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Abstract 

This thesis documents the efforts made to implement multiperspective mosaicking 
for the purpose of mosaicking undervehicle and roadside sequences. For the 
undervehicle sequences, it is desired to create a large, high-resolution mosaic that 
may used to quickly inspect the entire scene shot by a camera making a single pass 
underneath the vehicle. Several constraints are placed on the video data, in order to 
facilitate the assumption that the entire scene in the sequence exists on a single 
plane. Therefore, a single mosaic is used to represent a single video sequence. 
Phase correlation is used to perform motion analysis in this case. 

For roadside video sequences, it is assumed that the scene is composed of 
several planar layers, as opposed to a single plane. Layer extraction techniques are 
implemented in order to perform this decomposition. Instead of using phase 
correlation to perform motion analysis, the Lucas-Kanade motion tracking 
algorithm is used in order to create dense motion maps. Using these motion maps, 
spatial support for each layer is determined based on a pre-initialized layer model. 
By separating the pixels in the scene into motion-specific layers, it is possible to 
sample each element in the scene correctly while performing multiperspective 
mosaicking. It is also possible to fill in many gaps in the mosaics caused by 
occlusions, hence creating more complete representations of the objects of interest. 
The results are several mosaics with each mosaic representing a single planar layer 
of the scene. 
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Chapter 1 

Introduction 

In order to perceive and experience the physical world, humans use what is 
classically known as the five senses: touch, taste, hearing, smell, and sight Of 
these five, enhancing the sensory experiences of sight has been arguably one of the 
most engaging and popular challenges for all sectors of human effort, both in the 
arts and sciences. From monocles to telescopes, paintings to IMAX theaters, eye­
drops to laser surgery; many innovations have been geared towards expanding the 
limits of what humans are capable of perceiving and experiencing with their eyes. 
Animal vision systems have provided inspiration in the past for many of these 
innovations. The vision systems of insects and fish, in particular, pose an 
interesting problem: how may human visual perception be enhanced by 
compensating for our limited field of view? 

Before we explore answers to that question, let us briefly discuss the vision 
system of fish and insects. What characteristics of these vision systems make them 
unique, and why would we want to emulate them? Many fish have what is called 
periscopic vision: the eyes are on the sides of their heads and are shaped such that 
they bulge towards the pupil, refracting light in such a way that allows for an 
approximate 180° field of view for each eye [ 1]. Insect eyes are often made of 
patterns of photoreceptive cells that act as sensors, with each covering a specific 
direction, which also gives the eyes a wide-angle field of view [2]. These 
adaptations allow these animals to see in dim lighting conditions and detect threats 
from any direction, enhancing their abi1ity to perceive the world around them. 

It has long been recognized that a wide-angle visual representation of a scene 
enhances the observer's visualization of that scene. The wide-angle visualization 
concept is implemented most recognizably in the form of a panorama, or, more 
technically, an omnidirectional image. Panoramas attempt to represent a scene 
from a single perspective with a wide field of visibility, providing a unique 
representation of the scene at every possible viewing angle, and thus helping the 
observer 'feel' as though he or she is standing at the actual location of the scene. 
The earliest documented attempt to create an omnidirectional image go back to 
1787, when an Irish painter named Robert Barker patented what he referred to as 
La nature a coup d'reil, or "A View of Nature" [3]. A panoramic picture was 
painted onto the inner wall of a circular rotunda, and visitors would view the 
picture from the center of the room. Thus, the panorama, as an art form, became 
a form of mass entertainment in 18th century Europe and America. The concept 
of the panoramic view itself was not new; the Bayeux Tapestry [ 4 ], dating back 
to roughly 1066, is a 70-meter long embroidery depicting the history of the 
Norman invasion of England, and may be considered an early realization of the 
panoramic view concept. Barker, however, extended this concept by attempting 
to deceive the eye into believing it was viewing reality, and not just a painting. 
Both Robert Barker's panorama and the Bayeux Tapestry are shown in Figure 
1.1. 



(a) 

(b) 
Figure 1.1 Artistic applications of the panoramic-view concept. (a) A section 
of the copy of the Bayeux Tapestry at the Museum of Reading [5]. In this 
early application of the panoramic-view concept, the story of William the 
Conqueror and Harold, Earl of Essex, is told in chronological fashion, from 
left to right (b ). Cross section of Robert Barker's Panorama, Leicester Square, 
London, 1789 [3]. The panorama was painted inside the circular wall of a 
rotunda. Viewer·s stood on a platform in the center of the rotunda to view the 
panorama. 
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When the new technique known as photography was invented, interest turned 
towards creating panoramic representations using photographs. The first 
panoramic cameras were swing lens cameras, invented in 184 3 by P. Puchberger, 
and rotating cameras, invented in 1 85 7  by M. Garella, which had parts that could 
pivot about an axis of rotation to capture wide-angle images. In 1 858, T. Sutton 
introduced a camera which used a spherical lens filled with water, eliminating the 
need for moving camera parts. In 1970, D. W. Rees patented an omnidirectional 
capture system that combined a hyberboloid mirror with a normal perspective 
camera. This was probably the first camera to utilize what is called a 
catadioptric configuration, a combination of mirrors and lenses, in order to 
capture wide-angle images. Such cameras have been researched and applied as 
visual sensors in various teleconferencing, monitoring, and robot navigation 
applications. 

Today, there is a significantly more robust alternative to creating realistic 
representations of a scene than the mechanical, hardware-oriented solutions of the 
past. With the advent of fast, powerful, and easily accessible computers, it is now 
possible to use software-oriented approaches to facilitate scene visualization. The 
challenge of finding new ways to represent a scene from digital imagery has been 
the focus of much research over the past two decades, creating several new distinct, 
but related, fields of research. In the research topics of view interpolation, image 
morphing, stereo reconstruction, and plenoptic modeling, for instance, the goal is 
to synthesize novel views or even infer 3D information of a scene from a set of 
input images. It may be said that these techniques aim to create many images from 
a few. There is another field of research that takes the opposite approach to scene 
visualization: digital image mosaicking aims to create one large composite image 
out of many. 

Using modem computing technology, it is possible to robustly create wide­
angle representations scenes from sets of input images. Once we were restricted to 
using hardware-oriented approaches in order to create seamless wide-angle images 
( catadioptric systems, fish-eye lens). Today, images captured using ordinary, off­
the-shelf cameras can simply be merged digitally into a single composite image. 
Such a composite image is referred to as a digital mosaic. What advantages are 
there to using a software-oriented approach as opposed to a hardware-oriented 
approach? Catadioptric cameras and fish-eye lenses typically distort images 
heavily and attempt to capture large amounts of information on a limited imaging 
surface. As a result, the overall resolution of these images suffer, and in the case of 
distorted images, is irregular throughout the image. So while these images provide 
a good overview of the scene, they are lacking in detail, and are thus unsuitable for 
many scene visualization purposes. 

Digital image mosaicking techniques, on the other hand, allow us to quickly 
create a mosaic from multiple high-resolution images, producing a large image that 
not only gives a good overall view of the scene but preserves the level of detail 
seen in the original images. Mosaic seams that may appear due to perspective and 
lighting changes in the input images can be compensated for using image 
processing techniques, which is an obvious advantage over physically combining 
photographs to create a mosaic. Finally, a software-oriented approach allows us to 
create mosaics from video data fairly quickly, while such an undertaking using 
purely hardware-oriented or physical approaches would prove cumbersome and 
time-consuming. 
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The most well-known digital mosaicking method is the panoramic mosaicking 
method. This method stitches images together to form a wide-angle view, up to a 
full 360°, which represents the view of a scene from a single viewpoint This 
method is commonly used for virtual tours on the internet, which visitors to a 
website may use to view panoramas of real-world locations, much like the visitors 
to Robert Barker's exhibits did in the 1800s, except this time, a computer screen 
replaces the large wooden rotundas of the past. Panorama creation, however, 
imposes an important restriction on the input images; because a panorama is meant 
only to represent the scene as seen from a single viewpoint, or perspective, all the 
input images are restricted to being taken from a single stationary position. In this 
work, we intend to deal with a different case: the camera moving past the scene of 
interest. As will be made clear, the case of a moving camera presents its own 
unique challenges to the image mosaicking process. The examples we saw in 
Figure 1. 1 help to illustrate the difference between the case of a stationary camera 
and the case of a moving camera. Robert Barker's panorama, representing the 360° 

view from a single perspective, would be representative of the case of a stationary 
camera. The Bayeux Tapestry, on the other hand, depicts perspective changes as 
the locations change with the story, which follows the events surrounding William 
the Conqueror's invasion of England. This example is analogous of the concept of 
a wide-angle representation created from images taken by a moving camera. 

This thesis documents the use of mosaics to represent video from moving 
platforms for visualization purposes. The remainder of this chapter describes the 
specific applications of mosaics in our work and the motivation for developing 
these mosaicking algorithms in Section 1.1. We conclude this chapter with a 
description of the document layout in Section 1 .2. 

1 .1 Motivation 

Scene visualization is an important problem in the field of digital image 
processing, and offers many technical challenges. Methods for creating large, 
high-quality images for the purpose of scene reconstruction and inspection are 
needed to enhance and support the functions of various automated tasks. There are 
two common methods of capturing images of a scene: one can either use a stop­
and-shoot camera to take still images of the scene, or use a video camera to capture 
a video sequence. Individual still images typically offer shatper and more colorful 
images than individual video frames, while video is useful for capturing large 
amounts of information in a short amount of time. Unless a large quantity of still 
images are used, still imagery provides little relational information between 
images, while video sequences typically flow smoothly from one frame in the 
sequence to another, giving the viewer a better sense of how one image in the 
sequence relates to another. This large, smooth-flowing quantity of information is 
typically more useful when attempting to recreate a scene for the purposes of scene 
visualization and inspection. 

Video is used for many purposes in day-to-day operations in the sectors of 
industry and security. Pan-tilt-zoom cameras are mounted on walls to keep a 
visual record of events in shopping malls, aitports, and other busy public areas. 
Similar cameras, either mounted in a stationary position, or placed on moving 
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platforms, are used in industrial areas for inspection purposes. Video is also used to keep visual records as supporting documentation for industrial or academic activities. For instance, if an urban area is being surveyed for the purpose of city planning, some video of the area may be captured to be included to complement the quantitative data. Another example would be using video in order to obtain a visual record of a particular building or area of historical importance, in conjunction with any other data recorded of the area or building of interest. Again, with video, it is easier to get a feel for the spatial proportions and positional orientations of the different parts of an area or building than if we were to look at various still shots. Alternatively, we may have a single image taken from a distance from the scene or area in order to get an all-encompassing view, which inevitably results in low-resolution images lacking in detail. All these examples illustrate that video, with its ability to store visual information in an easily accessible format, is a very useful medium for recording visual information. However, there are times when video tends to be a cumbersome format to reference that information. Suppose, for instance, video is taken of an industrial area for the purpose of surveillance, and the video is updated and viewed periodically by inspection personnel in order to ensure there is nothing amiss. As the camera moves through the scene, the personnel involved must be watching the video sequence the entire time it is running, or risk missing important details that point to a situation that needs rectification, for instance, a malfunctioning machine part, or pipe leakage. If the personnel see that something is amiss, they may want to rewind the video or remotely move the camera back to center on the detail in question. If there are any other important details in the scene outside of the camera's limited field of view at this time, then those details will not be seen until the camera is moved again. To address this problem, the camera may be placed further from the scene to provide an all-encompassing view of the scene, but then smaller details would be difficult to see and inspect. Alternatively, several cameras may be mounted as different points in the scene so that the entire scene may be viewed without compromising detail. However, there are cases when it is not possible to use multiple cameras, for instance, in areas that are cramped, or even for simple budgetary concerns. Suppose, however, that all the visual information in a single video sequence captured by the surveillance camera were somehow represented by a single, large, high-resolution image that encompasses the entire scene. This image would be a mosaic composed from all the individual video frames taken by that single camera. A mosaic representation eases the inspection process by removing the inter-frame redundancies seen in video sequences, since a mosaic represents each spatial point in the sequence only once. This representation of a video sequence shortens the inspection time by allowing inspection personnel to reference disparate spatial points quickly during inspection. This concept is illustrated in Figure 1 .2. There are several advantages to representing video sequences as mosaics. The first, which was just illustrated in the example above, is that mosaics facilitate visualization of the scenes captured on video. Another advantage, as Irani et al. [6] argue, is that mosaics of video are an efficient and complete representation of video sequences. By reducing the inter-frame redundancies inherent in video sequences, and presenting each spatial point in the sequence only once in a single image, a mosaic contains the same amount of visual information as a video sequence while requiring far less data storage space. Representing video as mosaics allows for 5 



Figure 1.2 From a video sequence to a mosaic. Shown here are four sample 
frames from a 60-frame video sequence, depicting the underside of a vehicle, 
and a mosaic created from the video sequence. Simply observing each 
individual frame, it is difficult to ascertain how a scene in one frame is related 
to a scene in another frame. The mosaic gives us all this information in one 
concise representation. 

information contained within that video to be referenced and transmitted more 
robustly for many applications. 

The motivation for this work stems from the need to create mosaics from video 
data obtained from two main research efforts: undervehicle inspection and mobile 
laser-range scanning. For the undervehicle inspection effort, video was obtained 
from a mobile platform moving along the underside of vehicles for the purpose of 
threat detection, using both standard video as well as infrared modalities. A 
mosaic of the undervehicle video is desired in order to facilitate the process of 
inspection. For the laser-range scanning effort, video was shot of roadside 
environments from a moving vehicle. Mosaics are required in order to generate 
high-quality textures for the 3D data to improve the visual realism of the 3D 
models. 

In both cases, the optical center of the camera moves. It is necessary that the 
camera moves past the scene if we intend to capture imagery of every part of a 
scene at high resolution; acquiring a single image of a large area would either result 
in our view of the area being limited to a small part of the scene, or the resolution 
of the image will suffer (if we used a wide-angle lens or captured the scene from a 
distance). A panoramic view of the scene would still leave us with the problem of 
lack of resolution, since parts of the scene that are of interest may be relatively far 
from the position from which the panorama is acquired In order to acquire high­
resolution imagery of the entire scene of interest, the camera is moved. However, 
when the optical center of the camera moves, this produces in the resulting video 
sequences a phenomenon called motion parallax. Motion parallax is a depth cue: 
as a camera's optical center moves past a scene, objects in the foreground move 
across the observer's field of view (FOV) faster than objects in the background. 
The magnitude of this perceived movement of elements in the scene is directly 
related to the distance of the elements from the camera The closer an element is, 
the faster it moves past the FOV, and the further it is, the slower it moves. 

Because of motion parallax there is no one correct linear transformation that 
describes how consecutive frames may be aligned to one another. This 
phenomenon affects registration, the process of determining how consecutive 
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frames are aligned with one another. For undervehicle video, motion parallax is 
relatively small. Still, due to that small motion parallax, whatever mosaicking 
technique we choose must be flexible in that it should settle for some sort of 'best­
fit' registration between images, and not be too reliant on finding a uniformly 
correct registration. 

For the roadside video sequences, large motion parallax in the sequence would 
produce more noticeable anomalies in any mosaic. Mosaics of such scenes might 
contain 'ghosts' or multiple occurrences of objects in the scene, since with objects 
recurring in video frames at different rates, it is impossible to sample them all in 
one mosaic correctly. Alternatively, a mosaic attempting to represent such a scene 
may warp objects with respect to their shape and size; objects in the distance 
appear truncated, and objects up close appear elongated, due to _the same sampling 
problem. This problem is illustrated in Figure 1 .3 .  There are also problems with 
occlusion; background elements may be occluded by foreground elements in one 
frame, but may be visible in another. In the presence of occlusions, is it possible to 
recreate an object of interest in its entirety in an intelligent manner? 

We end this discussion of our motivation with a qualifier about the format of 
the data we wish to work with: although we speak of using video data, it isn't 
necessary that the data be in any one of the common digital video formats ( avi, 
mpeg, etc). Instead, our intention is to take advantage of the dense image data 
commonly associated with video sequences: long sequences of images with 
significant overlap with one another. It is possible to acquire the same density of 
data using a still camera. Obviously, this would be extremely time-consuming and 
cumbersome in most cases, but it is possible nevertheless. Our focus is taking 
advantage of dense image data, and this kind of data happens to be most 
conveniently acquired in a video format. 
In the work described in this thesis we address these challenges: using mosaics to 
creating concise and complete representations of video sequences, and to represent 
scenes captured on video displaying large motion parallax and occlusions. The 
solution needs to be implemented in software, and should not be hardware-specific 
( the solution should work with input from a large variety of imaging devices and 
modalities). 

1 .2 Document Layout 

The remainder of this document will discuss some of previous work related to our 
efforts, as well as our algorithms and results. Chapter 2 presents a survey of major 
works produced in the areas of digital mosaicking, motion analysis, and layer 
extraction, as well as a general outline of our proposed solution. Chapter 3 outlines 
our algorithm used for a single-mosaic representation of a video sequence. Chapter 
4 outlines our algorithm used for the layered-mosaics representation of a video 
sequence. Chapters 5 and 6 discuss the experimental setup and results of the 
single-mosaic and layered-mosaics representations, respectively. Finally, Chapter 
7 summarizes our efforts and discusses possible future improvements to the 
algorithms presented here. 
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(a) 

(b) 

Figure 1.3 Motion parallax. (a) Sample frames from a test video sequence and 
(b) a crude mosaic created from the video sequence. The video was created by 
moving a camera sideways along a straight line parallel to the scene at a fairly 
constant speed. The mosaic was generated by sampling strips of pixels from 
the center of each frame in the sequence at a constant rate and pasting the 
strips together. Note that objects in the foreground ( e.g. the baseball cap and 
dustbin) appear compressed, while objects in the background (e.g. the podium 
and umbrella) appear stretched. This is due to the fact that we are sampling 
each object at the same rate, even though the objects are moving past the 
camera's field of view at different rates. 
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Chapter 2 

Related Work 

The paradigms used to address the aforementioned problems were culled from various distinct, but inter-related, fields of digital image processing. Since we intend to use mosaics in order to create wide-angle representations, it is natural to begin with an overview of digital image mosaicking techniques in Section 2.1. We will discuss techniques developed to perform panoramic image mosaicking in Section 2.1.1, and multiperspective mosaicking in Section 2.1.2. Since the registration process of our chosen mosaicking algorithm relies heavily on motion analysis, we examine various motion analysis algorithms and their strengths and weaknesses in Section 2.1.3 .  Next, in order to deal with scenes displaying large motion parallax, we turn towards techniques that are geared towards represent video sequences as a series of planar layers. Layer extraction and representation, as these techniques are commonly called, are reviewed in Section 2.2. Finally, we conclude with a summary of key concepts and describe our proposed solution in Section 2.3. 
2.1 Overview of Digital Image Mosaicking 

Over the past two decades, much research has been conducted concerning the topic of digital image mosaicking. One convenient model for describing the digital image mosaicking process, described by Chen [7] is illustrated in Figure 2.1. According to this model, in general, image mosaicking methods follow a basic structure that consists of the following steps: image acquisition, image preprocessing, image registration, and image merging. Image acquisition, as the term implies, is simply the process of acquiring images of a scene in such a way as to facilitate the creation of an image mosaic of that scene. This step takes into consideration such things as the type of camera used to take these images, the view angle and focal point of the camera, and the positioning and movements of the camera required to capture the images in the desired manner. Images taken using conventional cameras often exhibit properties that affect the mosaicking process, e.g., blurring, noise, lens warping, and irregular color constancy. Some preprocessing to reduce these effects is often necessary to ensure good mosaicking results. Image registration deals with finding the transformations that align adjacent images with one another. The transformation that relates two adjacent images is often called the homography. These transformations can take the form of simple translations and rotations as well as projective warps. Image merging is concerned with removing the inconsistencies that appear in the resulting mosaic after image registration is completed. Usually the image merging step includes blending and deghosting processes. 
9 
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Figure 2.1 General Approach to Image Mosaicking. Adopted from [7]. 
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(a) (b) 

Figure 2.2 Construction of a cylindrical panorama. Adopted from [8]. (a) Two 
images warped into cylindrical coordinates, and (b) a panoramic image created 
by aligning a series of warped images. 

