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ABSTRACT 

The high elevation paramos of Costa Rica are dominated by C3 grasses 

(primarily bamboo) and evergreen shrubs; however, the high altitude C4 grass 

Muhlenbergia flabellata may dominate suitable microhabitats with coarse substrates, 

such as glacial till. To explore late Pleistocene and Holocene C3-C4 vegetation 

dynamics, I measured the stable carbon isotope compositions of total organic carbon 

(o13Croc) in two parallel lake sediment cores (core 1: 6 m, core 2: 5.6 m) from Lago de 

las Morrenas 1 (3477 m) at the foot of Cerro Chirrip6. 

Both sediment records begin in late Pleistocene ( ~ 11,700 cal. yr. BP) glacial silt 

deposited as the ice last retreated from the Chirrip6 massif. Average o13CTOc values are 

more positive in the basal glacial silts of both cores than in overlying organic-rich 

Holocene sediments, possibly suggesting the greater importance of C4 plants during the 

late Pleistocene. An increase in the proportion of C4 plants in the late Pleistocene may 

have been the result of decreased atmospheric pCO2, increased aridity (perhaps 

seasonally), and/or well-drained soil conditions on newly exposed bedrock and glacial 

till that favored the C4 grass Muhlenbergiaflabellata. 

The lake sediment o13CTOcrecord shows a strong link to fire dynamics. Periods 

of increased macroscopic charcoal input to the lake sediments are characterized by more 

depleted o13Croc during the Holocene and more enriched o13Croc values during the late 

Plefatocene. Relatively enriched average o13CTOc values of~ -20%0 occur throughout 

the Holocene despite evidence for continued C3 plant dominance. These enriched 

· o
13Cmc values may reflect the utilization of HCO3- photosynthesis by aquatic plants 

and algae, such as Bottryococcus braunii, and/or trophic level fractionations imparted 

ix 



by zooplankton within the lake. Future compound-specific isotopic analyses will assist 

in isolating the contribution of these various sources to the organic carbon pool. 
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CHAPTERl 

INTRODUCTION 

In early analyses of global climate change, the tropics were viewed as largely 

disconnected from the changes happening elsewhere in the world (CLIMAP 1981). 

While higher latitudes cooled during glacial times, climate in the earth's fow latitudes 

was thought to have remained essentially stable. More recently, the idea of a stable 

tropical climate has been discarded in the face of studies showing significant temporal 

climatic changes in tropical localities (e.g. Hodell et al. 1991; Islebe et al. 1995; Leyden 

1995; Thompson et al. 1995; Curtis et al. 1996; Thompson 2000). In fact, the tropical 

latitudes are quickly becoming regarded as one of the primary drivers in world climate 

and climatic change. 

Much of the data suggesting significant climate changes in the tropics has been 

the result of studies based on fossil pollen preserved in lake sediments or peat as a 

proxy of vegetation change (e.g. Markgraf 1989; Bush and Colinvaux 1990; 

Hooghiemstra et al. 1992; Hooghiemstra and van der Hammen 1993; Burney et al. 

1995; Islebe et al. 1996; Wille et al. 2001). Several limitations inherent to pollen 

studies, such as the similarity between pollen grains of different species, the unequal 

representation of particular pollen types, and human impacts on pollen spectra, may 

hinder the ability to make accurate and complete vegetation and climate reconstructions 

from these data alone. In addition, Huang et al. (1999) suggest that pollen may not 

have the rapid response or sensitivity required to act as a reliable proxy for some 

vegetation or climate changes. 
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The lack of sensitivity to climatic change is especially a problem for vegetation 

assemblages that do not typically yield an informative pollen signature, such as 

vegetation types dominated by grasses. Pollen of most members of the grass, or 

Poaceae, family is not identifiable to species, or even genus, and therefore provides very 

limited information on plant community compositions or environmental change 

(Livingstone and Clayton 1980). In addition, even when vegetation types have distinct 

pollen signatures, the dominant photosynthetic pathways used by that vegetation 

(Calvin-Benson cycle (C3); the Hatch-Slack pathway (C4); crassulacean acid 

metabolism (CAM)) are not typically discemable from pollen records. 

For the reasons outlined above, many researchers have examined stable carbon 

isotopes in sediments, which can provide climate information by revealing the dominant 

photosynthetic pathways utilized by grasses and other plants. Numerous studies from 

around the world have used stable carbon isotopes from a variety of media, such as lake 

sediments, peat deposits, soils, herbivore teeth, fossilized dung, and even fossilized egg 

shells, as a proxy for the relative abundance of C3 vs. C4 vegetation at different times 

during the Quaternary (e.g. Street-Perrott et al. 1997; Boutton et al. 1998; Connin et al. 

1998; Ficken et al. 1998; Gasse and Lin 1998; Pessenda et al. 1998; Street-Perrott et al. 

1998; Johnson et al. 1999; Scott and Vogel 2000; Barker et al. 2001; Boom et al. 2001; 

Clark et al. 2001; Huang et al. 2001; Baker et al. 2002; Ficken et al. 2002; Mora and 

Pratf2002; Scott 2002). The analysis of stable carbon isotopes has become the 

preferred method for assessing the relative abundance of C3 and C4 plants in modem 

ecosystems as well, despite the ability of researchers to make direct observations 

regarding the photosynthetic pathways presently being used (Tieszen and Archer 1990). 
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It is the ability of the stable carbon isotope record to provide this otherwise masked 

information that makes its use worthwhile in areas where pollen signals alone may not 

be enough to tell the whole ecological and climatic story. 

As mentioned above, one of the major problems affecting pollen-based 

reconstructions of paleovegetation and paleoclimate in the tropics is that of human 

disturbance. Multiple studies have documented vegetation disturbance by humans 

extending into the mid-Holocene in the neotropics (e.g. Burney et al. 1994; Northrop 

and Hom 1996; Kennedy and Hom 1997; Goman and Byrne 1998; Bush et al. 2000; 

Clement and Hom 2001; Rosenmeier et al. 2002). This anthropogenic disturbance of 

vegetation may swamp or mask any vegetation change occurring solely due to climatic 

changes, thereby making climate reconstructions in these situations nearly impossible. 

. For this reason, when trying to reconstruct climatic change using vegetation proxies it is 

ideal to have a study site unaffected by human activity. 

The site chosen for this study, Lago de las Morrenas 1, is remote from areas of 

prehistoric or historic human settlement in Costa Rica (Stone, 1977). Lago de las 

Morrenas 1 is located near the highest peak of the Cordillera de Talamanca of Costa 

Rica, Cerro Chirrip6 (3820 m). The treeless, tropical alpine vegetation that surrounds 

the lake is known as paramo. The paramo vegetation of the Chirrip6 massif is 

dominated by bamboo and other grasses (Hom 1989; Hom 1993), which produce pollen 

that is difficult or impossible to separate to genus or species. As a whole, the Poaceae 

family contains the greatest number of species utilizing the C4 photosynthetic pathway 

(Deines 1980; Sage et al. 1999a; Boom et al. 2001), which means that stable carbon 

isotopic analyses, in combination with pollen records, have the potential to provide 
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more information on vegetation change in a grass dominated community than pollen 

records alone. Currently, the only known C4 plant species in the Chirrip6 paramo are 

grasses in the genus Muhlenbergia. As an ecosystem dominated by grasses and 

containing a modem day C4 plant component, the Costa Rican paramo is an ecosystem 

in which data on the changing carbon isotopic composition of plant matter, in 

combination with various other proxy analyses, may provide a more detailed record of 

late Quaternary vegetation and climate change. 

The C4 photosynthetic pathway is most advantageous under warm, dry, high 

light intensity conditions, due to its high water use efficiency. The C4 photosynthetic 

pathway has also been found to be highly advantageous during periods of decreased 

partial pressures of atmospheric CO2 (pCO2), due to its ability to actively concentrate 

atmospheric CO2 during photosynthesis (Ehleringer and Monson 1993; Ehleringer et al. 

1997; Collatz et al. 1998; Sage et al. 1999b). 

The C3 photosynthetic pathway begins with the fixation of carbon dioxide 

catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco ). Rubisco is 

also capable of catalyzing the fixation of oxygen during the initial stages of 

photosynthesis, a process termed photorespiration. Photorespiration greatly hinders the 

efficiency of photosynthesis as it has no useful function for the plant. Plants using the 

C4 photosynthetic pathway have evolved to eliminate the inefficient process of 

photorespiration by using phosphoenolpyruvate (PEP) as the initial catalyst to carbon 

fixation. C4 plants still use the C3 photosynthetic pathway, except it is isolated within 

bundle sheath cells surrounded by mesophyll. PEP has both a higher affinity for CO2 

and a greater maximum velocity than does Rubisco. PEP is located in the mesophyll 
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surrounding the bundle sheath cells and acts to actively concentrate CO2 into the bundle 

sheath cells by diffusing it through the mesophyll during carbon fixation like a pump. 

This greatly increases the concentration of CO2 in the bundle sheath cell as compared to 

the outside of the plant and greatly reduces the rates of photorespiration. The ability to 

"pump" CO2 into the bundle sheath cells during photosynthesis gives C4 plants a 

distinct advantage over C3 plants during periods of decreased atmospheric levels of 

CO2. The ability to concentrate CO2 also allows C4 plants to keep their stomata closed 

for longer periods of time, thereby reducing transpiration. This provides C4 plants with 

a distinct advantage over C3 plants under conditions of high light intensity, high 

temperature, and increased aridity. CAM plants are also capable of both photosynthetic 

pathways, only they separate the steps temporally instead of spatially, using the C4 

photosynthetic pathway at night with open stomata, and then using the C3 

photosynthetic pathway during the day with stomata closed to limit transpiration 

(Ehleringer and Monson 1993). 

The different methods of carbon fixation in these photosynthetic pathways cause 

these respective pathways to discriminate differently against 13C during photosynthesis 

resulting in the formation of plant tissues with distinct 813C values (Farquhar et al. 

1989). These distinct carbon isotope ratios exist in living plants and plant detritus and 

can be incorporated into sediments. The C4 pathway discriminates less against 13C and 

produces a 813C value in bulk organic carbon of the plant tissue ranging from -14%0 to 

-10%0 (PDB), while C3 species are more discriminating against 13C and produce a 813C 

value ranging from -35%0 to -20%0 (Bender 1971; O'Leary 1981; Ceding 1999). Plants 

utilizing CAM photosynthesis typically produce 813C values falling between these two 
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ranges. These distinct carbon isotope ratios allow estimation in sediment records of the 

abundance of C3 vs. C4 plants in the watershed of a particular lake or bog as long as 

those plants contribute to the organic matter contained in the sediments. Changing 

isotope ratios could signal a possible vegetation shift that would not necessarily be 

evident in pollen records (Huang et al. 1999). 

The determination of dominant photosynthetic pathways in previous studies of 

vegetation change has been used primarily to evaluate paleoclimate, in which the 

dominance of C4 vegetation is interpreted to indicate either aridity or decreased 

atmospheric pCO2 (e.g. Hillaire-Marcel et al. 1989; Aucour et al. 1993; Boom et al. 

2001). Multiple studies (Jolly and Haxeltine 1997; Street-Perrott et al. 1997; Barker et 

al. 2001; Boom et al. 2001; Mora and Pratt 2001) have argued for increased C4 plant 

dominance during glacial periods, despite cooler temperatures, due to decreased 

atmospheric pCO2. Modeling studies of plant dominance (Figure 1.1) based on known 

biological characteristics of quantum yields (i.e. the efficiency productivity) under 

varying temperature and pCO2 conditions show a crossover from C3 dominance to 

increased C4 plant dominance at lowered atmospheric pCO2, even with 10°C 

depressions in temperature (Ehleringer et al. 1997; Collatz et al. 1998). With pCO2 

levels dropping to 180 to 200 ppmv (20 Pa) during the last glacial maximum (LGM; 

Barnola et al. 1987; Neftel et al. 1988; Leuenberger et al. 1992), it is quite possible that 

C4 plants became much more dominant worldwide than they are today (Jolly and 

Haxeltine 1997; Collatz et al. 1998). Boom et al. (2001) have suggested that the C4-

dominated microhabitats they have studied in the northern Andes may in fact be relicts 
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Figure 1.1. Crossover temperatures for C3 vs. C4 plant dominance 
with changes in atmospheric pCO2 (Collatz et al. 1998). 

from the Pleistocene, when low atmospheric pCO2 allowed· for a much greater 

dominance of C4 plants in the highland ecosystems. 

It is important to emphasize that lowered pCO2 is not the only factor potentially 

contributing to C4 plant expansion. C4 plants also tend to dominate under conditions of 

high daytime growing temperatures, high light intensities, or predominantly warm

season precipitation (Sage et al. 1999b; Huang et al. 2001 ). Multiple studies have also 

explained increased C4 plant dominance in tropical regions as a consequence of 

increased aridity in the past (Quade et al. 1989; Talbot and Johannesen 1992; Sukumar 

et al. 1993; Aucour and Hillaire-Marcel 1994; Giresse et al. 1994; Huang et al. 2001). 

