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Steven E. Skutnika,∗, David R. Davisa
3

aDepartment of Nuclear Engineering, University of Tennessee-Knoxville, Knoxville, TN 379964

Abstract5

The use of passive gamma and neutron signatures from fission indicators is a common means6

of estimating used fuel burnup, enrichment, and cooling time. However, while characteristic fission7

product signatures such as 134Cs, 137Cs, 154Eu, and others are generally reliable estimators for used8

fuel burnup within the context where the assembly initial enrichment and the discharge time are9

known, in the absence of initial enrichment and/or cooling time information (such as when applying10

NDA measurements in a safeguards/verification context), these fission product indicators no longer11

yield a unique solution for assembly enrichment, burnup, and cooling time after discharge. Through12

the use of a new mesh-adaptive direct search (MADS) algorithm, it is possible to directly probe the13

shape of this “degeneracy space” characteristic of individual nuclides (and combinations thereof),14

both as a function of constrained parameters (such as the assembly irradiation history) and un-15

constrained parameters (e.g., the cooling time before measurement and the measurement precision16

for particular indicator nuclides). In doing so, this affords the identification of potential means of17

narrowing the uncertainty space of potential assembly enrichment, burnup, and cooling time combi-18

nations, thereby bounding estimates of assembly plutonium content. In particular, combinations of19

gamma-emitting nuclides with distinct half-lives (e.g., 134Cs with 137Cs and 154Eu) in conjunction20

with gross neutron counting (via 244Cm) are able to reasonably constrain the degeneracy space of21

possible solutions to a space small enough to perform useful discrimination and verification of fuel22

assemblies based on their irradiation history.23

1. Introduction24

The use of passive gamma-ray signatures from characteristic fission products is a staple for25

non-destructive burnup analysis of used nuclear fuel, both for burnup credit applications (for used26
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nuclear fuel storage and management) as well as for safeguards and material accountancy appli-27

cations. In this latter case, passive gamma-ray measurements are typically used as either a gross28

estimator of nuclear fuel burnup [1–3] (i.e., to reconstruct burnup gradients across assemblies) or are29

combined with other techniques to verify operator declarations of the assembly irradiation history30

with the objective of establishing total assembly plutonium content via reconstruction of the as-31

sembly isotopic content through depletion simulations with the estimated burnup, such as through32

the use of depletion codes like ORIGEN (part of SCALE) [4–6]. In this latter case, calculations of33

the assembly plutonium content rely on estimates of the fuel burnup, enrichment, and cooling time34

following its last irradiation cycle [7, 8].35

Passive gamma measurements of prominent gamma signatures are typically used as burnup36

and cooling time indicators, such as 137Cs, 154Eu, or ratios of of gamma lines such as the ratio of37

134Cs to 137Cs intensity [1–3, 9, 10]. These nuclides are used due to both their well-established38

relationship with assembly burnup (and in certain cases, cooling time) as well as their relatively39

prominent gamma signatures capable of being distinguished within the complex spectrum of spent40

fuel assemblies [9]. Passive non-destructive analysis (NDA) techniques (including both passive41

gamma spectroscopy and passive measurements of gross neutron counts [1, 11, 12]) offer a preferred42

pathway for estimating used fuel inventories given that they can be performed relatively quickly43

and inexpensively compared to destructive analysis techniques and require minimal instrument44

complexity [13]. As a result, passive gamma signatures analysis continues to serve as a foundation45

for safeguards technology development efforts such as the Next Generation Safeguards Initiative46

[10, 14, 15].47

Beyond characterization of spent fuel plutonium content, passive gamma NDA indicators are48

likewise frequently cited as a means of establishing a unique “fingerprint” for assemblies, including49

for cases such as re-establishing continuity-of-knowledge upon a loss of on-site power [8] or for ter-50

mination of safeguards at a geological repository [12]. In these types of applications, measurements51

would ideally be able to uniquely verify operator declarations on the basis of passive signatures;52

however, as a practical matter, such systems are typically oriented around the ability to verify (or53

reject) operator declarations (such as cycle when of an assembly was discharged or its discharge54

burnup). For example, assuming typical cycle lengths on the order of 12-18 months, an uncertainty55

of less than ±1 year would be expected to discriminate between discharge cycles. Similarly, NGSI56

has expressed a goal of characterization of plutonium within assemblies within ±5% [14, 15], which57
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roughly corresponds to the same level of uncertainty in discharge burnup.58

Unique determination of assembly initial enrichment is more challenging and is typically consid-59

ered beyond the means of passive NDA techniques alone [16]; however other researchers have claimed60

to make unique discrimination of the initial enrichment by employing semi-empirical relationships61

between burnup and initial enrichment based on the assumption that nuclear plant operators would62

seek to minimize operating margins [17]. While relying on estimates of cooling time and discharge63

burnup would allow safeguards inspectors to narrow down an assembly to within a discharged batch64

of assemblies (given a sufficiently tight tolerance on these parameters), the ability to independently65

establish an assembly’s initial enrichment (or at the very least to discriminate between different66

potential fuel enrichments within a single batch, where differences can range on the order of 1-3%67

235U) is still potentially required to provide unique identification of assemblies.68