2.1.1 Panoramic Mosaicking 

A popular example of digital mosaicking is panorama generation. The panorama, 
as explained earlier, is a popular form of scene visualization, with various artistic 
and scientific applications. We now describe the construction and restrictions of 
panorama generation in more detail. 

A panorama is an image representing the wide-angle view of a scene from a 
single point. A digital panoramic mosaic, hence, is created by combining pictures 
taken by a camera whose optical center remains stationary. The camera's motion is 
restricted to rotating and panning motion about its optical center. Input images for 
panoramic mosaic generation are typically taken using a tripod or other rigid 
mounting device in order to limit movement of the camera's optical center, though 
it is possible to acquire such images by hand if the person taking the pictures stands 
still. 

A simple method of generating panoramic mosaics, described by Szeliski and 
Shum [8], is to project input images onto cylindrical or spherical manifolds. Each 
input image is reprojected into cylindrical or spherical coordinates, according to the 
focal length of the camera used to capture the images. The focal length may 
already be known, if the camera was precalibrated, or estimated using sets of two 
or more input images [9]. Example results of warping images into cylindrical 
coordinates are shown in Figure 2.2. Once each input image has been warped, 
registration of each image becomes a pure translation problem, since perspecti ve 
differences between images in this coordinate system are eliminated. Images are 
aligned by minimizing the sum of intensity errors between images: 

E =  L[Iix2 , YJ - l1 (xi , Yi )]
2

. (2. 1)  
i 

where 11 and 12 are intensity values at two corresponding points between adjacent 
images, x and y are the coordinate vectors in the images, and i encompasses the 
overlapping pixels of the two adjacent images. A panorama created in this manner 
is also shown in Figure 2.2. 
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Another panoramic mosaic generation technique that does not rely as heavily 
on knowing the focal length is to use full planar perspective motion models to 
register images, a method which Szeliski [ 1 1] discusses, and Irani et al. [ 12) have 
implemented for video mosaics as well. Using this technique, images are related 
to one another using a transformation matrix called the 8-parameter motion 
model. This motion model uses a linear projection to describe the motion of a 
rigid planar surface as either it or the camera moves. In this model, a point m1 = 
(x1 y1 zd of the first image has a corresponding point m2 = (x2 Y2 zd in the second 
image, and the relationship between m1 and m2 is defined as 

(2.2) 

where H is the homography that relates the two images. Again, in order to 
determine this homography, the goal is to minimize the sum of the squared 
intensity errors given in Equation 2. 1. 

An alternative to minimizing Equation 2. 1 is to detect features and track those 
features between adjacent images, using the feature points to compute the 
parameters of the homography. The problem of finding the homography is treated 
as finding four corresponding feature points between two adjacent images. This is 
because a pair of correspondence points produces two equations: 

(2.3) 

and eight equations are needed to solve for the 8 parameters of the 8-parameter 
motion model. Therefore, four sets of corresponding points would provide the 
eight equations required. Acquiring an automated search method for 
corresponding points between two images is not a trivial problem. A brute force 
comparison between all possible homographies between all feature points 
( extracted using some feature point extractor, e.g. the Harris detector [ 14]) of two 
adjacent images can be a very time-consuming process. 

Zoghlami et al. [ 15) reduced the problem to finding two feature points by using 
a comer model to represent feature points. Comers are computed using a blurring 
filter for modelization, and models are fitted by non-linear minimization. The 
quality of a comer is determined by computing the least-squares difference 
between the grey-levels of the image and those of the model, with small measures 
indicating 'good' comers. Between a pair of corresponding 'good' comers between 
adjacent images, four lines based on those comers are computed, and the 
intersections of those lines can be used to compute a homography. By using more 
information from feature points than just their coordinates, the number of matched 
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features required to obtain a good homography between two images is greatly 
reduced, which in turn reduces the complexity of the homography search. 

Tian et al. [16] use local binary patterns (LBP) to find correspondence points 
between images. An LBP for a feature point is created by computing the Harris 
detector values of that point's eight neighboring interest points, labeling those 
values as ones or zeros based on a threshold value, and rotating those values to 
form the smallest possible binary number. This number is the LBP of that feature 
point, and is rotation and illumination:..invariant across overlapping images. The 
advantage of this method is that images with large illumination differences can still 
be registered, since the LBPs for feature points are mostly illumination-invariant. 
The use of the LBP as a match criteria for identifying correspondence points is 
more reliable than the use of, say, single Harris values alone. 

Peleg et al. [ 17] proposed an alternative to computing homographies from 
intensity differences and feature points. They use intelligently sampled dense video 
sequences in order to form their panoramas. This is done by combining strips 
sampled from each frame in the image and then aligning and adding the strips to 
the final mosaic. Peleg's implementation could perform in real-time: a mosaic 
could be created as a video camera pans to view the scene. This technique is a 
special case of Peleg's manifold projection technique. Manifold projection will be 
discussed in more detail in Section 2. 1.2. 

The panoramic mosaicking problem is not always restricted to that of 
registering images of static environments, as there can be objects moving in the 
scenes of real-world environments. These objects may appear as 'ghosts' or 
'doubles' in the resulting panoramas, since they appear multiple times across the 
scene depicted in the panorama. It is usually desired to deal with these elements 
either by segmenting them out of the panorama or retaining single representatives 
of these elements within the panorama. Odone and Fusiello [ 18] take the former 
approach, and tackle the problem by back-registering their mosaic ( with moving 
objects) onto the images from which it was constructed, and using a median-based 
temporal filter to remove the moving objects from the mosaic. As an aside, they 
also retrieve the foreground (the moving objects) using a local misalignment 
measure developed by Irani et al. [ 6], 

LIIn (X; ,Y; ) - I ted (x; , Y; )I 
Sn (x, y) = .....;; _______ _ 

LIVJn (X; , YJI + C 
(2. 4) 

where In is the nth input frame, I :red is the input frame from the mosaic, 

V / n ( x, y) is the spatial intensity gradient at the pixel (x, y ), i denotes a small 
neighborhood of pixels around (x, y), and C is a constant used to avoid numerical 
instabilities and to suppress noise. This measure, when used to detect local 
misalignments between individual frames and the final still mosaic, can easily 
detect the moving objects and segment them out of the input images. 

Davis [ 1 9] suggests a slightly different approach to the problem. Firstly, a 
registration method that is unbiased by movement is employed to register the 
images. Images are reprojected into spherical coordinates and registration is 
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performed using the Mellin transform, which is an extension of the phase 
correlation algorithm that recovers both translation and rotation (the phase 
correlation algorithm is discussed further in Section 2. 1.3). To compensate for the 
moving objects, the resulting mosaic is compared with each input image, and 
difference images between the mosaic and the input images are computed. 
Dijkstra's algorithm ( an algorithm used commonly to compute the shortest path 
between two vertices of a graph) is then used to compute the best path dividing 
each of the difference images, which in turn produces a segmentation of the mosaic 
into disjointed regions. The boundaries of each of these regions mark places where 
there are representations of moving objects in the input sequence which do not 
overlap one another spatially in the final mosaic. 'Correct' representations of these 
moving objects are placed within the final mosaic to create a final, focused image, 
without the ghosts or blurring that would result from a simple averaging or median 
sampling of the input images. 

Because of the immersive nature of panoramic mosaics, they are used 
frequently to create image-based environment maps that may be viewed and 
manipulated in real-time. Chen [20] describes such a system that uses Apple's 
QuickTime VR. In this system, panoramic images are mapped onto QuickTime's 
cylindrical environment maps, which may then be warped in real-time to simulate 
panning or zooming to correspond with the viewer's input. Hotspots may be added 
to the environment maps, allowing viewers to 'hop' to the location within the 
environment map, thus loading up a new environment map to represent that 
location. Chen's method is implemented frequently on internet websites to provide 
virtual tours of real-world locations. 

We have briefly reviewed digital panoramic mosaicking and some important 
works that attempt to address the various challenges associated with this field of 
study. It may be apparent at this point that panoramic mosaicking techniques do 
not readily address several phenomena present in many video sequences of real­
word scenes. One phenomenon in particular, motion parallax, is heavily present in 
the video sequences used in this work. The shortcomings of panoramic 
mosaicking with regards to dealing with this phenomenon, and an alternative 
solution, are discussed next. 
2.1.2 Multiperspective Mosaicking 

Most panoramic mosaic generation techniques, with the exception of Peleg's 
technique, impose a major restriction on the input images: they must be taken from 
a stationary position. The camera can only exhibit panning and tilting motion. Any 
translational motion results in motion parallax. Recall from Section 1. 1 that motion 
parallax arises from depth disparities of elements in the scene: when the camera 
moves, the speed of objects in the distance moving across the camera's field of 
vision appears slower relative to the speed of objects up close. The result is that the 
homography between two adjacent frames can no longer be adequately represented 
by planar projection equations such as the 8-parameter motion model. 
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Figure 2.3 Illustration of the multiperspective mosaicking process[21 ]. Strips 
(S i ,  S2, S3)are sampled from images (D1 ,  D2, D3) in a sequence and combined 
to form the mosaic. 

Another method, called multiperspective mosaickingt, provides a way to 
mosaic image sequences exhibiting motion parallax. This method simulates the 
function of a pushbroom camera, used in aerial photography. Pushbroom cameras 
are used to capture 1 D line scans of an area and combine them to form a mosaic as 
the camera moves across the area of interest. Multiperspective mosaicking 
performs the same basic function by combining thin strips sampled from larger 
video frames and combining them into a mosaic. An illustration of this concept, 
given by Peleg and Ben-Ezra [21], is shown in Figure 2.3. 

Zhu et al. [22] use multiperspective mosaicking to create stereoscopic mosaics 
of aerial video sequences. First, they perform image rectification on each frame of 
the video sequence, to make it appear as though the camera is  undergoing pure 2D 
translational motion. Then, using a pyramid-based matching algorithm, they 
compute the displacements, and hence the registrations, between images. 
Instrumentation data from a GPS (global positioning system) and an INS (inertial 
navigation system) are used to correct for accumulated errors from pair-wise 
registrations of images. To compensate for local motion parallax between two 
adjacent strips, point correspondences between the two strips are identified close to 
the 'stitching line', the line marking the boundary between strips, and these 
corresponding points are mapped to one another to form a triangulation relating the 
two strips ( a triangulation here being the segmentation of both strips into triangular 
regions with each region in one strip having a corresponding region in the other 
strip). Using this triangulation, the two strips are warped together to form the final 

t In the literature, the terms free mosaic and panoramic-view image, among others, are 
also used in place of the term multiperspective mosaic. For clarity, in this work, the term 
panorama is used exclusively to mean a mosaic created from images taken from a camera 
with a (relatively) stationary optical center, while the term multiperspective mosaic is 
used exclusively to mean a mosaic created from images taken using a camera whose 
optical center moved during acquisition. 
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Figure 2.4 Warping strips for mosaicking onto adaptive manifolds. Adopted 
from [23] . Strips are warped to match the motion flow of the sequence 
(represented by the arrows): a) A straight, vertical strip is the logical choice to 
use in order to mosaic a scene displaying a horizontally-oriented flow field, 
whereas (b) the same strip is a poor choice to use for a vertically-oriented flow 
field. ( c) A sequence created by a camera moving forward can be mosaicked 
using a circular strip, while ( d) a sequence created by a camera oriented at an 
angle from the direction of movement can be mosaicked using a curved strip. 

stitched strip pair. When composing the mosaics, two strips, instead of just one, 
are sampled from each frame, to create two stereo mosaics. A 3D effect is 
generated in the brain of the viewer when the two mosaics are viewed through 
special 3D lens. A depth map is also obtained from the stereo mosaics by finding 
correspondences along the epipolar curves constraining each pair of video frames, 
and estimating 3D range values from those correspondences. 

Peleg et al. [23] proposed mapping mosaics onto manifolds adapted to the 
camera motion. These mosaics are projected onto an adaptive manifold by warping 
each strip so that each point is perpendicular to the optical flow of the image 
sequence. This process is illustrated in Figure 2.4. This manifold may take the 
shape of a cylinder for panning motion, a plane for translational motion, a tunnel 
for forward motion, and so on. These manifolds may be computed explicitly, and 
the images from the video sequence projected onto the manifold, or the manifolds 
may be computed implicitly by cutting and warping strips appropriately. This 
technique is more robust than Zhu's technique with regards to camera motion, but 
less geographically accurate. One important thing to note is that Zhu's work was 
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Figure 2.5 Just-sampling, over-sampling, and under-sampling of elements for 
creating a route map. Adopted from [25] .  Each of the points along the camera 
path represents a point at which the camera slit samples the scene. These slit 
samples are pasted together to form the mosaic. 

focused on creating geographically accurate mosaics and depth maps for land 
surveillance purposes, while Peleg's technique is geared towards general viewing 
applications, which only require that the mosaics look pleasing to the eye. 

Zheng and Tsuji [24] used a technique similar to Peleg's in order to generate 
mosaics of outdoor environments to create a route map for robotic navigation. No 
motion analysis is performed here: the mosaic is created by simply pasting thin 
slits captured as the mobile platform moves pass the scene of interest. In most 
cases, the camera's principal axis ( or plane of sight as they refer to it) is roughly 
orthogonal to the camera's motion. In a more recent paper, Shi and Zheng [25] 
attempted to investigate the sampling effects that arise due to motion parallax. 
They identified three distinct sampling cases, according to the depth of the 
elements in the scene from the camera: the depth at which objects are over­
sampled, the depth at which they are just-sampled, and the depth at which they are 
under-sampled (Figure 2.5). As an aside, this is the same effect observed in the test 
case discussed earlier in Figure 1.3: elements in the background are over-sampled, 
hence they appear elongated in the final mosaic, while elements in the foreground 
are under-sampled, and hence appear truncated. Zheng has not yet attempted to 
compensate for the warping of elements caused by the sampling effect using post­
capture image processing. He does intend to use his quantitative investigation of 
the sampling effects to better plan the capture of specific scenes, by adjusting the 
camera's focal length, speed, etc. For the purposes of building a route panorama 
for robotic navigation, this approach would suffice. 

Multiperspective mosaicking alone does not 'solve' the problem of motion 
parallax, rather, it reduces the visual discontinuities caused by motion parallax by 
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distributing misalignments more evenly throughout the entire mosaic, or, as in 
Zhu's stereo mosaics, by warping image strips locally based on joint triangulations 
between the strips. However, although multiperspective mosaicking is capable of 
producing mosaics with less noticeable discontinuities, image sequences displaying 
large motion parallax will still result in mosaics with fairly distorted elements. 
Also, if the strips are sufficiently large, then visual anomalies will become evident 
in the form of 'ghosts' or 'doubles' - visual elements recurring between adjacent 
strips. These problems stem from the fact that each strip in a single 
multiperspective mosaic samples each element in the strip at the same rate, while 
elements at different depths in the scene are moving past the camera's field of 
vision at different rates. 

Attempts have been made in the past to address the problem of large motion 
parallax. Rousso et al. [26] used interpolated views between video frames to 
increase the sampling rate of the strips and hence improve continuity between 
strips. This approach, however, only reduces the 'doubles' in the mosaics; the 
warping of the elements in the scene is still evident, because those elements are still 
being incorrectly sampled. Zhu et al. [27] take a broader approach to solving the 
problem by generating epipolar-plane images (EPI) to complement the mosaics, 
and combining them into a representation they call the 3D Layered Adaptive­
resolution and Multiperspective Panorama (3D LAMP). An EPI is a mosaic 
created by combining slices sampled from each frame that are parallel to the 
dominant motion of the camera. The resulting image has several straight loci, the 
orientations of which are used to determine the speed at which elements in the 
scene moved pass the camera, which also may be used to infer depth information. 
Thus, using many of these epipolar-plane images ( the number of images depends 
on the desired resolution of the depth map; probably equal to the pixel-wise 
width/height of the original input images), 3D depth maps are generated which can 
then be used to segment the scene into layers of depth. On each of these layers, the 
various elements of the panorama can then be represented according to their 
correct sampling rates. The EPI for an example scene with varying depths is 
shown in Figure 2.6. The key idea here is that the speed at which an element in the 
scene moves past the camera's field of view determines the rate at which the 
element is sampled 

From this review of multiperspective mosaicking techniques, it is clear that 
the problem of motion parallax and occlusion is still left fairly open, though 
Zhu's approach to composing the scene as layers points to an obvious solution. 
However, before we examine techniques for representing video sequences as 
layers, we need to address the problem of finding correspondences between video 
frames so that registration between frames may be performed. If GPS data or 
some other external velocity measurements were available, those could be used 
in order to determine the inter-frame motions. However, in most of the video 
sequences used in this work, no such measurements were available. Also, many 
of these video sequences displayed time-varying velocities, and therefore 
constant-motion assumptions could not be used to simplify registration. 
Therefore, motion analysis techniques were used to determine the sampling rates 
used in the mosaicking process. We therefore proceed with a short overview of 
relevant motion analysis techniques. 
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Figure 2.6 3D LAMP Representation. (a)A sample scene with four depth 
regions, d l ,  d2, d3 and d4, and (b) its corresponding epipolar-plane image (BPI) 
from the 3D LAMP, adopted from [27]. Using the depth and occlusion 
information inferred from the orientations of the loci in an BPI, the resolution of 
the mosaic may be adapted accordingly. The resulting mosaic is split into 
'layers' of depth/resolution. 
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2.1.3 Motion Flow Analysis 

Motion flow analysis techniques aim to determine the movement of pixels in an 
image sequence. This problem is well-known in the digital imaging community 
and has been addressed extensively. A good deal of research has been focused on 
developing differential techniques to create dense 2D flow fields, describing the 
motion for every pixel in a given image from a sequence of images. By 
'differential' we mean that the techniques rely heavily on computation of the 
intensity gradients of the images, usually to find parameter updates in an iterative 
minimization process. According to a survey conducted by Barron et al. [28], 
many of these techniques share similar processes: prefiltering or smoothing with 
lowpass/bandpass filters to extract signal structure of interest and enhance signal­
to-noise ratio, extraction of basic measurements such as spatiotemporal derivatives 
or local correlation surfaces, and integration of these elements to produce a 2D 
flow field. A widely-known differential motion flow analysis technique is the 
Lucas and Kanade algorithm [29], which assumes the following smoothness 
constraint: 

dl(x, y, t) = 
a1 v + a1 v + a1 = 

O 
dt ax X ay y at ' (2.5) 

This constraint simply states that the rate of change of the pixel intensity I along 
the motion trajectory is zero. Based on this constraint, the motion trajectory (vx, vy) of a pixel may be computed. Given an extracted sub-region T from an image at 
time t= I ,  and an image D at time t=2, this algorithm, which is a Gauss-Newton 
gradient descent non-linear optimization algorithm, aims to minimize the following 
expression 

L[D(W(x; p +llp)) - T(x)]2 , (2.6) 
X 

where W is a set of parameterized warps that align pixel x in T within the 
coordinate frame of D, and p and 11.p are the warp parameters and increments to the 
parameters, respectively. The minimization is performed with respect to 11.p, with 
iterations being performed until the vector 11.p is below a set threshold. This 
method was first developed in 1981, and many extensions have been made since by 
various authors to improve performance in the presence of noise, changing image 
capture conditions, and lower frame rates, as well as to improve computation 
efficiency. 

