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Abstract 

Recent advances in processor, memory and radio technology have enabled pro­

d uction of tiny, low-power, low-cost sensor nodes capable of sensing, communication 

and computation. Although a single node is resource constrained with limited power, 

limited computation and limited communication bandwidth, these nodes deployed in 

large number form a new type of network called the wireless sensor network (WSN). 

One of the challenges brought by WSNs is an efficient computing paradigm to sup­

port the distributed nature of the applications built on these networks considering 

the resource limitations of the sensor nodes. 

Collaborative processing between multiple sensor nodes is essential to generate 

fault-tolerant, reliable information from the densely-spatial sensing phenomenon. 

The typical model used in distributed computing is the client/server model. How­

ever, this computing model is not appropriate in the context of sensor networks. 

This thesis develops an energy-efficient, scalable and real-time computing model 

for collaborative processing in sensor networks called the mobile agent computing 

paradigm. In this paradigm, instead of each sensor node sending data or result to a 

central server which is typical in the client/server model, the information processing 

code is moved to the nodes using mobile agents. These agents carry the execution 

code and migrate from one node to another integrating result at each node. This 

thesis develops the mobile agent framework on top of an energy-efficient routing 

protocol called directed diffusion. 

The mobile agent framework described has been mapped to collaborative target 

classification application. This application has been tested in three field demos 

conducted at Twentynine palms, CA; BAE Austin, TX; and BBN Waltham, MA. 
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Chapter 1 

Introduction 

Recent advances in the design of micro-electro-mechanical systems, wireless com­

munications, and digital electronics have made it possible to produce tiny senor 

nodes which integrate sensing, processing, and communication capabilities. These 

sensor nodes paved the way for a next generation of distributed networks called 

wireless sensor networks (WSN). A large number of these compact sensor nodes can 

be quickly deployed in the field, where each sensor independently senses the environ­

ment but collaboratively achieves complex information gathering and dissemination 

tasks like intrusion detection, target tracking [41, 42, 49), localization, environmen­

tal monitoring [14), health systems [26] remote sensing, and the like [33, 36]. Unique 

to these sensor networks is the ability to cover wide areas that no single sensor could 

possibly observe and to provide a dense spatial sampling with multiple aspect and 

sensing modalities [20]. Unlike traditional networks the sensor networks require en­

ergy efficient protocols and innovative communication techniques for efficient use 

of bandwidth because the sensor nodes are supplied with only a limited amount of 
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Figure 1.1: Traditional layered architecture of a network [22]. 

energy and computation power. Conventional networks are designed based on ISO 

OSI (Open Systems Interconnect) layered approach. Each layer of the system is de­

signed separately and independent of the application. The protocols designed upon 

these layers can be used by different applications but are not optimal for a given 

application (22]. Instead of using general-purpose architectures, it is advantageous 

if the systems are built to exploit the nature of supporting applications. This can 

enhance the performance of system. This kind of cross-layer design is primarily used 

for building sensor networks. 

The traditional networking topology as shown in Fig. 1.1 is a well defined ar­

chitecture with protocols designed in each network layer capable of talking to the 

upward or downward layer in the network stack. This kind of layered networking ap­

proach has been popularized since the late 70s and 80s and was proved structurally 

advantageous especially due to the growing popularity of the Internet during the 

time. Over the years, more complex networking applications have been developed. 

In Boeing's Seattle engineering laboratories, a sheet of networked sensors covering 

a wing provides a profile of stress patterns as the structural integrity of the wing 

is being tested (44]. A network of sensors deployed in an unmanned terrain helps 

in remote surveillance of the terrain. All these kind of applications have edged 
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out from a traditional networking technology and move close toward the applica­

tion requirements. This forces the designers to build networks governed more by 

the application lay er. Sensor networks are the new generation networks which are 

tightly coupled with the phy sical phenomenon, with the functionality of the network 

depending heavily on the change in this phenomenon. The technology and archi­

tectures supporting this kind of network is currently a research topic and has a lot 

of potential to explore. The way the sensors collaborate and co-ordinate themselves 

to provide a unanimous decision on the sensed phenomenon is a challenge widely 

addressed in the current sensor network research community. 

The development of the sensor networks is similar to that of packet-switched 

networks during their new development in the 6 0 s  and 7 0 s. Few at the time could 

have predicted that that kind of basic technology would revolutionize the world­

encompassing Internet [1 7]. As the OSI based layered network and the Internet 

grew stronger, more research went into development of efficient routing, processing 

and phy sical connection. Drawing parallel with the traditional network develop­

ment, the sensor network is new and the research needs to turn, as it did at the 

corresponding time of the packet-switched networks, to developing the appropriate 

models, abstractions and methodologies that will make these sy stems built on a 

large scale, for a wide variety of uses, by necessarily a large collection of people [1 7]. 

In this chapt er t he sensor net works and how they are unique from t he trad it ional 

networks are first described in Sec. 1 .1 ,  followed by a discussion on the architecture 

and existing sensor nodes in Sec 1 .2. In Sec 1 .3 the challenges provided by the sensor 

networks are discussed. Sec 1 .4 focuses on different computing models in WSNs. 

Different routing protocols used in the context of the WSNs are discussed in Sec. 
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1.5. The rest of the chapter discusses applications, the contribution of this thesis 

and the structure of the thesis. 

1.1 Wireless Sensor Networks 

The emergence of sensor networks is actively supported by the sophistication in 

sensor development, enhancement in communication system design and the reduced 

feature size of the silicon fabrication. The growth of these networks has prompted 

their usage in plethora of environments. In today's scenario there are many places 

where the sensor networks are applied like automated factories, building surveillance, 

environmental monitoring, etc. 

Compared to the traditionally structured 7-layer networks, sensor networks are 

unique in nature. Some of the unique features of sensor networks are listed below: 

• Sensor nodes are deployed in hundreds and thousands and are randomly placed 

compared to an orderly placement and configuration of the traditional net­

works. This kind of random placement of the sensor nodes does not follow 

any fixed pattern and the density of nodes is not dependent on any factor. 

• The nodes in the sensor network are not named by their IP or any other kind 

of addresses as in the traditional networks. Since there is no meaning for 

reading sensor data from a single sensor. It is unlikely for a sensor network 

application to ask a question like: What is the speed of a vehicle at sensor 

#23 or temperature at sensor #27, etc. Rather the applications focus on the 

data generated by the sensors. The queries on the network usually reflect 

like: In which direction and at what speed a certain vehicle is moving in the 

4 



sensor field? or Where are the nodes whose temperatures recently exceeded 40 

degrees? This approach decouples data f rom the sensor. Data are named by 

attributes and applications request data matching certain attribute values [1 7 ). 

This calls for a collaborative answer from the network, hence no conventional 

naming scheme is applied to sensor networks. 

• The sensor nodes have limited battery and computational power as well as 

limited communication bandwidth. This requires optimization of the sensor 

networks at all the different levels of design including algorithms, operating 

system, hardware design, sensor design, MAC layer design, keeping all the 

limiting factors in view. 

• Substantial amounts of sensor nodes could f ail due to battery exhaustion, 

damaged node, accidental injury to sensors or nodes as well as environmental 

changes. Some nodes may be added to or removed from the network at any 

time. This indicates a need for an efficient co-ordination and collaboration 

among sensor nodes. On the other hand, fault-tolerance can be obtained by 

increasing the redundancy of sensing, However the increase in redundancy is 

in contrast to the limited available power and computation of nodes. Thus 

these networks call for a design that balances efficient usage of available power 

and fault-tolerance. 

All of these unique features in sensor network design and the marvel of the 

applications they can support pave way for a futuristic research in wireless sensor 

network. 
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Figure 1.2: Sensor node architecture. 

1.2 Sensor Nodes 

A sensor node is a battery -operated device consisting of a sensing unit, processing 

unit, transceiver and storage memory. Ty pical architecture of the sensor node is 

shown in Fig 1 .2. 

The sensing unit consists of a sensor and an analog to digital converter ( ADC) 

which converts all the real-time continuous signals to digital data and makes them 

available for further processing. The sensors are essentially transducers mostly con­

verting the phy sical phenomenon into electrical signals. The number of sensors that 

a sensor node can take in depends on the capacity of the ADC and how many chan­

nels it can handle. Usually the sensor nodes provide the user with multiple sensing 

mod alities. 

The processing unit consists of a processor associated with some form of storage. 

The processor or sometimes just a micro controller unit (MCU) , is responsible for 

executing signal processing and networking algorithms on the gathered sensor data. 

The processor capacity varies depending on the application for which the sensor 

nodes are deploy ed since the processor consumes considerable amount of the power 

of the battery . Nodes manufactured by Sensoria use Hitachi SH-4, a 16 7 MHz [1] 
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processor, which can handle complex algorithms but with high energy dissipation. 

The Smart dust mote from Berkeley uses an Atmel AVR 8535 at 4 MHz. The µ­

AMPS sensor node from MIT contains SA-1110 processor running at 59 - 206 MHz. 

Although there are plenty of choices in choosing the processing units the application 

desired and the energy consumption issues determine what processor to use. 

The transceiver unit helps the node to talk on the network and establish con­

nection between the nodes. Typically sensor nodes have a radio frequency (RF) 

based transceivers. They can also be active or passive optical devices like what's 

used in the smart dust mote. The RF communication is preferred in WSN because 

the packets transmitted are small, at low data rate and the bandwidth usage is effi­

cient due to short ranges of communication distances [25]. The RF communication 

involves modulation, band pass, filtering, demodulation and multiplexing circuitry. 

Finally, the most important unit is the power unit which can be in the form of 

a conventional battery with finite charge or an alternate energy source like a solar 

cell. The power of the battery unit determines the life time of the sensor network. 

Usually a sensor network is deployed in inhospitable conditions where changing the 

battery of the node or recharging it is not an option. 

The sensor nodes apart from the above described essential units, also occasionally 

utilize the global positioning system (GPS) to locate the position of the sensor node 

since most applications like target tracking and localization require it. The Sensoria 

nodes carry a GPS device on board with a resolution of 5m. Apart from the existing 

sensor node implementations, there is an industry-standard bus PC-104 to custom 

manufacture a sensor node using custom off the shelf (COTS) equipment. 

