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ABSTRACT 

The object-oriented software environment GTP (General Text Parser) with 

network storage capability has been designed to provide a scalable solution to index 

creation and query processing. GTP allows information retrieval and data mining 

professionals to parse a large collection of documents and create a vector space 

information retrieval model for subsequent concept-based query processing 

(GTPQUERY). The software's numerous options allow users to tune the model to their 

specific needs. Depending on the size of the collection, the facilitation of the model may 

require an enormous amount of local storage. The addition of network storage capability 

addresses the problem of inadequate local storage and file sharing over the network. 

Tools defining the Logistical Networking Testbed developed in the Logistical Computing 

and Intemetworking (LoCI) Lab at the University of Tennessee are used to demonstrate 

both the creation and use of remotely stored indices. With the development of new 

network storage technologies, the software will be able to forgo most local file generation 

and will allow remote users to share the index created by GTP. 
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1. INTRODUCTION 

The amount of textual-based information stored electronically, whether on our 

own computers or on the Web, is rapidly accumulating. Any desktop or laptop computer 

can accommodate huge amounts of data due to advances in hardware storage devices. 

Software companies develop products that may require megabytes of hard drive space. 

Without upgrading computers every few years, one cannot download one's favorite 

music or movies, or play the most recent computer games. Researchers and scientists 

involved in data mining and information retrieval are facing the same reality - an 

enormous amount of storage may be needed to run simulations and store their outputs. 

Some of the programs have to be rerun periodically with updated data. The majority of 

the data collections the scientists are working with are dynamic - they change with time. 

Take the popular search engine Google [10] as an example: thousands of new 

web pages are created on the Web every day. Google's powerful crawlers have to update 

the stored data periodically to be able to display new pages and discard dead links. 

Google takes a snapshot of each page examined as it crawls the web and caches (i.e., 

stores) the back-up copy for use when the original page is unavailable. The cached 

content is the content Google uses to judge whether a page is a relevant match for the 

query [10]. Google owns the world's largest commercial Linux cluster, which consists of 

more than 10,000 servers that are able to store over 3 billion web documents [10]. 

However, Google is a business enterprise with considerable funding. Most researchers in 

information retrieval and data mining do not have an access to such a tremendous amount 

of storage. Providing an opportunity to store data on a remote network is an attempt to 

address the needs of novices and experts in information retrieval and modeling who deal 

with large text corpora on a daily basis but are subject to limited storage capabilities. 

The General Text Parser (GTP) [9] software package was chosen to demonstrate 

the capability of providing an indexer with additional storage on a remote network. GTP 

is a publicly available software package developed at the Computer Science Department 

at the University of Tennessee. GTP is capable of parsing a large collection of documents 
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(text or tag separated) and creating a vector space information retrieval model for 

subsequent concept-based query processing. GTP provides numerous options to the user 

so that it is easy to use by both beginning and advanced users. 

GTP utilizes Latent Semantic Indexing (LSI) for its underlying information 

retrieval (IR) model [6,7,8]. LSI is a concept-based retrieval method, which overcomes 

many of the problems evident in popular word-based retrieval systems. LSI has been 

shown to be 30% more effective in finding and ranking relevant items than comparable 

word matching methods [7]. It relies upon matrix factorization methods such as the 

singular value decomposition (SVD) to uncover the underlying associations between 

terms and documents in a large text collection. A semantic, or concept, space is 

constructed from the SVD factors to facilitate query matching. 

During execution GTP creates several files that define the vector space IR model. 

Depending on the size of the text collection, those files can be quite large. The user is 

given an option of storing the model outputs on some set of the available Internet 

Backplane Protocol (IBP) servers or depots [2,11]. IBP is the foundation of the Logistical 

Networking Testbed developed at the Logistical Computing and Internetworking (LoCI) 

Lab at the University of Tennessee. This infrastructure provides a scalably sharable 

storage service as a network resource for distributed applications [2]. The Internet 

Backplane Protocol is middleware for managing and using remote storage. It was 

invented to support logistical networking in large scale, distributed systems and 

applications. IBP, as it name suggests, enables applications to treat the Internet as if it 

were a processor backplane [12], and allows users to share disk space or memory space 

over the network. Essentially, if the user chooses to store files on IBP, he can allow his 

colleagues to access these files as well. The storage on IBP is time-limited, i.e., if not 

extended, the storage will expire with time. The user has a set of capabilities with which 

he/she can manage allocated space and its time limits. Currently, there are 159 public IBP 

servers in 16 countries and 26 American states [12]. The total storage space available is 

approximately 9000 GB, and more space becomes available every day as more 
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organizations, research facilities and universities worldwide join the list of accessible 

depots. 
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2. GENERAL TEXT PARSER 

General Text Parser (GTP) is a software environment developed at the University 

of Tennessee for text/document parsing and indexing using an IR model based on sparse 

matrix data structures. GTP has the ability to parse any document: raw text, an HTML 

document or any other tag-separated document collection via user-defined filters. This 

software written in C++ and Java is very flexible and can be used by novice and expert 

users to parse textual information with the help of numerous options and settings. 

If opted by the user, GTP will create a vector-space model in which documents 

and queries are represented as vectors in a low-dimensional subspace. A term-by­

document matrix is initially used to define the relationships between the documents in the 

collection and the parsed terms or keywords. The elements of the matrix are typically 

weighted/unweighted frequencies of terms (rows) with respect to their corresponding 

documents (columns) [9]. 

2.1 LATENT SEMANTIC INDEXING 

The underlying vector-space model exploited by the GTP is Latent Semantic 

Indexing (LSI}. LSI is an efficient IR technique that uses statistically derived conceptual 

indices rather than individual words to encode documents. LSI assumes some underlying 

or latent structure in word usage that is partially obscured by variability in word choice. 