In an ideal circumstance, a truly accurate reconstruction of isotopic inventories would rely on69

information provided directly from the reactor operator. However, given that a goal of safeguards70

measurements is to independently verify operator declarations, measurements from the fuel must71

serve to act as a proxy for the fuel parameters required to accurately reconstruct the assembly72

isotopic content. Assuming that the concentrations of burnup indicator nuclides are unique to the73

specific combination of fuel enrichment, burnup, and cooling time, the total plutonium inventory74

within the assembly is therefore also unique. Similarly, given a specified limiting measurement75

precision σN , it follows that the space of plutonium inventories would likewise show some statistical76

uncertainty σPu, proportional to the measurement uncertainty in burnup.77

However, while characteristic fission product signatures such as 134Cs, 137Cs, 154Eu, and others78

are generally reliable estimators for used fuel burnup within the context where the assembly irra-79

diation history is well-known, prior work by Cheatham and Francis has indicated that the space of80

solutions based on burnup indicators is in fact not unique for the space of initial fuel enrichment,81

burnup, and cooling time indicators [18]. Rather, they observed that a phase space of non-unique82

combinations of reactor parameters exist, wherein the inventories of burnup indicator nuclides are83

effectively indistinguishable from one another. Put another way, there exists a non-trivial space84

in the enrichment, burnup, and cooling time domains that yield the same inventories of burnup85

indicator nuclides within some measurement tolerance σN . Therefore, the same measured burnup86

indicator species yields a range of potential plutonium concentrations in the fuel. (Note that while87

NDA measurements would still uncover gross operator misrepresentations of an assembly’s irra-88
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diation history, such as short-cycling intended to favorably manipulate the 239Pu-to-240Pu ratio,89

smaller uncertainties in total assembly Pu content are still relevant to contexts such as front-end90

accountancy measurements for reprocessing facilities.)91

A useful consideration for passive burnup signatures analysis for used fuel burnup information92

in such contexts is therefore the extent of the non-uniqueness of this signature space, i.e. the size of93

the phase space made up of potential alternative assembly irradiation history characteristics (initial94

enrichment, burnup, and cooling time) which yield similar gamma signatures and in particular the95

influence of unconstrained parameters such as the time after discharge before measurement and the96

achievable measurement uncertainty on key signatures on the size of this phase space.97

In this paper, we propose a new method for characterizing the shape of this degenerate signature98

space through the use of a Mesh Adaptive Direct Search (MADS) algorithm. By coupling the99

MADS algorithm directly with the latest ORIGEN application program interface (API) [19], it100

is thus possible to automate the exploration of the phase space shape characteristic of individual101

nuclides both as a function of a constrained parameters (such as the assembly’s initial enrichment102

and irradiation history) as well as its unconstrained parameters (i.e., time before measurement and103

measurement uncertainty of individual nuclides). The goal of this work is to evaluate how this104

“degeneracy space” evolves with particular characteristics such as the nuclide identifier species,105

cooling time, and potential combinations of nuclide measurements that can be used to constrain106

the shape of the space (thereby limiting the uncertainty in calculated plutonium content).107

2. Theory and methods108

The objective of this method to determine the potential size of a group of ambiguous solutions109

(phase space), within which the concentrations of all indicator nuclides vary within a given tolerance110

(±σN ). For example, if the only indicator nuclide is 137Cs and σ137 = ±5%, the phase space111

will be the group of solutions which contain a 137Cs concentration within 95%–105% of the 137Cs112

concentration in the nominal case, regardless of the concentrations of other nuclides. This tolerance113

accounts for the uncertainty inherent in any measurement method.114

To find the phase space for arbitrary indicator nuclides and thresholds, we created a tool called115

OrigenDSA, or the ORIGEN Degenerate Signatures Analysis. The OrigenDSA tool builds directly116

upon the new ORIGEN API (to be be released as part of SCALE 6.2) [19] in order to efficiently117

harness ORIGEN for performing depletion calculations. Here, the search for degenerate assembly118
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history parameters is performed via a mesh-adaptive direct search algorithm (MADS), which treats119

the group of all possible solutions as a three-dimensional space, refining the interesting solutions120

until the phase space appears as a solid shape embedded in the search space.121

2.1. Estimation of used fuel burnup from passive gamma / neutron signatures122

Gamma rays emitted from used fuel assemblies are the product of specific fission product decays.123

By counting the number of photons emitted (and making the appropriate efficiency corrections),124

the gamma ray intensity can be correlated to the inventory of the fission product species in question125

as follows (Equation 1) [9]:126

I = εκSNλe−λt (1)

Where:127

• I = gamma ray count rate (cps)128

• ε = absolute detection efficiency (including self-attenuation of gammas within the fuel, detec-129

tor solid angle, and detector intrinsic efficiency)130

• κ = decay line branching ratio ( γ
decay )131

• N = number of fission product nuclei (atoms)132

• λ = fission product decay constant ( decays
nucleus·sec )133

• t = cooling time before measurement (seconds)134

Similarly, because the dominant spontaneous fission neutron source term in spent fuel is 244Cm,135

passive neutron counting is therefore treated as roughly proportional to the total 244Cm content136

of the fuel. Gross neutron counting thus provides a separate means of estimating used fuel burnup137

[11, 12]. The intensity of the passive neutron source term (itself the product of several neutron138

captures) is generally estimated through empirical relationships as being approximately proportional139

to burnup to the fourth power [1, 9, 12].140

The basic premise of fission product burnup indicators is that the relationship between the141

fission product identifier can be well-correlated with burnup; this is best illustrated as the near-142

linear relationship between 137Cs and the 134Cs to 137Cs ratio, as shown in Figure 1.143

5



M RMMM NMMMM NRMMM OMMMM ORMMM PMMMM PRMMM QMMMM

_ìêåìé=EjtÇLjqrF

M

OMM

QMM

SMM

UMM

NMMM

NOMM

NQMM

NSMM

1
37

`
ë=

ã
~ë

ë=
EÖ

ê~
ã

ëF
137 `ë=áåîÉåíçêó=~ë=~=ÑìåÅíáçå=çÑ=ÑìÉä=Äìêåìé

(a) 137Cs inventory as a function of burnup
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(b) Ratio of 134Cs to 137Cs as a function of burnup

Figure 1: Relative inventory of 137Cs and ratio of 134Cs to 137Cs as a function of fuel burnup (calculated with

ORIGEN [5]); arbitrary units of concentration. Note the near-linear relationship of of both as a function of burnup.