Currently, the most popular choices of sensor nodes in building a sensor network 
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are: 

Figure 1 .3: UC Berkeley Mote. 

• UC Berkeley Smart Dust Motes: These nodes are designed by University 

of California, Berkeley and are popularly called smart dust [24 ]. The mote is 

shown in Fig. 1 .3. This is a tiny node containing an MCU (ATMEL 9 0 LS8 535) 

[3] with 8 -bit Harvard architecture and 1 6 -bit addresses. This controller pro­

vides 32 8 -bit general purpose registers and runs at 4 MHz and 3 .0 V. The 

sy stem memory comprises 8KB flash memory and 5 1 2-by te SRAM as data 

memory. The radio is an asy nchronous input/output device with hard real­

time constraints. It consists of an RF Monolithics 9 1 6.50 MHz transceiver, 

antenna and collection of phy sical-lay er components to configure the phy sical 

lay er characteristics such as signal strength and sensitivity. It comes with a 

temperature sensor with an option to mount custom-selected sensors on the 

sensor board. The nodes run Tiny OS [2] operating sy stem which fits in 1 78 

by tes of memory supporting two-level scheduling and allows for high concur­

rency to be handled in a very small amount of space [24 ]. 

• PC-104 based Nodes: PC-1 0 4  is an industry standard of PC-compatible 

modules that can be stacked together to form a custom-designed embedded 

sy stem [5]. The term PC-1 0 4  is derived from the connector used to stack 
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(a) PC-104 based sensor node (b) WINS NG 2.0 sensor node 

Fi gure 1.4: PC-10 4  and Sensoria nodes. 

different boards having 10 4 pins. The standard was i nitially released in 1 9 92 

[4 ]. Since these sy stems are made with hardware compatible with PC sy stems 

it is easy to configure them along with the PCs. The PC-10 4 sensor nodes are 

custom built with chosen processor, memory configuration and hard disk. The 

SCADD S testbed of U SC/ISI consists of 30 nodes built using PC-10 4  based 

produc ts (6 ] .  F ig. 1 .4 (a) shows a PC-10 4 based node. 

• Sen soria WINS NG node s: WINS NG node is a Linux based embedded 

computing platform with several interfaces to externally connect sensors, wire­

less extension cards and any serial port devices. F ig. 1 . 4 (b) shows a Sensoria 

sensor node. This is the node used to build the sensor network for this the­

si s wor k. Thi s nod e uses t he Hi t achi SH -4 pr ocessor runni ng at 167 MHz .  

The SH-4 is a 32 -bit RISC with a 12 8 -bit vector floating point unit (F PU) 

an d  super-scalar implementation providing higher speeds at low clock rates 

[9 ]. The sensor node supports fo ur sensors and also hosts a GPS module fo r  

geo- loc ation information of the nodes. The node communicates with the dual 

9 
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Figure 1 .5 :  The hardware and software architectures of WINS NG 2.0 node. 

RF modems built-in, both of them in the 2.401 - 2.495 GHz ISM band using 

frequency-hopping spread spectrum (FHSS) . The hardware architecture of the 

node is seen in the left side of Fig. 1 .5 [1] and the software architecture of the 

node in right side of Fig. 1 .5. These nodes run Linux kernel 2.4. 16 and all 

the hardware used in the node is supported by the kernel . The SH-4 cross­

compilers are used to compile the code written onto these nodes. Sensoria 

provides the API [ 1 1] required for RF modem control and data acquisition. 

1 .3 Applications of Wireless Sensor Networks 

The sensor nodes in a network can be used for continuous sensing, event detection, 

localization and tracking. This use of the network as a sensor opens up a wide 

variety of applications in civil, military and medical applications. 
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1 .3 .1 Military Applications 

The WSN s can be an integral part o f  the military enviro nment. The ease o f  de­

plo yment, self -o rganizatio n and ex tensive sensing ability will help in surveillance, 

targeting, intelligence and co ntro l applicatio ns. All the enviro nmentally-harsh ter­

rain can be co vered by a senso r netwo rk for surveillanc� and intrusio n  detectio n. 

Due to its co ntinuous -sensing nature and varied sensing mo dalities, when deployed 

in the battlefield, it allows acquisitio n  o f  the targets in the netwo rk an d  can also 

classify the target as a friend o r  foe. The WSN can also be effectively used to sense 

the chemical level in the environment in the event o f  bio lo gical o r  chemical attacks. 

1 .3 .2 Civilian Applications 

The senso r netwo rks can be used in the civilian co ntex t  for building surveillance. 

They can also be effectively used to mo nito r  a forest fire before it spreads unco n­

tro llably (2 5]. O ther pro spective applicatio ns are floo d  detectio n, Pesticide co ntro l 

in agriculture, unautho rized intrusio n and creatio n  o f  smart spaces for applicatio n­

specific enviro nments. 

1 .3 .3 Medical Application 

Wirel ess senso r netwo rks hav e  been successfull y appli ed in vari ous medical app li­

cat io ns, including remo te patient mo nito ring, in-ho spital enviro nment co ntro l, drug 

administratio n (2 5] and in-ho spital patient and do cto r  surveillance. Senso rs can be 

implanted into the human bo dy and are capable o f  co mmunicating with ex ternal 

co mputer systems via a wireless interf ace. Wireless netwo rking o f  human-embedded 

1 1  



smart sensor arrays and a preliminary approach for wireless networking of a retina 

prosthesis is discussed in [26]. 

1 .4 Challenges in Wireless Sensor Networks 

As discussed earlier the sensor nodes are deployed in an indeterministic fashion like 

dropping from aircraft with no networking infrastructure. The sensor nodes should 

be able to communicate with each other and form an untethered network. This 

kind of self-configuring behavior is the first challenge in the creation of the sensor 

network. This kind of self-organization should help in building a fault-tolerant 

network allowing re-organization when a set of nodes dies out. Since there cannot 

be a centralized authority in this kind of environment, distributed fault-tolerant 

self-organization of the network is the first challenge in WSN research. 

Sensor nodes rely on the power supplied by a battery which has finite energy. 

Minimization of energy consumption, the time integral of power, is important for 

extended battery life and subsequently the sensor network life [40]. Since replacing 

the battery of the sensor node is not an available option in sensor networks, each sen­

sor network has a deterministic upper limit for its lifetime. To increase the lifetime 

of the network the energy usage should be optimized in all aspects like hardware 

design, radio transmission, signal processing and protocol behavior. Adaptive node 

scheduling and energy saving algorithms will be the next challenge for creating an 

effective sensor network. Apart from being energy efficient, the protocols should also 

be fault tolerant, to work around problems like nodes dying out, so as to maximize 

system life time [22]. 
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The sensor network is deployed to observe the real time phenomena and sub­

sequently the data dissemination protocols on the network should minimize the 

end-to-end latency in reporting the phenomenon to the monitoring authority. 

Apart from these, the signal processing algorithms should be distributed and the 

decision making should be collaborative and scalable. To summarize the challenges 

in WSNs: 

• Self-configuring and self-organizing behavior for infrastructure-less deploy­

ment. 

• Energy efficient design of algorithms for maximum lifetime. 

• Minimal end-to-end latency for data dissemination. 

• Energy-efficient collaborative signal and information processing (CSIP) . 

• Scalable algorithms to thousands of sensor nodes. 

This thesis discusses implementing an efficient method to address the above chal­

lenges in WSNs exploiting the application-level information. While in traditional 

networks the computers mainly interact with the users, the nodes of the WSN inter­

act more directly with the physical world. The WSN s can be tasked to answer any 

number of queries about the environment under sensing. Although these networks 

provide us with increased amount of information, the limitations trigger us to ex­

plore new ways of communication, computing and integration paradigms to make 

efficient use of the information and to ensure that such systems operate reliably, 

safely and predictably. 

13 



The sensor node couples a tremendously diverse functionality with sensors, DSP 

circuitry, radio communication and computing ability. Throughout its lifetime a 

node may be called upon to be a data gatherer, a signal processor , and a relay sta­

tion (31] . The efficacy of the WSN depends on a power-aware and application-aware 

system design. The optimization can be done at all levels of system hierarchy, includ­

ing signal processing algorithms, operating system, network protocols , computing 

paradigm and even the integrated circuit level. Computation and communication 

are partitioned and balanced for minimal energy consumption (31] . In this thesis 

we explore the design and implementation of an efficient computing paradigm for 

collaborative processing in WSN called the mobile-agent based computing paradigm. 

The implementation is done on top of an energy-efficient and data-centric routing 

protocol for sensor network called the Directed Diffusion developed by Information 

Sciences Institute, University of Southern California [27] . 

1 . 5  Computing Models in WSNs 

The WSN is a truly distributed network environment with resource limitation as 

explained earlier. Computing in this kind of environment is different from a fixed 

conventional TCP /IP based network. The two computing paradigms compared here 

are the client/server based paradigm and the mobile-agent based paradigm. Fig. 1 .6 

illustrates both paradigms. 
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(a) Client/server-based computing. (b) Mobile-agent-based computing. 

Figure 1 .6: Different computing paradigms (34] . 

1 .5 .1  The Client/Server Approach 

The client/ server paradigm has been one of the most popular models adopted in 

distributed computing (12] , where the server is a central processing node capable of 

receiving multiple requests/data from the clients, processing the data, generating 

the output and sending it back to the clients, while the clients are nodes which 

send request/data to the server and receive the response from the server. The 

client/server paradigm is shown in Fig. 1.6 (a). Most of the traditional network 

applications are designed using the client/server based approach. In the context of 

sensor networks, the client node collects data from the sensing modality and sends 

the data to the server to be processed. The server in turn handles such requests 

from clients and responds to them. This model, although widely used, has several 

disadvantages in the context of WSN. 

