
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2003

Integrating network storage into information retrieval applications Integrating network storage into information retrieval applications

Svetlana Y. Mironova

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Mironova, Svetlana Y., "Integrating network storage into information retrieval applications. " Master's
Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/5265

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Svetlana Y. Mironova entitled "Integrating network

storage into information retrieval applications." I have examined the final electronic copy of this

thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Computer Science.

Michael W. Berry, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Svetlana Y. Mironova entitled "Integrating

Network Storage into Information Retrieval Applications". I have examined the final

paper copy of this thesis for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Master of Science, with a major

in Computer Science.

We have read this thesis and

recommend its acceptance:

Michael W. B;:;,:;or Professor

Acceptance for the Council:

Vice Provost and Dean of

Graduate Studies

INTEGRATING NETWORK STORAGE
I

INTO INFORMATION RETRIEVAL APPLICATIONS

A Thesis
Presented for the

Master of Science Degree
The University of Tennessee, Knoxville

Svetlana Y. Mironova
May2003

'

DEDICATION

This work is dedicated to my family, both in America and in Russia: to my

husband David and my daughters Natasha and Stacey for being there for me and

encouraging me in any way they could; to Babulya who taught me all invaluable lessons

of life and how to stick to my goals and never give up; to my Mom for being a role model

and a friend; to my sister Olga and step-Dad Basil for believing in me. I love you all.

111

ACKNOWLEDGEMENTS

I would like to thank all the people who helped me to complete the Master of

Science degree in Computer Science. I express my gratitude to Dr. Michael W. Berry for

his help and guidance through my work on my thesis project. I thank the LoCI people,

especially Scott Atchley and Stephen Soltesz, for their help with the installation of the

LoRS tools and for patiently answering numerous questions that I had for them. I would

like to thank Ms. Wallace Mayo and Dr. David Straight for their advice and help in

becoming a graduate student and Graduate Teaching Assistant in the Department of

Computer Science. I would also like to thank Dr. James Plank and Dr. Micah Beck for

agreeing to be on my thesis committee. I would like to thank the Department of

Computer Science in general for providing me with all the valuable knowledge in the

field of Computer Science and making me confident in this knowledge. This research was

supported in part by the National Science Foundation under grant CISE-EIA-99-72889.

Most of all I thank my family for putting up with me during the years of school:

my husband David for giving me the opportunity to return to school in the first place and

taking care of our two daughters while I was busy with endless homework and lab

assignments; my two precious daughters Natasha and Stacey for just being there for me,

making me laugh every time they inquired, "Are you done with school yet?" and for

showing their endless love to me. Without their love and support, my education would

not have been possible. I would like to thank my family in Russia for giving me all the

encouragement they could in achieving my goals.

V

ABSTRACT

The object-oriented software environment GTP (General Text Parser) with

network storage capability has been designed to provide a scalable solution to index

creation and query processing. GTP allows information retrieval and data mining

professionals to parse a large collection of documents and create a vector space

information retrieval model for subsequent concept-based query processing

(GTPQUERY). The software's numerous options allow users to tune the model to their

specific needs. Depending on the size of the collection, the facilitation of the model may

require an enormous amount of local storage. The addition of network storage capability

addresses the problem of inadequate local storage and file sharing over the network.

Tools defining the Logistical Networking Testbed developed in the Logistical Computing

and Intemetworking (LoCI) Lab at the University of Tennessee are used to demonstrate

both the creation and use of remotely stored indices. With the development of new

network storage technologies, the software will be able to forgo most local file generation

and will allow remote users to share the index created by GTP.

Vll

TABLE OF CONTENTS

Section Page

1. INTRODUCTION .. 1
2. GENERAL TEXT PARSER ... 5

2.1 LATENT SEMANTIC INDEXING ... 5
2.2 EVOLUTION OF GTP ... 7
2.3 GTP PROCESS .. : 7
2.4 QUERY PROCESS .. 9

3. NETWORK STORAGE STACK ... 13
3.1 IBP .. 14

3.1.1 LIMITATIONS .. 14
3.1.2 SECURITY .. 15

3.2 ExNode ... 16
3.3 L-Bone .. 17
3.4 LoRS ... 18

4. GTP WITH NETWORK STORAGE ... 23
4.1 OVERVIEW ... 24
4.2 GTP AND UPLOAD .. 26
4.3 DOWNLOAD AND GTPQUERY ... 27
4.4 USER IN"TERFACE ... 28

5. IMPLEMENTATION CHALLENGES .. 33
6. PERFORMANCE ... 35
7. FUTURE WORK .. 41
8. CONCLUSIONS ... 43
LIST OF REFERENCES .. 45
APPENDIX ... 49

APPENDIX 1 .. 50
Options Available for GTP [9] . .. 50

APPENDIX 2 .. 53
Options Available for GTPQUERY (9) .. 53

VITA ... 55

lX

TABLE OF FIGURES

Figure Page

Figure 1. GTP's Graphical User Interface with
GTPQUERY Results and Document Window 10

Figure 2. Process of GTP and GTPQUERY 11

Figure 3. Network Storage Stack 13

Figure 4. ExNode Compared to Inode .. 17

Figure 5. The Map ofL-Bone Depots Throughout the World 19

Figure 6. GTP and GTPQUERY Process with Embedded Network Storage 25

Figure 7. GTP's Graphical User Interface 29

Figure 8. Network Storage Panel 30

Figure 9. Map of the World with Depots Used by Network Storage 31

Figure 10. GTP Upload Benchmarks for FBIS5K. 36

Figure 11. GTP Upload Benchmarks for FBIS 1 OK . 36

Figure 12. GTP Upload Benchmarks for FBIS20K 37

Figure 13. GTPQUERY Download Benchmarks for FBIS5K 39

Figure 14. GTPQUERY Download Benchmarks for FBIS 1 OK. 40

Figure 15. GTPQUERY Download Benchmarks for FBIS20K.. 40

Xl

1. INTRODUCTION

The amount of textual-based information stored electronically, whether on our

own computers or on the Web, is rapidly accumulating. Any desktop or laptop computer

can accommodate huge amounts of data due to advances in hardware storage devices.

Software companies develop products that may require megabytes of hard drive space.

Without upgrading computers every few years, one cannot download one's favorite

music or movies, or play the most recent computer games. Researchers and scientists

involved in data mining and information retrieval are facing the same reality - an

enormous amount of storage may be needed to run simulations and store their outputs.

Some of the programs have to be rerun periodically with updated data. The majority of

the data collections the scientists are working with are dynamic - they change with time.

Take the popular search engine Google [10] as an example: thousands of new

web pages are created on the Web every day. Google's powerful crawlers have to update

the stored data periodically to be able to display new pages and discard dead links.

Google takes a snapshot of each page examined as it crawls the web and caches (i.e.,

stores) the back-up copy for use when the original page is unavailable. The cached

content is the content Google uses to judge whether a page is a relevant match for the

query [10]. Google owns the world's largest commercial Linux cluster, which consists of

more than 10,000 servers that are able to store over 3 billion web documents [10].

However, Google is a business enterprise with considerable funding. Most researchers in

information retrieval and data mining do not have an access to such a tremendous amount

of storage. Providing an opportunity to store data on a remote network is an attempt to

address the needs of novices and experts in information retrieval and modeling who deal

with large text corpora on a daily basis but are subject to limited storage capabilities.