Discontinuities in the 134Cs / 137Cs ratio are due to 30-day inter-cycle decay periods.

For 137Cs and 133Cs (the stable precursor to 134Cs), the accumulated fission yield is approxi-144

mately equal from 235U and 239Pu (c.f. Figure 2), thus making these nuclides a good proxy to the145

total number of fissions in the fuel (assuming an appropriate correction for decay time). In other146

cases (e.g., 106Ru), the measured fission product indicator is highly divergent for U/Pu fission,147

thereby allowing for a discrimination in the number of fissions arising from 235U and 239Pu, which148

can serve as another useful indicator of burnup (as well as being correlated to initial enrichment).149

One will observe that nearly all of the major burnup indicators are located near the yield maxima150

of the of the bifurcated fission yield distribution (as shown in Figure 2), thereby ensuring that the151

signatures from these nuclides can be resolved within the complex spent fuel gamma spectrum.152

For certain isotopic indicators (such as 134Cs, 154Eu and 244Cm), the isotopic inventory is directly153

proportional to the number of neutron absorptions rather than the number of fissions directly154

(therefore being proportional to total thermal neutron flux, and thus still roughly correlated with155

burnup). Further, with the exception of 244Cm, each of these nuclides has a prominent gamma156

signature that can easily be resolved above the Compton background in spent fuel (implying both157

sufficient yield, branching ratio intensity, and gamma energy of the decay line) [9]; a comprehensive158

list of common burnup indicator nuclides is presented in Table 1.159
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Figure 2: Accumulated fission yields from thermal fission (E = 0.0254 eV) for 235U and 239Pu, adapted from

ENDF/B-VII.1 cumulative fission yield data [20].

Upon estimating the fission product species inventory, this can then be correlated back to the160

burnup of the fuel zone being measured as Equation 2 [9]:161

% burnup = 100 ·
N/Y

U
(2)

Where:162

• N = fission product nuclei (atoms)163

• Y = effective fission product yield164

• U = initial number of uranium atoms165

Thus, for purposes of this analysis, it is assumed that by calculating the number of fission166

product atoms directly in depleted fuel, this serves as a reasonable proxy to measured fission product167

indicator concentrations (i.e., given a prior, known relationship between the fission product species168

and the total fuel burnup). Further, it is assumed that given a measurement uncertainty σN for169

a particular fission product isotope (based on the detection efficiency), fission product inventories170
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Table 1: Half-lives and prominent gamma peaks of key burnup indicator nuclides; adapted from [9]; fission yield

ratios calculated from ENDF/B-VII.1 fission yield sublibrary [20], gamma energy and yield data from [21]

Nuclide τ1/2 (y)
κγ

Eγ (keV)
Accumulated fission yields

(γ/decay) 235U 239Pu Yield ratio

106Ru
1.023

0.0993 621.93
4.015E-3± 5.622E-5 4.350E-2± 8.700E-4 0.09232a

(106Rh) 0.0156 1050.41

134Cs 2.06
0.9762 604.72

6.699E-2± 2.345E-4 0.07016± 0.0003508 0.9548b

0.8546 795.86

137Cs 30.17 0.8510 661.66 6.188E-2± 3.094E-4 6.607E-2± 3.304E-4 0.9366

144Ce
0.780 0.01342 696.51 5.450E-2± 2.750E-4 3.739E-2± 1.870E-4 1.4706c

(144Pr)

154Eu 8.59

0.1048 996.3

1.583E-3± 2.168E-4 3.613E-3± 2.168E-4 0.4381d0.1801 1004.8

0.348 1274.43

a Accumulated yields reported for 106Rh
b Accumulated yields reported for 133Cs (stable)
c Accumulated yields reported for 144Pr
d Accumulated yields reported for 153Eu (stable)

falling within ±σN are effectively “indistinguishable” from the “true” depletion history. These two171

assumptions form the basis of the analysis carried out in this paper.172

2.2. Mesh-adaptive direct search algorithm173

Mesh Adaptive Direct Search (MADS), as originally proposed by Audet and Dennis [22], is174

a derivative-free optimization technique designed to minimize a nonsmooth function f : R →175

R
⋃
{0,+∞} where x ∈ Ω 6= ∅ ⊆ Rn. Here, Ω is defined as a “feasible region” of the problem176

space. For example, for this problem, Ω is defined as the space of combinations of assembly177

enrichment, burnup, and cooling time which would produce a nuclide concentration within a range178

of the nominal value (e.g., a 137Cs concentration within 5% of the nominal value). In the general179
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formulation, for each iteration k, MADS consists of search and poll steps to generate a set of180

of trial points within a mesh. Each of these trial points is then evaluated first as to whether it181

lies within the feasibility space Ω, and if so, is evaluated to calculate an objective response fΩ.182

The mesh is then preferentially refined toward solutions which produce a lower functional response183

to the objective function and the search and poll step is repeated until the mesh size parameter184

∆m
k reaches a convergence criteria. In this way, MADS can determine a solution which provides a185

global minimum to a set objective function, such as the residual between an observed and calculated186

response.187

MADS has been previously applied inverse problems in radiation transport and the detection of188

special nuclear material (SNM), such as determining an globally optimal solution for shielded source189

systems [23]. For this class of problem, the chief advantage of MADS is in its strong convergence190

properties; while other optimization techniques (such as Levenberg-Marquardt) are sensitive to191

initial parameter guesses and do not always locate the global optima (for this case, solution for192

uranium enrichment which minimized the residual between the calculated and actual gamma-ray193

emissions from a shielded source), MADS was found to reliably locate the global optimum even194

with initial parameter guesses relatively far from the true solution [23].195

However, unlike the general case of optimization of nonsmooth problems as proposed by Audet196

and Dennis (and likewise employed to inverse radiation transport problems by Armstrong and197

