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ABSTRACT 

The purpose was to improve an existing design of a rocker arm for a high 

performance engine. The design used as the baseline design was a solid aluminum Jesel 

rocker arm. This improvement was to be accomplished through two designs, one having 

lower rotational inertia with the same stiffness and another having the same rotational 

inertia and higher stiffness. 

The analysis and design were accomplished by using a numerical integration 

program, experimentation, and finite element analysis. The numerical integration 

program was written to model the rocker arm designs. This allowed design changes to be 

efficiently evaluated. The accuracy of the numerical integration was verified by 

comparing results for the Jesel rocker arm with data collected through experimentation. 

A finite element model was made to further analyze the rocker arm designs. 

Significant improvements to the baseline rocker arm were expected. The actual 

results obtained were marginal improvements on the baseline design. The higher than 

expected shear deflection was a limiting factor in making the improvements. 
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INTRODUCTION 

The purpose of this thesis was to improve an existing design of a rocker arm for a 

high performance engine. The current design, which will be used as the baseline design, 

is a rocker arm manufactured by the company Jesel. It consists of solid aluminum and is 

made for a pushrod engine. The Jesel rocker arm is considered to be the racing industry 

standard. The rocker arm has a ratio of 1.8 to 1 for the valve side length to the pushrod 

side length. The major dimensions of the baseline rocker arm can be seen in figure 1. 

Modifications to the baseline rocker arm will result in improvements to the rotational 

inertia and stiffness in two separate designs. The rotational inertia, J, and stiffness, k, are 

defined as 

J = fr 2 dm (Hibbeler, 1995) 

F 
k = - (Thomson and Dahleh, 1998). 

Y, 

The design specifications for the two designs are the following: 

• Reduce the rotational inertia while maintaining the same stiffness as the baseline 

• Increase the stiffness while maintaining the same rotational inertia as the baseline 

The height, width, and cross section of the baseline were changed to find a design that 

best met the design specifications. Due to the relatively low rotational inertia and high 

stiffness of the pushrod side of the rocker arm, analysis for improving the rocker arm was 

restricted to the valve side. The design parameters identified through this analysis could 

also be applied to the pushrod side. Initially, both I-beam and H-beam cross sections 

were considered. The I-beam cross section was chosen because calculations showed that 

1 
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for the same height, width, and web thickness the I-beam had smaller rotational inertia 

and smaller deflection. The sample calculations can be seen in figure A-1. Numerical 

integration, three-dimensional drawings, experimentation, and finite element analysis 

were the tools used in designing the new rocker arms. 
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1 APPROACH 

1.1 Three-Dimensional Drawing 

A three-dimensional drawing was made of the baseline rocker arm. The necessary 

dimensions were gathered using calipers, rulers, and a compass to produce a drawing. 

AutoDesk Inventor was chosen as the drawing package to produce a three-dimensional 

model. This was a user-friendly program in all aspects of drawing, extruding, cutting, 

and modifying. One advantage of Inventor was the ability to take multiple parts and 

combine them into a single assembly. Inventor also made three-view drawings quickly 

with dimensions automatically placed on the drawing. This part of the program allowed 

the user to choose which view would be the primary view and then project the other 

views. Inventor displayed the physical properties of the part such as the location of the 

center of gravity, mass, mass moment of inertia, surface area, and volume. 

1.2 Computer Model 

Once the drawing of the baseline rocker arm was complete, fourteen points from the 

top profile and fourteen points from the bottom profile were recorded. Figure 2 shows 

the points chosen for the top and bottom profiles. A computer program was written to 

linearly interpolate between points to increase the number of data points. The points 

were plotted using Excel. The curves for both the top and bottom profiles were sixth 

degree polynomials. Figure 3 shows the curve fit through the data points. 