The purpose of this study is to examine the stable carbon isotope composition of 

organic matter in lake sediments from Lago de las Morrenas 1, one of ~ 30 lakes of 

glacial origin in the Chirrip6 paramo of Costa Rica. This study constitutes the first 
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paleoecological study in Costa Rica, and one of very few in Central America as a 

whole, utilizing stable carbon isotopes from lake sediments. Simply trying to interpret a 

carbon isotope signal as it stands alone can prove to be both difficult and inaccurate. In 

order to limit possible misinterpretation of isotope data and maximize interpretation of 

environmental change, I chose to carry out this study using sediment cores from Lago 

de las Morrenas 1 in which sediment, pollen, microscopic charcoal, macroscopic 

charcoal, and diatoms have already been examined (Hom 1993; Haberyan and Hom 

1999; League and Hom 2000). 

Using stable carbon isotopes and other proxies of vegetation change extracted 

from sediments of Lago de las Morrenas 1, I address the following questions : Were C4 

plants more dominant in the Chirrip6 paramo during the late Pleistocene when 

atmospheric pCO2 levels were much lower than today? Is it possible that existing C4 

dominated microhabitats in the Chirrip6 paramo are relicts from the Pleistocene as 

suggested by Boom et al. (2001) for the northern Andes? Do shifts in the isotopic 

composition of Lago de las Morrenas 1 lake sediments throughout the Holocene signal 

shifts in C4 plant dominance in response to climatic change? 

Further context for these questions is provided in Chapter 2, in which I describe 

the environmental setting and environmental history of the Chirrip6 paramo. Chapter 3 

explains the laboratory and field methods employed to try to answer these questions. I 

present the results of this study in Chapter 4 and discuss their significance in Chapter 5. 

Finally, in Chapter 6, I conclude and summarize my findings. 
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CHAPTER 2 

ENVIRONMENTAL SETTING AND IATE QUATERNARY 
VEGETATION AND CLIMATE HISTORY 

A. Valle de las Morrenas 

The highest peaks of the Cordillera de Talamanca in southern Costa Rica 

support treeless paramo vegetation. The largest of these Costa Rican paramos, covering 

approximately 5000 ha, is the Chirrip6 paramo surrounding Cerro Chirrip6 (3819 m, 

9°29'27" N, 83°29'27" W), the country's highest peak. The Chirrip6 paramo and some 

50,000 ha of surrounding montane vegetation is protected within Chirrip6 National 

Park, established in 1975 (Horn 1998). 

Some thirty glacial lakes and ponds occur within the Chirrip6 paramo (Horn et 

al. 1999). The Valle de las Morrenas or "Valley of the Moraines," located on the 

northern side of Cerro Chirrip6, contains the greatest number of these lakes (Figures 2.1 

and 2.2). The multiple lake basins in the Valle de las Morrenas were formed by two 

primary geomorphic processes (Horn et al. 1999; Orvis and Horn 2000). First, the 

intrusive igneous bedrock is strongly jointed, causing spatially variable susceptibility to 

glacial erosion within the valley by alpine glaciers in the past. Second, the uneven . 

bedrock valley floor is itself covered by an uneven blanket of meltout till and scattered 

moraines deposited during glacial advances and retreats. These till deposits dam 

several of the ponds and lakes in the valley; others are bedrock tarns. S. Horn and K. 

Orvis have numbered the main chain of lakes Lago de las Morrenas O through Lago de 

las Morrenas 4 (or in abbreviated form, Lago or Lake 1, 2, etc.). Smaller lakes that feed 
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into larger lakes are identified with the number of the lake drained into, plus a letter 

(i.e. Lago 0A drains into Lago 0,Lago 2A drains into Lago 2; Figure 2.2; Horn et al. 

forthcoming). 

B. Lago de las Morrenas 1 

Lago de las Morrenas 1 (3477 m, 9°29'40" N, 83°29' 14" W) is the largest lake 

in the Valle de las Morrenas (Horn et al. 1999; Figure 2.2). Several intermittent streams 

feed into the lake, the largest of which enters from the south. There is also an 

intermittent outlet located on the western edge of the lake. Lago de las Morrenas 1 has 

a surface area of 5.6 ha (Horn et al. 1999) and a maximum water depth of 8.3 m was 

measured by Horn in 1989 (Horn 1993). 

C. Climate 

Few site-specific meteorological data are available for the Chirrip6 paramo. 

However, the Cerro Paramo meteorological station (3466 m, 9°33'41"N, 83°45' 1 8"W; 

K. Orvis, personal communication 2003) located in the Buenavista paramo on Cerro 

Buenavista (Figure 2.3 ; also known as Cerro de la Muerte) likely provides 

representative meteorological data. The Cerro Paramo station recorded a mean annual 

temperature of 8.5°C and mean annual precipitation of 258 1  mm between 1971  and 

2000 (K. Orvis, personal communication 2003). Orvis and Horn (2000) made the 

important observation that the Valle de las Morrenas is subject to more cold air drainage 

than is the meteorological station on Cerro Buenavista, as the meteorological station is 

located on a mountain top. This likely makes mean annual temperatures in the Valle 
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de las Morrenas slightly lower than those reported at the Cerro Paramo station. 

Precipitation records from Cerro Buenavista show a distinct wet and dry season, with 

the majority of precipitation, ~2286 mm, falling between May and November and only 

~ 295 mm falling during the dry season from December to April (K. Orvis, personal 

communication 2003). No reliable records of snowfall exist for the paramos of Costa 

Rica (Coen, 1983), but morning frosts are common. 

D. Vegetation 

Paramo vegetation in Chirrip6 National Park extends from about 3300 to 3819 

m (Hom 1993). The lower limit of paramo vegetation varies depending on atmospheric 

moisture delivery. On the more humid Atlantic slopes of the Cordillera the lower 

elevational limit of paramo vegetation may be as high as 3400 m (Hooghiemstra et al. 

1992). The dwarf bamboo Chusquea subtessellata Hitchc. dominates the paramo and 

has been documented in vegetation surveys to reach as much as 60% cover (Hom .1989; 

Hom 1993), but this figure is likely higher in other locations not surveyed in these 

studies (S. Hom, personal communication 2003). No other woody plant species in the 

paramo has been documented as exceeding 10% cover (Hom 1989; Hom 1993). 

However, certain microhabitats do support more extensive shrub cover, for example 

talus slopes. 

In total, about 48 vascular plant families are present in the paramo with the 

majority of species belonging to the Asteraceae, Cyperaceae, Ericaceae, Hypericaceae, 

Poaceae, and Rosaceae families (Hom 1989; Cleef and Chaverri 1992; Hooghiemstra et 

al. 1992). Some of the most prominent shrub species in the Chirrip6 paramo include 
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Hypericum strictum Kunth, H. irazuense Kuntze, Pemettya prostrata (Cav.) DC., 

Pentacaliafinnipes (Greenm.) Cuatrec., Vaccinium consanguineum Klotzsch, 

Escallonia myrtilloides var. patens (Ruiz and Pav.) Sleumer, and Myrsine dependens 

(Ruiz and Pav.) Spreng. (Kappelle 1991; League and Hom 2000; Hom forthcoming). 

Several herbaceous species, especially in the Poaceae family, are also present in the 

Chirrip6 paramo and are capable of dominating particular habitats. 

Of particular interest to this study is the presence of grasses in the genus 

Muhlenbergia in the paramos of Costa Rica. In the genus Muhlenbergia, there are 160 

species that use the C4 photosynthetic pathway (Sage et al. 1999a). Based on the 

available literature this means the vast majority, if not all, of the Muhlenbergia species 

utilize the C4 photosynthetic pathway. Three Muhlenbergia species have been 

documented in the paramos of Costa Rica; M. calcicola Swallen., M. flabellata Mez., 

and M. nigra Hitchc. (Pohl 1980). Muhlenbergiaflabellata, which is a C4 grass 

(Herrera-Arrieta and Grant 1994; Peterson and Herrera-Arrieta 2001), seems to 

particularly flourish in microhabitats near Lago de las Morrenas 1 (Hom 1989). The 

ability of the C4 photosynthetic pathway to exist in this environment today suggests the 

possibility of past establishments and changes in the dominance of plants utilizing this 

photosynthetic pathway, evidence of which may be preserved in the stable carbon 

isotope signature of lake sediments. 

Species in the genus Muhlenbergia are some of the most cold tolerant C4 plants 

in existence today, and are therefore one of the few species of C4 plants that is able to 

succeed at high altitudes and high latitudes (Sage et al. 1999b). Muhlenbergia species 

can be found as far north as the boreal forests of Canada (Schwarz and Redmann 1988), 
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and as high as 4000 m elevation in the Rocky Mountains (Sage 1999b; R. Sage, 

personal communication 2001). This extreme cold tolerance makes species in the 

Muhlenbergia genus especially capable of expanding under the low pCO2 conditions 

during the Pleistocene when temperatures were lower (see Vegetation and Climate 

History below). In the Chirrip6 paramo, M. flabellata presently seems to be restricted 

to microhabita�s. with a .coarse substrate and relatively low moisture availability, such as 

glacial till (see further discussion in Chapter 5). No other plant genera in the Chirrip6 

paramo have been documented as using the C4 photosynthetic pathway. 

Also of interest in this study are the aquatic plants and algae of Lago de las 

Morrenas 1. These provide an autochthonous source of carbon that can significantly 

influence the isotopic dynamics within the lake and sediments. The primary aquatic 

macrophyte in Lago de las Morrenas 1 is Isoetes storkii T.C. Palmer (Horn 1993). 

Interestingly, the genus Isoetes contains several species that utilize the crassulacean acid 

metabolism (CAM) photosynthetic pathway, which is typically only utilized by plants 

growing under conditions of water stress, such as epiphytes or desert succulents. As 

water is certainly not a limiting resource to aquatic plants, it is thought that the use of 

CAM photosynthesis by aquatic plants is an adaptation to low dissolved CO2 levels in 

some water bodies (Keeley 1981, 1989; Sternberg et al. 1984; Sandquist and Keeley 

1990; Keeley and Sandquist 1991). 

Also thought to currently exist in Lago de las Morrenas 1, but still unverified, is 

the alga Botryococcus braunii Klitzing. Botryococcus braunii has been reported in 

Lago Chirrip6, which is less than 0.5 km away on the southern flank of Cerro Chirrip6, 

and is at a similar elevation to Lago de las Morrenas 1 (Figure 2.2; Jones et al. 1993; 
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Haberyan et al. 1995). The close proximity and similar environmental conditions of 

Lago Chirrip6 and Lago de las Morrenas 1 make it likely that the alga is present in Lago 

de las Morrenas 1 as well (G. Umafia, personal communication with S. Hom 2002). 

Jones et al. (1993) do not report the presence of B. braunii in Lago de las Morrenas 1, 

however I identified what are most likely fossil remains of B. braunii at all sediment 

levels analyzed for pollen analysis by Hom (1993) from Lago de las Mo�enas 1 

(Chapter 5). The presence of B. braunii is of interest in this study as it is known to be 

capable of HCO3- photosynthesis under conditions of low dissolved CO2 (Huang et al. 

1999). Photosynthesis using HCO3- photosynthesis leads to an isotopic enrichment in 

13C in the plant, as bicarbonate is 7-12%0 more enriched in 13C than CO2, and can have 

significant effects on the bulk organic sedimentary 813C values in a lake (Mook et al. 

1974). 

E. Vegetation and Climate History 

Several paleovegetation and paleoclimatic studies have been published 

concerning the Chirrip6 paramo (Hom 1993; Haberyan and Hom 1999; League and 

Hom 2000; Orvis and Hom 2000). Fossil pollen in the Lago de las Morrenas 1 

sediments indicates that paramo vegetation has existed around the lake since 

deglaciation at about 10,000 14C yr. B.P., and suggests no major changes in vegetation 

since that time (Hom 1993). Microscopic (Hom 1993) and macroscopic (League and 

Hom 2000) charcoal records indicate that the vegetation surrounding Lago de las 

Morrenas 1 has burned many times throughout the last 10,000 years. Variations in 

charcoal influx have been thought to possibly reflect changes in precipitation, with low 
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charcoal influxes indicating increased fire intervals possibly in response to wetter 

conditions and high charcoal influxes possibly indicating drier conditions and decreased 

fire intervals (League and Horn 2000). Conspicuously low charcoal influx between 

6800 - 4200 14C yr. B.P. may signal one of the wetter periods for the area since 

deglaciation (League and Horn 2000). 

There is little or no evidence for significant limnological changes in Lago de las 

Morrenas 1 in the past. A diatom study of Lago de las Morrenas 1 carried out by 

Haberyan and Horn (1999) shows an overwhelming dominance by the cosmopolitan 

diatom genus Aulacoseira throughout the history of the lake. However, the possible 

lack of sensitivity of this cosmopolitan diatom to changes in water chemistry may also 

explain its persistence throughout the 10,000 14C yr. sediment record. 