The General Text Parser (GTP) [9] software package was chosen to demonstrate

the capability of providing an indexer with additional storage on a remote network. GTP

is a publicly available software package developed at the Computer Science Department

at the University of Tennessee. GTP is capable of parsing a large collection of documents

1

(text or tag separated) and creating a vector space information retrieval model for

subsequent concept-based query processing. GTP provides numerous options to the user

so that it is easy to use by both beginning and advanced users.

GTP utilizes Latent Semantic Indexing (LSI) for its underlying information

retrieval (IR) model [6,7,8]. LSI is a concept-based retrieval method, which overcomes

many of the problems evident in popular word-based retrieval systems. LSI has been

shown to be 30% more effective in finding and ranking relevant items than comparable

word matching methods [7]. It relies upon matrix factorization methods such as the

singular value decomposition (SVD) to uncover the underlying associations between

terms and documents in a large text collection. A semantic, or concept, space is

constructed from the SVD factors to facilitate query matching.

During execution GTP creates several files that define the vector space IR model.

Depending on the size of the text collection, those files can be quite large. The user is

given an option of storing the model outputs on some set of the available Internet

Backplane Protocol (IBP) servers or depots [2,11]. IBP is the foundation of the Logistical

Networking Testbed developed at the Logistical Computing and Internetworking (LoCI)

Lab at the University of Tennessee. This infrastructure provides a scalably sharable

storage service as a network resource for distributed applications [2]. The Internet

Backplane Protocol is middleware for managing and using remote storage. It was

invented to support logistical networking in large scale, distributed systems and

applications. IBP, as it name suggests, enables applications to treat the Internet as if it

were a processor backplane [12], and allows users to share disk space or memory space

over the network. Essentially, if the user chooses to store files on IBP, he can allow his

colleagues to access these files as well. The storage on IBP is time-limited, i.e., if not

extended, the storage will expire with time. The user has a set of capabilities with which

he/she can manage allocated space and its time limits. Currently, there are 159 public IBP

servers in 16 countries and 26 American states [12]. The total storage space available is

approximately 9000 GB, and more space becomes available every day as more

2

organizations, research facilities and universities worldwide join the list of accessible

depots.

3

2. GENERAL TEXT PARSER

General Text Parser (GTP) is a software environment developed at the University

of Tennessee for text/document parsing and indexing using an IR model based on sparse

matrix data structures. GTP has the ability to parse any document: raw text, an HTML

document or any other tag-separated document collection via user-defined filters. This

software written in C++ and Java is very flexible and can be used by novice and expert

users to parse textual information with the help of numerous options and settings.

If opted by the user, GTP will create a vector-space model in which documents

and queries are represented as vectors in a low-dimensional subspace. A term-by­

document matrix is initially used to define the relationships between the documents in the

collection and the parsed terms or keywords. The elements of the matrix are typically

weighted/unweighted frequencies of terms (rows) with respect to their corresponding

documents (columns) [9].

2.1 LATENT SEMANTIC INDEXING

The underlying vector-space model exploited by the GTP is Latent Semantic

Indexing (LSI}. LSI is an efficient IR technique that uses statistically derived conceptual

indices rather than individual words to encode documents. LSI assumes some underlying

or latent structure in word usage that is partially obscured by variability in word choice.

Specifically, LSI uses the truncated singular value decomposition (SVD) of the large

sparse term-by-document matrix mentioned above to build a conceptual vector space [7].

A lower-rank approximation to the original term-by-document matrix is used to derive

vector encodings for both terms and documents in the same k-dimensional subspace. The

clustering of term or document vectors in this subspace suggests an underlying (latent)

semantic structure in the usage of terms within the documents.

5

Let t and d denote the number of terms and documents, respectively. SVD factors

the original term-by-document matrix A into the product of three matrices:

A= Ul.Y7
' (1)

where U is the t x t orthogonal matrix having the left singular vectors of A as its columns,

Vis the d x d orthogonal matrix having the right singular vectors of A as its columns, and

I is the t x d diagonal matrix having the singular values a1 2 a2 2 . . . 2 amin(t ,d) of A, in

order, along its diagonal. This factorization, which exists for any matrix A [8], reflects a

breakdown of the original term-to-document relationships into linearly independent

vectors or factor values. The use of k factors or the k-largest singular triplets is equivalent

to approximating the original term-by-document matrix in k-dimensional space [8].

Equation (1) then becomes

(2)

where Ak is the best low-rank approximation of the original term-by-document matrix [8].

For retrieval purposes, the rows of the t x k matrix Uk define the term vectors for the LSI

model. Linear combinations of these vectors (typically scaled by the k-leading singular

values of A) are used to construct query vectors or pseudo-document vectors. Similarly,

the rows of the d x k matrix Vi yield the document vectors for the model (i.e., the

coordinates of each document in a k-dimensional subspace). If double precision (or 8

bytes) is used to store each coordinate in any term or document vectors, the storage

requirement for the LSI model is 8k(t+d). If 300 factors (or singular triplets) were used ·

to encode a collection comprising 100,000 terms and 10,000 documents, the storage

requirement would be well over 250 Mbytes.

6

2.2 EVOLUTION OF GTP

The original version of GTP was developed in C++ for both Solaris and Linux

platforms. It was based on C code first distributed by Telcordia Technologies, Inc., for

LSI-based applications [9]. A parallel version was later developed in C++/MPI (Message

Passing Interface), improving the SVD computational time.

The C++ version was recently ported to Java to utilize more object-oriented

features. The Java version has certain limitations compared to its C++ counterpart: it is

slower and it does not accept custom filters. However, it does provide an internal HTML

filter. Most of the work described in this thesis was performed on the Java version of

GTP. Work is under way to optimize the Java version including a graphical user interface

to help the user manage the numerous options available with GTP.

2.3 GTP PROCESS

GTP is a robust software environment that allows the user to tune the parser to

his/her needs through its multiple options. For example, some options allow the user to

change thresholds for document and global term frequencies, specify custom filters and

locaVglobal term weighting functions, and indicate new document delimiters. For a

detailed overview of the available options, see Appendix 1.

During parsing, GTP generates multiple files for further processmg of the

document collection and for deriving correlations between terms and documents. After

the initial parsing of the collection, GTP creates a master index of keys, or terms, in the

collection. Those terms are placed in the file keys together with the term's index and

global weight that is calculated according to the weighting scheme selected by the user. If

the SVD option is selected, a binary file called output, which contains term and document

vectors together with the computed singular values, is generated. These files are essential

to the GTP-derived vector space IR model and its utility for query processing. Table 1

describes the most important files generated by GTP.

7

Table 1. Important Files Generated by GTP.

File name Type Description

keys DBM Database of keys generated

output Binary SYD output

rawmatrix.Z
ASCII

Raw term-by-document matrix
(Compressed)

matrix.hb.Z
ASCII

Term-by-document matrix (sparse format)
(Compressed)

lao2 ASCII Summary of SYD output (singular values)

larv2 Binary File of right singular vectors (documents)

lalv2 Binary File of left singular vectors (terms)

LAST RUN ASCII
Summary of options used during the most
recent GTP run

Depending on the text collection parsed, the size of the above mentioned files

could be very large - varying from kilobytes to gigabytes. A significant amount of

storage is required to accommodate those files. For example, the larv2 and lalv2 files

require 8kd and 8kt bytes, respectively, for k terms parsed from d documents by GTP.

