
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2003

Development of mobile agent framework in wireless sensor Development of mobile agent framework in wireless sensor

networks for multi-sensor collaborative processing networks for multi-sensor collaborative processing

Phani Teja Kuruganti

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Kuruganti, Phani Teja, "Development of mobile agent framework in wireless sensor networks for multi-
sensor collaborative processing. " Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/5247

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Phani Teja Kuruganti entitled "Development of

mobile agent framework in wireless sensor networks for multi-sensor collaborative processing."

I have examined the final electronic copy of this thesis for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Master of Science,

with a major in Electrical Engineering.

Hairong Qi, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Phani Teja Kuruganti entitled "Development
of Mobile Agent Framework in Wireless Sensor Networks for Multi-Sensor
Collaborative Processing". I have examined the final paper copy of this thesis for form
and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

We have read this thesis
and recommend its acceptance:

Accepted for the Council:

of Graduate Studies

�

2.ooJ
I 1 K9

Development of Mobile Agent Framework

in Wireless Sensor Networks for

Multi-Sensor Collaborative Processing

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Phani Teja Kuruganti

August, 2003

. '. . ! f

. '

Acknowledgment

Foremost, I would like to express my deepest gratitude to my advisor, Professor

Hairong Qi, for her excellent guidance, infinite patience and endless support during

my graduate study and research at The University of Tennessee, Knoxville.

I also wish to give my thanks to Professor Michael J. Roberts and Professor

Daniel B. Koch for serving on my thesis committee.

I'm deeply indebted to my parents and relatives for the support and the encour­

agement they provided to me to explore higher levels of education.

I would like to give my special thanks to my sister, Srilalitha, who gave me the

strongest support during my study life.

I want to thank people from BBN, Sensoria, BAE, Auburn and ISi who helped

during field demos and provided developmental support to make this thesis possible.

Finally, I want to express my deepest gratitude to my friends for the support

they gave me during my graduate study at UT.

ii

Abstract

Recent advances in processor, memory and radio technology have enabled pro­

d uction of tiny, low-power, low-cost sensor nodes capable of sensing, communication

and computation. Although a single node is resource constrained with limited power,

limited computation and limited communication bandwidth, these nodes deployed in

large number form a new type of network called the wireless sensor network (WSN).

One of the challenges brought by WSNs is an efficient computing paradigm to sup­

port the distributed nature of the applications built on these networks considering

the resource limitations of the sensor nodes.

Collaborative processing between multiple sensor nodes is essential to generate

fault-tolerant, reliable information from the densely-spatial sensing phenomenon.

The typical model used in distributed computing is the client/server model. How­

ever, this computing model is not appropriate in the context of sensor networks.

This thesis develops an energy-efficient, scalable and real-time computing model

for collaborative processing in sensor networks called the mobile agent computing

paradigm. In this paradigm, instead of each sensor node sending data or result to a

central server which is typical in the client/server model, the information processing

code is moved to the nodes using mobile agents. These agents carry the execution

code and migrate from one node to another integrating result at each node. This

thesis develops the mobile agent framework on top of an energy-efficient routing

protocol called directed diffusion.

The mobile agent framework described has been mapped to collaborative target

classification application. This application has been tested in three field demos

conducted at Twentynine palms, CA; BAE Austin, TX; and BBN Waltham, MA.

iii

....

t

! !,

.. .,, ,:!. •

"""' ,,

.....

.J ... ,

;

'" I

1

.,. .;

I -.;

,.

�

I►'

\ .

. ·"

... ·-·

..... f .,. ')

. ..

Contents

1 Introduction 1

1.1 Wireless Sensor Networks 4

1.2 Sensor Nodes 6

1.3 Applications of Wireless Sensor Networks . 10

1.3.1 Military Applications . 1 1

1.3.2 Civilian Applications 1 1

1.3.3 Medical Application 1 1

1.4 Challenges in Wireless Sensor Networks .. 1 2

1.5 Computing Models in WSNs 1 4

1.5.1 The Client /Server Approach . . 1 5

1.5.2 The Mobile-Agent Based Approach 16

1.6 Routing Protocols in Wireless Sensor Networks 1 8

1.6.1 Flooding . 1 9

1.6.2 SPIN ... 20

1.6.3 Directed Diffusion . 21

1.7 Contribution of Research . 22

1.8 Structure of the Thesis . . 22

iv

2 Development of a Mobile Agent Framework on Directed Diffusion 24

2.1 Architectural Overview . 25

2.2 Directed Diffusion API . 26

2.3 Mobile Agent Framework . 30

2.3.1 MAF - The Finite State Machine 30

2.3.2 Mobile Agent Creation . 31

2.3.3 Mobile Agent Dispatch . 32

2.3.4 Mobile Agent Migration 33

2.3.5 Local Processing 34

2.3.6 MAF - Implementation . 34

2.4 Analysis of the Architecture 36

3 Experimental Demonstrations 42

3.1 System Overview 42

3.1.1 Sensor Node Platform 43

3.1.2 Sensoria RF Modems . 47

3.1.3 BAE Low Level Signal Processing . 49

3.1.4 UTK Target Classification 49

3.1.5 MAF based Collaborative Processing 50

3.2 SITEX02 Demo . 51

3.3 BAE Austin Demo 56

3.4 BBN Waltham Demo . 61

4 Conclusion and Future Work 65

Bibliography 68

V

Appendix

A

A.l Dependencies to Build MAF

A.2 Compilation of MAF

A.3 Running the MAF . .

Vita

vi

74

75

75

81

82

85

List of Figures

1.1 Traditional layered architecture of a network [22]. 2

1.2 Sensor node architecture. . 6

1.3 UC Berkeley Mote. 8

1.4 PC-104 and Sensoria nodes. 9

1.5 The hardware and software architectures of WINS NG 2.0 node. 10

1.6 Different computing paradigms (34]. 15

1. 7 Conceptual model for mobile agent computing in WSN [21]. 17

1.8 Mobile agent components [45]

2.1 Architectural overview of the system.

2.2 A simplified schematic of directed diffusion (27].

2.3 Illustration of different aspects of diffusion [27].

2.4 MAF - finite state machine.

2.5 Implementation of MAF .

2.6 Flow chart of MAF server.

2.7 Flow chart of mobile-agent.

vii

18

26

29

29

30

35

37

38

2.8 Screen shot of processor usage, the last three lines (PIDs 269 , 27 0,

27 1) show the processor usage by the mobile agent daemon in idle

state. 39

2.9 Screen shot of MAF server. 39

3: 1 Overview of nodal architecture for collaborative classification. 4 3

3.2 Processor specification. 4 4

3.3 High speed analog sampling sy stem. . 4 5

3.4 Power specification. 4 5

3.5 High speed analog front-end specification. 4 5

3.6 GPS specification. 4 6

3. 7 RF modem specification. 4 6

3.8 Mobile-agent-based multi-sensor fusion [4 2). 51

3.9 Sensor node in the field with all sensors. . . 53

3.1 0 Plan of the DARPA SensIT experimental demo [38). . 53

3.1 1 Node distribution and radio configuration on north-South leg [38). 54

3.1 2 Nodes on east-west and center [3 8). 54

3.1 3 Vehicles used for classification at 29 Palms. . 55

3.14 Node lay down at BAE Austin - T-Junction. 57

3.1 5 Node lay down at BAE Austin - Parking lot. 58

3.1 6 Node in weather proof box, BAE, Austin, TX. 58

3.1 7 Vehicles used for classification. . . . 59

3.1 8 Node lay down at BBN, Waltham. 62

3.1 9 Radio configuration at BBN, Waltham. 6 3

viii

Chapter 1

Introduction

Recent advances in the design of micro-electro-mechanical systems, wireless com­

munications, and digital electronics have made it possible to produce tiny senor

nodes which integrate sensing, processing, and communication capabilities. These

sensor nodes paved the way for a next generation of distributed networks called

wireless sensor networks (WSN). A large number of these compact sensor nodes can

be quickly deployed in the field, where each sensor independently senses the environ­

ment but collaboratively achieves complex information gathering and dissemination

tasks like intrusion detection, target tracking [41, 42, 49), localization, environmen­

tal monitoring [14), health systems [26] remote sensing, and the like [33, 36]. Unique

to these sensor networks is the ability to cover wide areas that no single sensor could

possibly observe and to provide a dense spatial sampling with multiple aspect and

sensing modalities [20]. Unlike traditional networks the sensor networks require en­

ergy efficient protocols and innovative communication techniques for efficient use

of bandwidth because the sensor nodes are supplied with only a limited amount of

1

. 1

,.

AppUcaUon Layer - AppUcallon Layer -

Tnmsport Layer - - Tnmsport Layer

Network Layer � ; Network Layer

Dllta - link Layer � ; Data - link Layer

Physical Layer : Physical Layer

Communication Channel I

Figure 1.1: Traditional layered architecture of a network [22].

energy and computation power. Conventional networks are designed based on ISO

OSI (Open Systems Interconnect) layered approach. Each layer of the system is de­

signed separately and independent of the application. The protocols designed upon

these layers can be used by different applications but are not optimal for a given

application (22]. Instead of using general-purpose architectures, it is advantageous

if the systems are built to exploit the nature of supporting applications. This can

enhance the performance of system. This kind of cross-layer design is primarily used

for building sensor networks.

The traditional networking topology as shown in Fig. 1.1 is a well defined ar­

chitecture with protocols designed in each network layer capable of talking to the

upward or downward layer in the network stack. This kind of layered networking ap­

proach has been popularized since the late 70s and 80s and was proved structurally

advantageous especially due to the growing popularity of the Internet during the

time. Over the years, more complex networking applications have been developed.

In Boeing's Seattle engineering laboratories, a sheet of networked sensors covering

a wing provides a profile of stress patterns as the structural integrity of the wing

is being tested (44]. A network of sensors deployed in an unmanned terrain helps

in remote surveillance of the terrain. All these kind of applications have edged

2

out from a traditional networking technology and move close toward the applica­

tion requirements. This forces the designers to build networks governed more by

the application lay er. Sensor networks are the new generation networks which are

tightly coupled with the phy sical phenomenon, with the functionality of the network

depending heavily on the change in this phenomenon. The technology and archi­

tectures supporting this kind of network is currently a research topic and has a lot

of potential to explore. The way the sensors collaborate and co-ordinate themselves

to provide a unanimous decision on the sensed phenomenon is a challenge widely

addressed in the current sensor network research community.

The development of the sensor networks is similar to that of packet-switched

networks during their new development in the 6 0 s and 7 0 s. Few at the time could

have predicted that that kind of basic technology would revolutionize the world­

encompassing Internet [1 7]. As the OSI based layered network and the Internet

grew stronger, more research went into development of efficient routing, processing

and phy sical connection. Drawing parallel with the traditional network develop­

ment, the sensor network is new and the research needs to turn, as it did at the

corresponding time of the packet-switched networks, to developing the appropriate

models, abstractions and methodologies that will make these sy stems built on a

large scale, for a wide variety of uses, by necessarily a large collection of people [1 7].

In this chapt er t he sensor net works and how they are unique from t he trad it ional

networks are first described in Sec. 1 .1 , followed by a discussion on the architecture

and existing sensor nodes in Sec 1 .2. In Sec 1 .3 the challenges provided by the sensor

networks are discussed. Sec 1 .4 focuses on different computing models in WSNs.

Different routing protocols used in the context of the WSNs are discussed in Sec.

3

-

1.5. The rest of the chapter discusses applications, the contribution of this thesis

and the structure of the thesis.

1.1 Wireless Sensor Networks

The emergence of sensor networks is actively supported by the sophistication in

sensor development, enhancement in communication system design and the reduced

feature size of the silicon fabrication. The growth of these networks has prompted

their usage in plethora of environments. In today's scenario there are many places

where the sensor networks are applied like automated factories, building surveillance,

environmental monitoring, etc.

Compared to the traditionally structured 7-layer networks, sensor networks are

unique in nature. Some of the unique features of sensor networks are listed below:

• Sensor nodes are deployed in hundreds and thousands and are randomly placed

compared to an orderly placement and configuration of the traditional net­

works. This kind of random placement of the sensor nodes does not follow

any fixed pattern and the density of nodes is not dependent on any factor.

• The nodes in the sensor network are not named by their IP or any other kind

of addresses as in the traditional networks. Since there is no meaning for

reading sensor data from a single sensor. It is unlikely for a sensor network

application to ask a question like: What is the speed of a vehicle at sensor

#23 or temperature at sensor #27, etc. Rather the applications focus on the

data generated by the sensors. The queries on the network usually reflect

like: In which direction and at what speed a certain vehicle is moving in the

4

sensor field? or Where are the nodes whose temperatures recently exceeded 40

degrees? This approach decouples data f rom the sensor. Data are named by

attributes and applications request data matching certain attribute values [1 7).

This calls for a collaborative answer from the network, hence no conventional

naming scheme is applied to sensor networks.

• The sensor nodes have limited battery and computational power as well as

limited communication bandwidth. This requires optimization of the sensor

networks at all the different levels of design including algorithms, operating

system, hardware design, sensor design, MAC layer design, keeping all the

limiting factors in view.

• Substantial amounts of sensor nodes could f ail due to battery exhaustion,

damaged node, accidental injury to sensors or nodes as well as environmental

changes. Some nodes may be added to or removed from the network at any

time. This indicates a need for an efficient co-ordination and collaboration

among sensor nodes. On the other hand, fault-tolerance can be obtained by

increasing the redundancy of sensing, However the increase in redundancy is

in contrast to the limited available power and computation of nodes. Thus

these networks call for a design that balances efficient usage of available power

and fault-tolerance.

