the feasibility of bauxite residue in pollution mitigation and resource 

recovery combined with anaerobic digestion. The flowchart of the integrated 

treatment of bauxite residue and bio-waste is shown in Figure 1.1. 

Bauxite residue is a byproduct of the alumina refining process as the 

mineral waste and is mostly comprised of various minerals. The high alkalinity 

and salinity make it bring the great environmental risk (Grafe et al., 2011). The 

dry stacking or dry cake disposal is the major approach for management of 

bauxite residue currently (Nikraz et al., 2007). More concerns have been given to 

the reuse and recycle of bauxite residue (Wang et al., 2008). The alumina 

refining process requires the electricity that needs to be supplied by the power 

plant. Using the alkalinity of bauxite residue can achieve the desulfurization of 

flue gas from the power plant. This approach can simultaneously neutralize the 

alkalinity of bauxite residue with the acidity of flue gas. In chapter II, the sulfuric 

acid (H2SO4) neutralization and acidification by three types of bauxite residue 

were used to simulate the flue gas desulfurization. Characterization of three 

kinds of bauxite residue and their acid neutralization capacity (ANC) were 

studied. During the neutralization and acidification, the leachate would not pose 

an extra environmental risk. 

Even though these bauxite residues have been neutralized, the storage is 

still a problem due to the occupancy of space. Therefore, it is important to find 
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the right way to reuse them. The neutralized bauxite residue has been verified for 

the strong removal capacity of pollutants (Wang et al., 2008; Bhatnagar et al., 

2011). Therefore, the neutralized bauxite residue can be considered to the 

removal of inorganic and organic pollutants. In chapter III and IV, the feasibility of 

H2SO4 neutralized bauxite residue in the removal of aqueous phosphorus and 

antibiotics were investigated. 

Animal waste such as cattle manure, dairy manure or poultry manure 

comes from agriculture production and contains large amounts of organic matter. 

The storage of untreated animal waste can lead to serious environmental 

pollution, such as nutrient leaching, ammonia evaporation, and pathogen 

contamination (Holm-Nielsen et al., 2009). Anaerobic digestion is a valid 

approach to treat and convert them into biogas (methane and carbon dioxide). 

After post-treatment, methane content in biogas can be improved to meet the 

requirement of transportation in pipeline and utilization as bioenergy. On the 

other hand, the digestate derived from the anaerobic digestion can be further 

used for land application as fertilizer. The grass can be used for the feedstock of 

livestock, and other crops can be used for food. Then the biowaste from the 

animal waste or food waste can be treated in anaerobic digestion. This practice 

is an important way of recycling animal waste. 

The anaerobic digestion as a buffering system can produce carbon 

dioxide and organic acids, which may bioremediate the alkalinity of bauxite 

residue. The anaerobic digestate with bauxite residue will be feasible as a 
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nutrient-rich and slow-releasing nutrient supplement in agricultural application. In 

chapter V, the effect of bauxite residue as an additive on biogas production and 

phosphorus fraction in anaerobic digester were investigated. Adding the bauxite 

residue into anaerobic digestion can integrate the mineral waste and biowaste 

management. This integrated waste management can improve the recycling 

efficiency of these two kinds of waste. On the other hand, this integrated waste 

management combined two industrial and agricultural closed-loop systems 

together. 

 



15 
 

References 

 
Alvarez JA, Otero L, Lema JM, Omil F. 2010. The effect and fate of antibiotics 
during the anaerobic digestion of pig manure. Bioresource Technol 101(22): 
8581-8586. 
 
Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R. 2004. Production 
of bioenergy and biochemicals from industrial and agricultural wastewater. 
Trends Biotechnol 22(9): 477-485. 
 
Antunes MLP, Couperthwaite SJ, Da Conceicao FT, De Jesus CPC, Kiyohara 
PK, Coelho ACV, Frost RL. 2012. Red mud from brazil: thermal behavior and 
physical properties. Ind Eng Chem Res 51(2): 775-779. 
 
Appels L, Baeyens J, Degreve J, Dewil R. 2008. Principles and potential of the 
anaerobic digestion of waste-activated sludge. Prog Energ Combust 34(6): 755-
781. 
 
Banks CJ, Zhang Y, Jiang Y, Heaven S. 2012. Trace element requirements for 
stable food waste digestion at elevated ammonia concentrations. Bioresource 
Technol 104: 127-135. 
 
Bertocchi AF, Ghiani M, Peretti R, Zucca A. 2006. Red mud and fly ash for 
remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. J Hazard 
Mater 134(1-3): 112-119. 
 
Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR. 2011. A review of the 
use of red mud as adsorbent for the removal of toxic pollutants from water and 
wastewater. Environ Technol 32(3): 231-249. 
 
Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, Klocke M. 
2010. Methanogenic population dynamics during semi-continuous biogas 
fermentation and acidification by overloading. J Appl Microbiol 109(2): 441-450. 
 
Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, 
Kharoune M. 2008. CO2 sequestration by aqueous red mud carbonation at 
ambient pressure and temperature. Ind Eng Chem Res 47(20): 7617-7622. 
 
Cengeloglu Y, Kir E, Ersoz M. 2002. Removal of fluoride from aqueous solution 
by using red mud. Sep Purif Technol 28(1): 81-86. 
 
Cengeloglu Y, Tor A, Ersoz M, Arslan G. 2006. Removal of nitrate from aqueous 
solution by using red mud. Sep Purif Technol 51(3): 374-378. 
 



16 
 

Chen Y, Cheng JJ, Creamer KS. 2008. Inhibition of anaerobic digestion process: 
A review. Bioresource Technol 99(10): 4044-4064. 
 
Couperthwaite SJ, Johnstone DW, Mullett ME, Taylor KJ, Millar GJ. 2014. 
Minimization of bauxite residue neutralization products using nanofiltered 
Seawater. Ind Eng Chem Res 53(10): 3787-3794. 
 
Despland LM, Clark MW, Aragno M, Vancov T. 2010. Minimising alkalinity and 
pH spikes from Portland cement-bound bauxsol (Seawater-Neutralized Red Mud) 
pellets for pH circum-neutral waters. Environ Sci Technol 44(6): 2119-2125. 
 
Di Salvatore M, Carafa AM, Carratù G. 2008. Assessment of heavy metals 
phytotoxicity using seed germination and root elongation tests: A comparison of 
two growth substrates. Chemosphere 73(9): 1461-1464. 
 
Dimas DD, Giannopoulou IP, Panias D. 2009. Utilization of alumina red mud for 
synthesis of inorganic polymeric materials. Miner Process Extr M 30(3): 211-239. 
 
Dodoo-Arhin D, Konadu DS, Annan E, Buabeng FP, Yaya A, Agyei-Tuffour B. 
2013. Fabrication and characterization of Ghanaian bauxite red mud-clay 
composite bricks for construction applications. American Journal of Materials 
Science 3(5): 110-119. 
 
Fagbohungbe MO, Herbert BMJ, Hurst L, Li H, Usmani SQ, Semple KT. 2016. 
Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource 
Technol 216: 142-149. 
 
Garau G, Castaldi P, Santona L, Deiana P, Melis P. 2007. Influence of red mud, 
zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial 
populations and enzyme activities in a contaminated soil. Geoderma 142(1-2): 
47-57. 
 
Genc-Fuhrman H, Bregnhoj H, McConchie D. 2005. Arsenate removal from 
water using sand-red mud columns. Water Res 39(13): 2944-2954. 
 
Genc-Fuhrman H, Tjell JC, McConchie D. 2004. Adsorption of arsenic from water 
using activated neutralized red mud. Environ Sci Technol 38(8): 2428-2434. 
 
Genc H, Tjell JC, McConchie D, Schuiling O. 2003. Adsorption of arsenate from 
water using neutralized red mud. J Colloid Interf Sci 264(2): 327-334. 
 
Grafe M, Power G, Klauber C. 2011. Bauxite residue issues: III. Alkalinity and 
associated chemistry. Hydrometallurgy 108(1-2): 60-79. 
 



17 
 

Gunaseelan VN. 1997. Anaerobic digestion of biomass for methane production: 
A review. Biomass Bioenerg 13(1-2): 83-114. 
 
Gupta VK, Ali I, Saini VK. 2004. Removal of chlorophenols from wastewater 
using red mud: An aluminum industry waste. Environ Sci Technol 38(14): 4012-
4018. 
 
Gupta VK, Sharma S. 2002. Removal of cadmium and zinc from aqueous 
solutions using red mud. Environ Sci Technol 36(16): 3612-3617. 
 
Hartmann H, Ahring BK. 2006. Strategies for the anaerobic digestion of the 
organic fraction of municipal solid waste: an overview. Water Sci Technol 53(8): 
7-22. 
 
Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, Debont JAM. 1994. 
Mechanisms of resistance of whole cells to toxic organic-solvents. Trends 
Biotechnol 12(10): 409-415. 
 
Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. 2009. The future of anaerobic 
digestion and biogas utilization. Bioresource Technol 100(22): 5478-5484. 
 
Huang WW, Wang SB, Zhu ZH, Li L, Yao XD, Rudolph V, Haghseresht F. 2008. 
Phosphate removal from wastewater using red mud. J Hazard Mater 158(1): 35-
42. 
 
Insam H, Gomez-Brandon M, Ascher J. 2015. Manure-based biogas 
fermentation residues - Friend or foe of soil fertility? Soil Biol Biochem 84: 1-14. 
 
Insam H, Wett B. 2008. Control of GHG emission at the microbial community 
level. Waste Manage 28(4): 699-706. 
 
Jitsangiam P, Nikraz H, Jamieson E. 2008. Pozzolanic-Stabilised Mixture (PSM) 
for red sand as road base materials. Proc Monogr Eng Wate 1-2: 647-651. 
 
Kayhanian M. 1994. Performance of a high-solids anaerobic-digestion process 
under various ammonia concentrations. J Chem Technol Biot 59(4): 349-352. 
 
Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: An 
overview and practical solutions. Environ Technol 20(4): 355-365. 
 
Kelleher BP, Leahy JJ, Henihan AM, O'Dwyer TF, Sutton D, Leahy MJ. 2002. 
Advances in poultry litter disposal technology - a review. Bioresource Technol 
83(1): 27-36. 
 



18 
 

Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. 
Ecol Indic 8(1): 1-13. 
 
Kim SC, Nahm SW, Park YK. 2015. Property and performance of red mud-based 
catalysts for the complete oxidation of volatile organic compounds. J Hazard 
Mater 300: 104-113. 
 
Klauber C, Grafe M, Power G. 2011. Bauxite residue issues: II. options for 
residue utilization. Hydrometallurgy 108(1-2): 11-32. 
 
Kopittke PM, Menzies NW, Fulton IM. 2004. Gypsum solubility in seawater, and 
its application to bauxite residue amelioration. Aust J Soil Res 42(8): 953-960. 
 
Koumanova B, Drame M, Popangelova M. 1997. Phosphate removal from 
aqueous solutions using red mud wasted in bauxite Bayer's process. Resour 
Conserv Recy 19(1): 11-20. 
 
Kumar S, Kumar R, Bandopadhyay A. 2006. Innovative methodologies for the 
utilisation of wastes from metallurgical and allied industries. Resour Conserv 
Recy 48(4): 301-314. 
 
Li WW, Yu HQ, Rittmann BE. 2015. Chemistry: Reuse water pollutants. Nature 
528(7580): 29-31. 
 
Li YZ, Liu CJ, Luan ZK, Peng XJ, Zhu CL, Chen ZY, Zhang ZG, Fan JH, Jia ZP. 
2006. Phosphate removal from aqueous solutions using raw and activated red 
mud and fly ash. J Hazard Mater 137(1): 374-383. 
 
Liang WT, Couperthwaite SJ, Kaur G, Yan C, Johnstone DW, Millar GJ. 2014. 
Effect of strong acids on red mud structural and fluoride adsorption properties. J 
Colloid Interf Sci 423: 158-165. 
 
Liu CJ, Li YZ, Luan ZK, Chen ZY, Zhang ZG, Jia ZP. 2007. Adsorption removal 
of phosphate from aqueous solution by active red mud. J Environ Sci-China 
19(10): 1166-1170. 
 
Mao CL, Feng YZ, Wang XJ, Ren GX. 2015. Review on research achievements 
of biogas from anaerobic digestion. Renew Sust Energ Rev 45: 540-555. 
 
Mata-Alvarez J, Dosta J, Romero-Guza MS, Fonoll X, Peces M, Astals S. 2014. 
A critical review on anaerobic co-digestion achievements between 2010 and 
2013. Renew Sust Energ Rev 36: 412-427. 
 



19 
 

Mata-Alvarez J, Mace S, Llabres P. 2000. Anaerobic digestion of organic solid 
wastes. An overview of research achievements and perspectives. Bioresource 
Technol 74(1): 3-16. 
 
Mitchell SM, Ullman JL, Teel AL, Watts RJ, Frear C. 2013. The effects of the 
antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production 
and their degradation efficiency during anaerobic digestion. Bioresource Technol 
149: 244-252. 
 
Mumme J, Srocke F, Heeg K, Werner M. 2014. Use of biochars in anaerobic 
digestion. Bioresource Technol 164: 189-197. 
 
Nadaroglu H, Kalkan E, Demir N. 2010. Removal of copper from aqueous 
solution using red mud. Desalination 251(1-3): 90-95. 
 
Nikraz HR, Bodley AJ, Cooling DJ, Kong PYL, Soomro M. 2007. Comparison of 
physical properties between treated and untreated bauxite residue mud. J Mater 
Civil Eng 19(1): 2-9. 
 
Paramguru RK, Rath PC, Misra VN. 2005. Trends in red mud utilization - A 
review. Miner Process Extr M 26(1): 1-29. 
 
Pera J, Boumaza R, Ambroise J. 1997. Development of a pozzolanic pigment 
from red mud. Cement Concrete Res 27(10): 1513-1522. 
 
