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Abstract

We consider in this dissertation the mathematical modeling and simulation of a general

diffuse interface mixture model based on the principles of energy dissipation. The model

developed allows for a thermodynamically consistent description of systems with an arbitrary

number of different components, each of which having perhaps differing densities. We also

provide a mathematical description of processes which may allow components to source or

sink into other components in a mass conserving, energy dissipating way, with the motivation

of applying this model to phase transformation. Also included in the modeling is a unique set

of thermodynamically consistent boundary conditions which allows flow across the boundary

of a select number of components. The result of this modeling is a unique Cahn-Hilliard,

Allen-Cahn-like system of equations. For numerical solution of this model, we use cell-

centered finite difference methods for discretization and Full Approximation Storage (FAS)

multigrid methods to solve the resulting system of equations via use of the BSAM (Block-

Structured Adaptive Multigrid) libraries. Upon development of the mathematical model, we

consider two applications.

The primary application of this mathematical modeling is the time evolution of a

quaternary mixture consisting of a volatile solvent in the liquid phase, solvent in the vapor

phase, and two polymers. This modeling is motivated by the need to better understand

the active layer in Organic Photovoltaics (OPVs). In this mixture, the volatile solvent is

evaporating into the its vapor phase, and upon fully evaporating the polymer mixture which

results is the active layer of the OPV device. Simulations are provided which demonstrate

the solvent evaporation phenomenon and the resulting microstructure of the active layer.

As a future application, we consider a mixture of a charged polymer and its counterion.

We provide a description of the system based on the dissipation of the electrochemical
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free energy which allows for the permittivity to be dependent on the volume fractions.

Simulations are provided which vary the gradient energies and polymer chain length and

demonstrate the different steady-state microstructures which can result.
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Chapter 1

Introduction

1.1 The Cahn-Hilliard Equation

We start by considering a mixture consisting of two components, A and B, and wish to

model the spatially dependent concentrations of each component. Let φ(x, t) be the volume

fraction of the B component in the mixture, where φ = 1 indicates pure phase B and φ = 0

indicates pure phase A. At high temperatures, the mixture may prefer (energetically) to

be uniform throughout, but at temperatures below some critical temperature T < Tc the

system, subject to some initial fluctuation in concentration, can phase separate into regions

of relatively pure concentrations of each component through the process known as spinodal

decomposition. Cahn and Hilliard provide a diffuse interface description [7, 8] of this by

introducing an associated free energy which, assuming a uniform temperature throughout

the mixtures, can be expressed as

E(φ) =

∫
Ω

f(φ) +
ε2

2
|∇φ|2dx ε > 0. (1.1)

The first part of the energy f(φ) is called the homogeneous energy, and the second is called

the gradient energy. Common forms of the f(φ) in the literature are the quartic free energy

fq(φ) =
1

4
φ2(1− φ)2 (1.2)
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and the logarithmic free energy

flog(φ) = θ [φ ln(φ) + (1− φ) ln(1− φ)] + φ(1− φ) θ > 0. (1.3)

In the case of the quartic double well energy on the domain (−∞,∞), one can show that

the solutions have the hyperbolic tangent profile. Consider now taking a time derivative of

the free energy

dE

dt
=

∫
Ω

f ′(φ)
∂φ

∂t
+ ε2∇φ · ∇∂φ

∂t
dx

=

∫
Ω

(
f ′(φ)− ε2∆φ

) ∂φ
∂t
dx+

∫
∂Ω

ε2
∂φ

∂t
∇φ · ndS

(1.4)

It is quite common that the modeling applies to a domain which is a cube in an infinite

domain, for which periodic boundary conditions for φ apply, or that the system is isolated

and locally near the boundary in thermodynamic equilibrium, for which ∇φ · n = 0 on the

boundary. In either case, the surface integral term in (1.4) is zero, so

dE

dt
=

∫
Ω

(
f ′(φ)− ε2∆φ

) ∂φ
∂t
dx. (1.5)

Ubiquitous throughout the modeling of physical phenomena is some energy law, and in this

case we require that the free energy of the system is non-increasing. We say a model that

obeys this property is thermodynamically consistent. One thermodynamically consistent

model for this energy would be the Allen-Cahn equations

∂φ

∂t
= µ

µ = −A
(
f ′(φ)− ε2∆φ

) (1.6)

where A is a positive constant. The Allen-Cahn Equation leads to non-conserved dynamics

in the sense that, defining the total volume of the B component as

VB(t) =

∫
Ω

φdx (1.7)

2



we have that

dVB
dt

=

∫
Ω

∂φ

∂t
x

=

∫
Ω

−A
(
f ′(φ)− ε2∆φ

)
dx 6= 0.

(1.8)

In particular, the volume of the B component is not necessarily conserved. Often one wants

to ensure that the volume (or equivalently, mass) is conserved in the system. It is common

to enforce this by assuming that the continuity equation is satisfied

∂φ

∂t
+∇ · j = 0 (1.9)

where j is the volumetric flux which satisfies a no-flux condition j ·n = 0 on the boundary,

and thus guaranteeing conservation through an application of the divergence theorem.

Making this assumption, we compute the time derivative of the energy

dE

dt
= −

∫
Ω

(
f ′(φ)− ε2∆φ

)
∇ · jdx

=

∫
Ω

∇
(
f ′(φ)− ε2∆φ

)
· jdx−

∫
∂Ω

(
f ′(φ)− ε2∆φ

)
j · ndS

=

∫
Ω

∇
(
f ′(φ)− ε2∆φ

)
· jdx.

(1.10)

We make the constitutive assumption that the volumetric flux satisfies

j = −M(φ)∇
(
f ′(φ)− ε2∆φ

)
(1.11)

so that the model is thermodynamically consistent. HereM(φ) is typically called the mobility

and is frequently assumed to either be a positive constant or degenerate as M(φ) = Cφ(1−φ),

where C is a positive constant. In general, however, it could be some positive operator. With

this we write the Cahn-Hilliard equation

∂φ

∂t
−∇ · (M(φ)∇µ) = 0

µ =
δE

δφ
=
∂f(φ)

∂φ
− ε2∆φ.

(1.12)

3



From this we obtain the energy decrease of the system as

dE

dt
= −

∫
Ω

M(φ)|∇µ|2dx (1.13)

1.2 The Multicomponent Cahn-Hilliard Equation and

Applications

In this dissertation we are interested in mixtures with more than two components. So as to

demonstrate the techniques of the derivation of the upcoming models, we provide a derivation

of the binary Cahn-Hilliard equation that is related to the multicomponent case. Let φi be

the volume fractions for the ith component of the mixtures. It is very common to make the

approximation that
1∑
i=0

φi ≡ 1 (1.14)

which is sometimes called the no voids or no gaps approximation. The (unconstrained) free

energy reads

E(t) =

∫
Ω

fh(φ) +
1∑
i=0

ε2i
2
|∇φi|2dx (1.15)

where

φ =

φ0

φ1

 (1.16)

is the vector whose ith component are the volume fractions of the ith component. The

continuity equation for the ith equation is

∂φi
∂t

+ ρ−1
0,i∇ · ji = 0 (1.17)

where now the ji is the mass flux of component i and ρ0,i is the density of pure component

i. Assuming the boundary conditions

∂φi
∂n

= 0 (1.18)

4



we have that the time derivative of the energy is

dE

dt
=

∫
Ω

1∑
i=0

µi
∂φi
∂t

dx

= −
∫

Ω

1∑
i=0

µiρ
−1
0,i∇ · jidx

(1.19)

where

µi =
∂fh(φ)

∂φi
− ε2i∆φi (1.20)

is the variational derivative of the free energy. To conserve mass, we require the boundary

conditions for the fluxes satisfy ji · n = 0 and that
∑1

i=0∇ · ji = 0. Substituting the latter

into (1.19) we get that

dE

dt
=

∫
Ω

∇
(
−ρ−1

0,0µ0 + ρ−1
0,1µ1

)
· j1dx. (1.21)

If we make the constitutive assumption

j1 = −M∇
(
ρ−1

0,1µ1 − ρ−1
0,0µ0

)
(1.22)

then it is clear again we have a thermodynamically consistent model. Note that if we make

the assumption of matched densities ρ0,0 = ρ0,1 = ρ, then

j1 = −M
ρ
∇ (µ1 − µ0) . (1.23)

We can relate this matched density model to the derivation in 1.1. If we define

f̂h(φ1) = fh(1− φ1, φ1) (1.24)

and

Ê(t) =

∫
Ω

f̂h(φ1) +
ε̂2

2
|∇φ1|2dx ε̂2 = ε20 + ε21 (1.25)

5



then we see that, after an application of the chain rule on f̂h,

µ1 − µ0 =
∂fh(φ)

φ1

− ∂fh(φ)

φ0

− (ε20 + ε21)∆φ1

= f̂ ′h(φ1)− ε̂2∆φ1

= µ̂

(1.26)

where µ̂ is the variational derivative of the energy Ê with respect to φ1, and so once again

we have
∂φ1

∂t
−∇ · M̂∇µ̂ = 0. (1.27)

While this derivation is only applied for the two-component, matched density case, this

demonstrates the ideas for applying similar techniques to systems with larger number of

components and varying densities. In general our strategy will be to start with some free

energy of the system, compute its time derivative, and from inspection of the time derivative

of the free energy make a choice for the velocities (and other terms to be introduced) that will

provide a free energy decrease of the system, thus ensuring our model is thermodynamically

consistent. The novelty of our modeling is that it provides a description of systems for which:

1. The model is thermodynamically consistent.

2. The densities of each component may be unequal.

3. The system has source terms, allowing one component of the mixture to source or sink

into a different component of the system.

4. The boundary conditions of the system allow for flow of a selection of the components

across the boundary.

To demonstrate the subtleties of why 2-4 are necessary, consider the application of a diffuse

interface model to a system of a box filled with a volatile liquid. Let us call the volume

fraction of the volatile liquid φl, and the volume fraction of the volatile liquid in the vapor

phase φv, so that φl = 1 everywhere in the box initially. Physically, as time evolves one would

expect that due to the volatility of the liquid phase φl will decrease and φv will increase until

eventually all the liquid phase has evaporated and φv = 1. With the intuition that the

6



system will try to minimize its free energy, it is reasonable to construct some free energy

that is lower if the system is occupied by the vapor phase, and develop some mechanism so

that the two components can source and sink into the other in a way that decreases the free

energy. One would then expect the qualitative behavior of the system to “prefer” the vapor

concentration, as energetically it would be more favorable for φv ≈ 1, and thus decrease φl

and increase φv. There is a problem with this approach in the sense of mass conservation

if no-flow or periodic boundary conditions for the velocities are used. Since the densities

are not equal in this model, the mass of the initial state of the system is greater than that

of the mass of the final state. If one implements boundary conditions that are no-flow or

periodic for this type of system, which is typical, it is easy to show as in (2.33) that the

time derivative of the mass is zero, which is not desired for the system described! What is

needed mathematically is some mechanism that allows for the system to change of the mass,

and that is done through the boundary conditions of the velocities, which demonstrates the

necessity of the flow boundary conditions.

This mathematical modeling in this dissertation is related to approaches based on recent

tumor growth models [56, 48, 13, 55] in the sense that we apply a multicomponent diffuse

interface model based on the principles of energy dissipation, with the introduction of new

source terms and boundary conditions which are thermodyanmically consistent. Energetic

variational principles applied to systems with advection driven by a single barycentric

velocity paired with Allen-Cahn and Cahn-Hilliard dynamics considered in [33], without

the boundary conditions required for this application, is also highly relevant. For alternative

approaches to the multicomponent Cahn-Hilliard equations as a constrained H−1 gradient

flow of the energy and its possible coupling with flow effects, we reference [24, 6, 28].

The primary application that is considered is the time evolution of a multicomponent

mixture in which one component of the mixture is volatile. This is especially of interest

in the construction of the active layer in organic photovoltaics (OPVs), in which this

multicomponent mixture is deposited on a substrate and allowed to evolve in time. Of special

interest is how the interfaces evolve in time, and one of the most attractive properties of

diffuse interface models is that they allow for details on the interface location without need

to computationally track the interface. Eventually the volatile solvent evaporates fully from

7



the mixture and what is left is the other components which constitute the active layer of

the OPV device. To our knowledge there are no models which attempt to describe such a

system that includes the mass density difference of the solvent in the vapor and liquid phases,

though there are some recent notable works. A common characteristic for some similar

models is that some assumption is made which allows for the issue of density differences in

the evaporation of the volatile liquid to its vapor phase to be simplified in some manner,

for example by either assuming some form a-priori of the interface [39], assuming matched

densities by modeling a system in which the solvent-polymer mixture is immersed in a non-

solvent bath [49], or simulating a top-down view of the system and removing solvent from the

system at each time step [30]. We consider a flow model for the velocities that is Darcy-like

in this application, though there are a wealth of interesting multiphysics that could be paired

with this model in the form of Navier-Stokes equations, Hele-Shaw Equations, Darcy-Stokes

Equations, etc. [1, 21, 26, 34, 17, 32] that allow our developments in treating one of the

components as volatile to be applied to a variety of systems.

As a future application, we consider an ionic liquid system of a charged polymer between

two parallel planar electrodes and provide simulation of the resulting time dependent

mictrostructural evolution of a charged polymer under an applied voltage. In the case

of a constant permittivity, the derived equations for the multi-component system bears

resemblance to the Poisson-Nernst-Planck equations, with the addition of gradient energy

terms and the Flory energy of mixing term. Recently for two components [25] in a similar

model, a one dimensional stability analysis demonstrates critical parameter values for which

the solution prefers different resulting microstructures. We include a derivation which

extends this model to the case where the permittivity may be spatially and temporally

dependent through the dependence on the concentration variables φi, and is similar in

nature to techniques used in the polymer community that describe these systems through

the Rayleighian functional to prescribe an appropriate energy dissipation [19, 31]. With

the intentions of, in future works, studying the dependence of the effect of the variable

permittivity and analyzing the electric current produced, we present preliminary simulations

which demonstrate the effect of the polymer chain length and gradient energy coefficients in

the constant permittivity system.
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For numerical simulation of the applications described, we use first order semi-implicit

finite difference methods for time discretization and second order finite differences the for

spatial discretization, which we solve using efficient block structured adaptive multigrid

methods [50] implemented through the BSAM package [54]. There is difficulty in solving the

equations as in the energy

E =

∫
Ω

fh(φ) +
N∑
i=0

|∇φi|2dx (1.28)

fh(φ) is of the form

fh(φ) =
N∑
i=0

ρiφi ln(φi) +
∑
i 6=j

χijφiφj (1.29)

where ρi, χij are some positive constants. In the applications we consider, it is common

(and physically quite practical) that some of the components’ volume fractions φi are

approximately 0 or 1, from which numerical difficulties arise in evaluating logarithms in

the equations due to the singularity of the logarithm near 0. This causes the governing

equations of the system to be quite stiff, limiting the allowable time step, especially in

the semi-implicit discretization for which the logarithm term is treated explicitly in the

time discretization, as this introduces a stability condition ∆t < Ch4 [12]. Very little in

the literature is available for constructing energy stable schemes for multicomponent Cahn-

Hilliard systems with logarithmic free energy. Notably Kim and Jeong [28] provide analysis

of a stable scheme by discretizing the homogeneous free energy as

fh(φ
n+1,φn) =

N∑
i=0

ρiφ
n
i lnδ(φ

n
i ) +

∑
i 6=j

χijφ
n
i φ

n
j +

N∑
i=0

(
χA
(
φn+1
i

)2 − χA (φni )2
)

(1.30)

where A is some non-negative constant and lnδ(φ) is the approximation to the logarithm

lnδ(x) =

ln(x) x > δ

ln(δ) + 2x
δ
− x2

2δ2
− 1.5 x ≤ δ.