All of these unique features in sensor network design and the marvel of the

applications they can support pave way for a futuristic research in wireless sensor

network.

5

. . ;· I .

..

l

... 11 '-

...

--------·-· .. ···· ,

i, Global l,
Po,ilionin1

: •.•••..• Sy,um •.•••• ;

Processor

Senson ADC Stonge Tnmcelvu

Power Supply Unit

Figure 1.2: Sensor node architecture.

1.2 Sensor Nodes

A sensor node is a battery -operated device consisting of a sensing unit, processing

unit, transceiver and storage memory. Ty pical architecture of the sensor node is

shown in Fig 1 .2.

The sensing unit consists of a sensor and an analog to digital converter (ADC)

which converts all the real-time continuous signals to digital data and makes them

available for further processing. The sensors are essentially transducers mostly con­

verting the phy sical phenomenon into electrical signals. The number of sensors that

a sensor node can take in depends on the capacity of the ADC and how many chan­

nels it can handle. Usually the sensor nodes provide the user with multiple sensing

mod alities.

The processing unit consists of a processor associated with some form of storage.

The processor or sometimes just a micro controller unit (MCU) , is responsible for

executing signal processing and networking algorithms on the gathered sensor data.

The processor capacity varies depending on the application for which the sensor

nodes are deploy ed since the processor consumes considerable amount of the power

of the battery . Nodes manufactured by Sensoria use Hitachi SH-4, a 16 7 MHz [1]

6

processor, which can handle complex algorithms but with high energy dissipation.

The Smart dust mote from Berkeley uses an Atmel AVR 8535 at 4 MHz. The µ­

AMPS sensor node from MIT contains SA-1110 processor running at 59 - 206 MHz.

Although there are plenty of choices in choosing the processing units the application

desired and the energy consumption issues determine what processor to use.

The transceiver unit helps the node to talk on the network and establish con­

nection between the nodes. Typically sensor nodes have a radio frequency (RF)

based transceivers. They can also be active or passive optical devices like what's

used in the smart dust mote. The RF communication is preferred in WSN because

the packets transmitted are small, at low data rate and the bandwidth usage is effi­

cient due to short ranges of communication distances [25]. The RF communication

involves modulation, band pass, filtering, demodulation and multiplexing circuitry.

Finally, the most important unit is the power unit which can be in the form of

a conventional battery with finite charge or an alternate energy source like a solar

cell. The power of the battery unit determines the life time of the sensor network.

Usually a sensor network is deployed in inhospitable conditions where changing the

battery of the node or recharging it is not an option.

The sensor nodes apart from the above described essential units, also occasionally

utilize the global positioning system (GPS) to locate the position of the sensor node

since most applications like target tracking and localization require it. The Sensoria

nodes carry a GPS device on board with a resolution of 5m. Apart from the existing

sensor node implementations, there is an industry-standard bus PC-104 to custom

manufacture a sensor node using custom off the shelf (COTS) equipment.

Currently, the most popular choices of sensor nodes in building a sensor network

7

..

..... ... '·

, ..

& •

are:

Figure 1 .3: UC Berkeley Mote.

• UC Berkeley Smart Dust Motes: These nodes are designed by University

of California, Berkeley and are popularly called smart dust [24]. The mote is

shown in Fig. 1 .3. This is a tiny node containing an MCU (ATMEL 9 0 LS8 535)

[3] with 8 -bit Harvard architecture and 1 6 -bit addresses. This controller pro­

vides 32 8 -bit general purpose registers and runs at 4 MHz and 3 .0 V. The

sy stem memory comprises 8KB flash memory and 5 1 2-by te SRAM as data

memory. The radio is an asy nchronous input/output device with hard real­

time constraints. It consists of an RF Monolithics 9 1 6.50 MHz transceiver,

antenna and collection of phy sical-lay er components to configure the phy sical

lay er characteristics such as signal strength and sensitivity. It comes with a

temperature sensor with an option to mount custom-selected sensors on the

sensor board. The nodes run Tiny OS [2] operating sy stem which fits in 1 78

by tes of memory supporting two-level scheduling and allows for high concur­

rency to be handled in a very small amount of space [24].

• PC-104 based Nodes: PC-1 0 4 is an industry standard of PC-compatible

modules that can be stacked together to form a custom-designed embedded

sy stem [5]. The term PC-1 0 4 is derived from the connector used to stack

8

(a) PC-104 based sensor node (b) WINS NG 2.0 sensor node

Fi gure 1.4: PC-10 4 and Sensoria nodes.

different boards having 10 4 pins. The standard was i nitially released in 1 9 92

[4]. Since these sy stems are made with hardware compatible with PC sy stems

it is easy to configure them along with the PCs. The PC-10 4 sensor nodes are

custom built with chosen processor, memory configuration and hard disk. The

SCADD S testbed of U SC/ISI consists of 30 nodes built using PC-10 4 based

produc ts (6] . F ig. 1 .4 (a) shows a PC-10 4 based node.

• Sen soria WINS NG node s: WINS NG node is a Linux based embedded

computing platform with several interfaces to externally connect sensors, wire­

less extension cards and any serial port devices. F ig. 1 . 4 (b) shows a Sensoria

sensor node. This is the node used to build the sensor network for this the­

si s wor k. Thi s nod e uses t he Hi t achi SH -4 pr ocessor runni ng at 167 MHz .

The SH-4 is a 32 -bit RISC with a 12 8 -bit vector floating point unit (F PU)

an d super-scalar implementation providing higher speeds at low clock rates

[9]. The sensor node supports fo ur sensors and also hosts a GPS module fo r

geo- loc ation information of the nodes. The node communicates with the dual

9

■■III PC I■

· 19 It
NlodtalQt

w lr•Je•• anct UiQllAI tN•fltc••

■■-■-■

I
I

on..,.,..
"'""'JIii"• flt... to\.N7'fl• '99•H

�, , 'lff 4

I

Figure 1 .5 : The hardware and software architectures of WINS NG 2.0 node.

RF modems built-in, both of them in the 2.401 - 2.495 GHz ISM band using

frequency-hopping spread spectrum (FHSS) . The hardware architecture of the

node is seen in the left side of Fig. 1 .5 [1] and the software architecture of the

node in right side of Fig. 1 .5. These nodes run Linux kernel 2.4. 16 and all

the hardware used in the node is supported by the kernel . The SH-4 cross­

compilers are used to compile the code written onto these nodes. Sensoria

provides the API [1 1] required for RF modem control and data acquisition.

1 .3 Applications of Wireless Sensor Networks

The sensor nodes in a network can be used for continuous sensing, event detection,

localization and tracking. This use of the network as a sensor opens up a wide

variety of applications in civil, military and medical applications.

1 0

--
. u, 11 t(j 11

i.-.u-

11 it •I II I 11 II ' --

1 .3 .1 Military Applications

The WSN s can be an integral part o f the military enviro nment. The ease o f de­

plo yment, self -o rganizatio n and ex tensive sensing ability will help in surveillance,

targeting, intelligence and co ntro l applicatio ns. All the enviro nmentally-harsh ter­

rain can be co vered by a senso r netwo rk for surveillanc� and intrusio n detectio n.

Due to its co ntinuous -sensing nature and varied sensing mo dalities, when deployed

in the battlefield, it allows acquisitio n o f the targets in the netwo rk an d can also

classify the target as a friend o r foe. The WSN can also be effectively used to sense

the chemical level in the environment in the event o f bio lo gical o r chemical attacks.

1 .3 .2 Civilian Applications

The senso r netwo rks can be used in the civilian co ntex t for building surveillance.

They can also be effectively used to mo nito r a forest fire before it spreads unco n­

tro llably (2 5]. O ther pro spective applicatio ns are floo d detectio n, Pesticide co ntro l

in agriculture, unautho rized intrusio n and creatio n o f smart spaces for applicatio n­

specific enviro nments.

1 .3 .3 Medical Application

Wirel ess senso r netwo rks hav e been successfull y appli ed in vari ous medical app li­

cat io ns, including remo te patient mo nito ring, in-ho spital enviro nment co ntro l, drug

administratio n (2 5] and in-ho spital patient and do cto r surveillance. Senso rs can be

implanted into the human bo dy and are capable o f co mmunicating with ex ternal

co mputer systems via a wireless interf ace. Wireless netwo rking o f human-embedded

1 1

smart sensor arrays and a preliminary approach for wireless networking of a retina

prosthesis is discussed in [26].

1 .4 Challenges in Wireless Sensor Networks

As discussed earlier the sensor nodes are deployed in an indeterministic fashion like

dropping from aircraft with no networking infrastructure. The sensor nodes should

be able to communicate with each other and form an untethered network. This

kind of self-configuring behavior is the first challenge in the creation of the sensor

network. This kind of self-organization should help in building a fault-tolerant

network allowing re-organization when a set of nodes dies out. Since there cannot

be a centralized authority in this kind of environment, distributed fault-tolerant

self-organization of the network is the first challenge in WSN research.

Sensor nodes rely on the power supplied by a battery which has finite energy.

Minimization of energy consumption, the time integral of power, is important for

extended battery life and subsequently the sensor network life [40]. Since replacing

the battery of the sensor node is not an available option in sensor networks, each sen­

sor network has a deterministic upper limit for its lifetime. To increase the lifetime

of the network the energy usage should be optimized in all aspects like hardware

design, radio transmission, signal processing and protocol behavior. Adaptive node

scheduling and energy saving algorithms will be the next challenge for creating an

effective sensor network. Apart from being energy efficient, the protocols should also

be fault tolerant, to work around problems like nodes dying out, so as to maximize

system life time [22].

12

The sensor network is deployed to observe the real time phenomena and sub­

sequently the data dissemination protocols on the network should minimize the

end-to-end latency in reporting the phenomenon to the monitoring authority.

Apart from these, the signal processing algorithms should be distributed and the

decision making should be collaborative and scalable. To summarize the challenges

in WSNs:

• Self-configuring and self-organizing behavior for infrastructure-less deploy­

ment.

• Energy efficient design of algorithms for maximum lifetime.

• Minimal end-to-end latency for data dissemination.

• Energy-efficient collaborative signal and information processing (CSIP) .

• Scalable algorithms to thousands of sensor nodes.

This thesis discusses implementing an efficient method to address the above chal­

lenges in WSNs exploiting the application-level information. While in traditional

networks the computers mainly interact with the users, the nodes of the WSN inter­

act more directly with the physical world. The WSN s can be tasked to answer any

number of queries about the environment under sensing. Although these networks

provide us with increased amount of information, the limitations trigger us to ex­

plore new ways of communication, computing and integration paradigms to make

efficient use of the information and to ensure that such systems operate reliably,

safely and predictably.

13

The sensor node couples a tremendously diverse functionality with sensors, DSP

circuitry, radio communication and computing ability. Throughout its lifetime a

node may be called upon to be a data gatherer, a signal processor , and a relay sta­

tion (31] . The efficacy of the WSN depends on a power-aware and application-aware

system design. The optimization can be done at all levels of system hierarchy, includ­

ing signal processing algorithms, operating system, network protocols , computing

paradigm and even the integrated circuit level. Computation and communication

are partitioned and balanced for minimal energy consumption (31] . In this thesis

we explore the design and implementation of an efficient computing paradigm for

collaborative processing in WSN called the mobile-agent based computing paradigm.

The implementation is done on top of an energy-efficient and data-centric routing

protocol for sensor network called the Directed Diffusion developed by Information

Sciences Institute, University of Southern California [27] .

1 . 5 Computing Models in WSNs

The WSN is a truly distributed network environment with resource limitation as

explained earlier. Computing in this kind of environment is different from a fixed

conventional TCP /IP based network. The two computing paradigms compared here

are the client/server based paradigm and the mobile-agent based paradigm. Fig. 1 .6

illustrates both paradigms.

14

�

. .

I • ., • •

. '

j 1 '

,. . � ·-

' I

Processing Element

_., ft:jJ "-, , ' � ', ' , , , , '
I

• \ , ,
, , ' ,' I I \ "\ , ' ,

,' ,' ,' \ \ '\

,,,, IDJ ,' \ \ � \
I � \ l I

8 / Ji ! �
.6 8 sensor

(a) Client/server-based computing. (b) Mobile-agent-based computing.

Figure 1 .6: Different computing paradigms (34] .

1 .5 .1 The Client/Server Approach

The client/ server paradigm has been one of the most popular models adopted in

distributed computing (12] , where the server is a central processing node capable of

receiving multiple requests/data from the clients, processing the data, generating

the output and sending it back to the clients, while the clients are nodes which

send request/data to the server and receive the response from the server. The

client/server paradigm is shown in Fig. 1.6 (a). Most of the traditional network

applications are designed using the client/server based approach. In the context of

sensor networks, the client node collects data from the sensing modality and sends

the data to the server to be processed. The server in turn handles such requests

from clients and responds to them. This model, although widely used, has several

disadvantages in the context of WSN.

The servers or central processing nodes usually demand more energy and com­

puting power than peer nodes', is a luxury that cannot be achieved in this context.