There are several equations that were used in analyzing the baseline and prospective 

rocker arms. The equation used to compute the rotational inertia is 

4 
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J = f r2dm = Jr 2 pdV (Hibbeler, 1995) 

The parallel-axis theorem allows the transfer of rotational inertia from the center of 

gravity to any parallel axis 

J = Jcg 
+ md2 (Hibbeler, 1995) 

The equation used to determine the deflection due to bending was 

d2y 
= M(x) 

(Hibbeler 1994) 
dx2 El(x) 

where 

I = 
bh 3 

(Rectangular Cross Section) (Hibbeler, 1994) 
12 

bh 3 2(b - )(h - 2 ) 
3 

I = - - q q (I Cross Section) 
12 12 

The dimensions for the I cross section are defined in figure 4. 

Shear deflection was initially left out of the numerical integration program and was added 

once the magnitude of the shear deflection was realized. The shear deflection turned out 

to be the same magnitude as the bending deflection. The shear deflection equation used 

was 

fks1F y s = -- dx (Cook and Young, 1999) 
AG 

The shape factor ksr is dependent on the cross section analyzed. The shape factor for a 

solid rectangle is 1.2 (Cook and Young, 1999). An I beam shape factor was calculated 

from 
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k 
= (12+72m+150m2 

+90m3 )+v(ll+55m+l35m
2 +90m

3
) + 

sf · l 0(1 + V )(l + 3m) 
2 

30n2 (m + m2)+ 5vn 2 (8m + 9m2) (Cowper, 1966) 
I 0(1 + v )(1 + 3m )2 

where 

2tq 
m=-

hq 

n =bl h 

The shape factor was calculated for the new rocker arms and it ranged from 2 - 3 .3 

depending on the distance from the pivot. The actual shape factor used in the computer 

programs was 2.35. This shape factor was determined by iteration to match the finite 

element result. The total deflection of the rocker arms was calculated by 

Y, =y+ys 

The stiffness was calculated by 

k = .!_ (Thomson and Dahleh, 1998) 
Y, 

These equations were all used in the numerical integration program for the baseline and 

new designs. The programs were set up to integrate distinct sections of the rocker arm 

such as the hole, middle section and end cutout. The baseline program and the I-beam 

program can be seen in Figures A-2 and A-3 respectively. 

The top profile was changed by adding the y values of a linear function to the y 

values of the top profile to see if a better top profile existed. Numerical Integration was 

used to add the linear functions to the top profile. Figure 5 shows the linear functions 
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chosen to change the top profile. Figure 6 shows the results of adding the linear 

functions to the top profile. Table 1 shows the results of changing the top profile. The 

results show that the best curve is adding a horizontal line, which simply raises the top 

profile. 

The low inertia rocker arm with the I cross section and the raised top profile was 

drawn and analyzed using Inventor. The rotational inertia of this rocker arm was higher 

than the rotational inertia of the baseline rocker arm. Therefore, a new top curve was 

needed to reduce the rotational inertia. The curve was changed to reduce the mass at the 

end of the rocker arm. The Inventor drawing of the low inertia rocker arm was used to 

cut away mass at the end of the valve side. Figure 7 shows the comparison of Inventor 

drawings of the low inertia design with the raised baseline top profile and the new top 

profile. The new points were plotted in Excel and can be seen in figure 3. The results of 

the numerical integration program are based on this new top profile curve. The computer 

program was used to change the width, height, and web thickness to determine the effects 

on stiffness and rotational inertia. These changes could be accomplished much faster 

than drawing the part and analyzing it in the finite element program. 