(1.31)
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The ideas of this strategy originate from Eyre [20], where the energy is split into a convex

and concave piece, Fc(φ), Fe(φ) respectively, and then a time discretization of the energy

E =

∫
Ω

Fc(φ
n+1) + Fe(φ

n)dx (1.32)

is applied. In 1.30, an “artificial” term has been introduced, and if one assumes that ρi = ρ

∀i and χij = χ ∀ij, then this splitting is convex only if

φ >
4δρ− (A+ 1)χδ2

3ρ
(1.33)

when φ < δ. Since we know that the volume fractions φi can be very close to 0 or 1, we wish

this discretization to be stable for all φi ∈ (0, 1). Assuming that χ = ρ, for this scheme to

be stable for all such φi ∈ (0, 1) we must have

A >
4

δ
− 1 (1.34)

which is impractical for this application as we use δ = 10−3 in simulation.
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Chapter 2

Mathematical Modeling of

Multicomponent Mixtures

2.1 Fundamentals

Consider a mixture of N+1 components in a domain Ω ⊂ Rd with ρi(x, t) representing

the number density of the ith component. We write the conservation of mass through the

continuity equations

∂ρi(x, t)

∂t
+∇ · ji = Si(x, t) i = 0, 1, . . . N (2.1)

where ji is the flux of the ith component, for which we choose to be advective and distinct

for each i, and so
∂ρi(x, t)

∂t
+∇ · (ρi(x, t)ui(x, t)) = Si(x, t) (2.2)

where Si(x, t) is a source term. We assume that this density function can be written as

ρi(x, t) = ρ0,iφi(x, t) (2.3)
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where ρ0,i is the (constant) density of the pure ith phase and φi(x, t) is the volume fraction

of the ith component. Under this assumption the continuity equation reads

∂φi(x, t)

∂t
+∇ · (φi(x, t)ui(x, t)) = ρ−1

0,iSi(x, t). (2.4)

The total mass of the system is

M(t) =

∫
Ω

N∑
i=0

ρi(x, t)dx. (2.5)

Consider computing the time derivative of the mass of the system as

dM

dt
=

∫
Ω

N∑
i=0

∂ρi(x, t)

∂t
dx

=

∫
Ω

−∇ ·

(
N∑
i=0

ρi(x, t)ui(x, t)

)
+

N∑
i=0

Si(x, t)dx

= −
∫
∂Ω

N∑
i=0

ρi(x, t)ui(x, t) · ndS +

∫
Ω

N∑
i=0

Si(x, t)dx.

(2.6)

We leave the discussion of the boundary terms in the mass time derivative for later, but

remark only that in the applications that will be discussed they are not necessarily assumed

to be the commonly used no-flow boundary conditions, but a boundary condition that will

allow for the system to change mass in a thermodynamically consistent way, thus decreasing

the free energy of the system. In the applications to follow, the source terms will allow for one

component of the mixture to change into another component, specifically implemented later

to model the phenomenon of evaporation, though other types of sources, such as chemical

reactions, could be considered. With this in mind, physically we do not expect the system to

change its mass through this mechanism, as this is a phenomenon that occurs in the interior

of the domain that only transfers mass of one component to mass of some other component.

As such, we pointwise enforce the condition that

N∑
i=0

Si(x, t) = 0. (2.7)
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Consider summing (2.2) on i and applying (2.7) so that

N∑
i=0

∂ρi(x, t)

∂t
+∇ ·

(
N∑
i=0

ρi(x, t)ui(x, t)

)
=

N∑
i=0

Si(x, t) = 0. (2.8)

We define the mixture density ρ(x, t) and mass averaged velocity u(x, t) to be

ρ(x, t) =
N∑
i=0

ρi(x, t) (2.9)

and

u(x, t) =

∑N
i=0 ρi(x, t)ui(x, t)

ρ(x, t)
. (2.10)

Substituting these definitions into (2.8) we have the continuity equation for the mixture to

be
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)u(x, t)) = 0. (2.11)

From summing (2.4) on i we have the equation for the volume fractions to be

N∑
i=0

∂φi(x, t)

∂t
+∇ ·

(
N∑
i=0

φi(x, t)ui(x, t)

)
= ρ−1

0,iSi(x, t). (2.12)

We also assume that there are no voids in the mixture so that the volume fractions satisfy

N∑
i=0

φi(x, t) ≡ 1 (2.13)

and thus

∇ ·

(
N∑
i=0

φi(x, t)ui(x, t)

)
= ρ−1

0,iSi(x, t). (2.14)

Conversely, upon supposing that
N∑
i=0

φi(x, 0) ≡ 1 (2.15)

13



holds, the no-voids constraint is satisfied. They are equivalent statements. Thus one of the

phase variables can be algebraically solved in terms of the others as

φi(x, t) = 1−
∑
j 6=i

φj(x, t). (2.16)

2.2 Building Thermodynamically Consistent Equations

We assume that the system has constant temperature throughout. We do remark that this

approximation may not be entirely physical [53] for the applications that we will consider,

specifically where a phase change occurs. However, upon making an assumption that these

are small enough to be neglected, for the governing equations to be thermodynamically

consistent the system must decrease its Helmholtz free energy, which is defined to be

E(t) =

∫
Ω

e(φ(x, t),∇φ(x, t))dx+

∫
∂Ω

es(φ(x, t))dS (2.17)

where φ is the vector with ith component φi(x, t). The energy may have many different

contributions, and for now we consider the chemical energy

Echem(t) =

∫
Ω

fh(φ(x, t)) +
N∑
i=0

ε2i
2
|∇φi(x, t)|2dx+

∫
∂Ω

fs(φ(x, t))dS. (2.18)

Computing the time derivative of the free energy, we have

dEchem

dt
=

∫
Ω

N∑
i=0

∂fh(φ(x, t))

∂φi

∂φi(x, t)

∂t
+

N∑
i=0

ε2i∇φi(x, t) · ∇
∂φi(x, t)

∂t
dx

+

∫
∂Ω

N∑
i=0

∂fs(φ(x, t))

∂φi

∂φi(x, t)

∂t
dS

=

∫
Ω

N∑
i=0

∂fh(φ(x, t))

∂φi

∂φi(x, t)

∂t
−

N∑
i=0

ε2i∆φi(x, t)
∂φi(x, t)

∂t
dx

+

∫
∂Ω

N∑
i=0

∂fs(φ(x, t))

∂φi

∂φi(x, t)

∂t
+

N∑
i=0

ε2i∇φi(x, t) · n
∂φi(x, t)

∂t
dS.

(2.19)
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We will assume that locally near the boundary the solution is in thermodynamic equilibrium,

though we remark that there are other choices that one could make here that dissipate the

free energy. This assumption leads to the boundary conditions

ε2i∇φi · n− ε20∇φ0 · n+
∂fs(φ)

∂φi
− ∂fs(φ)

∂φ0

= 0, i = 1, · · · , N, on ∂Ω (2.20)

after recalling the enforcement of the no voids constraint

N∑
i=0

∂φi(x, t)

∂t
= 0. (2.21)

We wish to construct thermodynamically consistent constitutive equations for the velocities

in the continuity equation. We define

µi(x, t) =
∂fh(φ(x, t))

∂φi
− ε2i∆φi(x, t) (2.22)

and compute the time derivative of the free energy as (assuming the boundary condi-

tions (2.20))

dEchem

dt
=
∑
i

∫
Ω

µi(x, t)
∂φi(x, t)

∂t
dx

=
∑
i

∫
Ω

µi(x, t)
(
−∇ · (φi(x, t)ui(x, t)) + ρ−1

0,iSi(x, t)
)
dx

=
∑
i

∫
Ω

φi(x, t)∇µi(x, t) · ui(x, t) + µi(x, t)ρ
−1
0,iSi(x, t)dx

−
∑
i

∫
∂Ω

φi(x, t)µi(x, t)ui(x, t) · ndS.

(2.23)

With the intentions of introducing constitutive equations that respect the no voids constraint

(2.13) in the free energy functional, we introduce the Lagrange multiplier p(x, t) and note

that since (2.13) holds

0 =

∫
Ω

p(x, t)
N∑
i=0

∂φi(x, t)

∂t
dx. (2.24)

15



p(x, t) will henceforth be referred to as the pressure. After applying the continuity equation

and integration by parts we have

0 =

∫
Ω

p(x, t)
N∑
i=0

(
−∇ · (φi(x, t)ui(x, t)) + ρ−1

0,iSi(x, t)
)
dx

=
N∑
i=0

∫
Ω

φi(x, t)∇p(x, t) · ui(x, t) + ρ−1
0,i p(x, t)Si(x, t)dx

−
N∑
i=0

∫
∂Ω

φi(x, t)p(x, t)ui(x, t) · ndS.

(2.25)

Upon combining (2.23) with the multiplier (2.25) we calculate

dEchem

dt
=

N∑
i=0

∫
Ω

φi(x, t)∇ (µi(x, t) + p(x, t)) · ui(x, t)dx

+
N∑
i=0

∫
Ω

ρ−1
0,i (µi(x, t) + p(x, t))Si(x, t)dx

−
N∑
i=0

∫
∂Ω

φi(x, t) (µi(x, t) + p(x, t))ui(x, t) · ndS

(2.26)

where we have applied the continuity equation and integration by parts. Enforcing the

conservation of mass requirement of the sources in (2.7), we write

S0(x, t) = −
N∑
i=1

Si(x, t). (2.27)

Substituting this into the second term of (2.26) we have that

dEchem

dt
=

N∑
i=0

∫
Ω

φi(x, t)∇ (µi(x, t) + p(x, t)) · ui(x, t)dx

+
N∑
i=1

∫
Ω

(
ρ−1

0,iµi(x, t)− ρ−1
0,iµ0(x, t) + (ρ−1

0,i − ρ−1
0,0)p(x, t)

)
Si(x, t)dx

−
N∑
i=0

∫
∂Ω

φi(x, t) (µi(x, t) + p(x, t))ui(x, t) · ndS.

(2.28)
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We make the definitions

qi(x, t) = ρ−1
0,iµi(x, t)− ρ−1

0,0µ0(x, t) + (ρ−1
0,i − ρ−1

0,0)p(x, t)

Qi(x, t) = φi∇ (µi(x, t) + p(x, t)) , ri(x, t) = φi (µi(x, t) + p(x, t))
(2.29)

so that

dEchem

dt
=

N∑
i=0

∫
Ω

Qi(x, t) · ui(x, t)dx

+
N∑
i=1

∫
Ω

qi(x, t)Si(x, t)dx

−
N∑
i=0

∫
∂Ω

ri(x, t)ui(x, t) · ndS.

(2.30)

Suppose that the boundary comprises of two types of boundary, ∂Ω = ΓA ∪ ΓB, where

ΓA = Γno-flow ∪ Γperioidic is a no-flow (or periodic boundary in the case of a rectangular

domain) and ΓB is a boundary which is open to flow. Then

dEchem

dt
=

N∑
i=0

∫
Ω

Qi(x, t) · ui(x, t)dx

+
N∑
i=1

∫
Ω

qi(x, t)Si(x, t)dx

−
N∑
i=0

∫
ΓB

ri(x, t)ui(x, t) · ndS.

(2.31)
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Indeed, there are many choices of constitutive equations for the velocities that decrease this

free energy. Here we choose the evolution laws so that each term in (2.31) is nonpositive

ui(x, t) = −γiQi(x, t) i = 0, 1, . . . , N in Ω

Si(x, t) = −λiqi(x, t) i = 1, . . . , N in Ω

S0(x, t) = −
N∑
i=1

Si(x, t)

ui(x, t) · n = ωiri(x, t) i = 0, 1, . . . , N on ΓB

ui · n = 0 i = 0, 1, . . . , N on Γno-flow

(2.32)

where γi, λ, and ωi are all positive constants, though could be positive operators more

generally, with periodic boundary conditions on Γperiodic. It is important to note that through

this choice of boundary conditions the mass of the system is not be conserved, as

dM

dt
=

∫
Ω

N∑
i=0

∂ρi(x, t)

∂t
dx

=

∫
Ω

−∇ ·

(
N∑
i=0

ρi(x, t)ui(x, t)

)
dx

= −
∫

ΓB

N∑
i=0

ρi(x, t)ui(x, t) · ndS

= −
∫

ΓB

N∑
i=0

ρ0,iφ
2
i (x, t)ωi (µi(x, t) + p(x, t)) · ndS.

(2.33)

With these constitutive equations in hand we can eliminate the velocities and write

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
= ρ−1

0,iSi i = 0, 1, . . . , N (2.34)

µi(x, t) =
∂fh(φ)

∂φi
− ε2i∆φi(x, t) i = 0, 1, . . . , N. (2.35)

Having eliminated the velocity ui(x, t) we now specify appropriate boundary conditions for

µi(x, t) and p(x, t). On Γno-flow we desire the no-flow boundary condition for ui(x, t), and

so on this portion of the boundary we specify homogeneous Neumann boundary conditions
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for µi(x, t) and p(x, t), since if

∇µi(x, t) · n = 0 and ∇p(x, t) · n = 0 (2.36)

then

ui(x, t) · n = φi(x, t)γi∇(µi(x, t) + p(x, t)) · n = 0. (2.37)

More care needs to be taken on ΓB, which can be thought of as a semi-permeable boundary.

In our applications we will allow some components to flux across the open boundary ΓB, and

so we combine the interior and boundary velocity equations in (2.32) to obtain appropriate

thermodynamically consistent boundary conditions for µi and p. For the upcoming discussion

on these boundary conditions, we remark that if there are no components which flow across

the boundary, then homogeneous Neumann boundary conditions for all µi, p are appropriate.

For that reason we assume that at least one of the components flow across the boundary,

and as such further assume that the i = 0 component has flow across the boundary. For a

component i which may flow across ΓB we must have that

−∇(µi(x, t) + p(x, t)) · n = βi (µi(x, t) + p(x, t)) where βi =
ωi
γi
, (2.38)

and perhaps the most natural way to enforce such a condition is to require the Robin-type

boundary conditions for the variables µi(x, t) and p(x, t). Firstly, let

−∇p(x, t) · n = βp(x, t) −∇µ0(x, t) · n = βµ0(x, t) on ∂ΓB. (2.39)

Now, for each other component i which has flow across the boundary we enforce the boundary

condition

−∇µi(x, t) · n = βiµi + (βi − β) p (2.40)

since, if (2.40) holds, then

−∇(µi(x, t) + p(x, t)) · n = βiµi(x, t) + (βi − β) p(x, t) + βp(x, t)

= βi (µi(x, t) + p(x, t))
(2.41)
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as desired. For the components which do not flow across the boundary, note that since

the pressure boundary conditions have already been prescribed, specifying homogeneous

Neumann boundary conditions for the chemical potential would lead to flow across the

boundary. In fact, we have that the no flow boundary conditions for the ith component

ui · n = 0 (2.42)

implies that βi = 0, for which the boundary conditions are

−∇µi(x, t) · n = −βp(x, t) by (2.40)

= ∇p(x, t) · n by (2.39)
(2.43)

All that is left is to include the local thermodynamic equilibrium boundary conditions (2.20).

fs(φ) will be a function which allows for portions of the boundary to exhibit preference for

one of the components of the mixture. In this dissertation we consider a linear dependence

on the concentration

fs(φ) =
N∑
i=0

αiφi. (2.44)

2.2.1 A Pressure Poisson Equation

Due to the no voids constraint, which implies

N∑
i=0

∂

∂t
φi(x, t) = 0, (2.45)

one of the components in the system of equations, which we will assume here to be the zeroth

component, is never solved numerically, as it can be algebraically solved for after the other

partial differential equations have been numerically solved. Our goal now is to eliminate the

two Cahn-Hilliard like equations for the i = 0 component, and obtain an equation for the

pressure. To obtain an equation for the pressure, consider summing (2.34) on i and applying
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the no voids constraint (2.45) so as to obtain the equation

−
N∑
i=0

∇ ·
(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
=

N∑
i=1

(
ρ−1

0,i − ρ−1
0,0

)
Si(x, t) (2.46)

which we call the pressure Poisson equation. Instead of solving for φ0, µ0 via the partial

differential equations previously given in (2.34) and (2.35), we solve the other components’

partial differential equations coupled with this pressure Poisson equation. This reduces the

problem to solving the system of equations

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
= ρ−1

0,iSi i = 1, 2, . . . , N (2.47)

Si(x, t) = −λi
(
ρ−1

0,iµi(x, t)− ρ−1
0,0µ0(x, t) + (ρ−1

0,i − ρ−1
0,0)p(x, t)

)
i = 1, 2, . . . , N (2.48)

µi(x, t) =
∂fh(φ)

∂φi
− ε2i∆φi(x, t) i = 1, 2, . . . , N (2.49)

−
N∑
i=0

∇ ·
(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
=

N∑
i=1

(
ρ−1

0,i − ρ−1
0,0

)
Si(x, t). (2.50)

2.2.2 A Change of Variables

While equations for φ0, µ0 have been eliminated from the system (2.34) and (2.35), µ0 is

still present in the model through the pressure Poisson equation and the source terms. Thus

for simulations one must compute µ0 as the equations are currently written, which can be

done through the no voids constraint. So as to eliminate this requirement computationally,

consider the proposed change of variables

p̃(x, t) = µ0(x, t) + p(x, t) and µ̃i(x, t) = µi(x, t)− µ0(x, t) for i = 1, 2, . . . , N (2.51)

In the equations (2.47) - (2.50) the terms µi(x, t) + p(x, t) remain unchanged, as

µi(x, t) + p(x, t) = µi(x, t)− µ0(x, t) + µ0(x, t) + p(x, t)

= µ̃i(x, t) + p̃(x, t).
(2.52)
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Also, for the source terms we have that

Si(x, t) = −λ
(
ρ−1

0,iµi(x, t)− ρ−1
0,0µ0(x, t) + ρ−1

0,i p(x, t)− ρ−1
0,0p(x, t)

)
= −λ

(
ρ−1

0,iµi(x, t) + ρ−1
0,i p(x, t)− ρ−1

0,0p̃(x, t)
)

= −λ
(
ρ−1

0,i µ̃i(x, t) + ρ−1
0,i p̃(x, t)− ρ−1

0,0p̃(x, t)
)
.