15

I

I

,

I

I

First, the hostile environment in which the WSN exists and the thousands of nodes

deployed in the field do not leave changing the battery and supportive resources

as an option. Thus this kind of computing model is bound to reduce the lifetime

of the network since the lifetime depends on the lifetime of the server node. Sec­

ondly, the sensor nodes have limited bandwidth of communication and power of

transmission (both controlled by Federal Communications Commission (FCC)) . In

some applications, such as data processing or data fusion, large amounts of data

must be mobilized between client and server , which potentially causes poor system

performance. Finally, the performance of a client/ server based system is defined

by the number of clients and the estimated network traffic. However in WSN the

random deployment of sensor nodes creates an unknown traffic and node layout

pattern. It is not possible to adaptively configure the network with varying load in

real time. When the number of sensors deployed increases they cannot perform the

load balancing without changing the structure of the network.

1 .5 .2 The Mobile-Agent Based Approach

We implement a mobile agent (MA)-based paradigm partly as a solution to the

above-discussed sensor network challenges. Mobile agents are basically programs,

typically written in a script language, which may be dispatched from one com­

puter and transported to a remote computer for execution [21] . The sensor network

is a complex distributed system without any global authority. The client/server

paradigm in such an environment is not effective or energy efficient. Using the MA,

instead of N nodes reporting to one sever node as in the client/server paradigm,

one mobile agent travels to the N nodes carrying out integration at each node. This

16

. . ' .

• • 'rl'

' .

' · . ., .

..

I•

' ..

Application Application

Agent Agent

Execution Execution

Environment Environment

Messaging Messaging

Subsystem Subsystem

Communication Infrastructure I
Figure 1.7: Conceptual model for mobile agent computing in WSN [21].

reduces the traffic in the network and is energy efficient. The autonomous migration

of the MA provides the progressive accuracy of the integrated result. Fig. 1. 7 shows

the concptual model for mobile-agent-based computing.

The agent program can be written to be executed in machine language or an

interpreted language. To support the heterogeneity of the computing platforms

in sensor networks an interpreted language is used. Using the mobile-agent-based

paradigm the following goals are attained:

• Network bandwidth requirement is reduced. Instead of passing large amounts

of raw data over the network, only the small agent is sent. This is especially

important for real-time applications and where the communication is through

low-bandwidth wireless connections.

• Better network scalability can be achieved. The performance of the network

is not affected when the number of sensors is increased. Agent architecture

can support adaptive network load balancing automatically.

• Extensibility is supported. Mobile agents can be programmed to carry task­

adaptive processes and that extends the capability of the system.

17

I

itinerary

Figure 1 .8: Mobile agent components (45] .

• Stability. Mobile agents can be sent when the network connection is alive and

return results when the connection is re-established. Therefore, the perfor­

mance of the system is not much affected by the reliability of the network. The

agent can also take care of dead nodes, by-passing �hem during its itinerary.

The mobile agent is defined as an entity of four attributes: identification, itinerary,

data space, and method, where identification is used to uniquely identify the mobile

agent, data space is the agent's data buffer which carries the partially integrated

results, itinerary is the route of migration, and method is the processing task (or

execution code) carried with the agent [46] . The components are shown in Fig. 1.8.

1 .6 Routing Protocols in -Wireless Sensor Net­

works

The sensor nodes are mostly randomly distributed in a sensor network. The number

of nodes in a WSN is usually in the magnitude of hundreds or thousands. Routing

protocols designed for the ad-hoc (15] network do are not valid. in sensor networks due

to the sheer size of the network . Sensor nodes mainly use a broadcast communication

18

paradigm whereas most ad-hoc networks are based on point-to-point communication

[25] . Akylidz et . al describe the principles for designing a network layer in the WSN

[25] :

• Power efficiency is always an important consideration.

• Sensor networks are mostly data-centric.

• Data aggregation is useful only when it does not hinder the collaborative effort

of the sensor nodes.

• An ideal sensor network has attribute-based addressing and location aware­

ness.

• Sensor networks should be tailored to be application-specific to the sensing

task at hand. Similarly, the protocols designed should support this nature of

the WSN.

The three popular data-dissemination protocols under consideration for developing

mobile-agent paradigm are Flooding, Sensor Protocol for Information via Negotia­

tion (SPIN) and Directed Diffusion. All of these protocols are described below.

1 .6. 1 Flooding

Flooding is an old data-dissemination technique borrowed from traditional network

and can be applied to wireless sensor network. In this protocol each node receiving

the packet will broadcast the same further onto the network. This avoids the re­

quirement of any complex route discovery algorithm for the packet . The packets are

19

broadcasted until the destination is reached. There are, however, several deficien­

cies exist in this protocol. If two different nodes share the same neighborhood then

these nodes will likely receive duplicate packets and similarly if two nodes are in the

neighborhood and detect any phenomenon they would send the same message to all

the neighborhood. In either case the resources are not optimally utilized. This is a

severe fall back considering the severe resource limitations in WSNs.

1 . 6 .2 SPIN

SPIN is developed at MIT (23, 28] . It is a protocol designed for wireless sensor

networks and is designed to address several deficiencies in classic flooding by ne­

gotiation and resource adaptation (25] . SPIN names its data using high-level data

descriptors, the meta-data. The meta-data and the raw data have a one-to-one

mapping relation. The format of meta-data is application-specific.

SPIN has three types of messages, ADV, REQ and DATA. The initiating node

which has new data advertises (ADV) the data to its neighboring nodes using the

meta-data. If the neighboring node needs this kind of data, it sends a request (REQ)

to the initiator for the data. The initiator node responds and sends data (DATA)

to the sinks. This mechanism of data dissemination is based on data-centric [23]

routing where the sensor nodes broadcast an advertisement for the available data

and wait for the request from interested sinks. Each node has its own resource

manager to keep track of the usage of energy resource. Before data transmission,

each node polls its resources to make a decision whether it should participate in

the activity or cut it back. SPIN is essentially a flooding protocol, however, the

use of meta-data for negotiation and the adaptation to resources available on the

20

' > ':""

,.

'.

..

'l _,

•

. .

-� .

sensor nodes help it eliminate most of the redundant data transfer, making it more

selective in forwarding third-party data.

1 .6.3 Directed Diffusion

Directed diffusion [17, 27) is developed at the Information Sciences Institute, USC. It

is a robust, scalable, energy efficient and data-centric paradigm for data-dissemination

in WSN. It is application-specific and provides good support for event-driven appli­

cations typical in WSN. Data gathered by sensor networks are · named by attribute­

value pairs. Sinks or nodes that request data send out interests into the network.

If the attributes of the data generated by the source node match these interests,

a gradient is setup within the network and data will be pulled toward the sinks.

Intermediate nodes are capable of caching and transforming data. The interest and

data propagation and aggregation are determined locally. The sink refreshes and

reinforces the interest when it starts to receive data from the source. One efficient

example explaining this paradigm is given in (27] as follows "A human operator's

query would be transformed into an interest that is diffused towards nodes in re­

gions X or Y. When a node in that region receives an interest, it activates its sensors

which begin collecting information about pedestrians. When the sensors report the

presence of pedestrians, this information returns along the reverse path of inter­

est propagation. Intermediate nodes can aggregate the data, e.g. , more accurately

pinpoint the pedestrian's location by combining reports from several sensors. An

important feature of directed diffusion is that interest and data propagation and ag­

gregation are determined by localized interactions." The novel features constituted

in diffusion are (27) :

21

• Data-centric dissemination;

• Reinforcement-based adaptation to empirically best path; and

• In-network data aggregation and caching.

1 . 7 Contribution of Research

This thesis concentrates on efficient implementation of the mobile-agent based com­

puting paradigm for applications like target tracking and classification in wireless

sensor networks [43, 47, 48] . The computing paradigm is built on top of Directed

Diffusion. This new paradigm makes use of Diffusion's application programmer's

interface (API) and the object streaming capability of the Python language [29] to

design the mobile-agent based computing paradigm for collaborative processing in

wireless sensor networks. The paradigm has been mapped to real-time experimental

demonstrations for target classification in three field demos.

1 .8 Structure of the Thesis

The organization of the thesis is as follows:

Chapter 2 describes the mobile agent paradigm in detail. It further discusses

the implementation of mobile agent framework over Directed Diffusion in wireless

sensor networks.

Chapter 3 shows the experiments conducted in three field demonstrations using

MA paradigm for target classification.

22

Chapter 4 concludes the thesis and points out future work in the usage of MA

in wireless sensor networks.

23

Chapter 2

Developlllent of a Mobile Agent

FraIT1e-work on Directed Diffusion

As sensors of various type acquire networking and local processing capabilities, it

is important to collaborate the spatially distributed sensing phenomenon between

multiple sensor nodes to provide both reliable and comprehensive results. Multiple

sensor nodes can perform functions previously impossible for any of the devices

independently (49] . This kind of collaborative sensing and distributed processing

environment demands an efficient computing paradigm. The client/server-based

paradigm is a typical computing model in distributed processing. In this model

the data or processed results are moved to a central server for further processing.

Since the number of sensors in WSNs is very large, which causes large data transfers

from each node to the central server node, the client/server-based paradigm not a

justifiable option . In addition, the resource limitations on WSNs not support this

kind of computing paradigm either.

24

' J •

• I I I

The mobile-agent-based computing is proposed in order to support the collabora­

tive processing applications in WSNs. In this approach, instead of each sensor node

sending local data or results to a central node for processing, the information pro­

cessing code is moved from sensor node to sensor node using mobile agents. These

agents, as described earlier , will carry out local computation on each node and carry

the result from node to node, integrating as it progresses. Agents by themselves are

autonomous software programs specifically designed to handle a volatile network

environment [13) .

For this kind of computing paradigm to support a distributed sensing environ­

ment , it should be built upon an efficient routing protocol. The routing protocol

should support the application-specific and data-centric nature of wireless sensor

networks. Directed diffusion is one such protocol. It is data-centric and all the

communication is for named data. All nodes in a directed-diffusion based network

are application aware enabling it to achieve energy savings by selecting empirically

good paths and by caching and processing data in-network [27) .

This chapter discusses the development of the agent framework starting from

the architectural overview of system in Sec. 2 . 1 , with emphasis on different layers

of the architecture described in Sec 2.2 and Sec 2.3 . Finally the analysis of the

architecture is done in Sec. 2 .4

2 . 1 Architectural Overview

The architecture of the mobile agent framework (MAF) is shown in Fig . 2 . 1 . Dif­

ferent layers in this architecture perform different tasks and provide upward layer

25

. ..

I

.

. .

I' I

• 'c- •

.

'I

I �

I .

Collaborative Information Processing

Mobile Agent Services

Diffusion Routing

Wireless Communication

Figure 2 . 1 : Architectural overview of the system.

support . At each layer the algorithms and methods are designed with concern to­

wards power-efficiency and fault-tolerance [27, 34] . Compared to the traditional

7-layered network architecture this is a unique integrated cross-layer design that

is application-oriented and data-centric. The collaborative information processing

layer hosts algorithms for the i�tegration of information derived from multiple sen­

sors. The mobile agent services layer provides the mobile-agent-based framework to

achieve the collaborative signal and information processing (CSIP) task. This mo­

bile agent framework (MAF) is realized using the directed diffusion protocol which

facilitates communication over the wireless link.

2 .2 Directed Diffusion API

Designing protocols on a traditional layered architecture may not be optimal in all

situations. Researchers have argued the need to collapse the protocol stack and

design completely integrated protocol architectures for the application-specific re­

quirements [16, 22, 30] . Exposing the application requirement to the lower layers

26

of the network will enhance the application-perceived quality of the network [22] .

Both SPIN [23, 28] and Directed Diffusion [27, 35] protocols use application-specific

data naming and routing to achieve energy efficiency in WSN. Directed diffusion is

open source software and is well supported by the ISI research group. A network

simulation environment of this protocol has also been added as an NS-2 (Network

Simulator) extension which makes performance evaluation more convenient. There­

fore, we choose to implement our MAF framework on top of directed diffusion. The

basic mechanism of the Directed diffusion is discussed in chapter 1 . This section

describes the API usage and how MAF is developed using the APL

In directed diffusion the data are named using attribute-value pairs. For example,

a target classification task can be described using the following set of attribute-value

pairs:

type = wheeled vehicle

instance = Dragon Wagon

location [$30 , 40$]

confidence = $0 . 90$

timestamp = $02 : 30 : 45$

The task description specifies an interest for data matching (27] . The data sent

in response to this interest request conforms to the same naming scheme making it

easy at both the receiving side and transmitting side.

After conforming to a particular naming scheme, the interests or the task de­

scriptions are diffused through the network. The node that diffuses these interests is

called the sink. The sink node periodically broadcasts the interest messages onto the

network watching to see if any node on the network detects an event (described in

27

=

the interest message) . The interest is periodically refreshed by the sink by re-sending

it from time to time. This repeated transmission is required for reliable transmission

through the network. The refresh rate is protocol-dependent and trades off overhead

for increased robustness to lost interests [27] .

After these interests are broadcasted through the network each node maintains

an interest cache. Each item in the cache corresponds to a different interest message.

The interest entries in the cache do not contain any information about the sink. The

cache has several entries like timestamp. It also contains gradient fields up to one

per neighbor. These gradient fields contain information about the neighbors like the

data rate requested by the neighbor, the expiration time of the interest sent by the

neighbor (approximate lifetime of the interest) , etc. When a new interest is received

by a node it matches with the existing cache entries and updates them accordingly.

Each entry will have a single gradient toward the neighbor from which the interest

is received and with the specified event data rate [27] . If a node receives an interest

message, it in turn broadcasts only to a subset of neighbors determined by whether

it has re-sent a matching interest recently.