Few published studies exist of climate and vegetation history prior to the 

formation of Lago de las Morrenas 1. Geomorphic and sedimentary evidence (Horn 

1993; Orvis and Horn 2000; Lachniet and Seltzer 2002) confirm glaciation of the Valle 

de las Morrenas prior to the formation of Lago de las Morrenas 1 at the time of last ice 

retreat. Equilibrium line altitude (ELA) estimates made from geomorphic 

reconstructions of glacial extent and thickness in the Valle de las Morrenas suggest 

mean annual temperature depressions of as much as 8-9° C during the coldest periods 

of the Pleistocene (Orvis and Horn 2000). 

Two sedimentary pollen records extending beyond 10,000 14C yr. B.P. have 

been analyzed in Costa Rica, both from the vicinity of El Empalme (Figure 2.3) at the 

northwestern end of the Cordillera de Talamanca (Martin 1964; Islebe and 

Hooghiemstra 1997). Martin (1964) was one of the first researchers to suggest 
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significant climate changes in the tropics, based on a coarse resolution pollen study 

from the Parque Vicente Lachner bog, which showed evidence of significant cooling 

during the Pleistocene for the region. In a more detailed pollen study, Hooghiemstra et 

al. (1992) report similar depressions in temperature during the Pleistocene around La 

Chonta bog (2 km southeast of the Vicente Lachner bog). La Chonta bog is a mid

el�vation (2310 m) bog hypothesized to be as niuch as 80,000 years old (Hooghiemstra 

et al. 1992; Islebe and Hooghiemstra 1997). Fossil pollen analyses from La Chonta bog 

suggest numerous changes in the vegetation composition around the bog throughout its 

history. The most significant changes in vegetation composition are reported to have 

occurred in the late Pleistocene (~50,000-13,000 yr. B.P.). La Chonta bog pollen 

assemblages suggest a drop in treeline to an elevation of ~ 2000 m, at which time the 

bog was surrounded by paramo vegetation: This ~ 1300 m drop in treeline is attributed 

to temperatures at that time being some 8°C lower than today (Hooghiemstra et al. 

1992; Islebe et al. 1996; Islebe and Hooghiemstra 1997). The La Chonta pollen record 

also indicates a drop in treeline elevation during what is considered to be the Younger 

Dryas Chron. This drop in treeline is suggested to represent a ~ 2-2.5°C decline in 

mean annual temperature as compared to today from 11,000 to 10,400 yr. B.P. for Costa 

Rica. Following this hypothesized temperature depression, modem treelines, and 

presumably modem temperatures, were established by 10,400 yr. B.P. (Hooghiemstra et 

al. 1992; Islebe et al. 1996; Islebe and Hooghiemstra 1997). 
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A. Sediment Coring 

CHAPTER 3 

METHODOLOGY 

Two parallel sediment cores were retrieved from Lago de las Morrenas 1 in 

January 1989 by S. Hom. The cores were raised from an anchored platform using a 

square rod piston corer (Wright et al. 1984) at water depths of 5 .4 m (core lA: 6.0 m 

long) and 7.5 m (core 2A: 5 .6 m long). In addition to these cores, one parallel core 

section intended to recover the transition from the organic rich lake sediment to the 

glacial sediments was taken for core lA (lB), and three parallel core sections of this 

transition were taken for core 2A (2B, 2C and 2D). Near-surface sediments (0-1 m) 

were collected using a PVC pipe fitted with a rubber piston. The PVC pipe allowed for 

the relatively undisturbed recovery of the unconsolidated uppermost sediments. Core 

segments acquired using the square rod piston corer were extruded in the field, wrapped 

in plastic and foil, and then sealed in plastic tubes. Sediments retrieved using the PVC 

pipe were sampled in the field at 2 cm intervals and stored in plastic bags. All 

sediments were stored at 6° C upon their return to the University of Tennessee. 

B. Dissolved CO2 Measurements 

In January of 2003 I measured dissolved CO2 in Lago de las Morrenas 1 ,  Lago 

de las Morrenas 3C, and Lago Ditkebi. I took three water samples at different locations 

around each lake from the shoreline and measured their dissolved CO2 content 

immediately after collection using a LaMotte field CO2 test kit. 
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C. Radiocarbon Dating 

Hom (1993) obtained six radiocarbon dates on bulk sediment from Lago de las 

Morrenas 1 core 2A. Radiocarbon determinations were carried out by Beta Analytic 

Laboratory, Inc. , in Miami, Florida. These samples were not corrected for differential 

fractionation effects with 13C measurements. Radiocarbon dates were calibrated using 

versi�� 4.3 of .the CALIB radiocarbon age calibration program (Stuiver and Reimer 

1993) and the dataset of Stuiver et al. (1998). In addition, to assist in correlating Lago 

de las Morrenas core lA and core 2A I have submitted six sediment samples from core 

lA to the University of Arizona for bulk AMS radiocarbon determinations. 

D. Modern Reference Pollen 

As a possible additional means of detecting changes in C4 plant populations 

from evidence in the Lago de las Morrenas 1 sediment profiles, I prepared and 

examined reference pollen slides of Chusquea subtessellata and Muhlenbergia 

flabellata. Martin Arford and I isolated pollen grains from their anthers using a 

modified version of standard palynological techniques (Berglund, 1986; Appendix A) 

and mounted them in silicone oil. The objective of my analysis was to determine if 

pollen gains from Chusquea subtessellata and Muhlenbergia flabellata could be 

distinguished by grain diameter, annulus diameter, pore diameter, or a combination of 

these measurements as a ratio. Vouchered C. subtessellata plant specimens and anthers 

were provided by S. Hom. Vouchered M. flabellata anthers were provided by Lynn 

Clark from the Ada Hayden Herbarium at Iowa State University. 
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I measured modem C. subtessellata and M. flabellata pollen grains at 400x 

magnification. I converted the eyepiece reticule measurement scale units into 

micrometers using a Reichert-Jung micrometer calibration slide. I made measurements 

of grain diameter, annulus diameter, and pore diameter at the widest dimension on fifty 

grains per individual. I measured pollen· grains from two individuals of each of the two 

species analyzed, yielding a total of 100 measurements per grass. species. 

E. Identification of Bottryococcus braunii Fossil Remains 

I scanned slides prepared for pollen analysis by Hom (1993) for the presence of 

Bottryococcus braunii fossil remains. Slides were prepared by S. Hom according to 

standard palynological techniques (HCl, HF, KOH, acetolysis; Berglund 1986). I 

identified B. braunii remains at 400x magnification based on the descriptions of B. 

braunii made by Prescott (1969). I made no attempt to quantify the number of B. 

braunii fossil remains, I only noted their presence or absence. 

F. Bulk Stable Carbon Isotope Analysis 

I took sediment sub-samples from Lago de las Morrenas 1 core 1, core lB, core 

2, core 2B, and core 2D for stable carbon isotopic analysis on sediment total organic 

carbon (313Croc). I took samples consisting of approximately lg  of wet sediment. I 

collected sediment sub-samples from the center of the sediment core to avoid 

contamination that may affect the outermost portion of the core slug. I decalcified these 

samples for one hour in 10% HCl, and then rinsed and neutralized them with distilled 

water. Once neutralized to a pH of ~ 7, I dried these samples at 50°C overnight, crushed 
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them in a mortar and pestle, and mixed them with 500 mg Cu, 500 mg CuO, and a small 

platinum wire in quartz tubes. I then sealed the quartz tubes under vacuum and 

combusted the organic matter at 800°C for three hours. Following combustion, I 

cryogenically cleaned and trapped all extracted CO2 in collection vessels using a 

vacuum extraction line. I analyzed the isotopic composition of the evolved CO2 using 

the dual-inlet Finnigan MAT Delta-plus mass spectrometer at the University of 

Tennessee, Knoxville. I report all isotopic compositions in standard 0-per mil notation 

relative to the Vienna-Pee Dee belemnite (VPDB) marine-carbonate standard, where: 

o13C (per mil) = 1000 [(Rsample!Rstandard) - l ], 

where R = 1
3C/12C. 

The USGS graphite standard used in this study (USGS24) is reported to have an 

isotopic composition of -15.99 +/- . 10%0 V-PDB. An isotopic composition of -15.95 

+/- . 1 1%0 V-PDB (n=15) was measured during this study for USGS 24. 

Due to the numerous other analyses carried out on sediments from Lago de las 

Morrenas core 2A, many sections of the core had inadequate material remaining for 

613Croc analysis. For example, there was inadequate material for 613Cmc analysis from 

the uppermost sediments of core 2A down to 246 cm. Inadequate sample material 

remained for numerous other sample intervals below 246 cm, including those used for 

bulk radiocarbon dates. 

Where possible, I sampled remaining sediments below 246 cm from core 2A 

with at least a 360 year, but typically much finer, resolution. I sampled sediments from 
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core lA at a coarser interval. Based on the correlation of cores lA and 2A using 

magnetic susceptibility (see discussion below), samples used for 613C analysis from 

core lA provide, on average, a resolution of about 350 years between samples, but this 

value likely varies due to uncertainties in core correlation. These sample intervals also 

vary due to the occurrence of a 48 cm section of poorly consolidated sediments from 

94-142 cm in core lA that were transferred to plastic bags during field extrusion of the 

core. These segments were therefore mixed, not allowing for sedimentation rate 

estimates as no date could reliably be applied to such a large sediment interval. 

G. Modern Plant 613C Measurements 

I measured the 613C of modem plant specimens from the Chirrip6 paramo that 

are members of genera documented to contain species using C4 photosynthesis. I 

cleaned modem plant samples ultrasonically in distilled water and dried them overnight 

at 50°C. I then froze each sample using liquid nitrogen and ground it using a mortar 

and pestle before combusting the sample, collecting the extracted CO2, and isotopically 

analyzing the sample using the same procedure outlined above for bulk sediments. 

Samples analyzed for 613C consisted primarily of leaf tissue from multiple individuals. 

Although it is preferable to use whole plant matter when measuring the 613C signature 

of plants, I primarily used leaf tissues in this study as whole plant matter is not essential 

in determining the photosynthetic pathway used by the plant. 
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H. Temporal Correlation of the Sediment Cores using Magnetic Susceptibility 

I correlated the multiple sediment cores used in this study using magnetic 

susceptibility and changes in sediment stratigraphy. High resolution (typically 1 cm 

interval) magnetic susceptibility measurements were carried out by Brandon League on 

Lago de las Morrenas core 2A using a Bartington MS2B magnetic susceptibility meter 

(League 1998). This high resolution record included several distinct peaks in magnetic 

susceptibility. In this study I compared the distinct magnetic susceptibility peaks in the 

Lago de las Morrenas 1 core 2A sediment profile to peaks in magnetic susceptibility 

that I detected in Lago de las Morrenas 1 core IA using a Hartington MS2C magnetic 

susceptibility meter. The Bartington MS2B magnetic susceptibility meter measures 

samples packed into 10 cm3 sampling pots, while the MS2C magnetic susceptibility 

meter is designed so that entire core segments can be passed through a sensing loop. 

All measurements were taken at low frequency settings and are reported in SI units . 
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A. Sediments and Stratigraphy1 

CHAPTER 4 

RESULTS 

Lago de las Morrenas 1 cores 1 A and 2A exhibit very similar sediment 

stratigraphies (Table 4.1, 4.2, and Figure 4. la, 4. lb). The uppermost sediments in both 

cores ( core lA: 0-541 cm; core 2A: 0-527 cm) consist of organic rich gyttja (Munsell 

1 OYR 2/1 - 1 OYR 2/2) containing an abundance of zooplankton fecal pellets and have 

organic contents, as determined by loss on ignition, ranging from 16% to 49% (Hom 

1993, League 1998). Transitional sediments (Munsell SY 2.5/2 - 2.5Y 4/2 - SY 3/1) 

between the organic rich gyttja and underlying mineral glacial flour at the base of the 

core are present in both cores (core lA: 541-582 cm; core 2A: 527-545 cm). Both 

cores end in mineral rich glacial flour (Munsell SY 4/1) deposited during the 

deglaciation of the valley (core lA: 582-602 cm; core 2A: 545-564 cm). 

Shorter parallel sediment slugs intended to retrieve the organic gyttja to glacial 

flour transition ( cores lB, 2B, and 2D) were collected ·by moving the raft from the 

positions at which cores lA and 2A were collected. Due to variations in sediment 

· deposition and lake basin shape, the depth stratigraphy of the shorter sediment slugs 

collected from Lago de las Morrenas 1 at these locations do not exactly match those of 

cores lA and 2A (Figure 4.1). Core lB  is a short sediment slug recovered from 512-

1 All depths reported in this section are depths below the sediment-water interface and are not reported in 
"core 2 correlated depths" (see Magnetic Susceptibility Stratigraphy and Core Correlation in this 
chapter) . 
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Table 4.1. Sediment Stratigraphy of Lago de las Morrenas 1 Core lA. 