Power G, Grafe M, Klauber C. 2011. Bauxite residue issues: I. Current 
management, disposal and storage practices. Hydrometallurgy 108(1-2): 33-45. 
 
Rajagopal R, Masse DI, Singh G. 2013. A critical review on inhibition of 
anaerobic digestion process by excess ammonia. Bioresource Technol 143: 632-
641. 
 
Ratnamala GM, Shetty KV, Srinikethan G. 2012. Removal of Remazol Brilliant 
Blue Dye from dye-contaminated water by adsorption using red mud: equilibrium, 
kinetic, and thermodynamic studies. Water Air Soil Poll 223(9): 6187-6199. 
 
Ruyters S, Mertens J, Vassilieva E, Dehandschutter B, Poffijn A, Smolders E. 
2011. The red mud accident in Ajka (Hungary): plant toxicity and trace metal 
bioavailability in red mud contaminated soil. Environ Sci Technol 45(4): 1616-
1622. 
 
Santini TC, Banning NC. 2016. Alkaline tailings as novel soil forming substrates: 
reframing perspectives on mining and refining wastes. Hydrometallurgy 164: 38-
47. 



20 
 

Santini TC, Kerr JL, Warren LA. 2015. Microbially-driven strategies for 
bioremediation of bauxite residue. J Hazard Mater 293: 131-157. 
 
Santini TC, Malcolm LI, Tyson GW, Warren LA. 2016. pH and organic carbon 
dose rates control microbially driven bioremediation efficacy in alkaline bauxite 
residue. Environ Sci Technol 50(20): 11164-11173. 
 
Shirzad-Siboni M, Jafari SJ, Giahi O, Kim I, Lee SM, Yang JK. 2014. Removal of 
acid blue 113 and reactive black 5 dye from aqueous solutions by activated red 
mud. J Ind Eng Chem 20(4): 1432-1437. 
 
Smirnov DI, Molchanova TV. 1997. The investigation of sulphuric acid sorption 
recovery of scandium and uranium from the red mud of alumina production. 
Hydrometallurgy 45(3): 249-259. 
 
Sommer SG, Petersen SO, Sorensen P, Poulsen HD, Moller HB. 2007. Methane 
and carbon dioxide emissions and nitrogen turnover during liquid manure 
storage. Nutr Cycl Agroecosys 78(1): 27-36. 
 
Sterritt RM, Lester JN. 1980. Interactions of heavy-metals with bacteria. Sci Total 
Environ 14(1): 5-17. 
 
Tor A, Cengeloglu Y, Aydin ME, Ersoz M. 2006. Removal of phenol from 
aqueous phase by using neutralized red mud. J Colloid Interf Sci 300(2): 498-
503. 
 
Tor A, Danaoglu N, Arslan G, Cengeloglu Y. 2009. Removal of fluoride from 
water by using granular red mud: Batch and column studies. J Hazard Mater 
164(1): 271-278. 
 
Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P. 2004. Red mud addition in 
the raw meal for the production of Portland cement clinker. J Hazard Mater 
116(1-2): 103-110. 
 
Wang SB, Ang HM, Tade MO. 2008. Novel applications of red mud as coagulant, 
adsorbent and catalyst for environmentally benign processes. Chemosphere 
72(11): 1621-1635. 
 
Wang SB, Boyjoo Y, Choueib A, Zhu ZH. 2005. Removal of dyes from aqueous 
solution using fly ash and red mud. Water Res 39(1): 129-138. 
 
Wang XK, Zhang YH, Lv FZ, An Q, Lu RR, Hu P, Jiang SB. 2015. Removal of 
alkali in the red mud by SO2 and simulated flue gas under mild conditions. 
Environ Prog Sustain 34(1): 81-87. 



21 
 

Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. 2008. Optimisation of the anaerobic 
digestion of agricultural resources. Bioresource Technol 99(17): 7928-7940. 
 
Yadav VS, Prasad M, Khan J, Amritphale SS, Singh M, Raju CB. 2010. 
Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1-3): 
1044-1050. 
 
Ye J, Cong XN, Zhang PY, Hoffmann E, Zeng GM, Wu Y, Zhang HB, Fan W. 
2015. Phosphate adsorption onto granular-acid-activated-neutralized red mud: 
parameter optimization, kinetics, isotherms, and mechanism analysis. Water Air 
Soil Poll 226: 306. 
 
Ye J, Cong XN, Zhang PY, Hoffmann E, Zeng GM, Wu Y, Zhang HB, Fang W. 
2015. Preparation of a new granular acid-activated neutralized red mud and 
evaluation of its performance for phosphate adsorption. Acs Sustain Chem Eng 
3(12): 3324-3331. 
 
Yenigun O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: A 
review. Process Biochem 48(5-6): 901-911. 
 
Yerkes DW, Boonyakitsombut S, Speece RE. 1997. Antagonism of sodium 
toxicity by the compatible solute betaine in anaerobic methanogenic systems. 
Water Sci Technol 36(6-7): 15-24. 
 
Yue QY, Zhao YQ, Li Q, Li WH, Gao BY, Han SX, Qi YF, Yu H. 2010. Research 
on the characteristics of red mud granular adsorbents (RMGA) for phosphate 
removal. J Hazard Mater 176(1-3): 741-748. 
 
Zhang YB, Feng YH, Yu QL, Xu ZB, Quan X. 2014. Enhanced high-solids 
anaerobic digestion of waste activated sludge by the addition of scrap iron. 
Bioresource Technol 159: 297-304. 
 
Zhao YQ, Yue QY, Li Q, Xu X, Yang ZL, Wang XJ, Gao BY, Yu H. 2012. 
Characterization of red mud granular adsorbent (RMGA) and its performance on 
phosphate removal from aqueous solution. Chem Eng J 193: 161-168. 
 
 
 
 
  



22 
 

Appendix 

 
 

Table 1.1. The optional approaches for the bauxite residue utilization. 

Application area Utilization case 

Building construction 
and industrial material 

Additive to Portland cement and road base material; 
ceramic brick construction industry and geopolymers; 
pigments and catalysts 

Metal recovery 
Major metal (iron, aluminum and titanium) and rare 
earth elements (scandium, uranium and thorium) 

Environmental pollutant 
treatment 

Treatment of acid mine drainage and wastewater 
treatment as adsorbents, coagulants and flocculants; 
waste gas treatment; soil amendment 

 
 
 
 
 

 

Figure 1.1. Water–energy–food nexus framework linked with the 
utilization of bauxite residue. 
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CHAPTER II 
CHARACTERIZATION OF ACID NEUTRALIZATION CAPACITY 

(ANC) OF BAUXITE RESIDUE FROM THREE SOURCES 
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Abstract 

Bauxite residue (BR) as the byproduct of bauxite refining process has been 

characterized with high alkalinity, which could be exploited for use as the base 

chemical in flue gas desulfurization. In this study, bauxite residue from three 

sources were tested for acid neutralization capacity (ANC) as well as its linkage 

to mineralogy. The ANC (pH 7.0) of BR2 was the greatest among the three 

bauxite residues, while the ANC (pH 5.5) of BR1 was found to be the greatest 

among the three bauxite residues. According to the chemical and mineral 

composition of the raw bauxite residue as well as the neutralized or acidified 

bauxite residue, the ANC (pH 7.0) of BR2 could be attributed primarily to readily 

dissolved alkalinity in the form of sodium hydroxide (NaOH) or sodium carbonate 

(Na2CO3). In comparison, the ANC (pH 5.5) of BR1 and BR3 was likely 

attributable to mineral alkalinity, such as sodalite and calcite. Following the 

release of sodium (Na) and calcium (Ca) from bauxite residue after neutralization 

or acidification, the level of iron (Fe) increased in the solid phase. The increase in 

iron oxides content in bauxite residue is expected to enhance the utility of this 

material as an effective sorbent for pollutant removal, which would be further 

evaluated. 
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Introduction 

Bauxite residue (BR) is the alkaline byproduct from the bauxite refining process. 

Due to its high alkalinity, the bauxite residue is a hazardous material with 

corrosive characteristics. The disposal and storage of bauxite residue has 

resulted in major environmental and safety concerns. For example, after the dam 

collapse of the bauxite residue reservoir in Hungary in 2010, a series of problems 

emerged in the contaminated area, including plant toxicity, trace metal toxicity 

and soil deterioration (Ruyters et al., 2011). The alkalinity of bauxite residue is 

primarily derived from a number of alkaline anions, such as HCO3
−/CO3

2−, 

Al(OH)4
− and OH− (Grafe et al., 2011).  

Some materials have been developed to neutralize the alkalinity of bauxite 

residue, e.g. seawater (Couperthwaite et al., 2014), gypsum (Kopittke et al., 

2004), microbial function (Krishna et al., 2005), CO2 (Sahu et al., 2010) and SO2 

(Wang et al., 2015). The alkalinity neutralization by SO2 is combined with flue gas 

desulfurization. The aluminum industry consumes large amounts of energy in the 

form of electricity. During power generation in coal-fired power plants, the flue 

gas emission from coal power plant is an important air pollution issue. All types of 

coal contain sulfur. Thus, coal combustion is a large source of sulfur dioxide, an 

acidic pollutant gas that contributes to the production of acid rain, among other 

negative environmental impacts. Given the oxidation of SO2, SO3 also exists in 

the flue gas. Sulfuric acid (H2SO4) as a surrogate of SO2 in flue gas was also 

considered as the neutralizing agent for the alkalinity of bauxite residue. 
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After neutralization, bauxite residue has been utilized for some 

environmental-friendly applications and one of the main applications is building 

materials, e.g. aggregates, bricks, cement, concrete and road materials (Klauber 

et al., 2011). In addition, the neutralized or acidified bauxite residue has been 

applied to solve environmental and agronomic problems (Wang et al., 2008; 

Klauber et al., 2011) due to that neutralized bauxite residue showed better 

performance with some special characteristics. For example, neutralized bauxite 

residue provides more surface adsorption sites and positive charges in surface 

area to enhance the adsorption capacity of phosphate (Li et al., 2006) and 

fluoride (Liang et al., 2014).  

Due to the different origins of bauxite ores, there are some differences in 

the characteristics of bauxite residue. Based on the results in the review (Grafe 

et al., 2011), for different types of bauxite residue, pH can range from 9.7 to 12.8; 

electrical conductivity from 1.4 mS cm−1 to 28.4 mS cm−1; and sodium 

concentration from 8.9 mmol L−1 to 225.8 mmol L−1. Additionally, the chemical 

and mineral composition varied mostly according to the source of bauxite. On the 

other hand, the property of bauxite residue would change with acidification and 

neutralization. Currently, there still lacks the comparison between different types 

of neutralized or acidified bauxite residue. 

In this study, we used H2SO4 neutralization of bauxite residue to simulate 

flue gas desulfurization by bauxite residue. This study aims to investigate the 
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acid neutralization capacity (ANC) of bauxite residue from three sources and 

characterize the neutralized bauxite residue. 

Materials and Methods 

Bauxite residue 

The three bauxite residues included alumina refining facilities located in 

Shandong, Guangxi and Pingguo, China. They were respectively designated as 

BR1, BR2 and BR3. The appearance of the three types of bauxite residue of 

different sources was shown in figure 2.1. 

Experimental design 

The raw materials were rinsed firstly with DI water for three times and dried in a 

fume hood. To measure the acid titration curve, the bauxite residue (4 g) with 

100 ml DI water was titrated with 0.1 N H2SO4 as a surrogate of SO2 to simulate 

flue gas desulfurization by bauxite residue. Then, 10 ml solution was taken and 

centrifuged. After centrifugation, the supernatant was acidified by 5% HNO3 and 

analyzed for inorganic chemicals including copper (Cu), zinc (Zn), arsenic (As), 

chromium (Cr), selenium (Se), barium (Ba), Cadmium (Cd), Lead (Pb), Sliver 

(Ag) by inductively coupled atomic emission spectrometry (Thermo Electron 

Intrepid II ICP-AES). 

To measure the acid neutralization capacity at long-term, the bauxite 

residue (1 g) with 25 ml DI water was titrated to pH 7.0 and 5.5 with 0.1 N H2SO4. 

The solid residues were respectively considered as the neutralized bauxite 
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residue and acidified bauxite residue after the bauxite residue was titrated to pH 

7.0 and 5.5. pH in solution was measured by Oakton pH 700 Meter. After the 

equilibrium, the solution was centrifuged at 16000 g/min for 15 min. Then the 

supernatant was stored by acidifying by HNO3 as acid leaching sample and 

analyzed by ICP-AES. The solid residues were rinsed with DI water for three 

times and dried in a fume hood, and then was digested to analyze the chemical 

composition in a microwave accelerated reaction system (CEM MARS 5) (see 

below). 

Acid digestion procedure 

The solid residue (0.4 g) was placed in a perfluoroalkoxy alkanes (PFA) liner and 

added with 9 mL of nitric acid (68%, m:V), 3 mL of hydrofluoric acid (48%, m:V) 

and 3 mL of hydrochloric acid (37%, m:V). After vigorous reaction stopped, the 

container was tightly capped and then placed into the microwave oven. The 

microwave oven was heated at 180 °C for 30 min. After cooling down for at least 

5 min, the container was uncapped and 10 mL of boric acid neutralization 

solution (4.7%, m:V) was quickly added. The container was then re-capped, 

returned to the oven and heated at 170 °C for 20 min. A blank solution without 

solid was added containing the same amount of nitric acid, hydrofluoric acid, 

hydrochloric acid and boric acid, and set as control treatment with the same acid 

digestion procedure. After the acid digestion, the solution was centrifuged at 

16000 g/min for 15 min. Then the supernatant was diluted with nitric acid (1%, 

m:V) and analyzed by ICP-AES. 
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Other analysis 

To identify the mineral composition, X-ray diffraction (XRD) patterns were 

collected using a Panalytical Empyrean with Cu Kα radiation at 45 kV and 40 mA. 