Favorite [23]), here within this study the goal is not to determine a solution that minimizes a198

residual between an observed response and the solution observed through a parameter space search,199

but rather to characterize the shape of all feasible solutions which match a particular objective200

function (i.e., parameter combinations of assembly enrichment, burnup, and cooling which produce201

nuclide inventories within a specified tolerance). Here, the application of MADS is thus to define202

the feasible boundary of the solution space (i.e., determining the shape of Ω for a given nuclide or203

combination of nuclides), rather than to locate a global optimum for a measured assembly’s initial204

enrichment, burnup, and cooling time given a measured nuclide response. With this different aim in205

mind, the approach taken herein still employs a similar iterative mesh refinement strategy, only in206

this case seeking to refine the mesh around the solution space boundary rather than the minimum207

of the response function residual.208

In order to understand the use of the mesh-adaptive direct search algorithm for identifying the209

space of degenerate used fuel burnup signatures, it is useful to start with a simple demonstration210
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(a) Initial grid search definition

and search

(b) Initial search space match

and grid refinement

(c) Second search iteration &

refinement

(d) Third search iteration &

refinement

(e) Fourth search iteration &

refinement

(f) Fifth search iteration & re-

finement

Figure 3: Example of a mesh-adaptive direct search, applied to a two-dimensional phase space. The “true” matching

space is marked with a dashed black line. Nodes are searched from the center of the space; matching nodes (red) and

non-matching “neighbor” nodes (gray) are divided and refined. Non-matching, non-neighbor (exterior non-match,

white) nodes are not refined, nor are matching nodes entirely surrounded by other matching nodes (interior match,

pink).

to illustrate the basic principle, shown in Figure 3. The MADS algorithm employed for this study211

consists of two basic operations: testing mesh nodes for matches (in this case, matching concentra-212

tions of particular nuclides within a tolerance ±σN ) and mesh refinement. In the mesh node testing213

phase, the center of each node to determine whether the concentration matches within the tolerance214

σN ; if it does, the node is marked as true; otherwise it is marked false. For searches involving215

more than one nuclide, the search is assumed to be a logical AND operation, wherein all nuclides216
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must match within the specified tolerance (set independently for each nuclide) for the search result217

to return true; otherwise if any individual nuclide falls outside of its tolerance, the node is marked218

false.219

Dividing the space along orthogonal dimensions, a coarse mesh is established. After each round220

of depletion solutions and nuclide comparisons, the set of degenerate solutions is identified (i.e.,221

those sets containing the specified nuclides within a tolerance of ±σN of the nominal case) and the222

mesh is refined according to the following criteria:223

1. All nuclides in the case match the nominal case within each individual nuclide tolerance ±σN ,224

and at least one neighboring mesh cell has one or more nuclide that do not fall within the225

tolerance limit or226

2. At least one nuclide does not match within the tolerances specified, but at least one neigh-227

boring mesh cell does match within all nuclide thresholds228

This process is illustrated for a two-dimensional search shown in Figure 3. Starting with an a229

priori “true” phase space (unknown to the algorithm), the space is divided into an initial search230

grid (Figure 3a). Nodes whose centers are within the phase space will return a match (red cells231

in Figure 3b). In the mesh refinement phase, matching nodes (Figure 3b, red) and nodes that are232

directly adjacent to matching nodes (“neighbor” cells, such as in Figure 3b, gray) will be split for233

mesh refinement.234

In subsequent iterations, exterior nodes that do not match and are not adjacent to matching cells235

(“exterior” nodes) are dropped from mesh refinement (thus decreasing the total number of nodes to236

be evaluated in subsequent iterations). Similarly, matching nodes that are completely surrounded237

by matching nodes on all sides (“interior” nodes, shown as pink in Figure 3d) will likewise not be238

refined. Here, the goal instead is to refine only those cells which define the edge of the “true” phase239

space, thus maximizing computational efficiency. Each subsequent iteration (Figures 3e and 3f)240

progressively refines the shape of the grid until the contours of the phase space are closely traced241

out. In these later iterations, the gains from eliminating solely interior and exterior nodes from242

mesh refinements is clear (as these do not further contribute to characterizing the shape of the243

degeneracy space).244

This process is then continuously iterated until a user-specified granularity limit is reached.245

Through a parallelized implementation, the search can be efficiently scaled to multiple computa-246

tional nodes (as individual mesh cases are independent of one another). The use of neighbor cell247
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match states (i.e., refining cells based on the presence of a neighbor cell with an opposite match248

condition) is done both to enhance computational efficiency (i.e., it being redundant to refine /249

re-evaluate mesh cells surrounded by matching cases) and to enhance the resolution of the phase250

space boundaries (i.e., discerning the true boundaries of the degenerate signature phase space).251

It should be noted that the mesh-adaptive search approach employed in this investigation252

(wherein completely enclosed nodes are not refined further for sake of computational efficiency)253

stands in contrast to the more general MADS approach, both in its focus on the boundaries of254

the feasible solution space (rather than the global minimum) and in the fact that the approach255

presented herein assumes a simply-connected solution space (i.e., in which all points within the256

boundary of the solution are assumed to also satisfy the solution condition with no “holes”). The257

premise of this assumption is that the production of burnup indicator nuclides is a continuous func-258

tion of enrichment, burnup, and cooling time (such as shown in Figure 1); therefore the assumption259

that the space is simply-connected (and the subsequent simplification of the MADS approach em-260

ployed herein) appears to be warranted. Working from this assumption that the solution space is261

simply-connected, the primary goal of this work has been to evaluate the shape of the exterior of262

this solution space, and in particular how it may possibly be constrained through combinations of263

common indicator nuclides. Thus, based upon this assumption, a mesh refinement strategy centered264

upon refinement of the outer boundary nodes was chosen in order to efficiently determine the shape265

of the solution space boundary.266

Meanwhile, a drawback of the (modified) MADS approach is that even in dropping solely interior267