The servers or central processing nodes usually demand more energy and com­

puting power than peer nodes', is a luxury that cannot be achieved in this context. 
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First, the hostile environment in which the WSN exists and the thousands of nodes 

deployed in the field do not leave changing the battery and supportive resources 

as an option. Thus this kind of computing model is bound to reduce the lifetime 

of the network since the lifetime depends on the lifetime of the server node. Sec­

ondly, the sensor nodes have limited bandwidth of communication and power of 

transmission (both controlled by Federal Communications Commission (FCC) ) .  In 

some applications, such as data processing or data fusion, large amounts of data 

must be mobilized between client and server , which potentially causes poor system 

performance. Finally, the performance of a client/ server based system is defined 

by the number of clients and the estimated network traffic. However in WSN the 

random deployment of sensor nodes creates an unknown traffic and node layout 

pattern. It is not possible to adaptively configure the network with varying load in 

real time. When the number of sensors deployed increases they cannot perform the 

load balancing without changing the structure of the network. 

1 .5 .2 The Mobile-Agent Based Approach 

We implement a mobile agent (MA)-based paradigm partly as a solution to the 

above-discussed sensor network challenges. Mobile agents are basically programs, 

typically written in a script language, which may be dispatched from one com­

puter and transported to a remote computer for execution [21] . The sensor network 

is a complex distributed system without any global authority. The client/server 

paradigm in such an environment is not effective or energy efficient. Using the MA, 

instead of N nodes reporting to one sever node as in the client/server paradigm, 

one mobile agent travels to the N nodes carrying out integration at each node. This 
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Figure 1.7: Conceptual model for mobile agent computing in WSN [21]. 

reduces the traffic in the network and is energy efficient. The autonomous migration 

of the MA provides the progressive accuracy of the integrated result. Fig. 1. 7 shows 

the concptual model for mobile-agent-based computing. 

The agent program can be written to be executed in machine language or an 

interpreted language. To support the heterogeneity of the computing platforms 

in sensor networks an interpreted language is used. Using the mobile-agent-based 

paradigm the following goals are attained: 

• Network bandwidth requirement is reduced. Instead of passing large amounts 

of raw data over the network, only the small agent is sent. This is especially 

important for real-time applications and where the communication is through 

low-bandwidth wireless connections. 

• Better network scalability can be achieved. The performance of the network 

is not affected when the number of sensors is increased. Agent architecture 

can support adaptive network load balancing automatically. 

• Extensibility is supported. Mobile agents can be programmed to carry task­

adaptive processes and that extends the capability of the system. 
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itinerary 

Figure 1 .8: Mobile agent components (45] . 

• Stability. Mobile agents can be sent when the network connection is alive and 

return results when the connection is re-established. Therefore, the perfor­

mance of the system is not much affected by the reliability of the network. The 

agent can also take care of dead nodes, by-passing �hem during its itinerary. 

The mobile agent is defined as an entity of four attributes: identification, itinerary, 

data space, and method, where identification is used to uniquely identify the mobile 

agent, data space is the agent's data buffer which carries the partially integrated 

results, itinerary is the route of migration, and method is the processing task ( or 

execution code) carried with the agent [46] . The components are shown in Fig. 1.8. 

1 .6 Routing Protocols in -Wireless Sensor Net­

works 

The sensor nodes are mostly randomly distributed in a sensor network. The number 

of nodes in a WSN is usually in the magnitude of hundreds or thousands. Routing 

protocols designed for the ad-hoc (15] network do are not valid. in sensor networks due 

to the sheer size of the network . Sensor nodes mainly use a broadcast communication 
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paradigm whereas most ad-hoc networks are based on point-to-point communication 

[25] . Akylidz et . al describe the principles for designing a network layer in the WSN 

[25] : 

• Power efficiency is always an important consideration. 

• Sensor networks are mostly data-centric. 

• Data aggregation is useful only when it does not hinder the collaborative effort 

of the sensor nodes. 

• An ideal sensor network has attribute-based addressing and location aware­

ness. 

• Sensor networks should be tailored to be application-specific to the sensing 

task at hand. Similarly, the protocols designed should support this nature of 

the WSN. 

The three popular data-dissemination protocols under consideration for developing 

mobile-agent paradigm are Flooding, Sensor Protocol for Information via Negotia­

tion (SPIN) and Directed Diffusion. All of these protocols are described below. 

1 .6. 1 Flooding 

Flooding is an old data-dissemination technique borrowed from traditional network 

and can be applied to wireless sensor network. In this protocol each node receiving 

the packet will broadcast the same further onto the network. This avoids the re­

quirement of any complex route discovery algorithm for the packet . The packets are 
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broadcasted until the destination is reached. There are, however, several deficien­

cies exist in this protocol. If two different nodes share the same neighborhood then 

these nodes will likely receive duplicate packets and similarly if two nodes are in the 

neighborhood and detect any phenomenon they would send the same message to all 

the neighborhood. In either case the resources are not optimally utilized. This is a 

severe fall back considering the severe resource limitations in WSNs. 

1 . 6 .2 SPIN 

SPIN is developed at MIT (23, 28] . It is a protocol designed for wireless sensor 

networks and is designed to address several deficiencies in classic flooding by ne­

gotiation and resource adaptation (25] . SPIN names its data using high-level data 

descriptors, the meta-data. The meta-data and the raw data have a one-to-one 

mapping relation. The format of meta-data is application-specific. 

SPIN has three types of messages, ADV, REQ and DATA. The initiating node 

which has new data advertises (ADV) the data to its neighboring nodes using the 

meta-data. If the neighboring node needs this kind of data, it sends a request (REQ) 

to the initiator for the data. The initiator node responds and sends data (DATA) 

to the sinks. This mechanism of data dissemination is based on data-centric [23] 

routing where the sensor nodes broadcast an advertisement for the available data 

and wait for the request from interested sinks. Each node has its own resource 

manager to keep track of the usage of energy resource. Before data transmission, 

each node polls its resources to make a decision whether it should participate in 

the activity or cut it back. SPIN is essentially a flooding protocol, however, the 

use of meta-data for negotiation and the adaptation to resources available on the 
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sensor nodes help it eliminate most of the redundant data transfer, making it more 

selective in forwarding third-party data. 

1 .6.3 Directed Diffusion 

Directed diffusion [17, 27) is developed at the Information Sciences Institute, USC. It 

is a robust, scalable, energy efficient and data-centric paradigm for data-dissemination 

in WSN. It is application-specific and provides good support for event-driven appli­

cations typical in WSN. Data gathered by sensor networks are · named by attribute­

value pairs. Sinks or nodes that request data send out interests into the network. 

If the attributes of the data generated by the source node match these interests, 

a gradient is setup within the network and data will be pulled toward the sinks. 

Intermediate nodes are capable of caching and transforming data. The interest and 

data propagation and aggregation are determined locally. The sink refreshes and 

reinforces the interest when it starts to receive data from the source. One efficient 

example explaining this paradigm is given in (27] as follows "A human operator's 

query would be transformed into an interest that is diffused towards nodes in re­

gions X or Y. When a node in that region receives an interest, it activates its sensors 

which begin collecting information about pedestrians. When the sensors report the 

presence of pedestrians, this information returns along the reverse path of inter­

est propagation. Intermediate nodes can aggregate the data, e.g. ,  more accurately 

pinpoint the pedestrian's location by combining reports from several sensors. An 

important feature of directed diffusion is that interest and data propagation and ag­

gregation are determined by localized interactions." The novel features constituted 

in diffusion are (27) : 
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• Data-centric dissemination; 

• Reinforcement-based adaptation to empirically best path; and 

• In-network data aggregation and caching. 

1 .  7 Contribution of Research 

This thesis concentrates on efficient implementation of the mobile-agent based com­

puting paradigm for applications like target tracking and classification in wireless 

sensor networks [43, 47, 48] . The computing paradigm is built on top of Directed 

Diffusion. This new paradigm makes use of Diffusion's application programmer's 

interface (API) and the object streaming capability of the Python language [29] to 

design the mobile-agent based computing paradigm for collaborative processing in 

wireless sensor networks. The paradigm has been mapped to real-time experimental 

demonstrations for target classification in three field demos. 

1 .8 Structure of the Thesis 

The organization of the thesis is as follows: 

Chapter 2 describes the mobile agent paradigm in detail. It further discusses 

the implementation of mobile agent framework over Directed Diffusion in wireless 

sensor networks. 

Chapter 3 shows the experiments conducted in three field demonstrations using 

MA paradigm for target classification. 
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Chapter 4 concludes the thesis and points out future work in the usage of MA 

in wireless sensor networks. 
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Chapter 2 

Developlllent of a Mobile Agent 

FraIT1e-work on Directed Diffusion 

As sensors of various type acquire networking and local processing capabilities, it 

is important to collaborate the spatially distributed sensing phenomenon between 

multiple sensor nodes to provide both reliable and comprehensive results. Multiple 

sensor nodes can perform functions previously impossible for any of the devices 

independently (49] . This kind of collaborative sensing and distributed processing 

environment demands an efficient computing paradigm. The client/server-based 

paradigm is a typical computing model in distributed processing. In this model 

the data or processed results are moved to a central server for further processing. 

Since the number of sensors in WSNs is very large, which causes large data transfers 

from each node to the central server node, the client/server-based paradigm not a 

justifiable option . In addition, the resource limitations on WSNs not support this 

kind of computing paradigm either. 
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The mobile-agent-based computing is proposed in order to support the collabora­

tive processing applications in WSNs. In this approach, instead of each sensor node 

sending local data or results to a central node for processing, the information pro­

cessing code is moved from sensor node to sensor node using mobile agents. These 

agents, as described earlier , will carry out local computation on each node and carry 

the result from node to node, integrating as it progresses. Agents by themselves are 

autonomous software programs specifically designed to handle a volatile network 

environment [13) . 

For this kind of computing paradigm to support a distributed sensing environ­

ment , it should be built upon an efficient routing protocol. The routing protocol 

should support the application-specific and data-centric nature of wireless sensor 

networks. Directed diffusion is one such protocol. It is data-centric and all the 

communication is for named data. All nodes in a directed-diffusion based network 

are application aware enabling it to achieve energy savings by selecting empirically 

good paths and by caching and processing data in-network [27) . 