The user must also take into consideration that, in the course of his research, he might

need to repeat the process of parsing the collection several times to achieve the desired IR

model. Using the Internet Backplane Protocol (IBP) as described in Section 4, one can

successfully eliminate the storage bottleneck commonly associated with IR model

research and development.

8

2.4 QUERY PROCESS

GTP is not only capable of creating an index. It also provides users with a module

for querying, i.e., determining the similarities between a query and all documents in the

collection. This query-processing module requires several of the output files generated by

GTP, namely keys, output, and LAST_RUN (see Table 1 for the description of these

files).

The query module (GTPQUERY) treats each query in the same manner that the

GTP process treats a document in the collection. That is, the same term-based operations

are applied to the query to produce a resulting query vector. Query vectors are

constructed as pseudo-document vectors, thus allowing their projection into the original

term-document vector space. It is achieved by summing the term vectors of the

corresponding terms in the query (the term vectors are generated by GTP), and then by

scaling each term vector dimension by the inverse of a corresponding singular value.

Scaling the query vector is optimally done using the singular values produced by GTP

[6,7,9]. A cosine similarity measure between the query vector and document vectors is

used to determine the relevance of any or all documents to the query.

The result of the query process consists of files (one per query) with document ID

and corresponding cosine similarity pairs ranked from the most relevant to the least

relevant. A graphical user interface (GUI) has added the functionality of allowing the

user to view the desired document in a separate window [10]. The result of the query

process and the GUI' s separate document window are illustrated in Figure 1. The entire

GTP and GTPQUERY processes are summarized in Figure 2. GTPQUERY options are

described in detail in Appendix 2.

9

.......
0

9tR ..

(Parse Interface

l Query tnterfau

Show Query Results

- general
d wit.h text

111.\U�Ulil
C"F.NTF.ll-·

<P>
l090 S. T� D, .• Apt. .&69-- BR-.._ • -

- Ml. f'rollpc,c1. IL 60056•. DR
-

Ph!Nw: (1147) 437-4367 Chom:J. CIA7) 7fl0...4441t CotT'in)'<HR ·

E•mail. <A IIRl:.f Nmaiho:khffl'u."-s.ltlk.Rhl .. >kbi:a� . .cudk.cdu-< 1A><Bll>
URL: A IIRl:.f •1i11p:1·.,,_._,_�-•lk..Olla�fdiaa• TAll(il:.-r •_..,.>

�----------------- h11p:'.'-www.a.Ulk.edu/--khm<lA Oil,..
.,...T:""t.,,-;ft

Crose

52 0.9585159

� 22 0.69330764

46 0.663.35404

24 0.61600584

13 0.5730576

48 0.52527094

14 0.4856214

Figure 1. GTP's Graphical User Interface with GTPQUERY Results and Document Window [13].

.,

OTP
\

\
\

\
\
\
\

\
\
\
\

\
\
\
\

\
\
\
\

\

GTPQUERY

Parsing of documents/queries.
(TITLES)

Create database of keys, ids,
and weights.

(keys . dir /keys . pag/keys,

rawmatrix, matrix.hb)

SVD/SDD
Matrix

computation

Write matrix to binary
file. (output, lalv2,

larv2, nonz, lao2)

Clean up temporary
files. Write

summary of work to
RUN_SUMMARY.
(RUN _SUMMAR.Y /LAST

RUN)

Extract key ids and
weights for each

keyword in query.

Generate query vector
based from keys in the
query and term vectors

from a GTP run.

Scale query vector
by singular values

Calculate cosine similarity
between query vector and
document vectors from a

GTP nm.

Write results to a file in
order of most relevant
document to least
relevant. (q_ resul t . l)

Figure 2. Process of GTP and GTPQUERY [9] .

1 1

3. NETWORK STORAGE STACK

Exchange of information between producers and consumers of large datasets over

a wide-area network presents a logistical challenge. Data that is generated by model

simulations can be difficult to obtain since it has to be transferred through such slow

services as HTTP and FTP [1] . What is needed is a more flexible framework for moving

content to distribution sites, decentralized load-balancing to ensure use of all available

resources while maintaining scalability, the ability to quickly add more replicas as

demand requires, and improvement of throughput to end users [1]. To allow users to

store data in the network and access it quickly and easily, the Logistical Computing and

Internetworking Lab (LoCI) at the University of Tennessee [12] has developed the

Network Storage Stack. The Network Storage Stack is modeled after the Internet

Protocol (IP) Stack, and is designed to add storage resources to the Internet in a sharable

and scalable manner [2]. Figure 3 shows the organization of the Network Storage Stack.

Applications
(GTP, GTPQUERY, etc)

Logistical File System

Logistical Tools

L-Bone exNode

IBP

Local Access

Physical Layer

Figure 3. Network Storage Stack

13

3.1 IBP

The Internet Backplane Protocol (IBP) is the foundation of the Network Storage

Stack. IBP's purpose is to allow users to share storage resources across networks. Its

design echoes the major advantages of Internet Protocol (IP): the abstraction of the

datagram delivery process, scalability, simple fault detection (faulty datagrams are

dropped), and ease of access. These factors allow any participant in an IBP network to

use any local storage resource available regardless of who owns it [2]. Using IP

networking to access IBP storage creates a global storage service.

3.1 .1 LIMITATIONS

Some limitations to the direct use of IBP storage arise from two underlying

network problems. The first problem concerns a vulnerability of IP networks to Denial of

Use (DoU). The free sharing of communication within a routed IP network leaves every

local network open to being overwhelmed by traffic from the wide area network. The

second concern is that the storage service is based on processor-attached storage, which

implies strong semantics: near-perfect reliability and availability. It can be almost

impossible to implement on the scale of the wide area networks [2]. These issues are

resolved as follows:

IBP storage is time limited. When the time expires, the resources can be reused.

An IBP allocation can also be refused by a storage facility (depot) if the user's request

demands more resources than available.

IBP is a "best effort " storage service [4]. The semantics of IBP storage are

weaker than the typical storage service. Since there are so many unpredictable and

uncontrollable factors involved, network access to storage may become permanently

unavailable (if a depot decides to withdraw from the pool, for example).

IBP storage is managed by depots or servers used by a client to perform storage

operations. Table 2 shows the IBP client calls classification.

14

Table 2. IBP Client Calls

Calls Description

Allocate
Allocates requested amount of storage for requested amount of time if
the depot can accommodate this request. If successful, the depot sends
the user keys. The keys grant write, read, and manage privileges.

Store
Once the user has the capabilities (keys), he can write data to the
allocation.

Load
Once the data is stored, it can be read from any offset within the
allocated space.

Copy Allows the user to transfer data from one allocation to the other.

Mcopy
Allows the user to transfer data from one allocation to multiple
allocations.

Manage Allows the user to change the properties of the allocation.

3.1.2 SECURITY

Security of the allocation is a major concern for any user. A user will not feel

comfortable storing his data on the network if there might be a breach in security. The

basis of IBP network security is the capability, or the key. Capabilities are created by the

depot in response to an allocation request and returned to the client in the form of long,

cryptographically secure byte strings [4]. Every subsequent request to perform any action

on the allocated byte array must then present the appropriate capability. As long as

capabilities are transmitted securely between client and server and the security of the

depot itself is not compromised, only someone who has obtained the capability from the

client can perform operations on the data stored [4]. It must be mentioned that this is the

only level of security that IBP must deal with. The data encryption has to be handled in

the layer(s) above IBP.

