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Abstract

The purpose of this investigation is to consider the group structure of Schreier
groups for both general topological groups and euclidean space in particular where U
is taken to have a finite number of components. Theorem 1 exibits a homomorphism
from the Schreier group into the direct product of the underlying topological group
and a specified finitely presented group with the components of U as generators.
Theorem 2 shows that in euclidean space the given homomorphism is an
isomorphism. Examples are given which illustrate the process laid out in Theorem 1.
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|. Introduction

Given a topological group G, and a subset U of G one can construct words whose
elements are from U. Schreier groups are constructed from equivalence classes of
such words when U is symmetric and contains the identity (see Propositions 1 and
2). Schreier groups were first considered by Schreier in 1925 [5]. They have been
rediscovered by Tits [6] and in a more general setting of local groups by
Mal'tsev[Ma]. Berestovskii and Plaut [1] have used Schreier groups to generalize
covering group theory within the setting of topological groups. In these works it is
generally assumed that the symmetric neighborhood is also connected. Yelton [7] in
an REU project at the University of Tennessee considered Schreier groups in R
arising from a symmetric neighborhood of 0 with a finite number of components. She
developed conditions on the components under which the Schreier group becomes
the direct product of R and a finitely generated free group. This paper will again
consider Schreier groups on symmetric sets with a finite number of components, but
within a more general class of topological groups. Theorem 1 describes a
homomorphism from the Schreier group into the direct product of the underlying
topological group with a specified finitely presented group. Conditions are specified
for the homomorphism to be an epimorphism, or an isomorphism, thus generalizing
Yelton’s work. In particular, we will show in Theorem 2 that all Schreier groups which
arise from a euclidean space R” are isomorphic to the direct product of R” and a
finitely presented group. Propositions 3 and 4 and the examples surrounding them
are an attempt to consider some of the finitely presented groups which emerge from
Theorem 1.



Il. Results

This paper uses the following construction of topological groups (See Plaut [4]). Note
that if (G, x)is agroup and U,¥ c Gthen UV = {uv | u € Uand v € ¥} and
U'={u! | ue U).

Definition 1: Let (G, ) be a group and I' = {F,}4ca a family of subsets of G each
containing the identity e. Then G is a (Hausdorff) topological group with fundamental
family I if the following four conditions hold.

1. Naer Fo = {e}

2. For every F,V €T, there exists a W € I" such that W#w-!' c FN V.

3.Forall F e T" and a € Fthere exists a ¥ € I" such that aV' c F.

4.Forall F e I" and a € G there exists some ¥ € I" such that aVa™! c F.

The open sets of a topological group in this sense are defined as those sets ¥ which
obey the property that if x € V'then there exists F € T" such that xF c V. It will be
convenient to show that if ¥ is open we can find F' e T such that F’x c V. To do this,
suppose V is open under the given definition. Choose F' such that xF'x™! c F. Then
F'x = xx'F'x c xF c V. It can be shown [4] that open sets defined in such a way
form a Hausdorff topology. If G is a topological group and I"' is taken to be the family
{F c G | e € Fand Fis open} then I'' satisfies the conditions 1 —4 and the
topological group thus obtained is identical to the original one. In other words, we
may assume that the fundamental family of a topological group consists of all open
sets about the identity. A topological group is called locally generated if ¥x € G and
F € T we can write x = x1x2...x, where x; € F.

Some examples of topological groups used in this paper are:

1. Euclidian Space under the operation of +. Let I" be the collection of all open balls
B(0,r) centered at the origin. In this example we have that

B(0,r) e T = B(0,r)"! = B(0,r) hence (F = F-! VF € I') and aB(0,r) = B(a,r).
Condition 1 is obvious. Condition 2 is satisfied by noting that if »; < r; then

B(0, n) N B(0,r2) = B(0, n).If we let W = B(0, -—’2'—) then WW-! = W+ W = B(0,n) c
B(0, n) N B(0, »).If F = B(0,r), and a € F then condition 3 can be met by choosing
V = B(0,r - ||a||). Condition 4 is trivial since a + B(0,r) — a = B(0,r). We also have
that Euclidian Space is locally generated. Letx € R” and B(0,7) € I'. Then choose
ke Nsuchthat BL < 7. Then || 1x ||= B < rand 4x+ Lx+...+Lx (ktimes) = x.

2. The circle S' = {¢® € C | 6 € (-=, =]} where the group operation is multiplication
in C. If A is the set (0, ) then the collection {F.er} Where

F. = {e® € C | 0 € (—a,a)} forms a fundamental family. Sincee® =1 € F, Va € A
we have 1 € Nger Fo.lf €® + 1 then choose a < . Then ¢® ¢ F, and hence {1} =
Neea Fo. Thus condition 1 is met. Now, let a; < a; be arbitrary and W = F-'sL Then

since Fg, N Fa, = Foy and WW-! = WW = F,, = F,, N F,, condition 2 is met. Leta =



e’? € F, so that |8| < a. Condition 3 can be met by choosing V = F%ﬂ. Condition 4 is

again obvious since S! is abelian. The circle can be shown to be locally generated by
setting F, and ¢” and choosing k € N such that £ < a. Then e#* € F, and

eMlkelk_ Mk (k times) = ¢®

3. The set GL(n,C) of n by n matricies with elements in C whose determinant is
non-zero under the operation of matrix multiplication. If M € GL(n, C) define

|M] = maxy|m;| where m;; is the element of M in the ith row and jth column. It can be
shown [4] that GL(n,C) is a topological group with fundamental family given by the
sets B, = {4 € GL(n,C) | |4 - 1] < r} where r > 0 and I = the identity.

The following two definitions and propositions define Schreier groups. Although
Schreier groups have been considered by numerous others (see introduction), the
following presents such groups in a context useful for our purposes. For the following
construction, fix a topological group (G,+) with fundamental family I'. In a number of
ways it will be convenient to use + to represent the operation in G. Please note that
commutativity of the group operation is not being assumed and that the identity
element will be denoted by e. Let U(G) be the collection of all open sets in G
containing the identity e which have a finite number of open components and are
symmetric in the sense that U € U(G) and x € U = —x € U. We will fix G and

U € U(G) until after Theorem 1.

Definition 2: A U-word with respect to the group G and set U is a finite word
x1x2...x, Where x; € UV 1 < i < n. The set of all U-words will be denoted by U. The
symbols x,y,z,g and 4 will be used to represent elements of U and «,v, and w will
represent U-words of U.

Definition 3: If u = xyx3...xixu1...x, Where 1 <i<n-1andifv = xi1x3...x;...%n
where x; = x; + xi1 in G then v is said to be obtained from « by an expansion, and u
is said to be obtained from v by a contraction. Contraction is an inverse operation
from expansion in the sense that if  can be obtained from v by a contraction, then v
can be obtained from u by an expansion. Define ~ on the set U in the following way.
If u,v are U-words then u ~ v iff v can be obtained from « by a finite sequence of
expansions and contractions; i.e. there exists U-words u;,u3....,ux such that u; = u,
ux = v and u;,; can be obtained from u; by either an expansion or contraction.