This chapter discusses the development of the agent framework starting from 

the architectural overview of system in Sec. 2 . 1 ,  with emphasis on different layers 

of the architecture described in Sec 2.2 and Sec 2.3 . Finally the analysis of the 

architecture is done in Sec. 2 .4 

2 . 1  Architectural Overview 

The architecture of the mobile agent framework (MAF) is shown in Fig . 2 . 1 .  Dif­

ferent layers in this architecture perform different tasks and provide upward layer 
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Collaborative Information Processing 

Mobile Agent Services 

Diffusion Routing 

Wireless Communication 

Figure 2 . 1 :  Architectural overview of the system. 

support . At each layer the algorithms and methods are designed with concern to­

wards power-efficiency and fault-tolerance [27, 34] . Compared to the traditional 

7-layered network architecture this is a unique integrated cross-layer design that 

is application-oriented and data-centric. The collaborative information processing 

layer hosts algorithms for the i�tegration of information derived from multiple sen­

sors. The mobile agent services layer provides the mobile-agent-based framework to 

achieve the collaborative signal and information processing ( CSIP) task. This mo­

bile agent framework (MAF) is realized using the directed diffusion protocol which 

facilitates communication over the wireless link. 

2 .2  Directed Diffusion API 

Designing protocols on a traditional layered architecture may not be optimal in all 

situations. Researchers have argued the need to collapse the protocol stack and 

design completely integrated protocol architectures for the application-specific re­

quirements [16, 22, 30] . Exposing the application requirement to the lower layers 
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of the network will enhance the application-perceived quality of the network [22] . 

Both SPIN [23, 28] and Directed Diffusion [27, 35] protocols use application-specific 

data naming and routing to achieve energy efficiency in WSN. Directed diffusion is 

open source software and is well supported by the ISI research group. A network 

simulation environment of this protocol has also been added as an NS-2 (Network 

Simulator) extension which makes performance evaluation more convenient. There­

fore, we choose to implement our MAF framework on top of directed diffusion. The 

basic mechanism of the Directed diffusion is discussed in chapter 1 .  This section 

describes the API usage and how MAF is developed using the APL 

In directed diffusion the data are named using attribute-value pairs. For example, 

a target classification task can be described using the following set of attribute-value 

pairs: 

type = wheeled vehicle 

instance = Dragon Wagon 

location [$30 , 40$] 

confidence = $0 . 90$ 

timestamp = $02 : 30 : 45$ 

The task description specifies an interest for data matching (27] . The data sent 

in response to this interest request conforms to the same naming scheme making it 

easy at both the receiving side and transmitting side. 

After conforming to a particular naming scheme, the interests or the task de­

scriptions are diffused through the network. The node that diffuses these interests is 

called the sink. The sink node periodically broadcasts the interest messages onto the 

network watching to see if any node on the network detects an event (described in 

27 

= 



the interest message) .  The interest is periodically refreshed by the sink by re-sending 

it from time to time. This repeated transmission is required for reliable transmission 

through the network. The refresh rate is protocol-dependent and trades off overhead 

for increased robustness to lost interests [27] . 

After these interests are broadcasted through the network each node maintains 

an interest cache. Each item in the cache corresponds to a different interest message. 

The interest entries in the cache do not contain any information about the sink. The 

cache has several entries like timestamp. It also contains gradient fields up to one 

per neighbor. These gradient fields contain information about the neighbors like the 

data rate requested by the neighbor, the expiration time of the interest sent by the 

neighbor ( approximate lifetime of the interest) , etc. When a new interest is received 

by a node it matches with the existing cache entries and updates them accordingly. 

Each entry will have a single gradient toward the neighbor from which the interest 

is received and with the specified event data rate [27] . If a node receives an interest 

message, it in turn broadcasts only to a subset of neighbors determined by whether 

it has re-sent a matching interest recently. 

When an event occurs on the network, the sensor node searches its interest cache 

for matching interest entry. It then sends the event description to each neighbor to 

whom it has a gradient. The data message is unicast individually to the relevant 

neighbors. The sink finally will receive data from multiple paths. The sink then 

reinforces one particular path from the neighbor in order to "draw" data at high data 

rates. This feature of diffusion is achieved by data driven local rules [27] . Nodes 

rely on the data cache to do reinforcement . Fig. 2 .2 shows the above-described 

mechanism of the diffusion. Diffusion is a receiver-initiated protocol. The matching 
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Figure 2.2: A simplified schematic of directed diffusion [27] . 

(a.) GndJa <91&1> (b) � Cc) Mllltq,k lmD'(l(S (d) !\l'llltipk ailucs 
lilltimmt 

Figure 2.3: Illustration of different aspects of diffusion [27) . 

data are "drawn down" towards the sink. Fig. 2.3 illustrates different aspects of 

diffusion such as multiple sources and multiple sinks. 

Diffusion is started on each node by running a diffusion daemon. Each node is 

setup with a unique node ID either randomly or by the user . After all the nodes are 

running, diffusion daemons, the gradient daemon is run on all of them to support 

the gradient formation. The diffusion discovers the other members of the network 

by periodically sending out exploratory messages over the network. It usually takes 

a few minutes for all the nodes to settle down with proper identity. The applications 

using diffusion utilize the API provided to talk to the diffusion layer on the network. 
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Figure 2 .4: MAF - finite state machine. 

2 .3  Mobile Agent Framework 

The mobile agent framework (MAF) consists of a mobile agent daemon or server 

that runs on each node and acts as a host to the incoming mobile agent. The 

mobile-agent itself is a program that flies from one node to another collecting and 

integrating local results from each node. The mo bile agent server hosts the agent 

and completes the required processes and passes the agent to the diffusion layer to 

be relayed through the radios. All the agent services provided by the server are 

tightly coupled with the diffusion API for communication purposes. Initially all the 

nodes subscribe to diffusion with the respective node IDs as attributes. This section 

describes the design flow of MAF. 

2.3 .1  MAF - The Finite State Machine 

Fig. 2.4 illustrates the life cycle of an MAF using a finite state machine. The 

agent is created when an event is detected. The agent is then dispatched to the 

neighboring node in a pre-defined itinerary. The mobile agent server running on the 

node dispatches the agent to its destination by accessing the diffusion layer which 
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in turn accesses the RF wireless communication interface. Since the agent carries 

the execution code and the results from a previous migration, it carries out local 

processing on each node and integrates the result with the earlier result. This is 

how the collaborative processing task is achieved. When the agent attains a certain 

threshold of accuracy or reaches the last node of migration it terminates and displays 

the final result. 

2.3 .2 Mobile Agent Creation 

The agent is created when an event is detected. The mobile agent daemon on the 

node creates the agent encompassing the local results and the current state of the 

execution code. As described earlier, the mobile agent , upon creation, is defined as 

an entity of four attributes: 

• Identification: Identification uniquely identifies the agent in the network. 

Different mobile agents dispatched from different places of the network are 

uniquely numbered such that they can be differentiated from one another. 

• Itinerary: The itinerary is the route of the mobile agent. The route of the 

agent is either derived on-the-fly dynamically or pre-defined by the user. 

• Data Space: Data space is the agent 's buffer carrying the agent 's partially 

integrated result . As the agent progresses, it integrates the result from each 

node. The local result is derived, based on the data captured on each node, 

which is fused with the partial result contained in the agent from the previous 

migration. 
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• Service know-how: Service know-how is the processing task or the execution 

code carried by the agent. 

2 .3 .3 Mobile Agent Dispatch 

Once the agent is created it carries with it its itinerary and migrates to the next node 

using diffusion APL The agent is streamlined into a string literal type allowing it 

to keep the current values of variables and execution status which will be recovered 

when arriving at the next node. This process is called object serialization. During 

dispatch the agent accesses the diffusion API and publishes its interest over the 

network. Since the agent constitutes the itinerary, the matching interest the agent 

sees the network is its next destination address. The following code segment shows 

the agent setting up publication in a network, where the TargetAttr specifies the 

nextip or the next node address of the agent. 

handle setupPublication(NR •dr , char •nextip) { 

NRAttrVec attrs ; 

attrs . push_back (NRClassAttr . make (NRAttribute : : IS ,  NRAttribute : : DATA_CLASS) ) ;  

attrs . push_back(LatitudeAttr . make (NRAttribute : : IS , 60 . 00) ) ;  

attrs . push_back (LongitudeAttr . make (NRAttribute : : IS ,  54 . 00) ) ; 

attrs . push_back (TargetAttr . make (NRAttribute : : IS ,  nextip) ) ;  

handle h = dr->publish (&attrs) ; 

ClearAttrs (&attrs) ; 

return h ; } 
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2 .3 .4 Mobile Agent Migration 

When a node with data matching the interests of the agent is discovered on the 

network, the agent migrates to the specified node. The itinerary of the agent is 

currently stored in the /tmp/maf.conf file of the node. An example of the itinerary 

file is shown as below. The variable "hops" represents the number of nodes the agent 

should migrate before reaching destination. The node names or the corresponding IP 

addresses specify the order of migration. The nodal names or IP addresses belong 

to each local node and are the same as the TargerAttr described earlier. Each 

node's MAF server subscribes to the Diffusion using this name/address. When the 

agent needs to migrate to a particular node (say node0 with address 160.36.31 .2) it 

publishes the interest on the diffusion looking for this name/address (160.36 .31 .2 in 

this case) . When a matching subscription is discovered the agent migrates to the 

corresponding nodes. np indicates the number of parameters the agent carries with 

it representing the integration result. 

[itinerary] 

hops=2 

node0=160 . 36 . 31 . 2 

node 1=160 . 36 . 31 . 2 

[parameter] 

np=3 

The MAF implemented in this thesis uses a static itinerary pre-defined in each 

cluster. However, the ideal mobile agent should migrate deciding its destination 

on-the-fly. 
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2 .3 .5  Local Processing 

As described earlier the MAF is used for multi sensor fusion to produce reliable 

information. The local processing of the result is carried out on each node. Upon 

arrival the agent is hosted by the mobile agent server running on each node. A multi 

resolution integration (MRI) (34] function is used here to integrate the result from 

one node to another. The agent will progressively carry the result as it migrates and 

integrates the local confidence range from each node finally arriving at a multi-sensor 

collaborative confidence range depicting the target type. 