Any differential motion analysis technique will produce good results in image 
sequences with sufficient detail and high frame rates. If detail is lacking (there are 
large homogenous areas in the image sequence) or the frame rate is low relative to 
the speed of the elements in the sequence (pixel movement between frames is 
large), then the performance of differential techniques tends to suffer. Also, 
differential techniques tend to impose other constraints, such as assumed color 
constancy and linear motion. One solution to these problems would be to use 
spatiotemporal segmentation that relies on the homogeneity over consecutive 
frames in a video sequence. Valencia et al. [3 1] describe such a technique. They 
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use a pyramidal hierarchical structure to link homogenous regions in one frame to homogenous regions in the next frame. Based on the assumption that a pair of linked regions correspond to the same object, the motion of pixels representing that object then becomes the displacement of the centroids of those regions. Using this approach, it is possible to compute the motions for video sequences with large homogenous regions, changing illumination conditions, and low frame rates. If, however, the image sequence does meet the constraints imposed by differential techniques, the authors concede that the results of differential techniques are typically more accurate. The phase correlation technique, first described by Kuglin and Heines [32], is another motion analysis technique that does not rely on the constraints of differential techniques. Phase correlation relies on the translation property of the Fourier transform, also known as the Fourier shift theorem. Suppose we have two images, one being a translated version of the other, with a displacement vector (x0, yo). Given the Fourier transforms of the two images, F1 and F2, then the cross­power spectrum of these two images is defined as 
(2.7) 

where F2* is the conjugate of F2. The inverse Fourier transform of cross-power spectrum would, ideally, produce an impulse function, with the position of the impulse indicating the displacement (x0, yo). A plot of this function, created by L. Hill, is shown in Figure 2.7. This function is sometimes referred to as the phase correlation surface. If there are several elements moving at different velocities in the picture, then the phase correlation surface will produce more than one peak, with each peak corresponding to a motion vector. By isolating the peaks, a group of dominant motion vectors can be identified. This information does not specify individual pixel-vector relationships, but does provide information concerning motion in the frame as a whole. A simple extension to the phase correlation technique, proposed by Reddy and Chatterji [34], allows for the rotation and scale changes between two images to be recovered as well. By remapping the Fourier transforms of two adjacent images to log-polar coordinates, and then performing phase correlation on the images of the remapped Fourier transforms, it is possible to recover the scale and rotation factors between those two images. Once the scale and rotation changes have been compensated for, then phase correlation can be performed again to recover the translation between those images. This extension may be useful if there is a large amount of zoom or directional change exhibited by a video sequence. The motion analysis techniques reviewed here provide a basis for addressing the registration problems associated with our mosaicking algorithm. We now tum our attention to the problem of representing scenes displaying large motion parallax. The solution lies in a class of techniques that have traditionally been proposed as video compression techniques: layer extraction and layered representation of video. 
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Figure 2. 7 A typical phase correlation surface. Adopted from [33 ]. The x and y 
axes correspond to the height and width of the images, and the peak of the 
function indicates the displacement vector between the two images. 

2.2 Layer Extraction 

Representing video as layers is a relatively new field of study that was first 
introduced in the early 1 990s. Wang and Adelson [35] were the first to propose the 
layered representation of video as an efficient video compression method. The 
paradigms associated with this technique are not without precedent, however, as 
many of the problems addressed in this  field of study are the same as the more 

classical problems of segmentation by motion and multiple motion analysis. Layer 
extraction aims to represent a video scene as a series of planar layers corresponding 
to different depths or planar elements in a scene. Decomposing an image sequence 
into layers has been proposed as an efficient video and 3D representation method. 
A basic assumption is that the scene in a given video sequence may be represented 
as being piecewise planar. Each planar layer typically consists of a color map that 
specifies the pixel values of elements in that layer and a transparency map to define 
how each layer is occluded by all the others. There may also be a velocity map that 
defines how the layer is warped over time if one wishes to recreate the original 
sequence from which the layers were generated. These elements of the layered 
representation method are illustrated in Figure 2.8. 

Wang and Adelson liken the layered representation of video to the process of 
traditional cell animation. In traditional cell animation, sequences of images are 
painted on clear celluloid and then placed over a painted background. The effect 
on film is of an animated foreground moving against a static background. The 
layer extraction process would aim to take resulting animation and reverse the 
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Figure 2.8 Layered Representation of Video. Adopted from [35]. The scene is decomposed into two layers: one to represent the hand and one to represent the checkerboard background Each layer consists of an intensity map that defines the pixel information of elements in that layer, an opacity map that determine occlusion relationships with other layers, and a velocity map that defines the motion of the layer with time. 
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process, decomposing the scene into their composite layers: the background and 
the celluloid. Then, using layered representation, the animation can be recreated 
using the extracted layers. 

Layer extraction methods typically deal with the issues of layer model 
determination and spatial support determination for each layer. The layer model 
determines how many layers are required to represent the scene as well as the 
model-based motion of each layer. Determining spatial support simply means 
determining which layer each pixel in a given frame is associated with. The 
processes may be performed one after the other, or may be part of one organic 
process. Wang and Adelson's seminal paper on layered representation of video 
sequences basically formulates the layer extraction problem as a maximum­
likelihood estimation problem. First, local motion estimation using a derivation of 
Lucas and Kanade's motion analysis method is performed to obtain a vector for 
each pixel in each video frame. The video frames are then divided into square 
regions, and each region is fitted to an affine motion model, defined for the vertical 
and horizontal components as 

V
x

(x, y) = axO + axlx + ax2Y 

V
Y

(x, y) = ay
o + aY1x + ay2Y 

(2.8) 

where x and y are horizontal and vertical coordinate vectors, and the a!cS are the 
respective parameters of the motion model. The model fitting is performed using 
linear regression methods, with regions displaying similar motion parameters being 
clustered into one region, regardless of their spatial connectivity. The motion 
hypotheses for each region are then refined iteratively to acquire more accurate 
parameters. Finally, layers are synthesized by warping the corresponding regions 
according to their motion parameters and collecting stable pixel values across each 
frame using a median filter. 

Baker et al. [36] address the problem by first assuming known camera 
projection matrices for every input image in the sequence, and performing an initial 
segmentation of the scene by hand. Thus, instead of computing the layer model 
and the spatial support concurrently as Wang and Adelson do, model initialization 
is performed manually first. From there, the inter-frame registration of layers and 
computation of their warp parameters are performed using gradient descent 
methods, such as Gauss-Newton minimization, using knowledge of the collineation 
between the camera matrices. In addition to the computation of pixel assignments 
and warp parameters, they also compute the residual 3D depth for each layer, 
providing a '2.5D' layered representation of the scene. Baker's method produces a 
more geometrically accurate representation of the scene, complete with depth 
information, as opposed to Adelson's method, which only aims to reproduce the 
video sequence in a visual sense. 

Torr et al. [37] later address the question of model initialization posed by 
Baker. They formulate prior assumptions about the number of layers and their 
associated parameters within a Bayesian decision making framework in order to 
automatically perform model initialization. Several different models ( 1 layer, 2 
layers, 3 layers, etc ... ) are evaluated individually, with parameters for each model 
estimated robustly from the feature points of the first image sequence. The 
posteriori-likelihoods of each given model is then calculated from these 
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parameters, which then indicate the number of layers that should be used to 
represent the scene. 

Ayer and Sawhney [ 3 8] also formulate the problem using Bayesian methods. 
However, instead of evaluating various layer models at the same time, they start 
with a user-defined number of layers which begin as non-overlapping regions that 
evenly divide an input image. The ownership probability for each of these layers is 
then computed for every pixel in the image, with pixels being assigned to layers 
producing the largest ownership probabilities. The initial layer model is then 
updated by removing each of the layers from the model in tum, and calculating the 
resultant encoding lengths needed for each version of the model. A large reduction 
in the encoding length results in that layer's removal from the representation, and 
the process is repeated until no more large reductions in encoding length occur. 
Ayer and Sawhney's method selects its layer model based on the minimum 
encoding length (MEL) criteria: the least complicated model that adequately 
represents the scene is selected to be the correct layer model. 

So far our overview of layer extraction techniques has described some of the 
most influential works produced in this relatively new field. In particular, we are 
interested in the general paradigms the authors used to formulate their solutions to 
the problem of representing scenes as layers. The concept of combining mosaics 
with layered representations is a natural approach to solving the problem of motion 
parallax in long video sequences. Many of these works do describe their final 
layers as mosaics created from the accumulation of layer elements from all the 
frames in the input sequences. However, the mosaicking aspect is treated as a 
natural byproduct of the algorithms presented here. This brings us back to the 
recent efforts of Zhu et al. [ 2 7, 41 ], which were discussed in Section 2. 1. 2, to 
explicitly combine mosaicking and layer extraction concepts into one unified 
framework. As was explained before, they generate epipolar-plane images in order 
to compute depths and occlusions for each point of a multiperspective mosaic. 
These depth and occlusion relationships then directly determine the layers and their 
spatial support. They apply this technique, in particular, to roadside sequences 
displaying a mix of translational movement of the vehicle and vibrational 
movement of the camera, and place practical movement constraints on their system 
to ease EPI analysis of the video sequence. By placing these constraints, they 
achieve better results than more general techniques for EPI analysis. 

We have now concluded our review of various efforts that have been made in 
the various fields of research that have contributed significantly to our work. We 
now describe the problems addressed in this research in more specific detail and 
review the most important ideas that were used to formulate our approach to 
solving these problems. 

2.3 Proposed Approach 

An important impetus for the formulation of the algorithms described here was the 
nature of the video data used in this work. This video data came from two primary 
sources. The first was from a mobile platform with an attached video camera which 
captured video of the underside of a vehicle as the platform translated underneath 
the vehicle. The second source was from a video camera attached to a vehicle 
driven along straight roads as the camera was pointing at the roadside scene, 
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(a) 

(b) 

Figure 2.9 Test video sequences. Example frames for (a) undervehicle video 
and (b) roadside video. 

perpendicular to the vehicle's motion. Example frames from these sequences are 
shown in Figure 2.9. The first thing we note is that due to the presence of motion 
parallax, the panoramic mosaicking techniques that register images using pure 
perspective transforms or that map images to spherical or cylindrical manifolds 
cannot be used, since these techniques require there be a one-to-one transformation 
relationship between adjacent images. Panoramic mosaicking techniques perform 
very well when it comes to mosaicking scenes with little or no motion parallax, but 
tend to perform poorly otherwise. 

It is virtually impossible to capture roadside data without the presence of large 
motion parallax since we have chosen to use a moving platform to capture our data. 
If we are to capture video data of a large area without compromising the image 
resolution at any part of the scene of interest, then the platform must move from 
one part of the scene to another. Motion parallax is therefore a necessary obstacle 
that must be addressed in the mosaicking process. 

We use the paradigms associated with multiperspective mosaicking, as 
discussed by Peleg et al. [23], in order to form our algorithm. All our mosaics will 
be constructed from strips sampled from each frame in the video sequences. This 
technique is well suited for mosaicking dense video sequences such as the ones we 
are dealing with. Note that unlike Peleg's work with various projection manifolds, 
we assume, as Zhu et al. [22] do in their work with aerial mosaics, that the motion 
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is restricted primarily to translating motion past the scene, and that the manifold is restricted to being a 2D plane. In this work, we choose to deal with two distinct cases: scenes displaying small motion parallax, and scenes displaying large motion parallax. First let us consider the fonner case. The video sequences obtained from the undervehicle inspection efforts are considered to be cases of scenes displaying small motion parallax. Our primary objective here is to represent these video sequences as concise mosaics, in order to ease the process of inspection. Recall from Section 2.1.2 that in the presence of small n:iotion parallax, multiperspective mosaicking techniques distribute the alignment errors more evenly throughout the mosaic, resulting in less visible discontinuities in the resulting mosaic . Therefore, a multiperspective mosaic of the video sequence would provide a wide-angle visualization of the sequence with few visible discontinuities. Registration of images is perfonned by computing the dominant motion between frames. We choose to compute dominant motion using the phase correlation method described by Kuglin and Heines [32], since this technique is capable of extracting dominant inter-frame translation even in the presence of many smaller translations. The assumption here is that, for lack of a better guess, the dominant inter-frame motion is the best criterion to use to align frames with each other. This approach is fairly novel in that while phase correlation has been used in the past to register images for mosaicking purposes, to our knowledge it has not been used explicitly to perform strip-based multiperspective mosaicking. This dominant motion is used to determine the width of the strips sampled from each frame, as well as their correct alignment with one another in the final mosaic. Once the strips are aligned with one another, they are merged using a weighted blending scheme to create the final mosaic. We assume that the entire scene may be modeled as a flat plane, and that this entire plane may be represented by a single mosaic. We therefore refer to this representation as the single-mosaic representation. A summary of the efforts performed for the single-mosaic representation is shown in Figure 2.10. We now address the case of scenes displaying large motion parallax. We treat the roadside video sequences as being cases of scenes with large motion parallax. We are interested in creating mosaics of elements in these road scenes for the purpose of texturing 3D models of these scenes, or simply as 2D representations of the scene for general visualization purposes. We have three objectives here: 1) to represent the video sequence as concisely as possible, 2) to represent all elements in the scene correctly with respect to their shape and size, and 3) to remove occlusions and thus produce more complete representations of occluded objects. In order to represent the scene concisely, we also use multiperspective mosaicking paradigms to form our mosaics; in other words, all mosaics are formed by combining strips sampled from each frame in the video sequences. This is very similar to the work of Zheng [24, 25], who used multiperspective mosaicking techniques to create route maps of outdoor environments for robotic navigation. However, our intention is not just to create a route map that summarizes all elements in the scene in a single image, but to reconstruct, as best we can, objects of interest in the scene that are occluded by foreground elements, as well as sample each element according to the speed at which they move past the camera, so as to produce each element as they appear in the original sequence. Recall from Section 1. 1 ,  that a single multiperspective mosaic of a video sequence will distort objects in the scene according to their distance from the camera: objects 
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Figure 2.10 Summary of efforts for single-mosaic representation. Note that 
panoramic mosaicking is listed here as a related topic, but no implementation 
of panoramic mosaicking techniques will be discussed in detail in this 
document. 

close to the camera will appear truncated, · while objects further away will appear 
elongated. This is because along any given strip sampled from a video frame, 
every element within that strip is sampled at the same rate, even though those 
elements may be moving past the camera's field of view at different speeds. If we 
intend to reproduce all elements correctly with respect to shape and size, we need 
to sample each element in the scene according to the speeds at which they move 
past the field of view. Therefore, we make a compromise to our requirement of 
representational conciseness: instead of creating one single mosaic to represent the 
entire scene, we create several mosaics, with each mosaic associated with a unique 
pixel-wise velocity. 

This approach closely mirrors the layered representation methods discussed in 
Section 2.2. In fact, we derive many of our paradigms based on these methods in 
our solution formulation. Not every aspect of a proper layered representation is 
reproduced in this work, however. Referring again to Figure 2.8, in a typical 
layered representation of video, each layer consists of an intensity/color channel 
(which defines the appearance of the layer), an opacity channel (which determines 
occlusion relationships between layers), and a velocity channel (which determines 
how the layer is warped with time in order to reproduce the motion of the elements 
within that layer in the original video sequence). Since we aren't interested in 
reproducing a video sequence per se, only in reproducing the elements within that 
sequence as a series of 2D mosaics, we reduce the problem to computing the 
correct color/intensity channels for each layer. 
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Figure 2.11 Summary of efforts for layered-mosaics representation. 
We still need to deal with the basic problems of layer model determination and spatial support determination. Model initialization is performed manually, just as Baker et al. [36] initially chose to do. Unlike Baker, however, our model initialization does not involve manually assigning spatial segments to the scene, but only involves determining the number of layers we'd like to use to represent the scene, and then assigning unique pixel-wise velocities to each of those layers. Spatial support determination is determined by computing the velocity for each pixel, and then assigning those pixels to each layer according to their computed velocities. This aspect of the layer extraction algorithm is closely related to our registration technique for mosaicking, which is discussed next. In the single-mosaic representation, we proposed using phase correlation to perform registration for mosaicking, which only extracts one dominant inter-frame motion from a pair of adjacent frames. This is not a per-pixel velocity estimation, meaning, we do not acquire a dense flow field assigning vectors to each pixel in each video frame. We would like to have such a flow field for each frame, because this would not only provide us with velocity information with which we can sample mosaic strips, but also help us determine spatial support for each layer. In order to compute these dense flow fields, we use the same technique used by Wang and Adelson [35] to perform local motion estimation, which is a derivation of the Lucas-Kanade algorithm. Departing from Wang and Adelson's layer extraction method, we then segment each frame using the computed pixel velocities, according to the pre-initialized layer model. From the segmented frames, we can now sample each element in the scene correctly, and place those elements into their own layer-specific mosaic. The final problem is dealing with occlusions. To do this we use a unique approach to mosaic composition. Instead of creating one mosaic for each layer, we first create multiple mosaics for each layer, with the strips used to form each mosaic sampled from different points in each video frame. Using knowledge of the spatial correspondences between these mosaics, we are capable of reconstructing each layer, minus occlusions. A summary of the efforts performed for the layered­mosaics representation is shown in Figure 2. 1 1. 
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Because we intend to use mosaics as layers to represent a video sequence, we 
refer to this representation as the layered-mosaics representation. This approach 
aims to combine multiperspective mosaicking and layer extraction into one unified 
framework To date, we only know of one other effort that explicitly attempts the 
same combination: the 3D LAMP representation of Zhu et al . [27] . We shall 
briefly compare Zhu's effort and ours. The 3D LAMP representation is similar to 
our representation in that it is a multiperspective, adaptive-resolution, occlusion­
recovered representation of the scene. It is dissimilar in that the 3D LAMP method 
computes depth values and occlusion relationships from the EPI loci orientations, 
and uses those to determine its layer model, spatial support for each layer, and to 
remove occlusion. Our method does not attempt to compute depth values 
explicitly (though depth can be inferred from pixe] velocity, which is basically 
what the EPI loci orientations indicate), nor are occlusion relationships explicitly 
determined. In our method, model initialization is performed manually, but from 
there, spatial support is determined using a derivation of the Lucas-Kanade motion 
analysis algorithm. Occlusions are removed by taking advantage of the peripheral 
visual information available in each video frame, and intelligently using this 
information to fill in the occluded areas wherever possible. 

We now summarize the goals of our algorithms: for the single-mosaic 
representation, the input to our algorithm will be a dense sequence of images 
( usually taken from video), and the output will be a single mosaic summarizing the 
entire video sequence. For the layered-mosaics representation, the input will again 
be a dense sequence of images, and the output will be several mosaics, with each 
mosaic recreating a planar layer. All these layers may be used to recreate any 
segment of the original video sequence. 

We have now completed the outline of our proposed algorithm. In the next 
chapter, we continue with a detailed description of the single-mosaic representation 
algorithm. 
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Chapter 3 

Single-Mosaic Representation 

This chapter describes the algorithms used to create a single-mosaic representation 
of a video sequence. In Section 3.1, we begin with a description of the general 
framework of our solution and describe in detail the problem we are attempting to 
solve. Next, in Section 3.2, we describe various image preprocessing steps that 
must be typically be performed before the video sequence may be mosaicked. The 
description of our solution proper is in Section 3 . 3, where we describe our 
registration, strip sampling, and strip merging algorithms. We end with remarks in 
Section 3 . 4. 

3.1 General Framework 

The methodology for mosaicking a video using a single-view representation is split 
into several tasks. These tasks were divided amongst several modules in order to 
ease the coding process. The methodology was developed based on several 
assumptions concerning the nature of the scene in the video sequence and the 
camera's movement. The specifics and implications of the aforementioned 
assumptions are discussed next, after which the various modules of the algorithm 
will be examined. 

3.1.1 Data Constraints 

Let us begin by briefly reviewing our goals: single-mosaic representation is used 
when a) motion parallax effects exhibited in the video sequence are small relative 
to the dominant motions between frames, and b) the purpose is to produce a single, 
large image as an overview of the entire scene. The undervehicle video sequences 
used in this work, for instance, display small amounts of motion parallax, and thus 
would be adequately represented by a single mosaic. Also, a multi-layered 
representation of these sequences would run counter to the putpose of simplifying 
the inspection process, since there would be several images to inspect as opposed 
to one wide-view image of the scene. 

Now we state some of the assumptions and constraints we shall be using to 
formulate our solution. Since it is intended for the scene to be represented by a 
single mosaic, the first assumption is that the scene in the video sequence exists 
entirely on a single plane. Next, in order to simplify the mosaicking process, 
constraints are placed on the camera movement. It is assumed that the camera is 
translated solely on a single plane that is parallel to the plane of the scene. It is also 
assumed that the viewing plane of the camera is parallel to this plane of the scene. 
Finally, it is assumed that the camera does not rotate about its principal axis. The 
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movement constraints imposed on the camera are meant to simplify the mosaicking 
process. These constraints may appear very limiting, but a systematic method of 
acquiring data of the scene would most likely obey these constraints. The data 
acquisition process is discussed in more detail in Section 5.1. 