Depth (cm) Sediment Description Munsell Color and Description 
0-541 Organic rich, gelatinous gyttja lOYR 2/1 and lOYR 2/2 

dominated by zooplankton fecal Black grading to very dark 
pellets brown 

541-582 Transitional sediments, 5Y 2.5/2, 2.5Y 4/2, and 5Y 3/1 
combination of softer overlying Black to dark grayish brown, 
organic sediments and more grading into very dark gray 
mineral rich sediments 

582�02 Glacial flour 5Y 4/1 
Dark gray 

Reported depths are the depth below the sediment-water interface and are not "core 2A 
equivalent depths" as reported elsewhere in this study. Information is taken from 
unpublished core logs compiled by S. Hom. 

Table 4.2. Sediment Stratigraphy of Lago de las Morrenas 1 Core 2A. 

Depth (cm) Sediment Description Munsell Color and Description 
0-527 Organic rich, gelatinous, gyttja lOYR 2/1 and lOYR 2/2 

dominated by zooplankton fecal Black grading to very dark 
pellets brown 

527-545 Transitional sediments, 5Y 3/2 and 2.5Y 4/2 
combination of softer overlying Dark olive gray to dark grayish 
organic sediments and more brown 
mineral rich sediments 

545-564 Glacial flour 5Y 4/1 
Dark gray 

Reported depths are the depth below the sediment-water interface. Information taken 
from Hom (1993) and unpublished core logs. 
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Figure 4.la. Sediment stratigraphy and magnetic susceptibility spike 
stratigraphy for Lago de las Morrenas 1 cores lA, lB, 2A, 2B, 
and 2D. Information taken from Hom (1990; 1993) and unpublished 
core logs. Black bars indicate magnetic susceptibility spikes. 
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Figure 4.lb. Sediment stratigraphy and magnetic susceptibility spike 
stratigraphy for Lago de las Morrenas 1 cores lA, lB, 2A, 2B, 
and 2D after correlation to core 2A. Black bars indicate magnetic 
susceptibility spikes. 
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589 cm in the Lago de las Morrenas 1 sediment profile and includes the interface 

between the organic gyttja and transitional sediments (Figure 4.l a, 4. lb). Organic rich 

sediments (Munsell IO YR 2/1) are present from 512-570.5 cm. Transitional sediments 

(Munsell 5Y 3/2 - 2.5Y 3/2) make up the lowermost sediments in this short sediment 

slug. 

Cores 2B and 2D are similar sediment slugs collected with the idea that they 

would span the glacial flour to organic rich gyttja transition (Figure 4.1 ). Core 2B 

(500-563 cm) consists entirely of transitional sediments (Munsell 5YR 4/2). Core 2D 

(405-483 cm) consists of organic gyttja from 405 cm to 471 cm (Munsell 5Y 2.5/1 -

5Y 2.5/2), which is underlain by transitional sediments from 471 to 483 cm (Munsell 

5Y 3/2). 

B. Magnetic Susceptibility Stratigraphy and Core Correlation 

I found stratigraphic peaks in the magnetic susceptibility of Lago de las 

Morrenas 1 core IA by slowly passing the core sections through the Bartington MS2C 

meter while resting on carriers that I made by slicing clear plastic tubes lengthwise. I 

noted· stratigraphic depths registering increased magnetic susceptibility measurements 

and then compared those to peaks in magnetic susceptibility previously recorded in core 

2A by League (1998; Figure 4.la, 4. lb). I assumed that the corresponding peaks in 

magnetic susceptibility from the cores represented the same periods in time, and 

therefore allow for the correction of differing sedimentation rates at the sites of cores 

IA and 2A. I calculated differences in sedimentation rates assuming linear 

sedimentation rates between magnetic susceptibility peaks. I then determined a 
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correction factor to produce an equivalent depth for core lA measurements compared to 

core 2A. The "core 2A correlated depth" reported for any sediment interval is the 

calculated depth at which equivalent core lA sediment was being deposited. For 

example, a depth of 435 cm in core lA has a "core 2A correlated depth" of 430.6 cm. 

This means that sediment was deposited at a depth of 435 cm at the position of core lA 

at the same time as sediments were being deposited at the position o� �ore 2A at a depth 

of 430.6 cm. 

In addition to magnetic susceptibility peaks, I also assumed the change in 

sediment type from the transitional sediments to the homogeneous organic gyttja must 

have occurred at about the same time in all of the cores (Figure 4. la, 4. lb) .  This added 

yet another point that I could correlate temporally between the sediment cores. This 

· was the only means available for correlating the shorter sediment transition slugs ( lB,  

2B, and 2D) and is  also the method I used for the base of core lA. I then applied a 

simple linear correction factor to the cores such that the sediment transition in all "core 

2A correlated depths" occurred at the same time as in core 2A. Unfortunately, there 

was no organic gyttja present in core 2B so I assumed that the top of core 2B was the 

transition point from the gyttja to the transitional sediments for correlation purposes. 

Furthermore, it appears that these shorter sediment slugs do not contain the transitional 

sediment to glacial flour interface present in cores lA and 2A. The absence of this 

stratigraphic marker disallowed the chronological correlation of the base of the short 

sediment slugs ( lB, 2B, and 2D) to core 2A. Therefore, the correlation of cores lB,  2B, 

and 2D to core 2A are based on the organic gyttja to transitional sediment interface only 

(Figure 4. 1 b ). 
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C. Radiocarbon Dates 

The six radiocarbon analyses carried out by Beta Analytic Laboratory on bulk 

sediment samples from Lago de las Morrenas 1 core 2A show a normal stratigraphic 

sequence with no age reversals or anomalies (Table 4.3 and Figure 4.2). The lowermost 

radiocarbon date (527-542.5 cm, 12,360-11,230 cal. yr. BP) is located at the position 

where sediment types shift from transitional sediments to glacial flour and verifies that 

this sedimentary record spans the late Pleistocene and the entire Holocene. The 

calibrated radiocarbon dates suggest variable sedimentation rates, the slowest of which 

occurred in the late Pleistocene (0.08 mm/yr.) and early Holocene. A general increase 

in sedimentation rates can be seen throughout the Holocene with maximum rates 

occurring during the late Holocene and present times (0.79 mm/yr.; Figure 4.2). These 

sedimentation rate calculations are also influenced by the compaction of sediments at 

depth. Thus, the ·calculated sedimentation rates are likely underestimated in the lower

most sediments in the core. 

D. Poaceae Pollen Separation by Size 

Summary statistics for C. subtessellata and M. flabellata pollen grain diameters, 

annulus diameter, pore diameter, and all possible ratios of these individual 

measurements are shown in Table 4.4. I used an F-test (two sample for variances, 

a=.05) to analyze variances between samples and then applied the appropriate ( equal or 

unequal variance) two-sample means test ( two-tailed, a=.05) to each of the diameter 

33 



Table 4.3. Radiocarbon Determinations on Sediments from Lago de las Morrenas 1 
Core 2A (from Hom and League forthcoming). 

Uncalibrated 14C Calibrated Age Range 
Lab Number Sediment Interval Age ( 14C yr. BP) (cal. yr. BP ± 2cr) 

'3-30431 81-111 cm 1230 ± 170 1510-790 

'3-30432 215-236 cm 3100 ± 90 3470-3080 

'3-30433 315-335 cm 4250 ± 90 5040-4530 

· B-30434 415-435 cm 6830 ± 120 7930-7440 

'3-30435 515-527 cm 8900 ± 100 10,240-9600 

'3-31787 527-542.5 cm 10,140 ± 120 12,360-11,230 
All radiocarbon determinations were made on bulk sediment by Beta Analytic 

_ Laboratory. Radiocarbon ages were calibrated using version 4.3 of the CALIB 
radiocarbon age calibration program (Stuiver and Reimer 1993) and are based on the 
dataset of Stuiver et al. (1998) . 
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Figure 4.2. Age-depth diagram for Lago de las Morrenas 1 core 2A, showing both radiocarbon 
and calibrated ages. I calculated sedimentation rates using the calibrated ages. Depth positions 
are the mean of the depth interval sampled. Error bars on 14C dates are 2 standard deviations. 
For the radiocarbon dates calibrating to more than one calendar year, I used the average of the 
youngest and oldest calendar ages. 



Table 4.4. Individual and Combined Mean Pollen Diameters for Specimens of 
Chusquea subtessellata and Muhlenbergia jlabellata. 

Individual Diameter Means 
Chusquea subtessellata Muhlenben·ia flabellata 

CR CR ISC ISC 
Hom Hom Ocampos Burger and 

11 67 1489 Gomez 
8309 

Grain Diameter 43.73 41.11 36.31 41.53 
Annulus Diameter 7.58 7.32 6.12 8.37 
Pore Diameter 3.14 2.92 2.95 3.97 
Grain/ Annulus 
Diameter Ratio 5.89 5.68 6.12 5.07 
Grain/Pore 
Diameter Ratio 14.58 14.57 12.79 11.04 
Annulus/Pore 
Diameter Ratio 2.48 2.58 2.19 2.18 

Species Diameter Means 
Chusquea subtessellata M uhlenberRia _fiabellata 

Grain Diameter 42.42 38.92 
Annulus Diameter 7.45 7.25 
Pore Diameter 3.04 3.46 
Grain/ Annulus 
Diameter Ratio 5.79 5.60 
Grain/Pore 
Diameter Ratio 14.58 11.91 
Annulus/Pore 
Diameter Ratio 2.53 2.18 

All measurements are in micrometers. 
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measurements and the various ratios of diameter measurements for each of the grass 

species (Table 4.5). A significant difference in grain diameter (ts=6.641, df=198, 

P<.05), pore diameter (ts=3.622, df=l 79, P<.05), grain diameter to pore diameter ratio 

(ts=6.459, df=198, P<.05), and annulus to pore diameter ratio (ts=4.831, df=198, P<.05) 

exists for the combined measurements of the two species of grass I analyzed. A 

significant difference in annulus diameter (ts=l .067, df=169, P<.05) and the grain 

diameter to annulus diameter ratio (ts=l .349, df=187, P<.05) does not exist for the 

combined diameter measurements of the two specimens of C. subtessellata or for the 

combined measurements of the two specimens of M. flabellata. 

E. Lacustrine Dissolved CO2 Measurements 

I measured very low .concentrations of dissolved CO2 in water samples from 

Lago de las Morrenas 1 and surrounding lakes. The average dissolved CO2 

concentration for Lago de las Morrenas 1 was 3.5 mg/L (Table 4.6). Average dissolved 

CO2 concentrations for nearby Lago Ditkebi and Lago de las Morrenas 3C (Figure 2.2) 

were even lower (Table 4.6). 

F. Identification of Bottryococcus braunii Fossil Remains 

Using light microscopy, I identified Bottryococcus braunii fossil remains at 

every level analyzed for fossil pollen by Hom (1993; Table 4.7). These remains were 

sparse and generally quite degraded, but could be identified on at least one microscope 

slide from each level. 
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Table 4.5. F-Test and t-Test Results for the Combined Mean Pollen Diameters 

F-Test t-Test Statistic t-Test Statistic t-Test t-Test Critical 
F-Test Critical (Equal (Unequal Degrees of Value (Two- Ho 

Statistic 
I 

Value*·  Variances) Variances) Freedom Tailed)* Accepted?** 
Grain Diameter 1.066 1.394 6.641 198 1.972 No 

w 

I 
Annulus Diameter 2.407 1.394 i/\{!}lii;:-!:(J!��ij�W;;;JJ{/ 169 1.974 Yes 

;::;;:::;}\l{/)�;j;i:1i!{i?/i!ilij;
1:'i,:{:: Pore Diameter 1.983 1.394 179 1.973 No 

Grain/ Annulus Diamete 1.621 1.394 ::i!:)iil:f :!:l::::;f:.f(::::ffi:f::j::t 187 1.973 Yes 
Grain/Pore Diameter 0.779 1.394 6.459 198 l.972 No 

Annulus/Pore Diameter 1.236 1.394 4.831 198 1.972 No 

*a = .05 for all statistical analyses 
**H0 = The mean values for the two species are not significantly different. 

! df = 99, 99 for all F-test critical values 



Table 4.6. Dissolved CO2 Concentrations in Selected Lakes of the Chirrip6 Paramo. 

Sam le 1 Sam le 2 Sam le 3 Avera e 
Lago de las 
Morrenas 1 4.5 m /L 3.0 m /L 3.0 m /L 3.5 m /L 
Lago de las 
Morrenas 
3C 1.5 m /L I .O m /L I .O m /L 1.2 m /L 
Lago 
Ditkebi 3.0 m /L 3.0 m 2.5 m /L 2.8 m /L 

Measurements were made in the field with a LaMotte CO2 test kit. 
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Table 4. 7. Results of Scans for the Presence of Bottryococcus braunii 
Fossil Remains. 