(2.53)

The boundary conditions for these solution variables are similar to that of the old variables,

as through some computations we see

−∇p̃(x, t) · n = −∇ (µ0(x, t) + p(x, t)) · n

= β(µ0(x, t) + p(x, t)) by (2.39)

= βp̃(x, t)

(2.54)

and similarly for µi

−∇µ̃i(x, t) · n = −∇ (µi(x, t)− µ0(x, t)) · n

= −∇µi(x, t) · n+∇µ0(x, t) · n

= βiµi(x, t) + (βi − β)p(x, t)− βµ0

= βi(µi − µ0) + (βi − β)(µ0 + p) after adding ± βiµ0(x, t) to the last line

= βiµ̃i(x, t) + (βi − β0)p̃(x, t)

(2.55)

Again, note that for any no-flow components we have βi = 0 and

−∇µ̃i(x, t) · n = −βp̃(x, t)

= ∇p̃(x, t) · n.
(2.56)
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All that is left is to modify the equations for the chemical potentials by

µ̃i(x, t) = µi(x, t)− µ0(x, t)

=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φ0

− ε2i∆φi(x, t) + ε20∆φ0(x, t)

=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φ0

− ε2i∆φi(x, t) + ε20∆

(
1−

∑
j 6=0

φj(x, t)

)
by (2.13)

=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φ0

− ε2i∆φi(x, t)−
∑
j 6=0

ε20∆φj(x, t).

(2.57)

Additionally, the terms
∂fh(φ)

∂φi
− ∂fh(φ)

∂φ0

(2.58)

can be more compactly written in terms of the homogeneous free energy composed with the

no voids constraint. We define

f̃h({φk}k 6=0) = fh

(
1−

∑
i 6=0

φi, φ1, φ2, . . . , φN

)
(2.59)

and we recognize via the chain rule

∂f̃h({φk}k 6=0)

∂φi
=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φ0

i 6= 0. (2.60)

Abusing the notation for φ, we write

f̃h(φ) = f̃h({φk}k 6=0). (2.61)

With these substitutions, the equations to be solved numerically are

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µ̃i(x, t) + p̃(x, t))

)
= ρ−1

0,iSi(x, t) (2.62)

µ̃i(x, t) =
∂f̃h(φ)

∂φi
− ε2i∆φi(x, t)−

∑
j 6=0

ε20∆φj(x, t). (2.63)

Si = −λ
(
ρ−1

0,i µ̃i(x, t) + ρ−1
0,i p̃(x, t)− ρ−1

0,0p̃(x, t)
)
. (2.64)
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with the pressure Poisson equation

−
N∑
i=0

∇ ·
(
γiφ

2
i (x, t)∇p̃(x, t)

)
−

N∑
i=1

∇ ·
(
γiφ

2
i (x, t)∇µ̃i(x, t)

)
=

N∑
i=1

(
ρ−1

0,i − ρ−1
0,0

)
Si(x, t).

(2.65)

Note that the second sum excludes i = 0, as the continuity equation for the zeroth component

now reads
∂φ0(x, t)

∂t
−∇ ·

(
γ0φ

2
i (x, t)∇ (p̃(x, t))

)
= ρ−1

0,0

[
−

N∑
i=1

Si(x, t)

]
. (2.66)

Lastly, we include the boundary conditions

−∇p̃(x, t) · n = βp̃(x, t), (2.67)

−∇µ̃i(x, t) · n = βiµ̃i(x, t) + (βi − β)p̃(x, t) (2.68)

and the no voids constraint

φsv(x, t) = 1−
∑
i 6=sv

φi(x, t). (2.69)

2.3 The Flory Huggins Free Energy

The qualitative behavior of the time evolution of the solution is greatly influenced by the

homogeneous free energy density fh, and in the context of polymers a commonly used free

energy is the Flory-Huggins homogeneous free energy density, which will be considered in this

dissertation. Let Ni, ρ0,i be the polymer chain lengths and number densities, respectively.

The Flory-Huggins energy for a binary mixture

fh(φ0, φ1)

kT
=
ρ0,0φ0

N0

ln(φ0) +
ρ0,1φ1

N1

lnφ1 + χ01(φ0)(φ1) (2.70)

so that
f̃h(φ1)

kT
=
ρ0,0(1− φ1)

N0

ln(1− φ1) +
ρ0,1φ1

N1

lnφ1 + χ01(φ0)(φ1) (2.71)
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which is plotted for various values of χ01 in Figure 2.1, assuming for now that ρ0,0 = ρ0,1 =

N0 = N1 = 1. For values of χ01 greater than 2, for these parameters one can show via

elementary calculus that the Flory-Huggins energy assumes a double-well potential. As the

interaction parameter χ01 increases, the homogeneous free energy’s minima will be located

closer and closer to φ1 = 0, 1. This will cause the solution to phase separate into purer

components since these states are more energetically favorable. The N + 1 component

Flory-Huggins energy reads

fh(φ)

kT
=

N∑
i=0

ρiφi
Ni

lnφi +
∑
i 6=j

χijφiφj (2.72)

This function, for a ternary system, is plotted on a Gibbs Triangle, as shown in Figure 2.2

and 2.3, since the no voids assumption (2.13) holds. In upcoming applications, qualitatively

we identify pure component 0 to be energetically favorable. In order to ensure this, we

introduce the term −c · φ0 to the free energy, which modifies the free energy to

fh(φ0, φ1, φ2) =
∑
i

ρiφi
Ni

lnφi +
∑
i 6=j

χijφiφj − c · φ0. (2.73)

The effect of this term is readily seen the plot of the free energy located in Figure 2.3, as

the minimum of the function is clearly located near φ0 ≈ 1.
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Figure 2.1: The binary free energy with varying Flory interaction parameter χ01 is shown
with fixed parameters ρ0 = ρ1 = N0 = N1 = 1.0. As the Flory interaction parameter is
increased, the Flory-Huggins free energy assumed a double-well potential, with minima φ1

approaching 0 and 1.
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Figure 2.2: The ternary, unmodified Flory Huggins free energy is plotted with parameters
ρ0 = .001, ρ1 = ρ2 = 1.0, χ01 = χ02 = 1.2, χ12 = .9. Note the comparison with 2.3, where
the free energy minimum is located near φ0 ≈ 1.
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Figure 2.3: The ternary, modified Flory Huggins free energy is plotted with parameters
ρ0 = 0.001, ρ1 = ρ2 = 1.0, χ01 = χ02 = 1.2, χ12 = 0.9, c = 0.2. Here, the free energy has
minimum located at φ0 ≈ 1 so that the solution energetically driven to be in the vapor phase.
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2.4 Other Models

We have previously remarked that there are many choices for constitutive equations which

dissipate the free energy, referring to (2.31), and we previously have examined the Darcy-

like choices for the constitutive equations (2.32). There are a wealth of choices here that

dissipate the energy, including various types of physics such as drag against a barycentric

velocity, drag of one component against another, viscous effects, as well as many others. All

of these have the common feature of prescribing some dissipation of the energy and deriving

constitutive equations for the velocities which result in this dissipation [19, 18, 49]. We

consider now other possibilities for the velocities to demonstrate the other physics that can

be included.

2.4.1 A Cross-Diffusion Model

Recall we have from Equation (2.30)

dE

dt
=

N∑
i=0

∫
Ω

Qi · ui dx−
N∑
i=0

∫
∂Ω

ri ui · ndS +
N∑
i=0

∫
Ω

qi Si dx. (2.74)

Define Qr
i ∈ R to be the rth component of Qi, and similarly for uri . Suppose that K is a

symmetric, positive definite matrix with entries κij, and suppose the constitutive relation

uri = −
∑
j

κijQ
r
j . (2.75)

Then

∫
Ω

N∑
i=0

Qi · uidx =

∫
Ω

N∑
i=0

d∑
r=1

Qr
i · uridx

= −
∫

Ω

N∑
i=0

d∑
r=1

Qr
i ·

N∑
j=0

κijQ
r
jdx

= −
∫

Ω

d∑
r=1

(
N∑
i=0

Qr
i ·

N∑
j=0

κijQ
r
j

)
dx.

(2.76)
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In a similar manner, for the other terms in (2.74) define W , Λ ∈ R(N+1)×(N+1) and r, q to be

the vectors with ith component ri, qi. Let [Wr]i, [Γq]i be the ith component of Wr. Then

set

ui · n = [Wr]i

Si = −[Λq]i.
(2.77)

If W,Λ are symmetric, positive definite matrices, then this will yield an energy dissipation

dE

dt
= −

∫
Ω

d∑
r=1

(
N∑
i=0

Qr
i ·

N∑
j=0

κijQ
r
j

)
dx−

∫
∂Ω

r ·WrdS −
∫

Ω

q · Λqdx. (2.78)

2.4.2 A Darcy Drag Model

Consider a model where we require that the energy decreases as

N∑
i=0

∫
Ω

Qi · ui dx = −1

2

N∑
i=0

N∑
j=0

∫
Ω

γi,j |ui − uj|2 dx, (2.79)

where [γi,j] ∈ RN+1×N+1 is a symmetric matrix with positive entries. We can expand the

right hand side of (2.79) to

− 1

2

N∑
i=0

N∑
j=0

∫
Ω

γi,j |ui − uj|2 dx

= −1

2

N∑
i=0

N∑
j=0

∫
Ω

γijui(ui − uj)− γijuj(ui − uj)dx

= −1

2

N∑
i=0

N∑
j=0

∫
Ω

γijui(ui − uj)dx+
1

2

N∑
i=0

N∑
j=0

∫
Ω

γijuj(ui − uj)dx

= −1

2

N∑
i=0

N∑
j=0

∫
Ω

γijui(ui − uj)dx−
1

2

N∑
i=0

N∑
j=0

∫
Ω

γijuj(uj − ui)dx.

(2.80)
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By the symmetry of γij, the second term in the last line of (2.80) is the same as the first,

and so

− 1

2

N∑
i=0

N∑
j=0

∫
Ω

γi,j |ui − uj|2 dx

= −
N∑
i=0

N∑
j=0

∫
Ω

γijui (ui − uj) dx.

(2.81)

This implies for this energy dissipation that we should choose

Qi = −
N∑
j=0

γij (ui − uj) . (2.82)
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Chapter 3

Application: Modeling of Solvent

Evaporation in Phase Separating

Polymer Blends

Preparation of thin films by dissolving polymers in a common solvent followed by evaporation

of the solvent has become a routine procedure. In this work, we present a methodology based

on the free energy of dissipation, which allows systematic study of various effects such as the

changes in the solvent properties due to transformation of its phase from liquid to vapor and

polymer thermodynamics on the thin film formation. The methodology allows derivation

of evaporative flux and boundary conditions near each surface for simulations of systems

close to the equilibrium. The methodology is applied to study the thin film formation in

phase segregating polymer blends dissolved in a common volatile solvent and deposited on a

planar substrate. Effects of the evaporation rates and interactions of the polymers with the

underlying substrate on the kinetics of thin film formation are studied.

Evaporation of liquid molecules is ubiquitous in nature and used in a number of

applications including coatings [44, 29], organic electronics [9, 2] . Evaporation of liquids

involves various non-equilibrium processes [15] coupled with the ones related to the

equilibrium. For example, evaporation of any liquid involves phase transformation (which

is an equilibrium concept) from liquid to vapor coupled with the transport (which is a

non-equilibrium concept) of the molecules across liquid-vapor interface. Modeling of the
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evaporation must take into account the coupling between the equilibrium and the non-

equilibrium phenomena in an accurate manner. Need for accurate models providing insights

into the evaporation for various phenomena occurring in nature and engineering cannot

be overstated. The accurate models can help many engineering processes cost-effective

and better by providing fundamental understanding of various processes involved in the

evaporation.

A number of so-called moving boundary models [16, 27, 35, 46, 37, 47, 57, 30, 43, 39,

58, 40, 10, 38] have been developed and reported in the literature treating various aspects

of the solvent evaporation within different levels of accuracy. A common aspect in almost

all of these models is the treatment of the solvent evaporative flux in an ad hoc manner.

Broadly, we can categorize these models into two classes. In one class of models, transport of

the evaporating molecules across the liquid-vapor interface is treated by simply moving the

liquid-vapor interface based on the local velocity of the evaporating molecules [35, 46, 37,

47, 57, 43, 58, 38] or simply removing the evaporating molecules at a given rate [30] In the

other class of models, various expressions of the evaporative fluxes are either assumed [39]

or derived [27, 16] based on the assumed shape and motion of the liquid-vapor interface.

The boundary conditions are either taken to mimic a specific system [16, 27, 57, 42] or

derived based on the balance of mass, energy and momentum at the interfaces. Although

these models provide useful insights into various processes resulting from the moving liquid-

vapor interface leading to an increase in density inside the film, there is no systematic

methodology to improve on the shortcomings related to details of the liquid-vapor interface

and the evaporative fluxes. Particle based simulations such as those based on the classical

(Newtonian) molecular dynamics [51, 41, 36, 11] have been used to obtain additional insights.

However, in case of processes occurring at widely disparate length and time scales (e.g., in

the case of polymeric systems), particle based simulations become computationally expensive

and sometimes challenging to execute.

Details of the liquid-vapor interface as well as the evaporative flux are the most important

features, which need to be modeled in an accurate way. Experimental work on small

molecular liquids such as water and ethanol provides some of the details. In particular,

work by Ward et al [53, 52] has provided information about the details of the liquid-vapor
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interfaces for solvents like water and ethanol. Experimentally, it has been shown that there

is a discontinuity in temperature near the liquid-vapor interface, with the vapor phase having

higher temperature than the liquid. For water, the temperature difference can be as high as

7.8 K. A statistical rate theory based on the concept of transition probability was used to

derive an expression for the evaporative flux [53]. The expression was used to estimate the

coefficients, which appear in the Hertz-Knudsen-Schrage relations for the evaporative flux

based on the classical kinetic theory of gases [3]. These works [53, 52] have highlighted the

importance of interfacial entropy production in the evaporation. A systematic method for

solvent evaporation can be constructed using the ideas of irreversible thermodynamics for

the systems close to the equilibrium. This can be realized in experiments, for example, when

solvent evaporation is mainly used as a method for overcoming the free energy barriers to

reach the global free energy minimum state characterizing the equilibrium. Solvent annealing

for block copolymers [29] is an example.

In this application, we have developed a methodology to study solvent evaporation in

multicomponent systems based on the concepts of irreversible thermodynamics [15]. The

methodology is limited to the systems close to the equilibrium. However, it is quite

general and allows systematic investigations of various non-trivial effects. For example,

the methodology allows identification of a self-consistent expression for the evaporative flux

and boundary conditions. Furthermore, the methodology simulates structure and dynamics

of the liquid-vapor interface in a self-consistent manner rather than assuming a flat interface

such as done in the models based on the Hertz-Knudsen-Schrage relations for the evaporative

flux.

3.1 The Mathematical Model

We derive a thermodynamically consistent model for the time evolution of a quaternary

vapor-solvent-polymer-polymer mixture where the solvent is volatile and evaporating into

the vapor phase using energetic variational princicples and mass conservation laws described

in Chapter 2. What results is a set of 3 coupled Cahn-Hilliard, Allen-Cahn-like equations

along with a Poisson-like equation for the pressure.
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Consider a mixture of two polymers (p and q) and solvent which can be present in the

liquid phase (sl) or in the vapor phase (sv). Define I = {p, q, sl, sv}. Then for i ∈ I we

enforce the conservation of mass through the continuity equation

∂ρi(x, t)

∂t
+∇ · (ρi(x, t)ui(x, t)) = Si(x, t) (3.1)

where ρi(x, t) is the number density of the ith component of the mixture and Si(x, t) is a

source term which will allow solvent molecules in the liquid phase to become solvent in the

vapor phase, modeling the evaporation of the volatile solvent. We assume that this density

function can be written as (2.3) and so

∂φi(x, t)

∂t
+∇ · (φi(x, t)u(x, t)) = ρ−1

0,iSi(x, t) i ∈ I. (3.2)

We also assume that there are no voids in the mixture so that

∑
i∈I

φi(x, t) ≡ 1 (3.3)

and thus one of the phase variables, for which we choose the solvent in the vapor phase, can

be algebraically solved in terms of the others as

φsv(x, t) = 1−
∑
i 6=sv

φi(x, t). (3.4)

In this application, since the only source and sinks are due to that of the volatile solvent

transitioning into the vapor phase we have that Sp(x, t) = Sq(x, t) = 0, and so

dM

dt
=

∫
Ω

∑
i∈I

ρ0,i
∂φi(x, t)

∂t
dx

= −
∫
∂Ω

∑
i∈I

ρ0,iφi(x, t)ui(x, t) · ndS +

∫
Ω

Ssv(x, t) + Ssl(x, t)dx.