The collective effect of these constraints is that motion between frames is 
restricted to pure translational motion. This is simple to illustrate using principles 
of epipolar geometry [ 42]. Suppose we have two viewpoints of a point M, from 
two cameras with centroids C and C'. Assuming a pinhole camera model, if we 
know m, the projection of M on the viewing plane of one of the cameras, then the 
corresponding point m '  on the viewing plane of other camera is constrained to lie 
on a line. This line is the epipolar line, and is the trace of the plane ( C, C', M). The 
formation of the epipolar lines (from points in the images m to e and m' to e') are 
shown in Figure 3.1. 

Now we assume the camera is bounded by the aforementioned movement 
constraints. Then, for two viewing planes corresponding to two consecutive 
frames in the video sequence, the epipolar lines are parallel because both viewing 
planes lie upon the same ground plane. We also assume the scene may be modeled 
as a plane that is orthogonal to the principal axes of the cameras, and a point M 
may only exist on this plane. Then the distance between the projections of any two 
points M1 and M2 on the viewing planes will be equal on both viewing planes 
(Figure 3.2). 

If all scene and camera movement constraints are met, then all pixel 
movements between two consecutive frames are homogenous and purely 
translational. This greatly simplifies the motion analysis process, since a single 
horizontal-vertical translation may be used to define the homography between two 
adjacent frames. 

An ideal video sequence would come from a camera moving in a constant 
direction while the camera's principal axis is kept orthogonal to the scene of 
interest. A camera placed on a mobile platform may be used for this purpose. The 
platform may then be moved in a straight line past the scene. If the scene is larger 
than the camera's vertical field of view, several straight line passes may be made to 
ensure the entire scene is captured. A single pass will produce one mosaic. Figure 
3 .3 illustrates a typical acquisition setup. 

The speed of the platform need not be constant, though its direction should be 
as constant as possible to reduce inter-frame rotations in the video sequence. Once 
the video has been captured, the video sequence is decomposed into individual 
video frames. These frames are used as input for the mosaicking modules. 
3.1.2 Processing Modules 

The mosaicking process for single-mosaic representation reflects the general 
approach outlined in Figure 2.1. This process is outlined in Figure 3 .4. The input 
images are the video sequence separated into individual frames. A preprocessing 
module is used to perform distortion correction on each input image. The 
registration module uses phase correlation to perform motion analysis in order to 
compute inter-frame motion vectors. A merging module performs strip selection 
and blending of the strips to form the mosaic, which is the output of the algorithm. 

32 



M 

Figure 3.1 Epipolar geometry. Given m, the point m '  has to lie on its epipolar line 
m'-e'. 

C C' 

Figure 3.2 Epipolar geometry for parallel viewing planes. Note that the distances 
mi-m2 and m/-m/ are equal. 
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Figure 3.3 Video acquisition for undervehicle inspection. 
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Before the sequence can be mosaicked, some preprocessing is required to correct each image for barrel distortion, a problem addressed extensively in the past [43, 44]. Barrel distortion is a common phenomenon associated with off-the-shelf camera lenses. Also, there are times when the camera views the plane of the scene at an angle during acquisition. Therefore, a projective transform is performed on each frame to ensure that the camera's viewing plane appears parallel to the plane of the scene. Barre] distortion and angle compensation are performed on each frame in the video sequence before the actual mosaicking is performed. 
3.2.1 Barrel Distortion Correction 

Given the lens projection factors, ax and ay, the horizontal and vertical coordinate vectors of the uncorrected image, x and y, and the horizontal and vertical coordinate vectors of the corrected image, x' and y', the equation that gives an approximate correction for barrel distortion is 
(3. 1 )  
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where 11-fa!I is the modulus of the coordinate vector (x, y) [45] .  The reverse 
transform is normally used, since in practice, it is desired to find the corresponding 
pixel in the source image for each pixel in the destination image. The matching 
reverse transform is 

x' 
x =  

2 

" 

1 - a 
p 

X 

(l - ax llfai !
2

) 
(3.2) 

y = y 
2 

1 - a  j, 
y 

0 - ay ll�!
2
) 

The equations above assume that the images are converted to a normalized (- 1 to 1) 
coordinate system on both axes. The relevant conversions are as follows: 

. · (x + l)width 
l = --------

2 

. (y + I)height 
j =  2 

(2i - width) 
x = -----

width 

(2} - height) 
y = 

height 

(3.3) 

(3 .4) 

where width and height refer to the images' horizontal and vertical dimensions, in 
pixels, respectively, and i andj are coordinate .vectors in the original, unnormalized 
images. The barrel distortion correction was performed by using the camera to 
take images of a calibration grid, and then manually adjusting ax and ay using the 
grid image as a reference. 
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3.2.2 Perspective Distortion Correction 

The purpose of perspective distortion correction is to make it appear as though the scene's motion is orthogonal to the principal axis of the camera. A similar procedure is employed by Zhu et al. [22] as an 'image rectification' step. This procedure is required if the camera was viewing the scene of interest at an angle, which, as will be explained in Section 5. I ,  is true in our case. To perform perspective distortion correction, a projective warp is applied to each frame in the video sequence. Suppose we have the a point in the original image m1 = (x1 Y1 zd, and a point in the corrected image m2 = (x2 Y2 z2Y. Perspective distortion correction is performed using 
where 

V = [f � :J 
and 

[ cos¢cosK sinmsin¢cosK+cosmsinK -cos{t)Sin¢cosK+sinwsinK] R =  -cos¢cosK -sinwsin¢sinK+coswcosK cosmsin¢sinK+sinwcosK sin¢ -sinwcos¢ coswcos¢ 

(3.5) 

(3.6) 

(3.7) 
are the focal length scaling and 3D rotation matrices, with w, <p, and K being the pan, tilt, and rotation angles of the image plane. The warp parameters are determined manually, using visual cues in the scene in question. If the angle at which the camera was viewing the scene is known, this could be translated into the warp parameters as well. Resampling of the images is done using nearest-neighbor interpolation. 
3.3 Mosaic Creation 

In order to register the images for single-mosaic representation, motion analysis is performed using the phase correlation algorithm. The images are then merged by selecting and aligning strips sampled from the center of the images, according to the results of phase correlation. Finally, a weighted pixel blending scheme is used to reduce the visibility of seams between strips. These aspects of the registration and merging processes are discussed next. 
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3.3.1 Motion Analysis: Phase Correlation 

Recall that when the aforementioned movement and scene constraints are met, all 
that is required to perform registration between images is to find their mutual 
vertical and horizontal translations. The phase correlation method, introduced 
earlier, is a technique that works in the frequency domain to acquire the horizontal 
and vertical displacements between two images in an image pair. There will still be 
inconsistencies in the uniformity of the motions obtained, due to small amounts of 
motion parallax, but we assume the dominant motions are sufficient to obtain a 
reasonable estimate of the motion at the center of the images, from which the 
mosaic strips are taken. 

Of the horizontal and vertical displacements obtained, one will represent the 
dominant motion, which is the general direction the camera was moving in. This 
displacement will be referred to as the primary motion. The other displacement is 
caused mostly by camera jitter or slight changes in the mobile platform's direction. 
This displacement will be referred to as the secondary motion. In this work, in a 
motion vector (u,v) the primary motion always corresponds to v, the horizontal 
vector component, and the secondary motion always corresponds to u, the vertical 
vector component (As will be made clear in Section 3.3.2, this causes the resulting 
mosaics to always be horizontally oriented, as will be seen in Section 5 .3 .2. ). If the 
primary motion in the original image sequence is oriented vertically, then the input 
images are rotated before motion analysis is performed. 

Again, given the Fourier transforms of the two images, F1 and F2, the cross­
power spectrum of these two images is given by Equation 2.7. In theory, the 
inverse Fourier transform of the cross power spectrum (ICPS) produces a function 
with an impulse at the displacement coordinates, (x0, yo) which correspond to (u,v). 
In practice, the :function will not be a pure impulse, but there will be a visible peak 
at the coordinates corresponding to the most dominant motion (Fig. 2.7). For a 
scene displaying motion parallax, there may be several motions at slightly different 
velocities present between two adjacent frames. In this case, there shall be several 
peaks of varying heights, and the highest peak is chosen as representative of the 
overall motion. 

In this implementation of the phase correlation algorithm, all input images are 
resized to 256x256 images. This is done to facilitate the use of the implementation 
of the Fourier transform used in this work, which requires that the pixel width and 
height of the input images be powers of 2. The resizing algorithm uses a simple 
nearest-neighbor resampling scheme. Once phase correlation is performed, it is 
straightforward to use the resize factors to obtain the correct translations. Suppose 
we use rescaling factors fx and h for the vertical and horizontal dimensions, height 
and width, respectively. Then, we have 

256 
fx = height ' (3.7) 

Once phase correlation has been performed on the pair of 256x256 images, giving 
us (xo, y0), then the true displacement between the images in their original 
resolution is given by 
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X 
u = -o 

Ix ' 
(3.8) 

Resizing the original images does introduce some error to the motion analysis results. The horizontal and vertical errors, ex and ey, are directly related to the size of the original images: 
(3.9) 

We do not address correcting for accumulative error in this work, and, in practice, the errors tend to be small compared to the magnitude of the recovered vectors. The results of the phase correlation algorithm may be affected by a phenomenon called Discrete Fourier Transform leakage, or DFT leakage. DFT leakage occurs in most Fourier transforms of real-world images, and is caused by the discontinuities between the opposing edges of the original image. Although a real-world image is a finite and non-periodic set of data, the DFT algorithm assumes that the data is infinite and periodic. Hence the edge discontinuities present within the image (which is where the assumption of periodicity fails) tend to produce high axis components in the Fourier transforms of those images. This phenomenon is illustrated in Figure 3.5. In order to deal with DFT leakage, a mask is applied to each image prior to calculating its Fourier transfonn. A common suggestion is that this mask be based 

(a) (b) 

Figure 3.5 D FT leakage. The top images of (a) and (b) are rotated versions of one another, and the bottom images are their Fourier transforms. We use these two images in order to show that the strong components which are present at the axes are clearly independent of the rotations of the images. These axis components are caused by DFT leakage, which is caused by the sharp disparity in intensity between the opposing edges of the images. 
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on the Hamming window [ 46], which is a tapering function that increasingly 
reduces the intensity values of the image pixels as they get further from the center 
of the image, producing a vignetting effect on the image. The equation for the I ­
dimensional Hamming window, which would provide the 1D weights of the 
tapering window, is 

H(x) = 0.54 + 0.46 co{ :x} (3 . 1 0) 

Another suggestion is to use a variant of the same function, called the Hanning 
window: 

H(x) = 0.5 + o.5 cos( :x} (3 . 1 1 )  

Both functions are similar to t�e Gaussian function, which may be substituted 
readily: 

G(x) =  �exp{-- (x - µ}2 1(20-2 )} 
. 

(J' 2,r (3 . 1 2) 

where µ is the mean of the Gaussian and a is the standard deviation. In order to 
produce the vignetting effect, µ corresponds to the center of the images, while a is 
computed as a fraction ofµ, usually close to half ofµ. 

Regardless of which function is used, the resulting tapering window removes 
the discontinuities at the sides of the image while preserving a majority of the 
information towards the center of the images. In this work, the Hamming window 
(Equation 3 . 1 0) is used to form the tapering window. An example of applying the 
Hamming window in order to reduce OFT leakage is shown in Figure 3 .6. 

A straightforward implementation of Equation 2. 7 on a pair of 256x256 images 
would give a peak at (xo� Yo') indicating the correct translation (xo, Yo). However, 
the correct translation indicated by xo ' may be either x0 or -(256-x0), due to the 
symmetrical nature of the Fourier transform. The same is true for y0' .  In order to 
avoid this ambiguity, two 5 12x5 12  images (four times the size of the original 
256x256 images) are created. In the first 5 12x5 12  image, its fourth quadrant is 
filled by the first 256x256 input image. In the second 5 12x5 12  image, its first 
quadrant is filled by the second 256x256 input image. Phase correlation is then 
performed on the two 5 12x5 12  images. Using the resulting x0' and y0' values, (x0, 
y0) between the two 256x256 images is calculated to bex0' -256 andy0'-256. 

In order to decrease the chances of false registrations, and also to speed up the 
registration process, we use four parameters, Umin, Umax, Vnun, and Vmax-, to specify a 
search region within the ICPS function to which the search for the peak of the 
function is restricted. These parameters are of course converted using fx and J; 
before they are used to specify the search region within the ICPS function (whose 
dimensions are always based on the 256x256 images). 
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(a) (b) 

Figure 3.6 Eliminating DFT leakage. (a)A test image and its Fourier 
transform. (b) Result of applying the tapering window. Notice the reduction 
of axis components. Note that we use a tilted image so that the frequency 
components of the scene may be easily differentiated from the axis 
components caused by DFT leakage. 

We summarize our phase correlation algorithm in Figure 3 .7. There are two 
sets of parameters that are specified in the algorithm: one parameter for the 
tapering window and four parameters for the ICPS peak value search. For the 
tapering window, the parameter is a, which is the Hamming window parameter 
which determines the width of the curve of the Hamming function, which in turn 
determines the ID weights of the tapering window. The . four parameters, Umin, 
Umax, Vmm, and Vmta are upper and lower bounds limiting the search region when 
finding the peak value of the inverse cross power spectrum. 

3.3.2 Strip Selection 

Once the horizontal and vertical displacements between two images are known, 
strips are acquired from one of the images based on those displacements. For a 
pair of adjacent images, the strip is formed from the more recent image in the 
sequence. The principal behind strip selection for multiperspective mosaicking is 
to select strips that are perpendicular to the motion flow. 

Recall from Section 3.3 . 1  that the horizontal motion of the sequence, v, 
corresponds to the primary motion of the sequence. Therefore, the horizontal 
dimension of a strip sampled from an image Dn is equal to v found using phase 
correlation performed using input images Dn and Dn+l• The vertical dimension of 
the strip will be y, the vertical dimension of Dn, (which should be the same for all 
images in the sequence). The strip is sampled from the center of Dn . Note that 
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Umin, U,na.x 

Vmin, Vmax 

Input Images, 
D1 and D2 

Apply Tapering 
Window to D 1 and D2 

Compute DFT of D1 and D2 

Calculate Cross Power 
Spectrum of D 1 and D2 

Compute IDFT of Cross 
Power Spectrum (ICPS) 

Find peak value of ICPS ( ICPSmax ) 

( U , V ) = ( i ,j ) 
corresponding to 
ICPSmax 

Figure 3. 7 Phase Correlation Algorithm. 
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since the horizontal dimensions of strips correspond to the primary motion, and the 
mosaic strips are joined together along the strip edges perpendicular to the primary 
motion, the lengthwise orientation of the mosaics is horizontal. (The orientation of 
the mosaics is not important; the output images may be rotated easily.) 

3.3.3 Merging of Strips 

When combining two strips together, the secondary motion is used to align 
adjacent strips properly. However, although the strips may be properly aligned, 
seams may still be noticeable due to misalignments ( caused by motion parallax or 
rotation) and inconsistent lighting. A simple blending scheme is used in order to 
reduce the visual discontinuity caused by seams. Suppose in the mosaic Dm, we 
have two strips sampled from two consecutive images, D1 (the image on the left) 
and D2 (the image on the right). The blending function is a one-dimensional 
function that is applied along a line orthogonal to the seam of the strips. For a 
coordinate i along this line, the intensity of its pixel in Dm is determined by 

Dm (b - ; + i) = (1 - )D1 (c1 + �I - ; + i) + 
"----v---J----...----

A1 Bi 

( _!_) D 
2 

( C 
2 

- w 2 - � + i )  ' i = .1 . . .  w ' 
w 2 2 

(3 . 1 3) 

where c 1 and c2 are the coordinates corresponding to the centers of D 1 and D2, 
respectively, w1 and w2 are the widths of the strips sampled from D1 and D2, 
w = min( w1 , w2 ) ,  and b is the mosaic coordinate corresponding to the boundary 
between the two strips. The terms A1 and A2 are weights for the pixel intensities for 
D1 and D2, while B1 and B2 are the pixel intensities themselves. For color images, 
this function is applied to the red, green, and blue channels of the image. At a 
seam, this function adds weighted pixel values from the images that intersect at the 
seam. The weights of each pixel in a strip is a function of the distance of the pixel 
from the intersecting seam; the weights increase as pixels get closer to the center of 
the strip from which they are sampled, and decrease as they get further. At the 
seam, the weights for pixels from both strips in an adjacent pair are equal, so that 
both adjacent images contribute equally to the pixel values at the seam. Note that, 
for a strip, more information is sampled from its source image than is specified by 
the pixel-wise primary motion computed for that image. The extra information 
sampled for a strip 'bleeds' into the adjacent strip in order to achieve a feathering 
effect. The amount of information sampled from two neighboring strips to perform 
the blending at their boundary corresponds to the pixel-wise width of the smaller of 
the two strips. Because the smaller width is used, there is no danger of non­
adjacent strips being blended together. The blending process is illustrated in 
Figure 3 .8. 

After the blending is complete, the two strips have been successfully 
mosaicked. The process is then repeated for each subsequent frame in the video 
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Figure 3.8 Blending of strips. a) Three consecutive strips without blending. 
Their widths correspond to the recovered primary motions of the images they 
were sampled from. b) The same three strips with blending. At the boundaries 
between strips, additional information is sampled from the frames corresponding 
to the strips to be used for the blending. The pixel-wise width of the additional 
information for both strips is always half the pixel-wise width of the smaller 
strip. In this way, only strips that are adjacent to one another are blended into 
one another, and there is no possibility of unintentional blending between strips 
that are not adjacent to one another. For instance, in the example shown above, 
the regions where blending occurs between the middle strip and its two neighbors 
has the same pixel-wise width of its neighbors. This is because the middle strip 
is larger than both of its neighbors; hence the pixel-wise widths of the blending 
regions are based on the pixel-wise widths of the neighboring strips. 
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sequence. After each cycle of the merging process, the vertical and horizontal 
displacement of the last strip in the mosaic is recorded, and this information is used 
as the anchor for the next strip in the mosaic. Once every frame in the video 
sequence has been processed, the mosaic is complete. 

3.4 Remarks 

It should be noted that the data constraints of our system are rarely rigorously met 
in any undervehicle video sequence, or most real-world video sequences for that 
matter. However, for a scene where there is no great disparity between elements in 
the scene, this technique suffices as long as the video sequence is sufficiently 
dense. One important consideration is the inter-frame motion of the sequence to be 
mosaicked. The effects of different video frame rates, or more specifically, 
different average inter-frame motions, are illustrated in Figure 3. 9. These 
discontinuities happen because there is small motion parallax in our sequences, and 
hence different elements may move past the field of view at different speeds. Yet, 
within a single strip, all elements in that strip are being sampled at the same rate. 
This is what causes the types of discontinuities shown in Figure 3. 9. Smaller inter­
frame motions tend to produce less visible discontinuities in the resulting mosaic. 
Recall from Section 2. 1 . 2  that Rousso et al. [ 26] used· interpolated views between 
video frames to increase the sampling rate of the strips and hence improve 
continuity between strips. This is essentially the same as increasing the frame rate 
of the original video. In this work, we do not attempt to increase the frame rate by 
view interpolation. Our only suggestion is that the original video be captured at an 
acceptable frame rate relative to the motion of the platform used in the capture 
process. The influence of inter-frame motion, high or low, on the results will be 
seen in Chapter 5. 

The selection of the registration parameter a ( the tapering window parameter) 
and the search region parameters were not discussed here. There is some logic to 
how these parameters may be selected, but some experiments were also performed 
to verify that logic. The selection of these parameters and the· experiments 
performed to support these selections are reserved for discussion in Chapter 5. 

Finally, we note that the method of perspective and barrel distortion detailed 
here is somewhat simplistic in that the parameters are chosen manually, using input 
images as a visual reference to gauge the 'correctness' of the parameters. Our focus 
in this work was not to implement sophisticated perspective and barrel distortion 
correction algorithms; we only desired an approximate correction to reduce the 
extreme distortions that were clearly visible. For our current purposes, an 
approximate correction suffices, though possible improvements to our distortion 
correct.ion methods will be discussed in Chapter 7. 

