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ABSTRACT 

Fuel cells can offer near-zero emission power generation at high efficiencies by 
using the chemical energy of a fuel to produce electrical energy. However, improvement 
on the materials used in the fabrication of these devices is necessary. In the polymer 
electrolyte membrane fuel cells (PEMFC) the particularly aggressive environment limits 
considerably the materials selection. The bipolar plates are responsible for electrical 
contact among the cells, and at the same time, they guide the reaction gases and products 
as they enter and leave the cells. Thick graphite plates (with low power densities) are the 
most commonly used material for this application. Research has been focused on metals, 
which offer higher electrical and thermal conductivities and better mechanical properties 
than graphite. However, several authors have reported decreases in the process efficiency 
due to the formation of resistive surface oxide layers on the plates; as well as, metal-ion 
contamination on the polymeric membrane5

•
6

• 

The use of protective coatings, such as thermally grown metal nitrides ( e.g. Cr2N), 
can help to overcome this problem2·9 • Recent work has demonstrated that thermally 
grown Cr-nitrides on Ni-Cr base alloys show promise as a means to protect metallic 
bipolar plates 7. In support of this premise, the corrosion protection obtained by different 
nitridation conditions of the Ni-50Cr (wt% ) system was studied in more detail. Results 
suggest that the corrosion resistance increases with the nitridation temperature, and this 
change is related to the different phases and morphologies obtained. The nitrides seem to 
be fairly stable at voltages on the order of 750 mV(SHE). Even though a single and 
uniform phase after nitridation has not been obtained at this point, results seem to imply 
that a mixture of CrN+Cr2N gives better corrosion protection in aerated sulfuric acid 
solution (pH 3 at 80 °C) than that observed with a mixture of Cr2N and 1t phase. 
Polarization behavior observed in a hydrogen purged environment showed that both 
mixtures (CrN+Cr2N and Cr2N+1t phase) presented low corrosion currents (below lxl0-6 

A/cm2) in this electrolyte. Preliminary XPS analysis suggests that the current densities 
measured in the aerated environment are at least partially due to oxygen incorporation 
into/at the nitride layer. Details of the nitridation conditions, corrosion behavior and 
microstructure are presented. 
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CHAPTER 1 
INTRODUCTION 

The interest in developing more efficient and clean power sources has increased 
over the last decade. Fuel cells represent a promising answer for this problem by offering 
near-zero emission power generation at high efficiencies. However, this technology has 
not been entirely developed and there are still several important issues that have to be 
resolved in order to obtain maximum benefits from these devices 1•

2
. Some of these 

problems are related to the materials selection and the cost involved for future 
commercialization 1• In the specific case of polymer electro I yte membrane (PEM) fuel 
cells, the acidic environment generated at the polymer membrane, in addition to the 
necessity for full hydration, generates a very aggressive environment for all the 
components. Moreover, this membrane is also very sensitive to any contamination2

, 

especially metallic ions, which limits the choices available for component manufacture. 

Bipolar plates are the components in the PEM fuel cells responsible for electrical 
contact among the various cells, and, at the same time, their surfaces provide patterns that 
guide the reaction gases and reaction products as they enter and leave the cells. For 
materials selection purposes, some of the characteristics that have to be taken into 
consideration are the electrical conductivity, thermal conductivity, chemical 
compatibility, corrosion resistance, mechanical strength, gas tightness, weight, volume 
and manufacturability2

. 

Graphite is the most commonly used material for bipolar plates. However, it has 
some disadvantages, such as low mechanical strength, high porosity, low conductivity 
and high fabrication costs 1• As a consequence, thick plates have to be used and a low 
volumetric power density problem is present. Therefore, carbon-carbon composites, 
carbon-polymer composites and metals are being studied as possible materials 1

•
2
•
3

• 

Although carbon-carbon composites and carbon-polymer composites have shown 
promising results4

, there are still some issues related to the overall power densities that 
can be achieved by these systems, as well as, their manufacturability in large scale 1• On 
the other hand, metals offer higher electrical and thermal conductivities and better 
mechanical properties than graphite. As a consequence, research has been focused on low 
cost, high corrosion resistant and easy to shape alloys. Stainless steels are attractive from 
a cost and manufacturing standpoint; however, most have exhibited inadequate corrosion 
resistance in the PEM fuel cell environment. Several authors have reported decreases in 
the process efficiency due to the formation of resistive surface oxide layers on the plates 
and metal-ion contamination on the polymeric membrane5

•
6

. 

The use of protective coatings can help overcome this problem. Metal nitrides 
have been identified as promising coatings due to their high electrical conductivity and 
good corrosion properties2

• However, many conventional deposition methods typically 
leave through thickness pin-hole defects 7

• 
8
• Thermal nitridation has been proposed as an 

approach to form pin-hole defect free coatings9
• One of the advantages of this nitridation 
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technique comes with the fact that the high temperatures enhance the reaction kinetics 
and the diffusion processes between the gas and the metal interface. As a consequence, 
all the reacting metal at the surface can be expected to form nitrides and pin-hole through 
thickness defects typically observed by conventional deposited coating techniques are not 
expected to form. 

Proof of principle for thermal nitridation as a protection approach for metallic 

bipolar plates was reported by Brady et ai9. The corrosion resistance of nitrided Tribocor 
532N10

, Nb-30Ti-20W (wt%), was tested by the immersion of samples in aerated sulfuric 
acid solutions at pH 2 and pH 6 held at 80 °C for a period of 300 h. In addition, a Nafion 
polymer membrane was also placed alongside inside the solution. The weight loss 
reported was . negligible, and the analysis of the membrane revealed that the 
contamination level was less than 1 % of the active area. The long term contact resistance 
in a simulated bipolar plate environment was also tested, obtaining very good results in 
comparison with 316SS and aluminum. However, the substrate niobium-based Tribocor 
alloy is also resistant to corrosion in sulfuric acid; consequently, the results obtained did 
not fully establish that the nitrided surface was defect free. Even though this alloy 
represents a very good option for bipolar plates, it is too costly for most commercial fuel 
cell applications. 

Recent work has shown that thermally grown Cr-nitrides on Ni-Cr base alloys 
show promise as a means to protect metallic bipolar plates for use in PEM fuel cells9

. 

Depending on the nitridation conditions, CrN (cubic), Cr2N (hexagonal), and Cr10Ni7N3 

(known as 7t phase11
) phases can be formed. This study was focused on developing a 

better understanding of the corrosion properties of the nitrides present on the nickel
chromium system as a function of the nitriding temperature and time in pure nitrogen 
environments. 
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CHAPTER2 

IMPORTANCE OF THIS RESEARCH 

Fuel cells are devices that produce electrical energy from the chemical energy of a 
fuel 12, usually hydrogen. As mentioned before, this technology is not completely 
developed and improvement of the materials currently used for manufacturing its 
different components will lead to a more efficient process and easier commercialization. 
For practical purposes the key target on the design of bipolar plates· is to get the best 
performance in a compact and light weight PEM fuel cell stack 13. The use of metallic 
bipolar plates with surface treatments as protective coatings against corrosion offers a 
potential solution to overcome the existing disadvantages of machined graphite. 
Nevertheless, a better understanding of the corrosion behavior of these nitrides correlated 
with its corresponding microstructure is still needed in order to design a specific nitrided 
procedure that will allow maximizing its properties under the PEM fuel cell acidic 
environment. 

3 



CHAPTER3 
REVIEW OF RELATED LITERATURE 

3.1. Fuel Cells. General Concepts. Different Types of Fuel Cells. 

Fuel cells can be defined as "electrochemical energy conversion devices" 12
• In 

other words, they convert the chemical energy of a fuel into electrical energy. This 
mechanism is two or three times more efficient than the one used in internal combustion . � h . f 12 engmes 1or t e generation o power 

The principle of operation is based on the electrochemical oxidation of a fuel and 
the reduction of an oxidant, as illustrated in figure A.1 and A.2 for a PEM fuel cell. In the 
PEM fuel cell the main process consists of two separates gas flows, one of hydrogen 
(fuel) and the other of oxygen ( oxidant). Each gas flows along the channels of the surface 
of a plate (flow fields). These plates are separated by a membrane that has a catalyst
coated membrane. The catalyst will accelerate the separation rate of hydrogen and 
oxygen into their ions. The membrane will only permit the hydrogen ions to pass through, 
so electrons use the external circuit for moving from one side to the other, generating 
electricity. The hydrogen and oxygen ions will form water on the cathode, or oxygen, 
side. Heat will also be produced. 