1.3 Experiment of Baseline Rocker Arm 

An experiment was designed to measure the actual deflections of the valve side and 

pushrod side of the baseline rocker arm. An Instron machine was chosen to produce the 

needed compressive force. The Instron machine used was screw driven with a moving 

cross head with a maximum force of 20,000 lbs. Examination of the Instron machine 

10 
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Figure 6. The Results of Adding Linear Functions to the Baseline Top Profile 

Table 1. Results of Changing the Top Profile 

X A B C D E F G 

0 0.1 0.1 0.1 0.1 0 -0.1 -0.2 
1.9 0.1 0 -0.1 -0.2 0.1 0.1 0.1 
J 

(in*lb*sec112) 0.987 0.935 0.886 0.839 0.947 0.91 0.876 

y (in) 0.00090 0.00102 0.00118 0.00141 0.00102 0.00116 0.00133 
J/k 

(in113*sec112) 8.9E-07 9.5E-07 1.0E-06 1.2E-06 9.7E-07 1.1E-06 1.2E-06 
stress max 

(psi) 10877 11864 13034 15103 11758 12776 13963 
x<@stressmax 

(in) 1.00 1.00 1.076 1.20 1.00 1.00 1.00 
Thk (in) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

web thk (in) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
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Figure 7. Comparison of Baseline Top vs New Top Profile 
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revealed that a test stand needed to be designed and manufactured. The test stand was 

needed to hold the rocker arm higher than the automatic stops of the cross head and had 

to be tall enough to accommodate the dial indicators needed to measure the deflections. 

Figure A-4 shows the test stand and its dimensions. The test stand cutout for the shaft 

had to be shifted back from the center to accommodate the dial indicator for the pushrod 

side. The other necessary part of the test stand was the top plate which can be seen in 

Figure A-5. The flat portion of the top plate was designed to contact the cross head. The 

top plate also contained the valve side and pushrod pins to transfer the force to the valve 

side and pushrod side of the rocker arm. The dimensions of the pushrod and valve side 

pins were determined to minimize rotation of the rocker arm. These dimensions of the 

pushrod and valve side pins can be seen in Figure A-6. Figure A-7 shows an assembly 

drawing of the test stand. This assembly drawing ensured that all of the components of 

the test stand would fit together properly. Before the experiment was begun, the Instron 

machine was calibrated and the test stand assembled. The calibration process included 

ensuring that the full scale output was equal to 100% of the scale chosen and that output 

was initially at zero. The test stand was placed into position underneath the cross head. 

The 0.0001 inch resolution dial indicators were placed on the valve side and pushrod side 

using magnetized stands. Figure 8 shows a picture of the experimental setup. The 

applied force began at zero pounds and went to a maximum of 3000 pounds. Several 

tests were performed to ensure repeatability in the results. Figure 9 shows the test results. 

The deflections measured in the tests were higher than anticipated. It was determined 

that the shaft the rocker arm pivots around was deflecting under the applied load. To 

13 



Figure 8. Picture of Experimental Setup 
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measure the deflection of the shaft, a dial indicator was placed on top of the bottom 

profile as shown in Figure 1 0. Figure 1 1  shows the results of this measurement. Figure 

1 2  shows the adjusted results of using the center deflection. The adjusted test results 

were calculated by subtracting the center deflections from the test results. The adjusted 

valve side deflection was determined to be 0.0047 inch, and the adjusted pushrod side 

deflection was determined to be 0.001 8 inch. 

1 .4 Finite Element Analysis 

Two finite element analysis packages were evaluated to select which package would be 

used for the analysis. Initially, Cosmos Design Star was evaluated. Cosmos, a stand­

alone program, allowed the importing of three-dimensional models from Inventor. The 

rocker arm was modeled two ways. The first way the rocker arm was modeled was the 

whole rocker arm supported by a shaft. The other was the valve side and pushrod side 

halves being individually supported at the ends near the pivot. This support modeled the 

separate halves as a cantilever beam. Comparing the results of both runs revealed that the 

deflections were the same whether modeled by the whole rocker arm or the cantilever 

beam. After the comparison was completed all subsequent finite element runs were 

completed by modeling the rocker arm as a cantilever beam. Different loads were 

applied to the valve side and the deflections that resulted were not linear. Cosmos 

showed that for a linear increase in force, the resulting deflection was not linear. The test 

results and numerical integration showed a linear relationship between force and 

deflection. Since stresses were below yield, this indicated a serious problem with 