We have now completed our description of the single-mosaic representation 
algorithm used in this work Next, we will describe the layered-mosaics 
representation scheme used to process video of scenes displaying large motion 
parallax. 
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Figure 3.9 The effect of different inter-frame motions on the resulting mosaics. 
High inter-frame motions tend to result in large discontinuities in the mosaic, 
while low inter-frame motions reduce these discontinuities. Note that the strip 
width changes according to the inter-frame motion: a wide strip for large motion 
and a narrow strip for small motion. 
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Chapter 4 

Layered-Mosaics Representation 

This chapter describes the algorithms used to create a layered-mosaics representation of a video sequence. In Section 4. 1 ,  we begin witp a description of the general framework of our solution and describe in detail the problem we are attempting to solve. Next, in Section 4.2, we describe the various processes involved in mosaicking a sequence into layers, including motion analysis, model initialization, spatial support determination, and layer composition. We end with remarks in Section 4.3. 
4 .1  General Framework 

The principles used to create single-mosaic representation are now extended to the process of creating a layered-mosaics representation. Adjustments are made to the mosaicking process to facilitate the extraction of layers. The most important of these is the use of the Lucas-Kanade motion tracking algorithm to perform motion analysis. Again the process is divided up into several program modules. Before discussing these modules, the data constraints used earlier are revised for the case of a multi-layer planar scene. 
4.1.1 Data Constraints 

For the single-mosaic representation, it was assumed that the scene exists entirely on a single plane parallel to the viewing plane. The extension to layered-mosaics representation is straightforward: it is now assumed that the scene is composed of several planar layers that are at varying distances from and parallel to the viewing plane. Suppose we have three points M1, M2, and M on three planes of the scene P1, P2, and P3 respectively (Figure 4.1 ), and that these three points lie on a ground plane orthogonal to P1, P2, and P3 • It is observed that the distance between the points m1 and m2 and the distance between their corresponding points mi ' and m/ are not equal. This is caused by the disparity in the normal distance of the planes 
P1 and P2 from the viewing planes. In a video sequence, this is observed as motion parallax; objects in the foreground move past the camera's field of view faster than objects in the distance. Also, it is observed that there is no projection of the point 
M3 on the viewing plane of C, due the occluding plane P2. 

47 



C C 
Figure 4.1 Multi-layered configuration of planar scenes. The distances mrm2 
and mi'-mi' are not equal, while there is no projection of M3 on the viewing 
plane of C at all. 

The disparity between the distances mrm2 and mi '-mi ' is directly related to the 
disparity in the normal distances of P1 and P2 from the viewing planes. Therefore, 
assuming the scene and camera's movement constraints are met, the spatial support 
for each layer may be inferred by obtaining the translation velocities of pixels 
between consecutive frames. Pixels exhibiting the same translation are assigned to 
the same layer. 

Video acquisition for the layered-mosaics representation is similar to the 
acquisition method described in Section 3. 1. The camera, placed on a mobile 
platform, moves in a straight line past the scene while the camera is pointed 
towards the scene. For reasons that will be made clear in Section 4.2.2, it is 
required that the speed of the moving platform remain fairly constant throughout 
the entire acquisition process. As before, the video obtained is decomposed into 
individual frames, which becomes the input to the program modules. Figure 4.2 
illustrates a typical acquisition setup. 
4.1.2 Processing Modules 

The mosaicking process for layered-mosaic representation is similar to the single­
mosaic process for each individual layer mosaic. The differences are a) motion 
analysis is now performed using the Lucas-Kanade method and b) pixels are 
divided amongst the mosaics according to their velocities during the merging 
process. In addition to the mosaicking modules, model initialization for the layer 
representation is performed manually beforehand, and occluded sections of the 
mosaics are filled in using a mosaic composition module. The preprocessing 
module is similar in every aspect to the one described in Section 3 .2, and will not 
be discussed here again. A general outline of the algorithm is shown in Figure 4.3. 
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Figure 4.2 Video acquisition for outdoor/ road scenes. 
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Figure 4.3 Mosaicking Process for Layered-Mosaic Representation. 
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4.2 Mosaic Creation 

For the layered-mosaic representation, registration is also performed using motion 
analysis, but this time using the Lucas-Kanade motion tracking algorithm. Spatial 
support for each layer is then determined using the motion analysis results, based 
on a pre-initialized model for layer representation. Image merging again consists 
of selecting and aligning strips on each individual mosaic. To deal with 
occlusions, multiple strips are obtained from different points in each frame and 
used to form multiple mosaics for each layer. It is possible to combine the spatial 
data in these multiple mosaics to fill in occluded areas in the final mosaics. A layer 
composition module is used to fill in the occluded areas and produce the final 
layered mosaics. 

4.2.1 Motion Analysis: Lucas-Kanade Method 

A description of the original Lucas-Kanade motion tracking algorithm has already 
been given in Section 1 .2.2. The implementation used in this work is based on 
those described in [28] and [ 47]. This implementation performs a weighted least­
squares fit of local first-order constraints to a constant model for the velocity, V, in 
each small spatial neighborhood (denoted by 0) by minimizing 

Lw 2 (x)[VI(x, t) ·  V + /1 (x, t)]2 , (4. 1) 
xell 

where W(x) is a window function that gives more influence to the constraints at the 
center of the window than to the ones at the periphery, x and t are spatial and time 
variables, and J and VI are the pixel intensity and pixel intensity gradient, 
respectively. In short, this implementation finds the velocity model that best 
describes the spatial and temporal intensity gradients for a given pixel. 

Suppose for each pixel in an image frame, the velocity associated with that 
pixel is (u,v), which describes the horizontal and vertical velocity components. To 
compute these velocities, we need not only the current image frame, but the two 
image frames before and the two image frames after the current image frame in the 
sequence. The intensity gradients along the x-axis, y-axis, and along the five 
consecutive frames are V Ix, V ly, and V 11, respectively. We need to solve the 
linear system 

(4.2) 

which is a solution derived from Equation 4. 1 .  Each element in the summations 
are the smoothed versions of the specified gradients. 

Before the gradients are calculated, the five image frames are smoothed 
spatially and temporally to reduce the effects of noise on the gradient calculations. 
Spatial smoothing is performed by convolving the image with the following kernel: 
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This kernel merely computes the average of the pixel and its 8 neighboring pixels. 
Temporal smoothing for the intensity of the current pixel, Im, is computed using a 
Gaussian mask convolved with the values of current pixel and its corresponding 
pixels in the last 6 frames. The equation for this operation is 

_ �( 1 Jo+n-µ>2 / }1, Im - ;:t a.fii exl'l_ ;20'2 
J

m+n-6 , (4.3) 

where µ is the mean of the Gaussian ( 6 in this case, since we want the most weight 
given to the current pixel) and a is the standard deviation of the Gaussian (set to 1 
in this work). 

Once spatiotemporal smoothing is complete, the intensity gradients V Ix, V !v, 
and V 11 are calculated for each pixel in the current image frame (and only the 
current image frame) using the following convolution kernel: 

which is the same convolution kernel used in [28] and [ 47] to compute the intensity 
gradient. The image is convolved with this kernel along the x-axis to calculate 
V Ix, along the y-axis to calculate V l

y
, and along the five frames to calculate V /1• 

These values are then used to calculate V I/, V Ix V l
y
, V //, V Ix V /1, and 

V l
y 
V 11 for each pixel. To obtain the summation elements in Equation 4.2, these 

gradients are smoothed using a separable, isotropic 5x5 kernel, with effective 1D  
weights (0.0625 , 0.25, 0.375, 0.25. 0.0625). After the smoothed gradients have 
been obtained, they are used to solve for u and v in Equation 4.2. Once these have 
been calculated for each pixel in the image, the result is a flow field with velocity 
information for each pixel in the image. 

The Lucas-Kanade implementation in this work is only accurate for pixel 
speeds of up to 2 pixels/frame. Higher speeds tend to produce inaccurate 
computation results. In order to deal with the case of higher pixel speeds, a simple 
multi-resolution motion analysis scheme is used. First, two rescaling factors,fi and 
Ji, are specified manually. These factors are used to decrease the size of the input 
images so that pixel movements within the sequence are smaller, and can be 
detected with more accuracy using our Lucas-Kanade implementation. For a 
single input image, two rescaled versions of that input image are created using Ji 
and Ji. The new dimensions of the rescaled versions would be calculated as 

height1 ' = f1 
x height1 , 

height2 ' = f2 x height2 , 

width1 ' = /1 x width1 

width2 ' = /2 x width2 
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A nearest-neighbor sampling scheme is used to sample the pixels of the rescaled 
images. Note that O<;fi<l ,  O<fi<l ,  and .fi</z. Two rescaled versions of the input 
image are needed because the image sequence is processed twice, at two different 
resolutions. We do this so that we can detect the higher velocities at the lower 
resolution, but still retain accurate measurements of the lower velocities at a higher 
resolution. First, we rescale the image sequence using /1• We then compute a 
(u ',v') vector for each pixel in image using the implementation of the Lucas­
Kanade algorithm discussed above, creating a flow field at /rresolution. We then 
rescale the flow field to original resolution, recomputing each (u',v') vector using 

v' 
v = - .  

/1 
(4.5) 

We use nearest-neighbor sampling to assign vectors to pixels with unspecified 
vectors when restoring the rescaling flow field to original resolution. Then, for 
each pixel in the flow field, we keep its vector only if the vector's magnitude, IV!, is 
above a threshold vlim. This threshold is determined by the velocity magnitude that 
is equal to 2 atfz-resolution. Th�s is calculated using 

(4.6) 

Any velocity with IV! < vlim in the flow field is discarded. Then, the image 
sequence (not the flow field) is rescaled (from the original resolution, not fr 

resolution) using fz; The (u ',v') vectors are calculated for each pixel, creating a 
second flow field at fz-resolution. As before, this second flow field is rescaled to 
original resolution, and the (u ',v') vectors are again rescaled using Equation 4.5, 
substitutingfz for/1. Finally, we compare the second flow field with the first flow 
field, and for pixels in the first flow field whose vectors we discarded earlier, we 
substitute the corresponding (u, v) vectors from the second flow field. This process 
is demonstrated in Figure 4.4 using the Yosemite video sequence which was 
created by Lynn Quam at SRI [48] usingfi=0.25 andfi=l .0 (original resolution). 

So far, we've described the Lucas-Kanade motion analysis algorithm with 
respect to /, the pixel intensity only. However, we are using color images, defined 
by the three R,G and B channels. The Lucas-Kanade algorithm is applied to all 
three channels separately. Different velocity measurements may be obtained for 
each channel. We pick the highest velocity estimate among the three as the correct 
estimate, with the reasoning that intensity changes due to motion may be less 
apparent in one or two channels, but if there is actual intensity change due to 
motion, at least one of the channels will exhibit a sharp change, resulting in a high 
velocity estimate. 

We summarize our implementation of the Lucas-Kanade motion analysis 
algorithm in Figure 4.5. Although we list four parameters in the flow chart, the 
Gaussian function parameters for the temporal smoothing operation are set 
constant (µ = 6, (J = 2). So there are really only two free parameters in our 
implementation :.fi and.fi, the rescaling factors for multi-resolution motion analysis. 
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(a) 

(c) 

• -5 pixels/frame 
• -4 pixels/frame 
• -3 pixels/frame 
• -2 pixels/frame 
• -1 pixels/frame 

• -5 pixels/frame 
:e -4 pixels/frame 
• -3 pixels/frame 
• -2 pixels/frame 
·• -1 pixels/frame 

(b) 

(d) 

Figure 4.4 Lucas-Kanade Motion Analysis. (a) Sample frame from the 
Yosemite sequence [ 48]. (b) The correct flow field for the sequence. 
( c) Results of motion analysis at original 1/4 resolution. Green regions denote 
pixels moving left, and red pixels denote regions moving right (for simplicity 
vertical motion is excluded in these visualizations). Color intensity is directly 
proportional to velocity maginitude (refer to the legend for specific intensity­
magnitude correlations). The white regions denote velocities that were 
computed to be less than Vum, and are thus discarded. ( d) Results of motion 
analysis at original resolution. The white regions in ( c) are filled in using the 
velocities recovered at original resolution. 
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Input images, D1, D,, 

D1, D4, and DJ-

Perform spatiotemporal 
smoothing on D1, Di, D,, D4, 
andD.s. 

Solve Equation 4.2 for 
(u', v? for each pixel 
in D1• 

Resiu flow field to 
original resolution. 

L..-.------4 Discard all (u, v) vectors 
with jyt<v,,. 

/:=Ji 
Rescale input images 
with rescale w:tor /. 

Compute intensity 
gradients /,,, I,,, and I, of 
�h pixel in D1 • 

Smooth intensity 
gradients. 

f:=h 

Resiu second flow field to original 
resolution. Substitute previously 

discarded (u, v) vectors in first flow 
field with corresponding vectors 

from second flow field. 

Figure 4.5 Lucas-Kanade Motion Analysis algorithm. 
These change ·as the magnitude of the motions in the scene change -fi, for instance, tends to be small if motions in the scene are large, since larger motions can only be detected at smaller resolutions. 
4.2.2 Model Initialization and Spatial Support Determination 

Layer extraction in this work is split into two distinct processes: model initialization and spatial support determination. Spatial support determination is performed based on the parameters specified in the model initialization. These parameters are a) number of layers in the scene, and b) velocities associated with each layer. Since it is assumed that the scene and camera movement obeys the constraints defined in Section 4. 1 . 1 ,  all layers are assumed to follow the same motion model, which is purely translational motion of a rigid plane. Therefore, it is not required to specify separate motion models for each layer. Determination of the model initialization parameters is performed manually by the user. The video sequence is observed to choose a number of layers that would adequately represent the scene. An estimate of the inter-frame motion for each layer is also obtained through observation of the video, and these estimates are used as the layer velocities. For a layer Pn, a velocity (un, v") is associated with it, with the component representing secondary motion (as defined in Section 2.4.2) typically set to zero. Model initialization using two frames as a reference is illustrated in Figure 4.6 . .  
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3 3 

(a) (b) 

Figure 4.6 Model initialization of layers. Two mock video frames, (a) and (b), 
are used as a visual reference to perform model initialization. In this scene, a 
natural choice would be to designate separate layers to the plane of the object 
labeled 1 ,  the object as labeled 2, and the background labeled as 3. The surface 
on which objects 1 and 2 lie on will most likely display non-translational affine 
motion, or, if the entire surface is homogenous, no apparent motion at all. No 
layer is initialized to represent this surface. Note that if the surface is 
homogenous, the spatial support determination process will most likely assign 
pixels corresponding to the surface to the background layer 3 if it also displays 
no apparent motion. Therefore, in this example, the scene is modeled as being 
represented by three layers. 

The layer representation model may be initialized at any point before spatial 
support is determined. In this work, model initialization was performed before any 
other processing of the video frames. Once motion analysis of the frames has been 
performed, as described in section 4.3. 1 ,  we may determine spatial support for each 
layer. For a pixel in a given image, the Euclidean distance between its motion 
vector, (x, y), in 2D space and each of the layer-assigned motion vectors (u0,v0 • • •  
UN, VN), with N being the number of layers, is calculated. The shortest distance 
found indicates the layer that pixel is assigned to. In this manner, each frame is 
segmented according to the spatial support for each layer. This is repeated until 
each frame in the video sequence has been processed. 

Note that we do not update the layer model after it has been initialized, and 
recall that one of the constraints placed on the camera movement was that the 
speed of the camera must remain fairly constant throughout the entire sequence. 
Because we do not update the layer model or any of the motion vectors associated 
with each layer during the spatial support determination process, the speed of the 
camera should not vary greatly, so that each layer displays the same motion 
properties throughout the entire sequence. If the motion of the camera varies 
throughout the sequence, the algorithm will lose track of many of the initialized 
layers, which will result in incorrect layer assignments during the spatial support 
determination process. 

In a given frame, the collection of pixels assigned as belonging to a layer is 
henceforth referred to as that layer's supporl region within that frame. Motion 
analysis has provided an estimate for each layer's support region in each frame in 
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c = 

count 

Erode s­

c=c-1 

Figure 4. 7 Hierarchical binary morphological operator. N is the number of 
layers and S0, S1 • • •  Sn are the support regions for each layer. The order in which 
the regions are processed is arranged according to the magnitude of their 
velocities, with the S0 indicating the layer with the smallest velocity and Sn indicating the layer with the largest. Beginning with Sn and ending with So , the 
dilation and erosion operations are performed on each region in turn. 
the video sequence. However, there may still be noticeable errors present in these 
support regions, due to inaccurate motion estimates. For layers whose velocities 
are relatively low, these errors tend to be small or nonexistent. Layers with higher 
velocities, however, tend to have large gaps in their support regions, where pixels 
have been assigned incorrectly to other layers. In order to reduce these incorrect 
assignments in a given frame, a hierarchical morphological operator was developed 
to close the gaps in each region. 

The algorithm for this operator is shown in Figure 4. 7. The dilation and 
erosion operations are performed as binary operations on each layer's support 
region in turn. Each region is dilated and eroded by the structuring element shown 
in Figure 4.8. 

Dilation and erosion are usually performed in that order to form a closing 
operator [ 49). The algorithm of Figure 4. 7 is similar to a closing operator in that it 
fuses narrow breaks, eliminates small holes, and fills gaps in the regions' contours. 
This implementation performs the operations in a hierarchical manner. Starting 
with the region of highest velocity and ending with the region of smallest velocity, 
the extent to which the closing operation is performed is gradually lessened. This 
is done so that while closing the small gaps in the regions of small velocities, the 
results of closing the large gaps in the support regions of higher velocities is still 
preserved. If the closing operation were applied to each layer to an equal extent, 
the closing for regions of higher velocity, which typically display larger gaps, 
would be negated. 

Once the morphological operations have been applied to each frame in the 
video sequence, the process of determining spatial support for each layer 1s 
complete. This information may now be used to form the layered mosaics. 
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Figure 4.8 Structuring element for the hierarchical morphological operator. 
The element's form is comparable to a subsampled 1 3x 1 3  grid, with the 
samples taken along the horizontal and vertical axes. This structuring element 
was chosen based on heuristic observation of the results. 

4.2.3 Composition of Layered Mosaics 

The challenge of representing partially occluded background elements in their 
entirety is dealt with using our layer composition method. To explain how this is 
done, we discuss the composition of a mosaic for a given planar layer, Pn, with 
partial occlusion. Again, strips are sampled from each frame from the video 
sequence, as was done for the single-mosaic representation. This time, however, 
there is no longer one global motion associated which each frame. Instead, each 
frame has been segmented according to the spatial support determination for each 
layer. So for a layer Pn, only those pixels that have been assigned to Pn, using the 
spatial support determination algorithm of. Section 4:3.2, are referenced. For a 
given image frame, we wish to determine (x0, y0), the primary and secondary 
motions, which will determine the width and alignment of the strip. For each pixel 
assigned to Pn, the vector computed for that pixel is (x, y). To find (x0, y0), the 
average value of (x, y) for all pixels assigned to Pn are calculated. Hence, 

(4. 7) 

where d is the number of pixels in the given frame assigned to Pn , Strips are 
sampled from the frame according to (x0, y0), again with the width of the strip 
corresponding to the width of the primary motion. As it was in the single-mosaic 
representation, images are oriented so that the primary motion corresponds to yo, 
and images are rotated accordingly if needed prior to processing. Only the 
intensity information of pixels belonging to the layer Pn is retrieved, while 
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Figure 4.9 Creation of a reference mosaic and peripheral mosaics by sampling 
strips from different points in a frame. 

information from pixels belonging to other layers is ignored. This will result in 
mosaics that have 'gaps' where there were occluding or background elements that 
did not belong to the layer Pn, Figure 4.9 illustrates this process. 

The discussion of strip sampling above· does not address one possible scenario: 
what if, for a particular layer, there are parts of the sequence that do not clearly 
exhibit the motion associated with that layer? In other words, layers containing 
disparate elements such as signboards and trees may not have elements 
representative of its motion at some point in the sequence. However, we sti11 need 
strips to build the mosaic representing this layer, or the distances between these 
elements within a ·mosaic · of that layer would be inaccurate. Currently, in this 
work, we do not attempt to accurately determine this distance, but instead use the 
most recently computed value of (xo;y0) .  for that layer · if there are no vectors 
associated to a layer with which to compute (x0,y0). As it happens, in our current 
implementation, there is never an occasion when there a�e no vectors associated 
with a particular layer, since all vectors are assigned based on minimum distance to 
the layer vectors, not distance within a threshold. 