When an event occurs on the network, the sensor node searches its interest cache

for matching interest entry. It then sends the event description to each neighbor to

whom it has a gradient. The data message is unicast individually to the relevant

neighbors. The sink finally will receive data from multiple paths. The sink then

reinforces one particular path from the neighbor in order to "draw" data at high data

rates. This feature of diffusion is achieved by data driven local rules [27] . Nodes

rely on the data cache to do reinforcement . Fig. 2 .2 shows the above-described

mechanism of the diffusion. Diffusion is a receiver-initiated protocol. The matching

28

, ,, .,

4 •

. . .. ',

,,.

. , .. ,r

• 1 1 ·

...

/'�'•,, I

: .._ \ ·O
\ . .

··- - ---�
111n O o ...

0

(b) 1mdal gradau 111:'C up (c) Data � &)aQg Nl­
iufibrawt path

Figure 2.2: A simplified schematic of directed diffusion [27] .

(a.) GndJa <91&1> (b) � Cc) Mllltq,k lmD'(l(S (d) !\l'llltipk ailucs
lilltimmt

Figure 2.3: Illustration of different aspects of diffusion [27) .

data are "drawn down" towards the sink. Fig. 2.3 illustrates different aspects of

diffusion such as multiple sources and multiple sinks.

Diffusion is started on each node by running a diffusion daemon. Each node is

setup with a unique node ID either randomly or by the user . After all the nodes are

running, diffusion daemons, the gradient daemon is run on all of them to support

the gradient formation. The diffusion discovers the other members of the network

by periodically sending out exploratory messages over the network. It usually takes

a few minutes for all the nodes to settle down with proper identity. The applications

using diffusion utilize the API provided to talk to the diffusion layer on the network.

29

(e)Rqu

Figure 2 .4: MAF - finite state machine.

2 .3 Mobile Agent Framework

The mobile agent framework (MAF) consists of a mobile agent daemon or server

that runs on each node and acts as a host to the incoming mobile agent. The

mobile-agent itself is a program that flies from one node to another collecting and

integrating local results from each node. The mo bile agent server hosts the agent

and completes the required processes and passes the agent to the diffusion layer to

be relayed through the radios. All the agent services provided by the server are

tightly coupled with the diffusion API for communication purposes. Initially all the

nodes subscribe to diffusion with the respective node IDs as attributes. This section

describes the design flow of MAF.

2.3 .1 MAF - The Finite State Machine

Fig. 2.4 illustrates the life cycle of an MAF using a finite state machine. The

agent is created when an event is detected. The agent is then dispatched to the

neighboring node in a pre-defined itinerary. The mobile agent server running on the

node dispatches the agent to its destination by accessing the diffusion layer which

30

in turn accesses the RF wireless communication interface. Since the agent carries

the execution code and the results from a previous migration, it carries out local

processing on each node and integrates the result with the earlier result. This is

how the collaborative processing task is achieved. When the agent attains a certain

threshold of accuracy or reaches the last node of migration it terminates and displays

the final result.

2.3 .2 Mobile Agent Creation

The agent is created when an event is detected. The mobile agent daemon on the

node creates the agent encompassing the local results and the current state of the

execution code. As described earlier, the mobile agent , upon creation, is defined as

an entity of four attributes:

• Identification: Identification uniquely identifies the agent in the network.

Different mobile agents dispatched from different places of the network are

uniquely numbered such that they can be differentiated from one another.

• Itinerary: The itinerary is the route of the mobile agent. The route of the

agent is either derived on-the-fly dynamically or pre-defined by the user.

• Data Space: Data space is the agent 's buffer carrying the agent 's partially

integrated result . As the agent progresses, it integrates the result from each

node. The local result is derived, based on the data captured on each node,

which is fused with the partial result contained in the agent from the previous

migration.

31

...

• Service know-how: Service know-how is the processing task or the execution

code carried by the agent.

2 .3 .3 Mobile Agent Dispatch

Once the agent is created it carries with it its itinerary and migrates to the next node

using diffusion APL The agent is streamlined into a string literal type allowing it

to keep the current values of variables and execution status which will be recovered

when arriving at the next node. This process is called object serialization. During

dispatch the agent accesses the diffusion API and publishes its interest over the

network. Since the agent constitutes the itinerary, the matching interest the agent

sees the network is its next destination address. The following code segment shows

the agent setting up publication in a network, where the TargetAttr specifies the

nextip or the next node address of the agent.

handle setupPublication(NR •dr , char •nextip) {

NRAttrVec attrs ;

attrs . push_back (NRClassAttr . make (NRAttribute : : IS , NRAttribute : : DATA_CLASS)) ;

attrs . push_back(LatitudeAttr . make (NRAttribute : : IS , 60 . 00)) ;

attrs . push_back (LongitudeAttr . make (NRAttribute : : IS , 54 . 00)) ;

attrs . push_back (TargetAttr . make (NRAttribute : : IS , nextip)) ;

handle h = dr->publish (&attrs) ;

ClearAttrs (&attrs) ;

return h ; }

32

2 .3 .4 Mobile Agent Migration

When a node with data matching the interests of the agent is discovered on the

network, the agent migrates to the specified node. The itinerary of the agent is

currently stored in the /tmp/maf.conf file of the node. An example of the itinerary

file is shown as below. The variable "hops" represents the number of nodes the agent

should migrate before reaching destination. The node names or the corresponding IP

addresses specify the order of migration. The nodal names or IP addresses belong

to each local node and are the same as the TargerAttr described earlier. Each

node's MAF server subscribes to the Diffusion using this name/address. When the

agent needs to migrate to a particular node (say node0 with address 160.36.31 .2) it

publishes the interest on the diffusion looking for this name/address (160.36 .31 .2 in

this case) . When a matching subscription is discovered the agent migrates to the

corresponding nodes. np indicates the number of parameters the agent carries with

it representing the integration result.

[itinerary]

hops=2

node0=160 . 36 . 31 . 2

node 1=160 . 36 . 31 . 2

[parameter]

np=3

The MAF implemented in this thesis uses a static itinerary pre-defined in each

cluster. However, the ideal mobile agent should migrate deciding its destination

on-the-fly.

33

2 .3 .5 Local Processing

As described earlier the MAF is used for multi sensor fusion to produce reliable

information. The local processing of the result is carried out on each node. Upon

arrival the agent is hosted by the mobile agent server running on each node. A multi

resolution integration (MRI) (34] function is used here to integrate the result from

one node to another. The agent will progressively carry the result as it migrates and

integrates the local confidence range from each node finally arriving at a multi-sensor

collaborative confidence range depicting the target type.

2 .3 .6 MAF - Implementation

The MAF is coded using the Python scripting language. The interface with Diffusion

API and application services, which provide C/C++ API, is done by generating

shared library modules accessible both by the Python and C++ code . These shared

libraries are generated using a code development tool called Simplified Wrapper and

Interface Generator (SWIG) [10] . SWIG is an open-source software development

tool that connects programs written in C and C++ with a variety of high-level

programming languages. It is primarily used with common scripting languages such

as Python, Tcl/Tk to create high-level interpreted programming environments, and

as a tool for testing, prototyping and interfacing C/C++ API and software.

Fig. 2.5 shows the stages in the implementation of MAF . Python is used for

coding the agent and server-side software for the MAF. Python is an interpreted,

interactive, object-oriented programming language. This language is chosen for its

ability of object-serialization which is used to generate the agent. This process var­

iously called as pickling, serializing, marshalling or flattening, allows the Python

34

l.

• I

..

..,

,,

• I

.
..

CSIP API (C++)

SWIG

Shared Libraries

MA Daemon - Python

Execution code
and partial result

Piclded/Unpickled

SWIG

Shared Libraries

Diffusion API (C++)

Sensoria RF modem API ((c c

CSIP API (C++)

SWIG

Shared Libraries

MA Daemon - Python

Execution code
and partial result

Piclded/Unpkkled

SWIG

Shared Libraries

Diffusion API (C++)

Sensoria RF modem API

Figure 2.5: Implementation of MAF

in-memory objects to form a single linear string format, suitable for storing in flat

file, shipping across the network sockets and so on [29] . The resulting stream file can

be converted back into Python objects by the unpickling process. Python has mod­

ules, classes, exceptions, very-high-level dynamic data types, and dynamic typing.

It contains interfaces to system calls and libraries, as well as to various windowing

systems [8] . The Python implementation is portable and is an open source software

written in C/C++. Unlike compiled codes like C++, where a full-fledged executable

requiring no dependencies can be generated using cross compilers , Python code is

an interpreted code and an interpreter is required on the system where the code

needs to be interpreted/ executed. For implementing MAF on Hitachi SH-4 based

sensor nodes Python source code is cross-compiled using the SH-4 cross-compilers

to generate an SH-4 version of the Python interpreter. The resultant interpreter is

35

.____ _ _____,))))

configured so as to occupy the least space with only the required modules built into

it. This is due to the limited availability of memory on the node.

POSIX threads are used to keep the node in a wait state while waiting for mobile

agent to arrive. The two primitive thread-synchronization primitives are mutex and

condition. Mutexes are simple lock primitives that can be used to control access

to shared variables. The flag...mutex variable is locked until triggered by a signal

thus maintaining the status of the loop making it a light weight process (making it

consume a lower percentage of CPU time while idle) .

Fig. 2 .6 and Fig 2 .7 show the complete flow chart of the MAF server and agent

execution respectively.

Fig. 2.8 shows the processor usage of the MAF server during idle state . The

last three lines in the screen shot with PIDs (second column) 269, 270, 271 are the

corresponding processor usage lines for the MAF server while idling. The Hitachi

SH-4 averages 1 .5 - 3.0% CPU usage for running the MAF server deamon. Fig. 2.9

shows the typical screen shot of the server running in a sensor node.

2 .4 Analysis of the Architecture

The MAF has many advantages compared to the client/server model. The different

aspects of the mobile agent are summarized below.

• Scalability: In sensor networks, the number of nodes can be hundreds or

thousands. Agent architectures are adaptive to scaling of the network by

changing the number of nodes the agent migrates through [37, 2 1) . Unlike in

client/server architectures, the agent does not create any queue as the number

36

Start MAF Server
syncServer()

i
recvmsg()

Subscribes to Diffusion
setupinterest()

Waits for the
incoming mobile-agent

i
Mobile-agent from A Callback ttiread is setup

to handle the incoming agent
the neighboring node Myreceive::Recv()

Agent recieved
and processed

handle() , compLocal()

i
Agent sent to next node

migrate() , sndmsg()

Figure 2.6: Flow chart of MAF server.

37

[l

['----_ l

Creation of Agent
mafinit()

CCSIPAgent()

t
Compute the Local result

compLocal() , csip.so

t
CCSIPAgent

is converted to a string
binstr = CPickle.dumps(agent, bin)

t
Setup Publication and Subscription

setuplnterest()

setupPublication()

If matching interest found
data is sent
NR::send()

t
Unsubscribe and

Unpublish from the network
unsubscribe() , unpublish()

Figure 2.7: Flow chart of mobile-agent .

38

[___________]

I I

I I

!

[l

11: 04pm
procs

r
0

fJ'.)Lh.
rnut

1·u1Jl
rnot
J 'p .· i t

r0,)t
l u1J l

r,�;u t
r·o,,t

;'t_:.•·)t

Y110t

ro,Jt

root
{'l.lll l

J t)1. ,t
roi)t

rn,� t
I 1J U L
ro1Jt

rnnt

t·o,:,t

1 1Ju l

:'U;Jt

ri1ot

r,·) , 1 t

r 1Ju L

ru1·•t
root
ro•.>I

r u u l
root

b ..