Scanning electron microscope (SEM, Zeiss AURIGA) is used to analyze the 

morphology. 

Results and Discussion 

Acid neutralization capacity 

The titration curves of bauxite residue were shown in figure 2.2. Compared with 

bauxite residue, some industrial wastes had also been used for flue gas 

desulfurization (Cheng et al., 2009). The calcium carbide residue, mainly 

composed of Ca(OH)2, was selected to compare the amounts of acid 

consumption with bauxite residue. According to the titration curve, the initial pH 

of the calcium carbide residue was 12.8, which was significantly greater than 

three bauxite residues. When titrated to neutral status, calcium carbide residue 

required more acid than bauxite residue. Thus, for desulfurization, the calcium 

carbide residue had greater capacity than bauxite residue. However, for 

removing the alkalinity, the bauxite residue performed better than calcium 

carbide residue. Due to the dissolution of fluoride, calcium carbide residue was 

not a benign material for desulfurization. For the three types of bauxite residue, 

the initial pH of BR1, BR2 and BR3 were respectively 9.7, 9.6 and 8.4. According 

to the titration curves in figure 2.2, the capacities of acid consumption were 

comparable for bauxite residue and the amounts of acid consumption were 
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related to the initial pH of bauxite residue. Therefore, BR1 and BR2 performed 

better than BR3 for the amounts of acid consumption. 

ANC is used to measure the amount of acid required to reach a specific 

pH endpoint, and pH 5.5 and 7.0 are usually considered as the pH endpoint. The 

ANC of bauxite residue in the long term were shown in figure 3.3. After 24 days 

(6 times) titration, the ANC of bauxite residue was relatively steady. The ANC 

(pH 7.0) for BR1, BR2 and BR3 were 1.89 mol H+/kg, 2.70 mol H+/kg and 1.58 

mol H+/kg, respectively. The ANC (pH 5.5) for BR1, BR2 and BR3 were 4.55 mol 

H+/kg, 3.75 mol H+/kg and 3.95 mol H+/kg, respectively. These results were 

consistent with other literatures with average 0.94 mol H+/kg for ANC at pH 7.0 

and 4.56 mol H+/kg for ANC at pH 5.5 (Grafe et al., 2011). On the other hand, the 

slow releasing capacity of alkalinity was consistent with the basic characteristics 

of bauxite residue (Liu et al., 2007). The neutralization reaction is instantaneous, 

and the slow releasing process of alkalinity is determined by the dissolution of 

the mineral phase that determines the equilibrium during the measurement of 

ANC of bauxite residue.  

Comparing the ANC of these three types of bauxite residue, there were 

some obvious differences. The ANC of BR1 and BR2 reached steady more 

quickly than BR3, indicating that BR1 and BR2 had some more readily releasing 

alkalinity. For BR2, the ANC (pH 7.0) was the greatest, but ANC (pH 5.5) was the 

lowest. These results suggested that BR2 contained the most dissolved 

alkalinity, such as OH− and HCO3
−/CO3

2−, and lack of mineral alkalinity. 



31 
 

Acidification can dissolve the sodalite for BR1, while acidification can dissolve the 

calcite for BR3. The dissolution of these alkaline minerals leaded to the slow-

releasing alkalinity during the acidification. 

Environmental evaluation of bauxite residue leachate after neutralization 

To evaluate the environmental effect of these three types of bauxite residue 

leachate, the concentration of Cu, Zn, As, Cr and Se were measured in table 2.1. 

The concentrations of these inorganic chemicals were below the Extraction 

toxicity limit (GB5085.3-2007, China) and Toxicity Characteristic Leaching 

Procedure (TCLP) limit (40 Code of Federal Regulations 261.24, U.S. 

Environmental Protection Agency) described in table 2.1. Other elements such 

as Ba, Cd, Pb and Ag were not detected. Therefore, it was safe for bauxite 

residue leachate after neutralization and acidification. 

Elemental and mineralogical composition 

According to the XRD patterns in figure 3.6, 3.7 and 3.8, the three types of 

bauxite residue primarily consisted of hematite (Fe2O3), sodalite 

(Na7.88(Al6Si6O24)(CO3)0.93) and calcite (CaCO3). For chemical composition after 

acid digestion, the Al, Ca, Fe, Mg, Na, Si and Ti were the main elements in 

bauxite residue in figure 2.5. In addition, more than 10% existed in the loss on 

ignition (LOI), representing volatile substances that were chemically bound with 

the minerals, such as water, organic and inorganic carbon. 
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After washing, neutralization and acidification, the sodium and calcium 

were dissolved most in solution for bauxite residue in figure 2.4. For BR1, 

dissolved sodium reached 8.4% of the raw material in weight after acidification, 

indicating that BR1 had the most available alkalinity, thus ANC (pH 5.5) of BR1 

was greatest among the three types of bauxite residue. 

After acidification, the sodium was dissolved not only from the strong base 

but also partly from the mineral alkali. For BR1, sodalite 

(Na7.88(Al6Si6O24)(CO3)0.93) was transferred to tamarugite (NaAl(SO4)2▪6H2O). 

That was consistent with the result in another study that the dissolution of 

sodalite reacted with sulfuric acid was predicted to generate the Na2SO4, 

Al2(SO4)3 and Si(OH)4 (Liang et al., 2014). For BR2 and BR3, there was no 

sodalite found in XRD patterns, but after acidification, the calcite (CaCO3) was 

transferred to gypsum (CaSO4▪2H2O). Due to the dissolution of Na, Al and Ca, 

the ratio of Fe in the bauxite residue increased with neutralization and 

acidification in figure 3.5 and the XRD intensity of hematite increased in figure 

3.6, 3.7 and 3.8. The ratio of Al after acidification in solid was greater than that 

after neutralization that was due to that the dissolved Al can generate the 

Al(OH)3(s), which was quite stable at neutral status. 

SEM imaging 

According to the SEM imaging in figure 3.9, 3.10 and 3.11, the morphology of 

bauxite residue was shown. Bauxite residue contained the fine particle material.  

After neutralization and acidification, the aggregates are formed. By comparing 
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the SEM of three types of bauxite residue, the BR1 contained smaller particle 

than the other two bauxite residues. 

Conclusion 

Bauxite residue as the byproduct of bauxite refining process has been 

characterized with high alkalinity, which could be exploited for use as the base 

chemical in flue gas desulfurization. In this study, bauxite residue from three 

sources were tested for acid neutralization capacity (ANC) as well as its linkage 

to minerology. The ANC (pH 7.0) of BR2 was the highest among the three 

bauxite residues, while the ANC (pH 5.5) of BR1 was found to be the greatest 

among the three types of bauxite residues. According to the chemical and 

mineral composition of the raw bauxite residue as well as the neutralized or 

acidified bauxite residue, the ANC (pH 7.0) of BR2 could be attributed primarily to 

readily dissolved alkalinity in the form of sodium hydroxide (NaOH) or sodium 

carbonate (Na2CO3). In comparison, the ANC (pH 5.5) of BR1 and BR3 was 

likely contributed from the mineral alkalinity, such as sodalite and calcite. 

Following the release of sodium (Na) and calcium (Ca) from bauxite residue after 

neutralization or acidification, the level of iron (Fe) increased in the solid phase 

and minerology changed. After acidification, sodalite (Na7.88(Al6Si6O24)(CO3)0.93) 

was transferred to tamarugite (NaAl(SO4)2▪6H2O) for BR1, while the calcite 

(CaCO3) was transferred to gypsum (CaSO4▪2H2O) for BR2 and BR3.  
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Appendix 

 
 

 

Figure 2.1. Photograph of bauxite residue from three sources. 

 

 

 
 

Figure 2.2. Titration curves for the different alkaline materials. 
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Figure 2.3. Accumulative curves of ANC (pH 7.0 and 5.5) for three types of 
bauxite residue. 
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Figure 2.4. Dissolved percentage from raw bauxite residue after washing, 
neutralization and acidification. 
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Figure 2.5. Chemical composition of raw bauxite residue and bauxite 
residue after treatment of washing, neutralization and acidification. 
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Figure 2.6. XRD patterns of BR1, Neutralized BR1 and Acidified BR1. 
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Figure 2.7. XRD patterns of BR2, Neutralized BR2 and Acidified BR2. 
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Figure 2.8. XRD patterns of BR3, Neutralized BR3 and Acidified BR3. 
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Figure 2.9. SEM micrographs of BR1 and materials after washing, 
neutralization and acidification. 
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Figure 2.10. SEM micrographs of BR2 and materials after washing, 
neutralization and acidification. 
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Figure 2.11. SEM micrographs of BR3 and materials after washing, 
neutralization and acidification. 
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Table 2.1. Concentration of inorganic chemicals in the leachate solution. 

Sample treatment 
Inorganic chemicals (mg L−1) 

Cu Zn As Cr Se 

BR1 
pH=7.02 0.06 0.08 0.01 0.00 0.02 

pH=5.41 0.09 0.16 0.01 0.00 0.01 

BR2 
pH=7.06 0.02 0.04 0.02 0.00 0.01 

pH=5.56 0.03 0.10 0.01 0.00 0.02 

BR3 
pH=7.05 0.02 0.04 0.04 0.03 0.01 

pH=5.49 0.03 0.10 0.01 0.02 0.01 

China EPA- Extraction toxicity limit 
(GB5085.3-2007) 

100 100 5 15 1 

U.S. EPA-TCLP leaching limit 
(40 CFR 261.24) 

N/A N/A 5 5 1 
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CHAPTER III 
POTENTIAL OF NEUTRALIZED BAUXITE RESIDUE IN THE 

REMOVAL OF AQUEOUS PHOSPHORUS 
  



47 
 

Abstract 

Phosphorus is a nonrenewable resource for crop and food production. The 

recovery of phosphorus from the natural environment is critical for the 

sustainable supply of this important fertilizer. Given the high content of iron 

oxides, it could be hypothesized that bauxite residue would be a feasible material 

for the removal of phosphorus from the aqueous phase. With the iron oxide-rich 

mineralogy of bauxite residue, this study investigated the potential of bauxite 

residue in the removal of aqueous phosphate via retention at concentrations 

relevant to agriculture runoff. Three types of bauxite residue were tested, 

exhibiting phosphate retention capacity ranging from 0.93 to 1.58 mg P/g. The 

parallel-first-order model suggested the phosphate removal process followed 

two-phase retention. The phosphate removal capacity was found to be affected 

by sulfate concentration, pH, and initial phosphate concentration. The increase in 

sulfate concentration and initial phosphate concentration lead to the increase in 

phosphate removal capacity. The neutralization and acidification of bauxite 

residue could enhance the phosphate removal. 
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Introduction 

Bauxite residue is a caustic waste from the process of alumina refining. With the 

industry development, the estimated production of bauxite residue has been 

growing rapidly based on the alumina production (Power et al., 2011) and the 

treatment is hard for bauxite residue due to its high alkalinity, leading to the 

serious storage problem. Besides acid neutralization, seawater, gypsum, CO2 

and SO2 are also used to neutralize bauxite residue (Grafe et al., 2011). The flue 

gas containing some acid gas is also a promising way to neutralize bauxite 

residue and the desulfurization happens at the same time (Fois et al., 2007; 

Wang et al., 2015). After neutralization, the main applications for bauxite residue 

consist of construction materials and wastewater treatment (Klauber et al., 2011). 

New approaches for utilizing these bauxite residues should be explored. 

The reuse of carbon, nitrogen, and phosphorous is always of great 

concern for social development and environmental protection, especially 

phosphorous as a nonrenewable resource. Phosphorus is an essential nutrient 

for plant growth, however, it is also an important factor for the eutrophication in 

natural water bodies. Nowadays, the recovery and reuse of phosphorous 

become more valuable by total value calculation (Mayer et al., 2016). The 

primary source of the losing phosphorus is the animal waste with the high 

concentration (Szogi and Vanotti, 2009). Many researchers have verified that the 

neutralized bauxite residue with the high content of iron oxides can be used to 

removal the phosphorus via the formation of complex and was considered as a 
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valid absorbent for phosphorous with relatively high concentration (Li et al., 2006; 

Liu et al., 2007; Huang et al., 2008; Bhatnagar et al., 2011; Zhao et al., 2012). 

Based on the previous study (Weaver and Ritchie, 1987), the cost of 

phosphorous treatment increased rapidly with the decrease of final required 

phosphorus concentration to less than 4 mg/L, implying that removal of 

phosphorous with low concentration is a key problem. Moreover, the agriculture 

runoff and erosion is another important source for the phosphorus capture with 

the property of high volume and low concentration (Rittmann et al, 2011). The 

inappropriate runoff can induce the eutrophication in surface as the serious 

environmental pollution. Only a few researches give some concern to the low 

concentration of phosphate (Huang et al., 2008). It is necessary for studying 

removal and recovery of phosphorous from the natural environment with low 

concentration. 

For phosphate removal, activated bauxite residue with acid and heat 

treatment shows the ideal performance as an inexpensive adsorbent. After acid 

and heat activation, bauxite residue can show more surface adsorption sites and 

positive charge in surface area to improve the phosphate adsorption (Li et al., 

2006; Yue et al., 2010). Many researches use different acids to treat the bauxite 

residue, such as HCl, HNO3 (Huang et al., 2008), and H2SO4 (Koumanova et al., 

1997). During the desulfurization, bauxite residue is equal to be acid activated by 

H2SO3 or H2SO4. During the phosphate removal by acid activated bauxite 

residue, many parameters, such as contact time, pH, temperature, ionic strength, 
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adsorbent dosage, competing ions, and initial phosphate concentration can have 

some obvious effects on the phosphate removal (Li et al., 2006; Huang et al., 

2008; Zhao et al., 2012; Behera and Das, 2016; Ye et al., 2016). During the 

desulfurization by bauxite residue, the bauxite residue may be neutralized to 

different pH and may contain large amounts of sulfate. These parameters may 

affect the phosphate removal by the neutralized bauxite residue. Additionally, 

phosphate removal by bauxite residue is related to many mechanisms, so the 

phosphate removal may be related to the property of bauxite residue. However, 

there is no study about the comparison of phosphate removal by the bauxite 

residue in different conditions. 