Note:If u,v € U and v is obtained from u by an expansion then the sum of the
elements of » and v (in G) are unchanged since x; = x; + x;,;. We have that if u ~ v
where u = xix;...x and v = y;ys...yn then the sum of the elements of # and v must

be equal, i.e. 350, xi = 3.7, y.

Proposition 1: ~ is an equivalence relation on U.

Proof: Let u = x1x3...xn. v = x1ex2...x,. Then v is a U-word and can be obtained
from u by an expansion since x; + e = x;. Similarly # can be obtained again from v by

4



a contraction. Hence u ~ u. Now, suppose u ~ v. If v can be obtained from u by a
single expansion or contraction then it is clear from the definition that « can be
obtained from v by a single contraction or expansion respectively, hence v ~ u. In
general, there exists U-words u;,u3....u; such that u = u; ~ uz ~...~ ux = v, where
ui+1 can be obtained from u; by a single expansion or contraction. But then

v = ux ~...~ u; = uwhere u; can be obtained from u;;; by a single expansion or
contraction. Hence v ~ u. Finally, suppose u ~ v and v ~ w. Then there exist
U-words u, uz..,ux and U-words vy,va,...,vy such that u =u; ~ uz ~...~ ux = vand
v =v; ~ v ~...~ v, = wwhere each ~ is a single expansion or contraction. Hence
U=Ul ~.c~ U~V ~..~Vvy=wandu ~ w,

We will denote the quotient U/ ~ by Gy. Define the following operation on Gy. If
u=x1x2...Xp and v = y1y2...ym then [u][v] = [uv] = [xix2...X2y1¥2...ym]. This
operation is well-defined since if ¥’ € [u] and v' € [v] then there exist u, u,...., ux
such that u = u; ~ uy ~...~ ux = ¥’ and vy, v,,...,v; such that

V=V ~ V) ~..~ Y= v. Then uwv = UIV]L ~eoe~ UKV ~ooo~ URV) = u'v'. Hence

[«1v'] = (V'] = [wv] = [u][v]).

Proposition 2: Gy is a group.

Proof: Let [u],[v],[w] € Gu. [u]([v][w]) = [u]lvww] = [wvw] = [uv][w] = ( [u][v])[W]
and hence the operation is associative. Consider the U-word e. The equivalence
class [e] has the property that [e][«] = [ex] = [u] since

U = X1X2...Xn ~ €X1X2...X, = eu. Similarly [u][e] = [u]. Finally, for [u] € Gy consider
the class [u]™! = [(=xn)(=Xn-1)-...(=x1)]. Then [4]

[W]™ = [x1x2...xn(=Xn) (=X p1)... (=x1)]

= [xlxz...x,._le(—x,,_l)(-x,..z)...(—xl)] = [xlxz...x,,_l(—x,..l)(—x,..z)...(—x1)] =L a0= [xl(—x
Similarly [u]![u] = [e]

One of the components of U must contain the identity of G. In what follows, a
significant role is played by those U-words for which all of the elements of the chain
belong to this component. We will call such U-words fine. The equivalence classes in
Gy which have fine representatives are also important, but notice that these classes
will also have representatives which are not fine. For instance, if x;x;...x, is fine we
have xx;...x» ~ x1x2...x9(—y) for any y in U. This leads to the following definition.

Definition 4:Let U, be the component of U which contains the identity. A U-word « =
x1x2...x, Will be called fine if x, € Uy Vi. An equivalence class [v] will be called fine if
v ~ u where u is fine.

We wish to evaluate the structure of Gy which will culminate in Theorem 1. The
following lemmas prove useful to this end. Recall that G has a fundamental family "
whose elements can be taken to be all open sets in G containing the identity (see
Definition 1). In particular Up € T.



Lemma 1: Let F e I"and y,z € V' where Vis an arbitrary component of U. Then
[z] = [x1x2...xy] Where xi, x2, ...,Xs € F.

Proof: Fixye Vand FeT'and let S = {z € V | [z] = [x1x...x,y] for some
X1,X2,...,Xn € F}. Then y € S since [y] = [ey] and e € F by the definition of a
fundamental family. We will show that S is both open and closed. To see that S is
open, suppose z € S. Then there exists xi,x2,...,x» € F such that [z] = [x1x2...x.y].
Now, since V' is open, we can find an F; € I" such that F;, +z c V. Since F, F)and
Uy are all open and contain ¢ we can define F, = FN F; N U, where F; € T. Then,
for all £ € F, we know that

a)k € U, since F, c Uj and
bk+ze UsinceF, cFiandFi+zcV

Thus the following equalities are valid for all k € F»: [k+z] = [kz] = [kxix2...xay] and,
since k € Fwe have k+z € S. Hence, F2 +z c S and we have that S is open. To
show that S is closed, suppose z € S€. We can find an F; such that F3+z c V.
Further, we can find an F; € I" such that F4 + (-Fs) < FN F; N Up. Notice in
particular that since e € F, we have -F; c U,. As above, we know that if k € F,
then both k and & + z are elements of U. We wish to show that F; + z c S°. Suppose
not. Then there would be a k € F4 such that [k + z] = [x1x2...x,y] for some
X1,X2,...,Xa € F. But since k € F4, -k € Uy and

[—kxixz...xpy] = [k +z)] = [-kkz] = [z] which is a contradiction. Thus Fy +z < S€
and we have that S€ is open. Hence Sis closed and S = V.

Corollary 1: If x € U , F € T then [x] = [xixz...x,]) Wwhere x;x;...,x, € F.

Proof: Since x,e € U, we can apply Lemma 1 to get
[x] = [xe] = [x1x2...xn€e] = [x1X2...x,) Where xx3...,X, € F.

Suppose G is abelian, x € U, and g is any element of U. If we choose F € I" such
that g+ F < U then we can use Lemma 1 to see that [x](g] = [xg] = [x1x2...xg]
(wherex; € F)=[x1x2...(xa+ 2)] =

[x1x2...(g +xa)] =[x1x2...8%n] =...= [gx1X2...xs] = [gx] = [g][x]. Thus it follows that
the set of all fine U-words is a subset of the center of Gy when G is abelian. We will
see, however, that the group operation in Gy is nonabelian in general, even in the
case where G is abelian (see for example Proposition 3 below). The following lemma
shows that for each element g of Uit is possible to find a small neighborhood
(dependent on g) of the identity whose elements obey a form of commutativity with g.

Lemma 2: For any g € U there exists an F; € I, F; c U such that if x € Fj then
[xg] = [gy] for some y € Uj.