0 1

up 23 : 04 . 1 user , luad averag e : 0 . 10. 0.04, 0 . 01
memory swap io system cpu

:»W_l)U frt!t! bu.er l:d<:bt! �i bi bu iu l:b Ub ,sy it.I

0 42852 3tl 11928 0 0 0 0 us 16 0 1 99
PID ?;£PU :t,l,!EM V5Z RSS TI'Y STAT START TIME COMK-\ND

1 0 , 0 0 . 8 144il S40 ? s 00 :00 O : 02 init [3)
2 o . o o . o 0 0 7 SW 00 ; 00 0 ; 00 [ko,v.,ultl]
3 0 . 0 0 . 0 0 0 ? SWN 00:00 0 : 00 [ksoft irqd_CPllO]
4 o . o 0 . 0 0 0 7 SW 00:00 0 : 00 fkswapdl
5 0. 0 0 . 0 0 0 ? �w 00 :00 0 : 00 [bdflush]
6 0 . 0 o.o 0 0 7 SW 00;00 O ; OO [lu,vtl<1 Lt!<l]
8 0 . 0 0 . 0 0 0 ? SW 00 : 00 0: 00 [111tdblockd]

12 0 . 0 o . o 0 0 ? SWN 00 : 00 0 : 00 f jffs2_gccLmtd4 l
26 0 . 0 l..O 16flfl 632 7 s 00 : 00 o: 00 /iabin/d.,vfsd /dev
IH 0 . 0 0 . 7 160il -180 7 5 OO;OO O; 00 yui·tnldj)
80 0 . 0 1 . 0 1828 668 7 s 00 : 00 0 : 00 Si'slogd - m O
84 0 . 0 0 . 8 1496 S52 ? s 00:00 o : oo klogd

l.01) o. o 1 . 1 1 560 704 7 s 00:00 0:00 /o;;bin/cardmgr
127 0 . 0 1 . 2 H!l 6 7 5 6 7 s 00 ; 00 0 : 0 0 /sblu/pun,p -1 t! lhO
136 o . o 1. 0 1820 676 7 s 00 : 00 0 : 00 inetd
169 0 . 0 1 . 3 2240 820 ? S, 00:00 O: 00 rfmodemd -r O -p sens it 1. --daemon
174 0 . 0 1 . 1 2084 728 7 s 00:00 0 : 00 heartd -r O --daemon
1T9 o . o 1 . 1 20156 726 7 s 00:00 o , oo blL't!dfflU -r O --tld�mun
182 0 . 0 1.3 2240 820 7 s 00:00 0 : 00 rfmodemd -r 1 -p sens it 2 --daemon
187 0 . 0 1 . 1 2084 724 ? s 00 : 00 0 : 00 heartd -r 1 --daemon
lSQ 0 . 0 1 . 1 2088 724 7 s 00:00 0 : 00 str,.,amd -r 1 --da..,mon
196 o . o 1 . 1 2032 684 7 s 00;00 0 ; 00 b l a l"u
200 0 . 0 0 . 8 H2B 512 ttsc/1 S, 00:00 o: 00 /sbin/ age tty 115200 ttsc/1 linux
231 0 . 0 o . o 0 0 ? SW 00:04 0 : 00 frpciodl
232 0 . 0 o . o 0 O 7 s.w 00 : 04 O: OO [lockd]

I
23B 0. 2 1 . 1 178-l 708 7 s 22 ; 57 0 ; 01 l.J 1 . l-,l11du; l'hdllhd . t!Lt! . u L1'. . t,UU
24-0 0 . 2 2 . 1 2 520 1356 pty/sO s 22 : 57 0 : 01 -bash
269 1 . 3 4 . 0 6900 2492 pty/sO $ 2 3 : 01 0: 02 P11thon/python maf/Cmafserv. py
:no 0 . 0 4 . 0 61.lOO 24fJ2 pty/GO s 23 : 01 O : OO P\'thon/python maf/Cma.fo;.,rv .py
271 0 . 0 4 . 0 15900 2492 ply /1:;0 s 23 :0l. 0: 00 r., tl.iun/py thun tt1df/Cm11fbt!L'V . py
4 5 6 0 . 0 1 . 3 2916 856 pty/sO R 23:04 o: 00 ps -aux

a;

Figure 2.8: Screen shot of processor usage, the last three lines (PIDs 269, 270, 271)
show the processor usage by the mobile agent daemon in idle state.

v · root� nodel.ec:e.utk.edu: /mnl/piranha(,un

E.dlt YJew· • Iermirial Go Help
��.,. rooL=uvu�1 /nnt/piranba/run

':-l' r t h o n1p'i t ! 1 , •IL maf/Cmafse rv . py

l n i t 1 .1 J i z._, MAF service , waiting for incoming agent

nc>d, 1 .. ece . utk . edu

,.l 1 f f 1 1 , 1 ,•r, Routing Agent initializing . . . Agent Id = 1028

,· .. 1 1 ,ting for ,. 0111>· t li rn:: to come ; I\)

Figure 2.9: Screen shot of MAF server.

39

- .�. X

O• �drr yiew IermlnaJ i;;o tie!P

of nodes increase because of the absence of a centralized server .

• Energy Efficiency: The agent technology reduces the total amount of data

to be transmitted over the network. This helps the MAF to distribute the

energy consumption of the nodes evenly upon the network, enabling longer

network life, since on a sensor node most of the energy is consumed by the radio

transceiver [18] . The minimal size of the agent also reduces the network traffic

and utilizes the network bandwidth efficiently. This is 'important considering

the low bandwidth of the wireless connections.

• Progressive Accuracy: The MAF provides progressive accuracy to the task

performed. As mentioned earlier the agent migrates from one node to another

carrying the partially integrated result. At each node the agent integrates the

new result with all the previous results , which has the potential to gain accu­

racy as it migrates along the network. A user-defined threshold of accuracy

can be set to terminate the migration of the agent at any stage.

• Autonomy of the Agent: Sensor networks are usually deployed in un­

manned terrains to help in unexpected event detection. In such cases mobile

agents provide the biggest advantage due to their autonomy. The agent can be

automatically triggered upon an event detected by the sensors and continue its

computation, migration and conclusion of result. This, compared to each node

reporting to a server or main sub-system as in the client/server paradigm, is

advantageous and provides practical real-time performance.

• Reliability: The agents are autonomous programs and can function inde­

pendent of the network status. An agent can be deployed when the network

40

• J . '

-

'l.

I I• 'I

4 •

• J.

:f ,.

connection is alive and the results can be collected when the network connec­

tion is alive without loss of information. It is common in sensor networks for

certain nodes to die, in such cases the agent can be programmed to be adap­

tive to the connection status and bypass the nodes that are not alive in its

path. This increases the fault-tolerance and real-time nature of the applica­

tions built on this framework. In addition, Diffusion uses the unreliable UDP

style packet messaging, thus this feature of agent can provide more stability

and reliability of the sensor network applications. This facilitates a pervasive,

open, generalized framework for the personalization of network services [21] .

Considering the above features of the agents, MAF approach provides important

qualitative services for collaborative processing in wireless sensor networks. It re­

duces the amount of data moving on the network and is a promising approach for

distributed computing in wireless sensor network. However we should also realize

its limitations. The agent framework requires a highly secure agent execution envi­

ronment since there is no built-in security in the agent . The MAF also requires a

balance between number of nodes the agent migrates through before returning and

the efficiency and redundancy of the information agent carries. The MAF does not

provide any re-transmission capability once the agent is dropped for some reason in

the network.

41

Chapter 3

Experimental Demonstrations

The MAF discussed in Chapter 2 has been applied in multi-sensor collaborative

processing for ground-target classification in wireless sensor networks. This appli­

cation has been tested and validated in three field demos under different network

configuration and scenario designs. This chapter describes the sensor node setup

and experimental results obtained from these demos.

3 . 1 System Overview

The proj ect is a collaborative effort involving participation from different universities

and research institutions. The systems configuration at a sensor node is shown in

Fig. 3. 1 . At the lowest level, Sensoria provides a micro-sensor platform, which

performs sensing independently. The raw data collected is pre-processed using low­

level signal processing functions provided by BAE Austin. Upon event detection,

UTK's mobile agent based collaborative target classification routine will be invoked.

The mobile agent framework is realized on top of ISI's diffusion routing.

42

.• 1 !._ t

-
- Collaborative

Mobile Agent Server
Target Classification

ISi Diffusion Routing Low-Level Signal
Processing

Sensoria RF Modem Sensing

Figure 3 . 1 : Overview of nodal architecture for collaborative classification.

3. 1 . 1 Sensor Node Platform

The Sensoria WINS (Wireless Integrated Networked Sensors) NG 2.0 node is cho­

sen as the platform for implementing the algorithms. The WINS NG platform is

capable of monitoring multiple sensors, carrying out local processing and commu­

nicating the results with other nodes using wireless radios. Physically the WINS

NG node contains a high performance analog sensor sampling unit, a sensor digital

signal processing, a dual channel spread spectrum wireless network solution, a 32-bit

application processor and a POSIX-compliant real-time operating system.

The WINS NG 2.0 node platform architecture includes a real-time interface

processor. This processor supports high-speed multi-port sampling integrated with

both a high speed DSP and digital 1/0. The interface processor accesses the sensor

data and helps in DSP of the sensor data. This dedicated programmable digi­

tal signal processor enables local processing of high-bandwidth sensor data (upto

20K samples/sec per channel input) in addition to providing upto a total of 580K­

samples/sec throughput from the DSP to the applic�tion processor [1 1] . DSP control

and processing allows a scalable output word rate ranging from 156Hz up to 20KHz.

However the DSP provides only the data sampling and the unprocessed sensor data

is supplied to the processor and available to the application developer through the

43

Platform Processor
Care-

. Ptatfoi'ijl
· MemOJY.

Processor
Archilec ure ·

i,-r9cesijor
PetJQm1ar1�

p.i��{Qh

Hitachi SH-4 775 1

1 . 32bit RISC architecture
2. Supersoalar duaf ' issue architecture
3. low power.consumption wrth 1 .8V in emal, 3. 1V 1/0 bias
4. Branch operatipns. folding, predictiori

1
condition�I preretch

5, t6K qata cache .im;t �K instruction c�che
6. Memory Management: Units (MMU}
7. F=loatlng Point Unit with Singte and bouDle ?r cision

t1 ��e·: · ,a�J-Atf1&
2 .. : FloatinQ:P6ionJnit:· :1A GFLOPS

Figure 3.2: Processor specification.

Sensor API (API provided by Sensoria) for further processing. The architecture

of the node includes a 32-bit RISC Hitachi SH-4 processor including an FPU and

accompanied by RAM, ROM and flash memory. Fig. 3 .2 shows the detailed infor­

mation on the processor. The detailed description of different sections of the node

are shown in Figs. 3 .2 , 3.3, 3.4, 3.5 , 3.6, and 3 .7.

The node is equipped with an embedded GPS device, which provides geo-location

and timing data. It can be accessed as a device file by the software through

/ dev /ttyS2 of the node. This device gives the GPS data in standard National Marine

Electronics Association (NMEA) format. Detailed FAQ about NMEA is available

from [7] . The NMEA message set can be parsed to obtain the geographical position

of the node. The specifications of the GPS module are given in Fig. 3.6.

The wireless network interface of this node includes a dual-mode RF modem sys­

tem that enables a solution for scalable, multi-hop networking with spread spectrum

signaling. The RF modems are discussed in detail in Sec . 3. 1 .2.

44

400mW

Processor
Fte(!O,e ·;�at). 80

' 60
Data &: Pmgtam·M� '�Jnt�1�tKext�;���j1,'l>i(

extemai.memory;shareit:between fio$tc.apd
!\lil�IIIIJliill'llitali�* mllfJIIII.BUfJili i!IHi 7?S!ll!'fgJl!41ftlili

Software YJem $0ftware rnJ)lemmE!c1{ot'$al'JlJ)l�.��t'.cmlv; .
Unproees:;ed sef1$or data ptpvtdEid to: Pr�se>(

Figure 3 .3: High speed analog sampling system.

'3 r cominuous se
20 hour tandby operatjon,

Battery Ufelime

· .$attijty1�09\lfin&'. 5 h�;frQril orictiargeif ..
+ '•''·o11II 1 2, 601-fz .to r 2v QC in -------�--·-

Figure 3.4: Power specification.

h'igh Speed
S/H ADC

=�----�� 4-ch d.i(fereritj I ront�enq

ResoluUon - 10611s:
----�---

Sanwle rat&
S Jecta le _gains

, 2 kHz
2, '.1 · , 1 0 , 1 00-WN (6dB, 20.MB. 4.0,l�B.-Jhd
60.01d .

Select bleoutput word r ,t�s ;?Q� 10K, SK. 2,.5K.1 . �K 625)12,5, ·1s1f25Hz,
Digital LP fil ering and d imation · or �ord rates below 20kHz
Ft ed 8tli Ordfl" Butter.-.orth anti�alias -0.2d8 @ 5kHz
fit er -3dB @·G Hz

-35.SdB 'a} 10kHz
1nput n,o1savplt0e 15 nwrt:HzJ

Unearil::Y metric to front�nd _ l nd�pendenl line�rity·gr:ror
G�in non-line'"'r ity 20ppm •�
ADC I nJegra I non�tine, · ty M x· ± 6 9

�:,_...��-WOld'
j

�� � @ 20kHz : • ·· E,NOB=1ff'';bts
1:ofi @ �·� EN�=;13�fc't)tt•
teh:@: .)t , · �-.J.$._$.?�
teNbe · ·· ··.rumwo1�

Figure 3.5: High speed analog front-end specification.

45

j.2.5
.ir�-

.. Maximum deviation from be�t fit line

I

�-a per word)
DSP

1

L 1 . CIA code
Channel� ··'ti

l]l/llJ!liJ[l!RillitlillilltlffJf:!ltlili1: a. I 118 I 11-TFTfWI
. Satell� ���e<:1visitlon Tln,tt 1llEffl3•: . , . · .. · · ... · • . i , · • .

fl11Il81ilr!ij!nl�1it■lllllll�l1�Rl�/1i!1l!Tii11r YI] 11. ZL.Li&lllall!-1111111
Hotsfurt·· < a �save:rage.

Vj rm s.�r.t
, Cold fort

Mln�rnum signal.tr-a
Muirnum. aititu e

rucimu velocity
. PrQtocots

Po Pon AOC\I. t..y O m·eter 2dfW S. WAAS enabled
1 -5 .me er. DG.PS CQfreoted -- - ------- �---

GPS::ant$!10�: c�ble l�ngth (Heet

Figure 3.6: GPS specification.

..__ __ Fre ueno.y-

Cbdiog
FCC' Certification

GhanneJ,D,ata.· R�te

2.+2.483Gtlz
·Fr�qu·eney H<>pped Sprea<f Speritrurri {FHSS)

--�,�---lnaepen'-em networh 64 (for'both mbdes): ·
.RF B.,and�th 750kij �-�--����---

Tr mil po 1
Qu.tdoor op ratin:9 Ra ge

1 mV,, or OOm r

25m worst c:nse {zer� levati n, duttered,no L OS)
OQm surface-to-su ace lOS

50o+m elevated with lne of i hi ��------
25m�t0Qm .

Figure 3. 7: RF modem specification.