In this study, we investigated the potential of bauxite residue in the 

removal of aqueous phosphate via retention at concentrations relevant to 

agriculture runoff. Due to the different sources of raw bauxite, the bauxite residue 

always has different compositions and characteristics. This study is aimed to the 

comparison of phosphate removal by three types of bauxite residue and to 

exploit the optimal operating conditions and the possible retention mechanism 

under low concentration of phosphate by the neutralized bauxite residue. 

Materials and Methods 

Bauxite residue 

Three types of bauxite residue from Shandong, Guangxi, Pingguo in China were 

selected with different characteristics and named by BR1, BR2 and BR3. The 

bauxite residue (4 g) with 100 ml DI water was neutralized to pH 3, 5, 7 and 9 by 
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1 N H2SO4. The H2SO4 neutralized bauxite residue was used to simulate the 

desulfurized bauxite residue. The raw sample was gotten without the addition of 

H2SO4. After the equilibrium for 24 h, the samples were rinsed with DI water 

three times. 

The phosphate stock solution (1000 mg P/L) was prepared by dissolving 

the potassium dihydrogen orthophosphate (KH2PO4) with DI water. The Na2SO4 

stock solution (2 M) was prepared to adjust the concentration of sulfate. 

Phosphate and sulfate solutions with different concentrations were prepared by 

diluting the stock solution with DI water. 

The solid composition was determined by ICP-AES after the acid digestion 

(HNO3, HCl, HF). To identify the mineral composition, XRD patterns were 

collected using a Panalytical Empyrean with Cu Kα radiation at 45 kV and 40 mA. 

Scanning electron microscope is used to analyze the morphology. The specific 

surface area was determined by Brunauer–Emmett–Teller (BET)/N2 adsorption 

method using an automatic specific surface area measurement. pH was 

measured by pH meter with a combination pH electrode. 

Retention kinetics  

For phosphate retention kinetics, 200 mg of the H2SO4 neutralized bauxite 

residue (pH 7) was mixed with 200 mL phosphate solution (2 mg P/L) in a 250 

mL Erlenmeyer flask and 0.05 M Na2SO4 as a background electrolyte was added 

to adjust the ionic strength. The Erlenmeyer flask was capped with screws by 
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shaking at 120 rpm at 20 °C with duplicates. 1 ml solution was sampled at 0, 0.1, 

0.4, 1, 2, 4, 6, 8, 10, 12.5, 22, 32 and 48 h and then was centrifuged at 16000 

g/min for 10 min. A clear aliquot of the supernatant was analyzed for phosphate 

by Ion Chromatography (Dionex 3000i/SP). The pH value was measured by pH 

meter during the experiment.  

The amount of phosphate retention at equilibrium (qe, mg/g) was 

calculated based on the equation bellow: 

𝑞𝑒 =
(𝐶𝑖−𝐶𝑒)𝑉

𝑚
                                                                                             (1) 

where Ci and Ce are the initial and final (equilibrium) concentrations of the 

anions in solution (mg/L), V the solution volume (L), and m is the amount of 

adsorbent (g). 

The retention kinetics mainly follow the two-phase retention mechanism, 

e.g. the initial rapid phase and the second slow phase. A number of nonlinear 

equations have been applied to simulate the retention mechanism. The following 

equations were used to simulate the retention kinetics of phosphate in this study. 

 The pseudo first-order equation: 

𝑞𝑡 = 𝑞𝑒(1 − 𝑒−𝑘1𝑡)                                                                                    (2) 

where qt (mg/g) is the amount of phosphate adsorbed at time t (h), and k1 

is the equilibrium rate constant for pseudo first-order kinetics (h−1). 

The pseudo second-order equation: 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

𝑡

𝑞𝑒
                                                                                            (3) 
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where k2 is the equilibrium rate constant for pseudo second-order kinetics 

(g mg−1 h−1) 

The parallel first-order kinetics 

𝑞𝑡 = 𝑞𝑒1(1 − 𝑒−𝑘1𝑎𝑡) + 𝑞𝑒2(1 − 𝑒−𝑘1𝑏𝑡)                                                     (4) 

where qe1 and qe2 are the amount of phosphate adsorbed at equilibrium 

(mg/g) in the first and second reactions, respectively, and k1a and k1b (h−1) are the 

equilibrium rate constants for the first and second reactions, respectively. 

Intraparticle diffusion equation 

𝑞𝑡 = 𝑘𝑖𝑡0.5 + 𝐶𝑖                                                                                          (5) 

where ki is the intraparticle diffusion rate constant (mg g−1 h−0.5) and Ci is 

the constant, which is proportional to the boundary layer thickness. 

Batch phosphate removal experiment 

For batch phosphate removal studies, 20 ml solution with 2 mg P/L phosphate 

and the 1 g/L H2SO4 neutralized bauxite residue (pH 7) were prepared in 40 ml 

serum bottle with a background electrolyte of 0.05 M Na2SO4. The serum bottle 

was placed on a shaker (150 rpm) at 20 °C for 48 h phosphate for equilibrium. In 

the end, 1 ml solution was centrifuged at 16000 g/min for 10 min and analyzed 

for phosphate concentration and pH in solution. Different phosphate 

concentration (0, 1, 2, 5, 10, 20 mg/L) were set to study the effect of initial 

phosphate concentration on phosphate removal by fixing other parameters. With 

the similar procedure, the effect of sulfate concentration on phosphate removal 
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was examined in a series of experiments with different concentration of Na2SO4 

(0, 0.01, 0.05, 0.1, 0.5, 1 M). Bauxite residue neutralized to pH 3, 5, 7, 9 by 

H2SO4 and raw bauxite residue were used to study the effect of bauxite residue 

pH on phosphate removal. All batch experiments were carried out in triplicates. 

Data analysis 

Fitting of the data to the model was carried out using iterative nonlinear 

regression by Sigma Plot 14.0. Significance analyses were performed using the 

Student’s t-test by IBM SPSS Statistics 23.0, and the statistical probability P < 

0.05 was considered significant. 

Results and Discussion 

Characteristics of bauxite residue 

The chemical composition of bauxite residue is shown in Table 3.1 and the 

principal components were the oxides of Si, Fe, Al, Ca, Ti and Na. pH of these 

three types of bauxite residue were all closed to 7 in table 3.2. The surface area 

varied based on the origin of these bauxite residues and decreased following the 

order, BR1 (38.91 m2/g) < BR2 (15.06 m2/g) < BR3 (11.03 m2/g). The XRD 

pattern results indicated the remarkable difference among three types of bauxite 

residue in figure 3.1. BR1 contained more sodalite (Na7.88(Al6Si6O24)(CO3)0.93), 

while BR2 and BR3 contained more hematite (Fe2O3). SEM provided the surface 

morphology of the bauxite residue in figure 3.2. The BR1 seemed to contain 

smaller particle than the other two types of bauxite residue. 
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Phosphate retention kinetics of bauxite residue 

The dynamic retention of phosphate on the bauxite residue were illustrated in 

figure 3.3. At initial phosphate concentration of 2 mg P/L, 1g/L of bauxite residue 

was utilized for removing the phosphorus. After 48 h, the phosphate retention 

approached the equilibrium and the equilibrium time was apparently longer than 

equilibrium time (5 min−7 h) of phosphate retention by acid activated bauxite 

residue in other studies (Li et al., 2006; Liu et al., 2007; Huang et al., 2008; Zhao 

et al., 2012). However, the equilibrium time of phosphate retention was 

comparable with phosphate retention by other materials, such as zinc–aluminum 

layered double hydroxides (Cheng et al., 2009), and amorphous zirconium 

hydroxide (Chitrakar et al., 2006). In addition, the amount of phosphate removed 

at equilibrium decreased with the order of BR1 (1.58 mg/g) > BR2 (1.23 mg/g) > 

BR3 (0.93 mg/g). 

Based on these tests, the four different models were used to simulate the 

retention kinetics and the kinetics parameters were shown in table 3.3. 

Compared with pseudo-first-order model, pseudo-second-order model showed 

the better fit of experimental data with the greater regression coefficient and the 

smaller standard error. Consequently, chemical adsorption may dominate the 

process of phosphate retention on these bauxite residues due to that the pseudo-

second-order model was generally interpreted as chemical adsorption process 

(Huang et al., 2008).  
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Besides, the parallel-first-order model was used to simulate the retention 

kinetics and showed the best fit of experimental data with the greatest regression 

coefficient (R2 > 0.99) for all three types of bauxite residue among all kinetics 

model. The model suggested the phosphate retention on the bauxite residue 

followed the two-phase retention (Huang et al., 2008). At the initial 10 hours, the 

retention was relatively quick and exceeded 50% of the maximal retention 

amount, and the second phase was relatively steady. The two-phase retention 

may be attributed to retention for the two acidic phosphate species namely 

H2PO4
− and HPO4

2−, which mainly existed in phosphate solution at pH 7. By 

comparing the amount of phosphate removed at equilibrium (qe) and the 

equilibrium rate (k) in table 3.3, the retention capacity of BR1 was significantly 

different from BR2 and BR3. According to XRD and SEM, BR1 was different from 

BR2 and BR3 in mineral composition and surface morphology. 

Intraparticle diffusion model was used to explore the possible impact of 

intraparticle diffusion resistance on phosphate retention (Mezenner and 

Bensmaili, 2009). The relative high regression coefficient (table 3.3) indicated 

that the intraparticle diffusion was involved in the phosphate retention on bauxite 

residue. The values of C (0.02−0.11) was close to zero, implying the boundary 

layer effect and intraparticle diffusion may be the rate controlling step (Mezenner 

and Bensmaili, 2009). The intraparticle diffusion rate constant (Ki) for three types 

of bauxite residue followed the decreasing order of BR1 > BR2 > BR3. 
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Effect of sulfate 

During the flue gas desulfurization, the SO2 was absorbed by NaOH solution and 

transformed into Na2SO3 and finally oxidized into Na2SO4, so the concentration 

of sulfate should be very high when desulfurized bauxite residue was applied to 

phosphate removal. The effect of different sulfate concentration on phosphate 

retention was shown in figure 3.4. With the increasing of sulfate concentration, 

the phosphate retention was enhanced. From sulfate concentration increasing 

from 0 to 0.5 M, the amount of phosphate removed respectively increased from 

0.19 to 1.99 mg P/g BR1, from 0.82 to 1.98 mg P/g BR2 and from 0.68 to 1.96 

mg P/g BR3. At relative high sulfate concentration (0.5−1 M), the amount of 

phosphate removed was almost equal. The amount of phosphate removed with 

the 0.05−1 M sulfate followed the decreasing order of BR1 > BR2 > BR3. With 0 

and 0.01 M sulfate, the amount of phosphate removed by BR1 was minimal.  

The enhanced phosphate retention in existing of sulfate may be ascribed 

to the increasing ionic strength in solution or the direct effect of sulfate as a 

coexisting anion. For the influence of ionic strength, increasing the ionic strength 

should increase the surface charge. The phosphate retention on amorphous 

ZrO2 nanoparticles increased with the increase of the solution ionic strength due 

to the inner-sphere complex mechanism of phosphate (Su et al., 2013). For 

influence of coexisting anion, the phosphate retention on synthetic zeolite 

increased slightly in the presence of chloride, nitrate, or sulfate forming outer-

sphere complexes (Onyango et al., 2007). However, other studies showed that 
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phosphate retention was inhibited in coexisting of sulfate. With the effect of zeta 

potential, sulfate performed a strong competition adsorption against phosphate 

on bauxite residue granular adsorbent (Zhao et al., 2012). By forming both inner- 

and outer-sphere complexes with surface active sites, sulfate could hinder more 

available retention sites of neutralized bauxite residue (Tor et al., 2006) and 

hydroxyl–iron–lanthanum doped activated carbon fiber (Liu et al., 2013). 

Additionally, sulfate as coexisting ion showed no significant effect on phosphate 

retention by different types of materials, such as neutralized bauxite residue 

(Akhurst et al., 2006), Fe–Mn binary oxide (Zhang et al., 2009), nanostructured 

iron(III)–copper(II) binary oxides (Li et al., 2014) and iron hydroxide and iron 

oxide (Zhang et al., 2016). Therefore, the reason for enhancing the phosphate 

retention by bauxite residue with increasing sulfate concentration is not clear and 

it needs to be studied in future. 

Effect of pH 

Phosphate retention on the bauxite residue with different pH was illustrated in 

figure 3.5. All three types of bauxite residue neutralized to pH 5 performed the 

greatest phosphate retention capacity with 2.0 mg P/g bauxite residue, which 

was consistent with other studies (Huang et al., 2008; Zhao et al., 2012). The 

phosphate retention capacity decreased with pH of bauxite residue increasing 

and phosphate retention capacity of BR1, BR2 and BR3 was respectively 0.47, 

0.87 and 0.68 mg P/g bauxite residue at pH 9. BR2 and BR3 acidified to pH 3 

were nearly equal to the phosphate retention capacity of neutralized to pH 5, but 
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the BR1 acidified to pH 3 performed the low phosphate BR3 acidified with 0.73 

mg P/g bauxite residue. In some previous studies, phosphate BR3 acidified 

capacity of bauxite residue was also considered to have a close relationship with 

pH value of the phosphate solution.  