(3.5)

and so (2.7) reduces to

Ssv(x, t) = −Ssl(x, t). (3.6)
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The applicable free energy to this application is the chemical energy

Echem(t) =

∫
Ω

fh(φ(x, t)) +
∑
i∈I

ε2i
2
|∇φi(x, t)|2dx. (3.7)

where fh(φ) is the logarithmic Flory-Huggins free energy density, which is defined as

fh(φ) = kT

(∑
i

ρ0,i

Ni

φi(x, t) ln(φi(x, t)) +
∑
i 6=j

χijφi(x, t)φj(x, t)

)
(3.8)

where k is the Boltzmann constant, T is the absolute temperature, χij are the Flory

interaction parameters between components i and j, and ε2i are the gradient energy

coefficients. The gradient energy coefficients are derived to be concentration dependent [14],

however we assume them to be independent of the volume concentrations φi.

ε2i =
ρ0,ib

2
i kT

18
(3.9)

is commonly used [45], where bi is the Kuhn length. After computing the time derivative of

the free energy as done in 2.19 we have

dEchem

dt
=
∑
i∈I

∫
Ω

φi(x, t)∇ (µi(x, t) + p(x, t)) · ui(x, t)dV

+

∫
Ω

(
ρ−1

0,slµsl(x, t)− ρ
−1
0,svµsv(x, t) + (ρ−1

0,sl − ρ
−1
0,sv)p(x, t)

)
Ssl(x, t)dV

−
∑
i∈I

∫
∂Ω

φi(x, t) (µi(x, t) + p(x, t))ui(x, t) · ndS.

(3.10)

We make the definitions

qsl(x, t) = ρ−1
0,slµsl(x, t)− ρ

−1
0,svµsv(x, t) + (ρ−1

0,sl − ρ
−1
0,sv)p(x, t)

Qi(x, t) = φi(x, t)∇ (µi(x, t) + p(x, t)) , i ∈ I

ri(x, t) = φi(x, t) (µi(x, t) + p(x, t)) i ∈ I

(3.11)
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and thus, the free energy of the system decreases as

dEchem

dt
=
∑
i∈I

∫
Ω

Qi(x, t) · ui(x, t)dV

+

∫
Ω

qsl(x, t)Ssl(x, t)dV

−
∑
i∈I

∫
∂Ω

ri(x, t)ui(x, t) · ndS.

(3.12)

We choose evolution laws for the velocities of this system to be the Darcy-like laws

ui(x, t) = −φi(x, t)γi∇ (µi(x, t) + p(x, t)) i ∈ I (3.13)

and the source terms to be

Ssl = −λ
(
ρ−1

0,slµsl(x, t)− ρ
−1
0,svµsv(x, t) + (ρ−1

0,sl − ρ
−1
0,sv)p(x, t)

)
. (3.14)

where γi, λ are positive constants, though could be positive operators more generally. In

fact, we later use

γi = C
φsl
φi

C > 0 (3.15)

to introduce a solvent dependent degenerate mobility that kinetically freezes the polymer

mixture once the solvent has been completely removed from the system, as then the

continuity equations for the polymers become

∂φi(x, t)

∂t
−∇ · (Cφslφi(x, t)∇ (µi(x, t) + p(x, t))) = 0 i = p, q. (3.16)

Since the polymer mixture is typically deposited on some substrate which prevents outflow,

we require the no-flow boundary conditions for the velocities on the bottom boundary. The

top boundary, however, is an open boundary, and so we choose a law

ui(x, t) · n =

ωiri(x, t) on ∂Ωtop

0 on ∂Ωbottom

(3.17)
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where ωi is some positive operator. With these constitutive equations in hand we can

eliminate the velocities and sources and write the governing equations purely in terms of

the functions φi, µi, p as

∂φsv(x, t)

∂t
−∇ ·

(
γsvφ

2
sv(x, t)∇ (µsv(x, t) + p(x, t))

)
= ρ−1

0,svλ
(
ρ−1

0,slµsl(x, t)− ρ
−1
0,svµsv(x, t) + (ρ−1

0,sl − ρ
−1
0,sv)p(x, t)

) (3.18)

∂φsl(x, t)

∂t
−∇ ·

(
γslφ

2
sl(x, t)∇ (µsl(x, t) + p(x, t))

)
= −ρ−1

0,slλ
(
ρ−1

0,slµsl(x, t)− ρ
−1
sv µsv(x, t) + (ρ−1

0,sl − ρ
−1
sv )p(x, t)

) (3.19)

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
= 0 i 6= sl, sv (3.20)

µi(x, t) =
∂fh(φ

∂φi
− ε2i∆φi(x, t). (3.21)

Having eliminated the velocity ui(x, t), we now specify appropriate boundary conditions for

µi(x, t) and p(x, t). On the left and right side boundaries we have periodic conditions for all

variables so as to simulate an infinite domain in this direction. Since the bottom boundary

is a no-flow boundary we specify homogeneous Neumann boundary conditions for µi(x, t)

and p(x, t), since if

∇µi(x, t) · n = 0 and ∇p(x, t) · n = 0 (3.22)

then

ui(x, t) · n = φi(x, t)γi∇(µi(x, t) + p(x, t)) · n = 0. (3.23)

The model must permit solvent in the vapor phase (and perhaps the liquid phase as well)

to flux across top boundary, and so we combine (3.13) and (3.17) to obtain appropriate

thermodynamically consistent boundary conditions for µsv and p. We must have that

−∇(µsv(x, t) + p(x, t)) · n = β (µsv(x, t) + p(x, t)) where β =
ωsv
γsv

, (3.24)
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and perhaps a natural way to enforce such a condition is to require the Robin boundary

conditions for the variables µsv(x, t) and p(x, t)

−∇µsv(x, t) · n = βµsv(x, t) −∇p(x, t) · n = βp(x, t) on ∂Ωtop. (3.25)

This type of boundary condition is not desired for the polymers in the mixture, however,

as the system does not lose or gain mass of the polymer by allowing the polymer to flux

through the boundary. To enforce this we use the no flow boundary conditions

ui(x, t) · n = 0 for i = p, q (3.26)

on the top boundary. Either boundary condition may be applicable for the solvent in the

liquid phase, and simulations later are shown demonstrating the effect of the choice of this

boundary condition. Again, if we enforce the boundary conditions

∇µi(x, t) · n = −∇p(x, t) · n (3.27)

for the chemical potential, then this clearly results in the no-flow boundary conditions of the

ith component. For the boundary conditions for the solvent in the liquid phase, we either

implement the no-flow boundary conditions or the derived boundary conditions

−∇µsl(x, t) · n = βslµsl + (βsl − β) p (3.28)

Also in the model, we may have that the substrate on which the polymer film is deposited

may like or dislike some of the components. In simulations, we assume that this affinity is

for one of the polymers, and that is modeled through the energetic boundary energy term

fs(φ) = αpφp + αqφq (3.29)
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The local thermodynamic equilibrium boundary conditions can be expressed in matrix form

as 
ε2sv + ε2sl ε2sv ε2sv

ε2sv ε2sv + ε2p ε2sv

ε2sv ε2sv ε2sv + ε2sv



∇φsl · n

∇φp · n

∇φq · n

 =


0

−αp
−αq

 . (3.30)

In the specific instance that ε2i = ε2 is a constant and αp = −αq, this has the unique solution

∇φsl · n = 0

∇φp · n = −αp
ε2

∇φq · n = −αq
ε2
.

(3.31)

Due to the no voids constraint (3.3), we do not solve the Cahn-Hilliard system associated

with the solvent in the vapor phase, and instead derive the pressure Poisson equation as in

Chapter 2 to be

−
∑
i∈I

∇ ·
(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
=
(
ρ−1

0,sl − ρ
−1
0,sv

)
Ssl(x, t). (3.32)

This reduces the problem to solving the system of equations

∂φsl(x, t)

∂t
−∇ ·

(
γslφ

2
sl(x, t)∇ (µsl(x, t) + p(x, t))

)
= −ρ−1

0,slλ
(
ρ−1

0,slµsl(x, t)− ρ
−1
0,svµsv(x, t) + (ρ−1

0,sl − ρ
−1
0,sv)p(x, t)

) (3.33)

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µi(x, t) + p(x, t))

)
= 0 i 6= sl, sv (3.34)

µi(x, t) =
∂fh(φ)

∂φi
− ε2i∇φi(x, t) i = sl, p, q (3.35)

After making the change of variables

p̃(x, t) = µsv(x, t) + p(x, t) and µ̃i(x, t) = µi(x, t)− µsv(x, t) for i = p, q, sl (3.36)

In equations (3.33) - (3.34) the terms µi(x, t) + p(x, t) remain unchanged, as µi(x, t) −

µ0(x, t) + µ0(x, t) + p(x, t) = µ̃i(x, t) + p̃(x, t), and the source term expressed in terms of
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the changed variables is

Ssl(x, t) = −λ
(
ρ−1

0,slµsl(x, t)− ρ
−1
0,svµsv(x, t) + ρ−1

0,slp(x, t)− ρ
−1
0,svp(x, t)

)
= −λ

(
ρ−1

0,slµsl(x, t) + ρ−1
0,slp(x, t)− ρ

−1
0,svp̃(x, t)

)
= −λ

(
ρ−1

0,slµ̃sl(x, t) + ρ−1
0,slp̃(x, t)− ρ

−1
0,svp̃(x, t)

)
.

(3.37)

The boundary conditions on the flow portion of the boundary for µ̃ and p̃ read

−∇p̃(x, t) · n = −∇ (µ0(x, t) + p(x, t)) · n

= β(µ0(x, t) + p(x, t)) by (2.39)

= βp̃(x, t)

(3.38)

−∇µ̃i(x, t) · n = −∇ (µi(x, t)− µ0(x, t)) · n

= βiµ̃i(x, t) + (βi − β)p̃(x, t) (2.40)
(3.39)

for the flow portion of the boundary, with βi = 0 if the ith component is a no-flow component

on the flow boundary, as derived in the previous section. The chemical potentials become

µ̃i(x, t) = µi(x, t)− µsv(x, t)

=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φsv
− ε2i∆φi(x, t)−

∑
j 6=sv

ε2sv∆φj(x, t).
(3.40)

We can write the terms
∂fh(φ)

∂φi
− ∂fh(φ)

∂φsv
(3.41)

more compactly, and with a slight abuse of notation of φ we write

∂f̃h(φ)

∂φi
=
∂fh(φ)

∂φi
− ∂fh(φ)

∂φsv
i 6= sv (3.42)

with

f̃h(φ) = fh(1−
∑
i 6=sv

φi, φsl, φp, φq). (3.43)
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With these substitutions, the equations to be solved numerically are

∂φsl(x, t)

∂t
−∇ ·

(
γslφ

2
sl(x, t)∇ (µ̃sl(x, t) + p̃(x, t))

)
= ρ−1

0,slSsl(x, t) (3.44)

∂φi(x, t)

∂t
−∇ ·

(
γiφ

2
i (x, t)∇ (µ̃i(x, t) + p̃(x, t))

)
= 0 for i = p, q (3.45)

µ̃i(x, t) =
∂f̃h(φ)

∂φi
− ε2i∆φi(x, t)−

∑
j 6=sv

ε2sv∆φj(x, t). (3.46)

Ssl = −λ
(
ρ−1

0,slµ̃sl(x, t) + ρ−1
0,slp̃(x, t)− ρ

−1
0,svp̃(x, t)

)
. (3.47)

with the pressure Poisson equation

−
∑
i

∇·
(
γiφ

2
i (x, t)∇p̃(x, t)

)
−
∑
i 6=sv

∇·
(
γiφ

2
i (x, t)∇µ̃i(x, t)

)
=
(
ρ−1

0,sl − ρ
−1
0,sv

)
Ssl(x, t) (3.48)

with the boundary conditions previously described and the no voids constraint

φsv(x, t) = 1−
∑
i 6=sv

φi(x, t) (3.49)

3.2 Nondimensional Equations

We now turn our attention to nondimensionalizing the equations (3.44) - (3.48), and drop

all overbars and tildes in them so that we may use them to indicate nondimensionalized

operators and variables. Let L, τ be the characteristic length and time, and let x̃, t̃ be

nondimensionalized space and time

Lx̃ = x (3.50)

τ t̃ = t. (3.51)
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We write the dimensionless Flory-Huggins free energy as

fh(φ) =
f̃h(φ)

ρ0,slkT

=
∑
i

ρ̃0,i

Ni

φi ln(φi) +
∑
i 6=j

χ̃ijφiφj

(3.52)

where

ρ̃0,i =
ρ0,i

ρ0,sl

, χ̃ij =
χij
ρ0,sl

and φsv = 1−
∑
i 6=sv

φi (3.53)

With this definition we have the nondimensional chemical potential

µ̃i(x̃, t̃) =
µi(Lx̃, τ t̃)

ρ0,slkT
=
∂fh(φ)

∂φi
− ε2i
ρ0,slkTL2

∆̃φ̃i(x̃, t̃)−
∑
j 6=sv

ε2sv
ρ0,slkTL2

∆̃φ̃j(x̃, t̃) (3.54)

and the nondimensional pressure

p̃(x̃, t̃) =
p(Lx̃, τ t̃)

ρ0,slkT
(3.55)

We define S̃sl(x, t) so that S̃sl(x, t) = ρ−1
0,slSsl(Lx̃, τ t̃) to introduce the density ratio to the

continuity equations. Upon substituting the proposed length and time scaling we have

∂

∂t̃
φ̃sl(x̃, t̃)− ∇̃ ·

( τ
L2
γslρ0,slkT φ̃

2
sl(x̃, t̃)∇̃

(
µ̃sl(x̃, t̃) + p̃(x̃, t̃)

))
= ρ̃−1

0,slS̃sl(x̃, t̃) (3.56)

∂

∂t̃
φ̃i(x̃, t̃)− ∇̃ ·

( τ
L2
γiρ0,slkTφ

2
i (x̃, t̃)∇̃

(
µi(x̃, t̃) + p(x̃, t̃)

))
= 0 for i = p, q (3.57)

where

S̃sl(x̃, t̃) = −(τλρ−1
0,slkT )

(
ρ̃−1

0,slµsl(x̃, t̃) + ρ̃−1
0,slp(x̃, t̃)− ρ̃

−1
0,svp(x̃, t̃)

)
= −λ̃

(
ρ̃−1
sl µsl(x̃, t̃) + ρ̃−1

sl p(x̃, t̃)− ρ̃
−1
sv p(x̃, t̃)

)
, λ̃ = τλρ0,slkT.

(3.58)

We set the nondimensionalized length L to be the radius of gyration of the long polymer

Rgp =

√
Npb2p

6
. Upon assuming gradient energy coefficients of the form (3.9), the
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nondimensional gradient energy coefficients are

ε̃2i =
ρ0,ib

2
i kT

18R2
gpkTρ0,sl

=
ρ̃ib̃i
3Np

.

(3.59)

where b̃i = bi
bp

. So as to approximate an appropriate characteristic time scale, consider

simplifying the chemical potential of component i by neglecting terms in the chemical

potential so that

ρ0,slkT µ̃i(x̃, t̃) ≈
ρ̃i
Ni

(1 + ln(φ̃i(x̃, t̃))). (3.60)

and

∇µi(x, t) ≈
ρ̃iρ0,slkT

LNi

∇̃µ̃i(x̃, t̃) ≈
ρ̃iρ0,slkT

Lφ̃i(x, t)Ni

∇̃φ̃i(x̃, t̃). (3.61)

With this approximation the Cahn-Hilliard equation resembles the diffusion equation

∂

∂t̃
φ̃i(x̃, t̃)− ∇̃ ·

(
τ

L2

ρ̃0,iρ0,slkTγiφ̃i(x̃, t̃)

Ni

∇φ̃i(x̃, t̃)

)
= 0 (3.62)

with diffusivity Di =
ρ̃0,iρ0,slkTγiφi

Ni
. Using the Rouse model from polymer dynamics gives a

similar diffusion equation in the form of

∂

∂t̃
φ̃i(x̃, t̃)− ∇̃ ·

( τ
L2
DRi∇̃φ̃i(x̃, t̃)

)
(3.63)

where

DRi =
kT

Niζi
(3.64)

is the diffusion coefficient for the Rouse model with associated time scale

τRi =
R2
gi

DRi

. (3.65)

Assuming that φi(x, t) = C is a constant, we readily identify

Cρ0,slγiρ̃i =
1

ζi
. (3.66)
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If we choose the time scale to be the Rouse time of polymer p, and the length scale to be

the radius of gyration so that

τ = τRp L = Rgp, (3.67)

upon substituting this time scale into the nondimensional equations we have

0 =
∂φi(x, t)

∂t
−∇ ·

(
τ

L2

ρ0,slkTγiφi(x, t)ρ̃i
Ni

∇φi(x, t)
)

=
∂φi(x, t)

∂t
−∇ ·

(
τ

R2
gp

Di∇φi(x, t)
)

=
∂φi(x, t)

∂t
−∇ ·

(
Di

DRp

∇φi(x, t)
) (3.68)

so that the nondimensional mobilities in the Cahn-Hilliard equations are

Di

DRp

=
Npγp
Niγi

. (3.69)

For example, a time scale for a diffusivity of Dp = 10−10 cm2

s
and radius of gyration Rg = 1nm,

the time scale τ is on the order of 10−4s.