46

ns

I I

< 60.00 feet

< 1000 knots

t'4MEA)i2'.2

1

, _

rf
e o

---�--�
I

Apart from the hardware , the node contains a fully POSIX-compliant operating

system - Linux 2.4. 16. This provides the developer with all the API of the sensor

node devices. The node does not come with compilers but cross-compilers for the

Intel machines are provided to do software development for these nodes. All the

sensor channels, GPS module, RF modems are available to the developer as device

files from /dev directory of this Linux-like directory structure. The node provides

the user with 16 MB of flash memory to load the executables and 16 MB of RAM for

computation. The operating system supports the network file system (NFS) services

so the developers can create a drive space mounted over the network to the node. The

node supports a wired 10 Mbps Ethernet and can be used for all communications to

the nodes, i.e for loading/unloading of software/data. The volatile memory space is

available in the /tmp (RAM disk) directory of the node and all the network mounts

and the local data acquisition or file storage are done into this directory.

3 .1 .2 Sensoria RF Modems

The embedded RF modems in Sensoria nodes provide a low-power networking so­

lution, however at low data rates. The RF modems can be accessed both by the

command-line utilities and by using the API provided by Sensoria. The RF mo­

dem API is based on the open source Framework for User Space Devices (FUSD)

interface which makes them accessible via standard device files interfaces promoting

portability and accessibility [1 1] .

As mentioned earlier, each node consists of two RF modems, each supporting 2 .4

GHz freqeuncy-hopped spread-spectrum communication. A network is composed of

one modem operating as base and one or more modems operating as remotes. Each

47

. .

I,

remote can only unicast to the base. The base can unicast to a single remote or

broadcast to all remotes. The two modems can be operated simultaneously and

can put the node simultaneously into two different networks. The modems can be

accessed by a device file interface. The node having two modems allows the im­

plementation of high performance, multi-cluster, low-latency multi-hop networking

applications [11] . The WINS NG 2.0 RF modem implements a star topology where

one modem acts as base and some other modems· acts as remotes, each connected to

the base by a separate logical channel. Within the WINS NG 2.0 modem, the link

synchronization is based on an underlying TDMA frequency-hopped implementa­

tion, in which the base serves to synchronize the TDMA frames and coordinate the

allocation of slots to remotes.

Each of the two modems on the network should select a network number, an

integer between 0 and 63. Each of the modems can be a base or remote. There

can be two remotes on a particular node but there can only be one base on either

of the nodes. The network numbers correspond to separate hopping sequences that

the modems follow when communicating with their peers. Because the sequences

are separate, two modems that have selected different network numbers will rarely

interfere with each other. This is similar to two modems selecting different fixed

channels for communications, but in addition, frequency hopping avoids consistent

loss when a portion of the spectrum is experiencing high interference [1 1] .

The WINS NG 2.0 node provides the C language API and is used by ISi Diffusion

to transmit and receive packets over the network. Diffusion in turn provides a more

user-friendly API to the developer to port applications on to it.

48

.... ' 'I.,,> •

< -� . . - I . :

..

.. _,

➔• .. '

,,. •..

... ,,

,.

. .•

., . :,

..

' -

,. ■:: • I I

... .

3 . 1 .3 BAE Low Level Signal Processing

•

This is a BAE repository environment used for low-level signal processing. The

Sensoria nodes can accommodate four different kinds of sensors on four different

channels. We use three sensor channels for data acquisition namely passive infrared

sensor (PIR) , seismic sensor and acoustic sensor. The Sensoria node provides ap­

plication programmer's interface (API) to access the sensor hardware. BAE uses

this API to access the sensors. Each node will perform sensing independently and

the raw sensor data are processed by the BAE low-level signal processing daemons

running on the nodes. The raw sensor data are pre-processed, sampled and made

available as a repository (flat file format) placed at a specific location in node's

memory to be available for other· application developers. BAE uses a sampling rate

of 4960.32 Hz on the time-series data from each sensor with a buffer size of 256 sam­

ples and an FFT window of the size 1024, to pre-process the data. The time-series

repository can be accessed by developers using subscription methods provided by

BAE's APL Each node consists of a /tmp/config.rep file. This is a configuration

file for the BAE's repository indicating which type of sensor is connected to which

channel of the node.

3 .1 .4 UTK Target Classification

The UTK classification services access the data generated by the BAE and perform

the classification task using supervised learning techniques like kNN [39 , 41 , 42] . The

classification services use MAF and the lower layers to communicate its result with

other nodes in the network. The UTK classification services consist of a daemon

running on each node subscribing to BAE's repository. This daemon is responsible

49

for performing local processing of the repository data upon event detection. The

event detection is determined by a pre-defined threshold of the signal level, beyond

which an event is assumed to have happened and classification is run on the available

data of that event from the repository. The classification result from each node is

a confidence range of the target existence [42] . The classifier output is placed in

the /tmp/range.dat file of each node. Upon completion of the classification the

classification daemon invokes the mobile-agent, starting the collaborative signal and

information processing (CSIP) .

3 . 1 .5 MAF based Collaborative Processing

The MAF server runs on each node hosting the incoming agent . The mobile-agent

initiated by the classification daemon picks up the local confidence range and trav­

els to the next node according to its itinerary. At the next node the agent further

integrates the corresponding result from the /tmp/range.dat file. This migration

continues until it reaches the last node in its itinerary or achieves required accuracy.

The integrated result from each node is generated using the multi-resolution inte­

gration algorithm (MRI) [34, 42] . Fig. 3.8 shows the mobile-agent migration and

integration of the result among a cluster of three sensor nodes. Initially an event is

detected and each node consists of the local confidence range written out. The agent

flies from node 1 to node 2 and finally to node 3 where the final result is dispiayed

based on the deduction from the integrated result .

50

•

(a) Stage 1 .

-·

....
-

-·
_, llobih agent

'1:::.'t'l{�.!•mr � 0...-, .. cau

(d) Stage 4.

(b) Stage 2. (c) Stage 3.

- ·

c1- t: 1>,., ,n1
Cl- I: (1, 1/lll

Nodo 1

Cla■■ l! fJ/5, 10/UJ
cl•H I: 11/U, 2,.1

At node l, •1 clH'1YN tM
partially .1.ntetnt.S min
ClaN 1: [Jl!I, 10/15)
ClaN l : (J/11, 2/11

(e) Stage 5.

Figure 3.8: Mobile-agent-based multi-sensor fusion [42] .

3 .2 SITEX02 Demo

This field demo sponsored by the DARPA sensor information technology (SensIT)

program took place at Twentynine Palms, California in November, 2001 . The pur­

pose of this demo was to test MAF-based CSIP in realistic environment. The UTK

AICIP (Advanced Imaging and Collaborative Information Processing) lab is one

of the participants. Others include Auburn University, Applied Research Labo­

ratory /Penn State, BAE systems, BBN (Integrators of the demo) , University of

Wisconsin, Xerox-PARC, MIT-Lincoln Labs, ISI/USC, Rutgers, UCLA, University

of Maryland, Fantastic-Data, Cornell, Duke and Virginia Tech. BBN technologies is

the integrator for the demo and has the central command for all the nodal adminis­

tration and setup. The setup is done at the Marine Corps Air and Ground Combat

51

='"' t •
Cl-1! UII, H11•1
c1-1, UIII, 1111

,1 .. .,.. "'"'.:::.1

Center (MCAGCC) , Twentynine Palms, CA at a location 30 miles northeast of the

"Mainside" �hich is at the entrance to the base in the Twentynine Palms, CA. This

is located in the most arid parts of the Mojave desert. Fig. 3.9 shows the sensor

node setup in the field.

In this demo 70 nodes are deployed in close proximity for improved density of

coverage . The nodes are laid out in the field as shown in Fig. 3 . 10. The nodes

are placed in an open area along side three· roads and their intersection point. The

north-south leg lay down is shown in Fig. 3. 1 1 , which also shows radio connectivity.

As explained earlier each node has two radios and each radio participates in two

different networks forming a complete linkage in the network. In Fig. 3. 1 1 the nodes

in yellow indicate they have one of the radios as base and the nodes in green have

both of their radios as remotes. The network number of channel 1 and channel

2 of each · node is depicted in the parenthesis beside each node number. Fig. 3 . 12

shows the similar node lay down and radio diagram in the east-west direction and

the center of intersection. This experimental setup provided us with a dense field of

sensor nodes from Sensoria with real-world, coherent signals from targets related to

battlefield, supporting development of target classification and tracking applications.

The vehicles used in the demo are shown in Fig. 3. 13 . The targets primarily

consist of:

• HMMWV : This is a diesel engined light-weight wheeled vehicle .

• Dragon Wagon (DW) : This is a heavy, twin-ruded, wheeled logistics vehicle

system with good acoustic and seismic signatures.

• Amphibious Assault Vehicle (AAV) : This is a heavy amphibious full-

52

Figure 3.9: Sensor node in the field with all sensors.

Figure 3. 10: Plan of the DARPA SensIT experimental demo [38] .

53

Remote ---+ Base

0 Node #(Ch 1 Remote, Cb 2 Bue)
3(?,J) e Node # (Ch 1 Remote, Ch 2 �mote)

Figure 3. 1 1 : Node distribution and radio configuration on north-South leg (38) .

Remote ---+ Base

0 Node #(o,. 1 b-ca. ci, 2 -.,.)
• Node # (<lo I Remo1r, Ch 2 ha6"')

(a) Nodes on east-west (b) Nodes in the center

Figure 3 .12 : Nodes on east-west and center (38] .

54

(',l)li
_,,,

.(],l)

6'� / :,�O' ' / . • �Q.311\ �
I .,_\.,.,,,1 _\ \

\162(33.IG/•7.-z��:-

0

\'\,

. �,a,,l,i 58
(3!.,') ; 1

\57(ll,l3)
�• S9ClS� "(r.X➔

� "--�-• ���s;'5� 11,.,,
S)(llUJ!

U..'Q) ,

-�CJl.sj
"I �-

I ._ •StgJ,t2i"
________ ,__,,,.

(a) HMMWV {b) Dragon Wagon (c) AAV

Figure 3. 13: Vehicles used for classification at 29 Palms.

tracked vehicle with distinctive acoustic and seismic signatures.

Each node in the field is wired with a lOMbps Ethernet connection to a central

server. Each node is mounted on this central server through NFS (Network File

System). Thus placing software on this mount point will make it accessible locally

at each node. The Ethernet allows fast data archiving. Each node is run with the

following modules in the background all the time:

• BAE low-level signal processing daemon.

• ISi Diffusion and gradient over RF modem.

• BBN Logger for logging each node information, traffic on the networks, etc.

Apart from these, UTK's classifier daemon and mobile agent daemon are also run in

the background. Three tri-axle seismic sensors are provided in all the three directions

of the testbed to support sensitive seismic detections apart from the sensors on each

node. The MAF used in this demo is implemented on a traditional TCP layer and

uses the wired Ethernet for transferring the agent. Five clusters of four nodes each

are setup in each direction (See node layout figures for location) :

55

• Clus ter 1 : Nor th -South leg, Nod es: 2, 3 , 4, 5.

• Cluster 2: Nort h -So uth leg, Nod es : 1 1 , 12 , 13 , 1 4.

• Cluster 3: Ea.s t-West l eg, Nodes: 4 7 , 48 , 4 9 , 50.

• Cluster 4 : East-West leg, Nodes: 4 2, 4 3 , 44, 4 5.

• Cluster 5: Center, Nodes : 58 , 57 , 56, 59

In each node, the path of the ag ent. in the clus ter is s etup in the maf. conf file

of the respective clus ter. The three targets s pecified above ar e run independently

in th e field in north-s outh and east- west d irection. The mobile-agent is triggered

manually in each node to check the collaborative class ification res ult. The MAF

based class ification experiment is successful in id entify ing the target ty pe. The

r esults of each run ar e collected from the file result.dat wr itten at the la.s t nod e of

each mobile-agent migration.

The experiments of MAF based classification in Twenty nine Palms wer e s uccess­

ful. However, the MAF is implemented on a TCP lay er using a wired network. For

realis tic WSN environment the MAF is required to be implemented in the wireless

domain. This field demo proved the correct functionality of the MAF and helped

us to proceed thr ough the next phase of impl ementing MAF on Di rected Diffusion

using wireles s RF mod ems.

3.3 BAE Austin Demo

This field d emo is s etup by BAE, at Aus tin, TX in August 20 0 2. This d emo is

aimed at running collaborative class ification and localization algorithms on civilian

56

' . '

-, I •

@ @

Figure 3. 14: Node lay down at BAE Austin - T-Junction.

vehicles in urban environment. The participants of this demo include UT, Auburn

University, Applied Research Laboratory /Pennsylvania State University, and BAE

systems, Austin . BAE systems is the integrator for this demo providing the software

and hardware support.

Two different node laydowns are used. In one the nodes are deployed along side

the roads of a T-junction as shown in Fig. 3. 14. In the other, perimeter security

arrangement of the nodes in a parking lot is laid as shown in Fig. 3.15. Fig. 3 . 16

shows the node in a weather proof box at BAE, Austin. The testbed consists of 15

Sensoria nodes. All the field nodes are equipped with lOMbps wired and l lMbps

wireless Ethernet to facilitate communication between nodes for loading/unloading

of software, debugging, logging and for sensor data collection.

Four different vehicles as shown in Fig. 3 .17 are used for classification and local­

ization experiments. The targets primarily consist of :

57

0

Figure 3. 15: Node lay down at BAE Austin - Parking lot.