Proof: Let ¥ be the component of U which contains g. We can find an F; such that
g +F, c V. This guarantees that Vx € F; we have g+ x € U. We can also find an F;
such that F, + g c ¥ which guarantees that Vx € F, the term x + gis in U. We can
then define F' such that F' = F; N F2 N Up. Notice that for each x € F' we have by
definition that x + g, g + x, and x itself are all in U and can be inserted or deleted as
elements in a U-word. By the definition of a fundamental family, we can find an

F eI sothat—-g+ F+gc F. Thus, for all x € Fwe can find y € F' such that
-g+x+g =y .This implies thatx+ g =g +y. Since g,x,y,x+g, andg+y € Uthe
following equalities are legal: [xg] = [((x +2)] = [(g+»)] = (@]

Note that while x € Fg, y € Up. The following lemma establishes a form of
commutativity for all elements of Up.

Lemma 3: If x € Uy, h € U then [xh] = [hx1x;...x,] fOr some n € N,x1,x2,...,xs € Up.

-

Note: In the abelian case we have [x] € Center(Gy) Vx € Uy from the discussion
preceeding Lemma 2.

Proof: Choose F; so that Lemma 2 holds for 4. By the corollary to Lemma 1 we can
rewrite [xh] as [x)x2...x,h] where the x; € F,. Then applying Lemma 2 (» times) we
obtain [xy] = [Ax}x;...x,] with the x; € U,.

Lemma 4: Let U,,Uz,U; be components of U. Suppose further that 3g,, g2, g3 such
thatg, € Uy, € Uh,g3€ Us and g1 + g2 = —g3.Letx, € Ui,x2 € Uz, x3 € U; be
arbitrary. Then [x; xx3] is fine, i.e. x1x2x3 ~ u where u is a fine U-word.

Proof:By Lemma 1 above we can write x;x>x3 as
a\@...a5,81b1b1...bs,82¢103...C5,83. Where a;, by, ¢, € Up. Then, by Lemma 3,
X1X2x3 ~ @1G2...045,8182 81 b... b}, ¢} ¢5...c}, (Where 52 < 1, and 53 < 13.)

~ a1@;...a5,(—g3)g3b'1b5.. . by cch...cl, ~ araa...a,b)b). . b Cic. . cl,

which is a fine U-word.

In the following theorem we make use of free groups and finitely presented groups.
To describe the free group on n elements {x;,x,,...,xs} , consider the collection of
all finite strings of elements of the set {e,x1,x2,..., X5, x7!, 55'...,x;'}. | will call these
strings words. A reduced word is a word in which all e's and all pairs x;x;! and x;!x;
are removed. Thus the word x;ex; x;'x3'x3x;! reduces to the word x; x;'.It can be
shown ( [2] pp.64-65) that each word reduces to a unique reduced word and that the
operation x;,x;,...xi, * ¥;,yj,...y;a =(the reduced version

of) x;,x4,.. . Xi YjVi- --Via fOMs a (not necessarily abelian) group on the collection of
all reduced words. | will denote this group by F(n). Notice that if a word consists only
of elements from the set {xi,x»,...,x,} then the word is a reduced word. If R is a
collection of words then the finitely presented group < x1,x2,...,x, | R >is the
quotient group F(n)/N where N is the normal subgroup of F(n) generated by the



words in R ([2] p.67).

Lemma 4 shows that conditions on single elements of a component can affect the
entire component in profound ways. In fact Theorem 1 will establish that the
components themselves have a certain group structure defined by the condition that
if there exists g; € U,,g2 € Ua, g3 € U; such that g, + g2 = g3 then U, U; = Us. In
Yelton’s work [7] where G = R the neighborhoods Uare composed of intervals and
have the form (=&, —kn-1) U (=kn-2,—kn=3) U...U(=ko, ko) U (k1,k2)...U(kn-1,kn).She
defined a condition for the components of U to be independent which states that if

x € (ki, k1) and there exists y,z € U such that x + y = z then either y € (<ko, ko) and
z € (ki,kw1) or y € (—kua1,—k:) and z € (—ko, ko). If the intervals in U are all
independent then R, = R x F(4) where F(4) is a the free group on Z elements.

Theorem 1: Let U € U(G). Suppose the components of U are denoted by
Uo, Uy, ..., Uy where Uy is the component containing e. Suppose further that:

R={UUU)" | Ixe U,ye Uj, ze Uywithx+y = z}.
K = {[u] = [x1x2...x,]) € Gy | [u] is fine and 2:'_1 x; = e}

Then there exists a homomorphism ¢ : Gy — G x < Uy, Uy,...,Ux | R > with kernel
K. If Gis locally generated (see Definition 1) then ¢ is surjective.

Note: The condition 2’:_ | Xi = e on one representative of [«] implies the condition on
all representatives of [u] by the note preceding Proposition 1. Also, since e+ e = e in
G we will always have the relation UyUoUj'. If N is the normal subgroup of F(k)
generated by R then UpUoU;' € N. Since N is normal we have that

U (UoUoUp")Up € Nhence Up e Nand Uy = eiin < Up,Uy,...,Ux | R >. For a more
detailed discussion of the generators in < Up, Uj,...,Ux | R > see the discussion
preceding Definition 5.

Proof: Let [u] = [xix;...x,] € Gy and define ¢([u]) = @1 x @2 where @1 ([u]) = Z:Ll b
and ¢,([u]) = Uy, Uy,... Us, where Uy, is the component containing x;. The term

U, Us,... Uy, is an element of the free group on the elements {Uy, U,,..., Us}. Since
each of the elements U,, comes from this set, the word is automatically reduced. To
see that ¢ is well-defined, suppose [«] = [v]. Notice first that ¢;([x]) = ¢:([v]) by the
note preceding Proposition 1. Further, suppose that v can be obtained from u by an
expansion and let = x;x;...xi...x, and v = x;x2...3y'...x, where x; = y +y’. Now, let
N be the normal subgroup of F(k) generated by R. Since y +)’ = x; we know from the
definition of R that U,U,U;' € N. Thus g2([u])e2([v])™! =

U Usy... Us, UyUy U,y .. Us, (U, Uy Uy Ur Uy, . U, ) ! = (Uyy... Un )Up Uy Uy (U
and hence Uy, Us,...Us,, UyUy Us,,... Us, = Uy Us,... Us, U Us,, ... Us, in

< Uo, Uy,...,Ux | R >. We then have ¢1([u]) = ¢@2([v]) which implies

o([u]) = ¢([v]). Now suppose [v] is any element of Gy such that [#] = [v]. Then
there exists (see Definition 1) v;,v,,...v, such thatu = vy, v = v, [v1] =...= [v;] and v;
can be obtained from v,; by a single expansion or contraction. Then by above we



have that o([u]) = @([v1]) =...= ¢([vs]) = ¢([v]) and ¢ is well-defined.
To see that ¢ is a homomorphism, notice that if [#] = [xx2...x,) and