3.3 Numerical Method

We discretize the system of equations in 2 dimensions for convenience of notation in a cell-

centered finite difference framework and remark that the discretization in 3 dimensions is

a straightforward extension. Assume a uniform step in space and time of s, h = hx = hy.

Though uniform meshes are not used, in any applied adaptivity the use of structured meshes

makes the uniform space step assumption useful. It is well known that explicit methods for

multi-component Cahn-Hilliard models suffer a time step restriction of ∆t = O(h4) [28, 12].

Here we consider a semi-implicit method.

3.3.1 The Regularized Logarithm

To improve stability and ensure logarithms are not evaluated for values less than or equal

to zero, we regularize the logarithm [4, 5, 28] to be the Taylor expansion of the logarithm
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function about δ when x < δ as

lnδ(x) =

ln(x) x > δ

ln(δ) + 2x
δ
− x2

2δ2
− 1.5 x ≤ δ

(3.70)

for a small parameter δ which is taken to be 10−3 in simulations. This is an approximation

to the logarithm function which is C2 and has the property that on [δ,∞) its derivative and

second derivative match that of the logarithm function, as

d

dx
lnδ(x)

∣∣∣
x=δ

=
2

δ
− 1

δ
=

1

δ
(3.71)

and
d2

dx2
lnδ(x)

∣∣∣
x=δ

= − 1

δ2
. (3.72)

For all logarithms, we instead use the regularized logarithm (3.70).

We consider the set of nondimensional equations previously derived as

∂φsl
∂t
−∇ · (Msl(φ)∇ (µsl + p)) = ρ−1

0,slSsl (3.73)

∂φi
∂t
−∇ · (Mi(φ)∇ (µi + p)) = 0 for i = p, q (3.74)

µi =
∂fh(φ)

∂φi
− ε2i∆φi −

∑
j 6=sv

ε2sv∆φj. (3.75)

Ssl = −λ
(
ρ−1

0,slµsl + ρ−1
0,slp− ρ

−1
0,svp

)
. (3.76)

−
∑
i∈I

∇ · (Mi(φ)∇p)−
∑
i 6=sv

∇ · (Mi(φ)∇µi) =
(
ρ−1

0,sl − ρ
−1
0,sv

)
Ssl (3.77)

with

fh(φ) =
∑
i∈I

ρ0,i

Ni

φi lnδ(φi) +
∑
i 6=j

χijφiφj − c · φsv with φsv = 1−
∑
i 6=sv

φi. (3.78)

The boundary conditions are periodic on the left and right side for all variables. The local

thermodynamic equilibrium boundary conditions applied for ∇φi · n are derived in (3.30),
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and for the chemical potentials and pressure we enforce the previously derived boundary

conditions for the top boundary

−∇p(x, t) · n = βp −∇µi(x, t) · n = βiµi + (βi − β) p (3.79)

with βp = βq = 0, and homogeneous Neumann boundary conditions for all chemical

potentials and pressures on the bottom boundary.

3.3.2 A Semi-Implicit Method

In this numerical approximation, we first discretize via a first order method semi-implicitly

in time

φn+1
sl − s∇ ·

(
Msl(φ

n)∇
(
µn+1
sl + pn+1

))
− sρ−1

0slS
n+1
sl = φnsl (3.80)

φn+1
i − s∇ ·

(
Mi(φ

n)∇
(
µn+1
i + pn+1

))
= φni i = p, q (3.81)

Ssl = −λ
(
ρ−1

0,slµ
n+1
sl + (ρ−1

0,sl − ρ
−1
0,sv)p

n+1
)

(3.82)

µn+1
i + ε2i∆φ

n+1
i + ε2sv∆

(∑
j 6=sv

φn+1
j

)
=
∂fh(φ

n)

∂φi
(3.83)

∑
i 6=sv

∇ ·
(
Mi(φ

n)∇µn+1
i

)
+
∑
i

∇ ·
(
Mi(φ

n)∇pn+1
)

+
(
ρ−1

0,sv − ρ−1
0,sl

)
Sn+1
sl = 0. (3.84)

We discretize in space via the second order central difference scheme. Let ui(j, k) be a

generic grid function at node j, k, with i an index that will later indicate the component of

the mixture. We define

Mi(j +
1

2
, k) =

1

2
(Mi(j, k) +Mi(j + 1, k)) (3.85)
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with similar definitions for Mi(j − 1
2
, k),Mi(j, k + 1

2
),Mi(j, k − 1

2
), and we define

(∇h ·Mi∇hui) (j, k) =
1

h2

(
Mi(j +

1

2
, k)ui(j + 1, k) +Mi(j −

1

2
, k)ui(j − 1, k)

)
+

1

h2

(
Mi(j, k +

1

2
)ui(j, k + 1) +Mi(j, k −

1

2
)ui(j, k − 1)

)
− 1

h2

((
(Mi(j +

1

2
, k) +Mi(j −

1

2
, k) +Mi(j, k +

1

2
) +Mi(j, k −

1

2
)

)
ui(j, k)

)
,

(3.86)

the standard second order finite difference approximation. By introducing this discretized

operator into the time discretized system we obtain a fully discretized system which results

in the large, sparse linear system

φsl − s∇h · (Msl∇h (µsl + p))− sρ−1
0,slSsl = Fφsl (3.87)

φi − s∇h · (Mi∇h (µi + p)) = Fφi i = p, q (3.88)

Ssl = −λ
(
ρ−1

0,slµsl + (ρ−1
0,sl − ρ

−1
0,sv)p

)
(3.89)

µi + ε2i∆hφi + ε2sv∆h

(∑
j 6=sv

φj

)
= Fµi (3.90)

∑
i 6=sv

∇h · (Mi∇hµi) +
∑
i

∇h · (Mi∇hp) +
(
ρ−1

0,sv − ρ−1
0,sl

)
Ssl = 0. (3.91)

where the superscript n + 1 indicating the time step has been suppressed. Note that the

Mi, Fφi , Fµi depend on the previous data φni , so in this linear system the mobilities Mi and

forcing terms Fi are spatially dependent but do not depend on the current solution. We

solve this system using the Full Approximation Storage (FAS) multigrid method based on

the two-level algorithm [50], which is extended into an adaptive algorithm as in [54]. For the

equations (3.87) - (3.91) we define the solution variables and operators compactly as

Φ(j, k) = (φsl(j, k), µsl(j, k), φp(j, k), µp(j, k), φq(j, k), µq(j, k), p(j, k)) , (3.92)
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N the operator on the left hand side, S the right hand side, so that we are solvingN (Φ) = S.

We define Φm,Nm,Sm to be the solution, operator, and right hand side for the mth level

grid. The two level method is then written as

Initialize Φ0
m = Φn+1,0

m ←− Φn
m, the solved solution at the last time step;

Initialize Sm = Sn+1
m ;

while ‖Nm(Φr
m)− Sm‖ > tol do

Φr
m = Smoothλ(Φr

m,Nm,Sm) ;

rrm = Sm −Nm(Φr
m) ;

Restrict rrm−1 = Im−1
m rrm,Φ

r
m−1 = Im−1

m Φr
m ;

Solve Nm−1(Ψr
m−1) = Nm−1(Φr

m−1) + rrm−1 ;

erm−1 = Ψr
m−1 −Φr

m−1 ;

Prolongate Φr
m = Φr

m + Imm−1e
r
m−1 ;

Φr
m = Smoothλ(Φr

m,Nm,Sm) ;

end

Algorithm 1: Two-level Algorithm
To implement the boundary conditions, we extend the grid to include one layer of ghost

cells, and require that the ghost cells’ values satisfy the discrete boundary conditions. So,

for example, on the bottom boundary for (3.30) we solve

φp(j, 0)− φp(j, 1)

h
= −αi

ε2i
(3.93)

where φq(j, 0) represents the value of φq on a ghost cell. We do remark that the boundary

conditions for the pressure and chemical potentials may appear coupled in (3.79) on first

glance, however, once the pressure is updated through the first equation

−∇p(x, t) · n = βp (3.94)

we use this value to update the ghost cells for the rest of chemical potentials so that no

linear system needs to be solved for the boundary conditions. The smoother used for the

multigrid method is a Red-Black Gauss-Seidel smoother, though we present one that is more

Jacobi-like, as the implementation of the Gauss-Seidel method iterating over the black and
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red cells resembles the Jacobi method. Define uli(j, k) to be the lth Gauss-Seidel iterate.

Then we apply the method to update the l + 1 iterate as solving the system of equations

φl+1
i (j, k) +

s

h2

(
Mi(j +

1

2
, k) +Mi(j −

1

2
, k) +Mi(j, k +

1

2
) +Mi(j, k −

1

2
)

)
µl+1
i (j, k)

− s

h2

(
Mi(j −

1

2
, k)µli(j − 1, k) +Mi(j +

1

2
, k)µli(j + 1, k)

)
− s

h2

(
Mi(j, k −

1

2
)µli(j, k − 1) +Mi(j, k +

1

2
)µli(j, k + 1)

)
+

s

h2

(
Mi(j +

1

2
, k) +Mi(j −

1

2
, k) +Mi(j, k +

1

2
) +Mi(j, k −

1

2
)

)
pl+1
i (j, k)

− s

h2

(
Mi(j −

1

2
, k)pli(j − 1, k) +Mi(j +

1

2
, k)pli(j + 1, k)

)
− s

h2

(
Mi(j, k −

1

2
)pli(j, k − 1) +Mi(j, k +

1

2
)pli(j, k + 1)

)
− sρ−1

0,iS
l+1
i (j, k)

= Fφi

(3.95)

Sl+1
sl (j, k) = −λ

(
ρ−1

0,slµ
l+1
sl (j, k) + (ρ−1

0,sl − ρ
−1
0,sv)p

l+1(j, k)
)

(3.96)

µl+1
i (j, k)− 4(ε2i + ε2sv)

h2
φl+1
i (j, k)

+
(ε2i + ε2sv)

h2

(
φli(j + 1, k) + φli(j − 1, k) + φli(j, k + 1) + φli(j, k − 1)

)
−

∑
α 6=i,α 6=sv

4ε2sv
h2

φl+1
α (j, k)

+
∑

α 6=i,α 6=sv

ε2sv
h2

(
φlα(j + 1, k) + φlα(j − 1, k) + φlα(j, k + 1) + φlα(j, k − 1)

)
= Fµi

(3.97)
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1

h2

(
Mp(j +

1

2
, k) +Mp(j −

1

2
, k) +Mp(j, k +

1

2
) +Mp(j, k −

1

2
)

)
pl+1(j, k)

− 1

h2

(
Mp(j +

1

2
, k)pl(j + 1, k) +Mp(j, k +
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(3.98)

For this system, at every grid point we must solve the system of equations of the form

a11 a12 0 0 0 0 a17

a21 a22 a23 0 a25 0 0

0 0 a33 a34 0 0 a37

a41 0 a43 a44 a45 0 0

0 0 0 0 a55 a56 a57

a61 0 a63 0 a65 a66 0

0 a72 0 a74 0 a76 a77





φl+1
sl (j, k)

µl+1
sl (j, k)

φl+1
p (j, k)

µl+1
p (j, k)

φl+1
q (j, k)

µl+1
q (j, k)

pl+1(j, k)


= RHS. (3.99)

Typically some decoupling strategy takes place in the smoother so as to reduce computation

time, since solving this 7x7 system of equations at every grid point for this fully coupled

system can be computationally expensive. There is some practical trade-off here in the sense

that the more you decouple, the easier the system can be solved, but the smoother (and thus

the multigrid solver) may perform more poorly, increasing the number of multigrid iterations

required to solve one time step. One effective strategy to decouple the system is to move

the pressure coupling terms a17, a37,and a67 in the φi equations and the all of the coupling

51



terms in the µi equations, except the corresponding φi term, to the right hand side to get

the system 

a11 a12 0 0 0 0 0

a21 a22 0 0 0 0 0

0 0 a33 a34 0 0 0

0 0 a43 a44 0 0 0

0 0 0 0 a55 a56 0

0 0 0 0 a65 a66 0

0 a72 0 a74 0 a76 a77





φl+1
sl (j, k)

µl+1
sl (j, k)

φl+1
p (j, k)

µl+1
p (j, k)

φl+1
q (j, k)

µl+1
q (j, k)

pl+1(j, k)


= RHS

−



a17p
l(j, k)

a23φ
l
p(j, k) + a25φ

l
q(j, k)

a37p
l(j, k)

a41φ
l
sl(j, k) + a45φ

l
q(j, k)

a57p
l(j, k)

a61φ
l
sl(j, k) + a63φ

l
p(j, k)

0


.

(3.100)

This results in 3 block 2 by 2 matrix equations which are trivial to invert. Then, once those

chemical potentials have been updated, the pressure Poisson equation can be solved. Another

possible smoother can be derived my moving all φi variables in the chemical potential

equations to the right hand side and keep the pressure terms implicit in the smoother,
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which leads to the linear system

a11 a12 0 0 0 0 a17

0 a22 0 0 0 0 0

0 0 a33 a34 0 0 a37

0 0 0 a44 0 0 0

0 0 0 0 a55 a56 a57

0 0 0 0 0 a66 0

0 a72 0 a74 0 a76 a77





φl+1
sl (j, k)

µl+1
sl (j, k)

φl+1
p (j, k)

µl+1
p (j, k)

φl+1
q (j, k)

µl+1
q (j, k)

pl+1(j, k)


= RHS

−



0

a21φ
l
sl(j, k) + a23φ

l
p(j, k) + a25φ

l
q(j, k)

0

a41φ
l
sl(j, k) + a43φ

l
p(j, k) + a45φ

l
q(j, k)

0

a61φ
l
sl(j, k) + a63φ

l
p(j, k) + a65φ

l
q(j, k)

0



(3.101)

which is attractive as this is an upper triangular upon rearrangement of the variables, and

as such can be solved through back substitution by first solving for the µi components, then

the pressure, then the φi components

3.3.3 A Numerical Experiment on Smoothers

We consider here a numerical experiment to demonstrate the effectiveness of possible

smoothers. We consider the problem posed on a computational domain [0, 100]x[0, 100]

with seven levels of refinement, so that the finest level has 128 grid points in each direction.

The solution is initially set so that φsl(x, y) = φp(x, y) = φq(x, y) = 10−8, so that φsv ≈ 1

in this region. For y < 75 we set φsv = 10−8 and φp = 0.1 + rand(x, y) where rand(x, y) is

a random number strictly between -0.1 and 0.1, φq = 0.15 and φsl to satisfy the no voids

constraint ∑
i∈I

φi = 1. (3.102)
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Table 3.1: Parameters for Numerical Experiment on Smoothers for Multigrid

Gradient Energy Coefficients Mobilities Densities
ε2sv 0.7 γsv 5.0 ρ0,sv 0.010
ε2sl 0.7 γsl 5.0 ρ0,sl 1.0
ε2p 0.7 γp 1.0 ρ0,p 1.0

ε2q 0.7 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.000
λ .001
δ .001
c 5.0
N2 89.0
N3 7.0

We run a solver with smoother based on (3.101) with time step s = 10−4 until t = 100. Then,

using the solved solution at t = 100 as initial data, we run the solver with different smoothers,

using 1 presmooth and 1 postsmooth in the multigrid iteration. For the smoother based on

(3.99), after allowing the solver to run until t ≈ 100.5, 4 to 6 multigrid iterations are required

for convergence. In using the decoupled smoother (3.101), at t ≈ 100.5 we require between 8

and 11 iterations for convergence. For smoother (3.100) at t ≈ 100.5, again between 4 and 6

iterations are required, demonstrating that the decoupling (3.100) is practically as efficient

as (3.99), though computationally much faster due to its block decoupled structure.