2 .3 .6  MAF - Implementation 

The MAF is coded using the Python scripting language. The interface with Diffusion 

API and application services, which provide C/C++ API, is done by generating 

shared library modules accessible both by the Python and C++ code . These shared 

libraries are generated using a code development tool called Simplified Wrapper and 

Interface Generator (SWIG) [10] . SWIG is an open-source software development 

tool that connects programs written in C and C++ with a variety of high-level 

programming languages. It is primarily used with common scripting languages such 

as Python, Tcl/Tk to create high-level interpreted programming environments, and 

as a tool for testing, prototyping and interfacing C/C++ API and software. 

Fig. 2.5 shows the stages in the implementation of MAF . Python is used for 

coding the agent and server-side software for the MAF. Python is an interpreted, 

interactive, object-oriented programming language. This language is chosen for its 

ability of object-serialization which is used to generate the agent. This process var­

iously called as pickling, serializing, marshalling or flattening, allows the Python 
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Figure 2.5: Implementation of MAF 

in-memory objects to form a single linear string format, suitable for storing in flat 

file, shipping across the network sockets and so on [29] . The resulting stream file can 

be converted back into Python objects by the unpickling process. Python has mod­

ules, classes, exceptions, very-high-level dynamic data types, and dynamic typing. 

It contains interfaces to system calls and libraries, as well as to various windowing 

systems [8] . The Python implementation is portable and is an open source software 

written in C/C++. Unlike compiled codes like C++, where a full-fledged executable 

requiring no dependencies can be generated using cross compilers , Python code is 

an interpreted code and an interpreter is required on the system where the code 

needs to be interpreted/ executed. For implementing MAF on Hitachi SH-4 based 

sensor nodes Python source code is cross-compiled using the SH-4 cross-compilers 

to generate an SH-4 version of the Python interpreter. The resultant interpreter is 
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configured so as to occupy the least space with only the required modules built into 

it. This is due to the limited availability of memory on the node. 

POSIX threads are used to keep the node in a wait state while waiting for mobile 

agent to arrive. The two primitive thread-synchronization primitives are mutex and 

condition. Mutexes are simple lock primitives that can be used to control access 

to shared variables. The flag...mutex variable is locked until triggered by a signal 

thus maintaining the status of the loop making it a light weight process (making it 

consume a lower percentage of CPU time while idle) . 

Fig. 2 .6 and Fig 2 .7 show the complete flow chart of the MAF server and agent 

execution respectively. 

Fig. 2.8 shows the processor usage of the MAF server during idle state . The 

last three lines in the screen shot with PIDs (second column) 269, 270,  271 are the 

corresponding processor usage lines for the MAF server while idling. The Hitachi 

SH-4 averages 1 .5 - 3.0% CPU usage for running the MAF server deamon. Fig. 2.9 

shows the typical screen shot of the server running in a sensor node. 

2 .4 Analysis of the Architecture 

The MAF has many advantages compared to the client/server model. The different 

aspects of the mobile agent are summarized below. 

• Scalability: In sensor networks, the number of nodes can be hundreds or 

thousands. Agent architectures are adaptive to scaling of the network by 

changing the number of nodes the agent migrates through [37, 2 1) .  Unlike in 

client/server architectures, the agent does not create any queue as the number 
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Figure 2.6: Flow chart of MAF server. 
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Creation of Agent 
mafinit( ) 

CCSIPAgent( ) 

t 
Compute the Local result 

compLocal( ) , csip.so 

t 
CCSIPAgent 

is converted to a string 
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Figure 2.7: Flow chart of mobile-agent . 
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of nodes increase because of the absence of a centralized server . 

• Energy Efficiency: The agent technology reduces the total amount of data 

to be transmitted over the network. This helps the MAF to distribute the 

energy consumption of the nodes evenly upon the network, enabling longer 

network life, since on a sensor node most of the energy is consumed by the radio 

transceiver [18] . The minimal size of the agent also reduces the network traffic 

and utilizes the network bandwidth efficiently. This is 'important considering 

the low bandwidth of the wireless connections. 

• Progressive Accuracy: The MAF provides progressive accuracy to the task 

performed. As mentioned earlier the agent migrates from one node to another 

carrying the partially integrated result. At each node the agent integrates the 

new result with all the previous results , which has the potential to gain accu­

racy as it migrates along the network. A user-defined threshold of accuracy 

can be set to terminate the migration of the agent at any stage. 

• Autonomy of the Agent: Sensor networks are usually deployed in un­

manned terrains to help in unexpected event detection. In such cases mobile 

agents provide the biggest advantage due to their autonomy. The agent can be 

automatically triggered upon an event detected by the sensors and continue its 

computation, migration and conclusion of result. This, compared to each node 

reporting to a server or main sub-system as in the client/server paradigm, is 

advantageous and provides practical real-time performance. 

• Reliability: The agents are autonomous programs and can function inde­

pendent of the network status. An agent can be deployed when the network 
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connection is alive and the results can be collected when the network connec­

tion is alive without loss of information. It is common in sensor networks for 

certain nodes to die, in such cases the agent can be programmed to be adap­

tive to the connection status and bypass the nodes that are not alive in its 

path. This increases the fault-tolerance and real-time nature of the applica­

tions built on this framework. In addition, Diffusion uses the unreliable UDP 

style packet messaging, thus this feature of agent can provide more stability 

and reliability of the sensor network applications. This facilitates a pervasive, 

open, generalized framework for the personalization of network services [21] . 

Considering the above features of the agents, MAF approach provides important 

qualitative services for collaborative processing in wireless sensor networks. It re­

duces the amount of data moving on the network and is a promising approach for 

distributed computing in wireless sensor network. However we should also realize 

its limitations. The agent framework requires a highly secure agent execution envi­

ronment since there is no built-in security in the agent . The MAF also requires a 

balance between number of nodes the agent migrates through before returning and 

the efficiency and redundancy of the information agent carries. The MAF does not 

provide any re-transmission capability once the agent is dropped for some reason in 

the network. 
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Chapter 3 

Experimental Demonstrations 

The MAF discussed in Chapter 2 has been applied in multi-sensor collaborative 

processing for ground-target classification in wireless sensor networks. This appli­

cation has been tested and validated in three field demos under different network 

configuration and scenario designs. This chapter describes the sensor node setup 

and experimental results obtained from these demos. 

3 . 1  System Overview 

The proj ect is a collaborative effort involving participation from different universities 

and research institutions. The systems configuration at a sensor node is shown in 

Fig. 3. 1 .  At the lowest level, Sensoria provides a micro-sensor platform, which 

performs sensing independently. The raw data collected is pre-processed using low­

level signal processing functions provided by BAE Austin. Upon event detection, 

UTK's mobile agent based collaborative target classification routine will be invoked. 

The mobile agent framework is realized on top of ISI's diffusion routing. 
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- Collaborative 

Mobile Agent Server 
Target Classification 

ISi Diffusion Routing Low-Level Signal 
Processing 

Sensoria RF Modem Sensing 

Figure 3 . 1 :  Overview of nodal architecture for collaborative classification. 

3. 1 . 1  Sensor Node Platform 

The Sensoria WINS (Wireless Integrated Networked Sensors) NG 2.0 node is cho­

sen as the platform for implementing the algorithms. The WINS NG platform is 

capable of monitoring multiple sensors, carrying out local processing and commu­

nicating the results with other nodes using wireless radios. Physically the WINS 

NG node contains a high performance analog sensor sampling unit, a sensor digital 

signal processing, a dual channel spread spectrum wireless network solution, a 32-bit 

application processor and a POSIX-compliant real-time operating system. 

The WINS NG 2.0 node platform architecture includes a real-time interface 

processor. This processor supports high-speed multi-port sampling integrated with 

both a high speed DSP and digital 1/0. The interface processor accesses the sensor 

data and helps in DSP of the sensor data. This dedicated programmable digi­

tal signal processor enables local processing of high-bandwidth sensor data ( upto 

20K samples/sec per channel input) in addition to providing upto a total of 580K­

samples/sec throughput from the DSP to the applic�tion processor [1 1] .  DSP control 

and processing allows a scalable output word rate ranging from 156Hz up to 20KHz. 

However the DSP provides only the data sampling and the unprocessed sensor data 

is supplied to the processor and available to the application developer through the 
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Figure 3.2: Processor specification. 

Sensor API (API provided by Sensoria) for further processing. The architecture 

of the node includes a 32-bit RISC Hitachi SH-4 processor including an FPU and 

accompanied by RAM, ROM and flash memory. Fig. 3 .2 shows the detailed infor­

mation on the processor. The detailed description of different sections of the node 

are shown in Figs. 3 .2 ,  3.3, 3.4, 3.5 , 3.6, and 3 .7. 

The node is equipped with an embedded GPS device, which provides geo-location 

and timing data. It can be accessed as a device file by the software through 

/ dev /ttyS2 of the node. This device gives the GPS data in standard National Marine 

Electronics Association (NMEA) format. Detailed FAQ about NMEA is available 

from [7] . The NMEA message set can be parsed to obtain the geographical position 

of the node. The specifications of the GPS module are given in Fig. 3.6. 

The wireless network interface of this node includes a dual-mode RF modem sys­

tem that enables a solution for scalable, multi-hop networking with spread spectrum 

signaling. The RF modems are discussed in detail in Sec . 3. 1 .2. 
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Apart from the hardware , the node contains a fully POSIX-compliant operating 

system - Linux 2.4. 16. This provides the developer with all the API of the sensor 

node devices. The node does not come with compilers but cross-compilers for the 

Intel machines are provided to do software development for these nodes. All the 

sensor channels, GPS module, RF modems are available to the developer as device 

files from /dev directory of this Linux-like directory structure. The node provides 

the user with 16 MB of flash memory to load the executables and 16 MB of RAM for 

computation. The operating system supports the network file system (NFS) services 

so the developers can create a drive space mounted over the network to the node. The 

node supports a wired 10 Mbps Ethernet and can be used for all communications to 

the nodes, i.e for loading/unloading of software/data. The volatile memory space is 

available in the /tmp (RAM disk) directory of the node and all the network mounts 

and the local data acquisition or file storage are done into this directory. 