V] = w2...ym) then o([ul[v]) = @([xix2...xy1y2...ym]) =
(1 +x2 +...txn + Y1 + 2+ tYm , U Us,.. .Uy, Uy Uy,...Uy,) =

((x] +x2 +-..+xn) + (y] +y2 +...+ym) ,(le sz... Ux,‘)(Uyl Uy:-.. Uy.)) =

(1 +x2 +.o4%n , UnUsy.. . Us) + 01 +y2 +oo o 4Ym , Uy Uy . Uy) = @([uD)o([V])

To see that the kernel is K, notice first that if [u] € K then [u] = [x1x;...x,] where
2. xi = e, and x; € Up foreach i. Hence o([u]) = (X}, xi » Uolo...Uo) = (e,€)
(by the note preceding this proof) and [u] € Ker(¢). Thus we have K — Ker(¢). Now,
suppose ¢([#]) = (e,e). To show that [¥] € K it suffices to show that » can be
transformed into v where v is a fine U-word. Then we would have 3" x; = e by
supposition and [u] = [v] where vis a fine U-word and hence [u] € K. To show this,
notice that the word U,, U,... Us, which is the image of [«] under ¢, must be in the
normal subgroup generated by R. Hence Uy, Us,...Us, = wiRiwi'waRaw3' ... wmRuw;!
as words in the free group F(k) for some w; € F(k) and R; such that R; € R or
R7! € R.Notice that since the right-hand side of the equality may not be reduced,
there may not be a one-to-one correspondance between the U, on the left side and
elements of w R \wi'waRaw3' ... wmRaw5! on the right. However, since these words
must be equal in the free group F(k) we can transform the left side into the right side
by inserting ¢’s and pairs of the form U;U;! or U;'U; a finite number of times. We
wish to transform x;x,...x, in a similar manner. If e is inserted between U,, and U;,,
then insert x;e for x; in x1x;...x, to get x1x3...xexu1...%, . If the pair U;U;! (or U7'U;)
is inserted between Uy, and Uy, then fix a € U; and insert x;e for x; and then a(—a)
(or (—a)a) for e. This gives [xix3...x;a(—a)xi1...Xn] OF [x1X2...X(—a)axsi...x,). In this
manner we obtain [x;xz...x,] = [y1y2...y,;] where there is a one-to-one
correspondance between the y; and elements of w1 Riwi' waRows! ... wmRmwy!. | will
show that [y;y...y,] can be transformed into a fine U-word.

First, suppose that there is only one term of the form wRyw™. Then, let yyu1yi2
correspond to R;.If R, € R, and R, = U;U,U;! then, by the nature of how the y; were
chosen, we have y; € Uy € Uy, and yi,2 € =U, (Where -U, is the component
symmetric to U;). Then, by the definition of R there must exist g;,g,,g: € G such that
g1 € U,gs € U, —g: € -U; and g; + g; = ~(—g:). By Lemma 4 above y,y;.1yi.2 relates
to a fine U-word. If R;! € R,and R, = U;U;'U;! then y, € ULy € -Us, and
yir2 € =U,.By the definition of R there must exist g;,g,,2: € G such that
g1€U,gs € U, g € Uyand g, + g, = g;. But then g; — g, = —(—g/) with
g1 € U,-g, € -U,, and —g; € -U,. Again by Lemma 4 we have that y;y..1y: relates
to a fine U-word. Now, let y:...y..; correspond to w so that ys...y, corresponds to
w~l. Then by the nature of how the y, were chosen we must have U,,, = -U,,, for
1 <j < i—1.We have [yu1ypimyVsayus]l = -1b1b2...bcyns] where b; € Uy from the
above discussion. By Lemma 1 we may write y.3 as bn1bc42. b.. Hence
ywinyuyusl = Pie1b1b2...bo(—yi1 )] where ¢ < ¢'. Then by Lemma 3 we may
write this as [b162...5.yv1(—=y1)] = [b1b2...b.+] which is a fine U-word. By repeated
application of this procedure we may write (y,y....y,] as a fine U-word. Finally, by
reducing each block w;R;w; into a fine U-word the entire expression
wiRiwi'waRw3'.. . wnRmw;! can be seen to be a fine U-word.



For surjectivity, let G be locally generated and suppose (g, U;,Us,...Us,) € G
x < Up,Uy,...,Ux | R >. Fix an x; € U;, so that U,, = Uj,. Since G is locally
generated, we can find y,y,,...y1 € Uy, such thaty, + y, +...4+y; = g— Z;'_l x;. Then
}1,'lh +y2+... 41+ x1 + x2 +...4x, = g. Consider the U-word given by y,y,...y: x1x2...xn.
en
o y2. yixix2...%n) = 1 +y2+... i+ z1 + 22 +... 425, UpUs...UpUs, Us,... Us,)
= (g,U; Us,...Us,).

Theorem 1 gives us a tool for evaluating the structure of Gy. The following example
illustrates how the above theorem may be used. If U consists of a single component
Uothen< Up | R >= < e > and ¢ from Theorem 1 is a homomorphism into G.

Example 1 (The circle): Consider the topological group S' considered above. Fix
O<a<rnandletU= {e? : 0 € (—a,a)}. Then

1)1f0 <a < 2z/3then S,/ Z = S
2)If2n/3 <a <nthen S}, = S

Notice that if [u] € K where K is the kernel from Theorem 1 and u = e®1¢%:. .. ¢®~ then
we have e®1e2, . ¢ = ¥ since }." x; = e for [u] € K. This implies that
01 + 02 +...+8, = 2kr for some k € 2. | wish to show that

)If0; +62 +...+40, = 0 then u ~ €°.

The proof is by induction. First, suppose » = 1. Then 6, = 0 and u = °. Now, let

! € N be arbitrary and suppose that all [«] € K with [u] = [e?1e?2...e%] are such that
u ~ % Consider [v] = [e®1e®:...eP+] € K such that 0; + 6, +...+0,,1 = 0. Letj be the
first index such that 6, has opposite sign to 6;. Then 6,., and 6; have opposite sign.
This implies that 8., + 0; € (-a,a) and hence

e, . eriei, ePm ~ e e0+8) e®1 which has I elements. By the induction
hypothesis v ~ e°.

The main difference between the above cases stems from the fact that if

0 < a < 2n/3 and €",e®2,¢% € [Fthen e?e®! = % iff 6, + 0, = 05. This can be
seen by noting that 6, + 82 < 27/3 +2%/3 = 4n/3 = -2x/3. Since —21/3 < OV e? € U
the result follows. Hence contractions (or expansions) of U-words formed by
elements of U can only occur if the corresponding sums of exponents are equal.