1 6  
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Cosmos. Since Cosmos was not consistent with experimentation and numerical 

integration a new finite element package was used. Ansys Design Space was tried and 

ultimately chosen to analyze the baseline rocker arm and the two new designs. There 

were several steps to be completed before obtaining the solutions from Ansys. The first 

step was to insert the three-dimensional model of the part or assembly. The next step was 

to assign a specific material to the part or assign different materials to each part in the 

assembly. The next step was to insert the load. The load chosen for the rocker arm was 

force applied to the pin on the valve side. After the magnitude and direction of the force 

were entered, the supports were inserted. Two of the supports were used in the analysis. 

For the modeling of the entire rocker arm the pivot was supported using a cylindrical 

support and the sides were supported using frictionless supports. The cylindrical support 

was chosen to model the pivot. The frictionless supports were chosen to support any 

rotations caused by any unbalance of forces. Figure 1 3  shows the cylindrical support and 

Figure 1 4  shows the frictionless supports. The other model used fixed supports to model 

the pushrod half and the valve side half as cantilever beams. The deflection results of the 

two models matched. The two separate models were compared using the results of the 

total deflection. The total deflection of both sides of the arm using the cantilever analysis 

matched the deflection of the frictionless support. All other subsequent runs utilized the 

cantilever supports for the valve side. The final step was to solve for stress, total 

deformation, and directional deformation. The probe in Ansys was used to give more 

specific results by rolling the mouse over the area of interest. A left mouse click allowed 

a tag to be placed on the part with the specific value for that location. Table 2 shows the 

1 9  
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Table 2. Comparison between Numerical Integration, Cosmos, and Ansys 

Valve s ide 1 000 lb 

Numerical 
lnte ration 

0 .00466 

Cosmos Ans s 

0 .004797 0.00466 

Valve side (@ 1 333 lb 

Numerical 
Integration Cosmos Ansvs 

0.00621 0.005644 0.00621 

21  

Push rod side @ 1 800 lb 

Numerical 
Integration Cosmos Ansvs 

------ 0.00 1 226 0.001 05 

Push rod side 2400 lb 

Numerical 
lnte ration Cosmos Ans s 

0.001 577 0.00 1 39 



comparison of a sampling of results from numerical integration, Cosmos, and Ansys. It 

is apparent that while Cosmos does not yield linear results for linear changes in force, 

both numerical integration and Ansys show linear results. Numerical integration and 

Ansys were used in the subsequent analysis of the baseline rocker arm and new designs. 

22 



2 RESULTS 

2.1 Numerical Integration Results 

Baseline Rocker Arm 

Numerical integration was used to calculate stiffness (k) and mass moment of 

inertial (J) for the baseline rocker arm. 

• The rotational inertia calculated from the numerical integration program was 

equal to 4.68 * 104 in-lb-sec2
. The stiffness was equal to 214592 lb/in. 

Low Inertia Rocker Arm 

Numerical integration was used to calculate stiffness (k) and mass moment of 

inertia (J) for a wide range of web thicknesses, widths, and delta heights. As previously 

stated, only one the valve side of the rocker arm was considered. The range of the 

parameters was the following: 

Web thickness ranged from 0. 1 to 0.5 in increments of 0.05 inches 

Width ranged from 0.6 to 1.0 in increments of 0. 1 inches 

Delta height ranged from O to 0.6 in step of 0. 1 inches. 

• The goal of the design was to minimize rotational inertia, J, while maintaining 

stiffness, k. Therefore the quantity J/k should be minimized for the ideal design. 

The minimum was observed for width, web thickness, and delta height in figures 

15 - 17, respectively. The minimum values width = 0.6, web thickness = 0.2, and 

0. 1 delta height succeeded in reducing the rotational inertia by 48%; however, the 

stiffness was reduced by 27%. These results violated the design specifications. 

23 
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• The minimum values from the three J/k graphs did not produce the desired design. 