/ exterior nodes from the mesh refinement, the number of nodes to be evaluated quickly multiples268

with each successive iteration. Meanwhile, each evaluation takes approximately the same amount269

of time (consisting of calls to the ORIGEN API to evaluate the depletion solution at the particular270

node enrichment, burnup, and cooling time); thus the computational time dramatically increases271

with each mesh refinement. Therefore, a number of refinement iterations was chosen that would272

result in a maximum node width of 4% of the search space.273

2.3. OrigenDSA search operation274

The OrigenDSAMADS algorithm works almost exactly like the search demonstrated in Figure 3,275

only across three dimensions: initial enrichment, discharge burnup, and cooling time following276

discharge. (Note that while one could likewise feasibly explore a fourth dimension corresponding277

12



Table 2: Nominal reactor parameters evaluated with OrigenDSA

Parameter Value

Assembly type Westinghouse 17x17 (PWR)

Irradiation cycles 3

Cycle length (d) 335

Inter-cycle decay (d) 30

Enrichment† 4.0%

Discharge burnup (MWd
MTU )† 33,000

Cooling time (d)† 1825‡

† Floating search parameter
‡ Nominal cooling time varies where noted.

to relative moderator density, which is an important parameter for boiling water reactor (BWR)278

assemblies with an axially-varying void fraction, for purposes of tractability, the scope of this279

study has been limited exclusively to parameters pertaining to pressurized water reactor (PWR)280

assemblies.) Each node represents a perturbation of a “nominal” assembly history (defined in281

Table 2), wherein the nominal parameters are perturbed independently along each search dimension.282

For each search iteration, the nuclide inventories at each node are checked against those from the283

“nominal” assembly irradiation history. In addition, the scope of this study has been limited to284

illustrating the application of the MADS method to exploring the degeneracy space of common285

burnup indicator nuclides, and as such explores only one nominal burnup / power history scenario.286

Other scenarios of interest from a safeguards perspective, such as determination of a “short-cycled”287

assembly for purposes of illicit plutonium production, represent a logical continuation of this work288

but are likewise beyond the scope of this particular study.289

Thus, one can directly probe this degeneracy space through repeated perturbations of a nominal290

irradiation case using tools such as ORIGEN. In this case, the phase space is broken up into three291

independent dimensions (initial enrichment, total burnup, and cooling time); it is assumed for this292

study that other factors such as the power history have a negligible impact. (Other factors, such293

as void fraction, would be expected to show a substantial impact given the change in the neutron294

spectral shape; however they were beyond the scope of this study.) Degenerate configurations can295
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be identified as those having nuclide inventories within the measurement tolerance (±σN ) for a296

given nuclide or set of nuclides (i.e., representing the use of measurement ratios such as the 134Cs297

/ 137Cs ratio).298

The bounds of the search space are user-configurable and defined relative to the nominal param-299

eters; for example, a burnup space of 33,000 MWd
MTUwould span from 28,050 MWd

MTU to 37,950 MWd
MTU . Each300

axis is continuous and can be divided into arbitrarily small intervals, creating an infinite number of301

testable points; therefore, OrigenDSA begins by partitioning the space into a few relatively large302

intervals (nodes).303

An example of an OrigenDSA search for 137Cs is presented as Figure 4. In the initial search304

(Figure 4a), a coarse grid is established; this grid is successively refined (Figures 4b and 4c),305

highlighting the expected burnup-dependent linear slope. Meanwhile, the solution appears to be306

largely independent of enrichment and cooling time within the specified search space.307

(a) Initial search grid (b) Mesh refinement: iteration 1 (c) Mesh refinement: iteration 2

Figure 4: Degeneracy space resolution over successive search intervals for 137Cs using the OrigenDSA MADS algo-

rithm; σ137 = 5%

3. Degeneracy space shape characterization for common burnup indicators308

3.1. Single-isotope indicators309

Figures 5 and 6 show the shape and evolution of the degeneracy space for individual long-lived310

(137Cs, 154Eu, and 244Cm) and short-lived (134Cs, 144Ce, and 106Ru) burnup indicator nuclides,311

respectively. Immediately apparent between individual burnup indicator nuclides is the orientation312

of their degeneracy spaces, which generally take the form of a plane with a thickness corresponding313

to the measurement tolerance (σN ). For example, 137Cs is almost exclusively proportional to burnup314
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alone, admitting a wide range of potential enrichments (3.4–4.5 w/o) for a relatively circumscribed315

burnup range centered about the nominal value (approximately ±2 GWd
MTU ), while being relatively316

unconstrained in the cooling time dimension. 134Cs and 154Eu are similar to 137Cs in shape with317

a slight slope in the enrichment-burnup dimension. 244Cm shows the most radical departure the318

shape of its degeneracy space, showing a strong orientation along enrichment and burnup, with its319

plane spanning outward into the cooling time dimension.320

(a) 137Cs: 5 years cooling time;

∆Pu = ±15.7%.

(b) 154Eu: 5 years cooling time;

∆Pu = ±12.0%

(c) 244Cm: 5 years cooling time;

∆Pu = ±4.7%.

(d) 137Cs: 15 years cooling time;

∆Pu = ±9.1%.

(e) 154Eu: 15 years cooling time;

∆Pu = ±13.1%.

(f) 244Cm: 15 years cooling time;

∆Pu = ±4.8%.

Figure 5: Degeneracy space for longer-lived burnup indicators: 137Cs (τ1/2 = 30.17 y), 154Eu (τ1/2 = 8.59 y), and
244Cm (τ1/2 = 18.103 y); σ137 = σ154 = 5%; σ244 = 10%.

A further analysis of the search space also gives the range of average assembly plutonium content321

in the space (denoted ∆Pu). For each node in the search space, the total plutonium content is also322

tallied (denoted by the color map, with darker colors indicating lower plutonium content). The323

relevance of this metric comes from a safeguards context, in that the non-uniqueness of the burnup324

signature space likewise implies a range of values for average assembly plutonium content. It thus325
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(a) 134Cs: 2 years cooling time.