Case 1: Suppose 0 < a < 27/3. Let [u] = [e?'e?:...eP"] € K. By the above
statement, if u ~ g1/, ¢**= then A, + A3 +...+4n = 2kn. Hence we can define the
following map y from K to Z by y([u]) = k = (01.+62 +...+0,)/2%. This map is
well-defined by the discussion preceding Case 1. Letv = e’*1e’...e*» € K. Theny
is a homomorphism since
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Y([1][v]) =y([w]) = (01+02+...40,+ A1 + A2 +...4Am)27 = y([u]) +7([v]).Thaty
is surjective follows by letting k € Z be arbitrary and letting » be the U-word with m
terms all of the form /@Y= where m is an integer large enough that | (2kr)/m |< a.
Then clearly y([#]) = k. Now, suppose y([x]) = 0. Then 6; +62 +...+8, = 0.By (1)
we have u ~ ¢° and hence y([z]) = 0 = [u] = [¢°] and thus ¥ is injective. Hence,

K = Z and the result follows from Theorem 1, the first isomorphism theorem, and the
fact that S! is locally generated (see definition 1).

Case 2: Suppose 2z/3 < a < . Let [u] = [e®1e®:...e?"] € K. | will show that
[4] = [e°]. We have 6, +0; +...+0, = 2kn.If k = 0 then the result follows by (*). If
k+0,let0 <& < a-2n/3 and notice that (27/3) + € and —(2x/3) + /2 € (—a,a).Now,
suppose k > 0 and 6, > 0. Then
u=e%eP2, e .~ QuBreo{(QxBNe)01]pMH: o8

e~ (B2 g-QxB31e2 o (3 1e 1082 o¥n since —(27/3) +€/2 — (27/3) +€/2 = 4n/3 +¢€
and e/-4%3+¢) = ¢l2x34) jn §1 Then, since
—(27/3) +€/2 - 2n/3) +&/2- 2n/3) —€+ 6, + 02 +... 40, = -27m + 2kn = 2(k - 1) we
have shown that « relates to a U-word whose exponents add to a value one less than
that of «. Notice that if 8, is negative and k is positive then there must exist an index i
with 8; > 0 and the argument can be applied to 6,. Applying the above argument k
times shows that if k > 0, u ~ e1e'2.. . e™= with A; + 42 +...+4, = 0. Hence [u] = [e°]
by (*). A symmetric argument with the values —{(27/3) + €] and (27/3) + &/2 can be
used to show that if k < 0, [«] = [e°]. This shows that K is trivial and hence
S}, = S'by Theorem 1.

Suppose that a group G is locally generated. An examination of the kernel in
Theorem 1 provieds a criterion by which the homomorphism is an isomorphism.

(**) Let [«] be a fine U-word with u = x,x2...x,. Then g is an isomorphism if
Z:—l xi=e = [x1x2...xa) = [e].

The following theorem shows that for any euclidean space,R” and ¥V € U(R") the
epimorphism in Theorem 1 is an isomorphism.

Theroem 2 (R"): Consider the topological group R”. Let U be an arbitrary element of
U(R™) and let Uy, Us,..., U be the components of U . Then V U € U(R”) we have

(R"y = R* x < Up,Uy,...,Ur | R >.

Proof: Suppose U € U(R").We need to show that if x;x...x, is a fine U-word with
I, xi = 0 then x;x2...xw ~ 0. The proof is by induction on the dimension n.

Suppose U € U(R) and x;x;...xx is a fine U-word in U. Let x; be the first term in the
U-word with sign opposite that of x,. Then x,—; and x; are elements of U, with
opposite signs, hence | x; +x; |<max{| x-1 |,| xi |} = xi1 +x; € Up. This
gives US xix2...Xm ~ X1X2...Xi-2(Xi-1 + X:)Xu1...Xm Which is a fine U-word with m — 1
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terms and with £;!x; = 0. Repeating this procedure m — 2 times leaves us with
x1%2...Xm ~ y1y2 Where y;,y2 € Up and y; +y2 = 0. Hence y1y2 ~ 0 and the result
follows.

Now, suppose that YU € U(R*) we have (R*)y = R” x < Up,Uh,...,Ui | R >. Let
U € UR™!') and x:x,...xn be a fine U-word with Z,x; = 0. By Lemma1 above we
may suppose that the x; all lie in a ball B(0,¢). Let i denote the unit vector

x1/ | x1 ||.Further, let x; - i represent the projection of x; onto i and let x; - (x;), be
the projection of x; onto the n dimensional space perpendiculartoi. Thenx; =x; i
+ xi+(x1).. Since | x;si| <l xill<eand || x;+(x1). | <|| xi || <ewe havex; i,
xi » (x1). € Up. Hence

X1%2...Xp ~ X1(x2 « D)(x2 « (1)) (xXm * 7 )(xm = (x1)2)-

Now, for each x; 3 < j < mchoose k; € N such that ||x; - ||/ k; <

min{e - |lx; < (x1).]}. Then we can split (x; - i) into k3 terms all of the form 1/k;(x; « 7)
since ||r/ks(x3 < )| =riks|(x3 D)l < [[(x3-0)li< e Vr € Nwithr < k3. Then,

llxz » Ger)o + Vks(xs < 8) IS llxz « el + [ V/ks(es <0) | < b2 - (e1)ull +

€= |lx2 + (x1).]| = € implies thatx; - (x1), + 1/k3(x3 - i) € Uy. Since R" is abelian
and x; - (x;). € Up,we have that each term 1/k3(x3; - i) commutes with (x; - (x1).)
(see the discussion preceding Lemma 2). Thus we have

x1(x2 * D)(x2 « (x1)1)(x3 * D)(x3 * (x1)1)... (xm * Dxm * (x1)1) ~
x1(x2 « )(x3 « D(x2 « (*X1))(x3 * *1)1)e- . (m * T )X = (x1)1)

Continuing in order, we see that (x; - ) can be split into k; terms (where k; was
chosen above) all of the form 1/k;(x; - ). Then, for each 2 < i < j we have

llxi « Ger) e + V/kj(xj = ) 1< lloei « ()l + NV/AHxs <) | < llxi  Gea)oll +

g— |lxi - (x1).]| = &, and thus 1/k;(x; - ) commutes with each (x; - /). We then have
the relation,

x1(x2 « D)(x3 « (2 « (e1) )03 « (1) n)- .. Com « D)(xXm * (x1)L) ~
x1(x2 < 8)...(xm * D)(x2 * (x1))(x3 « (1)) - (Xm * (1))

Now, xi(x; « i)...(xm + i) ~ 0 by an argument identical to the one for R above. But,
(x2 « (x1)1)(x3 « (x1)1)...(xm « (x1).) ~ 0 also by the induction hypothesis since
B(0,€) N (x1). € UMR™). Hence x;x3...xw» ~ 0 and the result follows by (**).