Pollen Sample ID Sediment Depth Bottryococcus Present (YIN) 
0-2 cm 0 cm y 

10-12 cm 15 cm y 
20-22 cm 30 cm y 
30-32 cm 45 cm y 
40-42 cm 60 cm y 
50-52 cm 75 cm y 
60-62 cm 90 cm y 
70-72 cm 105 cm y 
80-82 cm 120 cm y 
90-92 cm 135 cm y 

100-102 cm 150 cm y 
905 cm 155 cm y 
925 cm 175 cm y 
945 cm 195 cm y 
965 cm 215 cm y 
985 cm 235 cm y 
1005 cm 255 cm y 
1025 cm 275 cm y 
1045 cm 295 cm y 
1065 cm 315 cm y 
1085 cm 335 cm y 
1105 cm 355 cm y 
1125 cm 375 cm y 
1145 cm 395 cm y 
1165 cm 415 cm y 
1185 cm 435 cm y 
1205 cm 455 cm y 
1225 cm 475 cm y 
1245 cm 495 cm y 
1265 cm 515 cm y 
1285 cm 535 cm y 
1305 cm 555 cm y 

I made scans on pollen slides prepared by Hom (1993). I identified B. braunii 
remains at 400x magnification based upon the description of Prescott (1969). 
Pollen sample identification numbers represent two different systems of 
uncorrected depth reporting. 
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G. Stable Carbon Isotope Analyses of Modern Plants 

Table 4.8 presents the o13C values of leaf tissues from selected Chirrip6 paramo 

plant specimens. The only plant found to possess 813C values that suggest the 

utilization of the C4 photosynthetic pathway was Muhlenbergiaflabellata (-l l .8%0). 

All other plants I analyz�d possessed 813C values typical of C3 plants (-22.8%0 to -

27.6%0). Both submerged and emergent lsoetes -storkii samples produced 813C values {-· 

26.8%0 and -25.8%0) falling well within the range of C3 plants despite the documented 

use of the CAM photosynthetic pathway by all species that have been analyzed in this 

genus (Keeley 198 1 ,  1989; Sternberg et al. 1984; Sandquist and Keeley 1990; Keeley 

and Sandquist 1991) .  

H. Stable Carbon Isotope Ratios of Total Organic Carbon (o13CToc)2 

Lago de las Morrenas 1 Core JA 

The stratigraphic o13CTOc values for Lago de las Morrenas 1 core lA (Figure 

4.3) vary stratigraphically, showing a general trend from more positive o13CTOc values 

in the basal mineral rich sediments (mean = -16.2%0) to more negative o 13Croc values 

throughout the uppermost organic rich sediments (mean = -19.6%0). The average 

o 13Croc value for the core as a whole is -18 .  9%o . The o 13Croc values show considerable 

variation in the core with a maximum o13CTOc value of- 1 3 .8%0 and a minimum o13CTOc 

value of -21 .6%0. 

2 All depths reported in this section and the respective figures are depths below the sediment-water 
interface and are reported in their "core 2 correlated depths" (see Magnetic Susceptibility Stratigraphy 
and Core Correlation in this chapter). 
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Table 4.8. The Carbon Isotope Composition and Photosynthetic Pathway Used by 
Selected Plant Specimens from the Chirrip6 Paramo of Costa Rica. 

Plant Species 813C V-PDB Photosynthetic Pathway 
Calamaf(rostis sp. -24.0%0 C3 
Carex donnell-smithii -23.7%0 C3 
Carex sp. -22.8%0 C3 
Carex sp. -25.9%0 C3 
Chusquea subtessellata -26.9%0 C3 
Chusquea tonduzii -27.6%0 C3 
Cortaderia haplotricha -25.2%0 C3 
Emergent Isoetes storkii -26.8%0 CAM* 
Submerged Isoetes storkii -25.8%0 CAM* 
Muhlenberf(ia _fiabellata -l l.8%0 C4 

The material analyzed was leaf tissue collected from multiple individuals. *The 
utilization of CAM photosynthesis by species in the genera Isoetes is documented by 
Keeley and Sandquist (1991). 
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Figure 4.3. Lago de las Morrenas I core IA sedimentary o13�oc 

. values. Reported depths are core 2A equivalent depths. Radiocarbon 
dates are those determined for core 2A and are reported in radiocarbon 
years before present. Also marked is the transition in sediment types 
between glacial flour, transitional sediments, and organic gyttja. 
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Lago de las Morrenas 1 Core 2A 

On average, the Lago de las Morrenas 1 core 2A sediments have more negative 

313CTOc values (mean = -20.5%0) than the core lA sediments (-18.9%0; Figure 4.4). 

Despite the difference in average <> 13CTOc values between the cores, similar trends in 

313Croc values can be seen. Like core lA, core 2A shows more positive average 

313Croc values .in the basal mineral rich sediments (mean = -:-19.7%0) as compared to the 

overlying organic rich gyttja (mean = -20.7%0). However, core 2A shows considerably 

more variability between samples in the mineral rich glacial flour, with values ranging 

from -22.5%0 to -15.1%0, than does core lA. 

Lago de las Morrenas 1 Cores 1 B, 2B, and 2D 

Depth-correlated 313CTOc values for cores lB, 2B, and 2D are shown in Figure 

4.5 .  Figure 4.6 shows the 313CTOc values for all cores: lA, lB, 2A, 2B, and 2D. The 

shorter parallel slugs of transitional sediment collected in cores lB, 2B, and 2D display 

similar trends in 313Croc values as those seen in cores lA and 2A, with the most 

positive 613Crnc values occurring in the basal mineral rich sediments and more negative 

values in the overlying organic rich sediments. Similarly to core 2A, core 2B shows 

considerable variability in 313CTOc values with a minimum 313 croc value of -:-24.9%0 and 

a maximum 313Croc value of -10.8%0, both occurring in the transitional sediments. 
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Figure 4.4. Lago de las Morrenas I core 2A sedimentary o 13CTOc 
values. Radiocarbon determentations on bulk sediments and the 

. transition in sediment types between glacial flour, transitional 
sediments, and organic gyttja are also marked. 
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CHAPTER S 

DISCUSSION 

A. Poaceae Pollen Identification and Separation by Size 

As a possible additional proxy for temporal shifts in the dominance of C3 and 

C4 plants in the ·chirrip6 paramo, I explored possibilities for differentiating pollen 

grains of Chusquea subtessellata and Muhlenbergia flabellata based on size. Numerous 

grass species are present in the Chirrip6 paramo, but the overwhelming dominance of C. 

subtessellata and the utilization of the C4 photosynthetic pathway by M. flabellata make 

them the logical starting point for exploring the possible differentiation of grass pollen 

grains by size from this location. The work of Salgado-Labouriau (1984) suggests C. 

subtessella.ta grains should be relatively large {>40 µm) similarly to pollen grains of 

many other paramo bamboo species. No prior measurements of M. flabellata pollen 

grains are reported in the literature, but Salgado-Labouriau (1984) reports pollen grains 

from other species in the genus Muhlenbergia are smaller diameter (<35 µm) than 

bamboo species in the Venezuelan Andes. Based on this information, I hypothesized 

that M. flabellata grains should be smaller, on average, than C. subtessellata grains in 

the Chirrip6 paramo. 

The t-test results indicate that differentiation between C. subtessellata and M. 

flabellata pollen grains based on measurements of the annulus diameter and the grain 

diameter to annulus diameter ratio are not reliable (Table 4.5). Conversely, the t-test 

results indicate that differences in the mean values for the grain diameter, the pore 

diameter, the grain diameter to pore diameter ratio, and the annulus to pore diameter 
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ratio are significantly different (Table 4.5). These results suggest that differentiation 

between pollen of these two species, using these measurements, is possible. However, 

when plotted on a scatter plot, the data indicate that any such differentiation is 

hazardous as individual pollen grain measurements from the specimens in each of these 

size categories overlap considerably (Figures 5.1-5.6). These conflicting data suggest a 

type I error may be occurring in these stati�tical analyses (Sokal and Rohlf, 1995). 

To test for the possibility of a type I error in these statistical analyses I applied 

the same t-test statistic on an individual specimen basis, as opposed to the species, or 

combined individual basis (Table 5.1). When I calculated the t-test statistic for the 

individual specimens, the only measurement that showed a significant difference 

between the two species was the annulus to pore diameter ratio (ts=2.70 and 4.24, 

df=98, P<.05) and the grain to pore diameter ratio (ts=3.08 and 6.25, df=98, P<.05). 

Despite the significant difference in these ratios, discerning between pollen types using 

either of these ratios would be extremely difficult due to the fact that each reticule unit 

is approximately 2.44 µm. This creates very coarse and inaccurate measurements for 

such small pore diameters, which averaged 3.03 µm for C. subtessellata and 3.46 µm 

for M. flabellata (Table 4.4), and probably creates a considerable amount of error in 

individual measurements or measurement ratios. The coarse nature of these 

measurements can be seen in the clumping of measurements around integers of the 

reticule measurements factor on the y-axis of the scatter plots for the annulus diameter, 

the pore diameter, and the annulus to pore diameter ratio (Figures 5.2, 5.3, and 5.6). 

This clumping is an artifact of reticular measurements being to the nearest 0.5 reticule 

units, as more accurate measurements are virtually impossible at 400x magnification 
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Figure 5.1. Pollen grain diameters of two Chusquea subtessellata and two Muhlenbergia flabellata specimens. 
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Table 5.1. t-Test Statistical Analyses of Pollen Grain Diameters from Specimens of Chusquea subtessellata and 
Muhlenbergia flabellata. 

First Pair of Individuals 
t-Test Critical 

t-Test Statistic t-Test Statistic t-Test Degrees Value (Two-
(Equal Variances)1 (Unequal Variances)1 of Freedom Tailed)* H0 Accepted?** 

F=========:::::;::::======-
Grain Diameter 

Annulus Diameter 
Pore Diameter 

Grain/ Annulus Diamete 
Grain/Pore Diameter 

Annulus/Pore Diameter 

11. 751 98 1.984 No 
97 1.985 No 
97 I 1.985 I Yes 
96 I 1.985 I Yes 
98 I 1.984 I No 
98 I 1.984 I No 

Second Pair of Individuals 

t-Test Statistic t-Test Statistic t-Test Degrees 
t-Test Critical 

Value (Two-
(Equal Variances)1 (Unequal Variances)1 of Preedom Tailed)* H0 Accepted?** 

Grain Diameter 
Annulus Diameter 

Pore Diameter 
Grain/ Annulus Diamete 

Grain/Pore Diameter 
Annulus/Pore Diameter 

0.676 

4.243 

98 
85 
83 
97 
98 
98 

1.984 
1.988 
1.989 
1.985 
1.984 
1.984 

1 Assumption of equal or unequal variances is based on F-Test results for combined individual measurements. 
*a := .05 for all statistical analyses 
**H0 = The mean values for the two species are not significantly different. 

Yes 
No 
No 
No 
No 
No 



with the reticule I used. When this measurement is multiplied by the conversion factor 

to convert the reticular units into micrometers it causes the observed clumping of 

diameter and diameter ratio measurements. 

B. Lake Sediment 613CToc Values 

Before studying the carbon isotopic composition of lacustrine sediments or peat, 

it is essential to understand the possible sources of carbon isotopes entering a lake or 

bog. Stuiver (1975) suggests three sources of organic carbon that can be incorporated 

into lake sediments: terrestrial plants, aquatic organisms, and pondweeds or other 

emergent plants. Terrestrial ecosystems are the dominant source of C4 plant species in 

most situations; therefore their contribution of allochthonous organic matter to the 

_sediment record is key in indicating shifts in C4 plant dominance. 

Bicarbonate Photosynthesis by Aquatic Plants 

Autochthonous sedimentary carbon sources, such as aquatic macrophytes and 

plankton, can have a significant effect on the isotopic composition of lake sediments 

(Talbot and Johannessen 1992). The vast majority of aquatic plants use the C3 

photosynthetic pathway, but under highly alkaline or saline conditions, some aquatic 

plants will begin to utilize Hco-3 - based metabolism (Smith and Walker 1980; Lucas 

1983). Photosynthesis using this metabolism can produce organic matter that is 

enriched in 13C (Mook et al. 1974; Smith and Walker 1980). These more positive 

values of o13Croc could be misinterpreted as an environmental or climate proxy and 

result in an overestimation of C4 plant dominance. In fact, multiple studies using 
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compound-specific isotopic analyses, which are capable of separating the isotopic 

contributions of terrestrial and aquatic vegetation, have found discrepancies between 

sediment o 13Croc values, which reflect a combination of allochthonous and 

autochthonous carbon sources, and compound-specific o 13C values that can be 

specifically attributed to the terrestrial plants around the lake (Ostrom et al. 1998; 

Huang et al. 1999; Brincat et al. 2000). When the terrestrial isotopic contributions to a 

sediment matrix are the data of interest, it is essential to try. to isolate all of the isotopic 

contributions to that matrix so that the likelihood of misinterpretations is minimized. 