The effect of bauxite residue pH on the phosphate removal resulted from 

the change of characteristics of bauxite residue neutralized or acidified into 

different pH and the effect of different pH in solution on the surface charge and 

phosphorus species. In this study, pH in solution was measured and the results 

showed that the pH in solution was slightly higher than pH of bauxite residue 

(figure 3.5). For the bauxite residue neutralized to pH 7, the pH in solution was 

around 6.7 and slightly lower than 7. Overall, the pH of bauxite residue affected 

the pH in solution and the phosphate retention capacity of bauxite residue was 

correlated with the pH of bauxite residue. The bauxite residue acidified to low pH 

generally reduced the negative charges and increased more positive charges in 

the surface of bauxite residue which increased the attraction of the phosphate 

species by electrostatic forces in solution. Phosphate retention on activated 

bauxite residue was referred to the inner sphere complex mechanism relating to 

pH and thus the increased pH caused the decrease of phosphate retention 

(Pradhan et al., 1998). On the other hand, with the pH in solution decreased, the 

amount of H3PO4 decreased and the H2PO4
− and HPO4

2− dominated in the 

solution that consequently resulted in the high phosphate retention. Additionally, 

sodalite and cancrinite as alkaline mineral could be dissolved by neutralization 
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and acidification (Grafe et al., 2011), leading to more aluminum or iron oxides 

exposed in surface of bauxite residue that mainly contributed to the phosphate 

retention by chemical adsorption and formation of metal phosphate precipitates 

(Castaldi et al., 2010; Ye et al., 2015). 

Effect of phosphate amount 

The phosphate retention was linearly related to the initial phosphate 

concentration (figure 3.6). This result suggested that the phosphate retention 

capacity of bauxite residue remained unsaturated for retention sites and had 

potential to adsorb more phosphate or another anion. In the previous research, 

the phosphate retention by bauxite residue could reach to the thousands of mg 

P/L (Li at el., 2006). So that may result in that sulfate as coexisting ion enhanced 

the phosphate retention by bauxite residue instead of competition (figure 3.4). 

The concentration gradient as the driving force played an important role to 

overcome the mass transfer resistance between the solution and adsorbent 

surface (Liu et al., 2011; Ye et al., 2016). According to the calculation, the 

removal efficiency of phosphate with different phosphate concentration was 

about 50% by neutralized bauxite residue. The result implied that initial 

phosphate concentration had no significant influence on the phosphate removal 

efficiency. As same as the study above, the phosphate retention capacity 

followed the decreasing order, BR1 > BR2 > BR3, indicating that the phosphate 

retention capacity was related to the characteristics of bauxite residue.  
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Conclusion 

With the iron oxide-rich mineralogy of bauxite residue, this study investigated the 

potential of bauxite residue in the removal of aqueous phosphate via retention at 

concentrations relevant to agriculture runoff. The bauxite residues with different 

characteristics had different phosphate retention capacity. By comparison of 

phosphate removal by three types of bauxite residue under different conditions, 

the phosphate retention capacity all followed the decreasing order, BR1 > BR2 > 

BR3. By comparing four kinetics model, the pseudo-second-order model, the 

parallel-first-order model and intraparticle diffusion model could all fit the data 

well, of which the parallel-first-order model showed the best fitness. The 

equilibrium time was up to 48 hours. The phosphate retention capacity was 

subjected to the sulfate concentration as a coexisting anion, pH of bauxite 

residue and initial phosphate concentration. With increasing of sulfate 

concentration and initial phosphate concentration, the phosphate retention 

capacity increased, while the phosphate retention capacity increased with 

decreasing of pH of bauxite residue and was greatest with bauxite residue 

neutralized to pH 5. The initial phosphate concentration had no significant 

influence on the removal efficiency of phosphate.  
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Appendix 

 
 

Table 3.1. The chemical composition of three types of bauxite residue. 

Composition BR1 BR2 BR3 

Al2O3 8.43  0.55 16.92  2.73 13.62  0.87 

CaO 0  0 9.18  0.92 11.75  0.73 

Fe2O3 22.42  0.45 31.45  0.12 29.62  2.08 

Na2O  6.93  0.19 1.74  0.15 1.66  0.27 

SiO2 17.29  1.65 6.91  0.30 3.77  1.48 

TiO2 3.74  0.95 4.15  2.76 5.77  1.20 

LOI (1000 °C) 14.34 15.43 12.15 

 
 
 
 

Table 4.2. The major characteristics of three types of bauxite residue. 
 

BR1 BR2 BR3 

pH 6.77 6.74 6.86 

BET surface area (m2/g) 38.91 15.06 11.03 
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Figure 3.1. XRD patterns of three types of bauxite residue. 
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Figure 3.2. SEM patterns of three types of bauxite residue. 

 
 
 

 

 

Figure 3.3. Phosphate retention kinetics by bauxite residue. 
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Table 5.3. Removal kinetics parameters regressed by four different 
models. 

Parameters BR1 BR2 BR3 

Pseudo-first-order model       

K1 0.08 ± 0.01 a 0.14 ± 0.02 a 0.11 ± 0.02 a 

qe 1.55 ± 0.07 a 1.11 ± 0.06 b 0.96 ± 0.05 b 

R2 0.98 0.95 0.96 

Standard error 0.07 0.09 0.07 

Pseudo-second-order model       

K2 0.04 ± 0.02 a 0.13 ± 0.01 a 0.13 ± 0.03 a 

qe 1.97 ± 0.09 a 1.30 ± 0.06 b 1.02 ± 0.06 b 

R2 0.99 0.98 0.98 

Standard error 0.06 0.06 0.05 

Parallel-first-order model       

K1a 2.68 ± 0.65 a 0.94 ± 0.28 a 2.06 ± 0.63 a 

qe1 0.19 ± 0.02 a 0.37 ± 0.06 a 0.19 ± 0.02 a 

K1b 0.06 ±0.00 a 0.05 ± 0.01 a 0.06 ± 0.01 a 

qe2 1.49 ± 0.02 a 0.91 ± 0.05 b 0.77 ± 0.02 b 

R2 0.999 0.99 0.997 

Standard error 0.01 0.03 0.02 

Intraparticle diffusion model       

Ki 0.24 ± 0.01 a 0.18 ± 0.01 b 0.14 ± 0.01 b 

C 0.02 ± 0.02 a 0.11 ± 0.04 a 0.06 ± 0.02 a 

R2 0.99 0.96 0.98 

Standard error 0.05 0.08 0.05 

*Values followed by different letter in row are significantly different (p < 0.05) 
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Figure 3.4. Effect of sulfate on phosphate removal by bauxite residue. 
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Figure 3.5. Phosphate removal by bauxite residue with different pH and 
pH in equilibrium solution. 

*means the pH of raw bauxite residue that is close to 9 
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Figure 3.6. Phosphate removal by bauxite residue with different 
phosphate concentration. 
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CHAPTER IV 
FEASIBILITY OF BAUXITE RESIDUE FOR THE REMOVAL OF 

CIPROFLOXAIN IN THE AQUEOUS SOLUTION 
  



73 
 

Abstract 

Antibiotics are considered as emerging contaminants. Ciprofloxacin (CIP) as one 

of the synthetic fluoroquinolone antibacterial agents is frequently detected in 

aquatic environments. Bauxite residue as an alkaline waste stream generated 

from the alumina refining industry has been proposed for applications in pollution 

mitigation as an effective sorbent. In this study, two types of bauxite residue were 

tested for the removal of CIP. Characterization of the CIP retention kinetics 

revealed that the parallel-first-order model exhibited the best fitness with the 

equilibrium time of 24 h. Comparing the removal capacity of these two types of 

bauxite residue, BR1 with higher content of sodium had greater CIP removal 

capacity than BR2 with greater content of iron oxide and aluminum oxide, 

indicating that the ion exchange was considered as the main mechanism for CIP 

retention on bauxite residue. CIP removal exhibited a strong dependence on pH 

and ionic strength, indicating that a combined mechanism of cation exchange 

and complexation with iron and aluminum oxides was also responsible for CIP 

removal. Initial concentration of CIP and operation temperature were the other 

two important parameters affected CIP removal. The applicability of the 

Freundlich model provided a better fitting than the Langmuir model. In 

conclusion, bauxite residue could be utilized for the effective removal of CIP from 

the aqueous phase, expanding the utility of bauxite residue for the removal of 

aqueous pollutants. 
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Introduction 

Bauxite residue is the solid residue from the production of alumina. As the 

alkaline waste, there is no ideal approach for disposal and the storage problems 

also induce a variety of environmental and safety problems. Some concerns and 

researches focus on exploring the efficient solution for the storage and disposal 

of bauxite residue (Klauber et al., 2011). The current neutralization approaches 

included utilization of seawater, gypsum, mineral acids, CO2 and SO2 (Grafe et 

al., 2011). The desulfurization of flue gas by bauxite residue is a promising way 

by integrating the desulfurization of flue gas and neutralization of bauxite residue 

(Wang et al., 2015) and has been applied for industrial practice in some countries 

(Grafe et al., 2011). After neutralization, the bauxite residue was applied for the 

environmental pollutant treatment. The bauxite residue shows the excellent 

removal performance for the inorganic material, such as phosphate (Li et al., 

2006, Huang et al., 2008), heavy metal (Gupta and Sharma, 2002, Nadaroglu et 

al., 2010) and organic materials, such as dye (Wang et al., 2005, Shirzad-Siboni 

et al., 2014), phenolic compounds (Gupta et al., 2004, Tor et al., 2006). However, 

the utilization of bauxite residue is limited. Additionally, due to the different origin 

of bauxite mineral, the different bauxite residues have different characteristics 

that can lead to the different efficiency for the environmental application (Snars 

and Gilkes, 2009). Thus, it is necessary to explore more environmental 

applications according to the characteristics of bauxite residue. 
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Antibiotics as the emerging pollutant due to antibiotics abuse have been 

detected in different environments, thereafter the related environmental problems 

have persisted for several years all around the world (Fatta-Kassinos et al., 2011, 

Michael et al., 2013, Zhang et al., 2015), and the bacterial resistance is 

becoming one of the most important environmental problems. Ciprofloxacin (CIP) 

is a type of synthetic fluoroquinolone antibacterial agents and is widely used for 

human and animals (Zhang et al., 2015). CIP is frequently detected in natural 

environments, such as wastewater, river water, sediments and soil (Golet et al., 

2002, Golet et al., 2002, Liu and Wong, 2013). Environmental concentration of 

CIP in surface waters ranged between 14.4 and 9660 ng/L, while it ranged 

between 8 and 720 ng/L in wastewater effluents (Fatta-Kassinos et al., 2011). 

The hospital wastewater can be detected with a higher concentration (Van 

Doorslaer et al., 2014). CIP can be removed efficiently in wastewater treatment 

plant by adsorption on the sludge (Michael et al., 2013), thus CIP concentration 

in sewage sludge ranges from 1.40 to 2.42 mg/kg of dry matter (Golet et al., 

2002).  

CIP can be removed by adsorption (Gu and Karthikeyan, 2005), photolysis 

(Wei et al., 2013), and biodegradation (Girardi et al., 2011). Adsorption as an 

efficient retention approach has been studied widely. The carbon-based 

materials, such as nonporous carbons (Li et al., 2017), graphene oxide (Chen et 

al., 2015), activated carbon, carbon xerogel and carbon nanotubes (Carabineiro 

et al., 2012, Yu et al., 2016), have been verified as an efficient absorbent for CIP 
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removal. Besides, some inorganic absorbents have been used for CIP 

adsorption, such as aluminum and iron hydrous oxides (Gu and Karthikeyan, 

2005), montmorillonite (Wang et al., 2010, Wu et al., 2010), and kaolinite (Li et 

al., 2011). pKa1 and pKa2 values for CIP are 6.1 and 8.7 respectively and its 

species are different under different pH, thus CIP adsorption is a strong pH-

dependent behavior (Gu and Karthikeyan, 2005). The mechanisms of CIP on soil 

mineral clay include cation exchange (Wang et al., 2010, Li et al., 2011) and 

surface complexation (Gu and Karthikeyan, 2005, Pei et al., 2010). Many 

exchangeable basic cations exist in the surface of bauxite residue contributing its 

cation exchange capacity (Liu et al., 2007). Additionally, due to that the bauxite 

residue is a mixture of minerals including various oxides of Fe, Al, Si, Ca 

(Klauber et al., 2011), it may form the complexation with CIP. Although there is 

no study about the retention of CIP by bauxite residue, it has the possible 

potential for the removal of CIP by bauxite residue. 

This study aims to explore the feasibility of bauxite residue for removal of 

CIP from the aqueous solution and compare the removal efficiency of two types 

of bauxite residue. Using bauxite residue from two sources, we studied the 

retention kinetics, factors affecting the retention (pH, ionic strength, CIP 

concentration, and temperature) and isotherm curve. 
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Methods and Materials 

Materials 

CIP (purity >=98%) was purchased from Sigma-Aldrich Co. and stored at room 

temperature. Two types of bauxite residues with different characteristics were 

respectively collected from Shandong and Guangxi, China, which were denoted 

as BR1 and BR2. All air-dried samples were grounded and sieved by a 140-

mesh sieve. The bauxite residue (4 g) with 100 ml DI water was neutralized by 1 

N H2SO4. The H2SO4 neutralized bauxite residue represented the bauxite residue 

after the desulfurization of flue gas. After the equilibrium for 24 h, the samples 

were rinsed with DI water for three times. The raw sample with pH 10 was gotten 

without the addition of H2SO4. The rinsed samples with final pH 9 were rinsed 

with DI water for three times. The acidified samples were gotten with the similar 

method of neutralized samples by acidifying with different amounts of H2SO4 and 

the final pH of acidified samples were 3 and 5. The chemical composition of raw 

materials and neutralized bauxite residue were listed in table 3.1. 

