Ultramicrobacteria Genome Database Project

Introduction

Ultramicrobacteria are a largely uncultured and highly metabolically active group of globally abundant bacteria.

Transmission electron micrograph of a myovirus and candidate UMB from the Y-12 Complex, Oak Ridge, TENN. Image of E. Coli from Jon Marles-Wright for size

Importance:

- UMB have been confirmed to be an active and functioning group of microorganisms rather than just stressed cells [1].
- Recent research indicates that UMB aid in bioremediation and nutrient cycling, but future and current investigations of UMB are limited by:
 - a wide variety of nomenclature
 - a lack of databases containing functional, genomic, or spatial data specific to candidate UMB

Nomenclature commonly used for small bacteria			
Common Names	Definition	Size	
Ultramicrobacteria UMB [1]	Bacteria that maintain a volume of $\leq 0.1 \mu m^3$, full genomes measuring 1 to 3.2 megabases.	<0.3µm to ≥0.1µm	
Ultrasmall Bacteria USB [2]	Bacteria with an average volume of $0.009\mu m^3$, tightly spiraled DNA, and incomplete genomes ~0.9 megabases.	<0.2µm tơ ≥0.1µm	
Nanobacteria [1]	Uncultured and often unsubstantiated ranging from 0.01 to 0.1µm.	<0.1µm	
Mycoplasma [3]	Cell-wall lacking pathogenic bacteria	<0.1µm	

Questions:

A.) Can we create a database of environmental UMB using current UMB genomic, spatial, and geochemical data?

B.) Can we use this database to distinguish differences among environmental and parasitic UMB given current UMB data?

Hypotheses:

A. We can create the first publicly accessible database to identify UMB from several environmental locations.

B.) We can identify differences in UMB community composition across environments and perform genomic comparisons.

THE UNIVERSITY OF ENNESSEE

Abdullah Salim, Tien Tran, Andrew Putt and Terry Hazen

Three Prominent Orders of UMB		
er	Environments	Notable Characteristics
1	anoxic groundwater samples, marine sediments, landscaped topsoil, Sulphur river, cave sediments	OD1 are microorganisms that possess both fermentative and respiratory energy pathways, cametabolize nitrogen and fatty acids.
E3	anaerobic settings, swine lagoon slurries, freshwater biofilms	WWE3 are oval-shaped and are likely related to nutrient cycling in wastewater sludge. WWE3 for a distinct monophyletic group deeply branching apart from all known bacterial divisions.
11	marine sediments, landscaped topsoil, Sulphur river, and contaminated aquifer	Common in reduced environments containing sulfur compounds such as sulfates and sulfides marine environments, and within contaminated aquifers.

[1] Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, Singh A, Williams KH, Siegerist CE, Tringe SG, et al.: Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications 2015, 6. [2] Cavicchioli R, Ostrowski M: Ultramicrobacteria. eLS 2003. [3] Duda VI, Suzina NE, Polivtseva VN, Boronin AM: Ultramicrobacteria: Formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 2012, 81:379-390. [4] Morowitz HJ, Wallace DC: Genome Size and Life-Cycle of Mycoplasma. Annals of the New York Academy of Sciences 1973, **225**:62-73.

REFERENCES

ACKNOWLEDGEMENTS

- Oak Ridge National Lab

- ✤ JGI (<u>https://jgi.doe.gov/</u>)

OINT GENOME INSTITUTE DEPARTMENT OF ENERGY Linked database to bioinformatics platforms Translation, Ribosomal Strucutre and Biogenesis https://docs.google.com/spreadsheets/d/ 1kDwInvtYE_vUaEdC5n1uCiXLTdBdpx8 HOqasvKQdYpM/edit?usp=sharingd https://www.dropbox.com/s/egauox7mo hwhv4d/UMB%20database.kmz?dI=0 https://narrative.kbase.us/narrative/ws.

KBASE (<u>https://kbase.us/</u>) Lawrence Berkely National Lab