The presence of the CAM aquatic macrophyte Isoetes storkii and the likely presence of 

the HC03- utilizing alga Bottryococcus braunii in Lago de las Morrenas 1, in particular, 

necessitate a cautious interpretation of the o 13CTOc values from the lake sediment 

profiles (Figure 5.7). 

Post-Depositional Influences on the Isotopic Composition of Organic Matter 

Post-depositional processes, such as diagenesis and methanogenesis, can also 

affect o 13C ratios of bulk organic matter. Diagenesis in lake sediments or peat is most 

likely the result of the biological reworking of sediments. Diagenesis often results in 

consistent, monotonic decreases in the carbon isotopic ratio of sediments throughout the 

depth of the core (Talbot and Johannessen, 1992). No such trends are apparent in the 

Lago de las Morrenas 1 isotopic records (Figures 4.3-4.6). 

Methanogenesis can result from reduction by methane producing bacteria 

(Nissenbaum et al., 1972) or by fermentation (Rosenfeld and Silverman, 1959). 

Methanogenesis is relatively easy to infer as it drastically changes carbon isotopic 
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signals. Methanogenesis by fermentation or bacterial production greatly discriminates 

against 13C, yielding gas 513C ratios around -100%0 (Deines 1980) and leaving the 

remaining organic matter greatly enriched in 13C. The relatively light isotopic signature 

of the Lago de las Morrenas 1 sediments ( ~-21%0) suggests that the production of 

enriched cogenetic organic matter during methanogenesis did not occur or is very 

limited in extent. This is further supported by the relatively high dissolved oxygen 

content of Lago de las Morrenas 1 water (6.6 mg/L) and the fact that Lago de las 

Morrenas 1 is currently polymictic (Horn et al. 1999), which would likely prevent the 

anoxic conditions necessary for methanogenesis as lake stratification would be 

minimized. 

C. An Overview of the 613CToc Values Measured in Lago de las Morrenas 1 

The most striking aspect of the 513CTOc values measured in sediments from Lago 

de las Morrenas 1 is their relatively enriched isotopic compositions (Figures 4.3-4.6). 

The average 513CTOC value for sed�ments from cores lA and 2A was -19.6%0. In 

addition, surface sediments collected from the plastic tube core section of core lA 

produced a 5 13CTOC value of -19 .3%o. Such enriched 13C values for both average 

sediments at depth and surface sediments are not expected for a lake currently 

surrounded by vegetation dominated by C3 components, and which are hypothesized to 

have been surrounded by the same vegetation since ~10,000 yr. B.P. (Horn 1993). 

Isotopic analysis of plant matter from Chusquea subtessellata, by far the dominant plant 

in the Chirrip6 paramo, show that the plant possesses a 513C signature of around -27%0 

(Table 4.8). If C. subtessellata were the primary contributor to the organic carbon pool 
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in Lago de las Morrenas · 1 , the 8 13CTOc value of Lago de las Morrenas 1 sediments 

would be expected to be closer to this value. 

In January 2003, I collected a charcoal sample from a charcoal deposit on the 

edge of the Lago de las Morrenas 0A basin. This charcoal was produced during the last 

fire in the valley (March 1976) and was subsequently transported to the basin by 

streams and wind. I hyp?thesized that this charcoal would be representative of 

allochthonous carbon sources presently entering the various lakes of the Valle de las 

Morrenas. As such, it should be well mixed, originating from multiple plant species in 

the valley, and transported to the lake in a manner similar to terrestrial plant detritus. 

This charcoal produced a relatively low 813C value of -26.5%0, consistent with the 

current dominance of C3 plants in the valley. This low 813C value measured on a 

mixture of allochthonous carbon sources suggests the enriched carbon isotope values in 

the lake sediments originate from an autochthonous source of carbon. 

D. Possible Sources of 13Croc Enrichment in Lago de las Morrenas 1 

The Possible Enrichment in Sediment 13 CTOc due to CAM Photosynthesis 

One possible autochthonous source for more enriched carbon isotope values is 

Isoetes storkii, which utilizes a CAM photosynthetic pathway. CAM plants are capable 

of switching their mode of carbon fixation between a mode similar to C3 plants and a 

mode similar to C4 plants, which can produce a wide range of 813C values that can 

overlap the 813C values produced by both C3 and C4 plants. Samples of I. storkii I 

analyzed in this study yielded 813C values of -25.8%0 and -26.8%0. The negative 8 13C 

values suggest these individuals relied mostly on fixation via the C3 pathway. This 813C 
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value could hypothetically become more positive if dissolved CO2 levels were low 

enough to force the plant into a mode of carbon fixation more like that of C4 plants. 

However, dissolved CO2 measurements taken near the site of the I. storkii samples, and 

collected within the same week of plant sample collection, showed dissolved CO2 levels 

are already quite low ( ~3 mg/L; Table 4.6). This suggests that J. storkii is most likely 

not changing its mode of carbon fixation in response to low dissolved CO2 levels and 

probably did not do so previously. This makes I. storkii an unlikely source of the 

relatively enriched carbon isotope values measured in the sediments of Lago de las 

Morrenas 1. 

The Possible Enrichment in Sediment 13 Croc due to the Alga Bottryococcus braunii 

Another possible explanation for the relatively positive o13CTOc values of 

sediments collected from Lago de las Morrenas 1 is the presence of the alga 

Bottryococcus braunii. Although the presence of B. braunii in Lago de las Morrenas 1 

has not been verified, I was able to identify what appear to be fossil remains of the alga 

at all levels of the Lago de las Morrenas core 2A sediment analyzed for pollen by Horn 

. (1993; Table 4.7). Huang et al. (1999) point out the danger in interpreting o13Croc 

values in the presence of B. braunii as it is known to assimilate 13C-enriched HCO3-

during photosynthesis. Cultured B. braunii specimens produced o13C values of -16.9%0, 

(Huang et al. , 1999). In addition, isoprenoid alkenes isolated from lake sediments and 

known to originate from B. braunii have been found to possess o13C values as high as -

5.1%0 during the Pleistocene (Huang et al. 1999). Such enriched isotopic compositions 
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could be responsible for the relatively positive o13Cmc values observed for the 

sedimentary total organic carbon in Lago de las Morrenas 1. 

The Possible Enrichment in Sediment 13 Cwc due to Trophic Level Fractionations by 

Z.Ooplankton 

The sediments of Lago de las Morrenas 1 consist largely of zooplankton 

(copepod) fecal pellets (Hom 1993). If B. braunii and other algae are the primary food 

source for these zooplankton, and B. braunii is enriched in 13C as compared to other 

planktonic and allochthonous carbon sources, the mixture of carbon sources could 

produce the observed average o13Cmc value of -19%0 in Lago de las Morrenas 1 

sediments. Zooplankton have been shown to induce no more than a 2%o tropic level 

fractionation (Yoshioka et al. 1994; del Giorgio and France 1996), which is typical of 

most dietary fractionations observed in nature (DeNiro and Epstein 1978; Fry et al. 

1984 ). Thus, the consumption of 13C-enriched food sources, such as B. braunii, would 

give the zooplankton and its fecal pellets a similarly enriched isotopic value. A large 

contribution of relatively enriched carbon to the sediments of Lago de. las Morrenas 1 

from zooplankton fecal pellets could combine with relatively depleted allochthonous 

carbon sources to produce the o13Cmc values of -19%0 measured here in the bulk 

sediment. 

The Possible Enrichment in Sediment 13 Cwc due to C4 Vegetation 

It is unlikely thatthe relatively positive o13Cmc values measured in sediments 

from Lago de las Morrenas 1 are simply signaling the current and past mixture of C3 
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vegetation, primarily Chusquea subtessellata, and C4 vegetation, primarily 

Muhlenbergia flabellata, around Lago de las Morrenas 1. Chusquea subtessellata 

dominates the paramo vegetation surrounding Lago de las Morrenas 1 (Hom 1993), 

with vastly greater biomass and ground cover than M. flabellata (personal observation). 

While M. flabellata is capable of dominating some microhabitats, such as glacial till, it 

likely does nqi possess either the necessary dominance or biomass in the watershed to 

create the measured increase in b13Cmc values without some other carbon source with a 

more positive b13C signature also contributing to the lake sediments of Lago de las 

Morrenas 1. 

To test the possibility that Muhlenbergia flabellata could be causing the 

observed enrichment in 13Cmc, I employed the mixing model developed by Phillips and 

Gregg (2001) with b13C end-members of -12.0%0 and -:-27.0%0, which are 

approximately the b13C compositions of plant matter from Muhlenbergia flabellata and 

Chusquea subtessellata respectively (Table 4.8). The mixing model results suggest a 

b 13Cmc value of -19%0 in the Lago de las Morrenas sediments would require 56% of 

the carbon entering the lake to originate from Muhlenbergiaflabellata and only 46% of 

the carbon entering the lake to originate from Chusquea subtessellata. Any such 

partitioning of carbon contributions to Lago de las Morrenas 1 sediments is extremely 

unlikely considering M. flabellata does not exceed about 5% ground cover in the valley 

as a whole and constitutes an even smaller component of the total biomass (personal 

observation). Thus, it is extremely unlikely that M. flabellata alone can be responsible 

for the observed modem-day enrichment in 13C in Lago de las Morrenas 1 sediments or 

that observed throughout the Holocene portion of the record. 
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E. The Paleoecological Significance of Lago de las Morrenas 1 Sedimentary 

613CToc Values during the Late Pleistocene 

The ecological interpretations I present here will focus primarily on c>13CTOc 

values of Lago de las Morrenas 1 Core IA as it was the only core with the necessary 

material for a full stratigraphic 613Croc profile. 

The Lago de las Morrenas 1 core IA and core 2A sediments, as well as the 

supplemental core sections spanning the basal transition zone, all show more positive 

c>13Croc values in the glacial flour and transitional sediments as compared to the 

overlying organic rich sediments (Figures 4.3-4.6). Average c> 13CTOc values for the 

organic rich sediments from core IA (mean 613Croc = -19.6%0) are approximately 3.4%0 

more depleted in 13C than the underlying mineral rich sediments (mean c>13CToc = -

16.2%0). Radiocarbon dates indicate the transition in sediment type and shift in average 

c>13CTocvalues occur near the Pleistocene-Holocene transition (10,140 14C yr. B.P.). 

The more positive mean 613Croc values suggest a possible increased C4 plant 

component in the Chirrip6 paramo during the late Pleistocene. In addition to the 

relatively positive mean carbon isotopic values occurring during the late Pleistocene, 

individual c>13CToc measurements also suggest an expanded C4 plant component around 

Lago de las Morrenas 1 during the Pleistocene. The most positive sing�e c>13Croc 

measurement (-13.8%0) is located within the transitional sediments of core IA. A likely 

explanation for such a positive individual c>13Croc value would be a significant 

contribution of allochthonous carbon by C4 plants to the carbon pool of Lago de las 

Morrenas 1. 
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It is possible that the relatively positive carbon isotope compositions in the 

Pleistocene sediments of Lago de las Morrenas 1 are not signaling an expansion of C4 

plant dominance, but are instead the result of an increased utilization of HCO3-

photosynthesis by aquatic plants and algae in response to low levels of dissolved CO2 in 

the lake. Street-Perrott et al. (1997) and Huang et al. (1999) have documented a switch 

to HCO3 - photosynthesis by Bottryococcus braunii during the late Pleistocene in 

sedimentary records from Mt. Kenya, which is hypothesized to have occurred in 

response to lower levels of dissolved CO2 in the lakes as a result of decreased 

atmospheric pCO2 levels. 

According to Henry's Law, this would be expected in these high elevation lakes 

during the Pleistocene (Ficken et al. 1998). The low partial pressures of atmospheric 

CO2 during the Pleistocene, combined with decreases in total air pressure at elevation, 

may lead to decreased diffusion of CO2 across the water surface, and thus very low 

dissolved CO2 levels in high elevation lakes. It is conceivable that a similar switch to 

HCO3- photosynthesis by aquatic plants in Lago de las Morrenas 1 may have occurred 

during the Pleistocene and could explain the increase in o13Croc values observed in 

these Pleistocene sediments. 

Present conditions in Lago de las Morrenas appear conducive for HCO3--based 

photosynthesis, with very low modem levels of dissolved CO2 (3 .5 mg/L; Table 4.6) 

and the widespread availability of HCO3- anions ( ~81 % of total anions in Lago de las 

Morrenas; Jones et al. 1993). Yet, despite the apparent ubiquity of Bottryococcus 

braunii and Isoetes storkii in the lake, the o 13C of modem sediments are still more 

negative than Pleistocene sediments. It seems unlikely that dissolved CO2 levels could 
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have been much lower, such that HCO3--based photosynthesis would be so strongly 

preferred. It also seems unlikely that dissolved CO2 levels could have been much lower 

during the Pleistocene compared to today and have still supported plant communities 

within the lake. Emergent aquatic plants, such as Isoetes storkii, may still be viable 

under conditions of low dissolved CO2, but I. storkii spores reach their lowest levels 

during the late P��istocene (Figure 5.7), suggesting that emergent aquatic plants may not 

have been as large a component of the late Pleistocene carbon pool as they are 

presently. Finally, influxes of granitic minerals in the form of glacial flour during the 

Pleistocene should have made Lago de las Morrenas 1 more acidic than today. This 

suggests that late Pleistocene lake conditions were possibly lower in [HC03 l, not 

higher, and further suggests that a predominance of HC03 --based photosynthesis during 

the late Pleistocene was unlikely (Burkhardt et al. 1999). 