Specifically, LSI uses the truncated singular value decomposition (SVD) of the large 

sparse term-by-document matrix mentioned above to build a conceptual vector space [7]. 

A lower-rank approximation to the original term-by-document matrix is used to derive 

vector encodings for both terms and documents in the same k-dimensional subspace. The 

clustering of term or document vectors in this subspace suggests an underlying (latent) 

semantic structure in the usage of terms within the documents. 
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Let t and d denote the number of terms and documents, respectively. SVD factors 

the original term-by-document matrix A into the product of three matrices: 

A= Ul.Y7
' (1) 

where U is the t x t orthogonal matrix having the left singular vectors of A as its columns, 

Vis the d x d orthogonal matrix having the right singular vectors of A as its columns, and 

I is the t x d diagonal matrix having the singular values a1 2 a2 2 . . . 2 amin(t ,d) of A, in 

order, along its diagonal. This factorization, which exists for any matrix A [8], reflects a 

breakdown of the original term-to-document relationships into linearly independent 

vectors or factor values. The use of k factors or the k-largest singular triplets is equivalent 

to approximating the original term-by-document matrix in k-dimensional space [8]. 

Equation ( 1) then becomes 

(2) 

where Ak is the best low-rank approximation of the original term-by-document matrix [8]. 

For retrieval purposes, the rows of the t x k matrix Uk define the term vectors for the LSI 

model. Linear combinations of these vectors (typically scaled by the k-leading singular 

values of A) are used to construct query vectors or pseudo-document vectors. Similarly, 

the rows of the d x k matrix Vi yield the document vectors for the model (i.e., the 

coordinates of each document in a k-dimensional subspace). If double precision ( or 8 

bytes) is used to store each coordinate in any term or document vectors, the storage 

requirement for the LSI model is 8k(t+d). If 300 factors (or singular triplets) were used · 

to encode a collection comprising 100,000 terms and 10,000 documents, the storage 

requirement would be well over 250 Mbytes. 
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2.2 EVOLUTION OF GTP 

The original version of GTP was developed in C++ for both Solaris and Linux 

platforms. It was based on C code first distributed by Telcordia Technologies, Inc., for 

LSI-based applications [9]. A parallel version was later developed in C++/MPI (Message 

Passing Interface), improving the SVD computational time. 

The C++ version was recently ported to Java to utilize more object-oriented 

features. The Java version has certain limitations compared to its C++ counterpart: it is 

slower and it does not accept custom filters. However, it does provide an internal HTML 

filter. Most of the work described in this thesis was performed on the Java version of 

GTP. Work is under way to optimize the Java version including a graphical user interface 

to help the user manage the numerous options available with GTP. 

2.3 GTP PROCESS 

GTP is a robust software environment that allows the user to tune the parser to 

his/her needs through its multiple options. For example, some options allow the user to 

change thresholds for document and global term frequencies, specify custom filters and 

locaVglobal term weighting functions, and indicate new document delimiters. For a 

detailed overview of the available options, see Appendix 1. 

During parsing, GTP generates multiple files for further processmg of the 

document collection and for deriving correlations between terms and documents. After 

the initial parsing of the collection, GTP creates a master index of keys, or terms, in the 

collection. Those terms are placed in the file keys together with the term's index and 

global weight that is calculated according to the weighting scheme selected by the user. If 

the SVD option is selected, a binary file called output, which contains term and document 

vectors together with the computed singular values, is generated. These files are essential 

to the GTP-derived vector space IR model and its utility for query processing. Table 1 

describes the most important files generated by GTP. 
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Table 1. Important Files Generated by GTP. 

File name Type Description 

keys DBM Database of keys generated 

output Binary SYD output 

rawmatrix.Z 
ASCII 

Raw term-by-document matrix 
( Compressed) 

matrix.hb.Z 
ASCII 

Term-by-document matrix (sparse format) 
( Compressed) 

lao2 ASCII Summary of SYD output (singular values) 

larv2 Binary File of right singular vectors (documents) 

lalv2 Binary File of left singular vectors (terms) 

LAST RUN ASCII 
Summary of options used during the most 
recent GTP run 

Depending on the text collection parsed, the size of the above mentioned files 

could be very large - varying from kilobytes to gigabytes. A significant amount of 

storage is required to accommodate those files. For example, the larv2 and lalv2 files 

require 8kd and 8kt bytes, respectively, for k terms parsed from d documents by GTP. 

The user must also take into consideration that, in the course of his research, he might 

need to repeat the process of parsing the collection several times to achieve the desired IR 

model. Using the Internet Backplane Protocol (IBP) as described in Section 4, one can 

successfully eliminate the storage bottleneck commonly associated with IR model 

research and development. 
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2.4 QUERY PROCESS 

GTP is not only capable of creating an index. It also provides users with a module 

for querying, i.e., determining the similarities between a query and all documents in the 

collection. This query-processing module requires several of the output files generated by 

GTP, namely keys, output, and LAST_RUN (see Table 1 for the description of these 

files). 

The query module (GTPQUERY) treats each query in the same manner that the 

GTP process treats a document in the collection. That is, the same term-based operations 

are applied to the query to produce a resulting query vector. Query vectors are 

constructed as pseudo-document vectors, thus allowing their projection into the original 

term-document vector space. It is achieved by summing the term vectors of the 

corresponding terms in the query ( the term vectors are generated by GTP), and then by 

scaling each term vector dimension by the inverse of a corresponding singular value. 