An iterative method was used to select the desired design. This iterative process 

was performed using the numerical integration program in figure A-3. 

• The iterative process involved changing one of the quantities, width, web 

thickness, and delta height, while keeping the other two constant. The results 

were recorded and later compared. 

• The results from the program yielded a width of 0.9 inch, web thickness of 0.1 

inch, and delta height of 0.4 inch. 

• The calculated rotational inertia was equal to 4.32*104 in-lb-sec2
. 

• The calculated stiffness was equal to 212765 lb/in. 

Increased Stiffness Rocker Arm 

Numerical integration was used to calculate stiffness (k) and mass moment of 

inertia (J) for a wide range of web thicknesses, widths, and delta heights. As previously 

stated, only one the valve side of the rocker arm was considered. The range of the 

parameters was the following: 

Web thickness ranged from 0.1 to 0.5 in increments of 0.05 inches 

Width ranged from 0.6 to 1.0 in increments of 0.1 inches 

Delta height ranged from O to 0.6 in step of0.1 inches. 

• The goal of the design was to maintain rotational inertia, J, while increasing 

stiffness, k. Therefore the quantity J/k should be minimized for the ideal design. 

The minimum was observed for width, web thickness, and delta height in figures 

18 - 20, respectively. The minimum values width = 0. 7 inch, web thickness = 

26 
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0.25 inch, and 0.1 inch delta height succeeded in reducing the rotational inertia by 

36%; however, the stiffness was reduced by 17%. These results violated the 

design specifications. 

• The minimum values from the three J/k graphs did not produce the desired design. 

An iterative method was used to select the desired design . .  This iterative process 

was performed using the numerical integration program in figure A-3 . 

The iterative process involved changing one of the quantities, width, web 

thickness, and delta height, while keeping the other two constant . The results 

were recorded and later compared. 

• The results from the program yielded a width of 0.9 inch, web thickness of 0.25 

inch, and delta height of 0.2 inch. 

• The calculated rotational inertia was equal to 4 .85* 10-
4 

in-lb-sec2
· The calculated 

stiffness was equal to 238095 lb/in. 

2.2 Inventor and Ansys Results 

Baseline Rocker Arm 

• The calculated rotational inertia from Inventor was 4.48* 1 0-4 in-lb-sec2
. 

• The deflection result from Ansys was 0.00466 inch and can be seen in figure 21. 

• The stiffness was equal to 2 14592 lb/in. 

Lower Inertia Rocker Arm 

• The calculated rotational inertia from Inventor was 4.32*10-4 in-lb-sec2
• 

• The deflection result from Ansys was 0.0047 inch and can be seen in figure 22. 
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* 
Figure 21. Ansys Deflection of Baseline Rocker Arm 
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Figure 22. Ansys Deflection of Low Inertia Rocker Arm 
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• The stiffness was equal to 212765 lb/in. 

• The improvement to the rotational inertia was 3 %. 

• Several scenarios were analyzed in Ansys to have a comparison to the numerical 

integration program. Figures 23 - 25 show the results. The numerical integration 

program was within 3% of the Ansys results. 

Increased Stiffness Rocker Arm 

• The calculated rotational inertia from Inventor was 4.66* 10-4 in-lb-sec2
• 

• The deflection result from Ansys was 0.0041" and can be seen in figure 26. 

• The calculated stiffness was 243902 lb/in. 

• The improvement to stiffness was 12%. 
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Figure 26. Ansys Deflection of Stiff er Rocker Arm 
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CONCLUSION 

The goal was to improve the baseline rocker arm through two designs. One 

design was intended to exhibit lower rotational_ inertia while maintaining the baseline 

stiffness. The other design was intended to have higher stiffness while maintaining the 

baseline rotational inertia. It was expected that these improvements would be significant. 

While the results were not as profound as anticipated, some improvements were made. 