In Theorem 1, every component of U is listed as a generator in

< U, Uy,...,Ur | R >. However, there are many relations which come automatically
and which have the effect of reducing the number of generators. In particular, since
e + e = e we will alway have the relation U,U,U;' which implies that Uy = e in

< Uy, Uy,...,Ur | R >. Also, for each U; c U, notice that the set
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-U; = {~x | x € U;} c U, by definition. Clearly, Uy = —-Uj since -Uj is an open set
containing e and hence -U is a subset of the component containing e which is Uy,
Also, in R2 with U = B(0,e) and U; = {(x,y) | 1 < iZ+)? < 2} we have

U, = -U1.In general, however, it is possible that U; # -U; as in R with Uy = (-¢,€),
Ui = (1,2) and -U = (-2,-1).In the situation U; # —-U; however, we will always have
the relation U;(~U,)Up! since x + (—x) = e which implies that -U; = U;'. Thus, even
though -U; may be a distinct component from U,, it is not really needed as a
generator in the finitely presented group < Up,Us,...,Ux | R >. ltis also possible
that a component U; = e in < Uy, Ui,...,Ur | R >but U; # Up as in R with

U= (-5,-2) U (-&,€) U (2,5) where the component U, = (2,5) obeys the relation

U ,U(-Uy) = e since 2+2 =4 € U, and hence U, = e. This discussion leads to the
following definition.

Definition 5: Let U; be a component of U. The following relations are called trivial.
a)U;U,Uy!, UUhUy', UgUiUp! ,UgUpU;'. These establish U; = e and imply that the
component U; is not a true generator in the group < Uy, Uy,...,Ux | R >. Since

e + e = e in G we always have UyU,U;'and hence U = e.

b)U:UoU;t, UgU,U;L. These establish Uy = eor U; = U;. Since x+e=e+x=xinG
they are always present for every U,.

S)U«(-U)Up,(-U)UUp! . These establish -U; = U;!. If x € U, then —x € -U; and
since x + (—x) = e and —x + x = e they are always present for every U;.

An obvious question at this point is, "Which groups can be achieved as the image of
@2 in Theorem 1?° The question has proved to be a difficult one, and is an open
question. The following propositions and examples demonstrate some of the
possibilities especially in the R” case.

Proposition 3: If U € U(R") with K components where k > 1, and R consists only of
trivial relations then (R”)y = R” x F(m) where F(m) is the free group on m generators
andm<k

Note: The R case was proved by Yelton in an unpublished paper [7]. She defined a
condition of independance (see the discussion following Lemma 4) which can be
restated by saying that a component U is independent if the only relations it obeys is
UoUUi! (or UUpUrt) and Uy(=U;)U;! (or (=U;)U;Up"). If all components are
indepentent, then Ry = R x F(m) where m = % Her paper provided the inspiration
for Theorem 1. Proposition 3 represents a slight generalization by considering the
possibility of components U; #+ Up which obey U;U;U;!. Such components are not
independent in the above sense, yet U; = e in < Uy, Uy,...,Ux | R > so that their
presence has no effect on the freedom of < Uy, U,,...,Ux | R > (as long as there are
no other non trivial relations containing U;).

Proof: Choose U;, # Uy Then, if U + Up U U;, U -U;, choose U, such that U;, N (
Uo U U;, U-U,,) = 0. In general, choose U, such that it is distinct from all previous
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U, and -U;, i.e U, N (UoU U, U-U, U...UU;,_, U=-U,_,) = 0. Since there are a
finite number of components, the process must end at some U;, with j < k.By the
choice of U;, we have U;, N U;, = B.and Uy, + =U;, forall 0 < 5,1 < jwiths = [.
Remove all ¥V € {U,,.... Uy} such that V77! is a relation. This gives us a new
collection {Uj,,... U, } where m < j < k.Now, if V ¢ {U,,,...U,,} then either V = -U,,
for some U, € {Uy,,...U,} or V¥¥! is a relation. Hence ¥ = U;! or e in

< Up,Uy,...,V,...Ux | R>and hence < Uy, Uy,...,V,..Ur | R> =

< Up,Ui,...,Ux | R >. In fact, we have < Up,Uy,...,Ux | R> = < U,,...U, | R>
Since the only relations are trivial, there are no relations between members of
{Ui,,..-Ui,} and hence < U,,,...U;, | R >= F(m).Thus by Theorem 1 (R*)y = R” x
F(m).

Example 2: InR the set U= (-3,-2)U(-1,1)U(2,3) has Ry = R x Z . Set

Ui = (2,3). We must establish that there are no relations between Uy and U; or -U;
by considering all possible x,y,z € U such that x + y = z. Since

-1, +(-1,1) = (-2,2) and (-2,2) N (2,3) = @ there are no relatons between U, and
Ui (or =Uh). Further, since (2,3) + (2,3) = (4,6) there are no relations between U,
and itself (similarly for —U;). Hence, the only relations are trivial, and Ry = R x F(1).

If either U, is too close to Uy or if U, is too big then the Z term dissappears and
Ry = R. To see this consider the following sets.

1. U= (-2,-1.5) U (-1,1) U (1.5,2)

2 U=(-5-2)u(-1,L1)U(25)

Both sets look deceptively similar to the U in Example 2. But in 1 we have

.8 +.8 = 1.6 which gives the relation UyUoU;! and hence U; = e in

< U, U1,-U: | R >. Here, U; was too close to U,. On the other hand, in 2 we have
2.1+ 2.1 = 4.2 which gives the relation U; U, U;! and again U; = e in

< Uy, Uy,-U; | R>.

Example 3:Let G = R". Let m € N. Let Uy = B(0, 1). In general choose x; such that
il > sup{ly+2 | ¥,z € Up,Ui...Ui1} + 2. This supremum is finite since the sets U;
are bounded and there are only a finite number of them. Choose U; = B(x;,1).

Continue this process until U,, is located. Let Upa = —Ui. Then if U = Uy, Uy,...Usm
then (R*)y = R” x F(m).

Proof: The U; 1 <i < m were chosen in such a way that there are no relations
between them. Since Uy = ¢ and Umi = U;' 1 < k' < m we have by Proposition 3 that
< Up,Uy,...Uam | R > = F(m) and the result follows.

It is possible in Gy, for a component of U to have finite order in the group
< Up,Un,...,Ur | R > even though all of the group elements of G have infinite order
as the following example shows.
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Example 4: In R”, let the set U, consist of 2n — 1parts.