1 5

3.2 ExNode

The management of many IBP capabilities can be complicated. The exNode

library was created to help the user in this task, and to automate most of the work. The

exNode data structure is somewhat similar to the UNIX inode; but at the same time, it is

fundamentally different. Just as inodes contain pointers to disk blocks, exNodes hold

pointers to IBP allocations (or capabilities). Two major differences between exNodes and

inodes are that the IBP buffers may be of any size, and their domains may overlap and be

replicated [1 5] . Thus, the exNode allows users and applications to create network files

out of time-limited and failure-prone IBP allocations in such a way that much stronger

properties (e.g. , fault-tolerance, longer duration) may be achieved [1 5] . Figure 4

compares the exNode to the UNIX inode.

The exNode consists of two major components: arbitrary metadata and mappings.

Metadata consists of <name, value, type> triplets where the types can be 64-bit integers,

64-bit floating-point numbers, character strings, and metadata lists. The metadata lists

allow nesting of metadata [1] .

Each mapping can also have a function metadata component that describes how

the data was encoded. The function metadata is a nested list that describes the type of

encodings and their relative order. Each function has arguments and might have

metadata. If the user has encrypted and included checksums in the data, he/she can store

the encryption algorithm name, the encryption key, and the checksum algorithm name

using the function metadata [1] .

The exNode library allows the user to create an exNode, attach a mapping to it,

store IBP capabilities into the mapping, and add metadata to the mapping. The exNode

can also be serialized to XML so that exNodes created on one platform can be recognized

on the other supported platforms.

1 6

LOCAL SYS TIM

USER

KER NEL

Figure 4. ExNode Compared to lnode.

The exNode makes it possible for the user to chain IBP allocations into a logical

entity that resembles a network file [2]. Current IBP allocations have a limit of 2 GB; the

exNode, however, allows the user to chain 2 billion IBP allocations, which equals 4

Exabytes (262
) [2] .

Each exNode can have multiple copies of the allocation, which provides better

fault-tolerance . If a depot becomes unavailable for some reason, the user can still retrieve

data from the copies stored on other depots.

3.3 L-Bone

The Logistical Backbone (L-Bone) is a distributed layer of middleware that

allows access to a collection of IBP depots deployed on the Internet specifically to offer

network storage to applications [16] . It is a resource discovery service that maintains a

1 7

list of public depots and metadata about those depots [2,3]. The metadata consists of IBP

information such as hostname, port, and allocation duration policy, as well as recent

space availability values. Currently, the L-Bone also maintains uptime, or availability,

performance on each depot. The L-Bone server polls each depot once per hour. In

addition to the IBP metadata, the L-Bone can also store geographic location information

as well as machine room characteristics such as data backup policy, power backup

availability, etc. [2]. The operating environment data currently kept is connection speed,

amount of monitoring, the availability of power backup, the scheduling of data backup

and whether the machine is behind afirewall [12].

The L-Bone combines both static information (such as IP addresses, zip codes,

country codes) and dynamic decisions based on current network conditions to determine

proximity. The L-Bone uses Network Weather Service (or NWS) [18] to monitor

throughput between depots. NWS takes periodic measurements between depots, which it

stores and uses to produce forecasts about network throughput, when needed [18]. As of

December 2002, the L-Bone provide services of over 140 depots on five continents.

Figure 5 shows the locations of the available IBP depots [12j.

3.4 LoRS

The next and final layer of the Network Storage Stack (see Figure 3) is the

Logistical Runtime System (or LoRS). Although the L-Bone makes it easier to find

depots and the ex-Node library handles IBP capabilities, the user still has to manually

request allocations, store the data, create the ex-Node, attach mappings to the ex-Node,

and insert the IBP allocations and metadata into the mappings [2]. The LoRS layer

consists of a C API (Application Programming Interface) and a command line interface

tool set that automate finding of IBP depots via the L-Bone, creating and using IBP

capabilities, and creating and managing exNodes [12]. The LoRS library also provides

flexible tools to deal with the lower levels of the Network Storage Stack. Table 3 lists six

network file-based functions provided by the LoRS tools [2].

18

-.: .:e, •
•

�

•

•

-· ·
.....

Figure 5. The Map of L-Bone Depots Throughout the World.

•

•

.,
•

Table 3. LoRS Functions

Function Description

Upload Upload data to a network file.

Download Retrieve the data from a network file.

Augment Add replicas to a network file.

Trim Remove replicas from a network file.

Refresh Modify the expiration time of a network file.

List View the network file's metadata.

The LoRS API provides the user with more fine-grained control over the

allocation. The API can store data from files or memory. Users may also use the API to

implement new tools or capabilities such as multicast augments or overlay routing [2].

Both the LoRS tools and the API provide end-to-end services. To ensure that the

data stored on the IBP depots was not altered in transit or while on disk, LoRS can insert

MD5 checksums [2]. The MD5 (Message Digest number 5) value for a file is a 128-bit

value similar to a checksum. Its additional length (conventional checksums are usually

either 16 or 32 bits) means that the possibility of a different or corrupted file having the

same MD5 value as the file of interest is drastically reduced. During the download, if a

block's checksum does not match, the block is discarded and the same block is

downloaded from another source.

To protect data in transit or while it is stored on a depot, which is an unreliable

server, LoRS provides multiple types of encryption, including DES. DES stands for Data

Encryption Standard, which was adopted by NIST (National Institute of Standards and

Technology) as a national standard in 1976. DES encrypts and decrypts data in 64-bit

blocks, using a 64-bit key. To achieve extra security, the application may use additional

20

encryption algorithms and then add the algorithm type and key as function metadata to

the exNode [2] .

In addition to replication as a means for additional fault-tolerance, LoRS tools

allow coding blocks to be stored as well. These coding blocks are similar to the parity

blocks used in RAID storage systems. The addition of coding blocks can greatly improve

fault-tolerance [2] . It gives an opportunity to restore the "lost" block of data from the

remaining data and the coding blocks. To reduce the amount of data stored, LoRS also

supports compression.

2 1

4. GTP WITH NETWORK STORAGE

The creation and maintenance of an index for a large text collection usually

involves many modifications. These modifications may include the addition of new

documents, the deletion of documents that are no longer needed, or the updating of

existing documents. In any case, before the final index is created, several revisions may

be needed thereby requiring the user to parse the collection multiple times. In some cases,

the collection is dynamic, as is the case with web pages (HTML), so the parsing of such a

collection has to be done on a regular basis in order to monitor updates. In other cases,

the user will want to try different weighting schemes, or perhaps different methods of

matrix decomposition. If the user decides to keep all the files generated by GTP and

GTPQUERY after each parsing, the subsequent output files will take up an exhaustive

amount of local disk storage.

Fortunately, the concept of network storage can alleviate the local disk storage

burden: the user can clean up his hard drive and store the information produced by the

parser on a remote network. The Logistical Networking Testbed developed at LoCI [12]

appears to have the right set of tools to facilitate the temporary storage of these large files

on a remote network (Internet) along with immediate retrieval when needed. The storage

and retrieval processes are transparent to the user with insignificant time overhead.