A single fuel cell typically operates in the range of 0.7V at 1 A/cm2
, one way to 

obtain useful levels of power is by connecting a number of cell together in a stack, so for 
two cells it will be 1.4 V (0. 7x2), for three 2.1 V, etc 12. A schematic diagram of three 
fuel cells scathed in series is shown in figure A.3. When a stack is made, the component 
that connects one fuel cell to another will have an anodic environment on one side and a 
cathodic environment on the other. This component known as a bipolar plate. 

Even though fuel cells are often very sensitive to certain contaminants that may 
come from the fuel, as well as be produced internally, it is an attractive source of energy 
for an immense variety of applications such as: vehicular, stationary power, portable 
power, renewable energy 14

, fast and easy start-up, among others. It has advantages over 
existing power generating devices, for example: high energy conversion efficiency, 
operation at constant temperature, near-zero emissions (unless it is operating with 
hydrocarbon fuels) 1 5

, no moving parts (which will make the process more efficient and 
quiet), size flexibility, modular design, etc. 

There are several types of fuel cells; each one is classified depending on the 
electrolyte used and the temperature of operation. The general properties of the fuel cell 
will depend on the physicochemical and thermomechanical characteristics of the 
materials used for each component: the electrodes, electrolyte, current collector, etc16

• 

Because of the electrochemical nature of the process, determining the operating 
temperature of each type is very important. There are five main types of fuel cells: PEM 
Fuel Cells, Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cell (PAFC), Molten 
Carbonate Fuel Cells (MCFC) and Solid Oxide Fuel Cells (SOFC). Some of the 
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differences and/or principal characteristics of the fuel cells are given in table A. 1. This 
work focuses on PEM fuel cells. 

3.1.1. Polymer Electrolyte Fuel Cells. 

The main characteristic of this type of fuel cell is that the electrolyte used is a 
polymeric membrane that allows ion exchange from the anode to the cathode (proton 
conductor) inside each cell. This idea was first conceived by William T. Grubb in 1959 16

• 

As mentioned before, the only liquid handled in this type of fuel cell is the water 
obtained as a product of the reaction between oxygen and hydrogen. It is important to 
have a balance between the production and evaporation rates of water in order to keep the 
membrane hydrated, which is a critical factor for the performance of the cell. On the 
other hand, flooding can also take place causing diffusion problems from the gas to the 
electrode. As a consequence, the operation temperature fo.t; the existing low temperature 
PEM fuel cells is usually less than 120 °C 16

• However, some research has been focused 
on the development of membranes that allow higher operation temperatures when fuels 
other than hydrogen (e.g .. methanol) are used17

•
18

. _ 

The basic components of a polymer electrolyte membrane fuel cell are the proton 
conductor membrane (usually made of perfluorosulphonfo acid polymer16

) packed inside 
two porous electrodes impregnated with a catalyst (Pt), and the bipolar plates. The 
operating conditions of a low temperature PEM fuel cell are shown in table A.2. 

3.1.1.1. The Polymer Membrane. 

The polymer membrane functions as the electrolyte inside the cell. When the 
polymer membrane technology was being developed, strong acids were used for 
improving the contact between the electrodes and the membrane, even though further 
experiments showed that it was not necessary16

• So, the only ·electrolyte needed for its 
proper working is the membrane. 

The thickness of the membrane varies from 50 to 175 microns 12
. One of the most 

common materials for this application is Nafion® (perfluorosulfonic acid/PTFE 
copolymer in an acid form19

). Because these membranes are based on a Teflon® 
backbone, they are very stable and comparatively rigid compounds. 

It is very important for the Nafion® membrane to be fully hydrated. When the 
contact surface between the membrane and the electrode dries out, approximately above 
90 °C, there is an increase in the resistance of the electrodes, and the oxygen reduction 
rate falls, decreasing the efficiency of the process. 20 
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The key point of this type of membrane is that in the presence of water, only the 
hydrogen ions (or protons) are able to move freely through it, allowing the positive 
charges to go from one side of the cell to the other, while keeping the gases safely 
separated. 

3�l.L2. The Catalyst. 

The oxygen reduction rate is almost 100 times slower than the hydrogen oxidation 
rate; this generates the necessity of using a catalyst 12• 

Even though it is _rare and costly, platinµm (Pt) is the catalyst used for this type of 
application. Its importance lies ih its very good performance under low temperatures, 
such as 80 °C12' 16' 19 . · 

. 
. . 

A thin· film of the catalyst is spread over the surface of the electrodes. The amount 
of platinum used varies depending on the manufacturer, but currently it is about 0.5 
mg/cm2 of membrane, a small number in comparison with the original 4 mg/cm2 when it 
was first made in the 1960s by the people of the Gemini space program12

• 

One of the major disadvantages of this catalyst is that its tolerance of CO at 80 °C 
is very low, only a few ppm16. Another problem is that only the platinum on the surface 
will help the reactions to occur12

, so the platinum beneath that plane is only increasing the 
costs of production. 

3.1.1.3. The Electrodes. 

An electrode can be defined as "a conductor used to establish contact with an 
electrolyte and through which current is transferred to or from an electrolyte" 21 • 

The electrochemical reactions will take place at the electrodes, so, a three phase 
interface is established among the electrodes, the membrane and the reactants. The 
behavior of this interface will have a very important role in the electrochemical 
performance of the cell. In the fuel cell technology, the plates that sandwich the 
membrane are the electrodes. 

There are two electrochemical reactions taking place at the plates of a PEM fuel 
cell. One is the oxidation half reaction on the hydrogen side, and the other is the 
reduction half reaction on the oxygen side. The total products of the reaction are heat, 
water and electric power. These reactions are the following12

: 
Oxidation Half Reaction: 2H2 � 4W + 4e-
Reduction Half Reaction: 02 + 4H+ + 4e- -. 2H20 

Cell Reaction: 
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3. 1 . 1 .4. The Bipolar Plates. 

As mentioned before, the functions of bipolar plates are to deliver fuel gas and 
oxygen to the membrane, carry out the reaction products and make the electrical contact 
of the cell in series. 

According to Borup et al .2, for - high efficiency performance the voltage loss must 
be less that 10  ·m V /plate for an operating current of 1 A/cm2. Plate resistance must be less 
than 0.01  Qcm2 per plate. In the presence of metals with coatings about 25 µm thick, . the 
coating resistivity must be less than 4 Qcm. Corrosion processes inside the cell can also 

. induce the formation of resistive surface layers, increasing the resistivity. 

Several materials have been tested for possible bipolar plate application, e.g. 
stainless steals6•22• Moreover, there are ·other studies involving pure metals, such as pure 
titanium23 �nd aluminium23•24, both of which behave very poorly in the PEM fuel cell 
en_vironment, the former by presenting · high surf ace resistances and the latter by 
corroding _very . fast. 

Even though it implies a significant increment in the production cost, the use of 
low surface resistance coatings, such as metal nitrides, carbides and some oxides, has 

· been applied to several metals and alloys as a solution to this problem. Gold23, TiN7•9•23 

an_d chromium nitrides9 have been studied. Hentall et al. reported the use of gold plated 
on alumirium22; The system proved to be very reactive and contamination of the 
membrane occurred very fast due to the lifting of the gold coatings. Uchida et al. studied 
TiN coatings on 3 1 6SS substrates 7 • A significant amount of pin-hole defects were 
observed after nitridation. These defects tended to decrease with thicker TiN layers. 
However, after a certain thickness the occurrence of cracking and peeling of the coating 
\Yas observed additionally to the pin-holes present. As a consequence, the dissolution of 
the substrate was likely to occur over long term tests. 

3.2. Electrochemical Corrosion. 

Corrosion can be defined as "the deterioration of materials due to reactions with 
their environments"25• The deterioration mechanism is an atomic, molecular, or ionic 
transport · process . that occurs at the interface of the material and environment. 
Electrochemical corrosion involves the generation of ions and the· movement of electrons 
in order to maintain a charge balance in the system. 

In the simplest case of corrosion in aqueous environments, a thermodynamically 
unstable solid metal (M) will try to form its ion (Mm+) so it can move into the solution, or 
electroiyte. In this .process electrons are being generated (M � Mm+ + me); so, the metal 
is oxidized and a loss of material is occurring. The electrode at which this reaction 
( chemical oxidation) takes place is known as the anode. After the metal ions are released 
they will do one of the following: form complex ions or combine with other species 
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present in the solution to form oxides, hydroxides or sulfides25
. The anodic reaction is 

sustained by the consumption of electrons by a cathodic reaction (Xm+ + me- --+ X). 
Similarly to the anode, the electrode where this reaction ( chemical reduction) takes place 
is known as the cathode. 