Vo = {(x1,X2,...,%s) | Ix1] <2.01, pr2| <.01,...,[xs| <.01}

Vit = {(x1,x2,...,%2) | 1 =2|<.01, —.01 <x;<2.01, |x3| <.01,...,xs| <.01}
Vizg = {(x1,x2,...,%x) | p1 +2| <.01, —2.01 < x2 <.01, |x3| <.01,...,[xs| <.01}
V2u = {(x1,x2,...,%a) | p1-2]<.01, 2-2|<.01, —.01<2z<2.0l,

xa| <.01,...,|xa| <.01}

Va2 = {(x1,X2,...,xa) | pe1 +2| <.01, px2+2|<.01, —2.01 <x3<.01,

[xs| <.01,...,[xa] <.01}

Vit = {(x1,%2,...,%n) | 1 —=2| <.01,...,[x;i =2| <.01, —.01 < x;; < 2.01,
i2| <.01,...,[xs] <.01}
Via = {(x1,%2,...,%n) | pe1 +2| <.01,...,[x; +2| <.01, =2.01 < x;41 <.01,
pei2| <.01,...,[xs| <.01}

V11 = {(x1,X2,...,%) | pr1—1] <.01,...,[xs1 — 1| <.01, —.01 <x, < 2.01}
V12 = {(x1,%2,...,xx) | 1 —1| <.01,...,[xp1 - 1| <.01, =2.01 < x, <.01}

Notice that U consists of a "strip™ along the x; axis from -2 to 2 which has a width of
.02 in each of the dimensions x; through x,, together with strips of half the length
running from the points (2,2,...,2) or (-2,-2,...,-2) in the subspace formed by the
first i dimensions to the point (2,2,...,2) or (-2,-2,...,-2) in the subspace formed by
the first i + 1 dimensions which again has a width of .02 in each of the dimensions
X1,...X X142, ..., Xn.AlsO notice that the set V;; intersects the sets V._;,; and Vi, and
the set V;, intersects the sets V.12 and V2.

Let Ul = B((1919---91)9-01)
U: = B((-1,-1,...,-1),.01)
Then let U = Up U U; U U; (see Figure 1). We have R}, = R” xZ, for n > 3.

To see that U is symmetric, notice that ¥, is symmetric to itself since |-x;| = |x;|. We
also have that V;, contains the symmetric image of V;,. To see this, let

(z1,22,...,zs) € V1. Then (-z1,-z2,...,—2a) ObeyS |-zj + 1| = |-(z; — 1)| = |zi — 1] <.01
for1 <j <iand |-zj| = |zj| <.01 fori+2 <j. Also,

=01 < zj4) <2.01 =.01 > =z > -2.01 so that (-z1,-z2,...,—2s) € V2. A similar
argument shows that V;, contains the symmetric image of ¥;, hence V;, and V;, are
symmetric images of each other. Also, we have U, as the symmetric image of
Ui.Let (z1,22,...,2z5) € Ur. Then (-z1,-z2,...,—2,) Obeys

(=1 + 12+ (=x2+ 1) +...4(=xn+ 1) =

(~(x1 = D)2+ (—(x2 = D)2 +...H((xa = 1))2 = (x1 = 1)2 + (x2 = 1)? +...4+(xn - 1)? <.01
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A"

Figure 1. The set U from Example 4 for n = 3.
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and (-z1,-22,...,~2a) € U,. Further, since each V; is the direct product of » open
intervals and both U, and U- are open balls about the points (1,1,...,1) and
(-1,-1,...,-1) respectively, we have that U is open. Finally, notice that each V;; is
connected (as the direct product of connected sets) and open hence pathwise
connected. Since each V;; intersects V-, and each V;, intersects each V.2 we
can connect any point pathwise to the origin and hence Uy is a component. Since U,
and U, are open balls which do not intersect each other or U, we have that U
consists of three components.

To determine the group < Uy, U1, U2 | R > we examine all possible relations by
considering the sets Up + Uy, Uy + Ui, Up + Uz, Ur + Uy, Ur + U, U2 + Us.

1. Up + Up. Since 0 + 0 = 0 we get the trivial relation U, U,Uj! which implies that

Uo = e.We must establish, however, that (Uy + Up) N U1 =(Uo+ Up) N U2 = G in
order to avoid additional relations which would imply that U; = e or U, = e.First
suppose that w = (w,wa,...,w,) and v = (v1,v2,...,v,) are such that w,v € Up and
w+ v € U,. Notice that for each 1 < i < » we must have w; +v; € (.9,1.1). Then we
must also have w € ¥y or v € Vy. If not, then we would have 1.99 < w; < 2.01 or
-2.01 < w; < -1.99. and similarly for v,. Hence w; + v € (3.98,4.02) or (-.02,.02) or
(—4.02, 3.98) which contradicts w; + vi < (.9,1.1). Hence at least one of v or w must
be an element of V. Suppose without loss of generality that w € V5. Then

[w2| <.01 = v € V3, or V;, since otherwise we would have w; + v, € (-.02,.02) if

v e Voorws+v; € (-2.02,-1.98) or (1.98,2.02) if v € V;; for i > 2. Then |w3| <.01
and |v3| <.01 = w3 +v3 € (-.02,.02) a contradiction. Hence (Up+ Up) N U; = 8. A
similar argument shows that Up + Uy N U2 = @. Thus there are no futher relations in
Us + Up.

2.Up + Us. Since 0+ (1,1,...,1) = (1,1,...,1) we get the trivial relation U, U; U;'which
implies that U, = U, or that U = e.Also, since

(-2,-2,...,-2) +(1,1,...,1) = (-1,-1,...,—1) we get the relation U, U, U;'which
implies that U, = U,. We cannot have anx € U,y € U,z € Up suchthatx+y =z
because then x + (-z) = -y and we showed in part 1 above that this is not possible.

3. Up + Us. As in part 2 we get the trivial relation Uy U,U;'and the relation
UoU, U;'but not the relation Uy U, Up!.

4 U, + U,. Since (1,1,...,1) +(1,1,...,1) = (2,2,...,2) we have the relation

U, U, U;'which implies that (U;)? = e. . The inf{x; | (x1,x2,...,xs) € U1} =.9 and the
sup{x: | (x1,X2,...,xs) € U1} = 1.1. Hence the sum of two elements of U, must have
its x; value at least 1.8 so that we do not obtain the relation U, U, Ui'or U U Us'.

5. U; + U,. We get the trivial relation U; U,Ug'since x + (—x) = e in G. Now let
(x1,x2,...,%x) € Urand (y1,y2,...,¥x) € U2. Then -.2 < x; +y; <.2 and hence we do
not get the relation U, U.Ui'or U U, U5'.
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6. U, + Us. As in part 4 above we get U,U, U;'but not U,U, Uz or U, UL U

Since we have (U;)? = e and we do not have U, = ¢, < Up,U1,U> | R> = Z; and
R = R” x Z,

Note: The above example fails in R or R2. In R we have U, = (-2.01,2.01) and
U = (.9,1.1) which gives U; c Uy. In R2 we have U, = {(x,y) | [x| <2.01, [y|<
O U{(xy) | k-2|<.01, -01<y<2.01}

U{(x,y) | k+2]<.01, -2.01 <y <.01} and U, = B((1,1),.1). Since

(-1,0) + (2,1) = (1,1) we obtain the relation UyU,U;!, which implies that U; = e.

In the attempt to classify all possible groups obtained as the image of ¢, in Theorem
1, the following lemma shows that every finitely presented group is potentially
possible even if the relations don't all have 3 elements to them.