Since the storage provided by the Internet Backplane Protocol (IBP) is temporary,

if the user is not satisfied with the parser results, he might choose not to extend the time

the files are stored on the network. Thus, when the allocation expires, the storagt? will be

automatically reused. If, on the other hand, the user wants to store the results of the parser

permanently, he can either make sure that the time limits for the storage depot do not

expire or he can download the files back to his personal machine and then write them to

other media, e.g., a CD-ROM.

23

4.1 OVERVIEW

The execution of GTP creates two large files: keys (the database of the terms

parsed) and output (a binary file, containing vector encodings generated by the SVD) (see

Figure 2). These files are essential to the GTP and GTPQUERY. If the user chooses to

use network storage after the files keys and output are generated, they are automatically

uploaded to IBP depot(s); and a set of capabilities is returned to the user in the form of

XML files (one XML file for each file uploaded), which are stored in a designated

directory. If the upload is successful, the files keys and output are deleted form the user' s

space. Currently, there is no automatic tool to provide time extension of the .xnd files,

which expire after a certain number of days. Each depot provides storage for a designated

number of days (1 -28) [1 2] . It is the user' s responsibility to make sure that allocated

storage does not expire. If the allocation gets reused by the depot, all the data becomes

unrecoverable.

When the user wants to query into the collection, the files are downloaded back to

the user' s space prior to execution of the query process using the information stored in

XML files. The LoRS tools, described in detail in Section 3.4, are used to facilitate

upload and download processing.

The processes of upload and download are made as transparent to the user as

possible. The software provides the default upload and download, but the user is

encouraged to supply additional information about the desired location of the allocation

to speed up the process. The entire process of GTP and GTPQUERY with incorporated

network storage is represented in ,Figure 6.

24

GTP ,,,-----F.lt . t-----.. ,, GTPQUERY ', 1 enng ou ,
. I \. HTML, tags, etc. / ' �

,,��------r
--------'

Parsing of documents. Creation of TITLES file

Creation of keys database
(keys file)

Creation of term-by­
document matrix

SVD/SDD matrix decomposition

Writing matrix out to the binary file output, lalv 21
larv2, nonz, lao2

Cleaning up temporary files. Write summary of work to RUN SUMMARY

- - - - - - - - - - - · y _ _ _ _ _ _ _ _ _ _ , I I : UPLOAD large files (keys : and output) to IBP depots :
I I ,_ - - - - - - - - - - - i- - - - - - - - - - - �

1 - - - - - - - - - - - · • - - - - - - - - - -
I : LoRS tools return to the : : user the set of capabilities :

I I : for file management :
I - - - - - - - - - - - -

:
- - - - - - - - - - _1

GTP done

, - � : If files keys and output :
I I : were UPLOADED, : : DOWNLOAD them from : : IBP depots :
1_ - - - - - - - - - - - ! - - - - - - - - - - - I

--- -- -- • ------.. /,...- Filtering out -.. ,,,
' I \

..
HTML, tags, etc. ,/

,, ,

����---- : ------ ---

Parsing of the query

Extraction of keys IDs and weights for each keyword
in the query

Generation of the query vector

- ------.. -- --- --/,,- Scale query vector -.. ,,, ' , \ by singular values ,,,
,, �'' ,__

-
--

----- : -----

Calculating cosign similarity between query vector and document vectors from GTP run

Writing results to a file in order of most relevant document to least relevant

+-

, _ _ _ _ _ _ _ _ _ _ _ _ y _ _ _ _ _ _ _ _ _ _ � . 1 Repeat process for •t--· ... ;
subsequent queries. :

I I
- - - - - - - - - - - - -

i
- - - - - - - - - - - •

t

GTPQUERY done

Figure 6. GTP and GTPQUERY Process with Embedded Network Storage. Dotted lines represent optional execution.

25

4.2 GTP AND UPLOAD

As seen from Figure 6, the process of GTP must complete creation of the files

keys and output before they can be uploaded to the remote network. IBP requires

knowledge of the file's size before uploading it. Our goal is to stream the data to network

storage while it is being generated without creating local files.

The upload process requires as little or as much information from the user as he is

willing to provide. This information helps to optimize the performance of the upload

tools. Below is a short list of the fields the user can specify.

Location allows the user to enter keyword and value pairs to determine where he

wants storage and minimum environmental criteria. The user may specify as many or as

few keyword/value pairs as she wants. The location pointer can even be NULL if location

and environment are unimportant. She can specify hostname, zip, state, city, country and

airport. It is strongly recommended to indicate some sort of location to improve

performance. If the user resides in Tennessee, it does not make sense to store the data in

France or Australia. Since IBP relies on the performance of the network during the time

of the upload, it might happen that the data will be stored in an undesired or distant

location.

Duration is the maximum number of days that the user will need the space. The

user can also specify partial day amounts. For example, if 0.5 is requested, data will be

stored on the network for 12 hours. Each depot has maximum number of days the data

can be stored. This information can be obtained from L-Bone's list of depots (see

http://loci.cs.utk.edu/lbone). If a longer time period is required, the user becomes

responsible for extending the time of the allocation. If the allocation is allowed to expire,

the space it occupies will be reused by the network. A set of tools that automates the

process of extending the duration of the storage has been developed by LoCI for some

platforms.

26

The Fragments option allows the user to subdivide a file into partitions of equal

size and to store those partitions on different depots. Available depot space is used more

efficiently and the performance of the download can be greatly improved.

The Copies option allows the user to specify how many copies of the original file

to store. Users are encouraged to store several copies of the data. As was mentioned in

Section 3.1, there is always the possibility the data could be temporarily unavailable due

to numerous uncontrollable circumstances. Subdividing the file into several fragments

and storing multiple copies of the file can prevent an undesired loss of data. If during the

download process some fragments cannot be found, LoRS tools will automatically check

for all the copies of this fragment and will deliver the first available one.

If the upload process is successful, the LoRS tools will return to the user a file

with an .xnd extension. This file contains XML encoded information needed by the user

and IBP to keep track of the file, retrieve the file, and perform LoRS operations described

in Section 3.4. GTP stores the XML files (one per uploaded file) in a directory, and will

automatically delete the files being uploaded and conserve local disk storage. If on the

other hand, the upload fails, the files will be saved on the user's machine and the user

will be notified of the failure.

4.3 DOWNLOAD AND GTPQUERY

If IBP is used to store the GTP-generated index, a query into the document

collection requires that the files keys and output be downloaded from the network. The

download process depends solely on the XML files produced during the upload process.

The exNode files (having the .xnd extension) store the location of the user's data within

IBP. If these files do not exist, the download will fail, and the recovery of the data will be

impossible. The LoRS download tool uses multiple threads to retrieve small blocks of

data from the network, and then it reassembles the blocks into a complete file at the

client. It uses an adaptive algorithm that retrieves more blocks from "faster" depots

(depots with higher throughput to the client). Each active thread selects a different block

27

of the file to download, and all threads start downloading. When a thread is finished with

its block, it selects a new block that is not being downloaded by any other thread. If a

download fails, then the failed block becomes available again and another thread may

attempt to download it. If some depots are much slower than others, the download tool

can automatically try getting lagging blocks from other depots that have the same data

[15]. The download tool is capable of starting from a specified offset and can process a

prescribed bytecount of data. All GTP output files, however, are downloaded in their

entirety.