Retention kinetics 

For retention kinetics, 1 g of the H2SO4 neutralized bauxite residue (pH 7) was 

mixed with 500 mL CIP solution (0.1 mM ≈ 34 mg/L) in a 1 L amber glass bottle 

and 0.1 M NaCl as a background electrolyte was added to adjust the ionic 

strength. The amber glass bottles were capped with screws by shaking at 120 

rpm and 20 °C with duplicates. 3 ml solution was sampled at 0, 0.25, 0.5, 1, 2, 4, 

6, 8, 12, 24 and 48 h and then was centrifuged at 16000 g/min for 10 min. A clear 
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aliquot of the supernatant was analyzed for CIP concentration by 

spectrophotometer (as below). The pH value was measured by a pH meter 

during the experiment.  

Batch removal study 

For batch removal studies, 20 ml CIP solution (0.1 mM) with the H2SO4 

neutralized bauxite residue (2 g/L) were prepared in 40 ml amber serum bottle 

and NaCl (0.1 M) as a background electrolyte was added to adjust the ionic 

strength. The amber serum bottles were placed on a shaker at 120 rpm and 20 

°C for 48 h. In the end, 3 ml solution was centrifuged at 16000 g/min for 10 min 

and analyzed for CIP concentration and pH in solution. The various amounts of 

NaCl were added to investigate the effect of ionic strength on the CIP retention 

by neutralized bauxite residue. Bauxite residue neutralized and acidified to 

different pH by H2SO4 were used to study the effect of bauxite residue pH on CIP 

removal. Different concentration of CIP solution was prepared to study the effect 

of initial CIP concentration on CIP removal by neutralized bauxite residue. All 

batch experiments were carried out in duplicates. 

Adsorption isotherm  

Adsorption isotherm studies were carried out in 40 ml amber serum bottle with 

different initial concentrations of CIP and a fixed concentration of neutralized 

bauxite residue (2 g/L). The amber serum bottles were placed on a shaker with 

different temperatures (20, 30 and 40 °C) at 120 rpm for 48 h. Other operation 

parameters were as same as the batch retention study above. 
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Analysis methods 

The CIP concentration was determined by a ThermoFisher Scientific Evolution 

600 UV/Vis spectrophotometer (Madison, WI 53711, US) with a detection 

wavelength at 275 nm. The CIP concentration was determined by the standard 

curve ranging from 0 to 50 mg/L. The solution without CIP was measured as 

control and the results showed that it had no interference on the CIP 

measurement. The mineralogical composition of bauxite residue was determined 

by XRD with Cu Kα radiation and a step/time scan mode of 0.75°/min and the 

crystalline phase was analyzed by the software MDI JADE with comparing 

standards in the powder diffraction file (PDF2) database. The specific surface 

areas of bauxite residue were obtained by BET/N2 adsorption methods using an 

automatic specific surface area measurement (Belsorp-max, MicrotracBEL, 

Japan). To determine pH of bauxite residue, 1 g of air-dried bauxite residue 

sample was stirred with 5 mL of deionized water for 5 minutes, and after settling 

for 30 minutes, the aqueous phase was used for pH measurement using a 

combination pH electrode (Oakton pH 700, U.S.). The point of zero charge 

(pHPZC) of bauxite residue was measured by batch equilibrium method. 0.1 g 

dried red mud sample was mixed with 20 mL of 0.1 M NaCl solution of a known 

initial pH in a glass vial, then was shaken at 250 rpm for 24 h. Initial pH was 

adjusted in a wide pH range (from 1 to 11) using different volumes of 0.1 M HCl 

or 0.1 M NaOH. Final pH values were plotted against initial pH and the pHPZC 

was determined from the plateau of the graph.  



80 
 

Data analysis 

Kinetics model 

The CIP removal capacity at equilibrium (qe, mg/g) was calculated based on the 

equation bellow: 

𝑞𝑒 =
(𝐶𝑖−𝐶𝑒)𝑉

𝑚
                                                                                              (1) 

where Ci and Ce are the initial and final (equilibrium) concentrations of CIP 

in solution (mg/L), V the solution volume (L), and m is the amount of bauxite 

residue (g). 

The removal kinetics were fitted to the three types of kinetic models as 

below: 

The pseudo first-order equation: 

𝑞𝑡 = 𝑞𝑒(1 − 𝑒−𝑘1𝑡)                                                                                                          (2) 

where qt (mg/g) is the amount of CIP removed at time t (h), and k1 is the 

equilibrium rate constant for pseudo first-order kinetics (h−1). 

The pseudo second-order equation: 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

𝑡

𝑞𝑒
                                                                                                                     (3) 

where k2 is the equilibrium rate constant for pseudo second-order kinetics 

(g mg−1 h−1) 

The parallel first-order kinetics: 

𝑞𝑡 = 𝑞𝑒1(1 − 𝑒−𝑘1𝑎𝑡) + 𝑞𝑒2(1 − 𝑒−𝑘1𝑏𝑡)                                                                   (4) 
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where qe1 and qe2 are the amount of CIP removed at equilibrium (mg/g) in 

the first and second reactions, respectively, and k1a and k1b (h−1) are the 

equilibrium rate constants for the first and second reactions, respectively. 

Isotherm model 

Langmuir and Freundlich isotherms, were applied to describe the equilibrium 

retention of CIP by the neutralized bauxite residue (pH 7) from liquid solution. 

The Langmuir isotherm assumes the sorption process at specific homogeneous 

sites for monolayer adsorption. The Freundlich isotherm is an empirical equation 

employed to describe heterogeneous system.  

Langmuir isotherm  

𝑄 =
𝑘𝑄𝑚𝐶𝑒𝑞

1+𝑘𝐶𝑒𝑞
                                                                                                          (5) 

where Q is the amount of CIP removed at equilibrium (mg/g), Ceq is the 

equilibrium concentration of CIP in solution (mg/L), Qm is the monolayer retention 

capacity (mg/g) and k is a constant related to the free energy of retention (L/mg).  

Freundlich isotherm  

𝑄 = 𝐾𝐶𝑒𝑞
1/𝑛

                                                                                               (6) 

where K is a constant ((mg/g)(L/mg)1/n ) that indicates the extent of the 

retention and n is a constant, which indicates the nonlinearity between solution 

concentration and the retention. 
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Fitting of the data to the model was carried out using iterative nonlinear 

regression by SigmaPlot 14.0. Significance analyses were performed using the 

Student’s t-test by IBM SPSS Statistics 23.0, and the statistical probability p < 

0.05 was considered significant. 

Results and Discussion 

Retention kinetics 

Retention kinetics of CIP on the two types of bauxite residue were shown in 

figure 4.1. To evaluate the removal performance, three retention kinetics models, 

first-order model, parallel-first-order model, second-order-model were used to fit 

the removal process. The kinetics parameters were listed in Table 4.1. According 

to the R-squared, parallel-first-order model was fitted better with the R2 of 0.99 

for the removal of CIP on both two types of bauxite residue. The parallel-first-

order model showed the retention of CIP followed two-phase process, quick 

retention (K1a = 2.67 for BR1 and 1.37 for BR2) and slow retention (K1b = 0.18 for 

BR1 and 0.05 for BR2). Some retention studies of CIP on the soil minerals had 

demonstrated that piperazinyl amine enabled CIP retention with cation exchange 

and the carboxylic acid group could interact with iron oxides, aluminum oxides 

and aluminosilicate by complexation or bridging (Gu and Karthikeyan, 2005, 

Carrasquillo et al., 2008, Mackay and Seremet, 2008). The cation exchange was 

confirmed as the primary retention mechanism of CIP on some clay minerals, 

such as montmorillonite (Wu et al., 2010), kaolinite (Li et al., 2011) and rectorite 

(Wang et al., 2011) based on the quantitative desorption study of the 



83 
 

exchangeable cation. Based on our results, the removed amount of CIP at 

equilibrium qe1 (4.36 for BR1 and 1.53 for BR2) is greater than qe2 (2.33 for BR1 

and 1.17 for BR2), which indicate the quick retention process was the dominant 

process. For two types of bauxite residue, the quick retention could be completed 

within 8 h and total equilibrium time was up to 24 h.  

Compared with the BR1 and BR2, the retention capacity of BR1 (4.36 for 

qe1 and 2.33 for qe2) at equilibrium was significantly greater than BR2 (1.53 for 

qe1 and 1.17 for qe2). Although the content of iron oxide and aluminum oxide in 

BR2 was greater than BR1, the result of retention capacity was opposite, 

suggesting that the complexation was not the main mechanism for CIP retention. 

Therefore, the cation exchange was supposed to the dominant mechanism. As 

exchangeable cations, sodium content of BR2 was the greater than BR2 in table 

4.1. Sodium in bauxite residue mainly consists of the sodium carbonate, sodium 

bicarbonate, sodium hydroxide and some minerals (sodalite, cancrinite, 

dawsonite) (Grafe et al., 2011). For BR1, the main mineral form of sodium was 

sodalite, and it transferred into tamarugite after the acidifying process, while the 

sodalite was much less for BR2 in figure 3.1. By quantitative desorption study, 

sodium was verified as primary cation to contribute to cation exchange during the 

CIP adsorption in the previous study (Wu et al., 2010, Li et al., 2011). Thus, BR1 

with higher sodium content was inferred that had the greater ion exchange 

capacity than BR2. The cation exchange may follow the equilibrium as below: 

≡ 𝑅𝑀− − 𝑁𝑎+ + 𝐶𝐼𝑃+ ↔ ≡ 𝑅𝑀− − 𝐶𝐼𝑃+ + 𝑁𝑎+                                      (7) 
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On the other hand, the specific surface area of BR1 (38.91 m2/g) was 

obviously greater than BR2 (15.06 m2/g), indicating that BR1 had more 

exchangable sites than BR2. The average of the specific surface area of bauxite 

residue was 32.7 m2/g for thirty different kinds of samples based on the previous 

review study (Grafe et al., 2011). During the neutralization, the specific surface 

area of bauxite residue changed depended on the origin of bauxite residue. For 

BR1, the specific surface area increased from the 32.17 m2/g to 38.91 m2/g, 

while it decreased from 19.16 m2/g to 15.06 m2/g for BR2 in table 4.1. Therefore, 

neutralization had different effects on the specific surface area of bauxite residue 

with different origins. 

The effect of some parameters in batch removal experiment 

Effect of ionic strength 

The retention capacity of CIP on bauxite residue decreased with the increasing of 

ionic strength from 0 to 0.5 M in figure 4.2. The CIP retention to aluminum and 

iron hydrous oxides was insensitive to ionic strength (Gu and Karthikeyan, 2005). 

Thus, the ionic strength could affect the ion exchange instead of complexation or 

bridging as described in equation 7. Due to the NaCl as a background electrolyte 

to adjust the ionic strength, the existence of sodium would compete for the 

exchangeable sites with the CIP+ and decrease the retention of CIP on the 

surface of bauxite residue. The decrease of ion exchange induced by the 

increase of ionic strength had been verified before (Li et al., 2009). Moreover, the 
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inhibition effect of ionic strength was found during the CIP retention on graphene 

oxide due to the electrostatic forces (Chen et al., 2015).  

Effect of pH 

Bauxite residues were neutralized or acidified into different pH, and then they 

were used to study the retention capacity of bauxite residue with different pH. 

The solution of bauxite residue with different treatments had different pH after the 

CIP retention. Thus, the CIP adsorption capacity was depended on the solution 

pH as shown in figure 4.3. The CIP retention had the greatest capacity at pH 

7.66 for BR1 and 6.28 for BR2. Between pH 6.1 (pKa1) and 8.7 (pKa2), CIP 

existed primarily in zwitterionic species that played an important role on the 

interaction of CIP and material surface (Gu and Karthikeyan, 2005, Wang et al., 

2010, Li et al., 2011). When the cation exchange was considered as the CIP 

retention mechanism, the cation species of CIP at low pH should be favorable for 

retention. Some studies showed that the retention of CIP decreased with 

increase of pH (Mackay and Seremet, 2008, Pei et al., 2010). Besides, based on 

the pHpzc in table 4.1, the two types of bauxite residue were different from each 

other. When the pH in solution was lower than pHpzc, the surface of bauxite 

residue dominated with cation, and the cation could expel with the bauxite 

residue by electrostatic interaction, while the anion could appeal to the bauxite 

residue. Although the cation exchange may be the dominant mechanism for CIP 

retention, the function of complexation and bridging should be not neglected 

completely. With the limited availability of cation exchange sites, the CIP 
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retention on soil initially increased with pH and decreased at pH > 8 (Vasudevan 

et al., 2009). It was studied that retention of CIP on iron and aluminum hydrous 

oxides due to complexation reached the plateau in the circumneutral pH range 

(Gu and Karthikeyan, 2005). Therefore, due to the high content of iron and 

aluminum oxides in bauxite residue (table 4.1), adsorption of CIP on bauxite 

residue was not only correlated with the cation exchange but also related with the 

complexation with the iron and aluminum oxides. 

Effect of initial concentration of CIP and temperature 

Retention capacity increased with increasing of initial concentration in figure 4.4. 

Bauxite residue showed the favorable removal capacity of CIP with the 

concentration ranged from 1.76-35.21 mg/L. This result indicated that the CIP 

retention on bauxite residue kept unsaturated, and it had the capacity to remove 

more CIP. However, with the increase of the initial concentration of CIP, removal 

efficiency decreased significantly. For BR1, CIP removal efficiency decreased 

from the 75% to 32% with CIP initial concentration increase from 1.76 mg/L to 

35.21 mg/L and decreased from 64% to 24% for BR2. Therefore, to achieve the 

high removal efficiency, the wastewater with high concentration of CIP requires 

to be treated by bauxite residue for several times. 

With the increase of temperature from 20 °C to 40 °C, CIP retention 

capacity decreased for BR2 in table 4.3. From 20 °C to 40 °C, there was no 

significant difference for BR1. Based on these results, the high temperature was 
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unfavorable for CIP retention on bauxite residue. Therefore, at room 

temperature, the CIP retention capacity of bauxite residue was excellent. 