Figure 3. 16: Node in weather proof box, BAE, Austin, TX.

58

c.pedaw11tr1.1,...,.

u -.... ----�-�--4------

(a) Pickup Truck {b) Diesel Truck

(c) SUV {d) Motorcycle

Figure 3. 17: Vehicles used for classification.

• A heavy diesel truck with a distinctive seismic signature.

• A pickup truck with a distinctive seismic signature.

• A Harley-Davidson motorcycle with a distinctive acoustic signature.

• An SUV as a target of opportunity and discrimination tests.

There is a central server that is NFS mounted onto all the nodes. Loading

software on this server's NFS directory makes available locally at each node. At

each node the following elements are run at boot-up in the background:

• BAE low-level signal-processing.

59

• Directed Diffusion and gradient over RF modem.

• Logger and data acquisition (Only during data acquisition experiments) .

Apart from these, UTK's classifier daemon and mobile agent daemon are run in

the background for classification and MAF services respectively. The MAF in this

demo is implemented on top of wireless Diffusion as discussed in Chapter 2. Upon

event detection, the classification server triggers the mobile-agent automatically.

The agent migrates within the cluster according to a pre-defined itinerary from

the /tmp/maf.conf The four different clusters of the T-junction layout shown in

Fig. 3. 14 are:

• Cluster 1 : Nodes - 34, 35 , 36, 37

• Cluster 2: Nodes - 39, 38, 42, 43

• Cluster 3: Nodes - 46, 47, 45, 44

• Cluster 4: Nodes - 49, 50, 48

The different experiments conducted at the site and its results [32] are discussed

below:

• Experiment 1 : Mobile-agent based multi-modality multi-sensor (MAMMMS)

classification on fixed itinerary in T-junction layout. The itinerary of the agent

is setup in each cluster and all the daemons described above are run on each

node. The vehicles are run from one end to other in the T-shaped road. The

classification result from each cluster is observed confirming with the ground

truth.

60

- Classification using one cluster of 4 nodes (Success) .

- Classification using one cluster of 7 nodes (Success) .

• Experiment 2 : Mobile-agent based multi-sensor localization using a fixed

itinerary. This experiment is only partially Successful. The agent migrated

within nodes and integrated the localization result from some nodes but could

not migrate further possibly due to some integration problem in the code.

However the partial integration result proves the agent development to be

viable for such kind of applications.

The MAF framework is successfully integrated with classification and localization

applications using Diffusion over RF modems. This version of MAF is more robust

and can be used in the true context of wireless sensor networks. The results from

each node are collected from the log files located in the /tmp directory of each node.

The improvements from this version of MAF should go in the direction of adap­

tive itinerary of the agent since the current MAF uses a pre-defined, fixed itinerary.

3 .4 BBN Waltham Demo

Unlike the previous experimental sites described above, this is a real-time live

demonstration at DARPA PI meeting at BBN Technologies, Waltham in November

2002. This demonstration is aimed at presenting live MAF based classification and

tracking of the targets using a graphical user interface (GUI) . The participants in

this demo include all the Pis funded through DARPA SensIT and other WSN based

researchers and companies.

61

Figure 3 . 18: Node lay down at BBN, Waltham.

The setup consists of 27 nodes laid out across a road with sensors tied to observe

the ground phenomenon. The layout of all the nodes is shown in Fig. 3. 18. The radio

network diagram is shown in the Fig. 3. 19. The targets in this live demonstration

primarily consists of:

• Walker through the sensor field.

• A passenger car.

• A pickup truck.

The BAE low-level signal-processing daemon and the ISi Diffusion are run in

all the nodes in the background. During UTK's experiment the classifier daemon

and the mobile agent daemon were also run in the background. All the nodes

are provided with lOMbps wired and l lMbps wireless Ethernet for communication

purposes. The radio connectivity of all the nodes is monitored using the radio

62

10/2002 Radio la�ut

27 nodes; 17 bases

l!',11)

!Building I

Figure 3. 19 : Radio con figuration at BB N, Waltham.

heartbeat mon itor provided by Sen soria. T he sensor testbed is divid� d in to 5 clusters

n amely :

• Cluster 1: Nodes - 1, 2, 3, 4, 5

• Cluster 2: Nodes - 7 , 6 , 8 , 9 , 10

• Cluster 3 : Nodes - 13, 11, 12, 15, 14

• Cluster 4: Nodes - 21, 17 , 16 , 18 , 19

• Cluster 5: Nodes - 20 , 25, 22, 24, 27 , 26

T he MAF used in this demonstration is implemented over wireless diffusion. T he

MAFserver sen ds classification an d partial in tegration result of the classification

to the GUI usin g wired Ethern et on the n odes. T his provides real-time display of

the agen t migration an d classification task in partial/full. T he real-time ground

6 3

truth of the experiments are followed using the CW radios from the target and the

demonstrator. The two different experiments done in this live demonstration are:

• Mobile-agent based multi-modality multi-sensor classification of a walker walk­

ing in the sensor field. This experiment is successful. The walker icon is

displayed progressing through the field in real time as observed on the GUI

projected to the audience.

• Mobile-agent based multi-modality multi-sensor classification of a compact

passenger car driven in the sensor field. This experiment is successful. The

compact car icon is displayed progressing through the field in real time as

observed on the GUI.

64

' .

Chapter 4

Conclusion and Future Work

The wireless sensor network is a rapidly growing field and the diminishing size of the

integrated circuits makes it a prospective research are in the coming years. These

networks are inherently distributed and are tightly coupled with the physical sur­

roundings through sensors attached to these nodes. The sensor nodes are rich in

number however they are resource-constrained individually with limitations ranging

from computing ability to battery power. This kind of environment will call for fun­

damental research in new kinds of paradigms for computing and collaborative signal

and information processing. A research agenda for networked systems of embedded

computers published by the National Research Council [19] describes the future of

these kinds of networks which couple the physical world with the information space.

They will virtually change all spheres of life through developments like swallowable

health monitors and automated buildings. However this change of PCs to smart

sensor nodes will require tailored analysis of their scalability and robustness .

This thesis concentrates on the development of a mobile-agent framework (MAF)

65

on top of a network routing layer for collaborative processing in wireless sensor net­

works, supporting applications like target classification, tracking and surveillance.

The framework is flexible to support several different applications and can be config­

ured accordingly. The frame work provides several advantages and the implementa­

tion of this framework in WSN has been tested in three field demos. The advantages

of the MAF are:

• The MAF requires less bandwidth compared to the peer client/server archi­

tecture since this framework does not transfer large amounts of data over the

network.

• It conserves energy at the nodes since the total amount of data transmitted

by the node is limited. Most of the nodal energy is consumed usually on the

communication using radios. This in addition helps in prolonging the lifetime

of the sensor network.

• The MAF provides progressive accuracy since the agent migrates from node

to node carrying a partially integrated result and all the processing is done

locally on each node.

• This kind of autonomous agent framework is reliable and can be fault-tolerant

to unreliable network connectivity.

• The diffusion routing layer provides a unique data-dissemination paradigm for

significant energy efficiency. Even with relatively unoptimized path selection,

it outperforms an idealized traditional dissemination scheme like omniscient

multicast [27] . With careful design of the radio MAC layer, the diffusion

mechanisms are stable under a wide range of network dynamics.

66

•

• The data-centric dissemination of the diffusion along with the execution-code­

baseq agent provide a unique data distribution mechanism with very less net­

work traffic.

Future work is still needed in following aspects:

• The agent route is currently pre-defined. However the agent can be automated

to choose its path on-the-fly based on the event detection and predicting the

direction of target and adaptively migrating to the nodes in that direction.

This requires the use of techniques like Doppler effect to initially estimate the

direction of arrival (DoA) .

• The clustering of the nodes can be automated. This will allow MAF to be

highly scalable and robust. However, designing a scalable, distributed and

robust clustering algorithm is a challenging problem.

67

Bibliography

68

Bibliography

[1] Sensoria sgate wireless sensor gateway.

[2] http : / /webs . cs . berkeley . edu/tos/.

[3] http : //www . atmel . com/ atmel/products/prod23 . htm.

[4] http : //www . controlled . com/pc104/ consp5 . html.

[5] http : //ww . controlled . com/pc104f aq/#pc104.

[6] http : //ww . isi . edu/scadds/pc 104testbed.

[7] http : //ww . kh-gps . de/nmea . f aq.

[8] http : / /ww . python . org.

[9] http : //www . superh . com/products/ sh4 . htm.

[10] http : / /ww . swig . org.

[1 1] Winsng 2.0 user manual and api specification.

[12] A.Fugetta, G.P.Picco, and G.Vigna. Understanding code mobility. IEEE Trans.

on Software Engineering, 24(5) :342-361 , 1998.

69

[13] Wilmer Carpie, George Cybenko, Katsuhiro Moizumi, and Robert Gary. Net­

work awareness and mobile agent systems. IEEE Communication Magazine,

1998.

[14] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton,

and Jerry Zhao. Habitat monitoring: Application driver for wireless communi­

cations technology. First ACM SIGCOMM Workshop on Data Communications

in Latin America and the Caribbean, 2001 .

[15] C.Perkins. Ad Hoc Networks. Addison-Wesley, Reading, MA, 2000.

[16] D.Clarke and D.Tennenhouse. Architectural considerations for a new generation

of protocols. Proceedings of ACM Symposium on Communications Architectures

and Protocols, pages 200-208, 1990.

[17] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next

century challenges: Scalable coordination in sensor networks.

[18] Deborah Estrin, Akbar Sayeed, and Mani Srivastava. Mobicom 2002 tutorial:

Wireless sensor networks. MOB/COM, 2002.

(19] Deborah Estrin etal. Embedded everywhere, a research agenda for networked

systems of embedded computers. Computer Science and Telecommunications

Board, National Research Council, 2001 .

[20] Leonidas J. Gui bas. Sensing, tracking , and reasoning with relations.

[21] Colin G. Harrison, David M. Chess, and Aaon Kershenbaum. Mobile agents:

Are they a good idea. IBM Research Division, March 13, 1995 .

70

[22) Wendi Beth Heinzelman. Application-specific protocol architectures for wireless

sensor networks. Ph.D Thesis, Massachusetts Institute of Technology.

(23] Wendi R. Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive pro­

tocols for information dissemination in wireless sensor networks. In Fifth

ACM/IEEE MobiCom, pages 1-12, Seattle, WA, August 1999. ACM/IEEE.

[24] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors.

[25] Ian.F .Akylidz, Y.Sankarasubramanian, and E.Cayirci. Wireless sensor net­

works: A survey.

[26] Research Challenges in Wireless Networks of Biomedical Sensors. Loren

schwiebert and sandeep k.s. gupta and jennifer weinmann. The seventh annual

international conference on Mobile computing and networking, pages 15 1-165,

2001 .

(27] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

diffusion: A scalable and robust communication paradigm for sensor networks.

(28) J. Kulik, R. B. Heinzelman, and H. Balakrishnan. Negotiation-based protocols

for disseminating information in wireless sensor networks. Submitted to ACM

Wireless Networks, 2000.

(29] Mark Lutz. Programming Python. O'Reily, 1996.

(30] M.Abbott and L.Peterson. Increasing network throughput by integrating pro­

tocol layers. IEEE/ ACM Transactions on Networking, 1 (5) :600-610, 1993.

71

(31) Rex Min, Manish Bharadwaj, Seong-Hwan Cho, Eugene Shih, Amit Sinha,

Alice Wang, and Anantha Chandrakasan. Low-power wireless sensor networks.

(32) University of Tennessee, Auburn University, and BAE SYSTEMS Austin. Sen­

sit collaborative processing experiments. BAE-Austin Test Site, August 19-21 ,

2002.

(33) G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors. Communi­

cations of the A CM, 43 :55 1-8, 2000.

(34] Hairong Qi, S .S.Iyengar, and K.Chakrabarty. Multi-resolution date integration

using mobile agents in distributed sensor networks. IEEE Trans. on Syst. , Man,

and Cybern. Part C:Applications and Reviews, 31 (3) :383-391 , 2001 .

(35] Fabio Silva, John Heidemann, and Ramesh Govindan. Network routing appli­

cation programmer's interface (api) and walk through 9.0. 1 .

[36] Mani Srivastava, Richard Muntz, and Miodrag Potkonjak. Smart kindergarten:

Sensor-based wireless networks for smart developmental problem-solving envi­

ronments. The seventh annual international conference on Mobile computing

and networking 2001 , pages 132-138, 2001 .

[37] Todd Sundsted. An introduction to agents. Java world, 1998 .

[38] BBN Technologies. Sensit experimental plan (sitex02) . Version 1 . 0, 2001 .

(39) Y. Tian and H. Qi. Target detection and classification using seismic signal

processing in unattended ground sensor systems. International Conj erence on

Acoustics Speech and Signal Processing (ICASSP), 2002 .

72

[40) Jeffry T .Russell and Margarida F .Jacome. Software power estimation and op­

timization for high performance of 32-bit embedded processors. Proceedings of

ICCD '98, Austin, Texas, 1998.

[41) X. Wang and H. Qi. Acoustic target classification using distributed sensor

arrays. International Conj erence on Acoustics Speech and Signal Processing

(ICASSP }, 2002 .

[42] X. Wang, H. Qi, and S . S . Iyengar. Collaborative multi-modality target classi­

fication in distributed sensor networks. Information Fusion, 2002.