Lemma 5:Any finitely presented group with a finite number of relations is isomorphic
to a finitely presented group whose relations have three or fewer elements.

Proof: Let Fi/N=< x1,x2,...,x» | R1,R2,...,Rn > be an arbitrary finitely presented
group with finite number of relations, where F; is the free group on the elements
x1,%2,...,X, @and N represents the normal subgroup generated by the relations
Ri,R,,...,Rn. If |R)| represents the number of elements in relation R; then the fact
that there are a finite number of relations means we can define k = max,, ., IR;|. Let

R; be a relation such that |R;| = k£ and denote R; = x;,x;,...x;,. Define three new
relations S1 = a7 'x;,xi,... X4,

S2 = b7'x,,x;, , and S3 = ab. Notice that |S;),|S2|,S3| < k. Now, define

Fo/lM = < Xx1,x3,...,%n,8,b | R1,R2,...Ri<1,R41,...,Rm,S1,52,53 > where F is the
free group on the elements x,x»,...,xs,a,b, and M is the normal subgroup

generated by the relations R,,Ra,...,Ri1,Riu1,..., Rm,S1,52,53. | will show that
FiIN = Fo)/ M

Define f: {x1,x2,...,xa} — F2 by fix;) = x,. Then there is an induced
homomorphism f* : F, — F; given by fzi25...2;) = z;z2...2. In particular,

AIR;}) = R;Vj # i hence AR)) € M. Also, R;) = x;xi,...xi,. We have f{R;) € M since
S3, b71S1b, and S> € M and S3b7181bS2 = x;,x;,...x;,. Hence fAN) c M and we have a
homomorphism f° from F1/N — F»/M given by f°(z1z2...ziIN) = z1z5...z;M (see
Hungerford p. 44[2]). Now, define g : {x1,x2,...,Xa,a,b} — F) by

8(x:) = x,, gla) = xi,xi,...x;,; , and g(b) = x;,,x;,. Then there is an induced
homomorphism g* : F, — F\. In particular, g*(R;) = R;V j # i hence g*(R)) € N.
Also, we have g*(S1) = (xiXip- - Xipp ) X0 Xi5... X5, ) = €

, £°(82) = (xp,xi) x4, xi, = €, and g*(S3) = Ri.Hence g*(M) c N. Thus there is an
induced homomorphism g° : F2/M — F)/N. Notice that

(g° o f)(z122...ziN) = g°(2122...21M) = z12;...z1N since z;z;...z; must contain no a's or
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b’s. Also we have in particular that

(f° o g°)(aM) =f'(x,,x,-,...x,,_,N) = X\ Xiy. . Xip, M = aM(since a“'x;,xi,...x,-,_z € M).
Similarly (#* - g°)(bM) = bM. Hence if z,...a...z;M € F>/M then

(f o g )z1...a...21M) = f(z1...x1,Xiy. . . Xiyq--.2ZIN) =

Z1e  XiyXipe e Xy 5. - ZIM = Z1...a...2iM. Similarly (£ 0 g°)(z1...b...21M) = z}...b...ZziM.
Since each word has only a finite number of a’'s and 4’s, we can proceed inductively
to show that (# o g°)(z122...2:M) is the identity. Hence f° is an isormorphism and the
proof is complete.

The following proposition shows that in many cases, if H is a finitely presented
subgroup of the topological group G then it is possible to realize the group H as the
image of ¢, in Theorem 1.

Proposition 4: Suppose G is locally connected and that H is a finitely presented
subgroup of G. Then there exists U € U(G) such that < Up,Uy,...,Ux | R> = H

Proof: By Lemma 5 above we may assume (by choosing more generators if
necessary) that the relations all have three elements. Further, if a is a generator, we
may throw in the element —a as a generator. We may also assume (by adding them
in if necessary) that if a + 5 = ¢ where a,b,c are generators that the word ab(—c) is in
the set of relations.

Let ay,ay,...,ax,—a1,—a;...,—ai be the generators of H. Since G is Hausdorff, we
may find pairwise disjoint open sets around the points e,ai,ay,...,ar,—a1,-az,...,—ak.
Since G is locally connected, we may find inside each open set, a connected open
set containing each point. Let Uy, U1, Us, ..., Ux be those sets, so that
e € Up,a; € U;, and —a; € Uy;. We may further assume that U,,; = -U; by replacing
U; with U; N —Uy if necessary and replacing Uy, with —(U; N —U,). If
U = Up U U U...UUx then U € U(G).

Suppose a; + a; # a;. We must exclude the possibility that U;U;U;! is a word in
the set of relations defined in Theorem 1. This may be done by renaming U; and U;
in the following way. Since G is Hausdorff, we can find an open set ¥ about a; + a;
such thata; ¢ V. Consider the map a : U; x U; — G given by a(x,y) = x+y. Since G
is a topological group, the map a must be continuous[4]. Hence a~!(¥) is open and
contains the point (a;,a;). Further, by the definition of the product topology, we can
find open sets ¥;, ¥, such that a; € V;,a; € ¥; and V; x ¥;  a~!(¥). Hence there exist
no x € ¥,y € ¥; such that x + y = a,.1f we rename U; as V; and U; as V; then
U;U;U;! will not be in the set of relations. Finally, if a; + a; = a; then there exists
a; € U,,a; € Uj,and a; € U, such that a; + a; = a; and hence the word U;U;U;! is a
relation for R defined in Theorem 1. Thus there is a one-to-one correspondence
between the generators of H and components of U as well as between the relations
of H and relations of < Uy, U},...Ux, R >.

Example 5:(unit quaternions). Consider the following matricies in GL(2, C).
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.-{;f’i],h[.ol ;]’“[OOJI:[‘I’(‘)]

Sincei2=2=k =-I,andij=k,ji=-k,jk=i, k=~i, ki =j, ik = —j the group
generated by these matricies is isomorphic to the unit quaternions Q. Hence by
Proposition 4, there exists a U € U(GL(2,C)) such that < Uy, Uy,...,Ux | R> = Q.
By Theorem 1 there is a homomorphism from GL(2,C)y — G x Q.
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ill. Conclusion

As has been noted before, an attempt was made to classify all possible groups
obtained in the image of ¢, in Theorem 1. In particluar, it would be interesting to
classify the set ¢,((R")y) as U varies over all elements of the set U(R”). It seems
likely from Example 4 that the answer depends on the dimension n. The theorems
and propositions here presented are helpful in establishing that certain groups are in
this set. Many attempts, however, were made to establish that certain groups are not
in this set. It remains unclear whether Z, for instance could be achieved as ¢,((R?)y)
or ¢2((R)y) for some U € U(R?) or U(R).Another open question is the possibility of
achieving the unit quatemions as ¢.((R")y) where n is an arbitrary dimension. The
main difficulty lies in the fact that a potentially complicated set of relations could
reduce to the given groups in question. Perhaps a deeper knowledge of how the
relations in finitely presented groups can combine would be helpful.
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