Table 3 shows a comparison of the results of the J esel and the new designs. In the low 

inertia design, the rotational inertia was 4.32* 1 0-4 in-lb-sec2
, which is a 3% improvement 

on the baseline rocker arm. In the stiffer design, the stiffness was 243,902 lb/in, which is 

a 1 2% improvement. 
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Table 3. Comparison of Results of Jesel Rocker Arm and New Designs 

High 
Low Inertia Stiffness 

Jesel Design Design 
Rotational 

Inertia 
( in-lb-sec"2) 4 .48*1 0"-4 4.32*1 0"-4 4.66*1 0"-4 

Stiffness 
(lb/in) 2 1 4592 2 1 2765 243902 
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I-Beam vs H-Beam Program 

1 : = 2  Length 

b := .9 Width 

q := .1 Web Thickness 

bot ( x) : =- .5 top ( x) := 1 

h ( x) := top ( x) - bot ( x) Height 

I - Beam 

( ) . ( top ( x) + bot ( x) ) ycg X ,- -------

r( x) : = x2 + ycg ( x/ 

p ( X) : = ( r( X) . aa ( X) + I ( X) ) . p 

J 1 := J: P (  x) d x 

H - Beam 

( ) . ( top ( x) + bot ( x ) ) ycg X ,- -------
2 

r( x) : = x2 + ycg ( x) 2 

P ( x) : = ( r( x) • aaa ( x) + I 1 ( x) ) · p 

J 2 
:
= r: P (  x) d x 

J 1 = 

J 2 = 

F := 1 000 Force 

E := 1 0 . 1 0 6 modulus of elasticity 

p := 0.098 . . . ,_ [O ] initial conditions at fixed end 
imt1al . - 0 of y(O) = 0 & dy(O) = 0 

aa ( x) : = b ·h ( x) - ( ( b - q ) ·( h ( x) - 2 -q ) )  

b · ( h ( x) ) 3 1 3 I( x) :- --- - - ·( b - q ) · ( h ( x) - 2 -q )  
1 2  1 2  

D ( x , y ) := [ F ·( : �  1 ) ] . 
E ·I (  x) 

Z := rkfixed ( initial , 0 ,  2 ,  500 , D ) 

( z< l > )  = \ 500 

(
z 

< I > ) -
\ l 500 -

aaa ( x) : = b · h ( x) - ( (  b - 2 · q ) · ( h ( x) - q ) ) 

b ·( h ( x) ) 3 1 3 I 1 ( x ) :- --- - - ·( b - 2 ·q ) ·( h ( x) - q )  
1 2  1 2  

Z 1 := rkfixed (initial , 0 , 2 , 500 , D  1 ) 

I - beam 

H - beam 

Figure A- 1 .  Sample Calculations of I-beam vs. H-beam 
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Basel ine Rocker Arm Program 

1 : = 2. 1 27 Length 

b : =  .9 Width 

F := I 000 Force sf := 1 .2 

E : = 1 0· l 06 modulus of elasticity 

p : = 0.098 

G :- E 
( 2· 1 .33) 

. . . [o] in itial conditions at fixed end 
tmttal := o of y(O) = 0 & dy(O) = 0 

6 5 4 3 2 top ( x) : = - .0852-x + .4923-x - l .0305x + .9425-x - .5602-x + .345 1-x+ .9454 
6 5 4 3 2 bot ( x) : = - 1 .298 1-x + 7 . 1 569x - 1 3 .844x + 1 0. 1 75x - 1 .230 1-x - 0.0674x- .6289 

h (x) := top ( x) - bot( x) Height 

Middle Section 

ycg ( x) : - ( top( x) + bot (x) )  
2 

2 2 r( x) := x + ycg ( x) 

P( x) := ( r( x) ·aa( x) + I( x) ) ·p 

I

l .5 
J I := P( x) d x  

.375 

I
l

.