[43] X. Wang, H. Qi, and S . S . Iyengar. Collaborative multi-modality target classi­

fication in distributed sensor networks. Information Fusion, 2002.

[44] Jay Warrior. Smart sensor networks of the future. Sensors Magazine, 1997.

[45] Yingue Xu and Hairong Qi. Performance evaluation of distibuted computing

paradigms in mobile ad-hoc sensor networks. ICPADS, 2002.

[46] Yingue Xu, Hairong Qi, and Phani Teja Kuruganti. Computing paradigms for

collaborative processing in sensor networks. Globecom, 2003.

[47] X.Wang and H.Qi. Acoustic target classification using distributed sensor arrays.

ICASSP, 2002.

[48] Y.Tian and H.Qi. Target detection and classification using seismic signla pro­

cessing in unattended ground sensor systems. ICASSP, 2002 .

[49] Feng Zhao, Jaewon Shin, and James Reich. Information-driven dynamic sensor

collaboration for tracking applications. IEEE Signal Processing Magazine, 2002.

73

• I

Appendix

74

I I · '

Appendix A

The MAF can be downloaded from the Advanced Imaging and Collaborative In­

formation Processing Lab (AICIP), UTK website (http://aicip.ece .utk.edu) . The

latest version is MAF-1 .3 which includes the mobile agent framework, low-level sig­

nal processing and graphical user interface (GUI) for visualization. This appendix

explains installing and running of the MAF framework on Directed Diffusion.

A. I Dependencies to Build MAF

1 . Cross-Compilers: Cross-compiling for the Sensoria nodes requires the newest

SH4 tools. In order to use the Intel based Linux machine to generate bina­

ries for the Hitachi SH4 processor based sensor nodes, you need to install the

cross-compilers to compile the code. These cross-compilers can be obtained

from the AICIP's MAF web page:

http://aicip.ece.utk.edu/research/mufashion.htm

The RPM available there installs the tools in the /usr/sh4-linux directory.

The complete set of compilers and the required header files can be found in

75

this directory. Add the /usr/sh4-linux/bin directory to your path:

export PATH=/usr/sh4-linux/bin:$PATH$

To build executables for the SH4 target running Linux, simply replace the

build tools environment variables used in your makefile (i.e. CC, AS, LD,

RANLIB, etc.) with their SH4 version. For example, replace "make all"

with: "make CC=sh4-linux LD=sh4-linux-ld AS=sh4-linux-as all" , or you can

directly change the compilers inside the Makefile accordingly. See /usr/sh4-

linux/bin for a complete list of the SH4 cross compiler tools. For a complete

set of RPMs for SH4 processor based Linux visit the RPM repository at

http://www.sh-linux.org/rpm-index/index.html

2. Python Interpreter on SH4: The Hitachi SH4 processor compatible Python

interpreter binary should be generated to run Python code on the sensor node.

The Python-1 .5 .2 for SH4 can be obtained from the AICIP 's MAF web page:

http://aicip.ece.utk.edu/research/mufa.shion.htm

Alternatively you can generate the executable yourself by downloading Python

from "http://www.python.org" and making the following modifications to gen­

erate the Python - 1 .5.2 on Hitachi SuperH4 processor:

(a) Obtain and install cross-compilers and check if they are available from

the command line i.e the path is set correctly.

(b) Obtain the source of Python 1 .5 .2 from http://www.python.org.

(c) From the terminal in which the cross compiling of the source code is done,

create the following variables in the environment as follows:

76

CC=sh4-linux-gcc

export CC

AR=sh4-linux-ar

export AR

RANLIB=sh4-linux-ranlib

export RANLIB

GCC=sh4-linux-gcc

export GCC

LD=sh4-linux-ld

export LD

AS=sh4-linux-as

export AS

(d) Edit the "configure.in" file to generate the appropriate configure script

and Makefile. Remove or modify lines in the file "configure.in" which are

irrelevant for the sh4 processor and also some " try - compile" and " run

- test" kind of code. The changes described in the rest of the section

should be done on the "configure.in" file

(e) Comment all the lines following the " NEXTSTEP stuff'' until the end

of the loop. This removes the machine dependency of the generated

configure script

(f) Comment all the lines in the section starting with the following line and

till the end of the loop.

checks for UNIX variants that set C preprocessor variables

(g) Comment all the lines starting with AC_CHECK.SIZEOF and replace

77

I I ... �

� -

the following lines. These lines define the size of the data types that are

defined for the platform.

AC_CHECK_SIZEOF (int , 4)

AC_CHECK_SIZEOF (long , 4)

AC_CHECK_SIZEOF (void * , 4)

AC_CHECK_SIZEOF (char , 1)

AC_CHECK_SIZEOF (short , 2)

AC_CHECK_SIZEOF (float , 4)

AC_CHECK_SIZEDF (double , 8)

AC_CHECK_SIZEOF (long long , 8)

(h) Comment on all the following lines of the code:

Hmph . AC_CHECK_SIZEOF () doesn ' t include <sys/types . h> .

AC_MSG_RESULT (no)

#fi

(i) In the section of setting compiler characteristics set

bad_forward = no

bad_prototypes = no

and comment on the following lines :

if test "$have_prototypes " = yes ; then

bad_prototypes=no

AC_MSG_CHECKING (for bad exec* prototypes)

#AC_TRY_COMPILE ([#include <unistd . h>] , [char **t ; execve (" \© " , t , t) ; J , ,

78

#AC_DEFINE (BAD_EXEC_PROTOTYPES) bad_prototypes=yes)

#AC_MSG_RESULT ($bad_prototypes)

fi

bad_forward=no

#AC_MSG_CHECKING (for bad static forward)

#AC_TRY_RUN ([

#struct s { int a ; int b ; } ;

#static struct s foo ;

#int foobar () {

static int random ;

random = (int) &foo ;

return random;

#}

#static struct s foo { 1 , 2 } ;

#main() {

exit (! ((int)&foo == foobar ())) ;

#}

#] , , AC_DEFINE (BAD_STATIC_FORWARD) bad_forward=yes)

#AC_MSG_RESULT($bad_forward)

(j) Comment on the following lines starting with:

check whether malloc (O) returns NULL or not

AC_DEFINE(MALLOC_ZERO_RETURNS_NULL)

#fi

79

(k) After all the modification, save the "configure.in" and from the same

directory and terminal where you have exported the variable, generate

the "configure" script using the command:

#hash: autoconf

(1) Run the configure file from the current directory by ". /configure -with­

thread" or just "./configure" if thread support is not required.

(m) In the Makefile generated do the following modifications:

VERSION=! . 5

srcdir= .

CC=sh4-linux-gcc -m4

AR=sh4-linux-ar

RANLIB=sh4-linux-ranlib -m4

DEFS=-DHAVE_CONFIG_H

(n) After all the modifications run the make command and it should generate

the Python binary required for the SH4.

3. Simplified Wrapper and Interface Generator (SWIG) : The MAF uses

SWIG to generate shared libraries to be accessible from different languages .

Download SWIG from http://www.swig.org/ and install it . Make sure the

swig compiler is accessible from the command line.

4. Directed Diffusion: The MAF uses ISI west's Directed Diffusion for network

routing. MAF-1 .3 uses Diffusion-3. 1 and can be obtained from

http://www.isi.edu/ scadds /software/

80

,,

.� ' ., .

•

The Diffusion home page can be found at

http:/ /www.isi.edu/scadds/projects/diffusion.html

The Directed Diffusion can be compiled for Intel-based systems or Hitachi

based WINSNG systems. Follow the Diffusion README file to generate dif­

fusion for Hitachi SH4 processor based WINSNG nodes.

5. Graphical User Interface (GUI) The GUI uses the Java for display. Down­

load the latest version of Java from Sun and install the path to be accessible

from the command line.

A.2 Compilation of MAF

After setting up all the dependencies download the latest release MAF-1 .3 from the

AICIP lab's MAF web page:

http://aicip .ece.utk.edu/research/mufashion.htm

U ntar the MAF-1 .3 into the current directory. The directory structure is ex­

plained in the README file. Open the "config.mk" file and make the required

modifications as follows:

• Set the compilers to the platform you use (default is SH4) .

• Specify the complete diffusion-3. 1 directory as "diff_dir" . Do not specify a

relative path.

diff_dir = /mnt/piranha/pkurugan/package/diffusion-3 . 1

• Specify the MAF _DIR, the directory where you have untarred this software.

Give the complete path.

81

MAF _DIR = /mnt/piranha/pkurugan/package/MAF-1 .2

• At the mafstart_dir specify the complete path to the subdirectory maf in MAF-

1 .x. This specifies the classifier the path from which the agent should be

executed on the node.

• At the python_exec directory specify the complete path to the Python inter­

preter on the node.

Type " make" in the MAF-1 .x/ directory to compile all the code.

The utkclassifier/ directory consists of the low-level signal processing code and

classification code. To compile change to MAF-1 .3/utkclassifier directory and type

./makeall .sh. This generates the detector-classifier " utkClassify" and copies the

binary to bin directory (the required * .dat files are read from /tmp directory so

when running, copy the dat files from utkclassifier/ dir to /tmp of node) .

A.3 Running the MAF

1. Setup the radio configuration on each node and setup the appropriate network

numbers with corresponding bases and remotes. For example, to setup a radio

0 of a node on network 10 as remote on the terminal to the node run the

following command

echo remote : network=10 > /dev/rf/0/command

Similarly, to setup as base change the "remote" as "base" . There can be two

remotes on one node but there cannot be more than one base on a node.

82

2 . Run diffusion and gradient on each node.

3. Run "utkClassify" which does both detection and classification. Run "utk­

Classify -server" on the leader node (that initiates the mobile agent upon event

detection) and " utkClassify" on the rest of the nodes. When running the server

take care of the system command in utkclassifier/utk/UTKClassifierServer.cpp

(this is responsible for calling the agent and Python) .

4. Set the mobile agent itinerary in the maf.conf. This determines the itinerary of

the mobile agent with a list of IP addresses of the nodes the mobile agent will

migrate. Store this file in the /tmp directory of the node. Typical maf.conf

looks as follows:

[itinerary]

hops=3

nodeO=sensit3

node 1=sensit1

node2=sensit2

[parameter]

np=3

res=0 . 05

thresh=0 . 8

5. Start the Mobile Agent daemon at all the nodes listed in the configuration file.

For example , to run cd into the MAF-1 .x/maf directory and type

bash# /MAF-1 . 2/Python/ python Cmafserv. py

83

you will see a server waiting message. " /MAF-1 .2/Python/python" is the

directory where you have the Python interpreter for SH4 platform.

6 . The "utkClassify -server" automatically sends the mobile agent to the group

of nodes specified in the maf.conf. Copy the same maf.conf in all the group of

nodes.

7. The final integration is written in the result.dat file after the agent returns

back to the initial node.

8. Finally the classification output can be seen on the GUI available. Each node

currently sends the information to the GUI using the Ethernet. The IP ad­

dress of the machine where the GUI is running should be setup in the CC­

SIPAgent.py (line 142) as a variable passed on to the sndTCPmsg function.

Edit this file to reflect the respective changes. To bring up the GUI change to

the gui/ directory and run "make install" (make sure java is properly installed

at the command prompt). Click on the listen button to start listening, the

status is shown on the status bar below.

9. To setup a particular image file as background for the GUI, obtain the corre­

sponding pixel positions of the sensor nodes in the image and write them in

the sensorpositions. txt file in gui/ directory.

84

Vita

Phani Teja, Kuruganti was born in Eluru, India in 1980. His major interests

and research areas are signal processing, digital system design and networking. He

graduated from Chaitanya Bharathi Institute of Technology, Osmania University,

India in 2001 with a Bachelor of Engineering degree in Electronics and Communi­

cation Engineering. During his undergraduate study, he implemented a 1024-point

Fast _Fourier Transform using VHDL to carry out FFT analysis in FPGA for in­

flight data compression (vibration and acoustic data) . This work is done at Defence

Research Development Laboratories, Hyderabad, India. In Fall 2001 he came to

The University of Tennessee at Knoxville as a graduate student in Electrical and

Computer Engineering. He then joined the Advanced Imaging and Collaborative

Information Processing lab of Dr. Hairong Qi with a major topic on wireless sen­

sor networks. He developed mobile agent based computing paradigm on top of ISi

Diffusion routing layer for collaborative signal and information processing tasks in

wireless sensor networks which has been successfully implemented in three field de­

mos. Apart from this he also worked on efficient algorithms for early detection of

breast cancer using non-invasive infrared thermography. Phani Teja's Publications

include:

Yingue Xu, H. Qi, Phani Teja Kuruganti, " Computing paradigms for collabo­

rative processing in sensor networks ", accepted by GLOBECOM 2003.

H. Qi, Phani Teja Kuruganti, Yingue Xu, " The development of localized algo­

rithms in wireless sensor networks ", Sensors Journal, 2 (7) : 270-285 , July 2002 .

H. Qi, Phani Teja Kuruganti , Z. Liu, " Early detection of breast cancer using

thermal texture maps ", IEEE International Symposium on Biomedical Imaging:

85

Macro to Nano, Washington, D.C. , July, 2002.

Phani Teja Kuruganti, H. Qi, " Asymmetry analysis in breast cancer detection

using thermal infrared images ", IEEE EMBS '02 , Houston, 2002 .

86

7810 0207 6 ('J
1 1� j tR3 '

	Development of mobile agent framework in wireless sensor networks for multi-sensor collaborative processing
	Recommended Citation

	tmp.1550583367.pdf.Vd4pX