The potential difference between the anode and the cathode in the cell is the 
driving force for the corrosion reaction, and the corrosion rate will be directly 
proportional to the current that flows through the cell25

. 

One way of measuring the corrosion behavior of a material is by using what are 
called polarization curves. Figure A.4 represents the anodic polarization curve of an 
active-passive material. These types of plots help to establish the relationship between the 
measured potentials (E, V or mV) relative to a reference electrode and their respective 
currents (I, A) or current densities (i, A/cm2

) .  Three major regions can be identified from 
this figure: the active, passive and transpassive regions. 

Usually, polarization scans start below what is known as the corrosion potential 
(Ecorr), which represents the potential value at which the currents ( or current densities) for 
the anodic and cathodic reactions taking place at the same time are equal. In other words, 
at Ecorr the current density ·can be represented as ic0n=ia=ic , where ia and ic are the anodic 
and cathodic current densities, respectively, and icorr is the corrosion current density. 

In the active region the oxidation reaction is taking place and the material is 
corroding. As the potential increases, a critical value is reached, known as the passivation 
potential (Epp), and the current density decreases drastically. This behavior is associated 
with the formation of a protective phase (usually an oxide) over the surface of the 
material that is exposed to the electrolyte. The degree of protection that this phase can 
offer will vary depending on its porosity and adhesiveness. The maximum value of the 
current density is known as the active peak or critical anodic current density 0cnt) and the 
new and lower value is called the passivation current density (ip) ,  The region at which the 
material is self protected against high current densities is known as the passivation 
region. 

As the potential keeps increasing, the current density may start increasing again. 
The potential at which this occurs is known as the breakdown potential (Eb). This 
behavior is related to dissolution of the protective film, either uniform dissolution 
(transpassive behavior) or localized dissolution (pitting or crevice corrosion). 

The value of the corrosion current density, icom becomes very important in 
determining the corrosion rate of a material under open-circuit conditions (Ecorr) , From 
Faradays 's  law it can be shown that the corrosion current density value is directly 
proportional to the corrosion rate. 

Temperature has an important effect on the corrosion rates . Usually, the rate at 
which any metal corrodes is directly proportional to the temperature. This is due to the 
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increase in thermal energy available for the activation of chemical and electrochemical 
reactions and the increase in the diffusion rates in the electrolyte21

. However, this 
relationship between temperature and corrosion rate is not always true. The change in this 
pattern is related to the stability of the passive film at the surface of the material, which 
behavior can be drastically affected depending on the overall set of environmental 
conditions. The temperature of the sample itself is also a very important factor. In most of 
the cases, the corrosion rate of the heating elements in a device (such as heat exchangers) 
is higher than that of the rest of the equipment. 

3 .3 .  Nickel and Nickel - Chromium Alloys . 

. This effort is focused on thermal nitridation of Ni-Cr alloys for bipolar plate 
applications. Nickel is well known for its high corrosion resistance in reducing 
environments, as well as the formation of a passive, corrosion-resistant oxide film under 
oxidizing conditions. On the other hand, chromium is well known for its ability to 
increase corrosion resistance at lower temperatures, and also for improving the resistance 
of nickel to oxidizing acids. By reducing the protection potential (Epp) and the critical 
anodic current density Cicnt), this element enhances the passivation of nickei25

; so the 
more chromium present in the alloy, the· easier it becomes passivated. There are other 
alloy elements quite significant in the enhancement of corrosion resistance, such as 
copper, molybdenum, and tungsten. 

In general terms, nickel-base alloys are known for being very effective corrosion
resistant materials in extreme temperature environments, and very resistant to severe 
operating conditions (involving liquid or gaseous environments, high stresses, and 
combinations of these factors). However, the electrical resistivity of the alloy tends to 
increase directly proportional to the amount of chromium present in the system. In 
addition, the brittleness of the a-chromium phase produces an increase on the strength 
and a decrease in the ductility with increasing of chromium content in the alloy26

• 

The phase diagram of the Ni-Cr system is shown in figure A.5 ; nickel has a face 
center cubic (fee) crystal structure, and chromium a body centered cubic (bee). Ni-Cr 
alloys will have an fee stru�ture from O to about 40 wt% Cr. From approximately 40 to 90 
wt% Cr, it will have a two-phase crystal structure, and from 90 to 100 wt% Cr it will 
have a bee structure25

. 

3 .4. Oxidation of Metals. 

In the presence of gaseous . oxygen almost all metals are thermodynamically 
unstable, resulting in the formation of an oxide, which "frequently constitute protective 
layers that separates the metal from the gaseous oxygen, thereby inhibiting further oxide 
formation"28

• Oxides are only one of several types of protecting layers on metals. 
Depending on the ambient gas, the metal composition and the reaction conditions, 
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sulfides, chlorides, carbides, nitrides, etc. can also be formed27
. In the general case, the 

word oxidation refers to the increase in valence state (loss of electrons) in a specie that is 
undergoing a chemical reaction; thus, the term "oxide" can be extended to any type of 
these protective layers.29

•
30 

The adhesion of the oxide film to the metal surface is a very important factor. 
Generally, when scaling resistance is not high enough, spalling of the scale" may happen 
and the life time of the material will be c�msiderably reduced ·as a result of the rapid 
oxidation (reduction of the cross section), bringing as a consequence the necessity of a 
·premature replacement. In addition, the oxidation products can affect the efficiency of the 
system in which they are interacting. 

. .  

At high temperatures, when the oxide film is being formed, it often develops as a 
compact phase over the reacting surf ace of the metal. For oxidation to keep occurring, at 

. least one of . the reactants has to diffuse through the film in order to find its reaction 
partner. As described by Hauffe 3°, some of.these processes are the following: 

1 .  "Phase-boundary reactions ( chemisorption of the nonmetal molecules with 
· simultaneous electron exchange and splitting of the molecules at the gas/oxide 
interface and · transfer of the metal from the metallic phase, in the form of ions,' 
and electrons, to the scale at the metal/oxide interface with further reaction of the 
individual reactants and formation of the reaction product) , nucleation, and crystal 
growth.- · 

2. Diffusion or transport of cations, anions, and electrons through the scale, 
complicated by the special migration mechanism because of the appearance of 
chemical and electrical potential gradients in the scaling or tarnishing layers. 

3. Predominant transport processes in space-charged boundary layers in the case of 
thin tarnishing layers, especially at low temperatures. 

Two further factors are also significant for the formation, composition and 
structure of the scaling layer: 

4. The thermodynamic stability of the oxide that is formed. · 
5. The crystal structures of the scaling layer and of the metal or alloy, which 

determine the adhesion between the scaling layer and the underlying metal". 

Assuming that the diffusion rate will determine the velocity of the process, the 
generation of an oxide.film can occur in two · ways: internally or externally. The internal 
oxidation is the process by which oxygen (or any oxidant gas) diffuses into an alloy and 
causes sub-surface precipitation of the oxides ( or the species produced depending on the 
gas) of o�e or more alloying elements28 

• 

. According . to Birks and Meier28 there are four necessary conditions for the 
internal oxidation .process· to take place: 

1 .  "The Gibbs free energy of formation per mol 02, dG8

, of the solute metal oxide, 
BOv, must be more negative than that of the base metal oxide. 
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2. �G for the reaction B + vO = BOv must be negative. Therefore, the base metal 
must have a solubility and diffusivity for oxygen that is sufficient to establish the 
required activity of the dissolved oxygen at the reaction. 

3. The solute concentration of the alloy must be lower than that required for the 
transition from internal to external oxidation. 

4·. No surface layer must prevent the dissolution of oxygen into the alloy at the start 
of oxidation." 

The internal oxidation process in a metal implies inward diffusion of the oxygen 
dissolved in the base metal. This dissolution can occur at the surface of the specimen, as 
well as at the metal-scale interface (in the case of the presence of an external scale). The 
inward diffusion of the reactant gas and the outward diffusion of the solute ( oxidizing 
metal) at the reaction front determine the critical solubility product for the nucleation of 
precipitates. · Variations in the solute concentration will occur, and nucleation and grow 
will take place until the reaction front reaches a solute depleted area. 