3 .1 .2  Sensoria RF Modems 

The embedded RF modems in Sensoria nodes provide a low-power networking so­

lution, however at low data rates. The RF modems can be accessed both by the 

command-line utilities and by using the API provided by Sensoria. The RF mo­

dem API is based on the open source Framework for User Space Devices (FUSD) 

interface which makes them accessible via standard device files interfaces promoting 

portability and accessibility [1 1] . 

As mentioned earlier, each node consists of two RF modems, each supporting 2 .4 

GHz freqeuncy-hopped spread-spectrum communication. A network is composed of 

one modem operating as base and one or more modems operating as remotes. Each 
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remote can only unicast to the base. The base can unicast to a single remote or 

broadcast to all remotes. The two modems can be operated simultaneously and 

can put the node simultaneously into two different networks. The modems can be 

accessed by a device file interface. The node having two modems allows the im­

plementation of high performance, multi-cluster, low-latency multi-hop networking 

applications [11] . The WINS NG 2.0 RF modem implements a star topology where 

one modem acts as base and some other modems· acts as remotes, each connected to 

the base by a separate logical channel. Within the WINS NG 2.0 modem, the link 

synchronization is based on an underlying TDMA frequency-hopped implementa­

tion, in which the base serves to synchronize the TDMA frames and coordinate the 

allocation of slots to remotes. 

Each of the two modems on the network should select a network number, an 

integer between 0 and 63. Each of the modems can be a base or remote. There 

can be two remotes on a particular node but there can only be one base on either 

of the nodes. The network numbers correspond to separate hopping sequences that 

the modems follow when communicating with their peers. Because the sequences 

are separate, two modems that have selected different network numbers will rarely 

interfere with each other. This is similar to two modems selecting different fixed 

channels for communications, but in addition, frequency hopping avoids consistent 

loss when a portion of the spectrum is experiencing high interference [1 1] .  

The WINS NG 2.0 node provides the C language API and is used by ISi Diffusion 

to transmit and receive packets over the network. Diffusion in turn provides a more 

user-friendly API to the developer to port applications on to it. 
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3 . 1 .3 BAE Low Level Signal Processing 

• 

This is a BAE repository environment used for low-level signal processing. The 

Sensoria nodes can accommodate four different kinds of sensors on four different 

channels. We use three sensor channels for data acquisition namely passive infrared 

sensor (PIR) , seismic sensor and acoustic sensor. The Sensoria node provides ap­

plication programmer's interface (API) to access the sensor hardware. BAE uses 

this API to access the sensors. Each node will perform sensing independently and 

the raw sensor data are processed by the BAE low-level signal processing daemons 

running on the nodes. The raw sensor data are pre-processed, sampled and made 

available as a repository (flat file format) placed at a specific location in node's 

memory to be available for other· application developers. BAE uses a sampling rate 

of 4960.32 Hz on the time-series data from each sensor with a buffer size of 256 sam­

ples and an FFT window of the size 1024, to pre-process the data. The time-series 

repository can be accessed by developers using subscription methods provided by 

BAE's APL Each node consists of a /tmp/config.rep file. This is a configuration 

file for the BAE's repository indicating which type of sensor is connected to which 

channel of the node. 

3 .1 .4 UTK Target Classification 

The UTK classification services access the data generated by the BAE and perform 

the classification task using supervised learning techniques like kNN [39 , 41 , 42] . The 

classification services use MAF and the lower layers to communicate its result with 

other nodes in the network. The UTK classification services consist of a daemon 

running on each node subscribing to BAE's repository. This daemon is responsible 
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for performing local processing of the repository data upon event detection. The 

event detection is determined by a pre-defined threshold of the signal level, beyond 

which an event is assumed to have happened and classification is run on the available 

data of that event from the repository. The classification result from each node is 

a confidence range of the target existence [42] . The classifier output is placed in 

the /tmp/range.dat file of each node. Upon completion of the classification the 

classification daemon invokes the mobile-agent, starting the collaborative signal and 

information processing (CSIP) .  

3 . 1 .5 MAF based Collaborative Processing 

The MAF server runs on each node hosting the incoming agent . The mobile-agent 

initiated by the classification daemon picks up the local confidence range and trav­

els to the next node according to its itinerary. At the next node the agent further 

integrates the corresponding result from the /tmp/range.dat file. This migration 

continues until it reaches the last node in its itinerary or achieves required accuracy. 

The integrated result from each node is generated using the multi-resolution inte­

gration algorithm (MRI) [34, 42] . Fig. 3.8 shows the mobile-agent migration and 

integration of the result among a cluster of three sensor nodes. Initially an event is 

detected and each node consists of the local confidence range written out. The agent 

flies from node 1 to node 2 and finally to node 3 where the final result is dispiayed 

based on the deduction from the integrated result . 
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Figure 3.8: Mobile-agent-based multi-sensor fusion [42] . 

3 .2  SITEX02 Demo 

This field demo sponsored by the DARPA sensor information technology (SensIT) 

program took place at Twentynine Palms, California in November, 2001 .  The pur­

pose of this demo was to test MAF-based CSIP in realistic environment. The UTK 

AICIP (Advanced Imaging and Collaborative Information Processing) lab is one 

of the participants. Others include Auburn University, Applied Research Labo­

ratory /Penn State, BAE systems, BBN (Integrators of the demo) , University of 

Wisconsin, Xerox-PARC, MIT-Lincoln Labs, ISI/USC, Rutgers, UCLA, University 

of Maryland, Fantastic-Data, Cornell, Duke and Virginia Tech. BBN technologies is 

the integrator for the demo and has the central command for all the nodal adminis­

tration and setup. The setup is done at the Marine Corps Air and Ground Combat 
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Center (MCAGCC) ,  Twentynine Palms, CA at a location 30 miles northeast of the 

"Mainside" �hich is at the entrance to the base in the Twentynine Palms, CA. This 

is located in the most arid parts of the Mojave desert. Fig. 3.9 shows the sensor 

node setup in the field. 

In this demo 70 nodes are deployed in close proximity for improved density of 

coverage . The nodes are laid out in the field as shown in Fig. 3 . 10. The nodes 

are placed in an open area along side three· roads and their intersection point. The 

north-south leg lay down is shown in Fig. 3. 1 1 ,  which also shows radio connectivity. 

As explained earlier each node has two radios and each radio participates in two 

different networks forming a complete linkage in the network. In Fig. 3. 1 1  the nodes 

in yellow indicate they have one of the radios as base and the nodes in green have 

both of their radios as remotes. The network number of channel 1 and channel 

2 of each · node is depicted in the parenthesis beside each node number. Fig. 3 . 12  

shows the similar node lay down and radio diagram in the east-west direction and 

the center of intersection. This experimental setup provided us with a dense field of 

sensor nodes from Sensoria with real-world, coherent signals from targets related to 

battlefield, supporting development of target classification and tracking applications. 

The vehicles used in the demo are shown in Fig. 3. 13 .  The targets primarily 

consist of: 

• HMMWV : This is a diesel engined light-weight wheeled vehicle . 

• Dragon Wagon (DW) : This is a heavy, twin-ruded, wheeled logistics vehicle 

system with good acoustic and seismic signatures. 

• Amphibious Assault Vehicle (AAV) : This is a heavy amphibious full-
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Figure 3.9: Sensor node in the field with all sensors. 

Figure 3. 10: Plan of the DARPA SensIT experimental demo [38] . 
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Figure 3. 1 1 :  Node distribution and radio configuration on north-South leg (38) . 
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Figure 3 .12 : Nodes on east-west and center (38] . 
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(a) HMMWV {b) Dragon Wagon (c) AAV 

Figure 3. 13: Vehicles used for classification at 29 Palms. 

tracked vehicle with distinctive acoustic and seismic signatures. 

Each node in the field is wired with a lOMbps Ethernet connection to a central 

server. Each node is mounted on this central server through NFS (Network File 

System). Thus placing software on this mount point will make it accessible locally 

at each node. The Ethernet allows fast data archiving. Each node is run with the 

following modules in the background all the time: 

• BAE low-level signal processing daemon. 

• ISi Diffusion and gradient over RF modem. 

• BBN Logger for logging each node information, traffic on the networks, etc. 

Apart from these, UTK's classifier daemon and mobile agent daemon are also run in 

the background. Three tri-axle seismic sensors are provided in all the three directions 

of the testbed to support sensitive seismic detections apart from the sensors on each 

node. The MAF used in this demo is implemented on a traditional TCP layer and 

uses the wired Ethernet for transferring the agent. Five clusters of four nodes each 

are setup in each direction (See node layout figures for location) :  
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• Clus ter 1 :  Nor th -South leg, Nod es: 2, 3 ,  4, 5. 

• Cluster 2: Nort h -So uth leg, Nod es : 1 1 ,  12 ,  13 ,  1 4. 

• Cluster 3: Ea.s t-West l eg, Nodes: 4 7 ,  48 , 4 9 , 50. 

• Cluster 4 :  East-West leg, Nodes: 4 2, 4 3 , 44, 4 5. 

• Cluster 5: Center, Nodes : 58 ,  57 , 56, 59 

In each node, the path of the ag ent. in the clus ter is s etup in the maf. conf file 

of the respective clus ter. The three targets s pecified above ar e run independently 

in th e field in north-s outh and east- west d irection. The mobile-agent is triggered 

manually in each node to check the collaborative class ification res ult. The MAF 

based class ification experiment is successful in id entify ing the target ty pe. The 

r esults of each run ar e collected from the file result.dat wr itten at the la.s t nod e of 

each mobile-agent migration. 

The experiments of MAF based classification in Twenty nine Palms wer e s uccess­

ful. However, the MAF is implemented on a TCP lay er using a wired network. For 

realis tic WSN environment the MAF is required to be implemented in the wireless 

domain. This field demo proved the correct functionality of the MAF and helped 

us to proceed thr ough the next phase of impl ementing MAF on Di rected Diffusion 

using wireles s  RF mod ems. 