Scaling the query vector is optimally done using the singular values produced by GTP 

[6,7,9]. A cosine similarity measure between the query vector and document vectors is 

used to determine the relevance of any or all documents to the query. 

The result of the query process consists of files ( one per query) with document ID 

and corresponding cosine similarity pairs ranked from the most relevant to the least 

relevant. A graphical user interface (GUI) has added the functionality of allowing the 

user to view the desired document in a separate window [10]. The result of the query 

process and the GUI' s separate document window are illustrated in Figure 1. The entire 

GTP and GTPQUERY processes are summarized in Figure 2. GTPQUERY options are 

described in detail in Appendix 2. 
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3. NETWORK STORAGE STACK 

Exchange of information between producers and consumers of large datasets over 

a wide-area network presents a logistical challenge. Data that is generated by model 

simulations can be difficult to obtain since it has to be transferred through such slow 

services as HTTP and FTP [ 1] . What is needed is a more flexible framework for moving 

content to distribution sites, decentralized load-balancing to ensure use of all available 

resources while maintaining scalability, the ability to quickly add more replicas as 

demand requires, and improvement of throughput to end users [ 1]. To allow users to 

store data in the network and access it quickly and easily, the Logistical Computing and 

Internetworking Lab (LoCI) at the University of Tennessee [12] has developed the 

Network Storage Stack. The Network Storage Stack is modeled after the Internet 

Protocol (IP) Stack, and is designed to add storage resources to the Internet in a sharable 

and scalable manner [2]. Figure 3 shows the organization of the Network Storage Stack. 

Applications 
(GTP, GTPQUERY, etc) 

Logistical File System 

Logistical Tools 

L-Bone exNode 

IBP 

Local Access 

Physical Layer 

Figure 3. Network Storage Stack 
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3.1 IBP 

The Internet Backplane Protocol (IBP) is the foundation of the Network Storage 

Stack. IBP's purpose is to allow users to share storage resources across networks. Its 

design echoes the major advantages of Internet Protocol (IP): the abstraction of the 

datagram delivery process, scalability, simple fault detection (faulty datagrams are 

dropped), and ease of access. These factors allow any participant in an IBP network to 

use any local storage resource available regardless of who owns it [2]. Using IP 

networking to access IBP storage creates a global storage service. 

3.1 .1  LIMITATIONS 

Some limitations to the direct use of IBP storage arise from two underlying 

network problems. The first problem concerns a vulnerability of IP networks to Denial of 

Use (DoU). The free sharing of communication within a routed IP network leaves every 

local network open to being overwhelmed by traffic from the wide area network. The 

second concern is that the storage service is based on processor-attached storage, which 

implies strong semantics: near-perfect reliability and availability. It can be almost 

impossible to implement on the scale of the wide area networks [2]. These issues are 

resolved as follows: 

IBP storage is time limited. When the time expires, the resources can be reused. 

An IBP allocation can also be refused by a storage facility (depot) if the user's request 

demands more resources than available. 

IBP is a "best effort " storage service [ 4]. The semantics of IBP storage are 

weaker than the typical storage service. Since there are so many unpredictable and 

uncontrollable factors involved, network access to storage may become permanently 

unavailable (if a depot decides to withdraw from the pool, for example). 

IBP storage is managed by depots or servers used by a client to perform storage 

operations. Table 2 shows the IBP client calls classification. 
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Table 2. IBP Client Calls 

Calls Description 

Allocate 
Allocates requested amount of storage for requested amount of time if 
the depot can accommodate this request. If successful, the depot sends 
the user keys. The keys grant write, read, and manage privileges. 

Store 
Once the user has the capabilities (keys), he can write data to the 
allocation. 

Load 
Once the data is stored, it can be read from any offset within the 
allocated space. 

Copy Allows the user to transfer data from one allocation to the other. 

Mcopy 
Allows the user to transfer data from one allocation to multiple 
allocations. 

Manage Allows the user to change the properties of the allocation. 

3.1.2 SECURITY 

Security of the allocation is a major concern for any user. A user will not feel 

comfortable storing his data on the network if there might be a breach in security. The 

basis of IBP network security is the capability, or the key. Capabilities are created by the 

depot in response to an allocation request and returned to the client in the form of long, 

cryptographically secure byte strings [ 4]. Every subsequent request to perform any action 

on the allocated byte array must then present the appropriate capability. As long as 

capabilities are transmitted securely between client and server and the security of the 

depot itself is not compromised, only someone who has obtained the capability from the 

client can perform operations on the data stored [ 4]. It must be mentioned that this is the 

only level of security that IBP must deal with. The data encryption has to be handled in 

the layer( s) above IBP. 
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3.2 ExNode 

The management of many IBP capabilities can be complicated. The exNode 

library was created to help the user in this task, and to automate most of the work. The 

exNode data structure is somewhat similar to the UNIX inode; but at the same time, it is 

fundamentally different. Just as inodes contain pointers to disk blocks, exNodes hold 

pointers to IBP allocations (or capabilities). Two major differences between exNodes and 

inodes are that the IBP buffers may be of any size, and their domains may overlap and be 

replicated [ 1 5] .  Thus, the exNode allows users and applications to create network files 

out of time-limited and failure-prone IBP allocations in such a way that much stronger 

properties (e.g. , fault-tolerance, longer duration) may be achieved [ 1 5] .  Figure 4 

compares the exNode to the UNIX inode. 

The exNode consists of two major components: arbitrary metadata and mappings. 

Metadata consists of <name, value, type> triplets where the types can be 64-bit integers, 

64-bit floating-point numbers, character strings, and metadata lists. The metadata lists 

allow nesting of metadata [ 1 ] .  