In order to acquire a more complete representation of elements in the layer Pn, we create more than one mosaic of that layer. Each mosaic is created from strips 
sampled at different points in each frame. These strips are spaced apart evenly, and 
the pixel-wise distances of each strip from one another is known. Therefore, for 
Pn, we now have several mosaics M1, M2 . . .  Mk, where k is the number of mosaics 
that will be used in order to compose Pn. One of these mosaics, typically the 
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mosaic composed from strips sampled closest to the center of each frame, (usually 
M1r12) is used as a reference mosaic for composing P,,. The rest of the mosaics, 
because they are formed from strips sampled from either side of the center strip of 
each image frame, are referred to here.as peripheral mosaics. Three parameters are 
used to determine how the strips for the peripheral and reference mosaics are 
sampled. The first parameter is k, the number of mosaics used to compose the 
layer. The other parameter is dist, the pixel-wise distance between the 
corresponding edges of the strips. The strips are always sampled with the reference 
strip close to the center of the image. Given the horizontal dimension of an image 
frame, width, the horizontal position of the edge of the first strip, Ya, is determined 
by 

width - ((k - I) x dist) 
Ya = 2 

, (4.8) 

after which consecutive strips are sampled at intervals of dist pixels. Figure 4. 1 0  
illustrates how these parameters would be used to sample strips from an image 
frame, using k = 5 as an example. 

After the reference and peripheral mosaics have been created, there will still be 
noticeable 'noise' in the resulting mosaics, where local incorrect assignments of 
pixels will produce inconsistencies in the layers. To reduce these inconsistencies, 
we perform a simple morphological clo�ing operation on each mosaic, using the 

I dist I dist I dis� dist I ◄ .. ◄ ►◄ ◄ .. 

I I I I 
Ya 

Reference 
Strip 

Figure 4.10 Sampling five strips from an image frame. Note that Ya is positioned 
so that the reference strip is close to (though not exactly at) the center of the 
image frame. 
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same structuring element of Figure 4.8. This time, however, the operation is 
performed on the null regions of each mosaic, i.e. the regions that were assigned as 
not belonging to that layer. The closing operation is only performed once, without 
the hierarchical looping of the morphological operator described in Section 4.2.2. 
The resulting, noise reduced mosaics are then used to perform the actual 
composition of the layer mosaic. 

Now, since dist, the pixel-wise distance separating the strips sampled from 
each frame, is known, it is also known how the peripheral mosaics spatially 
correspond to the reference mosaic. This knowledge is used to fill in the 'gaps' in 
the reference mosaic, by gathering pixel intensity information from the peripheral 
mosaics that were created. First, the peripheral mosaics are ordered by the pixel­
wise distance of their strips from the strips of the reference mosaic, from the 
smallest distance to the largest distance. Since the strips were sampled at equal 
distances apart, there will be two mosaics created from strips at the same pixel­
wise distance from the reference strip; it does not matter which mosaic comes first 
in this order. Then, starting with the first peripheral mosaic, its pixel information is 
used to fill in the gaps of our reference mosaic. In most cases, the gaps in this 
mosaic will overlap with the gaps in our reference mosaic, so once all available 
pixel information has been obtained, the process is repeated for the next peripheral 
mosaic, and so on until all available pixel information from all the peripheral 
mosaics have been referenced. If the occlusions were not too large, and a sufficient 
number of mosaics were used, then the reference mosaic should now have all its 
gaps filled, making it a complete representation of our object of interest. Figure 
4. 1 1 illustrates this process. 

(b) 
Figure 4.11 Recomposing the reference mosaic using pixel data from the 
peripheral mosaics. 
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4.3 Remarks 

In one aspect, we have loosened the constraints placed on the data in this 
algorithm, as opposed to the restrictions placed on the data of the single-mosaic 
representation: we no longer require that motion parallax in the scene be small. 
However, we have placed a constraint on the data for this algorithm that was not 
present before, which is the constraint that the speed of the moving platform does 
not vary greatly throughout the video sequence. Zhu's 3D LAMP representation 
[ 2 7] places a similar constraint on the data for their algorithm. The reason in both 
cases is the same: to simplify the tracking of layers throughout the entire sequence. 
If the speed of the platform were to vary greatly throughout the sequence, a more 
advanced feature tracking algorithm would have to implemented, as opposed to the 
straightforward motion analysis performed here, in conjunction with some 
framework for updating the motion models for ·each layer. As it stands, we have 
not addressed this problem yet in our implementation, though possible directions 
for improving the system in this respect will be discussed in Chapter 7. 

One question that may arise is, why do we not use the layered-mosaics 
representation to process the undervehicle data , and therefore have just one unified 
method of dealing with both cases? The short answer is that it is possible to use 
the layered-mosaics representation to process the undervehicle data, but because of 
the nature of that data and the purpose of those mosaics, it is not efficient to do so. 
We do not require a layered representation of the underside of a vehicle because 
there are very few occlusions that can be removed to any meaningful degree, 
because motion parallax in the sequences is small. We only require a single 
overview of the scene for inspection purposes, and any objects hidden behind large 
undervehicle components cannot be detected in the visible spectrum. Also, 
creating a single mosaic between frames is much faster than attempting to compute 
spatial support from several layers. If we wish to extend the -system to real time 
use in order to inspect several vehicles, say, in a parking lot, then the speed of the 
algorithm becomes an issue. 

On the other hand, why aren't we applying the registration methods developed 
for the single-mosaic representation to the layered-mosaics representation? The 
largest difference between the two techniques lies in the registration method: phase 
correlation only gives us global motion estimates, whereas the Lucas-Kanade 
algorithm gives us local motion estimates. With phase correlation, we cannot 
directly infer layer assignments; some additional processing steps, including 
perhaps a block-based matching algorithm, are required to acquire layer 
assignments. Lucas-Kanade gives us layer assignment estimates right from the 
beginning, and the only challenge left is to refine those estimates. 

We have now completed our description of the layered-mosaics representation 
algorithm used in this work. Next, we will describe the results obtained using the 
single-mosaic representation scheme. 
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Chapter 5 

Single-M_osaic Representation 

Results 

This chapter presents the experimental results for the single-mosaic representation 
algorithms proposed in Chapter 3. We will begin with the details of the data 
capture process and the data sets used in these experiments, and outline the 
parameters used for preprocessing and motion analysis of each of these data sets in 
Section 5.1. Then, we will discuss the experiments performed to determine the 
parameters used to perform phase correlation in Section 5.2. Finally, the resulting 
mosaics obtained for each data sequence are shown in Section 5.3. 

5.1 Experiment Setup 

Two image capture modalities were used to capture the data used in this work: 
standard ( visible-spectrum) color video, and infrared video. The standard color 
video sequences for the undervehicle inspection efforts used in this work were 
taken using a Polaris Wp-300c Lipstick video camera mounted on a mobile 
platform. Infrared video was taken using a Raytheon PalmIR PRO thermal camera 
mounted on the same platform. The Lipstick camera has a focal length of 3.6mm, 
a 1/3" interline transfer CCD with 525-line interlace and 400-line horizontal 
resolution. The Raytheon thermal camera has a minimum 25mm focal length (36° 

horizontal and 27° vertical field-of-view) and produces images in several viewing 
modes with different color schemes. In this work, the viewing mode was set to a purple/blue/cyan/green/yellow/orange red/white color scheme, with each color 
representing different levels in the infrared spectrum. 

Due to the size of the cameras and concerns with limited vehicle ground 
clearance, both cameras were not pointed directly at the scene during acquisition. 
Instead, the cameras were pointed at a mirror mounted on the same mobile 
platform that was set approximately to a 45° angle. This is why the perspective 
distortion correction step described in Section 3.2.2 is necessary. Using this 
configuration, the platform was moved along straight paths beneath a test vehicle. 
Several passes were made to cover the entire underside of the vehicle. The 
approximate distance of the cameras from the underside of the test vehicle was 6.5 
inches. The mobile platform used to capture the data is shown in Figure 5 . 1. 

All video sequences were processed using Adobe Premier 6.0. This video 
processing software is capable of extracting video from both cameras and writing 
to several file formats, including MPEG, A VI, and as bitmap sequences. In this 
work, the extracted video sequences were written out to 24-bit bitmap sequences. 
The video sequences used in this work are divided into individual data sets, so that 
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Figure 5.1 Mobile platform for undervehicle inspection. The Polaris Wp- 3 00c 
Lipstick video camera and the Raytheon PalmIR PRO thermal camera are both 
mounted on the platform, and are pointed at a mirror tilted at a 45° angle. 

the input and the results may be compared conveniently. Table 5. 1 shows example 
frames from these data sets, the number of frames in each set, the size of each 
image, and the names assigned to each set. We also show sample consecutive 
frames from UVI and IRl in Figures 5. 2 and 5 . 3, respectively, in order to give a 
better idea of the inter-frame motion within each sequence. 

A note about the video extraction process: the frame rate for the video 
sequences was 3 0  frames-per-second. It was observed that the inter-frame motions 
tended to be on the order of 1-2 pixels for the standard color video sequences, and 
5-10 pixels for the infrared color video sequences. Since phase correlation is 
capable of detecting fairly large translational motion, it was not desired that the 
frame rate be as high as the original frame rate. For our experiments, the 
sequences used here were undersampled so that the inter-frame primary motions 
were within the order of approximately 5 0-100 pixel-frames for the standard color 
video sequences, and 1 0-5 0 pixel-frames for the infrared sequence. This was done 
in Adobe Premier 6. 0 during the video extraction process, where the original 
videos were undersampled to 2 fps while writing to bitmap sequences. The 
number of frames in the test sequences of Table 5. 1 are the number of frames used 
after undersampling the video. 

A note about the frame sizes: the original standard color video frames were at 
480x640 resolution. However, the frame sizes shown in Table 5. 1 are slightly 
smaller. This is because the frames have been cropped in order to remove some 
details at the edges that were not part of the underside of the vehicle. These details 
were the edges of the mirror used to reflect the underside of the vehicle. Since 
these areas are constant throughout a sequence, and provide no useful information 
for the registration process, they were cropped out of the video sequences. No 
alterations were made to the infrared video sequence, IRl .  

Table 5. 2 lists the various parameters used in the preprocessing and registration 
stages of the algorithm for each data set. Summaries of each parameter and 
appropriate comments are as follows: 

Ba"el Distortion Co"ection Parameters: ax and ay, the vertical and horizontal 
distortion correction factors, as explained in Section 3. 2. 1. These parameters were 
estimated manually, using images captured of a calibration grid using the Polaris 
Lipstick camera as a visual reference for the estimation. Note that no barrel 
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Figure 5.2 Frames 20-43 from sequence UV 1 
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Figure 5.3 Frames 1- 20  from sequence IR l 
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Table 5.1 Data sets from undervehicle inspection video 

Data Set Frames 

UnderVl 1 83 

UnderV2 1 96 

UnderV3 200 

IRl 679 

Frame Size Sample Frames 

340x640 

340x640 

380x640 

4 12x647 

Table 5.2 Preprocessing and registration parameters 

Dataset Preprocessing Registration 

Barrel Perspective Tapering 
Distortion Distortion Window 

UnderVl ax = -0.01 m = 1 5° a = 1 46.286 
ay = -0.025 <p = oo 

TC= 0° 

UnderV2 ax = -0.0 1  m = 1 5° a = 1 46.286 
ay = -0.025 <p = oo 

IC = 0° 

UnderV3 ax = -0.0 1  m = 30° a = 1 46.286 
ay = -0.025 <p = oo 

TC= 0° 

IRl ax = 0 m = 0° a = 1 46.286 
ay

= 0 <p = oo 

K= 0° 
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distortion correction was performed for the IRI sequence, because it was difficult 
to gauge the effectiveness of any particular set of parameters for the infrared 
images. 

Perspective Distortion Parameters: m, (f), and K, the pan, tilt, and rotation angles, as 
explained in Section 3.2.2. These parameters were set manually, using the video 
frames as a visual reference. Recall that the mirror used to reflect the underside of 
the test vehicle was tilted to approximately 45°. Therefore only the tilt angle ({)was 
manipulated to correct for perspective distortion . .  Note that, again, no perspective 
distortion correction was performed for the IRI sequence, for the same reasons as 
above. 

Tapering Window Parameters: a, the Hamming window parameter, as explained in 
Section 3. 3. 1 .  To completely eliminate OFT leakage, we would use a = 25 6/2 = 
1 28, since the size of the Fourier images is 2 5 6x25 6  pixels. However, this would 
also reduce much of the detail towards the center of the images. We use a = 
25 6/ 1 .  75  = 1 4 6.286 as a compromise. 

Search Region Parameters: Umin, Umax, Vmm and Vmax, the horizontal and vertical 
translation bounds for the phase correlation search region, as explained in Section 
3. 3 . 1 .  

These summaries only briefly describe the process of selecting the tapering 
window parameter a and search region parameters. Section 5.2 describes several 
experiments performed using various combinations of these parameters and 
provides an analysis of the results, providing a rationale for the parameters chosen 
here. 

The mosaicking process was performed otlline, after all image acquisition had 
been completed. All program code was written in the C++ programming language, 
using Borland C++ Builder 4. The code was run using an interactive GUI which 
was used to specify parameters and filenames. 

5.2 Selection of Registration Parameters 

Several experiments were performed in order to select parameters that produce 
satisfactory registration results from the standard color video sequences. We 
briefly review the parameters of our implementation of the phase correlation 
algorithm as discussed in Section 3.2. 1 .  There are two sets of parameters that are 
specified in the algorithm: one parameter for the tapering window and four 
parameters for the ICPS peak value search. The tapering window parameter is a, 
which is the Hamming window parameter, and the search region parameters are 
Umin, Umax, Vmin, and Vmax, the bounds limiting the ICPS search region. 

Although it would seem natural to experiment on synthetic images first in 
order to determine the characteristics of our implementation, we choose instead to 
obtain _our parameters by experimenting with real video sequences. This is because 
phase correlation tends to work well for synthetic sequences that do not exhibit the 
common problems associated with real-word video sequences, i.e., inconsistent 
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lighting, reflectance, motion blur, and so on. Results from such experiments would 
generally be meaningless. However, a key problem is that we lack ground truths 
by which to evaluate the results of using phase correlation on real video sequences. 
No external measurements of the camera's velocity were taken during the video 
capture process. Therefore, we will qualitatively evaluate the results based on 
observation of the motions -in our video sequences, and sel�ct a set of parameters 
that give reasonable results for the sequences we are dealing with, and describe the 
rationale behind our selections. 

We now describe the process of selecting our parameters. The initial selection 
of the four search region parameters was straightforward. The primary motion, v, 
was restricted to motions of 170 pixel-frames (about half the horizontal resolution 
of each video frame) or less in the negative direction, while the secondary motion 
was restricted to ± 30 pixel frames. From the video sequence, all exhibited inter­
frame motions appeared to be well within these bounds. Therefore the parameters 
were initially set as 

for all test video sequences. 

Umin = -30 
u max 

= 30 
. vmin = -1 70 

vmax = 0 

Determining a suitable value for a, the Hamming window parameter, required 
more experimentation. We know that a should never be assigned a value more 
than 2, since this is the value at which the function is minimum at the edges of the 
images, and begins to increase again in a sinusoidal fashion if a is higher than 2. 
Therefore we experimented for several values of a: 256/0.5=5 12, 256/ 1 =256, 
256/l.5=170.667, 256/1.75=146.2_86, and 256/2=128. The result of using tapering 
windows with these values on a sample image frame is shown in Figure 5.4. The 
resulting u and v displacement values recovered from segments of the UnderV 1 
sequence, using different values of a, are shown in Figure 5.5. 

Before we interpret the results, we shall describe, in general, the motions 
observed in the UnderVl sequence. For most of the sequence, the observable 
motion is between 30 to 100 pixel-frames in the negative direction for the primary 
motion, and between - 10 to 20 pixel-frames for the secondary motion. The 
exceptions are from frames 128 to 130, where the camera stops completely. Frames 
29-40 are blurry due to some focusing problems that occurred during acquisition. 

What do th�se results of Figure 5.5 say about how the parameter a affects 
registration? Firstly, it should be noted that the results for the u-motion (the 
secondary motion) do not immediately tell us anything about the correctness of the 
registration; a general observation of the plots tell us any of them may well 
represent a 'correct' set of u-motions, since these motion tends to be somewhat 
erratic. However, we do know from observing the video sequence that the camera 
is almost always constantly exhibiting a large amount of v-motion (the primary 
motion). This observation automatically disqualifies a = 5 12, a = 256, or a = 
170.667, as these values result in too many instances of zero-motion. The large 
number of misregistrations are caused by the high axis components created by DFT 
leakage, which in tum creates high peaks at the origin in the Inverse Cross Power 
Spectrum (ICPS) of two images. Therefore, we narrow down the a values to 128 
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(a) 

(b) 

(c) 

(d) 
Figure 5.4 Effect of tapering window on FFTs. Input images are on the left, and 
the resulting FFTs of those images are on the right. Results are shown for (a) no 
tapering window (b) a = 5 12 (c) a = 256 (d) a = 170.667. 
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(e) 

(t) 
Figure 5.4 Continued. Results for (e) a = 146.286 (t) a = 128 
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Figure 5.5 The vertical and horizontal translation vectors. (u,v) obtained for different values of the Hamming window parameter, a, plotted for all 182 frames in the UnderVl video sequence. Results are shown for (a) a = 512. 
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Phase Correlation results, 8 = 146.286 
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Figure 5.5 Continued. Results are shown for ( d) a = 146.286 ( e) a = 128. 
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and 146. 2 86. These observations also confirm our suspicions that DFT leakage 
does affect registration: using a value of a twice as large as the image dimensions 
(a = 5 12 for 25 6x2 5 6  images) is almost equivalent to not using a tapering window 
at all (compare Figure 5. 4(a) to Figure 5. 4(b)), which results in a large number of 
misregistrations. 

However, in the plots of v for a = 14 6. 286 and a = 128, we still observe many 
zero-motion registrations (frames 2 5- 3 9  and frames 15 8-165 in particular). These 
are mostly caused by instances in the camera sequence when there was lack of 
detail in the scene (most of the visible details are at the edges of the image) or 
excessive blurring caused by the camera refocusing, again lending more strength to 
the peak at the origin of the ICPS, rather than the peak at the correct coordinates. 
The ICPS functions of these image pairs, examples of which are shown in Figure 
5 . 6  and Figure 5. 7, tend to have a local peak at the origin, which may become 
higher than the peak at the coordinates corresponding to the correct motion vector. 
This is not always the case, however, as there are time . when there really is zero 
inter-frame motion (frames 128-13 0), where the camera actually stops for a short 
time. To decrease the chances of zero-motion misregistration, whenever the inter­
frame motion between two images is found to be (0, 0), we calculate the sum of 
intensity errors between the images using equation 2.1. If this sum is below a 
threshold, the registration at (0, 0) is kept. If it is not, then we modify the search 
region boundaries, changing vmin from O pixel-frames to - 1 0 pixel-frames, and 
perform phase correlation again, and use the new vector obtained as the correct 
registration. The result of using these modifications is shown in Figure 5 . 8. 

We observe that for a = 14 6. 286 and a = 128, there is little noticeable 
difference in the vectors obtained. To obtain the results shown in Section 5 . 3 . 2, we 
used a = 14 6. 286, observing from the FFT image of Figure 5. 4(e) that this value 
eliminates most of the effects of DFT leakage while preserving much of the detail 
of the original images. 

The approach used to overcome this problem of misregistration ( due to the 
peak at the origin of the ICPS) is somewhat ad hoc. A more general formulation of 
the problem was not pursued, however, since misregistrations due to the local peak 
at the origin of the ICPS appear to be the most common cause of misregistration 
( another observed cause of misregistration are small rotations of the camera, which 
will be discussed in Section 5.3 .2.) . Using these parameters, we expect that this 
implementation will be fairly robust towards blurring and lack of detail in the 
images. 

Note that for the infrared video sequence IRI,  we merely used the same 
tapering window and search region parameters used for the standard color video 
sequences. 