∆Pu = ±15.3%.

(b) 144Ce: 2 years cooling time;

∆Pu = ±7.85%.

(c) 106Ru: 2 years cooling time;

∆Pu = ±7.35%.

(d) 134Cs: 5 years cooling time.

∆Pu = ±8.5%.

(e) 144Ce: 5 years cooling time;

∆Pu = ±9.15%.

(f) 106Ru: 5 years cooling time;

∆Pu = ±7.6%.

Figure 6: Degeneracy space for shorter-lived burnup indicators: 134Cs (τ1/2 = 2.06 y), 144Ce (τ1/2 = 0.780 y), and
106Ru (τ1/2 = 1.023 y). σ134 = σ144 = σ106 = 5%.

follows that the larger the degeneracy space enrichment, burnup, and cooling time for a given set326

of burnup signatures, the larger the uncertainty in total plutonium content ∆Pu, although this will327

be contingent upon the shape of the space as well. (For example, a space highly constrained in328

burnup but relatively unconstrained in cooling time will show a relatively narrow range in plutonium329

content compared to the opposite space shape.)330

3.2. Constraining the degeneracy space through burnup indicator combinations331

As is clear from Figures 5 and 6, single isotopic indicators alone permit a wide range of burnup,332

enrichment, and cooling time combinations effectively equivalent to those arising from the nominal333

irradiation history. However, by exploiting shape differences characteristic of each of these nuclides334

in enrichment, burnup, and cooling time space, it is possible to further constrain the space in such335

a way to make unique verification of assembly irradiation histories more feasible.336
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For example, for each of the burnup indicator nuclides, one observes a clear “bend” in the slope of337

the space as a function of cooling time; i.e., as the original discharged inventories of burnup indicator338

nuclides decay away, the shape of the degeneracy space evolves with it. This is especially evident339

for the shorter-lived nuclides (such as 106Ru and 144Ce), which are almost totally unconstrained in340

the enrichment-burnup plane while showing a strong coupling between burnup and cooling time.341

The differences in decay rates between indicator nuclides (and thus the evolution of the shape of342

the individual nuclide degeneracy spaces) thus affords the ability to combine nuclide measurements343

in order to evaluate the assembly cooling time (as is commonly done with the 134Cs to 137Cs ratio).344

This principle is illustrated quite clearly in Figure 7 for 134Cs, 137Cs, and 154Eu.345

(a) 134Cs + 137Cs: 5 years cooling

time; ∆Pu = ±4.1%.

(b) 137Cs + 154Eu: 5 years cooling

time; ∆Pu = ±7.1%.

(c) 134Cs + 137Cs + 154Eu:

2 years cooling time;

∆Pu = ±2.5%.

(d) 134Cs + 137Cs: 10 years cooling

time; ∆Pu = ±7.1%.

(e) 137Cs + 154Eu: 15 years cool-

ing time; ∆Pu = ±5.2%.

(f) 134Cs + 137Cs + 154Eu: 5 years

cooling time; ∆Pu = ±2.6%.

Figure 7: Degeneracy space for the intersections of 134Cs, 137Cs, and 154Eu; σ134 = σ137 = σ154 = 5%

Immediately evident from Figure 7 is the way in which strategic combinations of isotopes (such346

as 134Cs to 137Cs, seen in Figures 7a and 7d) serve to limit (although not fully constrain) the space347
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(a) 137Cs + 134Cs + 106Ru:

2 years cooling time;

∆Pu = ±3.1%.

(b) 137Cs + 244Cm: 5 years cooling

time; ∆Pu = ±2.7%.

(c) 137Cs + 154Eu + 244Cm:

5 years cooling time;

∆Pu = ±2.9%.

(d) 137Cs + 134Cs + 106Ru:

5 years cooling time;

∆Pu = ±3.5%.

(e) 137Cs + 244Cm: 15 years cool-

ing time; ∆Pu = ±4.1%.

(f) 137Cs + 154Eu + 244Cm:

15 years cooling time;

∆Pu = ±3.7%.

Figure 8: Degeneracy space for the intersections of 137Cs with 244Cm, 134Cs, and 106Ru; σ137 = σ134 = σ106 = 5%,

σ244 = 10%.

of possible enrichment, burnup, and cooling time combinations. The addition of a thrid indicator,348

154Eu likewise further constrains the space, namely by taking advantage of the differences in half-349

lives between the indicator isotopes (thus acting chiefly to reduce the degeneracy space along the350

cooling time dimension).351

In a similar vein, one can exploit these shape differences in the degeneracy space more gen-352

erally along the dimensions of enrichment and burnup. For example, while 137Cs in particular is353

especially insensitive to enrichment as a function of burnup (i.e., 137Cs inventories are almost exclu-354

sively a function of burnup and cooling time), other nuclides (especially 244Cm) show much more355

pronounced differences along these dimensions. Thus, the intersection of these nuclides allows one356

to dramatically reduce the space of potential enrichments, burnups, and cooling times, narrowing357
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the possible configuration space. This can be seen for the combination of 137Cs and 244Cm (ap-358

proximating the rough principle of instruments like the Fork detector [11, 12]), such as is shown359

in Figures 8b and 8e. Here however, an important aspect to note is that the combination of these360

two signatures is insufficient to provide unique, positive identification of an assembly, given the361

relatively unconstrained cooling time dimension; at best, such a measurement serves as a rejection362

criteria for gross mismatches along an enrichment / burnup axis (which nonetheless may still prove363

quite useful for burnup credit applications).364

Another common gamma ratio used for burnup estimation is that of 137Cs+106Ru
(134Cs)2 [1], as seen365

in Figures 8a and 8d. Here, the space is tightly constrained with respect to burnup (within ±1366