Each mapping can also have a function metadata component that describes how 

the data was encoded. The function metadata is a nested list that describes the type of 

encodings and their relative order. Each function has arguments and might have 

metadata. If the user has encrypted and included checksums in the data, he/she can store 

the encryption algorithm name, the encryption key, and the checksum algorithm name 

using the function metadata [ 1 ] .  

The exNode library allows the user to create an exNode, attach a mapping to it, 

store IBP capabilities into the mapping, and add metadata to the mapping. The exNode 

can also be serialized to XML so that exNodes created on one platform can be recognized 

on the other supported platforms. 
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Figure 4. ExNode Compared to lnode. 

The exNode makes it possible for the user to chain IBP allocations into a logical 

entity that resembles a network file [2]. Current IBP allocations have a limit of 2 GB; the 

exNode, however, allows the user to chain 2 billion IBP allocations, which equals 4 

Exabytes (262
) [2] . 

Each exNode can have multiple copies of the allocation, which provides better 

fault-tolerance . If a depot becomes unavailable for some reason, the user can still retrieve 

data from the copies stored on other depots. 

3.3 L-Bone 

The Logistical Backbone (L-Bone) is a distributed layer of middleware that 

allows access to a collection of IBP depots deployed on the Internet specifically to offer 

network storage to applications [ 16] .  It is a resource discovery service that maintains a 
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list of public depots and metadata about those depots [2,3]. The metadata consists of IBP 

information such as hostname, port, and allocation duration policy, as well as recent 

space availability values. Currently, the L-Bone also maintains uptime, or availability, 

performance on each depot. The L-Bone server polls each depot once per hour. In 

addition to the IBP metadata, the L-Bone can also store geographic location information 

as well as machine room characteristics such as data backup policy, power backup 

availability, etc. [2]. The operating environment data currently kept is connection speed, 

amount of monitoring, the availability of power backup, the scheduling of data backup 

and whether the machine is behind afirewall [ 12]. 

The L-Bone combines both static information ( such as IP addresses, zip codes, 

country codes) and dynamic decisions based on current network conditions to determine 

proximity. The L-Bone uses Network Weather Service (or NWS) [18] to monitor 

throughput between depots. NWS takes periodic measurements between depots, which it 

stores and uses to produce forecasts about network throughput, when needed [18]. As of 

December 2002, the L-Bone provide services of over 140 depots on five continents. 

Figure 5 shows the locations of the available IBP depots [12j. 

3.4 LoRS 

The next and final layer of the Network Storage Stack (see Figure 3) is the 

Logistical Runtime System ( or LoRS). Although the L-Bone makes it easier to find 

depots and the ex-Node library handles IBP capabilities, the user still has to manually 

request allocations, store the data, create the ex-Node, attach mappings to the ex-Node, 

and insert the IBP allocations and metadata into the mappings [2]. The LoRS layer 

consists of a C API (Application Programming Interface) and a command line interface 

tool set that automate finding of IBP depots via the L-Bone, creating and using IBP 

capabilities, and creating and managing exNodes [12]. The LoRS library also provides 

flexible tools to deal with the lower levels of the Network Storage Stack. Table 3 lists six 

network file-based functions provided by the LoRS tools [2]. 
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Table 3. LoRS Functions 

Function Description 

Upload Upload data to a network file. 

Download Retrieve the data from a network file. 

Augment Add replicas to a network file. 

Trim Remove replicas from a network file. 

Refresh Modify the expiration time of a network file. 

List View the network file's metadata. 

The LoRS API provides the user with more fine-grained control over the 

allocation. The API can store data from files or memory. Users may also use the API to 

implement new tools or capabilities such as multicast augments or overlay routing [2]. 

Both the LoRS tools and the API provide end-to-end services. To ensure that the 

data stored on the IBP depots was not altered in transit or while on disk, LoRS can insert 

MD5 checksums [2]. The MD5 (Message Digest number 5) value for a file is a 128-bit 

value similar to a checksum. Its additional length ( conventional checksums are usually 

either 16 or 32 bits) means that the possibility of a different or corrupted file having the 

same MD5 value as the file of interest is drastically reduced. During the download, if a 

block's checksum does not match, the block is discarded and the same block is 

downloaded from another source. 

To protect data in transit or while it is stored on a depot, which is an unreliable 

server, LoRS provides multiple types of encryption, including DES. DES stands for Data 

Encryption Standard, which was adopted by NIST (National Institute of Standards and 

Technology) as a national standard in 1976. DES encrypts and decrypts data in 64-bit 

blocks, using a 64-bit key. To achieve extra security, the application may use additional 
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encryption algorithms and then add the algorithm type and key as function metadata to 

the exNode [2] . 

In addition to replication as a means for additional fault-tolerance, LoRS tools 

allow coding blocks to be stored as well. These coding blocks are similar to the parity 

blocks used in RAID storage systems. The addition of coding blocks can greatly improve 

fault-tolerance [2] . It gives an opportunity to restore the "lost" block of data from the 

remaining data and the coding blocks. To reduce the amount of data stored, LoRS also 

supports compression. 
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4. GTP WITH NETWORK STORAGE 

The creation and maintenance of an index for a large text collection usually 

involves many modifications. These modifications may include the addition of new 

documents, the deletion of documents that are no longer needed, or the updating of 

existing documents. In any case, before the final index is created, several revisions may 

be needed thereby requiring the user to parse the collection multiple times. In some cases, 

the collection is dynamic, as is the case with web pages (HTML), so the parsing of such a 

collection has to be done on a regular basis in order to monitor updates. In other cases, 

the user will want to try different weighting schemes, or perhaps different methods of 

matrix decomposition. If the user decides to keep all the files generated by GTP and 

GTPQUERY after each parsing, the subsequent output files will take up an exhaustive 

amount of local disk storage. 