3.4 Simulations of Polymer Mixtures with an Evapo-

rating Solvent

We now present simulations that demonstrate the model’s effectiveness by varying param-

eters and presenting the time-evolution of the numerical solution. For clarity, we write the

implemented (nondimensional) equations

∂φsl
∂t
−∇ · (Msl(φ)∇ (µsl + p)) = ρ−1

0,slSsl (3.103)
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∂φi
∂t
−∇ · (Mi(φ)∇ (µi + p)) = 0 (3.104)

Ssl = −λ
(
ρ−1

0,slµsl + ρ−1
0,slp− ρ

−1
0,svp

)
(3.105)

where the mobilities Mi(φ) = γiφ
2
i unless otherwise noted. Notice here that previously in

the model derivation γi could indicate some function of the concentrations. In this section,

it is some (constant) parameter. The chemical potential equations are

µi =
∂fh
∂φi
− ε2i∆φi − ε2sv

∑
j 6=i
j 6=sv

∆φj. (3.106)

with the Flory-Huggins free energy

fh(φ) =
∑
i∈I

(ρ0,iφi lnδ(φi)) +
∑
i 6=j

χijφiφj with φsv = 1−
∑
i 6=sv

φi (3.107)

and the pressure Poisson equation is

−
∑
i∈I

∇ · (Mi(φ)∇p)−
∑
i∈I
i6=sv

∇ · (Mi(φ)∇µi) =
(
ρ−1

0,sl − ρ
−1
0,sv

)
Ssl. (3.108)

3.4.1 Simulations in One Space Dimension

Presented in this section are simulations analyzing the dependence of the model on the

parameters β and λ. Plots of the vapor phase volume fraction (φsv) are presented. Each

simulation is run on a computational domain of [0, 100]. For x < 75 all simulations are

initialized with φp = 0.1 + rand(x) where rand(x) is a random number between -0.1 and 0.1,

so that φp is some number chosen randomly between 0.0 and 0.2. The other variables are

initilized as φq = 0.15 and φsv = 10−8, with φsl initialized to satisfy the no voids constraint

∑
i∈I

φi = 1. (3.109)

This region is to model the polymer mixture, with the solvent in the vapor phase above

it. Thus for x > 75 we will initialize all the volume fractions except that of the solvent
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in the vapor phase to be approximately zero. We choose to set φsl = φp = φq = 10−8,

with φsv = 1.0 − 3 × 10−8 in this region satisfying the no voids condition. The first two

simulations comprise of two simulations for each set of parameters given, one with the Robin-

type boundary conditions for usv and usl so that on ∂Ωtop

−∇µsv(x, t) · n = βµsv(x, t) −∇µsl(x, t) · n = βµsl(x, t)

−∇p(x, t) · n = βp(x, t)
(3.110)

and another with the no flow boundary conditions for usl. The nonzero Robin-type boundary

conditions for usl allow for usl ·n to be nonzero on the boundary, and thus allows for solvent

in the liquid phase to flux across the boundary at x = 100. The first two simulations show

that this effect dominates the effect of the other parameters on the speed of the interface

between the solvent in the vapor phase and the polymer mixture. All simulations were done

on a grid with 128 spatial grid points and time step s = .001, and the surface energy term

fs(φ) is set to zero for the entire set of one-dimensional simulations, which leads to the

homogeneous Neumann boundary conditions for the volume fractions ∇φi ·n = 0 via (3.30).

One Dimensional Simulation 1

The set of parameters for this simulation are given in Table 3.2. The general qualitative

behavior observed is what one might expect in a mixture with an evaporating solvent. There

initially is a small vapor phase indicated by φsv ≈ 1 on top of the polymer mixture where

φsv ≈ 0. As can be seen in the Figures 3.1 and 3.2, the solvent in the liquid phase evaporates

and the vapor phase grows until the solvent in the liquid phase has completely left the

system, after which the vapor phase cannot grow anymore since the governing equations do

not permit a change in mass of the polymers p or q. In Figure 3.1 we have a simulation

with the flow boundary conditions for usl, specifically βsl = β = βsv, as given in Table 3.2.

Comparing the simulations in Figures 3.1 and 3.2, we see that this boundary condition has a

drastic effect on the time scale of evaporation. Additionally included is a plot of the polymer

p volume fraction φp in Figure 3.3, which shows 1 dimensional “layers” of pure polymer

phase forming as the solvent is removed from the system.
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Figure 3.1: In this simulation we plot φsv at multiple times, and we use parameters from
Table 3.2 with the flow boundary conditions on usl. The important qualitative behavior
that is observed in this simulation is that there is a pronounced interface between the vapor
phase (φsv ≈ 1) and the polymer mixture (φsv ≈ 0), and that the polymer mixture shrinks
in height until the solvent in the liquid phase has fully evaporated.
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Figure 3.2: In this simulation we plot φsv at multiple times, and we use parameters from
Table 3.2 with the no-flow boundary conditions on usl. Similar to the simulation in Figure
3.1, the qualitative behavior that is observed in this simulation is that there is a pronounced
interface between the vapor phase (φsv ≈ 1) and the polymer mixture (φsv ≈ 0), and that the
polymer mixture shrinks in height until the solvent in the liquid phase has fully evaporated.
Note there is a significant time scale difference between this simulation and the simulation
in Figure 3.1 due to the no-flow boundary conditions applied to usl here.
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Figure 3.3: In this simulation we plot φp at multiple times, and we use parameters from
Table 3.2 with the no-flow boundary conditions on usl. This plot of the polymer p volume
fraction is from the same simulation from that of Figure 3.2. We observe that as the solvent
in the liquid phase is exiting the polymer mixture, the volume fraction of the polymer is
increasing while the total size of the polymer mixture is decreasing. Shortly after the last
plot shown at nondimensional time t = 42000, the solvent in the liquid phase has fully
evaporated from the system (φsl ≈ 0), and all that is left are the two polymers.
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Table 3.2: Parameters for One Dimensional Simulation 1 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 1.00 γsv 5.0 ρ0,sv 0.010
ε2sl 1.00 γsl 5.0 ρ0,sl 1.0
ε2p 1.00 γp 1.0 ρ0,p 1.0

ε2q 1.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.000
λ .001
δ .001
c 5.0
N2 89.0
N3 7.0

One Dimensional Simulation 2

Relative to simulation 1, this simulation increases β by a factor of 10 from β = 1.0 in

simulation 1 (see table 3.2) to β = 10.0. The other parameters used in this simulation are

listed in Table 3.3 and are identical to those in simulation 1. The effect of increasing this

parameter on the mathematical model is made transparent when recalling the relationship

of βi to ωi in 2.32 as βi = ωi

γi
. Increasing βi increases ωi, which increases the effect ri(x, t)

has on ui ·n, defined in 2.29. In comparing Figures 3.1 and 3.4 we see that this increase in

β has little effect on rate at which the interface moves when the flow boundary conditions

are specified for usl. However, when we set the no-flow boundary conditions for usl, we

see in comparing Figures 3.2 with 3.5 the interface speed is much faster than the previous

simulation.

One Dimensional Simulation 3

For this simulation all parameters the same as simulation 1, with the exception of λ, the

parameter which describes the rate at which solvent in the liquid phase becomes solvent in

the vapor phase through the mechanism of the source term Ssl(x, t). This parameter has

been decreased by a factor of 100 from 10−3 to 10−5. We see that, comparing Figure 3.2 with

Figure 3.6, this drastically reduces the speed of the interface. We only present a simulation
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Figure 3.4: In this simulation we plot φsv at multiple times, and we use parameters from
Table 3.3 with the flow boundary conditions on usl. We see the same qualitative behavior
as that of the previous simulations. Important to note in this simulation is that even though
β has been increased by an order of magnitude, this has little effect as the flow boundary
conditions for usl dominate the speed of the interface, in contrast to the relationship between
the simulation presented in Figures 3.5 and 3.2 for which we see a large change in the time
required for the solvent in the liquid phase to fully evaporate.

61



Figure 3.5: In this simulation we plot φsv at multiple times, and we use parameters from
Table 3.3 with the no-flow boundary conditions on usl. Soon after the final simulation plot
is shown at t=18000 above, the solvent in the liquid phase has fully evaporated, so φsl ≈ 0.
In comparing to the simulation shown in Figure 3.2, we observe that the time required for
this to occur is much smaller due to the increase in β.
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Table 3.3: Parameters for One Dimensional Simulation 2 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 1.00 γsv 5.0 ρ0,sv 0.010
ε2sl 1.00 γsl 5.0 ρ0,sl 1.0
ε2p 1.00 γp 1.0 ρ0,p 1.0

ε2q 1.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 10.000
λ .001
δ .001
c 5.0
N2 89.0
N3 7.0

for the no-flow boundary condition on usl, but we note that similar behavior occurs to the

previous two simulations when prescribing the flow boundary conditions for usl. That is,

changing the λ parameter does not have a significant effect on the speed of the vapor interface

when the flow boundary conditions for usl are specified.

Dependence of Interface Velocity on the Parameters

With many plots of φsv already have been given, we present more compactly the dependence

of the interface on the parameters. Presented below are time plots of the interface location

for various β and λ parameters. The parameters in Table 3.5 remain the same for each of

the simulations done.

The interface location is defined here to be the x such that φsv(x) = 0.5 (which is

unique for these simulations). Increasing the parameter β introduced in (3.17) corresponds

to varying ωi for fixed γi, which increases the flux of vapor particles across the boundary.

Increasing λ increases the rate at which solvent particles in the liquid phase transition to

solvent particles in the vapor phase (and possibly vice versa). All of these simulations were

run with the no flow boundary conditions on usl, as we have already remarked previously

that the flow boundary conditions on usl dominate the effect of the other parameters. The

no-flow boundary conditions for usl implies that solvent particles in the liquid form cannot
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Figure 3.6: In this simulation we plot φsv at multiple times, and we use parameters from
Table 3.4 with the no flow boundary conditions on usl. In this simulation, however, we
have a decreased λ, which decreases the rate at which solvent particles in the liquid phase
transition into solvent particles in the vapor phase via the mechanism Ssl. This significantly
increases the time required for all of the solvent to exit the system.
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Table 3.4: Parameters for One Dimensional Simulation 3 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 1.00 γsv 5.0 ρ0,sv 0.010
ε2sl 1.00 γsl 5.0 ρ0,sl 1.0
ε2p 1.00 γp 1.0 ρ0,p 1.0

ε2q 1.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.000
λ 10−5

δ .001
c 5.0
N2 89.0
N3 7.0

directly flux in and out of the domain through the right side boundary, but instead must

transition first into vapor phase particles through the mechanism of the source terms Ssl.

These simulations were run with 256 spatial grid points on the domain [0, 100] with a time

step of s = .001.

In Figure 3.7, where we fix λ = 10−4 and vary β, we observe increasing β increases the

speed of the interface. We also observe that if β = 0, the interface does not move even though

λ 6= 0. This is a consequence of a combination of 1) of the mismatch in density between the

vapor and the liquid phase and 2) the mass time derivative computation (2.33). We observe

in (2.33) the mass change is due to the flow boundary conditions, since the sources sum to

zero (2.7). When β = 0, there are no-flow boundary conditions for all of the velocities, so

that even though solvent in the liquid phase may transition to solvent in the vapor phase

and vice versa through Ssl, it must do so in a mass conservative way.

In Figure 3.8, where we fix β = 1.0 and vary λ, we observe that increasing λ also increases

the speed of the interface. Additionally, we observe that if λ = 0 we do not have motion

of the interface, since solvent in the liquid phase cannot transition to solvent in the vapor

phase in this case.
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Figure 3.7: We plot the interface location of the vapor-polymer interface for several
simulations against time, while only varying the β parameter with λ fixed at 10−4. For
β = 0.0 we see that, even though the source term is active (λ > 0), the interface does not
move. This is due to the mass conservation law 2.33.
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Figure 3.8: In this simulation we plot the interface location of the vapor-polymer interface
for several simulation against time, while only varying λ, with β fixed at 1.0. We see that,
as we increase λ, the speed of the interface increases as well, as there is more transfer of
solvent in the liquid phase to solvent in the vapor phase via Ssl.
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Table 3.5: Parameters for One Dimensional Simulations Varying λ, β with Solvent
Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 1.00 γsv 5.0 ρ0,sv 0.010
ε2sl 1.00 γsl 5.0 ρ0,sl 1.0
ε2p 1.00 γp 1.0 ρ0,p 1.0

ε2q 1.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
δ .001
c 5.0
N2 89.0
N3 7.0

3.4.2 Simulations in Two Space Dimensions

Presented in this section are simulations varying key parameters. These simulations include

the boundary energy terms

fs(φ) = αpφp + αqφq (3.111)

where αi are constants, which lead to the boundary conditions in (3.30). In each simulation

we use interaction parameters χsv,i which are large enough so that solvent in the vapor phase

mixing with other components is highly energetically unfavorable. The other interaction

parameters are chosen so that solvent in the liquid form prefers polymer p over polymer q,

and that polymer p and q are energetically unfavorable to mix. Plots of either polymer p or

q are provided, along with a red line indicating the interface of the polymer mixture and the

solvent in the vapor phase. This red line is the contour line φsv = .5. All simulations were

done on block structured adaptive mesh with the finest resolution at 128 spatial grid points

in both the x and y direction along with a temporal step of s = 10−4 using the semi-implicit

described in 3.3.2. Initialization of the volume fractions were, for y < 75 φp = .1+rand(x, y)

where rand(x, y) is a random number between -0.1 and 0.1, φq = .15, φsv = 10−8, and

φsl satisfying the no voids constraint. For y > 75 (the initial vapor phase), we have that

φsl = φq = φp = 10−8 with φsv ≈ 1 satisfying the no voids constraint.
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Table 3.6: Parameters for Two Dimensional Simulation 1 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 1.00 γsv 1.0 ρ0,sv 0.010
ε2sl 1.00 γsl 1.0 ρ0,sl 1.0
ε2p 1.00 γp 1.0 ρ0,p 1.0

ε2q 1.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.0
λ 0.001
δ .001
c 5.0
N2 89.0
N3 7.0

Simulation 1

Plotted in Figure 3.9 is φp and in Figure 3.10 φsl. This simulation has boundary energy

with αp = −0.02, αq = 0.02, and αsl = αsv = 0 on the bottom boundary so that the bottom

boundary energetically prefers polymer p. The model removes the solvent in the liquid phase

near the interface of the polymer mixture and solvent in the vapor phase, and as a result

the concentration of polymers p and q increases near the location of the interface, as can

be seen in 3.9 at time t = 700. Since χpq is large enough, it is energetically more favorable

for polymers p and q to phase separate at these concentrations. As enough time passes, the

solvent is completely removed f rom the system so that φsl ≈ 0, and the final structure that

is formed are pillar-like pure phases of the two polymers.

Simulation 2

This simulation uses parameters from Table 3.7 which are similar to that of simulation 1

save that we increase the gradient energy coefficients, penalizing gradients in the solution

so that fewer interfaces form. Again, polymer p is plotted in figures 3.11 through 3.13, and

we see similar behavior in the time-evolution of the polymer structure with notably fewer

regions of relatively pure polymer p and q. We use a boundary energy term in this case of

αp = −.04, αq = .04.

69



Figure 3.9: We plot the volume fraction of polymer p, φp, at multiple times with parameters
from table 3.6. We see the beginnings of phase separation at time t = 700, more pronounced
near the red line which indicates the interface between the mixture and the solvent in the
vapor phase, since the solvent in the liquid phase is less concentrated here (see Figure 3.10).
We also see the effect of the boundary energy term in two ways: at t = 700 we see the increase
in the volume fraction near the bottom boundary, and the non-perpendicular contact angles
at the final time t = 21000.

70



Figure 3.10: We plot the solvent volume fraction φsl at multiple times with parameters from
table 3.6. We see the qualitative behavior that the solvent transitions into the vapor phase
near the boundary, and eventually completely exits the system. Also notable is that, due to
the solvents higher affinity for the polymer p due to χsl,p < χsl,q, the solvent volume fraction
is larger in regions where φp is larger (compare to 3.9).
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Figure 3.11: We plot the volume fraction of polymer p, φp, at multiple times with parameters
from table 3.7. We see the start of the same qualitative behavior that was previously observed
in Figure 3.9. However, as the simulation continues we see that fewer pillars form in the
next slides (see 3.13) due to the increase in the gradient energy coefficients.
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Figure 3.12: We plot the volume fraction of polymer p, φp, at multiple times with parameters
from table 3.7. We see the start of the same qualitative behavior that was previously observed
in Figure 3.9, save for the fewer number of regions where there is pure polymer p due to the
larger gradient energy coefficients.
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Figure 3.13: We plot the volume fraction of polymer p, φp, at multiple times with parameters
from table 3.7. We see the start of the same qualitative behavior that was previously observed
in Figure 3.9, save for the fewer number of regions where there is pure polymer p due to the
larger gradient energy coefficients.
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Table 3.7: Parameters for Two Dimensional Simulation 2 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 2.00 γsv 1.0 ρ0,sv 0.010
ε2sl 2.00 γsl 1.0 ρ0,sl 1.0
ε2p 2.00 γp 1.0 ρ0,p 1.0

ε2q 2.00 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.0
λ 0.001
δ .001
c 5.0
N2 89.0
N3 7.0

Simulation 3

This simulation increases the mobility of the solvent and vapor phase by a factor of 5 and

decreases the ε2i terms, as listed in Table 3.9. It is quite physical for the mobilities of the

solvent to be larger than that of the polymers. We also note that αp = −.02, αq = .02

as in the first simulation. The increased mobility of solvent and vapor allows for faster

interface motion, reducing the total time required to remove the solvent in the liquid phase

completely, and the decreased ε2i terms allow for more interfaces to form. A key difference in

this simulation is that instead of the previously used φ2
i term in the mobility, we use φslφi,

which in our derivation of the model corresponds to choosing γi according to (3.15) for the

polymer continuity equations. This results in the polymer continuity equations implemented

as
∂φi(x, t)

∂t
−∇ · (γiφiφsv(x, t)∇ (µi(x, t) + p(x, t))) = 0 i = p, q. (3.112)

This mobility degenerates as solvent evaporates, which kinetically freezes the polymer in

place after the solvent has evaporated. For comparison, consider the images in Figures 3.12

and 3.13, where even though at time t = 21000 the solvent has almost been almost completely

removed from the system, the polymer is able to diffuse from the left side of the domain to

the right side of the domain. In Figures 3.14-3.17 we observe that the degenerate mobility has
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Table 3.8: Parameters for Two Dimensional Simulation 3 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 0.700 γsv 5.0 ρ0,sv 0.010
ε2sl 0.700 γsl 5.0 ρ0,sl 1.0
ε2p 0.700 γp 1.0 ρ0,p 1.0

ε2q 0.700 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.0
λ 0.001
δ .001
c 5.0
N2 89.0
N3 7.0

frozen the polymer structure once the solvent in the liquid form has been removed from the

system. The final structures that result are much more irregular than the pillars that form

in the previous simulations. In contrast to the previous simulations, polymer q is plotted.