After the download process is complete, the user will have the files necessary to

perform any query on the collection. See Figure 6 for the entire process of GTPQUERY

with netwo�k storage.

4.4 USER INTERFACE

In order to make the usage of GTP and GTPQUERY as user-friendly as possible,

a graphical user interface (GUI) [13] was designed (Figure 7). The defaults for every

option were incorporated into the interface to make user's task of performing parsing and

querying even easier. Network storage has its own panel (labeled ''Network Storage"),

that allows the user to specify the location, the duration of storage, and the number of

fragments and copies needed (see Section 4.4). He will also be able to extend the time of

the allocation and view all the details about the files stored on the network. When upload

or download processes are activated, a special panel monitors the progress (Figure 8) and

a map of the available depots provides visual information on where the files are being

stored (Figure 9). Arrows indicate where the fragments and copies of the file are being

uploaded or downloaded.

28

N
\0

General Text Parser (GTP)

gtP. . 0 2 00 2

Defaults Options 2 T Network Storage

Fi le or d i r to be parsed

/School/Grad /gtp�ava/GTP /sample

Common word l ist

j /gtp�ava/GTP /etc/common_word s

Temporary d i rectory location

School/Grad / gtp_J ava /GTP /run/tmp

= C++ vers ion of GTP

Parse \

Figure 7. GTP's Graphical User Interface

Find

Find

Find

parser

w
0

Figure 8. Network Storage Panel.

w

--- u �� \
Olt,e� •

Filename output - , < <

Size 1 9370696 (8J MID
I

IO l"lb20
Setload I ,,, ,,.uo ,., P1b20

(7) P'tb 20
(I0) l"tb 20

Download I u1>Mm ,n, l"tb 20
C I SJMIO (llll) l"tb20
CttJ Mac, (l9) f'tb 20

17.501 5 Mbps I 00 ,-a,20 (22, .-.b20
Cl4) fllb 20 (25) Flb 20

(28) 1'111 20

Figure 9 . Map of the World with Depots Used by Network Storage.

5. IMPLEMENTATION CHALLENGES

Initial integration of network storage into GTP was achieved through the xnd tools

- LoRS predecessors with more or less the same functionality. The xnd tools were

written in C, while the target version of GTP was in Java. Fortunately, the xnd library

included an xnd _ server that could be used as a bridge between Java and C APis. The

GTP application had to stream specifically formatted data, required by the requested

operation, through a socket directly to the xnd_server. The xnd_server then invoked the

appropriate utility (upload or download) with the parameters passed from GTP. After

completion of the operation, the xnd _ server returned to GTP a byte string denoting either

a success or a failure. If the operation was a success, the software received a byte stream

with the parameters of the file followed by the file stream (XML encoded file for upload

or the original file for download). At that point, such operations as upload, download,

refresh and list were implemented. For the detailed description of these operations, see

Table 3.

After the release of the LoRS tools in December 2002, the GTP software had to

be adjusted to work with the new tools. A different server, lors_server, was also released

with the tools. This server did not have an implementation of refresh or list, and the

corresponding modules in GTP ceased to work. It was difficult to keep track of all the

stored files and their expiration dates. At this stage, the capability of displaying the map

of the world (with the depots) during upload/download process was added. The user

could now visualize where the files' copies and fragments were stored, and obtain

information on the expiration dates of the files.

To initiate an upload/download of several files at a time, the execution of these

processes was accomplished with threads. Threading was intended to make the process of

network storage faster and more efficient. When threading was added, a download of

more than one file often failed. Extensive debugging helped to pinpoint and fix a race

condition in the LoRS code.

33

The original Java code for GTP and GTPQUERY did not contain any graphical

components. The panel for network storage was designed to visualize the process (Figure

8), and forced other tradeoff considerations. · One such issue arose between the GUI

component and GTP execution. For example, closing the storage panel accidentally

during GTP execution terminated the GTP run. As a result, the decision was made to wait

until GTP finishes creating its output to proceed with the upload. This issue should no

longer exist when network storage is fully integrated with the main GUI.

The issues of extending the allocation time of the file and viewing it through the

interface have not been solved successfully. As mentioned above, these features were

implemented and functioned well with the xnd tools but are not supported by the new

/ors_ server. The user could specify the number of days preferred for the allocation

(usually longer than the depot's limit) since most depots have rather short storage periods

(1-28 days). The code ran in the background daily to extend the allocation time by one

day, until the allocation time requirement was met. The user could also view the file' s

metadata, including hostnames, storage expiration dates, file/fragment status, etc., in a

comprehensible format. An appropriate set of tools is being developed by the LoCI

researchers to enable such features for GTP users.

34

6. PERFORMANCE

The GTP software has been frequently tested and evaluated. The results described

in this section were achieved using the Java version of GTP. The machine used in all

experiments has following specifications:

• Dual Intel® Xeon™ 2.4GHz processors with 512KB advanced transfer L2

Cache

• 2GB of dual-channel, ECC, DDR 266MHz SDRAM memory

• 2GB available swap space

• 20GB AT All 00 7200 RPM hard drive

Benchmarks were produced on the three FBIS (Foreign Broadcast Information Service)

sub collections from TREC-5 [1 7]. Specifications of the sub collections are described in

Table 4.

Figures 10-12 illustrate the timing results for a GTP run for each of the

collections with uploads to France (FR), California (CA), and Tennessee (TN) with the

server located in Tennessee. Each GTP run was executed using the following command

line options (for a detailed description of the options see Appendix):

UNIX> java GTP [collection name} -c [common word list} -t [temporary

directory] -h -z svdl test2 -R [name of the run} -0 -I -w log entropy

Table 4. Collections Used for Benchmarking.

Name Size Documents Distinct Terms File output File keys

FBIS SK 17.8MB 5,000 22,558 1 1MB 2.78MB

FBIS l0K 32MB 10,000 31 ,667 18MB 3.5MB

FBIS 20K 63MB 20,000 46,488 28MB 5.8MB

35

FBIS SK

400

� 300
"'CS
=

8 200
00

FR CA TN

Location

I c::J GTP c:J Upload I

Figure 10. GTP Upload Benchmarks for FBIS 5K.

FBIS lOK

800

600

"'CS
=

400
00

200

0

FR CA TN

Location

GTP Cl Upload I

Figure 11. GTP Upload Benchmarks for FBIS lOK.

36

FBIS 20K

2000

1500

1000

500

0

FR CA TN

Location

ID GTP □ Upload I

Figure 12. GTP Upload Benchmarks for FBIS 20K.

The parameters passed to the LoRS tools were the location strings: zip=37966 for TN,

state=CA for CA, and country=FR for France.

The GTP process time is fairly consistent (among the three different uploads)

since the calculations are performed on the local machine. As can be seen from the

results, the time required to run GTP is directly proportional to the collection size. Java is

not the optimum language for performing intensive numerical computations such as the

singular value decomposition (SYD).