When the initial solute concentration increases and the solubility of the oxidant 
gas · decreases, the penetration velocity of the oxide also decreases, as establish by the 
following equation for an AB alloy: 

dX N(S)D 1 
v = - = o o 

dt vN<0) X 
B 

where N0
<5> is the solubility of the oxidant gas in A, Do is the diffusivity of the oxidant 

gas in A, and N8 <0> is the initial solute concentration26. This implies that for a given 
oxidant gas and solute under a certain set of conditions, there is a limiting value on the 
concentration of solute above which its diffusion rate can be high enough to form a 
precipitation product able to block the oxidant gas to get into the metal stopping the 
internal oxidation (nitridation)27·28·29

. The reaction front will move outwards (and 
parallel) to the surface. In the presence of an alloy, this process can be used for the 
selective oxidation of a solute (Cr, Al, Si, etc.) in order to protect the parent metal (Fe, 
Ni, etc.). These fundamental principles also apply to other reactive gaseous species, such 
as nitrogen. 

3 .5. Nitridation of Nickel-Chromium Alloys. 

Depending on the conditions at which the nitridation process is developed, 
basically two morphologies can be obtained: CrN (cubic) or Cr2N (hexagonal). In Ni-Cr 
systems Cr 10Ni7N3 also can be found. This is known as tl).e 7t phase and is formed from 
h . . d . b C N d . k 1 f h . 17 3 1 32 t e pentectto reaction etween r2 an pure me e rom t e matnx ' ' . 

R. P. Ruby et al. examined the internal nitridation of Ni-Cr alloys in NH3 
environments at 700, 800 and 900 °C for chromium compositions from 10  to 50 wt%33. 
X-Ray Diffraction (XRD) scans showed only the presence of .cubic CrN in all samples. It 
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was also observed that the transition from internal to external nitridation occurred 
between 30 and 40 Cr wt% at 900 °C. A. Kodentsov et al. studied the nitridation process 
in Ni-Cr alloys at 1 1 25 °C in a pure nitrogen atmosphere32 . The chromium concentration 
of the samples was varied from 5 . 1 9  to 33. 1 9  wt%, and the nitrogen pressure, from 0.986 
to 5922 atm. For a pressure range 98.7 to 5922 atm of N2 and a chromium atomic 
concentration equal or higher than 29 .04 %, the transition from CrN to hexagonal Cr2N 
was observed. The formation of the 1t phase was observed at 1000 °C and became 
unstable at 1 100 °C. 

U. Krupp and H. J Christ studied the internal nitridation of nickel-based alloys in 
a nitrogen atmosphere3 1 . At 900 °C, for the Ni- lOCr (wt%) coupons no nitride was found. 
However, at the same temperature for chromium concentrations of 20 wt% and higher, 
internal CrN precipitation was detected. Around 30 Cr wt%, Cr2N and the ternary phase 
1t were observed mostly at the grain boundaries , but were also found at the surface. U. 
Krupp et al. also investigated the occurrence of the ternary 1t phase during nitridation of 
nickel-chromium alloys 1 1

• In this case, alloys with 10, 20 and 30 chromium weight 
percent were nitrided in a temperature range from 800 to 1 100 °C for different time 
intervals . All the samples underwent nitridation, although for chromium concentrations 
below 30 wt% only cubic CrN was present. At 30 wt% the coating present was a mixture 
of Cr2N with ternary 1t phase at the grain boundaries. For temperatures higher than 1000 
°C the ternary phase became unstable and it was only found immediately below the 
surface. 

K. Tjokro and D. J. Young studied the internal nitridation behavior of stainless 
steels (mainly Fe, Ni and Cr) at 1 000 and 1 1-00 °C in a nitrogen environment4 • For both 
temperatures Cr2N was . found as an external non-uniform, Cr2N scale and as the only 
chromium precipitated internally in the -samples. In the case of CrN, it was only found at 
the surf ace when the temperature was 1000 °C. 

The gas nitridation of pure chromium as a function of time was studied by 
Buijnsters et al34

• The selected temperature was 800 °C and the times ·varied from 1 to 
142 h. For all the initial times it was found that the CrN and Cr2N phases were forming at 
the surface. However, the CrN fraction at the surface increased with time until the Cr2N 
disappeared completely from the surface. It is suggested that above 800 _ °C the CrN can 
be formed by the reaction of the Cr2N with nitrogen (2Cr2Ncs) + N2(g) � 4CrNcs)), which 
will explain the Cr - Cr2N - CrN layer sequence - also reported by other several authors. 

Zenguh H. et al. studied the influence of the nitrogen partial pressure on the 
microstructure, phases and composition of CrNx films obtained after using the magnetron 
sputter technique35. The films were deposited in an argon-nitrogen mixture atmosphere. 
The nitrogen . partial pressure varied from 0.005 to 0.3 Pa, and the argon partial pressure 
was kept at 0.3 Pa in all the cases . The substrate used was high purity chromium. A single 
CrN phase was not observed in any of the cases. However, the nitrided films varied from 
Cr+Cr2N to a single Cr2N phase; and then from a CrN+Cr2N to a nearly single CrN. It 
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was observed that the relative amounts of nitrogen on the CrNx films obtained had the 
tendency to increase as the nitrogen partial pressure increased. 

Similar results were presented by Zhou Q. et al in the study of corrosion 
resistance of duplex and gradient CrNx coated steels where the N/Cr ratio increased with 
the nitrogen partial pressure36

. The main composition of the coatings obtained varied 
from Cr, Cr2N to CrN; and even though a stoichiometric CrN composition was not 
reached it was more likely to be found at higher nitrogen partial pressures. 

3 .6. Corrosion Behavior of Chromium Nitrides. 

M. Taguchi et al. studied the effect of surface nitriding on the c01Tosion resistance 
of pure chromium37

. The nitridation · was made in a pure nitrogen atmosphere at 
temperatures from 500 to 1200 °C. At 600 °C a mixture of a-Cr and Cr2N was found on 
the surface; no nitrides were found below this temperature. From 700 to 1000 °C a 
combination of CrN and Cr2N was observed. Above 1100 °C the CrN became unstable 
and a single Cr2N phase was formed. For the corrosion resistance measurements, anodic 
polarization curves (from -0.8 to 1.2 V(Ag/AgCl)) and immersion tests were performed 
both in a 1 kmol·m3 of sulfuric acid solution at 40 and 100 °C respectively. Cubic CrN 
was found to have better corrosion resistance properties. Any of the samples treated 
below 600 °C developed passive films under the polarization test; although, above 700 
°C the corrosion potential was very similar among the samples, around -0.43V 
(Ag/AgCl), and active dissolution did not occur. During the immersion test all the 
specimens nitrided below 700 °C (mixture of a-Cr and Cr2N) dissolved. The amount of 
chromium dissolved into the solution ·decreased with the nitriding temperature until it 
became very small at 1000 °C (CrN + Cr2N). The single Cr2N phase was rapidly 
attacked. However, there is no specific information on the continuity or thickness of the 
nitride layers formed on the surface. 

M. Taguchi et al. also studied the corrosion behavior of chromium nitrides 
obtained by reactive ion plating on glass substrates38

• Three different surface products 
were obtained: Cr and N(a-Cr) solid solution, mixture of Cr2N and CrN, and a single CrN 
phase. The best corrosion resistance in 1 kmol·m-3 H2SO4 at mo °C was observed for 
pure CrN phase. The Cr and N(a-Cr) layer corroded very fast, although the Cr2N of the 
CrN+Cr2N mixture was selectively attacked. 

G. Bertrand et al. studied the corrosion behavior and protective quality of 
chromium nitride coatings obtained by sputter deposition over different substrates39 . The 
coatings studied were CrN and Cr2N, which at the same time were compared with pure 
chromium. High concentrations of surface defects were observed in both coatings; 
moreover, they were more frequent on the Cr2N coat. · For corrosion resistance tests, two 
electrolytes were used, aerated 0.5 M H2SO4 and 3% NaCl solutions at room temperature. 
The polarization curves showed that CrN had lower lcorr. and higher Ecorr in acidic 
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conditions, which indicated better corrosion resistance; although the corrosion behavior 
was directly affected by the number of defects present on the coating surface. 