GWd
MTU ) and reasonably constrained in possible cooling times (generally within about ±150 days);367

however this measurement alone is insufficient to uniquely identify assemblies on the basis of initial368

enrichment. Also observable in this space is a linear relationship between the boundary of the369

cooling time and enrichment (i.e., in which these show a moderate linear anti-correlation). This370

pattern shifts with longer cooling times (i.e., 5 years, shown in Figure 8d), where the space of possible371

cooling time shrinks, whereas the space of possible burnups (while still relatively constrained) begins372

to expand, now showing a linear correlation between burnup and cooling time.373

Further, as one observes in Figure 8, the combination of the distinct phase spaces of 137Cs and374

244Cm produces a relatively narrow, constrained space with a linear shape along the enrichment and375

burnup dimensions, limiting the phase space to a narrow strip consisting of possible burnups within376

a range of approximately ±2, 000 MWd
MTUof the nominal burnup and enrichments between ±0.4 (w/o).377

However, because both nuclides are relatively long-lived, the space is relatively unconstrained with378

respect to cooling time. The addition of other nuclides (such as 154Eu or 134Cs) through basic379

gamma spectroscopy thus allows a more unique determination of the assembly cooling time alongside380

enrichment and burnup, seen as Figures 8c and 8f. With the addition of a third, shorter-lived381

nuclide, the space of non-unique solutions is now small enough to provide useful verification of a382

particular assembly’s declared irradiation history (in that the addition of cooling time thus allows383

for a narrowing down of possible unique assemblies to the batch and sub-batch level).384

What these spaces ultimately reveal is that to uniquely determine an assembly initial enrichment,385

burnup, and cooling time requires a combination of several nuclide measurements with fundamen-386

tally different shape parameters. This includes both gamma and neutron measurements (i.e., 137Cs387

and 244Cm) along with measurements of specific gamma indicators sensitive to cooling time (i.e.,388
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nuclides with half-lives appreciably lower than that of 137Cs but long-lived enough to accommodate389

a range of cooling time intervals before measurement). This latter constraint generally limits the390

selection of gamma-emitting signatures to those such as 134Cs but more particularly 154Eu. The ef-391

fect of combining two staggered gamma signatures with neutron counting can be seen in Figures 8c392

and 8f; the main effect of the addition of a shorter-lived isotope like 154Eu is chiefly in truncating393

the space of possible discharge dates.394

3.3. Burnup indicator combinations for short cooling times395

A severe limiting constraint for fuel which has been discharged for longer time periods (>5 years)396

is the loss of information from short-lived burnup indicators like 144Ce and 106Ru. These short-lived397

nuclides rapidly decay away, thereby limiting the potential burnup indicator combinations that can398

be used to constrain the degeneracy space for longer discharge times. Thus, by focusing on a399

short cooling time interval (2 years post-discharge), it is possible to evaluate the maximum degree400

to which the degeneracy space is constrained for a given measurement uncertainty of individual401

nuclides (fixed at 5% for gamma-emitting nuclides and 10% for 244Cm for this study).402

While the addition of more gamma-emitting burnup indicator nuclides further narrows the possi-403

ble space of assembly parameters (such as observed in Figure 9), it is evident that even combinations404

of all of the most commonly-used gamma-based indicators (e.g. Figure 9e) do not fully constrain405

the space to a unique solution, or even a solution uniformly centered around the nominal irradia-406

tion history. Rather, the trends that emerge appear to show solutions strongly constrained in the407

cooling time dimension (i.e., generally to within ±30 to ±50 days post-discharge, or about 4–7%)408

but which indicate a strong linear correlation between initial enrichment and discharge burnup.409

Such a correlation is consistent across gamma-emitting nuclides such as 137Cs, 134Cs, and 154Eu at410

longer times post-discharge (c.f., Figures 5 and 7).411

In as much, the addition of a more orthogonal signature, such as arising from neutron mea-412

surements from 244Cm may prove useful, such as shown in Figure 10. Here, the addition of a413

neutron-based signature appears to further tighten the bounds of the space compared with gamma-414

based signatures alone. However even here a linear relationship nonetheless persists between the415

initial enrichment and discharge burnup, albeit to relatively tight bounds on both (i.e., to within416

±0.4 w/o 235U and ±2 GWd
MTU ). While not sufficient on its own to uniquely identify an individual417

assembly discharged from the core, it is nonetheless likely sufficient to independently confirm or418
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(a) 137Cs + 134Cs + 144Ce;

∆Pu = ±2.7%.

(b) 137Cs + 134Cs + 144Ce +
154Eu; ∆Pu = ±2.2%.

(c) 137Cs + 134Cs + 144Ce +
106Ru; ∆Pu = ±2.6%.

(d) 137Cs + 134Cs + 106Ru +
154Eu; ∆Pu = ±2.1%.

(e) 137Cs + 134Cs + 144Ce +
106Ru + 154Eu; ∆Pu = ±2.2%.

Figure 9: Degeneracy spaces for gamma-based burnup indicators, 2 years post-discharge.

reject an operator declaration.419

An important takeaway however is in what the marginal benefit gained from the addition of420

multiple gamma-emitting signatures is in the case of relatively recently-discharged fuel compared421

with more gross approaches (i.e., relying primarily on 137Cs along with 244Cm, similar to Figure 8b).422

The primary effect of the addition of more gamma-emitting nuclides (in practical terms, the incor-423

poration of passive gamma spectroscopy capabilities) is primarily in the ability to determine the424

time of assembly discharge with relatively good precision; these short-lived nuclides (e.g., 144Ce425

and 106Ru) contribute little in the way of resolving initial enrichment or further determination of426

discharge burnup beyond what 137Cs and 244Cm are able to provide. Recalling Figure 6, these427

shorter-lived nuclides primarily serve a chronometric function (contrasted with 137Cs’s relatively428

pure indication of burnup). Thus in the context of the problem of degenerate burnup signatures,429
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(a) 137Cs + 134Cs + 144Ce + 106Ru + 244Cm: 2

years cooling time; ∆Pu = ±2.5%.