Current benchmarks indicate that the additional time/overhead for upload is not

significant compared to the total elapsed time. The time of the upload depends on

multiple factors: how far the location of the upload is from the user's location, the

network bandwidth, the time of day, the size of the file to be uploaded, and the number of

copies requested. The results may vary from one run to another. The status of the depots

at the time of the upload also greatly affects the timing results. If some depots in the area

37

requested for the upload are down, other depots in the area receive more traffic and the

process slows down. The LoRS tools attempt to store the files in the location with

optimal bandwidth. Depending on network conditions, the files might be uploaded to a

location different from the one requested. During the benchmarking of the collections

FBIS 5K and FBIS 20K, files intended for upload in Tennessee, were frequently

uploaded to New Zealand and Australia (Figures 10 and 12).

While all the preprocessing is done by GTP during parsing and construction of the

model, the GTPQUERY process simply projects the query into the term-document vector

space. A 100-dimensional vector space was generated for the three different subsets of

the FBIS for the collections listed in Table 4. Query vectors are generated as scaled

linear combinations of the term vectors, the left singular vectors of the original term-by­

document matrix. All queries were processed using the following command line options

(for a detailed description of the options see Appendix):

UNIX> java GTPQUERY [query file] -c [common word list] -S -I -n 15

By default, GTP uses 100 SVD factors, i.e., all term and document vectors are of length

100. In the experiments shown below, only the first (or dominant) 15 singular triplets

were used in the querying process (-n 15 option). As mentioned above, each query vector

was built from linear combinations of term vectors whose dimensions were scaled by the

corresponding singular value (-S option).

The query file used for the three FBIS sub-collections in Table 4 consisted of three

queries, separated by a blank line:

38

Yugoslavia Croatia Bosnia-Herzegovina

Russia embassy FIS

Nissan Motor

Prior to querying, the files keys and output were downloaded from network storage.

Metadata files with .xnd extension generated by the GTP' s upload were streamed by

GTPQUERY to the LoRS download routine.

Figures 13-15 demonstrate that, in most cases, the download takes up the greater

portion of the run time. The time of the GTPQUERY depends mostly on the number of

queries requested by the user. Download time, on the other hand, depends on many

circumstances. The most important factors in the download process are the location of the

file's fragments and copies and the current conditions of the network.

FBIS 5K

60

50
�

40

30

20 00

10

0

FR CA TN

Location

I□ Download □ GTPQUERY I

Figure 13. GTPQUERY Download Benchmarks for FBIS SK.

39

FBIS lOK

100

rl.l
80

"O
60 =

40

20

0

FR CA TN

Location

I□ Download □ GTPQUERY I

Figure 14. GTPQUERY Download Benchmarks for FBIS lOK.

FBIS 20K

140

120

rl.l 100
"O

80 =

60

40

20

0

FR CA TN

Location

I□ Download □ GTPQUERY I

Figure 15. GTPQUERY Download Benchmarks for FBIS 20K.

40

7. FUTURE WORK

As researchers are trying to find ways to improve Java's performance in handling

scientific calculations, new optimization techniques can be added to the Java version of

the GTP to improve its performance during matrix creation and SVD calculations.

A graphical user interface (GUI) was recently developed to guide the user in

selecting the numerous options for a customized IR model. The GTP GUI is still being

refined and updated (Figure 7). Eventually, the GUI will display all available options.

The Network Storage tab of the GUI is still in development and ultimately will be able to

guide the user through the upload/download process, collect necessary information like

location, duration, number of copies and fragments, and provide the user with the

feedback on the upload/download process. The user will be able to view the information

about the files stored on IBP and extend their storage time through the interface. The user

will simply be able to press the "Parse" button and GTP will run, taking into account all

the options and parameters specified.

The network storage option has been currently implemented only for the Java

version of GTP - which presented some challenges, since all IBP and LoRS tools were

originally implemented in C. The merge was possible due to a special LoRS server. In the

future, it would be desirable to forgo the LoRS server altogether, and call the appropriate

tool directly. This can be made possible through the usage of Java Native Interface (JNI),

which allows an invocation of native methods like C functions within Java.

Work is in progress to integrate network storage into the C++ and parallel

versions of the GTP. However, the integration should not present any difficulties since

the LoRS C tools can be called directly from those versions.

In collaboration with LoCI Lab [12] , refinements of the network storage

procedure itself are underway. Upgrades include adding interactive maps and utilities to

41

allow the user to see more information about the files stored on IBP, extend storage time

with a click of a button, and share files over the network.

LoCI researchers are working on the possibility of streaming data directly from a

LoRS Java (or C) client to IBP depots as it is generated. Currently, streaming can only

be performed using the LoRS C library or the UNIX command line tools. This would

eliminate local file generation, which will greatly improve GTP's performance and

storage requirements.

42

8. CONCLUSIONS

The amount of data processed in simulations by research scientists worldwide is

rapidly accumulating. The lack of local storage is becoming a growing concern among

the scientific community. The addition of a network storage capability to the General

Text Parser software environment attempts to address the problem of inadequate storage

and file sharing over the network for the purposes of information retrieval. Currently,

large files cannot be sent via electronic mail. GTP with network storage gives users an

opportunity to create a user-specific IR model, place the files (index) generated by GTP

on a sharable network so that all the participants in a project can have access to them. The

availability of the software1 and its ease of use make it an invaluable tool in the hands of

information retrieval and data mining professionals. The software is constantly being

updated and augmented with innovative tools like network storage. The benchmarking

results described in this paper provide motivation for further development of network

storage capability for GTP as a solution to the shortage of local disk storage and file

sharing.

I GTP is public domain software available for downloading from http://www.cs.utk.edu/~lsi.

43

LIST OF REFERENCES

45

REFERENCES

[1] Atchley, S., Beck, M., Hagewood, H., Millar, J., Moore, T., Plank, J.S. and Soltesz,
S. Next Generation Content Distribution Using the Logistical Networking Testbed.
Technical Report No. UT-CS-02-498, Department of Computer Science, University
of Tennessee, December 2002.

[2] Atchley, S., Beck, M., Millar, J., Moore, T., Plank, J.S. and Soltesz, S. The
Logistical Networking Testbed. Technical Report No. UT-CS-02-496, Department
of Computer Science, University of Tennessee, December 2002.

[3] Bassi, A., Beck, M. and Moore, T. Mobile Management of Network Files.
Proceedings of the Third International Workshop on Active Middleware Services,
San Francisco, CA, August, 2001.

[4] Bassi, A., Beck, M., Fagg, G., Moore, T., Plank, J., Swany, M. and Wolski, R.
The Internet Backplane Protocol: A Study in Resource Sharing. In Proceedings of
the second IEEE/ ACM International Symposium on Cluster Computing and the
Grid (CCGRID 2002), Berlin, Germany, May 21-24, 2002.

[5] Beck, M., Moore, T. and Plank, J.S. An End-to-End Approach to Globally Scalable
Network Storage. ACM SIGCOMM 2002 Conference, Pittsburgh, PA, August,
2002.

[6] Berry, M. W. and Browne, M. Understanding Search Engines: Mathematical
Modeling and Text Retrieval, SIAM, Philadelphia, PA, 1999.

[7] Berry, M.W., Dumais, S.T. and O'Brien, G.W. Using Linear Algebra for
Intelligent Information Retrieval. SIAM Review, 37:4:573-595, 1995.

[8] Berry, M.W., Drmac, Z. and Jessup, E.R. Matrices, Vector Spaces, and Information
Retrieval. SIAM Review, 41:2:335-362, 1999.