Fortunately, the concept of network storage can alleviate the local disk storage 

burden: the user can clean up his hard drive and store the information produced by the 

parser on a remote network. The Logistical Networking Testbed developed at LoCI [ 12] 

appears to have the right set of tools to facilitate the temporary storage of these large files 

on a remote network (Internet) along with immediate retrieval when needed. The storage 

and retrieval processes are transparent to the user with insignificant time overhead. 

Since the storage provided by the Internet Backplane Protocol (IBP) is temporary, 

if the user is not satisfied with the parser results, he might choose not to extend the time 

the files are stored on the network. Thus, when the allocation expires, the storagt? will be 

automatically reused. If, on the other hand, the user wants to store the results of the parser 

permanently, he can either make sure that the time limits for the storage depot do not 

expire or he can download the files back to his personal machine and then write them to 

other media, e.g., a CD-ROM. 
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4.1 OVERVIEW 

The execution of GTP creates two large files: keys (the database of the terms 

parsed) and output (a binary file, containing vector encodings generated by the SVD) (see 

Figure 2). These files are essential to the GTP and GTPQUERY. If the user chooses to 

use network storage after the files keys and output are generated, they are automatically 

uploaded to IBP depot(s); and a set of capabilities is returned to the user in the form of 

XML files ( one XML file for each file uploaded), which are stored in a designated 

directory. If the upload is successful, the files keys and output are deleted form the user' s 

space. Currently, there is no automatic tool to provide time extension of the .xnd files, 

which expire after a certain number of days. Each depot provides storage for a designated 

number of days (1 -28) [ 1 2] .  It is the user' s responsibility to make sure that allocated 

storage does not expire. If the allocation gets reused by the depot, all the data becomes 

unrecoverable. 

When the user wants to query into the collection, the files are downloaded back to 

the user' s space prior to execution of the query process using the information stored in 

XML files. The LoRS tools, described in detail in Section 3.4, are used to facilitate 

upload and download processing. 

The processes of upload and download are made as transparent to the user as 

possible. The software provides the default upload and download, but the user is 

encouraged to supply additional information about the desired location of the allocation 

to speed up the process. The entire process of GTP and GTPQUERY with incorporated 

network storage is represented in ,Figure 6. 
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Figure 6. GTP and GTPQUERY Process with Embedded Network Storage. Dotted lines represent optional execution. 
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4.2 GTP AND UPLOAD 

As seen from Figure 6, the process of GTP must complete creation of the files 

keys and output before they can be uploaded to the remote network. IBP requires 

knowledge of the file's size before uploading it. Our goal is to stream the data to network 

storage while it is being generated without creating local files. 

The upload process requires as little or as much information from the user as he is 

willing to provide. This information helps to optimize the performance of the upload 

tools. Below is a short list of the fields the user can specify. 

Location allows the user to enter keyword and value pairs to determine where he 

wants storage and minimum environmental criteria. The user may specify as many or as 

few keyword/value pairs as she wants. The location pointer can even be NULL if location 

and environment are unimportant. She can specify hostname, zip, state, city, country and 

airport. It is strongly recommended to indicate some sort of location to improve 

performance. If the user resides in Tennessee, it does not make sense to store the data in 

France or Australia. Since IBP relies on the performance of the network during the time 

of the upload, it might happen that the data will be stored in an undesired or distant 

location. 

Duration is the maximum number of days that the user will need the space. The 

user can also specify partial day amounts. For example, if 0.5 is requested, data will be 

stored on the network for 12 hours. Each depot has maximum number of days the data 

can be stored. This information can be obtained from L-Bone's list of depots (see 

http://loci.cs.utk.edu/lbone). If a longer time period is required, the user becomes 

responsible for extending the time of the allocation. If the allocation is allowed to expire, 

the space it occupies will be reused by the network. A set of tools that automates the 

process of extending the duration of the storage has been developed by LoCI for some 

platforms. 
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The Fragments option allows the user to subdivide a file into partitions of equal 

size and to store those partitions on different depots. Available depot space is used more 

efficiently and the performance of the download can be greatly improved. 

The Copies option allows the user to specify how many copies of the original file 

to store. Users are encouraged to store several copies of the data. As was mentioned in 

Section 3.1, there is always the possibility the data could be temporarily unavailable due 

to numerous uncontrollable circumstances. Subdividing the file into several fragments 

and storing multiple copies of the file can prevent an undesired loss of data. If during the 

download process some fragments cannot be found, LoRS tools will automatically check 

for all the copies of this fragment and will deliver the first available one. 

If the upload process is successful, the LoRS tools will return to the user a file 

with an .xnd extension. This file contains XML encoded information needed by the user 

and IBP to keep track of the file, retrieve the file, and perform LoRS operations described 

in Section 3.4. GTP stores the XML files ( one per uploaded file) in a directory, and will 

automatically delete the files being uploaded and conserve local disk storage. If on the 

other hand, the upload fails, the files will be saved on the user's machine and the user 

will be notified of the failure. 

4.3 DOWNLOAD AND GTPQUERY 

If IBP is used to store the GTP-generated index, a query into the document 

collection requires that the files keys and output be downloaded from the network. The 

download process depends solely on the XML files produced during the upload process. 