5.3 Results of Algorithms 

In this section, we will discuss some of the results obtained using our single-mosaic 
representation algorithms with the UnderVI, UnderV2, and UnderV3 video 
sequences. First, the results of the distortion correction algorithms will be 
discussed in Section 5. 3. 1. Then, the results of the blending scheme and the final 
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Figure 5.6 False peaks at the ICPS origin for frames 1 60-161. (a) Frame 160-161 from sequence UnderV 1. (b) The resulting 3D plot of the ICPS function. 
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ICPS of frames 160 and 161  
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Figure 5.6 Continued. ( c) The ICPS function oriented so that we view the 
ICPS as a function of y, the horizontal vector. Note the multiple peaks present 
in this plot. The false peak is at y = 256, which corresponds to y0 = 0 (recall 
from Section 3.3. 1 that the correct motion vector, yo = yo'-256), which in this 
case is smaller than the true peak at y = 226, which corresponds to Yo = -30. In 
this case, the false peak is caused by insufficient detail at the center of the 
images; most of the detail is at the periphery of the images, which lends 
strength to the peak at the origin (Note that when we say 'origin', we mean the 
center of the ICPS function, which corresponds to x = 256 and y = 256). 
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Figure 5.7 False peaks at the ICPS origin for frames 35-36. (a) Frame 35-36 
from sequence UnderV 1. (b) The resulting 3D plot of the ICPS function. 
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Figure 5. 7 Continued. ( c) The ICPS function oriented so that we view the ICPS as a function of y, the horizontal vector. Again, there is a false peak is at 
y = 256, which in this case is larger than the true peak at y = 223. In this case, the false peak is caused by blurring. 
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Figure 5.8 The vertical and horizontal translation vectors, (u,v), obtained for 
different values of the Hamming window parameter, a, with modifications to 
compensate for zero motion. Results are shown for (a) a = 1 .75 (b) a = 2. 
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mosaics will be shown in Section 5. 3.2. We reserve a detailed discussion of the 
results of phase correlation for Chapter 7. 

5.3.1 Results of Distortion Correction 

In Figures 5. 9 and 5. 10, we show some of the results of our lens and perspective 
distortion correction algorithms using the parameters specified in Table 5. 2. The 
results for the UnderVl and UnderV2 sequences are similar, since they both use 
the same correction parameters, so we only show results for frames from UnderVl . 
Again, the pwpose of perspective distortion correction is to make it appear as 
though the plane of the scene was orthogonal to the camera's principal axis. Note 
that in the original images, lines that ought to be parallel appear instead to intersect, 
and this is rectified once distortion correction has been implemented. 

It should be acknowledged that one set of distortion correction parameters will 
not correct the perspective of every element in the video sequence, since the 
sequences contain elements of slightly varying distances from the camera ( again, 
the assumption that the scene exists entirely on a single plane is only an 
approximation of the nature of the scene). We chose a set of parameters that 
corrected for perspective distortion where it was most visible, and these parameters 
appeared to work well for all other parts of the sequences as well. Since distortion 
correction was not the focus of our work, we chose not to pursue this matter any 
further. 

5.3.2 Mosaics of U ndervehicle Video 

After the distortion correction steps have been completed, the inter-frame motion 
vectors for each video sequence is computed using the parameters listed in Table 
5.2. Using these vectors, strips are sampled and aligned accordingly to form the 
mosaics, as described in Section 3. 3. 2. Figure 5. 1 l (a) shows a section of a mosaic 
formed in this manner. · Note the seams that are visible at the boundaries that 
separate strips from different frames. Using the blending scheme described in 
Section 3. 3. 3 ,  the result is shown in Figure 5 . 1 l (b). The result of using this 
blending scheme for UnderVl , UnderV2, UnderV3, and IRl are shown in Figure 
5 .12, 5. 13, 5. 14 and 5. 16, respectively. In Figure 5. 15, the mosaics created from 
the UnderV 1 and UnderV2 sequences are compared side-by-side with some photos 
taken using a still camera of the underside of the vehicle (which was raised in order 
to obtain the field of view seen in these photos). 

From these results, it is observed that our algorithm works well for most 
sections of the undervehicle video. There are still several obvious visual 
discontinuities in the mosaics, however, and we will now discuss these 
discontinuities and their causes. Figures 5 . 17 to 5. 20  show several cases ·of 
discontinuities observable from the mosaics. Before we look at these examples, 
though, we will discuss the most obvious discontinuity in Figure 5.16, the IRl 
mosaic. There is a section of the mosaic where the secondary motion recovered is 
obviously far more erratic than anywhere else in the mosaic. This part of the video 
sequence had little or no detail for which to detect motion, and hence the motion 
vectors recovered for this part of the video sequence were probably just random 
peaks within the ICPS search region specified in Table 5. 2. 
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(a) (b) (c) 

(a) (b) (c) 
Figure 5.9 Perspective distortion correction for two frames from sequence UnderVl using ax

= -0.01, ay = -0.025, m = 15°, <p = 0°, K = 0° : (a) original image (b) with barrel-distortion correction and (c) with perspective distortion correction. 
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(a) (b) (c) 

(a) (b) (c) 

Figure 5.10 Barrel distortion correction. Two frames from sequence UnderV3 
processed using ax

= -0.01 ,  a
y 
= -0.025, m = 30°, rp = 0°, K = 0° : (a) original image 

(b) with barrel-distortion correction and ( c) with perspective distortion correction. 
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_ (a) 

(b) 

Figure 5.11 Results of blending. Mosaic without blending (left) and with 
blending (right). Examples are shown for ( a)visible spectrum video and (b) 
infrared video. 
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Figure 5. 12 Mosaic of sequence UnderV I .  The mosaic has been split into three 
sections so that the detail in the mosaic can be seen here. The original mosaic 
proceeded from left to right with the top image being the leftmost section and the 
bottom mosaic being the rightmost section. 
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Figure 5.13 Mosaic of sequence UnderV2. The mosaic has been split into three sections so that the detail in the mosaic can be seen here. The top image is the leftmost section of the mosaic and the bottom mosaic is the rightmost section. 
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Figure 5.14 Mosaic of sequence UnderV3. The mosaic has been split into three 
sections so that the detail in the mosaic can be seen here. The top image is the 
leftmost section of the mosaic and the bottom mosaic is the rightmost section. 
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8950 x 2000 pixels 8725 x 2275 pixels 
(a) (b) (c) 

Figure 5.15 Comparison of mosaics with still shots of the underside of the 
vehicle. (a) Mosaic created from the UnderVI sequence, (b) Mosaic created from 
the UnderV2 sequence, and ( c) 4 still photos of the underside of the vehicle. 
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Figure 5.16  Mosaic of infrared video. The mosaic has been split into two 
sections so that the detail in the mosaic can be seen here. The image on the left is 
the top section of the mosaic and the image on the right is the bottom section of 
the mosaic. Note that a large part of the top section of the mosaic exhibits erratic 
secondary motion, where there was little or no detail with which to detect 
motion. 
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(b) 
Figure 5.17 Discontinuities caused by distance disparity of elements. (a) Three frames from the sequence UnderVI .  (b) The resulting mosaic. Note the 'shearing' of the diagonal bar and the large pipe. 

88 



(a) 

(b) 

Figure 5. 18  Djscontinuities caused by low frame rate. (a) Three frames from 
the sequence UnderV 1 .  (b) The resulting mosaic. The three frames shown are 
consecutive in the sequence; the large translation between the first two frames 
caused problems with registration.• 
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(a) 

(b) 

Figure 5.19 Discontinuities caused by rotation. (a) Two frames from the 
sequence UnderV2. (b) The resulting mosaic. The rotation angle between the 
two input frames is interpreted as a vertical translation by the registration 
algorithm. 
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(a) 

(b) 
Figure 5.20 Discontinuities caused by image blur. (a) Five frames from the sequence UnderV3. (b) The resulting mosaic. The camera's auto-focus function caused this part of the sequence to appear blurred, complicating the registration process. 
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In Figure 5 . 17, a diagonally oriented metal bar and a large pipe both appear to 
be 'sheared' in the mosaic. This is because the two elements are at different 
distances from the camera, and are thus moving past the camera's field-of-view at 
different rates. The shearing is caused by the fact that no single translation vector 
can correctly compensate for the translational movement of both elements. Hence, 
a strip in the mosaic may be aligned properly for one element, but not for another, 
creating the shearing effect. This is simply a case where the limits of our 
assumption, that the entire scene exists on a single plane, is plainly observable, and 
tends to be noticeable wherever there is substantial disparity in the relative 
distances of elements from the camera. Recall from our discussion of the effects of 
inter-frame motion in Section 3.4 that ifwe had sampled the video at a faster frame 
rate, these effects would be less noticeable, since the misalignments then become 
distributed throughout the additional strips, creating a smoother-looking mosaic. 

In Figure 5. 18, a discontinuity due to incorrect motion estimation is shown. 
An element close to the camera moved past the camera's field-of-view at more than 
I 00 pixel-frames. This large inter-frame motion caused a poor estimation of the 
camera movement. In the mosaic, a large visual discontinuity is apparent at the 
center of the elem�t. Again, the solution lies in sampling the video sequence so 
that the inter-frame motions are within an acceptable range. 

In Figure 5 . 19, the discontinuity is cause by camera rotation. Notice how, 
between the two input frames where the discontinuity occurs, there is a noticeable 
change in the orientation of the drive-train. Since we do not recover for rotation 
effects in this implementation, the registration algorithm models the rotation as a 
vertical translation, causing the shearing of the drive-train in the mosaic. Some 
preliminary tests were performed using Reddy and Chatterji's [34] rotation­
invariant phase correlation technique, which was discussed in Section 2. 1.3, but 
these tests did not produce correct results for the two images shown here. We did 
not attempt to address the problem any further, and instead leave it as future work. 

Our final example is shown in Figure 5.20, where the discontinuities are 
simple misregistration due to image blur. This blur was caused by the camera 
refocusing during the acquisition process. This problem is easily solved by turning 
off all auto-focus functions on the camera prior to acquisition. Nevertheless, it is 
interesting to see how the algorithm performs in the presence of image blur. 

5.4 Remarks 

From our results, some conclusions may be inferred about the conditions under 
which our algorithm performs well. Obviously, a video sequence should display 
no out-of-focus frames, and minimal jerking . (rotating) motion. Also, the overall 
quality of the mosaic will be determined by the magnitude of the inter-frame 
motions ( a property related to the speed of the moving platform and the frame 
rate). For the standard color video sequences, which had inter-frame motions on 
the order of 50- 100 pixel-frames, the discontinuities tend to be somewhat severe in 
several parts of the mosaic, whereas there are virtually no visual discontinuities 
discernible in the infrared sequence ( except for the part of the mosaic where there 
is little discernible camera motion), which had inter-frame motions on the order of 
I 0-50 pixel-frames. Granted it is more difficult to gauge the quality of the infrared 
mosaic due to the nature of the infrared sequence, but it is reasonable to assume 
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that if the inter-frame motions of the color video sequences were within the order 
of I 0-50 pixel-frames, the quality of those mosaics would be improved. Again, it 
should be noted that the inter-frame motions of a video sequence are affected by 
both · the speed of the camera capturing the sequence as well as the frame rate at 
which we sample the video sequence. 

We have now completed our discussion of the results of our single-mosaic 
registration algorithm. Now we move on to a discussion of the results obtained 
using the layered-mosaic representation algorithm. 
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Chapter 6 

Layered-Mosaics Representation 

Results 

This chapter presents the experimental results for the layered-mosaic representation algorithms proposed in Chapter 4. We will begin with the details of the data capture process and the data sets used in these experiments in Section 6.1. We then outline the processing parameters used for each of these data sets, and discuss the rational behind these parameters in Section 6.2. Finally, the resulting registration parameters and mosaics obtained for each data sequence are shown in Section 6.3. 
6.1 Experiment Setup 

We will first discuss the method used to capture the video sequences used in this work, as well as the various parameters used to process each sequence in Section 6.1.1. Then, we will discuss the rationale behind the model initialization parameters used for each video sequence in Section 6.1.2. 
6.1.1 Processing Parameters and Test Data 

The video sequences used in this work were captured using a Sony DCR-TRV730 Digital 8 Camcorder, which uses a 1/4" 1.07 mega pixel color CCD. Video was recorded on 8mm tapes in 480x720 resolution. The camcorder was mounted on the roof of a van during acquisition and was pointed towards the side of the van. The vehicle used as the mobile platform used to capture the data is shown in Figure 6.1. The video sequences were processed using the Adobe Premier 6.0 video editing software, which was briefly described in Section 5 .1. As before, the extracted video sequences were written out to 24-bit bitmap sequences. The video sequences used in this work are divided into individual data sets, so that the input and the results may be compared conveniently. Table 6.1 shows example frames from these data sets, the number of frames in each set, the size of each image, and the names assigned to each set. Unlike the video sequences used for the single-mosaic representation experiments, we did not undersample these video sequences. This is because the Lucas-Kanade algorithm works better, to a point, with video sequences at higher frame rates. Recall from Section 4.2.1 that our Lucas-Kanade implementation (without taking into account our multi-scale approach) is accurate for pixel velocities of approximately 2 pixels. This is why it is desirable to maintain as high a frame rate as possible. 
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Figure 6.1 The vehicle used as the mobile platform for roadside data 
acquisition. A rig was placed on the roof of the van to hold the scanning 
equipment. 

Table 6.1 Data sets from undervehicle inspection video 

Data Set Frames Frame Size 

Warren 504 

BBHall 9 14 

720x480 

480x720 

Sam le Frames 
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Table 6.2 lists the various parameters used in the preprocessing and registration 
stages of the algorithm for each data set. Summaries of each parameter and 
appropriate comments are as follows: 
Ba"el Distortion Co"ection Parameters: ax and ay, the vertical and horizontal 
distortion correction factors, as explained in Section 3.2.1. As before, these 
parameters were estimated manually, using images captured of a calibration grid as 
a visual reference. 
Perspective Distortion Parameters: w, ({), and IC, the pan, tilt, and rotation angles, as 
explained in Section 3.2.2. These parameters were set manually, using the video 
frames as a visual reference. In most cases, only the rotation angle, IC, was used to 
correct for minor rotations in the camera orientation. In some cases, the tilt angle ({) 
was also used to make corrections. 
Temporal Smoothing Parameters: µ and u, the Gaussian function parameters, as 
explained in Section 4.2. 1 These parameters are always set to 6 and 2, 
respectively, but we include them here for completeness. 
Multi-scale Factors: Ji and Ji, the rescaling factors used for multi-scale motion 
analysis, as explained in Section 4.2.1. 
Model Initialization Parameters: Un and Vn, the vertical and horizontal vectors 
associated with each layer, as discussed in Section 4.2.2. We do not explicitly list 
the number of layers used to represent each video sequence. Instead, the number 
of (un, v11) vectors listed indicates the number of layers. The elements in each video 
sequence that each layer is meant to represent is discussed in further detail in 
Section 6. 1.2. 
Layer Composition Parameters: dist, the pixel-wise distance between strips 
sampled from an image, and k, • the number of mosaics used to perform layer 
composition, as explained in Section 4.2.3. 
6.1.2 Layer Assignments for Model Initialization 

Recall from Section 4.2.2 that model initialization is performed manually, using 
estimates of the inter-frame motions of elements in the video sequence. In the 
video sequences used in this work, the object of interests were building facades that 
were obscured by various foreground objects, i.e., signboards, lamp posts, trees, 
etc. The layers were chosen with the intent of separating the building facades from 
the foreground objects. For the both sequences, layer P2 was assigned as the 
facade layer, and layer P3 was assigned as the foreground layer. A background 
layer, P1, was assigned to represent the plane at infinity - the plane where there is 
no discernible pixel motion. In a real video sequence, this is usually used to 
represent sky, though there may be large regions of moving elements that are 
homogenous, and therefore appear to have no inter-frame motion. The BBHall 
sequence, in particular, has very little visible sky, but many homogenous regions 
(road, grass, etc) with little or no discernible local motion. Parts of these regions 
tend to be misregistered as belonging to layer P1• In the video sequences used in 
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Table 6.2 Processing parameters. (a) Preprocessing and registration parameters 
Dataset Preprocessing Registration 

Barrel Perspective Temporal Multi-scale 
Distortion Distortion Smoothing factors 

Warren ax = -0.026 m = 0° µ = 6 jj = 6 
Oy = -0.012 <p = _50 a = 2 /2 = 4 

K= 1 .5° 

BBHall Ox = -0.012 m= 0° µ = 6 jj = 6 
Oy = -0.026 <p= oo a = 2 Ji = 4 

K= -2.5° 

Table 6.2 (b) Model initialization and layer composition parameters 
Dataset Model Initialization Layer Composition 

Warren PJ : UJ = 0, VJ = 0  dist = 45 
P2: u2 = 0, V2 = -2.5 k = 9 
P3: u3 = 0, V3 = -6 

BBHall PJ: UJ = 0, VJ = 0 dist = 20 
P2: u2 = 0, V2 = -4 k = 5 
P3: U3 = 0, V3 = -6 

this work, the effects of large homogenous regions on our results are reduced by 
processing the by-layer segmentations using the hierarchical morphological 
operator described in Section 4.2.2, as will be made clear in Section 6.2. 

In Figure 6.2, the approximate layer assignments of various elements ( the 
layers we are attempting to assign those elements to, using the parameters of Table 
6.2(a)) for each video sequence are shown, using sample frames from the video 
sequences. These are only the intended layer assignments, not the actual results of 
the algorithm. Note that there are various regions in the images whose intended 
layer assignments are not explicitly shown; these are elements that were not 
necessarily of interest, and it does not matter to which layer they are assigned. 
Most of these 'unimportant' elements tend to be the large, homogenous regions 
discussed above. 

This ends our description of the experiment setup. Now we move on to 
examine the intermediate results of our method, using the parameters just 
described. 

6.2 Results of Algorithms 

In this section, we will first examine the results of using our spatial support 
determination algorithms, which include our motion analysis and segmentation-by­
motion algorithms. The result of using these algorithms for sample frames from 
the test video sequences are shown and discussed in Section 6.2. 1. Then the 
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(a) 

(b) 

Figure 6.2 Approximate layer assignments for model initialization. Shown for 
(a) The 'Warren' test sequence, and (b) the 'BBHall' test sequence. 

resulting reference and peripheral mosaics, as well as the final composite mosaics 
are shown and discussed in Section 6.2.2. 
6.2.1 Results of Spatial Support Determination Algorithms 

We shall use several sample frames from the two test sequences to illustrate the 
results of processing the sequences at the various stages of our motion analysis and 
spatial support determination algorithms. Results for individual frames are shown 
in Figure 6.3 for images from the Warren sequence, and Figure 6.4 for the BBHall 
sequence. The results for each stage in the algorithm are. shown side-by-side, in 
sequence, so that the results from the different stages of the algorithm may easily 
be compared. In order, each sequence shows a) the results of performing Lucas­
Kanade motion analysis (Section 4.2. 1 ), . the initial segmentation by motion 
(Section 4.2.2), and the refined segmentation after using the hierarchical 
morphological operator (Section 4.2.2). For purposes of comparison, the resulting 
segmented images are shown alongside the intended layer assignments in Figure 
6.5. 

The results shown in Figures 6.3 and 6.4 still show several incorrectly assigned 
regions in the final segmentations. However, even though the spatial support 
determination for individual frames may not be entirely correct ( and for most real­
world sequences, never will be, at least with our current implementation), it should 
be noted that over the course of many frames, assignment errors do not tend to be 
propagated. As will become apparent in Section 6.2.2, our layer composition 
method is capable of correcting for most of these incorrectly assigned regions. 
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• -5 pixels/frame 
• .-4. pixels/frame 
• -3 pixels/frame 
• -2 pixels/frame 
• -1 pixels/frame 

(a) (b) 

(c) (d) 

Figure 6.3 Results at different stages of spatial support determination. 
(a) A sample frame from the Warren sequence, (b) the result of Lucas-Kanade 
motion analysis, ( c) the results of segmentation by motion, and ( d) the results of 
hierarchical morphological operation. 