3.3 BAE Austin Demo 

This field d emo is s etup by BAE, at Aus tin, TX in August 20 0 2. This d emo is 

aimed at running collaborative class ification and localization algorithms on civilian 
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Figure 3. 14: Node lay down at BAE Austin - T-Junction. 

vehicles in urban environment. The participants of this demo include UT, Auburn 

University, Applied Research Laboratory /Pennsylvania State University, and BAE 

systems, Austin . BAE systems is the integrator for this demo providing the software 

and hardware support. 

Two different node laydowns are used. In one the nodes are deployed along side 

the roads of a T-junction as shown in Fig. 3. 14. In the other, perimeter security 

arrangement of the nodes in a parking lot is laid as shown in Fig. 3.15. Fig. 3 . 16 

shows the node in a weather proof box at BAE, Austin. The testbed consists of 15 

Sensoria nodes. All the field nodes are equipped with lOMbps wired and l lMbps 

wireless Ethernet to facilitate communication between nodes for loading/unloading 

of software, debugging, logging and for sensor data collection. 

Four different vehicles as shown in Fig. 3 .17 are used for classification and local­

ization experiments. The targets primarily consist of : 
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Figure 3. 15: Node lay down at BAE Austin - Parking lot. 

Figure 3. 16: Node in weather proof box, BAE, Austin, TX. 
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(a) Pickup Truck {b) Diesel Truck 

(c) SUV {d) Motorcycle 

Figure 3. 17: Vehicles used for classification. 

• A heavy diesel truck with a distinctive seismic signature. 

• A pickup truck with a distinctive seismic signature. 

• A Harley-Davidson motorcycle with a distinctive acoustic signature. 

• An SUV as a target of opportunity and discrimination tests. 

There is a central server that is NFS mounted onto all the nodes. Loading 

software on this server's NFS directory makes available locally at each node. At 

each node the following elements are run at boot-up in the background: 

• BAE low-level signal-processing. 
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• Directed Diffusion and gradient over RF modem. 

• Logger and data acquisition ( Only during data acquisition experiments) . 

Apart from these, UTK's classifier daemon and mobile agent daemon are run in 

the background for classification and MAF services respectively. The MAF in this 

demo is implemented on top of wireless Diffusion as discussed in Chapter 2. Upon 

event detection, the classification server triggers the mobile-agent automatically. 

The agent migrates within the cluster according to a pre-defined itinerary from 

the /tmp/maf.conf The four different clusters of the T-junction layout shown in 

Fig. 3. 14 are: 

• Cluster 1 :  Nodes - 34, 35 , 36, 37 

• Cluster 2: Nodes - 39, 38, 42, 43 

• Cluster 3: Nodes - 46, 47, 45, 44 

• Cluster 4: Nodes - 49, 50, 48 

The different experiments conducted at the site and its results [32] are discussed 

below: 

• Experiment 1 :  Mobile-agent based multi-modality multi-sensor (MAMMMS) 

classification on fixed itinerary in T-junction layout. The itinerary of the agent 

is setup in each cluster and all the daemons described above are run on each 

node. The vehicles are run from one end to other in the T-shaped road. The 

classification result from each cluster is observed confirming with the ground 

truth. 

60 



- Classification using one cluster of 4 nodes (Success) .  

- Classification using one cluster of 7 nodes (Success) .  

• Experiment 2 :  Mobile-agent based multi-sensor localization using a fixed 

itinerary. This experiment is only partially Successful. The agent migrated 

within nodes and integrated the localization result from some nodes but could 

not migrate further possibly due to some integration problem in the code. 

However the partial integration result proves the agent development to be 

viable for such kind of applications. 

The MAF framework is successfully integrated with classification and localization 

applications using Diffusion over RF modems. This version of MAF is more robust 

and can be used in the true context of wireless sensor networks. The results from 

each node are collected from the log files located in the /tmp directory of each node. 

The improvements from this version of MAF should go in the direction of adap­

tive itinerary of the agent since the current MAF uses a pre-defined, fixed itinerary. 

3 .4 BBN Waltham Demo 

Unlike the previous experimental sites described above, this is a real-time live 

demonstration at DARPA PI meeting at BBN Technologies, Waltham in November 

2002. This demonstration is aimed at presenting live MAF based classification and 

tracking of the targets using a graphical user interface (GUI) . The participants in 

this demo include all the Pis funded through DARPA SensIT and other WSN based 

researchers and companies. 
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Figure 3 . 18: Node lay down at BBN, Waltham. 

The setup consists of 27 nodes laid out across a road with sensors tied to observe 

the ground phenomenon. The layout of all the nodes is shown in Fig. 3. 18. The radio 

network diagram is shown in the Fig. 3. 19. The targets in this live demonstration 

primarily consists of: 

• Walker through the sensor field. 

• A passenger car. 

• A pickup truck. 

The BAE low-level signal-processing daemon and the ISi Diffusion are run in 

all the nodes in the background. During UTK's experiment the classifier daemon 

and the mobile agent daemon were also run in the background. All the nodes 

are provided with lOMbps wired and l lMbps wireless Ethernet for communication 

purposes. The radio connectivity of all the nodes is monitored using the radio 
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27 nodes; 17 bases 
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Figure 3. 19 :  Radio con figuration at BB N, Waltham. 

heartbeat mon itor provided by Sen soria. T he sensor testbed is divid� d  in to 5 clusters 

n amely : 

• Cluster 1: Nodes - 1, 2, 3, 4, 5 

• Cluster 2: Nodes - 7 ,  6 ,  8 ,  9 ,  10 

• Cluster 3 :  Nodes - 13, 11, 12, 15, 14 

• Cluster 4: Nodes - 21, 17 , 16 , 18 , 19 

• Cluster 5: Nodes - 20 , 25, 22, 24, 27 , 26 

T he MAF used in this demonstration is implemented over wireless diffusion. T he 

MAFserver sen ds classification an d partial in tegration result of the classification 

to the GUI usin g  wired Ethern et on the n odes. T his provides real-time display of 

the agen t migration an d classification task in partial/full. T he real-time ground 
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truth of the experiments are followed using the CW radios from the target and the 

demonstrator. The two different experiments done in this live demonstration are: 

• Mobile-agent based multi-modality multi-sensor classification of a walker walk­

ing in the sensor field. This experiment is successful. The walker icon is 

displayed progressing through the field in real time as observed on the GUI 

projected to the audience. 

• Mobile-agent based multi-modality multi-sensor classification of a compact 

passenger car driven in the sensor field. This experiment is successful. The 

compact car icon is displayed progressing through the field in real time as 

observed on the GUI. 
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Chapter 4 

Conclusion and Future Work 

The wireless sensor network is a rapidly growing field and the diminishing size of the 

integrated circuits makes it a prospective research are in the coming years. These 

networks are inherently distributed and are tightly coupled with the physical sur­

roundings through sensors attached to these nodes. The sensor nodes are rich in 

number however they are resource-constrained individually with limitations ranging 

from computing ability to battery power. This kind of environment will call for fun­

damental research in new kinds of paradigms for computing and collaborative signal 

and information processing. A research agenda for networked systems of embedded 

computers published by the National Research Council [19] describes the future of 

these kinds of networks which couple the physical world with the information space. 

They will virtually change all spheres of life through developments like swallowable 

health monitors and automated buildings. However this change of PCs to smart 

sensor nodes will require tailored analysis of their scalability and robustness . 

This thesis concentrates on the development of a mobile-agent framework (MAF) 
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on top of a network routing layer for collaborative processing in wireless sensor net­

works, supporting applications like target classification, tracking and surveillance. 

The framework is flexible to support several different applications and can be config­

ured accordingly. The frame work provides several advantages and the implementa­

tion of this framework in WSN has been tested in three field demos. The advantages 

of the MAF are: 

• The MAF requires less bandwidth compared to the peer client/server archi­

tecture since this framework does not transfer large amounts of data over the 

network. 

• It conserves energy at the nodes since the total amount of data transmitted 

by the node is limited. Most of the nodal energy is consumed usually on the 

communication using radios. This in addition helps in prolonging the lifetime 

of the sensor network. 

• The MAF provides progressive accuracy since the agent migrates from node 

to node carrying a partially integrated result and all the processing is done 

locally on each node. 

• This kind of autonomous agent framework is reliable and can be fault-tolerant 

to unreliable network connectivity. 

• The diffusion routing layer provides a unique data-dissemination paradigm for 

significant energy efficiency. Even with relatively unoptimized path selection, 

it outperforms an idealized traditional dissemination scheme like omniscient 

multicast [27] . With careful design of the radio MAC layer, the diffusion 

mechanisms are stable under a wide range of network dynamics. 
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• The data-centric dissemination of the diffusion along with the execution-code­

baseq agent provide a unique data distribution mechanism with very less net­

work traffic. 

Future work is still needed in following aspects: 

• The agent route is currently pre-defined. However the agent can be automated 

to choose its path on-the-fly based on the event detection and predicting the 

direction of target and adaptively migrating to the nodes in that direction. 

This requires the use of techniques like Doppler effect to initially estimate the 

direction of arrival (DoA) . 

• The clustering of the nodes can be automated. This will allow MAF to be 

highly scalable and robust. However, designing a scalable, distributed and 

robust clustering algorithm is a challenging problem. 
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Appendix A 

The MAF can be downloaded from the Advanced Imaging and Collaborative In­

formation Processing Lab (AICIP), UTK website (http://aicip.ece .utk.edu) . The 

latest version is MAF-1 .3 which includes the mobile agent framework, low-level sig­

nal processing and graphical user interface ( GUI) for visualization. This appendix 

explains installing and running of the MAF framework on Directed Diffusion. 

A. I Dependencies to Build MAF 

1 .  Cross-Compilers: Cross-compiling for the Sensoria nodes requires the newest 

SH4 tools. In order to use the Intel based Linux machine to generate bina­

ries for the Hitachi SH4 processor based sensor nodes, you need to install the 

cross-compilers to compile the code. These cross-compilers can be obtained 

from the AICIP's MAF web page: 

http://aicip.ece.utk.edu/research/mufashion.htm 

The RPM available there installs the tools in the /usr/sh4-linux directory. 