The exNode files (having the .xnd extension) store the location of the user's data within 

IBP. If these files do not exist, the download will fail, and the recovery of the data will be 

impossible. The LoRS download tool uses multiple threads to retrieve small blocks of 

data from the network, and then it reassembles the blocks into a complete file at the 

client. It uses an adaptive algorithm that retrieves more blocks from "faster" depots 

(depots with higher throughput to the client). Each active thread selects a different block 
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of the file to download, and all threads start downloading. When a thread is finished with 

its block, it selects a new block that is not being downloaded by any other thread. If a 

download fails, then the failed block becomes available again and another thread may 

attempt to download it. If some depots are much slower than others, the download tool 

can automatically try getting lagging blocks from other depots that have the same data 

[ 15]. The download tool is capable of starting from a specified offset and can process a 

prescribed bytecount of data. All GTP output files, however, are downloaded in their 

entirety. 

After the download process is complete, the user will have the files necessary to 

perform any query on the collection. See Figure 6 for the entire process of GTPQUERY 

with netwo�k storage. 

4.4 USER INTERFACE 

In order to make the usage of GTP and GTPQUERY as user-friendly as possible, 

a graphical user interface (GUI) [13] was designed (Figure 7). The defaults for every 

option were incorporated into the interface to make user's task of performing parsing and 

querying even easier. Network storage has its own panel (labeled ''Network Storage"), 

that allows the user to specify the location, the duration of storage, and the number of 

fragments and copies needed (see Section 4.4). He will also be able to extend the time of 

the allocation and view all the details about the files stored on the network. When upload 

or download processes are activated, a special panel monitors the progress (Figure 8) and 

a map of the available depots provides visual information on where the files are being 

stored (Figure 9). Arrows indicate where the fragments and copies of the file are being 

uploaded or downloaded. 
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5. IMPLEMENTATION CHALLENGES 

Initial integration of network storage into GTP was achieved through the xnd tools 

- LoRS predecessors with more or less the same functionality. The xnd tools were 

written in C, while the target version of GTP was in Java. Fortunately, the xnd library 

included an xnd _ server that could be used as a bridge between Java and C APis. The 

GTP application had to stream specifically formatted data, required by the requested 

operation, through a socket directly to the xnd_server. The xnd_server then invoked the 

appropriate utility (upload or download) with the parameters passed from GTP. After 

completion of the operation, the xnd _ server returned to GTP a byte string denoting either 

a success or a failure. If the operation was a success, the software received a byte stream 

with the parameters of the file followed by the file stream (XML encoded file for upload 

or the original file for download). At that point, such operations as upload, download, 

refresh and list were implemented. For the detailed description of these operations, see 

Table 3. 

After the release of the LoRS tools in December 2002, the GTP software had to 

be adjusted to work with the new tools. A different server, lors_server, was also released 

with the tools. This server did not have an implementation of refresh or list, and the 

corresponding modules in GTP ceased to work. It was difficult to keep track of all the 

stored files and their expiration dates. At this stage, the capability of displaying the map 

of the world (with the depots) during upload/download process was added. The user 

could now visualize where the files' copies and fragments were stored, and obtain 

information on the expiration dates of the files. 

To initiate an upload/download of several files at a time, the execution of these 

processes was accomplished with threads. Threading was intended to make the process of 

network storage faster and more efficient. When threading was added, a download of 

more than one file often failed. Extensive debugging helped to pinpoint and fix a race 

condition in the LoRS code. 
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The original Java code for GTP and GTPQUERY did not contain any graphical 

components. The panel for network storage was designed to visualize the process (Figure 

8), and forced other tradeoff considerations. · One such issue arose between the GUI 

component and GTP execution. For example, closing the storage panel accidentally 

during GTP execution terminated the GTP run. As a result, the decision was made to wait 

until GTP finishes creating its output to proceed with the upload. This issue should no 

longer exist when network storage is fully integrated with the main GUI. 

The issues of extending the allocation time of the file and viewing it through the 

interface have not been solved successfully. As mentioned above, these features were 

implemented and functioned well with the xnd tools but are not supported by the new 

/ors_ server. The user could specify the number of days preferred for the allocation 

(usually longer than the depot's limit) since most depots have rather short storage periods 

(1-28 days). The code ran in the background daily to extend the allocation time by one 

day, until the allocation time requirement was met. The user could also view the file' s 

metadata, including hostnames, storage expiration dates, file/fragment status, etc., in a 

comprehensible format. An appropriate set of tools is being developed by the LoCI 

researchers to enable such features for GTP users. 
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6. PERFORMANCE 

The GTP software has been frequently tested and evaluated. The results described 

in this section were achieved using the Java version of GTP. The machine used in all 

experiments has following specifications: 

• Dual Intel® Xeon™ 2.4GHz processors with 512KB advanced transfer L2 

Cache 

• 2GB of dual-channel, ECC, DDR 266MHz SDRAM memory 

• 2GB available swap space 

• 20GB AT All 00 7200 RPM hard drive 

Benchmarks were produced on the three FBIS (Foreign Broadcast Information Service) 

sub collections from TREC-5 [ 1 7]. Specifications of the sub collections are described in 

Table 4. 

Figures 10-12 illustrate the timing results for a GTP run for each of the 

collections with uploads to France (FR), California (CA), and Tennessee (TN) with the 

server located in Tennessee. Each GTP run was executed using the following command 

line options (for a detailed description of the options see Appendix): 

UNIX> java GTP [collection name} -c [common word list} -t [temporary 

directory] -h -z svdl test2 -R [name of the run} -0 -I -w log entropy 

Table 4. Collections Used for Benchmarking. 

Name Size Documents Distinct Terms File output File keys 

FBIS SK 17.8MB 5,000 22,558 1 1MB 2.78MB 

FBIS l0K 32MB 10,000 31 ,667 18MB 3.5MB 

FBIS 20K 63MB 20,000 46,488 28MB 5.8MB 
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Figure 10. GTP Upload Benchmarks for FBIS 5K. 
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Figure 11. GTP Upload Benchmarks for FBIS lOK. 
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Figure 12. GTP Upload Benchmarks for FBIS 20K. 