M.P. Brady et al . studied the corrosion protection of nickel-based alloys by 
thermal nitridation9

• In the case of nickel-chromium alloys, the heat treatment was made 
in a nitrogen atmosphere at 1 100 °C for one or two hours. Despite the chromium 
concentration of the sample; 35, 45 or 50 wt%, the microstructure obtained in all the 
cases included a mixture of chromium depleted Ni(Cr) and ternary 1t phase, directly 
below Cr2N at the surface. The continuity of the Cr2N layer improved directly with 
increasing chromium concentration; hence, the overall corrosion_ resistance of the system 
also improved. Even though there is no reference about the presence of CrN on the 
coupons, it mentions the CrN as a potential protective coating for bipolar plates in PEM 
fuel cells. 
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CHAPTER 4 
EXPERIMENTAL METHODS 

4.1. Sample Fabrication and Preparation. 

A series of model Ni-X (X=Cr, Nb, Ti,V) alloys were prepared by arc melting and 
drop casting in a chilled copper mold. The castings · were typically vacuum heat treated at 
1100° C for 8 h. Coupons of 1-1.5 mm thickness were cut with an electrical discharge 
machine (EDM) from the castings and prepared to a 240 grit finish using SiC paper. 
Each sample was weighed after finishing the surf ace preparation. 

4.2. Heat Treatment. 

Nitridation was conducted in an alumina vacuum furnace backfilled with high
purity nitrogen to 1 atmosphere. The nitrogen flow was stopped, and then the coupons 
were heated to 875-1100 ° C for times ranging from 1-30 hours. Nitrogen was not 
continuously flowed during the nitridation run to prevent the constant introduction of 
trace oxygen impurities present in the nitrogen into the system. An additional Ni-50Cr 
coupon was also nitrided in 90%Ar-10%N2, following the same procedure as with the 
pure nitrogen. Each sample was weighted after nitridation in order to measure the amount 
of nitrogen gained by the sample, normalized by the surface area of the coupon. 

4.3. Sample Characterization. 

Characterization of the nitrided samples was performed before and after the 
corrosion testing by scanning electron microscopy (SEM) and electron probe 
microanalysis (EPMA) (both surface and cross-section), as well as by X-Ray diffraction 
using Cu K-a radiation. X-Ray Photoelectron Spectroscopy (XPS) analysis was also used 

. on select samples to establish the differences on the surf aces before and after polarization 
in order to determine the nature of the corrosion prnducts. 

4.4. Corrosion Behavior. 

Corrosion behavior of the nitrided samples was evaluated by anodic polarization 
· testing. The scan rate was of 0.1 m V /s, a saturated calomel electrode (SCE) was used as 
reference electrode and the electrolyte employed was sulfurk acid (H2SO4) at a pH of 3 
and a temperature of 80 ° C. Aerated conditions were used to simulate bipolar plate 
cathode environment conditions. Select samples were also analyzed under simulated 
bipolar plate anode environment conditions by purging the electrolyte with a gas mixture 
consisting of Ar-4%H2. 
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The electrical contact between the coupon and the potentiostat was achieved with 
the attaching of the sample (by spot welding) to a specimen holder (which manly 
consisted on a titanium wire). In order to control the area of the specimen exposed to the 
electrolyte, the unwanted parts of the surface were covered with two coats of an 
insulating enamel resistive to the aggressive electrolyte (Glyptal®). The idea was to leave 
unprotected a nice flat surf ace . 

. Before starting any polarization scan, the solution was heated up to 80 ° C and the 
corrosion sample was placed in the electrolyte when this temperature was reached . . In the · 
case of the aerated environment, a constant flow of air was sparged into the electrolyte. 
The sparge started as soon as the sample was placed in the solution. Before starting any 
screening, the potential measured by the potentiostat was allowed to become stable in 
order to obtain the corrosion potential (Ecorr). The corrosion tests were started 50 m V 
below the open-circuit corrosion potential and were ended at 1000 m V (SHE). For the 
deaerated environment simulation the same procedure was followed, the only difference 
was the sparging of Ar-4H2 instead of air in the electrolyte. 

An additional screening of the change in current density- against time ( at a fixed 
potential) was performed immediately after the polarization test for some of the samples. 
The potential was held at 1000 mV(SHE) or 750 mV(SHE) for a 5 hour period without 
changing the electrolyte. 
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5. 1 .  Polarization Tests. 

5 .1.1. First Approach. 

CHAPTER S 
RESULTS AND DISCUSSION 

In order to obtain an approach for possible high corrosion resistance alloys for 
fuel cell applications, polarization screening was performed _on several different types of 
alloys with different heat treatments. All nitrides were obtained in a pure nitrogen 
atmosphere. Figure A.6 shows selected results from the tested model nitrided alloy 
groups. The only systems that gave low corrosion currents were the nitrided Ni-Ti and 
Ni-Cr model alloys, which for potentials of ~800 and ~900 mV(SHE), respectively, 
offered current densities on the order of lxl0-6 A/cm2

• In the case of the nitrided Ni-Ti 
alloy, little increase in corrosion current was observed between 800 and 1000 mV(SHE), 
while the nitrided Ni-Cr sample showed a rapid increase in corrosion current above 900 -
950 mV(SHE). However, the TiN surface formed on the Ni-Ti alloy showed evidence of 
local attack and surface cracking after testing. No attack was evident on the nitrided Ni
Cr alloy coupon after corrosion testing. Therefore, the nitrided Ni-Cr system was 
selected for further study. 

5 . 1 .2. Nitrided Nickel - Chromium Alloys. 

Temperature/time of nitridation had _a noticeable effect on the corrosion behavior. 
Figure A.7 shows the anodic polarization behavior of the coupons in aerated sulfuric acid 
electrolyte at pH 3 and 80 °C. In all cases, nitridation proved to be effective for 
improving the corrosion protection in comparison with the uncoated Ni-50Cr alloy. In 
fact, corrosion resistance tended to increase with the increase of nitriding temperature. 

The open-circuit corrosion potential was lower for the uncoated case, around 150 
mV(SHE). This sample also presented active dissolution until it reached the passivation 
potential at ~445 mV(SHE) and a current density of l x l0-6 A/cm2

• The passivation 

regime started breaking close to 700 mV(SHE), where it became rapidly active again. 

The corrosion potentials for the nitrided coupons fell in a range from 340 to 550 
mV(SHE), and tended to increase with the temperature of nitridation. The current 
densities observed were somewhat low even at high potentials. However, there were 
small current densities that can he asso_ciated with the formation of corrosion products. 
Similar, for all the different nitrides, when a certain potential �as reached the current 
densities started to increase rapidly. The best corrosion resistance was given by the 
nitridation case of 1100 °C and 2 h, where for potentials as· high as 900 mV(SHE) current 
densities on the order of 1x10-6 A/cm2 or less were obtained. There was no indication of 
pitting corrosion on any of the coated samples after the polarization tests. 
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As an attempt for decreasing costs and ease of production, the reduction of 
chromium in the alloy was a tentative target. Nevertheless, figure A.8 shows that the 
protective layer obtained on the surface was dramatically affected by the amount of 
chromium in the alloy. The behaviors of both Ni-35Cr and Ni-45Cr were very similar and 
the gained weight during nitridation for 2 h at 1 100° C in pure nitrogen was 0.98 and 1 .87 
mg/cm2 respectively. However, the current densities were significantly higher than those 
obtained for the Ni-50Cr coupon, which had a weight increase on the order of 1 .9-2.3 
mg/cm2 under similar nitridation conditions . The level �f corrosion protection under this 
environment is associated with the different microstructrures/morphologies of nitride 
obtained; however, this effect will be discussed in the next section. It will be necessary 
to modify the nitridation treatment used for the Ni-35Cr and Ni-45Cr (different 
temperatures, times, nitridation environments), likely in combination with alloying 
additions, in order to get alloys in this Cr range to form a similar corrosion resistant Cr
nitride surface as that exhibited by the nitrided Ni-50Cr. 

The effect of the nitrogen partial pressure (activity) on the nitriding behavior is 
shown in figure A.9 for Ni-50Cr. The weight gained by the coupons under the pure 
nitrogen and the Ar- 10%N2 atmospheres for 2 h at 1 100° C were 2.37 mg/cm2 and 1 .47 
mg/cm2 respectively. As can be seen, under the same heat treatment the protective 
coating obtained with pure nitrogen was remarkably better for corrosion protection than 
that obtained with the mixture of Ar- 10%N2 , which has a very similar behavior to the 
uncoated alloy. Similarly, the nitride microstructure and morphology issues related to this 
tendency will be discussed further below . 

5 � 1 .3. Pure Chromium. 