Simulation 4

This simulation has parameters exactly that of simulation 3 listed in Table 3.9, the only

difference being the Cahn-Hilliard mobility is γiφ
2
i instead of γiφiφsl. We see again in

Figures 3.18-3.21 that if the mobilities do not degenerate as the solvent in the liquid phase

exits the polymer mixture, we get the more regular pillar-like structures. Here αp = −.014,

αq = .014. Again, polymer q is plotted.

3.5 Future Directions

There are a wealth of directions that one could develop further on this model. We briefly

remark to the varying constitutive relations, especially for the velocities, that are referenced

in 2.4. Here, we consider a new numerical approximation by altering the time discretization,

and show the advantage of this discretization in computation.
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Figure 3.14: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.8. As the solvent is removed from the system, the mobility begins to degenerate
(see (3.112)) for all components except the vapor phase, which results in the structure of the
polymer to become frozen in place. We observe much more irregular structures compared to
the previous simulations.

77



Figure 3.15: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.8. As the solvent is removed from the system, the mobility begins to degenerate
(see (3.112)) for all components except the vapor phase, which results in the structure of the
polymer to become frozen in place. We observe much more irregular structures compared to
the previous simulations.
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Figure 3.16: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.8. As the solvent is removed from the system, the mobility begins to degenerate
(see (3.112)) for all components except the vapor phase, which results in the structure of the
polymer to become frozen in place. We observe much more irregular structures compared to
the previous simulations.
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Figure 3.17: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.8. As the solvent is removed from the system, the mobility begins to degenerate
(see (3.112)) for all components except the vapor phase, which results in the structure of the
polymer to become frozen in place. We observe much more irregular structures compared to
the previous simulations.
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Figure 3.18: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.9. With lower gradient energy terms than the simulation shown in Figures 3.9-
3.10, the structure of the polymer has more interfaces. Also of note is the difference in
structures to the simulation in Figures 3.14-3.17 resulting from the mobility which does not
degenerate as the solvent in the liquid phase is removed from the system.
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Figure 3.19: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.9. With lower gradient energy terms than the simulation shown in Figures 3.9-
3.10, the structure of the polymer has more interfaces. Also of note is the difference in
structures to the simulation in Figures 3.14-3.17 resulting from the mobility which does not
degenerate as the solvent in the liquid phase is removed from the system.
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Figure 3.20: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.9. With lower gradient energy terms than the simulation shown in Figures 3.9-
3.10, the structure of the polymer has more interfaces. Also of note is the difference in
structures to the simulation in Figures 3.14-3.17 resulting from the mobility which does not
degenerate as the solvent in the liquid phase is removed from the system.
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Figure 3.21: We plot the volume fraction of polymer q, φq, at multiple times with parameters
from Table 3.9. With lower gradient energy terms than the simulation shown in Figures 3.9-
3.10, the structure of the polymer has more interfaces. Also of note is the difference in
structures to the simulation in Figures 3.14-3.17 resulting from the mobility which does not
degenerate as the solvent in the liquid phase is removed from the system.
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Table 3.9: Parameters for Two Dimensional Simulation 4 with Solvent Evaporation

Gradient Energy Coefficients Mobilities Densities
ε2sv 0.700 γsv 5.0 ρ0,sv 0.010
ε2sl 0.700 γsl 5.0 ρ0,sl 1.0
ε2p 0.700 γp 1.0 ρ0,p 1.0

ε2q 0.700 γq 1.0 ρ0,q 1.0

Interaction Parameters
χsv,sl 1.7
χsv,p 1.7
χsv,q 1.7
χsl,p .40
χsl,q .90
χp,q 1.0

Miscellaneous Parameters
β 1.0
λ 0.001
δ .001
c 5.0
N2 89.0
N3 7.0

3.5.1 A New Semi-Implicit Method

We now discuss a method which treats the nonlinear logarithmic term implicitly. We

discretize the equations as

φn+1
sl − s∇ ·

(
Msl(φ

n)∇µn+1
sl

)
= φnsl + s∇ · (Msl(φ

n)∇pn)− sρ−1
sl λ

(
ρ−1
sl µ

n
sl + (ρ−1

sl − ρ
−1
sv )pn

)
(3.113)

φn+1
i − s∇ ·

(
Mi(φ

n)∇µn+1
i

)
= φni + s∇ · (Mi(φ

n)pn) i = p, q (3.114)

µn+1
i + (ε2i + ε2sv)∆φ

n+1
i − ∂fh(φ

n+1,φn)

∂φi
= −ε2sv∆

(∑
j 6=sv,i

φnj

)
(3.115)

fh(φ
n+1,φn) =

∑
i∈I

φn+1
i lnδ(φ

n+1
i ) +

∑
i 6=j

χijφ
n
i φ

n
j − cφnsv; φsv = 1−

∑
i 6=sv

φi (3.116)
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∑
i

∇·
(
Mi(φ

n)∇pn+1
)
+λ
(
ρ−1

0,sl − ρ
−1
0,sv

)2
pn+1 = −

∑
i 6=sv

∇·(Mi(φ
n)∇µni )−λρ−1

0,sl(ρ
−1
0,sl−ρ

−1
0,sv)µ

n
sl.

(3.117)

The inspiration for this time discretization relates to convex splitting techniques developed

by Eyre [20], which are well known to have desirable energy stability properties. In the

homogeneous free energy, the convex terms of the form φ ln(φ) are treated implicitly in

time, while the non-convex terms are treated explicitly in time. This discretization leads

to a system of nonlinear partial differential equations at each time step, as opposed to

the previously described system (3.80)-(3.84) which is linear. The FAS multigrid method

that was implemented for previous simulations is designed for the solution of nonlinear

systems [50, 54]. All that is needed is an appropriate smoother. With the time discretization

done as in (3.113)-(3.117), and spatial discretization as done previously in this section,

development of a smoother leads to a nonlinear system that is, with the exception of the

nonlinear term, decoupled into three 2x2 blocks representing the Cahn-Hilliard equations

and a 1x1 block for the pressure Poisson equation. We use a local Newton approximation to

the nonlinearity so as to approximate the system as a linear system. We define

GI
i (φ) =

∂

∂φi

∑
k∈I

φk lnδ(φk) (3.118)

GE
i (φ) =

∂

∂φi

(∑
k 6=j

χkjφkφj − c · φsv

)
(3.119)

and
∂fh(φ

n+1,φn)

∂φi
= GI

i (φ
n+1) +GE

i (φn). (3.120)

With these definitions we rewrite (3.115) as

µn+1
i + (ε2i + ε2sv)∆φ

n+1
i −GI

i (φ
n+1) = −ε2sv∆

(∑
j 6=sv,i

φnj

)
+GE

i (φn). (3.121)
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Let φn+1,l+1 be the l + 1 Gauss-Seidel iterate. We make the linear approximation

GI
i (φ

n+1,l+1) ≈ GI
i (φ

n+1,l) +
∂GI

i (φ
n+1,l)

∂φi

(
φn+1,l+1
i − φn+1,l

i

)
. (3.122)

We then smooth, using the notation from 3.3.2, as

µn+1,l+1
i (j, k)−

(
4(ε2i + ε2sv)

h2
− ∂GI

i (φ
n+1,l)

∂φi

)
φn+1,l+1
i (j, k) = RHS (3.123)

coupled with the other equations in the same manner as done in 3.3.2. Notice that in the

Newton-like approximation 3.122 we do not include the entire gradient, as typically one

writes

F (xl+1) ≈ F (xl) +∇F (xl) ·
(
xl+1 − xl

)
. (3.124)

If one uses (3.124), then the 7x7 system of equations that result in the smoother no longer has

the block structure previously described, which is one of the advantages in this discretization.

Not only is this discretization easier to implement than the discretization used in 3.3.2,

but it is also more stable in the sense that the allowable time step is much larger. When

using parameters in Table 3.9 on a base 64x64 mesh with 2 levels of adaptive refinement,

shown in Figure 3.22 with this discretization we can take time steps on the order of 10−2.

In the previous simulations with a 64 by 64 base grid and 1 level of adaptive refinement we

could take time steps no larger than 10−3. Further development for this method such as

higher order methods in time and sophisticated a-posteriori error estimators could increase

accuracy and efficiency of these simulations tremendously.

3.6 Conclusions

Via an application of the general mixture model developed in Chapter 2 we have presented

a framework for studying a system of a quaternary mixture with a volatile, evaporating

component by using energetic variational techniques which results in a Cahn-Hilliard-like

diffuse interface model. This mathematical model is developed with the processing of the

active layer of OPVs in mind, where a mixture of a volatile solvent and two polymers
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(a) Contour Plot
(b) Mesh

Figure 3.22: We plot φq on an adaptive mesh which has a base level of 64 by 64 cells and
2 levels of adaptive refinement with parameters from Table 3.9. On the left we see similar
behavior to Figure 3.18. On the right we plot the adaptive mesh with red contour lines to
indicate φq = .3, .7.
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phase separate while the solvent evaporates. The model is general enough to include

density differences the components of the volatile solvent in its liquid and vapor phases

as well as the parameters that are typically needed to model such a system, such as the

Flory-interaction parameters, gradient energy coefficients, and boundary energy terms. We

demonstrate that, through a unique set of flow boundary conditions and source and sink

terms, we are able to adjust the parameters that directly affect the speed of the interface

location between the polymer mixture and the vapor phase. We implement a semi-implicit

method for approximating the solution through cell-centered finite differences which are first

order in time, second order in space. The result is a large, sparse system of linear equations

which we solve using FAS multigrid using BSAM. After demonstrating the time evolution of

multiple microstructures with different parameters, we introduce a future direction of a new

discretization which offers greater stability.
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Chapter 4

Future Application: Ionic Fluids

4.1 Modeling Ionic Fluids

Consider now that we have a mixture where the components are charged under some electric

field. We define ε0 is the (constant) vacuum permittivity, εr(φ) to be the relative permittivity

of the system, which we assume may depend on the volume fractions, and %e is the charge

density. We assume that the charge density has the form

%e(x, t) = %0,e(x) +
N∑
i=0

eziρi(x, t)

= %0,e(x) +
N∑
i=0

eziρ0,iφi(x, t)

(4.1)

where e is the charge of an electron, zi is the (signed) valency, and %0,e is the fixed charge

density of the system. We define

ε(φ(x, t)) = ε0εr(φ(x, t)). (4.2)

We define the electrostatic contribution to the Helmholtz free energy of the system to be

Eelec(t) =

∫
Ω

%e(x, t)ψ(x, t)− ε(φ(x, t))

2
|∇ψ(x, t)|2dx−

∫
∂Ω

ε(φ(x, t))

2η
(ψ(x, t)− ψ0(x))2dS

(4.3)
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where η is a length parameter and ψ is the electrostatic potential. Similar to previous

sections, consider taking the time derivative of the electrostatic free energy as

dEelec

dt
=

∫
Ω

(
%e
∂ψ

∂t
+ ψ

∂%e
∂t

)
dx

+

∫
Ω

−ε(φ)∇ψ · ∇∂ψ
∂t
− 1

2
|∇ψ|2

N∑
i=0

∂ε(φ)

∂φi

∂φi
∂t

dx

−
∫
∂Ω

(ψ − ψ0(x))2

2η

N∑
i=0

∂ε(φ)

∂φi

∂φi
∂t

dS

−
∫
∂Ω

ε(φ)

η
(ψ − ψ0(x))

∂ψ

∂t
dS.

(4.4)

Via integration by parts

−
∫

Ω

ε(φ)∇ψ(x, t) · ∇∂ψ(x, t)

∂t
dx =

∫
Ω

∂ψ(x, t)

∂t
∇ · ε(φ)∇ψ(x, t)dx

−
∫
∂Ω

∂ψ(x, t)

∂t
ε(φ)∇ψ · ndS.

(4.5)

After applying this to 4.4 and the specific form for the charge density when time derivatives

are needed, we have that

dEelec

dt
=

∫
Ω

[∇ · (ε(φ)∇ψ) + %e]
∂ψ

∂t
dx

+

∫
Ω

N∑
i=0

[
−∂ε(φ)

∂φi

|∇ψ|2

2
+ ψeziρ0,i

]
∂φi
∂t

dx

+

∫
∂Ω

[
−ε(φ)

η
(ψ − ψ0)− ε(φ)∇ψ · n

]
∂ψ

∂t
dS

+

∫
∂Ω

−
N∑
i=0

∂ε(φ)

∂φi

(ψ − ψ0)2

2η

∂φi
∂t

dS.

(4.6)

The energy that will be considered in this application is the electrochemical energy

E = Echem + Eelec (4.7)
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where the chemical energy is

Echem(t) =

∫
Ω

fh(φ) +
N∑
i=0

ε2i
2
|∇φi|2dx. (4.8)

The time derivative of the total free energy is then

dE

dt
=

∫
Ω

[∇ · (ε(φ)∇ψ) + %e]
∂ψ

∂t
dx

+

∫
Ω

N∑
i=0

[
∂fh(φ)

∂φi
− ε2i∆φi −

∂ε(φ)

∂φi

|∇ψ|2

2
+ ψeziρ0,i

]
∂φi
∂t

dx

+

∫
∂Ω

[
−ε(φ)

η
(ψ − ψ0)− ε(φ)∇ψ · n

]
∂ψ

∂t
dS

+

∫
∂Ω

N∑
i=0

[
ε2i∇φi · n−

∂ε(φ)

∂φi

(ψ − ψ0)2

2η

]
∂φi
∂t

dS.

(4.9)

We assume locally near the boundary the system is in thermodynamic equilibrium, which

implies that

0 =
ε(φ)

η
(ψ − ψ0) + ε(φ)∇ψ · n

=
ε(φ)

η
(ψ − ψ0 + η∇ψ · n)

(4.10)

and

ε2i∇φi · n− ε20∇φ0 · n−
(ψ − ψ0)2

2η

(
∂ε(φ)

∂φi
− ∂ε(φ)

∂φ0

)
= 0. (4.11)

We take the quasi-steady assumption for the electric potential, so that

∇ · (ε(φ)∇ψ) + %e = 0 (4.12)

which is the well known Poisson equation for the electrostatic potential. We define the

electrochemical potential associated with this energy is

µi = −1

2

∂ε(φ)

∂φi
|∇ψ|2 + ψeziρ0,i +

∂fh(φ)

∂φi
− ε2i∆φi (4.13)
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We now consider a mixture of a polymer which carries a negative charge and its

counterion. Let φc(x, t), φp(x, t) be the volume fraction of the counterion and polymer,

respectively, and we define the index set J = {c, p}. We make the assumption that the

densities are matched, ρ0 = ρ0,p = ρ0,c, and that the valencies are zp = −1, zc = +1 so that

the polymer is carrying the negative charge. We have then that the electrostatic equations

and boundary conditions are

−∇ · (ε(φ)∇ψ) = %e

= %0,e +
∑
J

eziρi

= eρ0 (2φc − 1)

(4.14)

ε(φ)

η
[(ψ − ψ0) + η∇ψ · n] = 0 (4.15)

−
(
∂ε(φ)

∂φc
− ∂ε(φ)

∂φp

)
(ψ − ψ0)2

2η
+
(
ε2p + ε2c

)
∇φc · n = 0 (4.16)

where in (4.16) we have used the no voids assumption (2.45). We assume advective-type

fluxes (2.4), that the source terms are zero (Si = 0) and the boundary velocities are either

zero or periodic. After introducing the Lagrange multiplier p (2.25) we have

dE

dt
=
∑
i∈J

∫
Ω

φi∇ (µi + p) · uidx (4.17)

where µi is now the electrochemical potential introduced in (4.13). We make the

thermodynamically consistent choice for the velocities

ui = −γiφi∇ (µi + p) (4.18)

where γi > 0. We define µ̃c = µc − µ0 and p̃ = µp + p, similar to section 2.2.2 with

ε̃(φc) = ε(φc, 1− φc) f̃h(φc) = fh(φc, 1− φc), (4.19)

93



and we assume a linear dependence of ε on the concentration so that

ε̃(φc) = εcφc + εp(1− φc)

= εp + (εc − εp)φc
(4.20)

where εc, εp are constants. After eliminating tildes we have that

∂φc
∂t
−∇ ·

(
γcφ

2
c∇ (µc + p)

)
= 0 (4.21)

−∇ ·
(
γcφ

2
c∇µc

)
−∇

((
γcφ

2
c + γp(1− φc)2

)
∇p
)

= 0 (4.22)

µc = −ε′(φc)
|∇ψ|2

2
+ 2eρ0ψ + f ′h(φc)− (ε2c + ε2p)∆φi. (4.23)

−∇ · (ε(φc)∇ψ) = eρ0 (2φc − 1) (4.24)

4.2 Nondimensionalization

Let Lx̃ = x, τ t̃ = t where L, τ are characteristic length and times. We define the non-

dimensional chemical potential, pressure, and electrostatic potential as

µ̃i(x̃, t̃) =
µi(Lx̃, τ t̃)

ρ0kT

p̃(x̃, t̃) =
p(Lx̃, τ t̃)

ρ0kT

ψ̃(x̃, t̃) =
e

kT
ψ(Lx̃, τ t̃).