The parameters passed to the LoRS tools were the location strings: zip=37966 for TN, 

state=CA for CA, and country=FR for France. 

The GTP process time is fairly consistent ( among the three different uploads) 

since the calculations are performed on the local machine. As can be seen from the 

results, the time required to run GTP is directly proportional to the collection size. Java is 

not the optimum language for performing intensive numerical computations such as the 

singular value decomposition (SYD). 

Current benchmarks indicate that the additional time/overhead for upload is not 

significant compared to the total elapsed time. The time of the upload depends on 

multiple factors: how far the location of the upload is from the user's location, the 

network bandwidth, the time of day, the size of the file to be uploaded, and the number of 

copies requested. The results may vary from one run to another. The status of the depots 

at the time of the upload also greatly affects the timing results. If some depots in the area 
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requested for the upload are down, other depots in the area receive more traffic and the 

process slows down. The LoRS tools attempt to store the files in the location with 

optimal bandwidth. Depending on network conditions, the files might be uploaded to a 

location different from the one requested. During the benchmarking of the collections 

FBIS 5K and FBIS 20K, files intended for upload in Tennessee, were frequently 

uploaded to New Zealand and Australia (Figures 10 and 12). 

While all the preprocessing is done by GTP during parsing and construction of the 

model, the GTPQUERY process simply projects the query into the term-document vector 

space. A 100-dimensional vector space was generated for the three different subsets of 

the FBIS for the collections listed in Table 4. Query vectors are generated as scaled 

linear combinations of the term vectors, the left singular vectors of the original term-by­

document matrix. All queries were processed using the following command line options 

(for a detailed description of the options see Appendix): 

UNIX> java GTPQUERY [query file] -c [common word list] -S -I -n 15 

By default, GTP uses 100 SVD factors, i.e., all term and document vectors are of length 

100. In the experiments shown below, only the first (or dominant) 15 singular triplets 

were used in the querying process (-n 15 option). As mentioned above, each query vector 

was built from linear combinations of term vectors whose dimensions were scaled by the 

corresponding singular value (-S option). 

The query file used for the three FBIS sub-collections in Table 4 consisted of three 

queries, separated by a blank line: 
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Prior to querying, the files keys and output were downloaded from network storage. 

Metadata files with .xnd extension generated by the GTP' s upload were streamed by 

GTPQUERY to the LoRS download routine. 

Figures 13-15 demonstrate that, in most cases, the download takes up the greater 

portion of the run time. The time of the GTPQUERY depends mostly on the number of 

queries requested by the user. Download time, on the other hand, depends on many 

circumstances. The most important factors in the download process are the location of the 

file's fragments and copies and the current conditions of the network. 
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Figure 13. GTPQUERY Download Benchmarks for FBIS SK. 
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Figure 14. GTPQUERY Download Benchmarks for FBIS lOK. 
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Figure 15. GTPQUERY Download Benchmarks for FBIS 20K. 
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7. FUTURE WORK 

As researchers are trying to find ways to improve Java's performance in handling 

scientific calculations, new optimization techniques can be added to the Java version of 

the GTP to improve its performance during matrix creation and SVD calculations. 

A graphical user interface ( GUI) was recently developed to guide the user in 

selecting the numerous options for a customized IR model. The GTP GUI is still being 

refined and updated (Figure 7). Eventually, the GUI will display all available options. 

The Network Storage tab of the GUI is still in development and ultimately will be able to 

guide the user through the upload/download process, collect necessary information like 

location, duration, number of copies and fragments, and provide the user with the 

feedback on the upload/download process. The user will be able to view the information 

about the files stored on IBP and extend their storage time through the interface. The user 

will simply be able to press the "Parse" button and GTP will run, taking into account all 

the options and parameters specified. 

The network storage option has been currently implemented only for the Java 

version of GTP - which presented some challenges, since all IBP and LoRS tools were 

originally implemented in C. The merge was possible due to a special LoRS server. In the 

future, it would be desirable to forgo the LoRS server altogether, and call the appropriate 

tool directly. This can be made possible through the usage of Java Native Interface (JNI), 

which allows an invocation of native methods like C functions within Java. 

Work is in progress to integrate network storage into the C++ and parallel 

versions of the GTP. However, the integration should not present any difficulties since 

the LoRS C tools can be called directly from those versions. 

In collaboration with LoCI Lab [ 12] ,  refinements of the network storage 

procedure itself are underway. Upgrades include adding interactive maps and utilities to 
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allow the user to see more information about the files stored on IBP, extend storage time 

with a click of a button, and share files over the network. 

LoCI researchers are working on the possibility of streaming data directly from a 

LoRS Java ( or C) client to IBP depots as it is generated. Currently, streaming can only 

be performed using the LoRS C library or the UNIX command line tools. This would 

eliminate local file generation, which will greatly improve GTP's performance and 

storage requirements. 
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8. CONCLUSIONS 

The amount of data processed in simulations by research scientists worldwide is 

rapidly accumulating. The lack of local storage is becoming a growing concern among 

the scientific community. The addition of a network storage capability to the General 

Text Parser software environment attempts to address the problem of inadequate storage 

and file sharing over the network for the purposes of information retrieval. Currently, 

large files cannot be sent via electronic mail. GTP with network storage gives users an 

opportunity to create a user-specific IR model, place the files (index) generated by GTP 

on a sharable network so that all the participants in a project can have access to them. The 

availability of the software1 and its ease of use make it an invaluable tool in the hands of 

information retrieval and data mining professionals. The software is constantly being 

updated and augmented with innovative tools like network storage. The benchmarking 

results described in this paper provide motivation for further development of network 

storage capability for GTP as a solution to the shortage of local disk storage and file 

sharing. 