[9] Giles, J.T., Wo, L. and Berry, M.W. GTP (General Text Parser) Software for Text
Mining. Statistical Data Mining and Knowledge Discovery, H. Bozdogan (Ed.),
CRC Press, Boca Raton, FL, 2003.

[10] Google Search Engine. http://www.google.com.

[11] Levy, S. A World According to Google. "Newsweek" magazine, December 16,
2002.

[12] Logistical Computing and Intemetworking (LoCI) Lab, February 2003,
http://www.loci.cs.utk.edu.

46

[13] Lynn, Patrick A. Evolving the General Text Parser (GTP) Utility into a Usable
Application via Interface Design. Master's Thesis, Department of Computer
Science, University of Tennessee, December 2002.

[14] Mironova, S.Y., Berry, M.W., Atchley, S. and Beck, M. General Text Parser (GTP)
with Network Storage. Proceedings of the Text Mining Workshop, SIAM Third
International Conference on Data Mining, San Francisco, CA, May 1-3, 2003.

[15] Plank, J.S., Atchley, S., Ding, Y. and Beck, M. Algorithms for High Performance,
Wide-Area, Distributed File Downloads. Technical Report No. UT-CS-02-485,
Department of Computer Science, University of Tennessee, October 2002.

[16] Plank, J.S., Bassi, A., Beck, M., Moore, T., Swany, M. and Wolski, R. Managing
Data Storage in the Network. IEEE Internet Computing, 5:5:50-58, 2001.

[17] Proceedings of the Fifth Text Retrieval Conference {TREC-5), D. Harman and E.M.
Voorhees (Eds.), NIST Special Publication 500-238, Department of Commerce,
National Institute of Standards and Technology, Gaithersburg, MD, 1997.

[18] Wolski, R., Spring, N. and Hayes, J. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation
Computer Systems. Elsevier, vol. 15, pp. 757-768, 1999.

47

APPENDIX

49

APPENDIX l

Options Available for GTP [9] .

Option Description Dependency

-help Summarize all the options.
-q Suppress progress summary.

Create the Harwell-Boeing Required if using -z
-h compressed matrix. Default is to option.

not create it.
Keep the Harwell-Boeing -h

-u
compressed matrix in an
uncompressed file (on output) if
the matrix is created.

-N Include numbers as keys.
Do not create Unix compatible Do not use if you

-D dbm key file keys. Default is to are to perform
generate it. queries.
Keep the keys file created in the

-K temporary directory specified by
the "-t temp dir" argument.
Consider the first line of each
document (up to 200 characters)
to be the title of the document.

-T
Before this line is parsed, it will
be written to the file TITLES in
the current directory. Each title
line in this file will exist on it's
own line.
Normalize the document length.

-s
This ensures a unit length for
columns in the term-by-document
matrix.
Set a new minimum key length for Must be an integer.

-m the parser. The default minimum
length is 2.
Set a new maximum key length Must be an integer.

-M for the parser. The default
maximum length is 20.

50

Specify a new maximum line Must be an integer.
length. If any record being parsed
exceeds this number of characters,

-L
the user is informed and the
portion of the record that caused
the overrun is printed to the
screen. The default maximum is
10,000.
Set the maximum number of Must be an integer.

-S common words to use. The
default value is 1000.
Use network storage. The files

-I output and keys will be uploaded
to the remote network.
Change the threshold for Must be an integer.

-d document frequency of any term.
Default is 1.
Change the threshold for global Must be an integer.

-g frequency of any term. Default is
1 .

Specify a string of characters,
each of which will be considered a

-e valid character, in addition to all
default characters, when
tokenizing keys.
Specify filters to pass each file
through before the parser looks at

-f
it. If a filter has options, it needs
to be surrounded by quotes.
Works only for C++ version. Java
has an internal HTML filter.
Specify that the key, id#, global

-o
frequency, document frequency,
and weight of all keys are to be
written to "filename".
Specify that a new document Cannot be used if -x
delimiter is needed. The new is being used.
delimiter must be alone on a line

-B in the file and must match exactly
for GTP to recognize it. It can be
up to 198 characters. Default is a
blank line.

51

Indicate that there is to be no Cannot be used if -
-x delimiter other than the end of B is being used.

file.
Specify a custom weighting
scheme. Local and global refer to
local and global weighting

local formulas. Local can be tf (term
-w

global frequency), log, or binary. Global
can be normal, idf, idf2, or
entropy. Default local is tf and
global is not calculated.

-R
Specify a name for the current run Must be a valid file
of GTP. name.

sdd Specify the decomposition Cannot use if using
rank method. -z svdl .

inner_ loop_ criteria Have to use -h.
tolerance

-z
svdl Cannot use if using
desc -z sdd.

lanmax Have to use -h.
maxprs

Specify that the output file is to be -z svdl
-0 in one binary file for SVD. This

is needed to use GTPQUERY.
Specify if parse procedure should h

-Z
be skipped so that an available -z svdl ... (or)
matrix can be decomposed via -z sdd . . .
SVD or SDD.

52

APPENDIX 2

Options Available for GTPQUERY [9].

Options Description

-help Summarize options.
-S Scale the query vector by the singular values before

calculating cosine similarity.
-n Set the number of factors to use. Default is value

ofnfact found in LAST_RUN file generated by
GTP.

-u Set the upper threshold value for query results
returned. If the upper threshold is set to 0.75, then
all query results returned will be equal to or less
than 0.75 (default is 1).

-1 Set the lower threshold value for query results
returned. If the lower threshold is set to 0.25, then
all query results returned will be greater than or
equal to 0.25 (default is -1).

-r Do not print query completion messages to stdout.
-I Use network storage to download files from IBP.

-d [doc#,doc#,doc#] Specify which documents or range of documents
or [doc#:doc#] for individual queries using document ids

(integers). A new query is generated for each
usage of the -d option. If there are several queries
specified in filename, then all instances of the -d
option are applied to each query in filename. For
example, 2 queries in filename along with -d
[1,2,3] -d [4:5], would result in the generation of
four different queries.

-a Specify that all query vectors should be normalized
by the number of term and/or document vectors
used in their construction. For example, a single
query in filename with -d [l ,2,3] -a would require
that the final query vector have its elements
divided by 4.

-k Set the number of results returned to integer
(default is all).

-f Specify filters to pass each file through before the
parser looks at it. If a filter has options, it needs to
be surrounded by quotes.

53

-B Specify that a new query delimiter is needed. New
delimiter must be alone on a line in the file and
must match exactly for the query processing to
recognize it. It can be up to 198 characters, and the
default delimiter is a single blank line. Cannot be
used in conjunction with the -x option.

-x Indicate that there is to be no delimiter other than
the end of file. This cannot be used in conjunction
with the -B option.

54

VITA

Svetlana Y. Mironova was born in Moscow, Russia on December 3, 1973. She

was raised in Mytishchi, Russia where she attended elementary, middle, and high school.

After receiving her high school diploma in 1991, she attended the Moscow State

Linguistic University formerly the Maurice Thorez Moscow State Pedagogical Institute

of Foreign Languages. She received her MA degree with Honors in Linguistics and

Intercultural Communication in 1996. Svetlana received her MS degree in Computer

Science from the Department of Computer Science at the University of Tennessee,

Knoxville in May 2003.

55

	Integrating network storage into information retrieval applications
	Recommended Citation

	tmp.1550583367.pdf.xGRYf