The complete set of compilers and the required header files can be found in 
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this directory. Add the /usr/sh4-linux/bin directory to your path: 

export PATH=/usr/sh4-linux/bin:$PATH$ 

To build executables for the SH4 target running Linux, simply replace the 

build tools environment variables used in your makefile (i.e. CC, AS, LD, 

RANLIB, etc.) with their SH4 version. For example, replace "make all" 

with: "make CC=sh4-linux LD=sh4-linux-ld AS=sh4-linux-as all" , or you can 

directly change the compilers inside the Makefile accordingly. See /usr/sh4-

linux/bin for a complete list of the SH4 cross compiler tools. For a complete 

set of RPMs for SH4 processor based Linux visit the RPM repository at 

http://www.sh-linux.org/rpm-index/index.html 

2. Python Interpreter on SH4: The Hitachi SH4 processor compatible Python 

interpreter binary should be generated to run Python code on the sensor node. 

The Python-1 .5 .2 for SH4 can be obtained from the AICIP 's MAF web page: 

http://aicip.ece.utk.edu/research/mufa.shion.htm 

Alternatively you can generate the executable yourself by downloading Python 

from "http://www.python.org" and making the following modifications to gen­

erate the Python - 1 .5.2 on Hitachi SuperH4 processor: 

(a) Obtain and install cross-compilers and check if they are available from 

the command line i.e the path is set correctly. 

(b) Obtain the source of Python 1 .5 .2 from http://www.python.org. 

( c) From the terminal in which the cross compiling of the source code is done, 

create the following variables in the environment as follows: 
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CC=sh4-linux-gcc 

export CC 

AR=sh4-linux-ar 

export AR 

RANLIB=sh4-linux-ranlib 

export RANLIB 

GCC=sh4-linux-gcc 

export GCC 

LD=sh4-linux-ld 

export LD 

AS=sh4-linux-as 

export AS 

( d) Edit the "configure.in" file to generate the appropriate configure script 

and Makefile. Remove or modify lines in the file "configure.in" which are 

irrelevant for the sh4 processor and also some " try - compile" and " run 

- test" kind of code. The changes described in the rest of the section 

should be done on the "configure.in" file 

( e) Comment all the lines following the " NEXTSTEP stuff'' until the end 

of the loop. This removes the machine dependency of the generated 

configure script 

( f) Comment all the lines in the section starting with the following line and 

till the end of the loop. 

# checks for UNIX variants that set C preprocessor variables 

(g) Comment all the lines starting with AC_CHECK.SIZEOF and replace 
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the following lines. These lines define the size of the data types that are 

defined for the platform. 

AC_CHECK_SIZEOF (int , 4) 

AC_CHECK_SIZEOF (long , 4) 

AC_CHECK_SIZEOF (void * , 4) 

AC_CHECK_SIZEOF (char , 1 )  

AC_CHECK_SIZEOF (short , 2) 

AC_CHECK_SIZEOF (float , 4) 

AC_CHECK_SIZEDF (double , 8) 

AC_CHECK_SIZEOF (long long , 8) 

(h) Comment on all the following lines of the code: 

# Hmph . AC_CHECK_SIZEOF ( )  doesn ' t  include <sys/types . h> .  

# AC_MSG_RESULT (no) 

#fi 

(i) In the section of setting compiler characteristics set 

bad_forward = no 

bad_prototypes = no 

and comment on the following lines : 

if test "$have_prototypes "  = yes ; then 

bad_prototypes=no 

AC_MSG_CHECKING (for bad exec* prototypes) 

#AC_TRY_COMPILE ( [#include <unistd . h>] , [char **t ; execve ( " \© " , t , t ) ; J ,  , 

78 



#AC_DEFINE (BAD_EXEC_PROTOTYPES) bad_prototypes=yes) 

#AC_MSG_RESULT ($bad_prototypes) 

fi 

bad_forward=no 

#AC_MSG_CHECKING (for bad static forward) 

#AC_TRY_RUN ( [  

#struct s { int a ;  int b ;  } ;  

#static struct s foo ; 

#int foobar ( )  { 

# static int random ; 

# random = (int ) &foo ; 

# return random; 

#} 

#static struct s foo { 1 ,  2 } ;  

#main( )  { 

# exit ( ! ( (int )&foo == foobar ( ) ) ) ; 

#} 

#] , , AC_DEFINE (BAD_STATIC_FORWARD) bad_forward=yes) 

#AC_MSG_RESULT($bad_forward) 

(j) Comment on the following lines starting with: 

# check whether malloc (O) returns NULL or not 

# AC_DEFINE(MALLOC_ZERO_RETURNS_NULL) 

#fi 
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(k) After all the modification, save the "configure.in" and from the same 

directory and terminal where you have exported the variable, generate 

the "configure" script using the command: 

#hash: autoconf 

(1) Run the configure file from the current directory by ". /configure -with­

thread" or just "./configure" if thread support is not required. 

(m) In the Makefile generated do the following modifications: 

VERSION=! .  5 

srcdir= . 

CC=sh4-linux-gcc -m4 

AR=sh4-linux-ar 

RANLIB=sh4-linux-ranlib -m4 

DEFS=-DHAVE_CONFIG_H 

(n) After all the modifications run the make command and it should generate 

the Python binary required for the SH4. 

3. Simplified Wrapper and Interface Generator (SWIG) :  The MAF uses 

SWIG to generate shared libraries to be accessible from different languages . 

Download SWIG from http://www.swig.org/ and install it . Make sure the 

swig compiler is accessible from the command line. 

4. Directed Diffusion: The MAF uses ISI west's Directed Diffusion for network 

routing. MAF-1 .3 uses Diffusion-3. 1 and can be obtained from 

http://www.isi.edu/ scadds /software/ 
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The Diffusion home page can be found at 

http:/ /www.isi.edu/scadds/projects/diffusion.html 

The Directed Diffusion can be compiled for Intel-based systems or Hitachi 

based WINSNG systems. Follow the Diffusion README file to generate dif­

fusion for Hitachi SH4 processor based WINSNG nodes. 

5. Graphical User Interface (GUI) The GUI uses the Java for display. Down­

load the latest version of Java from Sun and install the path to be accessible 

from the command line. 

A.2 Compilation of  MAF 

After setting up all the dependencies download the latest release MAF-1 .3  from the 

AICIP lab's MAF web page: 

http://aicip .ece.utk.edu/research/mufashion.htm 

U ntar the MAF-1 .3 into the current directory. The directory structure is ex­

plained in the README file. Open the "config.mk" file and make the required 

modifications as follows: 

• Set the compilers to the platform you use ( default is SH4) . 

• Specify the complete diffusion-3. 1  directory as "diff_dir" . Do not specify a 

relative path. 

diff_dir = /mnt/piranha/pkurugan/package/diffusion-3 . 1  

• Specify the MAF _DIR, the directory where you have untarred this software. 

Give the complete path. 
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MAF _DIR = /mnt/piranha/pkurugan/package/MAF-1 .2  

• At the mafstart_dir specify the complete path to  the subdirectory maf in MAF-

1 .x. This specifies the classifier the path from which the agent should be 

executed on the node. 

• At the python_exec directory specify the complete path to the Python inter­

preter on the node. 

Type " make" in the MAF-1 .x/ directory to compile all the code. 

The utkclassifier/ directory consists of the low-level signal processing code and 

classification code. To compile change to MAF-1 .3/utkclassifier directory and type 

./makeall .sh. This generates the detector-classifier " utkClassify" and copies the 

binary to bin directory (the required * .dat files are read from /tmp directory so 

when running, copy the dat files from utkclassifier/ dir to /tmp of node) .  

A.3 Running the MAF 

1.  Setup the radio configuration on each node and setup the appropriate network 

numbers with corresponding bases and remotes. For example, to setup a radio 

0 of a node on network 10 as remote on the terminal to the node run the 

following command 

echo remote : network=10 > /dev/rf/0/command 

Similarly, to setup as base change the "remote" as "base" . There can be two 

remotes on one node but there cannot be more than one base on a node. 
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2 .  Run diffusion and gradient on each node. 

3. Run "utkClassify" which does both detection and classification. Run "utk­

Classify -server" on the leader node (that initiates the mobile agent upon event 

detection) and " utkClassify" on the rest of the nodes. When running the server 

take care of the system command in utkclassifier/utk/UTKClassifierServer.cpp 

(this is responsible for calling the agent and Python) . 

4. Set the mobile agent itinerary in the maf.conf. This determines the itinerary of 

the mobile agent with a list of IP addresses of the nodes the mobile agent will 

migrate. Store this file in the /tmp directory of the node. Typical maf.conf 

looks as follows: 

[itinerary] 

hops=3 

nodeO=sensit3 

node 1=sensit1 

node2=sensit2 

[parameter] 

np=3 

res=0 . 05 

thresh=0 . 8  

5. Start the Mobile Agent daemon at all the nodes listed in the configuration file. 

For example , to run cd into the MAF-1 .x/maf directory and type 

bash# /MAF-1 . 2/Python/ python Cmafserv. py 
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you will see a server waiting message. " /MAF-1 .2/Python/python" is the 

directory where you have the Python interpreter for SH4 platform. 

6 .  The "utkClassify -server" automatically sends the mobile agent to the group 

of nodes specified in the maf.conf. Copy the same maf.conf in all the group of 

nodes. 

7. The final integration is written in the result.dat file after the agent returns 

back to the initial node. 

8. Finally the classification output can be seen on the GUI available. Each node 

currently sends the information to the GUI using the Ethernet. The IP ad­

dress of the machine where the GUI is running should be setup in the CC­

SIPAgent.py (line 142) as a variable passed on to the sndTCPmsg function. 

Edit this file to reflect the respective changes. To bring up the GUI change to 

the gui/ directory and run "make install" (make sure java is properly installed 

at the command prompt). Click on the listen button to start listening, the 

status is shown on the status bar below. 

9. To setup a particular image file as background for the GUI, obtain the corre­

sponding pixel positions of the sensor nodes in the image and write them in 

the sensorpositions. txt file in gui/ directory. 
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