(c) (d) 

• -5 pixels/frame 
• -4 pixels/frame 
• -3 pixels/frame 
• -2 pixels/frame 
·• -1 pixels/frame 

Figure 6.4 Results at different stages of spatial support determination. 
(a) A sample frame from the BBHall sequence, (b) the result of Lucas-Kanade 
motion analysis, ( c) the results of segmentation by motion, and ( d) the results 
of hierarchical morphological operation. 
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(a) 

(b) 
Figure 6.5 Comparison of intended layer assignments and the spatial support 
determination of our algorithm. Shown for sample frames from (a) the Warren 
sequence, and (b) the BB Hall sequence. 
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6.2.2 Mosaics of Road Video Sequences 

After the spatial support for each layer has been determined for each frame in the 
video sequences, the process of forming the layered mosaics may begin. First, the 
reference and peripheral mosaics · for each layer are formed, using the method 
discussed in Section 4.2. 3. The resulting mosaics for the P2 layer are shown in 
Figure 6. 6 for the Warren sequence, and Figure 6.8 for the BBHall sequence. 
These mosaics are further processed using the closing operator described in Section 
4.2. 3, and the results for the Warren and BBHall sequences are shown in Figures 
6. 7 and 6.9, respectively. Finally, using the layer composition method described in 
Section 4.2. 3, the final composite mosaics for the Warren sequence and the P3 layer 
are shown in Figure 6. 10, and the same for the BBHall sequence are shown in 
Figure 6.11. Note that the P3 layers were formed without having to use the layer 
composition method, because these layers were not occluded. We merely show the 
mosaics formed from the strips sampled closest to the center of each video frame. 
We do not show results for P1, the plane at infinity, since there is little or no 
relevant information in these mosaics. 

It is difficult to perform a quantitative comparison due to the lack of a ground 
truth, but these comparisons provide some heuristic confirmation of the accuracy 
of our results. Figures 6. 12 and 6. 13 show examples of recombining the layers 
taken from the Warren and BBHall sequence into one composite image. 
Nevertheless, from visual comparison between our results and the original video 
frames, it can be seen that our composite mosaics have recreated the objects of 
interest in both sequences quite well. In both cases, the foreground layer pixels 
occlude the background layer pixels, except for the pixels in the foreground layer 
with unspecified values. 

From these results, it can be seen that our mosaicking and layer composition 
removes most of the occluding elements that were present in the original sequence 
when composing the facade layer, P2• However, there are still various aspects of 
the results that should be examined in detail. Firstly, there were parts of the 
Warren and BBHall P2 layer mosaics that could not be recovered fully, simply 
because the occluding elements were too large. The most visible examples are the 
tree at the end of the Warren sequence and the large bush at one end of the BBHall 
sequence. Both of these examples are shown in Figure 6. 14 and Figure 6. 15, along 
with accompanying sample frames from the original sequence showing these 
elements as they originally appeared in the video sequence. 

There are also parts of the composite mosaics where the building facade was 
incorrectly recovered due to the non-planar structure of the building. When parts 
of a building are markedly closer or further away from the camera, our assumption 
that the entire building exists on a single plane fails, and this may cause these 
sections of the building to be incorrectly recovered or assigned to layers aside from 
the facade layer. An example of this is clearly visible in the BBHall mosaic, where 
a section of the building that curves away from the camera is incorrectly recovered. 
This example, which is visible in the example from Figure 6. 15, is shown with 
emphasis in Figure 6. 16. 

A final note on the foreground (P3) mosaic for the Warren sequence: in the 
original sequence, the trees were actually closer to the camera than the cars parked 
behind the grassy mound, and were hence moving past the camera's field of view 
faster than the cars. However, we assigned both the trees and cars to the same 
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Figure 6.6 Mosaics I through 4 of the Warren sequence created for the P2 layer. 
Nine mosaics were created to represent this layer: The reference mosaic is the 
fifth mosaic ( according to the order the mosaics are shown). The rest are the 
peripheral mosaics, spatially offset from the reference mosaics by m x dist 
pixels, with m determined by the order of each mosaic relative to the reference 
mosaic. The black gaps in these mosaics denote areas that do not belong to this 
layer ( the sky in the background, occluding objects such as trees, signboards, 
etc). These gaps are still noisy, however, and a morphological closing operator 
must be used to completely remove the elements that d9 not belong to the P2 
layer. 
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Figure 6.6 Continued. Mosaics 5 through 9 of the Warren sequence created for 
the P2 layer. 
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Figure 6. 7 Mosaics 1 through 4 of the Warren sequence created for the P2 
layer, after closing operation. With the non-layer regions better defined, the 
reference and peripheral mosaics may now be used to create the final composite 
mosai� seen in Figure 6. 1 0. 
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Figure 6. 7 Continued. Mosaics 5 through 9 of the Warren sequence created for the Pi layer, after closing operation. 
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Figure 6.8 Mosaics 1 through 5 of the BB Hall sequence created for the P2 layer. Nine mosaics were created to represent this layer. As before, the 
reference mosaic is the fifth mosaic. Again, the black gaps in these mosaics 
denote areas that do not belong to the P2 layer, and the morphological closing 
operator will again be applied to close the gaps in these regions. 
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Figure 6.8 Continued. Mosaics 6 through 9 of the BB Hall sequence created for 
the P 2 layer. 
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Figure 6.9 Mosaics 1 through 5 of the BBHall sequence created for the P2 
layer, after closing operation. The reference and peripheral mosaics may now 
be used to create the composite mosaic of Figure 6. 10. 
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Figure 6.9 Continued. Mosaics 6 through 9 of the BB Hall sequence created for 
the P2 layer, after closing operation. 
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Figure 6.10 Comparison between output layer mosaics and original frames 
from the Warren sequence. 
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Figure 6.1 1  Comparison between output layer mosaics and original frames from 
the BBHall sequence. 
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Figure 6.12 Composite of facade and foreground layers created from the 
Warren sequence. Note that since the foreground layer extracted for the 
Warren sequence had a wider pixel-wise width than the background layer, it 
is no 'correct' overall fit between the foreground and facade layers in their 
entirety. Here we only focus on recreating the center of the building, fitting 
the cars and trees from the foreground layer that occluded this part of the 
building in the original sequence. 

Figure 6. 13 Composite of facade and foreground layers created from the BBHall 
sequence. Note that since the foreground layer extracted for the BBHall 
sequence had a wider pixel-wise width than the facade layer, there is no one 
'correct' overall fit between the foreground and facade layers in their entirety. 
Here we only focus on recreating the curved part of the building occluded by the 
large bushes in the foreground layer, fitting them to approximate their appearance 
in the original sequence. 
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(a) (b) 

Figure 6.14 Example of unrecovered region, due to large occlusions, from the 
Warren sequence. (a) A section of the composite mosaic (b) Sample frame 
corresponding to the mosaic section. The tree occludes a large area of the edge 
of the building, making this region difficult to recover accurately. 

(b) 

Figure 6.15 Example of unrecovered region, due to large occlusions, from the 
BBHall sequence. (a) A section of the composite mosaic (b) Sample frames 
corresponding to the mosaic section. The large bush at this end of the building 
makes a large part of the building impossible to recover. 
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Figure 6. 16 Example of an incorrectly recovered region due to the non-planar 
structure of the building facade. 

layer, since we were only interested in recovering the building facade correctly. 
The trees are therefore not recovered correctly, and are all slightly truncated from 
their original sizes in the video sequence. The cars have been correctly 
recovered, since the layer vector corresponds to the speed at which the cars 
moved past the camera's field of view. 

6.3 Remarks 

The video sequences used in our experiments in this work showed a sufficient 
amount of detail and the speed of the camera in both sequences was relatively 
constant, which helped to ensure reasonable layer assignments throughout the 
entire sequence. Hence, the results for these sequences were somewhat 
satisfactory.· Still, the various composition errors discussed earlier shows that the 
algorithm can be improved. 

This concludes our discussion of the results of our layered-mosaics 
representation algorithm. We shall conclude with a discussion of possible 
improvements to the algorithms described in this document. 
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Chapter 7 

Conclusions 

In this final chapter, we first provide a summary of the work that we have presented in this document in Section 7 .1. We then conclude with directions for future improvements to the work we have presented here in Section 7.2. 
7.1 Summary 

We have presented two separate but related methods of mosaicking dense video sequences. Both methods use a multiperspective mosaicking framework to take advantage of the large amount of video data available in order to create visually smooth and continuous mosaics. Two modes of representation for video scenes were presented: the single-mosaic representation that is used to mosaic scenes with little or no motion parallax, and the layered-mosaics representation, which is used to represent scenes displaying large motion parallax. To our knowledge, this is the first time phase correlation has been applied as a primary registration method for performing multiperspective mosaicking, and some of the advantages and disadvantages of using phase correlation have been presented here. The literature reviewed in this work which addressed multiperspective mosaicking used gradient-based local motion detection or intensity-matching methods to perform registration. One advantage of using phase correlation is that we can quickly acquire a dominant inter-frame motion, even if there is small motion parallax, which can be used to perform registration. The drawback is that we do not acquire local motion estimates, which is used in some of the works reviewed to perf onn local correction for misregistrations due to motion parallax. However, this problem may be alleviated by using denser video sequences (such that the inter-frame motions are on the order of 10-40 pixel­frames), which results in local misregistrations being distributed more evenly throughout the mosaic, resulting in a smoother mosaic. It has been shown that this technique is robust with respect to imaging modalities: it is capable of mosaicking both normal visible-spectrum video sequences as well as video taken in the infrared spectrum. It may be concluded that, provided the motion constraints of the camera are adhered to, the video is sufficiently dense, and proper constraints on the ICPS search region are provided, that the phase correlation registration method provides good results for video sequences of scenes with small motion parallax. Only one other published effort we are aware of, by Zhu et al. [27], attempts to represent a video sequence of roadside scenes as a series of layered mosaics, which was summarized in Section 2.1.2, and briefly compared with our effort in Section 2.3. Another effort, by Zheng et al. [24, 25], also attempts to create mosaics of roadside sequences, but since their primary putpose is robotic navigation, not 
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recreation of specific scene elements, they make no attempt to create a layered, 
spatially-accurate representation of the elements in their mosaics. Our method 
attempts to recreate all elements in the scene in their correct spatial proportions by 
sampling them according to the speed at which they move past the camera's field 
of view and mosaicking them into motion-specific layer mosaics. Our method 
requires that the layer model be manually initialized, after which a derivation of the 
Lucas-Kanade algorithm, which is a gradient-based local motion detection method, 
is used to determine spatial support for each layer within each frame of the video 
sequence. A hierarchical morphological operator was devised to compensate for 
the 'noisy' initial segmentations. Mosaics are created for each layer using these 
segmented frames. We devised a layer composition scheme that uses reference 
and peripheral mosaics, created from strips sampled at different points in each 
video frame, in order to recover occluded regions of a layer. This allows us to 
compensate for occlusion without explicitly determining occlusion relationships. 
The method works well as the elements in the scene adhere well to our planar-layer 
assumptions. 

The results obtained in this work point towards many directions for 
improvements for our algorithm. Next, we shall discuss these possible future 
directions for research. 

7.2 Future Work 

In keeping with the overall structure of our document, we shall first discuss 
possible improvements that may be made to our single-mosaic representation 
algorithm, and finish with a discussion of suggested improvements to the layered­
mosaics representation algorithm. Improvements to the single-mosaic 
representation algorithm are discussed in Section 7. 2. 1 ,  and improvements to the 
layered-mosaics algorithm are discussed in Section 7 .2. 2. 

7 .2.1 Single-Mosaic • Representation 

The current implementation of the single-mosaic representation still uses offline 
processing, and has not yet been modified to form mosaics in real-time. 
Optimization of the mosaicking code or a hardware implementation of the code 
would increase the practicality of the algorithms developed here, especially with 
regards to undervehicle inspection applications. 

There are some aspects of the algorithm that could be automated to increase its 
robustness. Recall from Section 3. 2 that the preprocessing parameters used to 
perform .lens distortion and perspective distortion correction are set manually by 
the user. Several intelligent algorithms for correcting lens distortion have been 
proposed, and there are camera calibration tools widely available on the internet. 
Many of these options would most likely provide more accurate lens distortion 
results compared to our implementation. 

Intelligent selection of perspective distortion parameters, however, is not as 
widely addressed. In our work, perspective distortion correction was performed by 
adjusting roll, pitch, and yaw angles that represented the angles at which the 
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camera was viewing the scene, using visual cues in the images as reference. 
However, the validity of the results are based purely on heuristics; we have _no 
ground truth by which to gauge the validity of the results. If we did have a 
reference image that was 'correct', then the problem would be reduced to matching 
corresponding points between the uncorrected and reference image. Unfortunately, 
no such reference images exist for the data we would typically deal with. What 
possible solutions are there to this problem? One possible solution would be to 
detect patterns of converging lines in an image, and associating a projective 
transformation that would make these lines parallel. Another would be to simply 
experimentally determine suitable parameter values for various vehicle ground 
clearances, and have the user select a ground clearance level that would in tum 
determine the correction parameters. 

The selection of the tapering window parameter a, and the ICPS search 
window parameters was described in Section 5.2 as a trial-and-error process. The 
results of these experiments point towards a way of adjusting these parameters 
automatically. One may begin by assuming that a is within the range of dim/2 to 
dim/1 .5 (where dim is the pixel dimension the square input image), and assign it a 
value within this range by default (for example, a reasonable suggestion, for an 
256x256 pixel image would be a = dim/1 .75 = 256/ 1 .75 = 146.286, as was used in 
this work). Then, to update a and the search window parameters, we may use the 
sum of intensity errors to gauge the correctness of each registration, and modify the 
ICPS search window if the sum of intensity errors is above a threshold. This 
approach would be similar to what was implemented in this work, except the check 
using the sum of intensity errors is used for each registration. 

One problem that was faced in evaluating the results of our algorithm was that 
we lacked a ground truth by which to gauge the accuracy of our results. The 
correctness of the mosaicking algorithm is judged purely by observation. Also, we 
lack any method of compensating for accumulated error in the mosaics. For the 
purposes of inspecting the underside of vehicles, it may not have been necessary to 
achieve a 100% accurate reconstruction of the scene. Still, a logical extension of 
our work would be to somehow eliminate or compensate for the accumulated error 
in our mosaics. A hardware-oriented approach to addressing this problem might 
involve using a wide angle-lens to capture the entire width of the vehicle so that a 
single mosaic of this wide-angle video would completely cover the entire underside 
of the vehicle. This might of course entail some more complex preprocessing to 
correct for the extreme distortion of wide-angle lenses prior to mosaicking. 
However, this approach runs somewhat counter to our original goal of maximizing 
the pixel resolution of our results. An alternative would be to use multiple cameras 
on a wider platform, with the entire width of the vehicle covered by the span of the 
platform. 

Another approach would be to investigate the integration of external velocity 
measurements (again, using hardware) from the moving platform to support and 
enhance our results. Using such measurements, it will be possible to eliminate or 
reduce the accumulated errors in our mosaics, which result in mosaics such as 
those seen in Figure 5. 15, which cannot be aligned correctly, because they do not 
perfectly correspond to one another spatially. What are the advantages of aligning 
the mosaics with one another spatially? Spatially aligned mosaics would help the 
inspection process when viewing the entire underside of the vehicle. Spatially 
aligned mosaics would also assist in another process: if pixel correspondences 
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between the mosaics were to be determined, then that infonnation could be used to 
infer 3D information using epipolar geometry. This idea may also be applied to the 
multiple-camera configuration described above, since the different mosaics may be 
aligned easily by assuming each camera was moved past the camera at equal 
speeds. A rough 3D representation of the scene would give viewers more degrees 
of freedom while viewing the scene, further facilitating the inspection process. 

We have discussed some of the logical extensions of our work regarding the 
single-mosaic representation. Now we shall move on to discuss improvements to 
the layered-mosaics representation. 

7.2.2 Layered-Mosaics Representation 

In this work, we chose not to address the problem of automating the model 
initialization process. Many other works discussed in Section 2. 2 already discuss 
layer model determination, either as part of or before the process of spatial support 
determination. In our case, since we perform spatial support determination based 
on the local velocity of pixels, it would make sense to determine the layers in a 
scene by detecting clusters of motion vectors in the vector space. Each cluster 
would of course correspond to a layer, with the centroid of the cluster representing 
the motion vector associated with that layer. The challenges associated with this 
approach would be a) identifying a suitable clustering algorithm, and b) 
determining the cluster size/properties that would identify a cluster as representing 
a valid layer. There is one other consideration: there may be layers whose 
elements are not present throughout the entire sequence. The layer model may 
therefore have to be updated as the sequence is processed, when elements of a new 
layer are detected that no longer 'fit' into any of the existing layers. With this 
approach, we would no longer be initializing the layer model, but updating the 
model concurrently as we are determining spatial support for each layer. 

Another aspect of our algorithm that could be improved upon is the motion 
analysis algorithm used to perform spatial support determination. Currently we use 
a derivation of the Lucas-Kanade algorithm to perform motion analysis. This 
algorithm performs well if its constraints are met and when there is sufficient detail 
in the scene, but oftentimes we encounter video sequences that are difficult for a 
local motion estimator to deal with. First, the smoothness constraints associated 
with the Lucas-Kanade method are not always strictly adhered to; the moving 
platform capturing the data may exhibit changes in speed, and lighting conditions 
may vary from frame to frame. Second, building facades in a video sequence 
usually exhibit large homogenous areas where there may be little or no detail to be 
detected. Local motion estimators would therefore compute no motion in these 
regions, even though it is clear from observing the borders of these regions that 
they are moving. 

What are some possible solutions to these problems? One solution would be to 
use a spatiotemporal segmentation technique that associates spatial regions in each 
video frame with a velocity, as opposed to purely local estimates of velocity. 
Acquiring a spatiotemporal segmentation of each frame gives us three advantages: 
a) we would be less restricted by the smoothness constraints of local motion 
estimators, b) we would be able to match large homogenous regions to their 
appropriate velocity estimates, and c) we now have a method of tracking the 
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Figure 7.1 Examples of common elements that do not obey the constraints of 
our algorithm. a) sides of buildings, b) roads/paths c) curved facades. 

movements of spatial regions, even if the speed of the platform changes during the 
video sequence, hence keeping all initial layer assignments intact. Our algorithm 
currently requires that the platform used to perform image capture moves at a 
uniform speed throughout the sequence. A proper spatiotemporal segmentation 
algorithm would help free us from this restriction. 

Currently our algorithm is only capable of recreating layers consisting of 
planar elements, and only if those planes are orthogonal to the camera's principal 
axis. Any parts of the scene that do not obey these restrictions tend to be recreated 
poorly, or their layer assignments are incorrect. Some examples of scenes that are 
not represented well by our algorithm are shown in Figure 7. 1. To account for 
these elements, we could follow Wang and Adelson's lead, and attempt to match 
regions of each image to affine motion models using linear regression, and then 
clustering those regions that display similar motion parameters. Each of these 
clusters would form a layer with the corresponding affine motion parameters. 
However, what about the case where a single building facade exhibits more than 
one motion model, as the curved facade in our example does? Would we want that 
building to be represented by one layer, or more? If we wish to associate only one 
layer with that facade, then how do we intelligently associate all the different 
motion models exhibited by the building facade with the same layer? Finally, do 
we wish to continue representing such facades, which are no longer planar, as 2D 
mosaics, or do we wish to better represent the curved aspect of the facade using a 
3D representation, as Zhu's 3D LAMP technique does? All these questions, related 
by the same problem, should be investigated in tandem, since their individual 
solutions most likely influence the entire framework. 

Our final suggestion for future work again involves integrating external 
hardware measurements of vehicle velocity in order to correct for accumulated 
error. This extension would be similar to the one previously discussed for the 
single-mosaic representation. In addition to compensating for accumulated error, 
hardware velocity measurements provide an additional solution to the problem of 
varying vehicle speed discussed earlier. Such measurements would help us keep 
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track of the layer assignments of elements even when the speed of the vehicle 
changes drastically throughout the video sequence, since we can initialize our layer 
assignments at the beginning and modify the motion model associated with each 
layer according to the hardware velocity measurements. 

7.3 Closing Remarks 

In this document, we have presented the efforts made to combine and 
implement several paradigms and techniques used in digital image mosaicking and 
layer extraction to support the task of scene visualization. Two closely related 
solutions were tailored to the specific needs for which the data was acquired. For 
the undervehicle inspection effort, a single-mosaic representation was devised to 
ease the process of inspection, and for the outdoor roadside scanning effort, a 
layered-mosaics representation was devised to remove occlusions from objects of 
interest and recreate elements in the presence of motion parallax. It is hoped that 
these solutions may be improved upon and extended, as well as applied to scene 
visualization applications aside from those documented here. 
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