Adsorption isotherm  

The adsorption isotherm at 20 °C, 30 °C, and 40 °C were fitted with Freundlich 

and Langmuir model, and the parameters were shown in table 4.3. The 

Freundlich model was significantly fitted better than Langmuir model with greater 

R2. The Freundlich model indicated various sites on the heterogeneous surface 

of bauxite residue. The cation exchange sites and metal oxides on the surface of 

bauxite residue both provided the retention sites. On the other hand, the different 

types of metal oxides and mineral morphology lead to the heterogeneous surface 

of bauxite residue. For different types of bauxite residue, the morphology differed 

from each other. Therefore, the CIP retention on bauxite residue was different 

from other mineral materials, e.g. montmorillonite (Wu et al., 2010) and kaolinite 

(Li et al., 2011), which could be fitted well with Langmuir model. 

Conclusion 

Two types of bauxite residue were tested for the removal of CIP as one of the 

typical antibiotics. For CIP removal kinetics, the parallel-first-order model with 

equilibrium time of 24 h showed better fitness than first-order model and second-

order-model. Comparing the removal capacity of these two types of bauxite 

residue, BR1 with higher content of sodium had greater CIP removal capacity 

than BR2 with greater content of iron oxide and aluminum oxide. The CIP 

retention on bauxite residue showed a strong pH and ionic strength dependent 



88 
 

behavior. Neutral pH and low ionic strength supported the CIP removal. 

Increasing the initial concentration of CIP could obviously decrease the removal 

efficiency of CIP and increasing temperature was also unfavorable for CIP 

removal. The Freundlich isotherm model was fitted better for CIP removal than 

the Langmuir isotherm model.  
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Appendix 

 
 

Table 4.1. The major characteristics of two types of raw and neutralized 
bauxite residue. 

parameters BR1 Neutralized 
BR1 

BR2 Neutralized 
BR2 

Specific 
Surface Area, A 
(m2/g) 

32.17 38.91 19.16 15.06 

pHpzc 
 

7.7 
 

8.3 
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Figure 4.1. CIP retention kinetics by bauxite residue. The line 
was the data fitted by first-order kinetics, parallel-first-order 
kinetics and second order kinetics. 
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Table 4.2. Retention kinetics parameters on bauxite residue. 

Parameters BR1 BR2 

First-order model 

 𝑞𝑡 = 𝑞𝑒(1 − 𝑒−𝑘1𝑡) 

    

K1 1.25 ± 0.23  0.64 ± 0.14  

qe 6.13 ± 0.22  2.17 ± 0.12  

R2 0.93 0.91 

Standard error 0.53 0.25 

Second-order model 

 
𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

𝑡

𝑞𝑒
 

    

K2 0.29 ± 0.03  0.34 ± 0.02  

qe 6.59 ± 0.15  2.41 ± 0.01  

R2 0.98 0.98 

Standard error 0.28 0.06 

Parallel-first-order model 

𝑞𝑡 = 𝑞𝑒1(1 − 𝑒−𝑘1𝑎𝑡) + 𝑞𝑒2(1 − 𝑒−𝑘1𝑏𝑡) 

    

K1a 2.67 ± 0.68  1.37± 0.14  

qe1 4.36 ± 0.48  1.53 ± 0.07  

K1b 0.18 ± 0.07  0.05 ± 0.01  

qe2 2.33 ± 0.45  1.17 ± 0.09  

R2 0.99 0.99 

Standard error 0.25 0.05 
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Figure 4.2. The effect of ionic strength on CIP removal 
by bauxite residue. 
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Figure 4.3. The effect of pH on CIP removal (left axis) and final 
solution pH (right axis). The solid lines represent the amount 
of CIP removed and dash lines represent the final solution pH, 
respectively. 
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Figure 4.4. The effect of CIP concentration on CIP removal amount 
(left axis) and removal percentage (right axis). The solid lines 
represent the amount of CIP removed and dash lines represent the 
removal percentage, respectively. 
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Table 4.3. Adsorption isotherm parameters on bauxite residue. 

  Langmuir model Freundlich model 

Sample Temperature (°C) k Qm R2 K 1/n R2 

BR1 20 0.08 7.71 0.72 0.51 0.75 0.98 

30 0.07 8.44 0.75 0.52 0.77 0.99 

40 0.05 9.59 0.83 0.52 0.75 0.99 

BR2 20 0.07 6.14 0.76 0.40 0.71 0.99 

30 0.01 13.70 0.19 0.29 0.79 0.99 

40 0.02 10.26 0.73 0.18 0.89 0.99 
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CHAPTER V 
EFFECTS OF BAUXITE RESIDUE AS AN ADDITIVE ON BIOGAS 
PRODUCTION AND PHOSPHORUS RECOVERY IN ANAEROBIC 

DIGESTER 
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Abstract 

Anaerobic digestion is a proven technology for the treatment of organic waste 

and production of biogas as a renewable energy source. Challenges to the broad 

application of anaerobic digestion include the need to improve treatment 

efficiency and management of nutrients in the digestate, such as phosphorus. In 

this study, the bauxite residue as an alkaline solid waste was applied to the 

anaerobic digestion as an additive. It was hypothesized that the addition of iron-

rich bauxite residue could increase the availability of iron, which is commonly 

considered as a limiting trace metal nutrient in anaerobic digestion. Using two 

bauxite residues of different minerology, the effect of bauxite residue on the 

biogas production and phosphorus (P) availability in anaerobic digester was 

investigated. The modified Gompertz model was found to fit the cumulative 

methane production well. The dosage of bauxite residue was shown to be critical 

for biogas production, with the addition of 8% bauxite residue significantly 

prolonging the lag time. Addition of BR1 with lower dosages amounts (0.5%, 2% 

and 4%) improved the biogas production, while the addition of BR2 had no 

impact on biogas production. It is also found that the addition of bauxite residue 

increased the levels of dissolved sodium (Na) and iron (Fe) in the digestion 

liquor. The increase in Na concentration is typically considered to be undesirable 

for anaerobic digestion processes. However, increased Fe following bauxite 

residue addition was beneficial for methane production and H2S elimination. 

Moreover, the addition of bauxite residue increased the relative abundance of 
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non-apatite inorganic phosphorus (NAIP), indicative of enhanced availability of 

phosphorus in the digestate. Therefore, the addition of bauxite residue at proper 

dosages could simultaneously enhance methane production and increase the 

availability of phosphorus in the digestate, providing an innovative strategy for 

the reuse of bauxite residue to support waste treatment and resource 

management. 

  



103 
 

Introduction 

With the rapid development of economy and society, the bio-solid waste 

production increases rapidly all around the world. The intensified animal 

production causes the large amounts of production of animal waste. Anaerobic 

digestion is a valid approach for waste stabilization and reduction as well as for 

converting the solid waste to bioenergy in the form of methane. Besides, the solid 

residue after the anaerobic digestion, e.g. anaerobic digestate, can be used as 

fertilizer with the high content of nitrogen and phosphorus (Insam et al., 2015). 

Land application of digestate can bring various benefits, such as nutrient 

recycling, reduction of mineral fertilizer consumption, and water pollution 

mitigation (Holm-Nielsen et al., 2009).  

Optimizing of operation is the primary way to maintain the stability of 

anaerobic digestion. Some biological or chemical additives are utilized to 

enhance biogas yield in anaerobic digestion or reduce the inhibition. Mao et al. 

(2015) summered some biological additives, such as microbial consortium and 

enzymes, and chemical additives, such as alkali reagent, acid reagent and 

oxidative reagent can be used to increase the availability of cellulose, 

hemicellulose, and lignocelluloses, which were reluctant for microbial utilization. 

The addition of macronutrients and trace elements can stimulate the treatment 

efficiency by stimulating the growth of microorganisms (Banks et al., 2012). 

Adding rusty scrap iron into anaerobic digestion was also proposed to enhance 

anaerobic sludge digestion as induced microbial iron reduction accelerated the 
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anaerobic hydrolysis–acidification processes (Zhang et al., 2014). Moreover, 

some adsorbents, such as zeolite, glauconite, activated carbon, and biochar, 

were considered to mitigate the inhibition and supply a habitat for the 

methanogenic microflora (Yenigun and Demirel, 2013, Mumme et al., 2014, 

Fagbohungbe et al., 2016). 

Besides high alkalinity and high salinity, bauxite residue as a kind of 

industrial waste from the alumina refining process is the iron oxide-rich mineral 

solid. Recently, bauxite residue with the high content of hematite was 

innovatively used as an additive in the anaerobic digestor (Ye et al., 2018, Ye et 

al., 2018, Ye et al., 2018). Firstly, the high alkalinity of bauxite residue promoted 

the hydrolysis-acidification reaction. Secondly, the higher conductivity enhanced 

the electron transfer between the syntrophic bacteria and methanogens. 

Additionally, the multivalent cations from hematite effectively promoted the 

formation of compact aggregates. All these performances obviously enhanced 

the biogas production. On the other hand, pH of bauxite residue can be 

neutralized during the anaerobic digestion, where the fermentative microbial 

community was verified for bioremediation of alkaline bauxite residue by 

producing organic acids and CO2 from an organic carbon substrate (Santini et 

al., 2016). Although the addition of bauxite residue in the anaerobic digestion had 

some advantages, it is not clear that the different kinds of bauxite residue had the 

same function in the anaerobic digester. 
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Bauxite residue has been verified as a valid absorbent of phosphorus, 

especially for the acid neutralized bauxite residue (Li et al., 2006, Liu et al., 2007, 

Huang et al., 2008, Zhao et al., 2012). The adsorption mechanism was 

suggested to include the chemical adsorption on Fe-Al phases of bauxite 

residue, and the formation of metal phosphate precipitates (Castaldi et al., 2010, 

Bhatnagar et al., 2011). Due to the decrease of phosphorus reserve, the 

recovery and reuse of phosphorous become more valuable based on the total 

value calculation (Mayer et al., 2016). Animal waste with high phosphorus 

concentration was the primary source for phosphorus recovery (Rittmann et al., 

2011). Therefore, the digestate from the anaerobic digestion was considered as 

the important resource of fertilizer. Separation of the liquid and solid fraction may 

shift phosphorus contents into the solid part, thus the availability of phosphorus in 

the digestate is critical as fertilizer. However, due to the addition of bauxite 

residue, it is not clear whether the availability of phosphorus in digestate can 

change. 

The aim of this study to the investigate and compare the impact of two 

bauxite residues with different minerology on the anaerobic digestion. First, we 

study the effect of the addition of different dosages of bauxite residue on the 

biogas production and explore the possible reason. Second, we study the 

phosphorus availability in the digestate after the separation of the liquid and solid 

fraction. 
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Materials and Methods 

Materials 

The bauxite residue from Shandong and Guangxi in China were selected with 

different characteristics and denoted by BR1 and BR2. Before use, the bauxite 

residue was crushed and passed through 60 mesh (0.25 mm) sieve. The 

characteristics of two types of bauxite residue were listed in table 5.1. 

Dairy waste slurry was collected from the waste storage tank of a dairy 

farm located in Loudon County, Tennessee, USA. The dairy waste slurry raw 

dairy manure and wastewater discharges. The inoculum was gotten from the 

subsequent laboratory-scale anaerobic digester with waste activated sludge as 

feedstock. All waste substrates were stored at 4 °C in the closed container before 

use. 

Batch experiment 

Batch experiments were conducted in the 120 ml glass vessels with 50 ml 

mixture of dairy waste slurry (61 g TS/L, pH 6.84) and 10 ml inoculum (5 g TS/L, 

pH 7.05). The bauxite residue was spiked into the vessel with the dosage of 

0.5% (0.3 g), 2% (1.2 g), 4% (2.4 g) and 8% (4.8 g). The control treatment was 

set up without the addition of bauxite residue. All vessels were flushed with 

nitrogen gas for 10 min and then sealed with rubber stopper and aluminum crimp 

cap. All digesters were incubated in the shaking incubator with a setting of 80 

rpm at 35 °C. Duplicates were set up in each experiment. 
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Analytic method 

Biogas production was determined by a modified water displacement method. 

Methane content in biogas was measured with a Hewlett Packard 5890 Series 

gas chromatograph with a thermal conductivity detector (TCD). When the biogas 

production was over, 2 ml suspension sample was collected from the vessel. 

Then the suspension sample was centrifuged, and the supernatant was acidified 

by HNO3. The supernatant was used for analysis of pH, VFA, soluble 

phosphorus and cation concentration, and the precipitate was used for analysis 

of phosphorus fraction. The pH was measured with a pH meter (Thermo 

Scientific Orion model 720-A). VFA was analyzed by a Hewlett Packard 5890 gas 

chromatograph equipped with a flame ionization detector (FID) and a Restek 

Stabilwax-DA column. Soluble cation was quantified by inductively coupled 

atomic emission spectrometry (Thermo Electron Intrepid II ICP-AES). Soluble 

phosphorus was quantified by ICP-AES and spectrophotometer. 

Phosphorus fraction 

Phosphorus in the solid was extracted according to the SMT protocol from the 

European Commission, through the Standards, Measurements and Testing 

(SMT) Program (Ruban et al., 1999). Briefly, the solid sample was calcinated in 

450 °C for 3 h, and then extracted by 3.5 M HCl. The phosphorus concentration 

by this step was denoted as the total phosphorus (TS). Inorganic phosphorus (IP) 

was analyzed by extraction with 1 M HCl, and the residue that was considered as 

organic phosphorus (OP) was calcinated at 450 °C for 3 h and then extracted by 
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1 M HCl. IP was furtherly divided by non-apatite inorganic phosphorus (NAIP) 

and apatite phosphorus (AP) by extraction with 1 M NaOH. Soluble phosphorus 

was measured by the stannous chloride method based on the Standard Methods 

for the Examination of Water and Wastewater (APHA, 2005).  