The effectiveness of the nitride coatings for corrosion protection on pure 
chromium in a sulfuric acid solution pH 3 at 80 °C is shown in figure A. 1 0. The metallic 
chromium (uncoated coupon) exhibited fairly low corrosion rates as expected. In fact, for 
potentials from ~460 to 830 mV(SHE) the current densities increased slower than in the 
rest of the potentials scanned. Depending on the nitridation conditions, the corrosion rates 
became even lower. In the case of nitriding in Ar- 10%N2 atmosphere at 1 100 °C for 2 h, 
the corrosion resistance was considerably higher than for the uncoated condition. The 
highest protection against corrosion was obtained in a pure nitrogen atmosphere, where 
for potentials varying from ~400 to 600 m V (SHE) the current densities decreased 
approximately an order of magnitude. However, the current densities obtained in all the 
cases for higher potentials were moderately higher than the goal of lxlff6A/cm2 or less. 
This effect is produced . by the different phases obtained after nitridation which will be 
discussed later. 

Consistently for all the coatings obtained in both pure nitrogen ·and Ar-N2, the 
corrosion potentials seem to increase with the increasing nitrogen partial pressure. · 
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5.2. Protective Quality. 

Figure A.11  and A.12 show the variations of the current densities with respect to 
time in H2SO4 pH 3 at 80 °C as the electrolyte. These tests were performed immediately 
after the regular polarization tests. The level of protection given by the nitrides obtained 
will depend on the conditions at which they were exposed. Figure A. 11  shows the 
behavior of the Ni-35Cr and 45Cr when the potential was held at 1000 mV(SHE) for a 
period of 5 hours. As can be seen during this time the current density increases almost 
· one order of magnitude, reaching values even higher than 1x10-5 A/cm2. In the case of 
figure A.12, when the potential was held at 750 mV(SHE), the protective layer just 
allowed current · densities on the order of 1x10-6 A/cm2 or less. The current densities 
observed for the Ni-35Cr coupon were higher than those of the Ni-50Cr. In fact, the 
currents densities for the Ni-50Cr were very stable and on the order of 2.5x10-7 A/cm2, 
which is very close to the value obtained for this potential on the polarization scan shown 
in figure A. 7. 

· s.3. Deaerated Electrolyte. 

Figure A.13 shows the polarization curves obtained when the electrolyte (sulfuric 
acid pH 3 at 80 ° C) was sparged with a gas solution of 96Ar-4H2 in order to simulate 
bipolar plate anodic conditions. Ni-50Cr was evaluated for two nitridation conditions: 
1 100 ° C for 2 h in pure nitrogen and 1 100 ° C for 5 h in Ar- 10%N2 ( times adjusted to 
achieve similar nitrogen uptakes on the order of 1.9 - 2.3 mg/cm2). 

The run surveyed from -500 mV(SHE) to 500 mV(SHE). This allowed observing 
the effect of those highly negative potentials over the nitrided surface even though it was 
not possible to monitor the anodic polarization behavior until the Ecorr value was reached. 
Moreover, the anodes of the PEM fuel cells typically operate in a range of -200 to 100 
m V (SHE), which implies that this is the most important range of the curve. 

In the case of the coupon nitrided in pure nitrogen, the · corrosion potential 
measured before the start of the polarization test went as low as 200 m V (SHE), �50 m V 
below the corrosion potential obtained for the same coupon in the aerated case. On the 
Ar- 10%N2 coupon the corrosion potential measured before the start of the polarization 
test went down to 100 m V (SHE), just around 100 m V below its value in the aerated 
environment. 

In both cases the anodic current densities obtained through the entire screening 
were lower than lxl0-6 A/cm2 . The coupon nitrided in pure nitrogen presented a non
uniform coloration after the polarization test. However, inspection of the surface using an 
optical microscope did not show evidence of corrosion attack. 
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5.4. Correlation with Nitride Microstructures. 

The corrosion protection can be attributed to the different microstructures and 
phases obtained under different nitridation conditions. Figures A.14 and A.15 show the 
cross sectional microstructures of the Ni-35Cr and 45Cr nitrided in a pure nitrogen 
atmosphere for 2 h at 1100 °C. As can be seen in figure A.14 for the Ni-35Cr case, the 
microstructure mainly consisted of a thin discontinuous layer of Cr2N layer, less than 1 
µm thick, . overlying a mixed region of internal 1t phase and Cr2N precipitates in 
chromium depleted Ni(Cr) metal. The nitrided microstructure on the Ni-45Cr (Figure 
A.15) consisted of a thicker layer of Cr2N (~2µm) than that observed on nitrided Ni-35Cr 
overlying a layer of continuous layer of 1t phase ~ l .5µm thick. Underneath was a zone of 
internal 1t phase and Cr2N precipitates in chromium depleted Ni(Cr) metal, again similar 
to that observed for nitrided Ni-35Cr. Qualitatively, the Cr2N layer formed on Ni-45Cr 
appeared was more continuous than that formed on Ni-35Cr, however gaps in the Cr2N 
were still evident. 

Figure A.16 shows a backscatter SEM photograph ofthe cross section after the 
polarization of a Ni-50Cr coupon nitrided at 875 °C for 30 h, '. which was the less 
corrosion-resistant nitriding condition obtained for Ni-50Cr. The microsructure was 
reminiscent of that observed for 1100° C, 2 h nitrogen nitrided Ni-35Cr and Ni-45 Cr 
with a layer of Cr2N overlying a 1t phase layer, and an internally nitrided zone primarily 
of 1t phase dispersed in Cr-depleted Ni(Cr) metal. At the surface, the Cr2N was not fully 
continuous; rather it was intermixed with 1t phase. The 1t phase sublayer was also much 
thicker than that observed on the 1100° C nitrided Ni-35Cr .and Ni-45Cr, consistent with 
its greater stability at temperatures less than 1100° C. 

Figure A.17 shows a typically cross section microstructure for Ni-50Cr nitrided at 
1 100 °C for 1 -2 h in pure nitrogen, the condition that yielded the most corrosion-resistant 
nitrided surface. In this case, · three phases were determined: a very thin and 
semicontinous CrN phase on the surface, Cr2N in the middle and the 1t phase in between 
the Cr2N and the chromium-depleted Ni(Cr)zone. In contrast with the nitrided 
microstructure formed on the 875 ° C, 30 h pure nitrogen nitrided Ni-50Cr (Figure A.16), 
and the 1100 ° C nitrided Ni-35Cr and Ni-45Cr (Figures A.14 and A.15), the Cr2N phase 
formed on the 1100° C nitrided Ni-50Cr was continuous, more uniform, and considerably 
thicker (3-5 µm). The underlying 1t phase · 1ayer was also _thinner than that formed at 
875° C, 2 µm v·s 9 µin- again consistent with the lack of stability of the phase above 
~ 1100 °C. Although it was not definitively identified on all samples, it is likely that all 
the pure nitrogen nitrided Ni-Cr alloys examined contained at least trace quantities of the 
CrN phase at the surface. 

Figure A.18 shows the cross sectional view obtained for the Ni-50Cr coupon 
nitrided in Ar-l0%N2 at 1100 °C for 2 h after polarization. This condition yielded the 
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lowest corrosion resistance of all nitridation conditions studied . The surface in contact 
with the electrolyte was a non-uniform Cr2N over a fairly uniform 7t phase. Therefore, 
significant area fractions of both Cr2N and 7t phase were present at the surf ace and 
exposed to the electrolyte. No CrN was detected, consistent with a reduced nitrogen 
activity in the Ar- 10%N2, compared to pure nitrogen , and the greater thermodynamic 
stability of Cr2N . 

Collectively , correlation of the nitrided microstructures with the corrosion 
behavior in aerated pH3 sulfuric acid at �0 ° C indicate that the CrN+Cr2N surface offers 
better corrosion protection under these conditions than does Cr2N+7t. The data also 
suggests that the 7t phase exhibits the poorest corrosion resistance of the nitride phases 
examined (CrN, Cr2N, 7t). However, the inability to produce exclusive , single-phase 
layers of each nitride phase precludes a definitive conclusion , as the poor corrosion 
resistance may result from the phase mixtures rather than any inherent differences in 
corrosion resistance. 

5.5. XPS Studies. 

A key issue for PEM fuel cell applications is the mechanistic source of the 
corrosion currents obtained , even when the currents are of low magnitudes ( 10-6 A/cm2 

and less). If they result primarily from a dissolution process , this could result in 
membrane contamination and degradation of cell performance under long-term operation. 
A strong component of an oxidation/passivation mechanism to the corrosion current is 
preferred, as long as it does not result in a degradation of electrical properties (i.e. 
increased surface resistance), which also would degrade cell performance. In order to 
obtain a better understanding · of the corrosion current source and probable corrosion 
mechanisms, X-Ray Photoelectron Spectroscopy (XPS) analyses were performed on the 
as-nitrided Ni-50Cr (1 100 °C - 2h "'." N2) surface and on a polarized Ni-50Cr surface 
(nitrided under the same conditions), which , after the regular polarization screening, was 
additionally held at 1000 mV(SHE) or 750 mV(SHE) for 5 hours . 