5 
Z sh :

= 

.375 

F•sf -- dx 
aa( x) ·G 

aa( x) : = b ·h( x) 

3 
I( x) : =  b ·( h( x) )  

1 2  

D( x, y ) := [ F•( x� 1 .9) ] 

E·I( x) 

Z := rkfixec( initiaL .375, 1 .5, 500, D) 

Figure A- 2. Numerical Integration Program for Baseline Rocker Arm 
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End Calculations 

3 3 

I ( x) :_ h( x) ·b h ( x) · .37 
I 1 2  1 2  

aaa ( x) := ( h ( x) ·b ) - ( h ( x) · .37) 

P 1 ( x) := (r( x) ·aaa ( x) + I 1 ( x)) ·p 

Z 1 := rkfixed (initial , 1 .5 ,  1 .9 ,  500, D 1 ) 

D 1 ( x, y )  := [ F · ( x� 1 .9) ] 
E·I 1 ( x) 

I
2. 1 27 

J 2 :=  P 1 ( x) d x  
1 .5 

Il .9 

F · sf 
Z sh ) := . --- d x  

aaa ( x) ·G 
1 .5 

Hole Cut 

yc l ( x) :=�.3752 - x2 

yc2 ( x) :=- yc l  ( x) 

ht ( x) := top ( x) - yc l ( x) 

hb ( x) :=- bot ( x) - yc l ( x) 

aba ( x) := b ·ht ( x) 

ab ( x) := - b ·( bot (x) - yc2 ( x) )  

[ ab ( x) · (yct ( x) + hb
t

)
)]  + aba ( x) • (yct ( x) + ht

;
x)

) 
ycg l ( x) :----------------­

ab ( x) + aba ( x) 

yt t ( x) : = (ye t ( x) + top ( x) 
� 

ye t ( x) 
) - ycg t ( x) 

Figure A-2. Continued 
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( 
bot( x) - yc2 (x)

) y22( x) : =  yc2 (x) + 
2 

- ycg l ( x) 

2 2 r2( x) := x + ycgl ( x) 

3 3 

lj( x) : - b ·ht( x) + (aba(x) ·yl l ( x)2) + b ·hb(x) + ab( x) ·y22( x)2 

1 2  1 2  
abc( x) : =  aha( x) + ab( x) 

P 3( x) := ( r2( x) · abc (x) + lj( x) ) ·p 

Z 3 : =  rkfixe� initial, 0, .375, 500, D 3) 

r
.375 

J 3 := 
J o 

p 3(x) d x 

1
.375 

z sh3 
:
= 

l o 

F·sf ---d x  
abc( x) ·G 

Y := (z <2> ) + / z < 2 > ) + (z< 2> ) 
1 �o \ 3 �o �o 

y t : = y + y s 

J r := J I + J 2 + J 3 

Figure A-2. Continued 
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D 3(x, y ) := F · ( x- 1 .9) 
E· lj( x) 



IBeam Rocker Arm Program 

J := 2 . 1 27 Length 

b := .9 Width 

q := . I  Web Thickness 

F := 1 000 Force sf := 2.5 

E := I O· l 06 modulus of elasticity 

p := 0.098 
E G :- --

( 2 · l .33) 

. . . 
1
,_  [o] in itial conditions at fixed end 

tmtta .-
0 of y(0) = 0 & dy(0) = 0 

6 5 4 3 2 top (x) := .0456x - .2326x + .4 1 97-x - .4229x + .0586x + .2295x+ 1 .3507+ .3 

6 5 4 3 2 bot ( x) := .0302-x - .3264x + 1 .5867-x - 3 .4759x + 2.9738x - .0287-x- .4783 

h( x) :=  top( x) - bot( x) Height 

Middle Section 

ycg ( x) := ( top( x) + bot( x) )  
2 

2 2 r( x) : = x + ycg( x) 

P( x) := ( r(x) ·aa( x) + I( x) ) ·p 

J

l .375 
J I := P( x) d x  

.375 

Z sh :=
J

l .375 
F ·sf dx 

aa( x) ·G 
.375 

aa( x) := b -h( x) - ( ( b - q ) · ( h ( x) - 2 -q ) )  

l( x) : = b ·( h( x) )3 

- � -
(
.1: - 2!