Data analysis 

Modified Gompertz model was selected to model the cumulative methane 

production as below (Nopharatana et al., 2007): 

𝐺𝑡 = 𝐺0 × 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝑈 × 𝑒

𝐺0

(λ − t) + 1]} 

Gt is cumulative of specific biogas production, ml; Go is biogas production 

potential, ml; U is the maximum biogas production rate (ml/day); λ lag phase 

period (minimum time to produce biogas), days; and t accumulative time for 

biogas production, days; e is the exp(1) = 2.7183. 

The experimental data were analyzed by SigmaPlot 14.0. To the 

differences in these parameters were analyzed using one-way analysis of 

variance (ANOVA). Significant differences in these parameters between different 

process stages were indicated by a probability value (p) less than 0.05 in ANOVA 

analysis with fish LSD test. 
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Results and Discussion 

Impact of bauxite residue on the methane production 

The modified Gompertz equation was fit well to the cumulative methane 

production with addition of the different amount of bauxite residue. The 

parameters of G0, U and λ were summarized in Table 5.2. The modified equation 

can be used to fit the methane production process with correlation coefficients 

from 0.996 to 0.999. For methane production potential, the addition of BR1 with 

0.5%, 2% and 4% increased the methane production potential and the increased 

ranged from 2.66% to 4.79%. However, the methane production potential did not 

significantly change with the addition of 8% BR1 and different amounts of BR2. 

This result was different from a previous study (Ye et al., 2018), in which the 

addition of 2% bauxite residue resulted in an obvious increase with 35.5% 

methane production due to the promoted the hydrolysis-acidification reaction and 

the enhanced electrical conductivity. The enhanced hydrolysis-acidification by 

alkali was verified by some studies (Su et al., 2013). For the maximum methane 

production rate, with increasing amount of bauxite residue, the maximum 

methane production rate increased, except the addition of 2% BR1, suggesting 

that more readily degraded organic matter is available due to the possible 

enhanced the hydrolysis. For the lag time, the large amounts of bauxite residue 

increased the lag time for 8% BR1, and 4% and 8% BR2. Especially, the addition 

of 8% BR2 significantly increased the lag time by 3.37 times relative to the 

control. This result was attributed to the high pH of bauxite residue and the 

limited buffer capacity of the fermentation liquor. The addition of bauxite residue 
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could increase the initial pH in the anaerobic digester that affected the microbial 

acclimatization time. 

Although the initial pH could be affected, the final pH kept steady ranging 

from 7.7 to 7.9 in figure 5.1, indicating the bauxite residue could be neutralized 

by the anaerobic digestion with the increase of buffer capacity due to the 

production of VFA and CO2. Therefore, the up to 8% of the bauxite residue could 

be neutralized by the anaerobic digestion. There was no significant accumulation 

of VFA, except for the addition of 8% BR2. The primary composition of VFA was 

acetate here, thus the accumulated acetate was not consumed by methanogen 

that was affected by the addition of 8% BR2.  

The content of soluble cation in the anaerobic digester 

Bauxite residue contained lots of the aluminum (Al), iron (Fe), calcium (Ca), 

sodium (Na), silica (Si), and titanium (Ti) for the BR1 and BR2 in Table 5.1. The 

NaOH, Na2CO3, and sodalite could all release sodium. Potassium (K), Calcium 

(Ca), Sodium (Na), Magnesium (Mg) were the primary elements in the digestion 

liquor in figure 5.2. Compared with control, Na concentration significantly 

increased with the increased addition amounts of bauxite residue. The Na 

concentration in control was 773 mg/L, while Na concentration was respectively 

5186 mg/L and 6841 mg/L with the addition of 8% BR1 and BR2. K concentration 

decreased with the increasing addition of BR1, while K concentration kept steady 

with the increasing addition of BR2. For Ca and Mg, the concentration relatively 

decreased with increasing addition of bauxite residue. In sum, the addition of 
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bauxite residue increased the salinity in the solution. The salt was necessary for 

microbial growth; however, the high salt could cause microbial cells to dehydrate 

due to osmotic pressure (Chen et al., 2008). Thus, the increase of salinity was 

detrimental to methane production. However, the bauxite residue from different 

sources had different Na content (Grafe et al., 2011), and the effect of the 

increase of salinity was subjected to the different sources of bauxite residue. 

The addition of iron-rich bauxite residue could also increase the availability 

of Fe in the reducing condition, which is commonly considered as a limiting trace 

metal nutrient in anaerobic digestion. In figure 5.3, increase addition of bauxite 

residue increased the Fe concentration in the digestion liquor. For BR1, the Fe 

concentration increased from 1.77 mg/L for control to 3.52 mg/L, while for BR2, 

Fe concentration increased from 1.77 mg/L for control to 10.41 mg/L. The 

difference may be ascribed into the different content of Fe for two different types 

of bauxite residue. BR2 contained 29.53% of Fe, which was greater than 21.32% 

for BR1. Besides of the dissolved Fe, the bauxite residue contained high content 

of hematite. Ye et al. (Ye et al., 2018, Ye et al., 2018) explained the reason that 

the addition of bauxite residue with the high content of hematite increased 

methane production. On the one hand, multivalent cations from hematite 

effectively promoted the formation of large and compact aggregates that lead to 

the direct electron exchange. On the other hand, Fe released from bauxite 

residue as a redox-active mediator could take part in the interspecies electron 

transfer process between syntrophic bacteria and methanogenic archaea. 
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Furthermore, the ferric iron reduction could be considered as an important 

pathway for enhancing organic matter decomposition (Lovley, 1987, Liu et al., 

2015). The release of Fe not only affected the methane production but also 

eliminated the potential sulfide production as well as the possible H2S emission 

in the by iron-sulfide precipitation (Liu et al., 2015). Therefore, the increase of Fe 

by addition of bauxite residue would be beneficial for the anaerobic digester. 

Impact of bauxite residue on the bioavailability of phosphorus in the 
digestate 

The phosphorus concentration was determined by UV-Vis spectrophotometry 

and ICP-AES, which represent the soluble reactive phosphorus and the total 

phosphorus (Pardo et al., 2004). The difference between these two values 

represented the organic phosphorus. Addition of BR1 decreased the 

concentration of IP in figure 5.4, indicating IP was adsorbed by BR1. However, 

the concentration of IP and OP increased with the addition of BR2, especially for 

the addition of 8% BR2. The result implied that the addition of bauxite residue 

promoted the release of the soluble P. 

Besides of the soluble phosphorus, over 94% of TP was bound in the 

digestate. SMT for analyzing the phosphorus fractionation had been applied for 

the sewage sludge and sediment samples (Medeiros et al., 2005). According to 

the SMT method, the phosphorus in the solid was divided into OP and IP that 

consisted of NAIP and AP. NAIP represented the adsorbed by exchange site and 

associated with Al, Fe and Mn oxide and hydroxides, while AP represented the 
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Ca-bound compounds (Ruban et al., 1999). In figure 5.5, with the increase 

amounts of bauxite residue, relative abundance of NAIP increased from 32% for 

control to 66% for BR1 and 61% for BR2, while relative abundance of AP 

decreased from 48% for control to 16% for BR1 and 26% for BR2. This result 

suggested that AP was transferred into NAIP with the addition of bauxite residue 

and availability of phosphorus in the digestate increased with the addition of 

bauxite residue. It was postulated that organic acid and CO2 could promote the 

dissolution of apatite. The digestate with bauxite residue had the potential as the 

P resource for substitution of P fertilizer from the P rock. Furthermore, the 

digestate as fertilizer could play an important role in the organic amendment 

(Tambone et al., 2009). 

Conclusion 

Using two types of bauxite residues with the different minerology, the effect of 

bauxite residue on the biogas production and phosphorus (P) availability in 

anaerobic digester was investigated. The modified Gompertz model was found to 

fit the cumulative methane production well. The dosage of bauxite residue was 

shown to be critical for biogas production, with the addition of 8% bauxite residue 

significantly prolonging the lag time with accumulation of acetate in anaerobic 

digester. Addition of BR1 with lower dosages amounts (0.5%, 2% and 4%) 

improved the biogas production with 2.66% to 4.79%, while the addition of B2 

had no impact on biogas production. At the end, pH in anaerobic digester was 

similar from 7.7 to 7.9 with different dosage of bauxite residue. It is also found 
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that the addition of bauxite residue increased the levels of dissolved Na and Fe in 

the digestion liquor. The increase in Na concentration is typically considered to 

be undesirable for anaerobic digestion processes. However, increased Fe 

following bauxite residue addition was beneficial for methane production and H2S 

elimination. Moreover, the addition of bauxite residue increased the relative 

abundance of non-apatite inorganic phosphorus (NAIP), indicative of enhanced 

availability of phosphorus in the digestate. Therefore, the addition of bauxite 

residue at proper dosages could simultaneously enhance methane production 

and increase the availability of phosphorus in the digestate, providing an 

innovative strategy for the reuse of bauxite residue to support waste treatment 

and resource management. 
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Appendix 

 
 

Table 5.1. The major composition of two types of bauxite residue. 

Composition BR1 BR2 

Al2O3 18.05  2.97 18.34  0.02 

CaO 2.22  0.22 12.48  4.74 

Fe2O3 21.32  3.41 29.53  3.76 

Na2O  11.70  1.70 5.63  3.29 

SiO2 12.51  8.99 3.13  3.84 

TiO2 4.29  5.80 3.13  2.75 

LOI (1000 °C) 11.25 16.86 

 
 
 
 
 
 
 
 

Table 5.2. Parameters of methane production calculated from Gompertz 
equation. 

  G0 (ml) U (ml/day) λ (days) 

Control 0% 781.43 ± 8.35 a 36.96 ± 1.26 a 4.43 ± 0.36 a  

BR1 

0.5% 818.88 ± 8.48 c 39.70 ± 1.35 ab 4.27 ± 0.35 a 

2% 803.05 ± 7.02 bc 42.67 ± 1.34 cd 4.65 ± 0.30 a 

4% 802.24 ± 7.24 b 40.84 ± 1.26 bc 4.89 ± 0.31 a 

8% 773.93 ± 3.63 a 44.05 ± 0.77 de 6.60 ± 0.16 c 

BR2 

0.5% 794.06 ± 6.64 ab 42.44 ± 1.29 cd 4.59 ± 0.29 a 

2% 786.89 ± 5.09 ab 44.45 ± 1.10 bcd 4.84 ± 0.23 a 

4% 792.59 ± 5.68 ab 46.34 ± 1.29 ef 5.79 ± 0.25 b 

8% 766.82 ± 9.41 a 47.68 ± 2.00 f 14.93 ± 0.32 d 
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Figure 5.1. Influence of the addition of different dosages of bauxite 
residue on the VFA (left axis) and pH (dotted line, right axis) in the 
anaerobic digester. The error bars indicate the standard deviation with 
duplicates. 
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Figure 5.2. Influence of the addition of different dosages of 
bauxite residue on soluble cations in the anaerobic digester. The 
error bars indicate the standard deviation with duplicates. 
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Figure 5.3. Influence of the addition of different dosages of bauxite 
residue on Fe in the anaerobic digester. The error bars indicate the 
standard deviation with duplicates. 
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Figure 5.4. Influence of the addition of different dosages of bauxite 
residue on P concentration in the liquid of anaerobic digester. The 
error bars indicate the standard deviation with duplicates. 
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Figure 5.5. Influence of the addition of different dosages of bauxite 
residue on P fraction in the digestate. 
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CHAPTER VI 
SUMMARY 
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Bauxite residue is an industrial waste generated from the alumina refining 

industry, raising great concerns for environmental pollution. The primary problem 

for bauxite residue is its high alkalinity and salinity. Flue gas desulfurization as a 

valid approach has verified to neutralize the alkalinity of bauxite residue with the 

acidity in flue gas. This beneficial reuse of bauxite residue is desirable for the 

sustainable management of this waste stream. In this study, it was first identified 

the linkage between the characteristics of the bauxite residues and their acid 

neutralization capacity (ANC). Further options of beneficial use were investigated 

according to the characteristics of bauxite residues. With the iron oxide-rich 

mineralogy, bauxite residue exhibited excellent capabilities to remove aqueous 

phosphate at environmentally relevant concentrations. Given that phosphate is 

an important nutrient, the removal and concentration of phosphorus with bauxite 

residue could be a strategy for the recovery of phosphorus as a resource. 

Moreover, bauxite residues were also found to be able to remove ciprofloxacin as 

an extensively used antibiotics and potential water pollutant. These findings show 

that bauxite residues could be used as feasible materials for pollution mitigation 

as well as resource recovery. The utility of bauxite residues was further 

demonstrated in the utilization of bauxite residues as an additive in anaerobic 

digestion, which is frequently implemented for the stabilization of organic waste 

and the production of biogas as a renewable energy source. My work shows that 

bauxite residues could be readily neutralized by the buffering capacity of the 

digestate in the anaerobic digestion without negatively impacting process 
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performance. More importantly, the addition of bauxite residue could enhance the 

availability of phosphorus in the digestate which is desirable for the land 

application of anaerobic digestate as a soil supplement.  

The significance of this application of bauxite residue could be further 

illustrated at the nexus of water, energy, and food. High strength wastewater, 

such as dairy farm wastewater, is treated with the anaerobic digestion technology 

with the production of biogas as a renewable energy source. Additionally, the 

digestate derived from anaerobic digestion is suitable for land application as a 

fertilizer to support crops. Subsequently, crops are used as food for human 

consumption or as feedstock for livestock. Organic waste from the livestock 

industry or human consumption can be again used in anaerobic digestion 

treatment to produce biogas as a renewable energy source and digestate for 

land application as fertilizers, providing a closed-loop framework with high levels 

of sustainability that could serve as a model for the development of sustainable 

environmental management practices in other industries.  
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