A first XPS scan was performed over an energy range between 0 and 1200 e V on 
the as-nitrided surface. Results demonstrated the presence of carbon, oxygen, chromium, 
nitrogen , silicon and zinc (the last one less than 1 at%). No nickel was observed . A 
concentration profile with respect to the sputtering time of this surface is shown in Figure 
A. 19 .  The principal assumption made was that the species following a similar trend were 
more likely to be working together. This tendency was observed in the case of the 'no
sputter' oxygen and carbon. No-sputter refers to the original surface before sputtering 
started. As sputtering began this carbon and oxygen were removed very fast suggesting 
· that they may be related with adsorption products at the near surface .  

As sputtering time increased , the atomic concentrations of a type of chromium, 
nitrogen and oxygen also increased in a similar manner until they reached a plateau; 
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referred to as 'sputter' species in figure A. 19 since they appeared after sputtering started. 
These different forms of nitrogen and chromium can be associated with a chromium 
nitrided film. At the same time, the presence of oxygen suggests the existence of an 
oxidized layer as it gets closer to the nitrided film. 

The evolution of these species as the survey went deeper into the surf ace can be 
appreciated in figure A.20, which shows the changes on the individual peaks of oxygen, 
nitrogen and chromium as the sputter time increased. In the case of oxygen, the type 
present right at the surf ace is different to one observed after sputtering for a short time, as 
indicated by the sudden change in the shape (width, height and peak position). This is 
related to a change in the oxidation state of the element. The nitrogen and chromium also 
evolved during the surveys ; however, it was a more gradual transformation. The 
comparison between the chromium peak before and after sputtering will be discussed 
below. 

In the case of the coupon held at 1000 mV(SHE) for 5 hours in the electrolyte, 
the first scan from 0 to 1200 e V showed the presence of carbon, oxygen, chromium and . 

_ silicon. No nickel was observed at the surface . The profile of the atomic concentrations 
with respect to sputter time is shown in figure A.2 1 .  

In this case, the concentration of the oxygen found at the ·near surface ( 'no
sputter) is higher and goes deeper than the one observed in the as-nitrided coupon. As the 
sputtering time increased, the presence of a type of chromium, nitrogen and different 
'flavor' of oxygen also increased. This 'sputter' oxygen had a higher atomic 
concentration than the nitrogen; and at the same time, this oxygen concentration was 
considerably higher than that observed for the as-nitrided case. Preliminary XPS analysis 
on the polarized coupon held at 750 mV(SHE) also showed this increased oxygen 
concentration; and even though the atomic _ concentration was lower that the one held at 
1000 m V (SHE), it was still higher that the nitrogen concentration . 

The evolution of the oxygen, nitrogen and chromium peaks for this coupon is 
shown in figure A.22. Similar to the "as nitrided" coupon, the oxygen found at the 
surface was different to the one observed after sputtering. In the case of nitrogen and 
chromium, the first survey had a considerably weak signal for these two elements. 
However, later in sputtering, the chromium peak started to show and during this process 
it slightly shifted to the right. In the case of nitrogen the peak seemed to not change 
position during the surveys . 

The shift of the peak positions and the difference in width observed when 
chromium peaks of the as-nitrided and the polarized surfaces (after sputtering) are 
compared using a normalized intensity (Figure A.23) demonstrate that in the polarized 
case the chromium is in a more oxidized state than when no polarization had taken place. 
However, this "as nitrided" chromium is shifted and wider than the standard for metallic 
chromium (Figure A.24 ), which indicates that it is also in a more oxidized state. 
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The depth reached during the sputtering was estimated to be no more than I 00 
nm; more likely to be considerably less since the inspection of the s-qrface after sputtering 
by backscattered SEM did not show any change. This suggests that the data collected was 
at the very outer surface of the coupon, and t�e nitrogen found is probably associated 
with the presence of CrN. 

The information obtained from this analysis can be interpreted as shown in Figure 
A.25, which presents a schematic of the cross sectional view of both coupons. At this 
point it is possible to suggest that at least one · of the causes of the measured currents is 
related with the oxygen incorporation into/at the nitride layer. However, the exact form of 
this incorporation ( oxide or oxynitride) remains to be determined. 
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CHAPTER 6 

CONCLUSIONS 

. The final results of this -research have resulted in a better understanding of the 
. corrosion properties of chromium nitrides and their benefits and limitations as materials 
for bipolar plate applications in PEM fuel cells. 

1 .  The nitrided nickel-chromium and nickel-titanium systems were the only ones 
of a series of model alloys with additions of Ni-X (X=Cr, Nb, Ti,V) that 
provided a corrosion resistance within the selection criteria established at the 
beginning of the research (current densities of lxl0-6 A/cm2 or less at 
potentials on the order of 900 - 950 mV (SHE)). However, the TiN coating 
obtained for the nickel-titanium alloy showed evidence of attack after testing. 

2. In a pure nitrogen atmosphere, nitridation temperature and time had a 
significant effect on the corrosion behavior of the coating obtained. In fact, 
corrosion protection seemed to increase with increasing nitridation 
temperature for the Ni-50Cr (wt%) alloys. No evidence of local corrosion 
attack was observed on any the coated coupons when tested under aerated 
conditions. 

3. The best corrosion resistance under an aerated sulfuric acid electrolyte pH 3 at 
80 °C was given by the Ni-50Cr alloy nitrided at 1 1 00 °C for 1 -2h in a pure 
nitrogen atmosphere. 

4 .  Reduction of corrosion protection under aerated conditions was observed 
when the chromium concentration of the binary Ni-50Cr alloy was reduced, as 
well as when the nitrogen partial pressure was decreased for the nitridation 
treatment. . These effects were found to be a related to the different 
microstructures obtained. In all cases, higher corrosion · resistance was 
associated with a mixture of CrN+Cr2N at the surface in contact with the 
electrolyte; similarly, in the case of lower protection this microstructure 
consisted on a mixture of Cr2N+7t phase. The fact that an exclusive, 
continuous, single-phase layer of the nitrides was not formed precludes a 
conclusive statement about the inherent corrosion resistance of the individual 
nitrides under the conditions examined. 

5 .  Nitridation/corrosion/microstructure correlations were primarily studied for 
the aerated electrolyte. 

6. Under anodic environment simulation (hydrogen purged), both surfaces, 
CrN+Cr2N and Cr2N+1t phase, showed low corrosion currents. 

7. Initial XPS results performed on an "as nitrided" Ni-50Cr coupon ( 1 100 °C, 
2h, N2), as well as on polarized nitrided Ni-50Cr coupons, appear to indicate 
that at least a part the anodic current densities measured during polarization is 
related with the incorporation of oxygen into the nitrided surf ace. The amount 
of oxygen incorporated seems to increase with the polarization potential. 
However, the exact form of this incorporation (oxide or oxynitride) is still to 
be determined. 
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Finally, although outside the scope of this thesis, results of a 4000 h corrosion test 
under simulated anodic and cathodic bipolar plate conditions and a 1000 h fuel cell test 
operated at 0.7 V(SHE) indicated that the 1 100 ° C, 1 -2 h nitrided ,Ni-50Cr exhibited 
extremely low levels of metal ion dissolution and negligible increase in contact resistance 
such that the material appears very promising for PEM fuel cell bipolar plate 
applications 41 • 
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CHAPTER ? 

FURTHER RESEARCH 

In terms of the corrosion properties of the chromium nitrides , efforts should be . 
directed to ob taining a s ingle, s tabl e and uniform phase at the s urface in contact with the 
electrolyte. One way ta ob tain s ingl e chromium nitride phase can be by removing the 
outer phas e of one. of the al ready known structures. A Cr2N s ingl e  phase can be obtained 
by grinding the outer CrN phas e on the Ni-5 0Cr coupon nitrided in a pure nitrogen 
atmosphere for 2 hours at 1100 °C. Once the s ingl e phas e is ob tained a s tandard 
polarization tes t in aerated sulfuric acid (pH 3 and 80 °C) s houl d be performed in order to 
obtain comparable res ul ts . 