)
· ( h( x) - 2 ·q )3 

1 2  6 2 2 

D( x, y )  : = [ F-( x� 1 .9) ] 
E·l( x) 

Z := rkfixec( initiaL .375, 1 .375, 500, D) 

Figure A- 3. Numerical Integration Program of I-beam Rocker Arm 

43 



End Calculations 

3 3 

I l ( x) :- h (x) ·b h( x) · .37 
1 2  1 2  

aaa( x) := (h( x) ·b ) - (h ( x) · .37) 

P 1 ( x) := ( r( x) ·aaa( x) + I 1 ( x)) ·P 

Z 1 :=rkfixed(initial , 1
.
5, 1 .

9

, 500, D 1 ) 

f 2. 1 27 

J 2 := P 1 ( x) d x  
1 .5 

f 
1
.9 Z sh l := 

1 .5 

F·sf --- d x  
aaa( x) ·G 

Solid Transition 

3 

I ( x) :_ h( x) - b 
2 1 2  

aaaa ( x) := h( x) ·b 

P
2( x) := (r( x) ·aaaa ( x) + I 2( x)) ·p 

Z 2 := rkfixed(initial , 1 .375, 1 .5, 500, D 2) 

f 
1
.
5 

J 3 := 
1 .375 

f 
1

.

9 Z sh2 := 

1
.
5 

P 2( x) d x  

F·sf --- d x  
aaaa ( x) ·G 

D 1 ( x, y ) := [ F •( x� 1 .

9

)
] E·I 1 ( x) 

D 2( x, y )  := [ F ·( � 1 .9) ] 
E·I 2( x} 

Figure A-3. Continued 
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Hole Cut 

yc l ( x) :=�.3752 - x2 

yc2 ( X) : : - yc l ( X) + . 1 25 

ht ( x) := top ( x) - yc l ( x) 

hb ( x) :=- yc2 ( x) 

aba ( x) := b ·ht ( x) - ( ht( x) - 2 -q ) · ( b - q ) 

ab ( x) := b •( yc2 ( x) - bot ( x) ) 

[ab( x) . f
\
yc2 ( x) + hb� x)

) ] + aba ( x) · (ycl ( x) + ht�x) ) 
ycg l ( x) :-.;;;...,_ ________________ _ 

ab ( x) + aba ( x) 

yl l ( x) := (yc l ( x) +  top ( x) � ycl ( x) ) - ycgl ( x) 

( bot ( x) - yc2 ( x) ) y22 ( x) := 
\
yc2 ( x) + 

2 
- ycg l ( x) 

2 2 r2( x) := x + ycgl ( x) 
3 3 3 

I .( ) b ·ht ( x) ( b - q) ·( ht ( x) - 2 ·q ) I b ( ) l l ( ) 2) b ·hb ( x) b (  ) 22( ) 2 J X ; - ___ ------- + ,a a X ·y X + --- + a X ·y X 

1 2  12  12  

abc ( x)  :=  aba ( x)  + ab ( x) 

P 3( x) := ( r2( x) · abc ( x) + lj( x) ) ·p 

Z 3 := rkfixed (initial , 0, .375 , 500, D 3) 

r
-375 

J 4 
:=  
J o  

p 3( x) d x  

I
.375 

Z sh3 : = 

0 

F · sf --- d x  
abc ( x) ·G 

D 3( x, Y ) := [ F ·( x� 1 .9) ] 
E- lj( x) 

Figure A-3. Continued 
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Y := (z < 2> ) + (z <2> ) + (z < 2> ) + (z< 2> ) 
1 500 2 �o 3 500 �0 

Y s := - Z sh + - Z shl  + - Z shz + - Z sh3 

J := J I + J 2 + J 3 + J 4 

Figure A-3. Continued 
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