(b) 137Cs + 134Cs + 144Ce + 154Eu + 244Cm: 2

years cooling time; ∆Pu = ±2.2%.

Figure 10: Degeneracy spaces for gamma-based burnup indicators, combined with gross neutron counting from
244Cm; 2-years post-discharge. σγ = 5%, σ244 = 10%.

nuclides like 144Ce and 106Ru are primarily useful in narrowing down the space of discharge times430

sufficiently to verify operator declarations when combined with other corroborating data (e.g., batch431

loading schedules).432

Finally, not shown is the search space for all indicator nuclides (137Cs + 134Cs + 144Ce +433

106Ru + 154Eu + 244Cm, where ∆γ = 5% and ∆n = 10%) at 2 years post-discharge. This rather434

extreme case was the only one investigated which yielded a singular, unique solution (wherein no435

degenerate parameter combinations were found). Such a solution suggests that under very limited436

circumstances, the initial enrichment, burnup, and cooling time can be determined; however, such437

a case represents a challenge for passive measurement methods, given that it implies the avail-438

ability of high-resolution gamma spectroscopy capable of making measurements for still relatively439

high-activity fuel (a somewhat daunting technical challenge), then correlated with neutron-based440

measurements of the assembly.441

4. Conclusions442

Through the novel use of a mesh-adaptive direct search on common gamma signatures used for443

used nuclear fuel burnup analysis, we have demonstrated that in a safeguards applications context,444

gamma signatures generally assumed to produce unique solutions for burnup can in fact produce445
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highly degenerate solutions for assembly irradiation parameters. This suggests that approaches446

based upon multiple orthogonal signatures (including active interrogation techniques) should be447

employed in cases where initial enrichment and cooling time before measurement are unavailable448

or are not otherwise independently verified. While in this case only a single nominal power history449

and limited space of cooling times and measurement tolerances were explored, this technique could450

easily be extended to further illustrate the combinations of indicator nuclides required to uniquely451

isolate an assembly’s irradiation history.452

The issue of non-uniqueness of burnup signatures has direct safeguards implications in that453

different possible combinations of enrichment, burnup, and cooling time that yield indistinguishable454

burnup signatures likewise admit a range of possible values for average assembly plutonium content.455

Thus, the ability to constrain this space thus offers a means of lowering the range of uncertainty456

in inferred assembly plutonium content when using burnup signatures as a means of estimating457

plutonium content through depletion-based calculations. This is most apparent in examples such458

as the combined space of 134Cs + 137Cs + 154Eu (Figures 7c and 7f) as well as 137Cs + 154Eu459

+ 244Cm (Figures 8c and 8f), which show the most constrained overall spaces for the range of460

plutonium content values.461

With respect to the specific development of passive NDA techniques for used fuel measurements,462

this would imply that while measurements taken through instruments such as the Fork detector463

(which leverages gross gamma and neutron counts to estimate burnup) do a reasonable job of con-464

straining an assembly’s degeneracy space to a plane oriented across the enrichment and burnup465

dimensions (i.e., wherein a linear relationship appears to emerge between possible enrichment and466

burnup values). However, such a measurement is on its own incapable of uniquely identifying assem-467

blies in terms of their initial enrichment or even discharge time. The inclusion of additional gamma468

signatures (i.e., through spectroscopic measurements) provides some marginal benefits in narrowing469

the inherent uncertainty in potential assembly plutonium masses, however a limiting factor here470

is that very few of the common gamma-emitting burnup indicator nuclides are present after more471

than 10-15 years following discharge (i.e., generally only 137Cs, 154Eu, and 244Cm remain), thus472

limiting the ability to uniquely identify assemblies at longer decay times after discharge. However,473

the inclusion of more detailed gamma spectroscopy to resolve multiple burnup-indicating nuclides474

(such as 106Ru, 144Ce, 134Cs), when taken in tandem with indicators such as 137Cs and 244Cm, may475

prove more valuable in uniquely identifying more-recently discharged assemblies from the reactor476
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core. This is due to the fact that these shorter-lived nuclides are more sensitive to cooling time477

and thus serve a valuable chronometric function, thereby limiting the space of possible cooling time478

values and thus lowering the total uncertainty in assembly plutonium content.479

Furthermore, the existence of the degeneracy space illustrated in this work has vital implications480

for safeguards in that it implies an inherent, non-trivial uncertainty in estimated plutonium con-481

tent from passive measurement techniques, in many cases well exceeding the 5% uncertainty target482

expressed by efforts such as NGSI [14, 15]. While for combinations of burnup indicator nuclide483

measurements this uncertainty is generally lower than the uncertainty in plutonium content arising484

individual nuclide measurements, given the existence of a degenerate parameter space, some uncer-485

tainty in the estimated plutonium content is unavoidable. The introduction of physically orthogonal486

signatures (such as the passive neutron signature from 244Cm) can be quite useful in helping to con-487

strain this uncertainty, but ultimately at longer times following discharge, the paucity of available488

burnup signatures makes the degeneracy space of used fuel characteristics an unavoidable feature.489

Further attempts to narrow the uncertainty of assembly plutonium content and to provide unique490

identification of assemblies therefore necessitates the use of alternative measurement techniques491

(such as those being investigated by the NGSI campaign) in order to provide lower uncertainties in492

estimated plutonium content.493

Finally, this proposed method affords valuable insight for prioritizing efforts to improve nuclear494

data and measurement uncertainties, namely by offering a means of evaluating the impact of en-495

hanced sensitivity and reduced uncertainty on the relative size of the potential solution space for496

used fuel enrichment, burnup, and cooling times.497
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