(4.25)

The above equations are then transformed to
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∂φ̃c

∂t̃
− ∇̃ ·

( τ
L2
γcρ0kT ∇̃ (µ̃c + p̃)

)
= 0 (4.26)

µ̃c(x, t) = −1

2

(
εckT

L2ρ0e2
− εpkT

L2ρ0e2

)
|∇̃ψ̃|2 + 2ψ + f̃ ′h(φ̃c)−

(ε2c + ε2p)

ρ0kTL2
∆̃φ̃i. (4.27)

− ∇̃ ·
(

1

L2
γcρ0kTφ

2
c∇̃µc

)
− ∇̃

(
1

L2

(
γcρ0kTφ

2
c + γpρ0kT (1− φc)2

)
∇̃p
)

= 0 (4.28)

− ∇̃ ·
([

εckT

L2e2ρ0

φc +
εpkT

L2e2ρ0

(1− φc)
]
∇̃ψ̃
)

= 2φ̃c − 1. (4.29)

Defining η̃ = η
L

, we have the boundary conditions

−
(
εc(kT )2

2η̃Le2
− εp(kT )2

2η̃Le2

)(
ψ̃ − ψ̃0

)2

+

(
ε2p
L

+
ε2c
L

)
∇̃φ̃c · n = 0. (4.30)

So as to introduce parameters used in the previous equations, we multiply both sides of (4.30)

by 1
Lρ0kT

so that

−
(

1

2η̃

εckT

ρ0L2e2
− 1

2η̃

εpkT

ρ0L2e2

)(
ψ̃ − ψ̃0

)2

+

(
ε2p

ρ0kTL2
+

ε2c
ρ0kTL2

)
∇̃φ̃c · n = 0. (4.31)

We define

ε̃i =
εikT

ρ0L2e2

ε̃2i =
ε2i

ρ0kTL2

γ̃i =
γiρ0kT

L2

τ =
1

γ̃i
.

(4.32)
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With these definitions the nondimensional equations are

∂φ̃c(x̃, t̃)

∂t̃
− ∇̃ ·

(
φ2
c(x, t)∇̃ (µ̃c + p̃)

)
= 0

µ̃c(x, t) = −1

2
(ε̃c − ε̃p) |∇̃ψ̃|2 + 2ψ̃ + f̃ ′h(φ̃c)− (ε̃2c + ε̃2p)∆̃φ̃c

− ∇̃ ·
(

[ε̃cφc + ε̃p(1− φc)] ∇̃ψ̃
)

= 2φ̃c − 1.

(4.33)

[(
ψ̃ − ψ̃0

)
+ η̃∇̃ψ̃ · n

]
= 0 (4.34)

− 1

2η̃
(ε̃c − ε̃p)

(
ψ̃ − ψ̃0

)2

+
(
ε̃2p + ε̃2c

)
∇̃φ̃c · n = 0 (4.35)

where fh is the logarithmic Flory-Huggins free energy

f̃h = φ̃c ln φ̃c +
1

Np

φ̃p ln φ̃p + χpcφ̃pφ̃c (4.36)

with boundary conditions for the top and bottom of the computational domain

∇µi · n = ∇p · n = 0 (4.37)

and periodic boundary conditions for the left and right side of the domain to simulate an

semi-infinite system.

Note that when assuming a system with permittivities that are equal, so ε̃ = ε̃p = ε̃c,

this system reduces to

∂φ̃c

∂t̃
−∇ ·

(
φ̃2
c∇ (µ̃c + p̃)

)
= 0 (4.38)

µ̃c = f̃ ′h(φ̃c)−
(
ε̃2c + ε̃2p

)
∆̃φ̃c + 2ψ̃ (4.39)

− ε̃∆̃ψ̃ = −1 + 2φ̃c (4.40)

−∇ ·
(
γ̃cφ̃

2
c∇̃ (µ̃c)

)
− ∇̃ ·

((
γ̃p(1− φ̃c)

2
+ γ̃cφ̃

2
c

)
∇̃p̃
)

= 0 (4.41)

with

f̃h(φ̃c) = φ̃c ln φ̃c +
1

Np

(1− φ̃c) ln(1− φ̃c) + χ̃φ̃c(1− φ̃c). (4.42)
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The system (4.38)-(4.43) bears resemblence to the Poisson-Nernst-Planck (PNP) equations

which is derived from an energy similar to (4.7) for which conservative, accurate numerical

schemes is an area of active research [23, 22]. Compared to the PNP equations, this system

includes energy effects from the gradients of the volume fractions in
ε2i
2
|∇φi|2 and the Flory

interaction term χpcφcφp in the homogeneous free energy.

4.3 Numerical Method and Simulation

4.3.1 Numerical Method

We consider now discretizing the nondimensional system (4.38)-(4.43) via cell centered finite

differences which is first order in time second order in space on a square domain. Let s, h be

the time and space step sizes. We introduce the notation

fh(φ
n+1
c , φnc ) = φn+1

c lnδ φ
n+1
c +

1

Np

(1− φn+1
c ) lnδ(1− φn+1

c ) + χφnc (1− φnc ). (4.43)

where the regularized logarithm

lnδ(x) =

ln(x) x > δ

ln(δ) + 2x
δ
− x2

2δ2
− 1.5 x ≤ δ

(4.44)

has been used. Similar to the previous application, we have split the homogeneous free

energy into a convex and a non-convex piece. We define

GI(φn+1
c ) =

∂

∂φn+1
c

fh(φ
n+1
c , φnc ) (4.45)

GE(φnc ) =
∂

∂φnc
fh(φ

n+1
c , φnc ) (4.46)

After excluding the tildes, we have

φn+1
c − s∇h ·

(
Mc(φ

n
c )∇h

(
µn+1
c + pn+1

))
= φnc = Fφ (4.47)
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µn+1
c −GI(φn+1

c ) +
(
ε2c + ε2p

)
∆hφ

n+1
c − 2ψn+1 = GE(φnc ) = Fµ (4.48)

− ε∆hψ
n+1 = −1 + 2φnc = Fψ (4.49)

−∇h ·
(
Mc(φ

n
c )∇h

(
µn+1
c

))
−∇h ·

((
Mp(φ

n
p ) +Mc(φ

n
c )
)
∇hp

n+1
)

= 0 = Fp (4.50)

with

Mi(φi) = γiφ
2
i . (4.51)

We use a red-black Gauss-Seidel method for the smoother in the implemented FAS multigrid

method described previously in 3.3.2. So as to describe the Gauss-Seidel iteration, we use

φl+1(j, k) to indicate the grid function value of the l + 1 Gauss-Seidel iterate at cell (j, k),

and drop the time index. Again, similar to Chapter 3, we describe a Jacobi-like method for

simplicity. In 4.52 we approximate GI with a local Newton approximation, and we solve

µlc −
(
GI(φlc) +

dGI(φlc)

dφc
(φl+1

c − φlc)
)

+

(
ε2c + ε2p

)
h2

(
φlc(j − 1, k) + φlc(j + 1, k) + φlc(j, k − 1) + φlc(j, k + 1)− 4φl+1

c (j − 1, k)
)

= Fµ + 2ψl(j, k).

(4.52)

We write the rest of the linear equations of the smoother assuming constant mobility Mc for

the continuity equation for simplicity

φl+1
c − sMc

h2

(
−4µl+1

c (j, k)− 4pl+1(j, k)
)

− sMc

h2

(
µlc(j − 1, k) + µlc(j + 1, k) + µlc(j, k − 1) + µlc(j, k + 1)

)
− sMc

h2

(
pl(j − 1, k) + pl(j + 1, k) + pl(j, k − 1) + pl(j, k + 1)

)
= Fφ

(4.53)

4ε

h2
ψl+1(j, k)− ε

h2

(
ψl(j − 1, k) + ψl(j + 1, k) + ψl(j, k − 1) + ψl(j, k + 1)

)
= Fψ (4.54)
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− Mc

h2

(
−4µl+1

c (j, k) + µlc(j − 1, k) + µlc(j + 1, k) + µlc(j, k − 1) + µlc(j, k + 1)
)

− Mc +Mp

h2

(
−4pl+1(j, k) + pl(j − 1, k) + pl(j + 1, k) + pl(j, k − 1) + pl(j, k + 1)

)
= Fp.

(4.55)

Boundary Conditions

We implement boundary conditions by adding one extra layer of ghost cells to the

computational domain. The homogeneous Neumann boundary conditions can be handled

similar to (3.93). Upon assuming εc = εp, the only new type of boundary condition in need

of description is (4.34). On the bottom boundary, for example, we approximate

ψ(j,
1

2
) =

1

2
(ψ(j, 0) + ψ(j, 1)) (4.56)

where ψ(j, 0) are ghost cell values for ψ. This leads to the boundary conditions implemented

as

ψ(j,
1

2
)− ψ0 + η

ψ(j, 0)− ψ(j, 1)

h
= 0 (4.57)

and similarly for other boundaries.

4.3.2 Simulations

For this set of simulations we examine the dependence of the parameters Np and εi on the

time evolution of the solution variable φc. Simulations were run on a 256 by 256 uniform

grid on a computational domain of size 50 by 50 until steady state is reached. We initialize

all simulations with φc to be a number chosen at random between 0 and 1 on each cell at

the first time step. All simulations have an applied voltage of −10 on the bottom, 10 on the

top, which causes the attraction of positive charge to the bottom boundary, where φc ≈ 1

for large enough time, and negative charge on the top boundary, where φc ≈ 0. In the bulk,

we observe a lamellar pattern for large εi and small Np at steady state, with the solution
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Table 4.1: Parameters for Simulation 1 of an Ionic Fluid

Gradient Energy Coefficients Mobilities Boundary Potentials
ε2sv .5 γsv 1.0 ψ0(x, 50) 10.0
ε2sl .5 γsl 1.0 ψ0(x, 0) -10.0

Miscellaneous Parameters
χ 4.0
δ .001
Np 1.0

Table 4.2: Parameters for Simulation 2 of an Ionic Fluid

Gradient Energy Coefficients Mobilities Boundary Potentials
ε2sv .5 γsv 1.0 ψ0(x, 50) 10.0
ε2sl .5 γsl 1.0 ψ0(x, 0) -10.0

Miscellaneous Parameters
χ 4.0
δ .001
Np 10.0

diverging from these structures to a labyrinthine pattern with smaller εi and increased Np.

For the gradient energies, this is what is predicted via a stability analysis [25].

Simulation 1

For the first simulation we choose values for the nondimensional gradient energies large

enough to that at equilibrium a lamellar structure is energetically preferred. We see in

Figure 4.1 that very shortly after initialization, compared to the next simulations, the system

reaches steady state with a lamellar structure.

Simulation 2

A second simulation with parameters listed in Table 4.2, the same as the first simulation,

except with increased polymer chain length Np in the homogeneous free energy fh. We see

in Figures 4.2, 4.3 a more irregular, labyrinthine microstructure develops compared to the

first simulation.
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Figure 4.1: We plot the counterion’s volume fraction φc at multiple times with parameters
from Table 4.1. We see that near the top an bottom boundary the mixture phase separates
into relatively pure phases. We observe phase separation in the bulk and formation of a
lamellar pattern due to the large gradient energy for this simulation.
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Figure 4.2: We plot the counterion’s volume fraction φc at multiple times with parameters
from Table 4.2. We see that near the top an bottom boundary the mixture phase separates
into relatively pure phases. In Figure 4.3, we see the bulk phase separates and forms a
labyrinthine pattern, differing from the lamellar pattern seen in Figure 4.1 which is due to
the increase in the polymer chain length in the homogeneous free energy.
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Figure 4.3: We plot a second set of the counterion’s volume fraction φc at multiple times
with parameters from Table 4.2. We see that near the top an bottom boundary the mixture
phase separates into relatively pure phases. In Figure 4.3, we see the bulk phase separates
and forms a labyrinthine pattern, differing from the lamellar pattern seen in Figure 4.1 which
is due to the increase in the polymer chain length in the homogeneous free energy.
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Table 4.3: Parameters for Simulation 3 of an Ionic Fluid

Gradient Energy Coefficients Mobilities Boundary Potentials
ε2sv .1 γsv 1.0 ψ0(x, 50) 10.0
ε2sl .1 γsl 1.0 ψ0(x, 0) -10.0

Miscellaneous Parameters
χ 4.0
δ .001
Np 1.0

Table 4.4: Parameters for Simulation 4 of an Ionic Fluid

Gradient Energy Coefficients Mobilities Boundary Potentials
ε2sv .3 γsv 1.0 ψ0(x, 50) 10.0
ε2sl .3 γsl 1.0 ψ0(x, 0) -10.0

Miscellaneous Parameters
χ 4.0
δ .001
Np 1.0

Simulation 3

In this simulation, with parameters from Table 4.3, we decrease the gradient energy

coefficients by an amount sufficient enough for the system to energetically prefer the

labyrinthine structure in the bulk, as seen in Figures 4.4, 4.5, which can be predicted via a

stability analysis [25].

Simulation 4

The last simulation we plot has gradient energy coefficients which lie between that of

Tabel 4.1 and Table 4.3. At steady state in Figures 4.6, 4.7 we see a compromise between

the lamellar pattern that is observed in Figure 4.1 and the labyrinthine patterns that form

in Figures 4.4, 4.5.
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Figure 4.4: We plot the counterion’s volume fraction φc at multiple times with parameters
from Table 4.3. We see that near the top an bottom boundary the mixture phase separates
into relatively pure phases. In Figure 4.3, we see the bulk phase separates and forms a
labyrinthine pattern, differing from the lamellar pattern seen in Figure 4.1 which result from
the decreased gradient energy coefficients in 4.3.
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Figure 4.5: We plot a second set of the counterion’s volume fraction φc at multiple times
with parameters from Table 4.3. We see that near the top an bottom boundary the mixture
phase separates into relatively pure phases. In Figure 4.3, we see the bulk phase separates
and forms a labyrinthine pattern, differing from the lamellar pattern seen in Figures 4.1
which result from the decreased gradient energy coefficients in 4.3.
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Figure 4.6: We plot the counterion’s volume fraction φc at multiple times with parameters
from Table 4.4. We see that near the top an bottom boundary the mixture phase separates
into relatively pure phases. In Figure 4.7, we see the bulk phase separates to form structures
that resemble the lamellar pattern nearer to the boundaries with regions that are more
labyrinthine-like.
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Figure 4.7: We plot a second set of the counterion’s volume fraction φc at multiple times
with parameters from Table 4.4. We see that near the top an bottom boundary the mixture
phase separates into relatively pure phases. Here we see the bulk phase separates to form
structures that resemble the lamellar pattern nearer to the boundaries with regions that are
more labyrinthine-like.
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4.4 Conclusions and Future Directions

We have applied our general mixture model derived in Chapter 2, including new electric

contributions to the free energy. The modeling is done for an arbitrary number of components

with possibly varying permittivities. We have provided simulations that demonstrate the

microstructural evolution of the mixture and its dependence on the gradient energies and

polymer length in the case of constant permittivities. As a future work, we will provide

simulations that compute the electric current produced by this model, as well as provide

simulations for systems in which the permittivities for the individual components are not

necessarily matched.
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