I GTP is public domain software available for downloading from http://www.cs.utk.edu/~lsi. 
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APPENDIX l 

Options Available for GTP [9] . 

Option Description Dependency 

-help Summarize all the options. 
-q Suppress progress summary. 

Create the Harwell-Boeing Required if using -z 
-h compressed matrix. Default is to option. 

not create it. 
Keep the Harwell-Boeing -h 

-u 
compressed matrix in an 
uncompressed file ( on output) if 
the matrix is created. 

-N Include numbers as keys. 
Do not create Unix compatible Do not use if you 

-D dbm key file keys. Default is to are to perform 
generate it. queries. 
Keep the keys file created in the 

-K temporary directory specified by 
the "-t temp dir" argument. 
Consider the first line of each 
document (up to 200 characters) 
to be the title of the document. 

-T 
Before this line is parsed, it will 
be written to the file TITLES in 
the current directory. Each title 
line in this file will exist on it's 
own line. 
Normalize the document length. 

-s 
This ensures a unit length for 
columns in the term-by-document 
matrix. 
Set a new minimum key length for Must be an integer. 

-m the parser. The default minimum 
length is 2. 
Set a new maximum key length Must be an integer. 

-M for the parser. The default 
maximum length is 20. 
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Specify a new maximum line Must be an integer. 
length. If any record being parsed 
exceeds this number of characters, 

-L 
the user is informed and the 
portion of the record that caused 
the overrun is printed to the 
screen. The default maximum is 
10,000. 
Set the maximum number of Must be an integer. 

-S common words to use. The 
default value is 1000. 
Use network storage. The files 

-I output and keys will be uploaded 
to the remote network. 
Change the threshold for Must be an integer. 

-d document frequency of any term. 
Default is 1. 
Change the threshold for global Must be an integer. 

-g frequency of any term. Default is 
1 .  

Specify a string of characters, 
each of which will be considered a 

-e valid character, in addition to all 
default characters, when 
tokenizing keys. 
Specify filters to pass each file 
through before the parser looks at 

-f 
it. If a filter has options, it needs 
to be surrounded by quotes. 
Works only for C++ version. Java 
has an internal HTML filter. 
Specify that the key, id#, global 

-o 
frequency, document frequency, 
and weight of all keys are to be 
written to "filename". 
Specify that a new document Cannot be used if -x 
delimiter is needed. The new is being used. 
delimiter must be alone on a line 

-B in the file and must match exactly 
for GTP to recognize it. It can be 
up to 198 characters. Default is a 
blank line. 
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Indicate that there is to be no Cannot be used if -
-x delimiter other than the end of B is being used. 

file. 
Specify a custom weighting 
scheme. Local and global refer to 
local and global weighting 

local formulas. Local can be tf (term 
-w 

global frequency), log, or binary. Global 
can be normal, idf, idf2, or 
entropy. Default local is tf and 
global is not calculated. 

-R 
Specify a name for the current run Must be a valid file 
of GTP. name. 

sdd Specify the decomposition Cannot use if using 
rank method. -z svdl . 

inner_ loop_ criteria Have to use -h. 
tolerance 

-z 
svdl Cannot use if using 
desc -z sdd. 

lanmax Have to use -h. 
maxprs 

Specify that the output file is to be -z svdl 
-0 in one binary file for SVD. This 

is needed to use GTPQUERY. 
Specify if parse procedure should h 

-Z 
be skipped so that an available -z svdl ... (or) 
matrix can be decomposed via -z sdd . . .  
SVD or SDD. 
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APPENDIX 2 

Options Available for GTPQUERY [9]. 

Options Description 

-help Summarize options. 
-S Scale the query vector by the singular values before 

calculating cosine similarity. 
-n Set the number of factors to use. Default is value 

ofnfact found in LAST_RUN file generated by 
GTP. 

-u Set the upper threshold value for query results 
returned. If the upper threshold is set to 0.75, then 
all query results returned will be equal to or less 
than 0.75 (default is 1). 

-1 Set the lower threshold value for query results 
returned. If the lower threshold is set to 0.25, then 
all query results returned will be greater than or 
equal to 0.25 ( default is -1 ). 

-r Do not print query completion messages to stdout. 
-I Use network storage to download files from IBP. 

-d [ doc#,doc#,doc#] Specify which documents or range of documents 
or [ doc#:doc#] for individual queries using document ids 

(integers). A new query is generated for each 
usage of the -d option. If there are several queries 
specified in filename, then all instances of the -d 
option are applied to each query in filename. For 
example, 2 queries in filename along with -d 
[1,2,3] -d [4:5], would result in the generation of 
four different queries. 

-a Specify that all query vectors should be normalized 
by the number of term and/or document vectors 
used in their construction. For example, a single 
query in filename with -d [ l ,2,3] -a would require 
that the final query vector have its elements 
divided by 4. 

-k Set the number of results returned to integer 
( default is all). 

-f Specify filters to pass each file through before the 
parser looks at it. If a filter has options, it needs to 
be surrounded by quotes. 
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-B Specify that a new query delimiter is needed. New 
delimiter must be alone on a line in the file and 
must match exactly for the query processing to 
recognize it. It can be up to 198 characters, and the 
default delimiter is a single blank line. Cannot be 
used in conjunction with the -x option. 

-x Indicate that there is to be no delimiter other than 
the end of file. This cannot be used in conjunction 
with the -B option. 
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