Diatom assemblages for Lago de las Morrenas 1 show little or no variability 

throughout the ~ 10,000 14C yr. sedimentary record, suggesting no major changes in 

water chemistry occurred during the late Pleistocene or throughout the Holocene 

(Haberyan and Hom 1999). The combination of modem-day low dissolved-CO2 levels, 

high concentrations of HCO3- anions, a possible decrease in pH levels during the 

Pleistocene, and similar diatom assemblages during the Pleistocene and today, suggest 

that HCO3 - photosynthesis is just as likely, or more likely, to occur today as during the 

late Pleistocene. Thus, a C4 plant expansion during the Pleistocene in the Chirrip6 

paramo is a more likely explanation than increased utilization of HCO3- photosynthesis 

alone for the relative increase in o 13Croc values observed for Lago de las Morrenas 1 

Pleistocene sediments relative to the overlying Holocene sediments. 
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This interpretation assumes a consistent allochthonous carbon influx. It is 

entirely possible, however, that biomass surrounding the lake was considerably less 

following late Pleistocene deglaciation (see discussion below). If biomass were lower 

and HC03 - photosynthesis was being utilized by aquatic organisms such as 

Bottryococcus braunii, then a simple decrease in allochthonous carbon influx could 

conceivably produce the enriched carbon isotopic values seen in Lago de las Morrenas 1 

Pleistocene sediments. In other words, by decreasing the amount of allochthonous 

carbon available for delivery to the lake, the autochthonous carbon sources would by 

default contribute a higher percentage of carbon to the total carbon pool of the lake. 

Organic carbon contents for the glacial flour are exceedingly low ( ~5%) when 

compared to those of the overlying organic gyttja deposited throughout the Holocene 

( ~35%; Figure 5.7). The low organic carbon content of the late Pleistocene sediments 

could be the result of either large mineral influxes or decreased allochthonous carbon 

influxes, or both. A decrease in allochthonous carbon influx leaves autochthonous 

carbon sources, such as Bottryococcus braunii, as the primary contributors to the carbon 

pool, and could have caused the observed increase in 613Croc values. 

Finally, it is also possible that both a switch to HC03- photosynthesis by aquatic 

plants and an increased C4 plant component contributed to the enriched carbon isotope 

composition of the Pleistocene sediments of Lago de las Morrenas 1. In fact, using 

compound-specific isotopic analyses, both Street-Perrott et al. (1997) and Huang et al. 

( 1999) provide overwhelming evidence for both increased C4 plant components and an 

increase in HC03 - photosynthesis by aquatic algae for two high elevation lakes in 

equatorial Africa. There is no reason such a simultaneous C4 plant expansion and 
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switch to more HC03- photosynthesis by aquatic plants and algae could not also have 

occurred at Lago de las Morrenas 1 during the Pleistocene. 

F. Possible Causes for an Expansion in C4 Plant Dominance during the Late 

Pleistocene 

Decreased Atmospheric Levels of CO2 

Based on the known characteristics of C4 plants, an increase in C4 plant 

dominance over the now dominant C3 plants in the Chirrip6 paramo may have been the 

result of one or a mixture of different forcings. Because of their ability to actively 

concentrate CO2 during photosynthesis, C4 plants are hypothesized to have been more 

competitive during the late Pleistocene (Ehleringer et al. 1997; Collatz et al. 1998), 

when atmospheric CO2 concentrations were only half of the modern values (Barnola et 

al. 1987; Neftel et al. 1988; Leuenberger et al. 1992). Street-Perrott et al. (1997) 

present very convincing evidence that low atmospheric pCO2 was likely the principal 

reason for an increase in C4 plant dominance in high-altitude tropical vegetation in 

Kenya during the Pleistocene. Boom et al. (2001) and Mora and Pratt (2001) also 

hypothesize that low atmospheric pCO2 had significant effects on C4 plant dominance in 

high-altitude tropical vegetation in Colombia. Thus, it is very likely that the decreased 

atmospheric pCO2 of the Pleistocene could have significantly influenced the C4 plant 

component of high-altitude tropical vegetation around Lago de las Morrenas 1. 
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Possible Causes for an Expansion in C4 Plant Dominance during the Late Pleistocene: 

Increased Aridity 

Numerous studies have also suggested increases in C4 plant dominance as a 

result of changes in precipitation regimes, with drier conditions and predominantly 

warm-season precipitation favoring C4 plants over C3 plants and vice versa (Quade et 

al. 19_89; Talbot and Johannesen 1992; Sukumar e(al. 1993; Aucour and Hillaire

Marcel 1994; Giresse et al. 1994; Huang et al. 2001). With ~2286 mm of precipitation 

falling between May and November, and only ~295 mm falling during the dry season 

from December to April, the present-day precipitation regime of Lago de las Morrenas 

1 is quite seasonal and would tend to favor C4 plants, but C3 plants still dominate the 

watershed. Of course, modem pCO2 levels are more favorable to C3 plants than the 

lower pCO2 levels of the Pleistocene. During �he Pleistocene, the combination of 

precipitation seasonality and low atmospheric pCO2 may have been responsible for the 

hypothesized C4 plant expansions; however, there is no solid data regarding 

precipitation seasonality around Lago de las Morrenas during the Pleistocene. 

A C4 plant expansion around Lago de las Morrenas 1 during the late Pleistocene 

may also have resulted from of decreases in mean annual precipitation as increased 

aridity favors plants utilizing the C4 photosynthetic pathway. Precipitation 

reconstructions for the Cordillera de Talamanca of Costa Rica during the Pleistocene 

are scarce. Fossil pollen studies from La Chonta bog (see Chapter 2, Environmental 

Setting and Late Quaternary Vegetation and Climate History) tend to focus more on 

temperature reconstructions during the Pleistocene as opposed to precipitation 

estimates. Hooghiemstra et al. ( 1992) and Islebe and Hooghiemstra (1997) do suggest 
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wetter conditions around La Chonta bog during the early Holocene compared to the 

Pleistocene, but the magnitude of this change in precipitation is unclear. Nevertheless, 

a drier climate of any magnitude during the Pleistocene would have favored C4 plants 

especially with decreased atmospheric pCO2 levels. 

What is perhaps the best precipitation reconstruction available for inferring 

precipitation in the Valle de las Morrenas during the formation of Lago de las ��rrenas 

1 does not even come from Costa Rica. Haug et al. (2001) present a high-resolution 

record of titanium and iron concentrations from sediments collected in the Cariaco 

Basin north of Venezuela, which may be responding to climate forcings that also 

affected Cerro Chirrip6. The Cariaco Basin titanium and iron records are thought to be 

a proxy of Orinoco River discharge, and thus precipitation. The close correspondence 

between the inferred Orinoco River discharge and the record of macroscopic charcoal 

influx in Lago de las Morrenas 1 (League and Hom 2000) suggests the proxies at the 

two sites may be responding to the same climatic forcings. 

The highest hypothesized rates of Orinoco River discharge into the Cariaco 

Basin, which are thought to be the result of wetter conditions, occur between ~ 11,000 

and 5,000 cal. yr. BP. This hypothesized peak in precipitation coincides very nicely 

with the lowest influxes of macroscopic charcoal into Lago de las Morrenas 1 

suggesting few fires, perhaps in response to wetter conditions, between ~ 11,700 and 

4800 cal. yr. BP (League and Hom 2000). An increase in macroscopic charcoal 

influxes into Lago de las Morrenas 1 from 4800 cal. yr. BP to the present also coincides 

with hypothesized decreases in precipitation from the Cariaco Basin from ~5,000 cal. 

yr. BP to the present, perhaps suggesting increased aridity causing more frequent fires 
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in the Chirrip6 paramo of Costa Rica. These strong links in proxy records suggest that 

the Orinoco watershed and Lago de las Morrenas 1 are both subject to similar climate 

forcings through time. Thus, increased C4 plant dominance hypothesized to have 

occurred around Lago de las Morrenas at the end of the Pleistocene could have been the 

result of lower precipitation amounts as hypothesized for the Orinoco watershed during 

the late Pleistocene. 

Habitat Availability 

Another possible explanation for increased C4 plant dominance during the late 

Pleistocene that has not been previously explored in prior studies of secular C3-C4 plant 

dynamics is that of habitat availability. On a glacial moraine in the Upper Rio Talari 

Valley (Valle de los Conejos, Figure 2.2) Hom ( 1989) found that Muhlenbergia 

flabellata reached 32.5% ground cover. This is exceptional, considering the absence of 

this grass from the other sites studied by Hom (1989). No quantitative study of the 

distribution of M. flabellata has been undertaken in the Valle de las Morrenas. 

However, the species currently seems to dominate many glacial till deposits throughout 

the valley (personal observation). This is especially true for the less consolidated or 

coarser-grained glacial till deposits such as lateral moraines, end moraines, or ablation 

till. The ability of M. flabellata to dominate these glacial till deposits is most likely the 

result of the poor water retention typical of these coarse grained substrates. The high 

water use efficiency (WUE) of C4 plants such as M. flabellata would give them a 

distinct advantage under conditions of low soil moisture, which may be expected in 

these well drained till deposits. This is further supported by the absence of M. 
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flabellata on many of the lodgement till deposits in the valley (K. Orvis, personal 

communication 2003) that are more consolidated than the till deposits mentioned above, 

possibly resulting in significantly better water retention in these deposits. 

After the deglaciation of the Valle de las Morrenas at the end of the Pleistocene, 

the most favorable sites for plant colonization may have been glacial till as much of the 

rest of th� �nee glaciated valley would probably have been exposed bedrock due to the 

erosional processes of the alpine glacier. As M. flabellata seems to be dominant on 

glacial till deposits today, it seems possible that M. flabellata was the dominant plant in 

the late Pleistocene simply because glacial till was the primary substrate available for 

plant colonization. 

G. The Paleoecological Significance of an Expansion in C4 Plant Dominance during 

the Late Pleistocene 

Recently, numerous studies from around the world have used stable carbon 

isotopic evidence to suggest an increased C4 plant component in ecosystems during the 

Pleistocene that would have been undetectable in pollen records ( e.g. Sukumar et al. 

1993; Cole and Monger 1994; Giresse et al. 1994; Street-Perrott et al. 1997; Ficken et 

al. 1998; Huang et al. 1999; Boom et al. 2001; Huang et al. 2001; Mora and Pratt 

2001). The stable carbon isotope record presented here also suggests a possible C4 

plant expansion occurring on Cerro Chirrip6 and probably for other localities in the 

high elevations of the Cordillera de Talamanca of Costa Rica. Sedimentary records 

from Lago Quexil, Guatemala to the north of Costa Rica and the Bogota Basin, 

Colombia to the south of Costa Rica also provide strong evidence for C4 plant 
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expansions in the neotropics during the Pleistocene (Boom et al. 2001; Huahg et al. 

2001). 

Boom et al. (2001) suggest that C4-dominated plant assemblages that presently 

occur within particular microhabitats in the Andean paramo of Colombia may be relicts 

r from the Pleistocene, when such communities were much more widespread throughout 

the paramo as a result of decreased atmospheric pCO2. Muhlenbe,:gia flabellata, the 

most dominant and widespread C4 plant in the Chirrip6 paramo, seems currently to be 

restricted to favorable microhabitats as well. These C4 microhabitats are quite similar to 

those described by Boom et al. (2001) consisting of a dry, stony, seemingly well

drained substrate. Muhlenbergiaflabellata seems to be especially dominant on coarser 

tills, which are likely more well-drained than the surrounding soils because of their 

larger grain sizes, giving M. flabellata an advantage with its C4 photosynthetic pathway 

providing a higher WUE as compared to the competing C3 vegetation. Perhaps, as 

suggested for the Colombian Andes, these Muhlenbergia communities are relicts from 

the Pleistocene when they may have been much more widespread due to lowered 

atmospheric pCO2 and immature soil development. Following deglaciation and 

subsequent increases in atmospheric pCO2, Muhlenbergia species may have been 

replaced in the majority of the Valle de las Morrenas by competition with C3 plants and 

are now only capable of dominating drier microhabitats, such as those provided by the 

well-drained glacial till deposits where they are dominant today. 

Mora and Pratt (2002) used altitudinal transects of paleosols in the Bogota Basin 

to reconstruct the extent of hypothesized C4 plant expansions during the Pleistocene. 