Better unders tanding of the s ource of corros ion currents and corros ion 
mechanisms of the nitrided Ni-5 0Cr s ystem is needed. It was determined that oxygen is 
being incorporated into the sys tem; however, at this point it is not poss ible to concl ude if 
it is rel ated with the formation of oxides or oxynitrides. XPS s tudies of pure chromi um 
should be  performed in order to ob tain information about its natural corros ion behavior 
under the s ame conditions at which the nitrides were tes ted; this will help to identify the 
characteris tic 'fl avor' of the species rel ated with the corros ion of chromium. A Ni-5 0Cr 
coupon is not s ugges ted because the presence of nickel may affect the res ul ts s ince no 
nickel has been found on the previous XPS surveys .  The polarization should include the 
s tandard screening in sulfuric acid pH 3 at 80 °C until 1000 m V (SHE ) and then a hold at 
1000 m V (SHE ) for 5 hours. An additional coupon with the s ame procedure but hol ding it 
at 75 0 mV(SHE ) can also  be us eful for determining if there is a trend on the spectrum 
behavior. 

Analys es of the el ectrolytes after the pol arization screenings in order ob tain 
information about poss ible material diss olution into the sol ution are als o  s ugges ted. 

XPS anal ys es of the coupons tes ted in the Ar-4H2 purged el ectrolyte (s imulating 
the anode environment) to identify the differences in the nature of the corros ion products 
and mechanis ms in comparis on with the aerated el ectrolyte ( cathode environment) will 
be useful at the moment to es tabl ish a more concl us ive s tatement on the behavior of 
chromium nitrides in sulfuric acid s olutions. 

Finall y, in terms of fuel-cell commercial iz ation and the s el ection of an effi cient 
bipol ar pl ate. material , the Ni-5 0Cr was s tudied as a model alloy. Compos itions with 
lower Cr and Ni/Fe bases will be  needed to achieve cos t targets and commercial viabil ity. 

· The .1100° C nitrided Ni-35Cr and Ni-45Cr alloys were not as corros ion res is tant as the 
nitrided Ni-5 0Cr. Modifi cation of the nitridation conditions , in combination with all oying 
additions , shoul d  be pursued to improve the protective qual ity of the nitride formed on 
thes e l ower Cr alloys , ideally with a goal of Cr l evels less than 25-3 0 wt.% and the us e of 
Fe-b as e or Ni/Fe base  all oys . 
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Table A. 1 .  Comparison of Five Fuel Cell Technologies 
Fuel Electrolyte Operating Electrochemical Reactions 
Cell T (OC) 

Solid organic polymer Anode: H2 � 2H+ + 2e-
PEM poly-perfluorosulfonic 60 - 100 Cathode: ½ 02 + 2H+ + 2e- � H20 

acid Cell: H2 + ½ 02 � H20 
Aqueous solution of Anode: H2 + 2(0Hr � 2H20 + 2e-

AFC potassium hydroxide 90 - 100 Cathode: ½ 02 + H20 + 2e- � 2(0Hr 
soaked in a matrix Cell: H2 + ½ 02 � H20 

PAFC Liquid phosphoric acid 1 75 - 200 Anode: H2 � 2H+ + 2e-
soaked in a matrix Cathode: ½ 02 + 2H+ + 2e- � H20 

Cell: H2 + ½ 02 � H20 
MCFC Liquid solution of 600 - 1000 Anode: H2 + CO/- � H20 + CO2 + 2e-

lithium, sodium and/or Cathode: ½ 02 + CO2 + 2e-� C03
2-

potassium carbonates in Cell: H2 + ½ 02 + CO2 � H20 + CO2 
a matrix (CO2 is consumed at cathode and produced at anode) 

SOFC Solid zirconium oxide 600 - 1000 Anode: H2 + 02
-� H20 + 2e-

to which a small Cathode: ½ 02 + 2e- � 02-
amount of ytrria is Cell : H2 + ½ 02 � H20 

added 
From: Fuel Cells - Green Power. By: S. Thomas and M. Zalbowitz. LANL 

Where: 
H2: Hydrogen 
H+ : Hydrogen Ion 
e-: Electron 

02: Oxygen 
H2O: Water 
OH-: Hydroxyl Ion 

CO: Carbon Monoxide 
CO2: Carbon Dioxide 
CO3 

2-: Carbonate Ion 

Table A.2. PEM Fuel Cell Operating Conditions for Bipolar Plate Materials Design 
Temperature 70 - 100 °C 

Pressure 2 - 3 atm 
Anode Potential (long term) 0.1 V (SHE) 

Anode Potential (peak) 0.6V(SHE) 
Anode Water pH 3.60 

Anode Fluoride Concentration 1.8 ppm 
Anode Environment Reducing (H2) 

Cathode Potential· (long term) 0.8 V(SHE) 
Cathode Potential (peak) 1.23 V (SHE)* 

Cathode Water pH 4. 02 
Cathode Fluoride Concentration 1. lppm 

Cathode Environment Oxidizing ( 02) 

* This ideal value may change depending on some variables, such as, local 
crossover or internal current at open circuit. In real operating conditions, this value tends 
to be around 0.9-0.95V (SHE). 
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Figure A. l .  Fuel Cell _Basic Operation. 
From: http://www.hpower.com/pem.shtml 
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A.2. Schematic Diagram Showing the Components of a Polymer Electrolyte 
Membrane Fuel Cell. From: R.A. Buchanan. 
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Figure A.3 .  Schematic Diagram of Three Polymer Electrolyte Membrane Fuel Cells 
Stacked in Series. See Figure A.2 for Components Identifications. From: R.A. Buchanan. 
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Figure A.4. Anodic Polarization Curve of an Active-Passive Material. 
Adapted from: E. E. Stansburry and R. A Buchanan. Fundamentals of Electrochemical 

Corrosion. 
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Figure A.5. Nickel Chromium Phase Equilibrium Diagram. 
From: W. Betteridge. Nickel and its Alloys. 
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Figure A.6. Anodic Polarization Curves of Different Nitrided Alloys. 
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Figure A.7. Ni-50Cr Anodic Polarization Curves. Effect of Temperature and 
Timing on Nitridation in a Pure Nitrogen Atmosphere. 
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in a Pure Nitrogen Atmosphere. 
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Figure A. 13 .  Polarization Curves in Deaerated Electrolyte of Nitrided Ni-50Cr 
Alloys at 1 100 ° C in Pure N2 and Ar- 10%N2 for 2 h and 5 h Respectively. 

Figure A. 14. Cross Sectional Microstructure of Ni-:35Cr Coupon 
Nitrided at 1 100 °C for 2 h in Pure Nitrogen. 
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Figure A. 1 5. Cross Sectional Microstructure of Ni-45Cr Coupon 
Nitrided at 1 100 °C for 2 h in Pure Nitrogen. 

Figure A. 1 6. Cross Sectional Microstructure after Polarization Test of 
Ni-50Cr Coupon Nitrided at 875 °C for 30 h in. Pure Nitrogen. 

40 



Figure A. 17 .  Cross Sectional Microstructure after Polarization Test of Ni-50Cr 
Coupon Nitrided at 1 100 °C for 1 h in pure Nitrogen. 

Figure A. 1 8. Cross Sectional Microstructure after Polarization Test of Ni-50Cr 
Coupon Nitrided at_ 1 100 °C for 2 h in Ar- l0%N2. 
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Figure A: 19. Concentration Profile of Ni-50Cr Coupon Surface Nitrided at 
1100 °C for 2 h in Pure N2, without Polarization Testing ("as nitrided") . 

- OXYGEN' . NITROGEN CHROMIUM 

A.20. Evolution of the Oxygen, Nitrogen and Chromium Peaks Throughout 
Sputter of "as nitrided" Ni-50Cr Coupon. 
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Figure A.2 1 .  Concentration Profile of the Polarized Ni-50Cr Coupon Surface 
(Nitrided at 1 100 °C for 2 h in Pure N 2) Hold at · 1000 m V (SHE) for 5 h. 
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A.22. Evolution of the Oxygen, Nitrogen and Chromium Peaks Throughout 
Sputter of the Polarized Ni-50Cr Coupon Surface (Nitrided at 1 100 °C for 2 h 

in Pure N2) Hold at 1000 m V (SHE) for 5 h. 
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Figure A.23 . Comparison of the Chromium Peaks after Final Sputter for the Ni-50Cr 
Nitrided Coupons (1 100 °C, 2 h, N2) with and without Polarization Testing. 
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Figure A.24. Comparison of the Chromium Peaks on the "As Nitrided" Case (After 
Sputter) with the Characteristic Cr Metal Peak. 
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As Nitrided Polarized 

Figure A.25. Schematic Representation of the Cross Sectional Areas of the Ni-50Cr 
Nitrided Coupons ( 1 100 °C, 2 h, N2). a. As nitrided case. b. After Polarization Studies. 
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