Their results produced a maximum altitude for C4 plant expansion of ~ 2700 m 
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coinciding with the hypothesized 6-7°C mean annual temperature isotherm during the 

glacial period. Restriction of C4 plant expansion to elevations below 2700 m and to 

mean annual temperatures greater than 6-7°C is in very good agreement with the 

modeling studies of Ehleringer et al. ( 1997) and Collatz et al. (1998). However, if the 

enriched carbon isotope values presented here are indeed the result of increased C4 plant 

dominance in the Valle de las Morrenas during the Pleistocene, it would suggest C4 

plants were capable of gaining dominance under mean annual temperatures lower than 

the hypothesized 6-7°C isotherm. Based on temperature reconstructions from glacial 

ELA estimates (Orvis and Hom 2000; Lachniet and Seltzer 2002) and pollen evidence 

of treeline shifts (Hooghiemstra et al. 1992; Islebe et al. 1996; Islebe and Hooghiemstra 

1997), C4 plant expansion in this area of the Cordillera de Talamanca occurred at mean 

annual temperatures as low as 0°C. The extreme cold tolerance of most Muhlenbergia 

species would presumably have been a factor that facilitated this C4 plant expansion at 

such low mean annual temperatures (Schwarz and Redmann 1988; Sage et al. 1999b). 

Because of its potentially widespread effects on vegetation around the world, the 

low levels of atmospheric pCO2 during the Pleistocene have received increased attention 

in paleoecological studies. Of particular interest has been the possible effect of lowered 

atmospheric pCO2 on alpine treeline elevations. Street-Perrott et al. ( 1997) have 

suggested a need to reassess paleotemperature reconstructions based on Pleistocene 

treeline altitudes, as lowered levels of atmospheric pCO2 and the decreased pCO2 with 

increasing altitude may have driven a lowering of treelines, unrelated to climatic 

factors. It has also been suggested that this lowering of treeline elevation in response to 

non-climatic factors could lead to a suppression in pollen contributions from C3 plant 
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communities (i.e. sub-alpine forests) and lead to overestimations in treeline shifts, and 

hence overestimation of temperature depressions (Boom et al. 2001). Although I have 

presented strong evidence for a paleoecological response to decreased levels of 

atmospheric pCO2 in Lago de las Morrenas 1 and the Valle de las Morrenas, this 

suppression of tree-line seems an unlikely event for the Cordillera de Talamanca of 

. Costa Rica. Paleotemperature estimates made for the region using both pollen records 

of tree-line fluctuation (Hooghiemstra et al. 1992; Islebe et al. 1996; lslebe and 

Ho�ghiemstra 1997) and geomorphic glacier ELA reconstructions (Orvis and Hom 

2000; Lachniet and Seltzer 2002) are roughly the same. Since the ELA reconstructions 

are independent of any atmospheric pCO2 effects, the matching paleotemperature 

estimates made using pollen analysis suggest no atmospheric pCO2 effect on treeline in 

the Cordillera de Talamanca of Costa Rica. 

H. The Paleoecological Significance of Lago de las Morrenas 1 Sediment o13CToc 

Values during the Holocene 

Fluctuations in the stable carbon isotope values of Holocene ( ~ 10,000 14C yr. BP 

to present) sediments of Lago de las Morrenas 1 show strong similarities to the 

macroscopic charcoal record of League and Hom (2000; Figures 5.8 and 5.9). Periods 

of increased macroscopic charcoal influx into Lago de las Morrenas 1 (i.e. increased 

charcoal concentration) correspond with periods of relatively negative o13Croc values 

(Figure 5.9). Conversely, periods of decreased macroscopic charcoal concentration and 

influx into Lago de las Morrenas 1 coincide with more positive o13Croc values. 
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Throughout the Holocene the o13CTOc values never diverge too far from the average 

o13CTOc value (.....,_19.6%0) of the Holocene sediments with a maximum o 13CTOc value of 

-18.5%0 and a minimum o13CTOc value of-21 .6%0. 

If the primary carbon source for the sediments of Lago de las Morrenas 1 is 

auto�hthonous, as discussed previously, then the coincidence of decreased o 13CTOc 

_v�ues and increased macroscopic charcoal concentration and influx may signal 

increased allochthonous carbon delivery into Lago de las Morrenas 1 .  The total organic 

carbon constituent of sediments includes allochthonous charcoal. Although small in 

mass, charcoal can significantly influence the o13CTOc value because it is such a 

concentrated form of carbon. With C3 plants hypothetically dominating the vegetation 

around Lago de las Morrenas 1 since the beginning of the Holocene, it is likely that 

carbon entering the lake in the form of charcoal was considerably depleted in 13C. I 

found charcoal produced by the 1976 fire in the Chirrip6 parruno to have considerably 

more positive o13C values (-26.5%0) than the total organic carbon of surface sediments 

(-19 .3%o). Therefore, periodic influxes of terrestrial charcoal into Lago de las 

Morrenas 1 following fires in the Chirrip6 paramo are likely largely responsible for the 

coinciding decreases in sedimentary o13Croc values. 

Furthermore, following these fires it is likely that erosion rates increased as 

there was decreased ground cover by vegetation. An increase in erosion rates in the 

Lago de las Morrenas 1 watershed would increase the delivery of terrestrial plant 

detritus dominated by C3 plant material, thereby contributing to the lighter than average 

carbon isotope composition of TOC in the Lago de las Morrenas 1 sediments for some 

period following fire events. In other words, the Holocene o�3CTOc values are not 
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indicating shifts in vegetation or climate, but are instead tracking shifts in the balance of 

allochthonous vs. autochthonous carbon delivery to Lago de las Morrenas 1. The close 

correlation between the Orinoco River discharge record from Cariaco Basin and the 

macroscopic charcoal record from Lago de las Morrenas 1 indicate that increases in 

allochthonous carbon influxes are the result of increased aridity and decreased fire 

intervals. Thus, the Holocene sediment o13Crnc record may ·be signaling changes in 

precipitation around Lago de las Morrenas 1, but doing so indirectly. 
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CHAPTER 6 

CONCLUSIONS 

The importance of multi-proxy records in paleoecological studies is undeniable. 

No single proxy is capable of providing the information necessary to understand all 

aspects of ecosystem changes in the past. Fossil pollen is probably the single most 

important proxy of vegetation change, but like all proxies, it cannot signal all aspects of 

ecosystem dynamics. The stable carbon isotope record from Lago de las Morrenas 1 

provides evidence of paleoecological changes not evident in fossil pollen, charcoal, or 

diatom records. 

Relatively positive sediment o13CTOc values in late Pleistocene sediments from 

Lago de las Morrenas 1 sugg�st an increased C4 plant component in the Chirrip6 

paramo, a switch to HC03- photosynthesis by plankton, or both. The decreased 

atmospheric pC02 levels of the Pleistocene would have favored both situations. 

Sediment o13CTOC values in Holocene sediments from Lago de las Morrenas 1 

show a strong link to macroscopic charcoal influxes. The 13C depleted values of 

predominantly C3 vegetation result in more negative sedimentary o 13CTOC values as 

terrestrial organic material was delivered more effectively to the sediments of Lago de 

las Morrenas 1 in the form of charcoal and increased surface runoff following fires. In 

this sense, the Holocene o13CTOc values of Lago de las Morrenas 1 sediments are 

responding primarily to the balance of autochthonous vs. allochthonous carbon delivery. 

The multitude of sources contributing to the carbon pool of Lago de las 

Morrenas 1 preclude definitive conclusions about C3-C4 plant dynamics based on 
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isotope signatures in bulk organic matter. More confident interpretations of the 

paleoecological significance of stable carbon isotopic values preserved in the Lago de 

las Morrenas 1 sediments could result from using the relatively recently developed 

method of compound-specific isotopic analysis (Hayes et al. 1990). Compound

specific isotopic analyses are capable of separating the isotopic signature of terrestrial 

and aquatic carbon sources (e.g. Huang et al. 1999). This means that shifts_ in the 

dominant photosynthetic pathway being used by terrestrial plants can be detected 

regardless of shifts to the utilization of HCO3 -during photosynthesis by aquatic 

organisms. The very recent installation of a mass spectrometer capable of compound

specific isotopic analyses at the University of Tennessee, Knoxville will make these 

analyses possible in the near future. 

Despite problems in isolating the carbon sources contributing to Lago de las 

Morrenas 1 sedimentary 8 13Croc values, the 813Croc record from Lago de las Morrenas 

1 suggests significant changes in carbon cycling during the late Pleistocene. With 

numerous studies elsewhere showing marked changes in ecosystem dynamics in 

response to the lower atmospheric pCO2 levels during the Pleistocene, it appears most 

reasonable to attribute the shift in carbon cycling in Lago de las Morrenas 1 to 

decreased atmospheric pCO2 levels. 

The sensitivity of both aquatic and terrestrial communities in this locality to 

changes in atmospheric chemistry as well as climate should be taken into consideration 

in future paleoecological studies. The vast majority of paleoecological studies 

concentrate on vegetation dynamics in response to changing climate and fail to consider 

all possible forcings of vegetation change. In addition, with modem atmospheric pCO2 
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levels climbing at an unprecedented rate, the apparent ecosystem sensitivity to past 

changes in atmospheric chemistry suggests the potential for rapid and significant 

responses in the future. 

The inability of C4 plants to effectively compete against C3 plants under elevated 

levels of CO2 could spell trouble for C4 plants in an elevated CO2 world (Collatz et al. 

1998). In essence, with future increases in pCO2, we could see a reversal of the 

hypothesized Pleistocene scenario of increased C4 plant dominance. In fact, numerous 

researchers have already argued that observed treeline expansions across 

forest/grassland ecotones are the result of the anthropogenically increased CO2 content 

of the atmosphere. As many grassland ecosystems are C4-dominated, we may already 

be seeing a decrease in the ability of C4 plants to compete against C3 plants with 

increased atmospheric levels of CO2. With many grazers, including livestock, 

dependent upon C4 plants for subsistence this could prove harmful to grassland 

ecosystems and the food supply for much of the world. In addition, numerous 

important crops (e.g. corn, sugarcane, sorghum) utilize the C4 photosynthetic pathway. 

It remains unclear whether or not the rapidly climbing atmospheric CO2 levels will 

significantly affect C4 crops in the future, as they are typically protected from 

competition by humans, but one could imagine increased virility in C3 weeds causing 

increased competition with these C4 crops under conditions of significantly higher 

atmospheric CO2. By furthering our understanding of vegetation responses to past 

fluctuations in atmospheric CO2 concentrations, we will be better prepared to predict 

any future changes in vegetation in response to the anthropogenic increases in 

atmospheric CO2 in the future. 
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APPENDIX 

PREPARATION OF MODERN POLLEN REFERENCE MATERIAL 

This procedure is used to extract pollen grains from flowers or anthers from modem 
plant samples (living plants or herbarium specimens). Six samples are processed at a 
time in 15 ml polypropylene test tubes. All procedures should be done under the fume 
hood. We use an IEC tabletop centrifuge at ~ 2500 rpm. This procedure is done in a 
separate wet lab and all required beakers, test tubes, and sieves are used only for 
processing reference samples, to prevent contamination of fossil pollen samples. 

PROCEDURE: 

1. Start boiling water, tum off air filter, and label vials. 

2. Place samples (flowers/anthers) in 15 ml polyethylene test tubes. 

3. Add 10 ml 5% KOH, stir, and place in boiling bath for 3 minutes. 

4. Remove from bath and sieve through 125 µm screens into labeled beakers. Rinse 
tube with distilled water and squirt distilled water through the screen. Use a stick to 
gently break up the flower parts and anthers to release the pollen. 

5. Centrifuge down the beaker contents. Repeatedly fill the correct tube with the beaker 
contents, centrifuge, and discard the decant, until the beakers are empty. 

6. Add 10 ml distilled water, stir, centrifuge, and decant. 

7. Add 10 ml glacial acetic acid, stir, centrifuge, and decant. 

8. Run acetolysis (add 1 part sulfuric acid to 9 parts acetic anhydride - for 6 tubes add 
sulfuric acid to 54 ml acetic anhydride to make 60 ml of solution). Add 10 ml of the 
acetolysis solution to each tube, stir, place tubes in boiling water bath for 3 minutes, 
centrifuge, and decant. 

9. Ad 10 ml glacial acetic acid, stir, centrifuge, and decant. 

10. Add 10 ml distilled water, stir, centrifuge, and decant for a total of TWO washes. 

11. Add 1 drop Safranin stain, vortex stir for 10 seconds, then add 10 ml distilled water, 
stir, centrifuge, and decant. 

12. Add 10 ml TBA, stir, centrifuge, and decant. 
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13. Vortex stir samples for 10 seconds, then transfer to corresponding vial. Add a 
couple drops of TBA to the tubes, vortex stir again, and transfer the remaining sample 
to the vial. Put corks on vials, centrifuge, and decant (remembering to put the capped 
glass bottles in the centrifuge below the sample vials). 

14. Add two drops of silicone oil, stir sample with a toothpick, and leave container open 
overnight in the cabinet to allow the TBA to evaporate. 

15. Clean lab, empty chemical waste bucket, and refill chemical squirt bottles. 
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