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Dedication 

'The earth is the Lord's and the fullness therof,' so dedicating this work to Him is redundant, 

but I do so nonetheless. My thesis is far from perfect, but that fact has only served to humble 

ine and to help me realize how few of the creation's wonders are truly apprehended by man. 

Soil quality is only starting to be defined and cared for, and this lack of wisdom will continue 

to degrade our lands until we heed the advice of the true land manager, 

'When you enter the land I am going to give you, the land itself must observe a 

sabbath to the Lord. For six years sow your fields, and for six years prune your 

vineyards and gather their crops. But in the seventh year the land is to have a 

sabbath of rest, a sabbath to the Lord. Do not sow your fields or prune your 

vineyards. Do not reap what grows of itself or harvest the grapes of your 

untended vines. The land is to have a year of rest.' 
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Abstract 

This thesis evaluated multiple possible soil quality indicators in order to choose a small set for 

inclusion in a rapid soil quality measurement scheme. The scheme was developed to be used 

for examining soil quality changes caused by land use differences. A more rapid, albeit less _ 

detailed, assessment of soil quality will be valuable to r�earchers studying the effects of land

use change where evaluation of multiple widely scattered sites is necessary in order to 

understand soil quality changes over a-wide range of treatments and site.conditions. 

Research projects sponsored by the United States Department of Energy are examining the 

environmental changes that occur when agricultural land is converted to bioenergy 

production. A small number of these sites are heavily instrumented and sampled in order 

document environmental changes on site. This work would be greatly enhanced if many 

more lo_cations and treatments could be sampled rapidly and cheaply. The goal of this thesis 

was to determine which measurements should be included in a rapid soil quality 

measurement scheme and to develop the scoring structure to accurately reflect changes in soil 

quality as measured by a larger suite of indicators. 

The experimental design utilized for indicator evaluation included four treatments: 

agricultural control, switchgrass, sweetgum trees with fescue cover, and sweetgum trees 

maintained with no cover crop. These treatments were replicated twice on severely degraded 

agricultural land near Huntsville, Alabama in 1995. The soil was sampled at planting and 

again in the fall of 2002 for each of the replicated treatments. The erosion rate was modeled 

based on the characteristics of the crops using the Revised Universal Soil Loss Equation 

(RUSLE). 

After careful consideration of each indicator, the measurement framework was fashioned with 

only two simple parameters in order to make it easy to use, and thus widely employable by 

researchers and land managers. Soil organic matter level and erosion rate were chosen due to 



their direct links to the health of the land, widespread use, ease of measurement or 

estimation, correlation to other important soil attributes, and sensitivity over the correct ti.me 

frame. 

V 

In order to make the soil quality measurement more site-specific, the organic matter and 

erosion indicators were scaled between one and zero based on the values measured for a 

~50 year old forest (1) and an extremely eroded agricultural plot (0) nearby. Multi.plying 

the erosion score by the organic matter score yielded the overall site health score. In this 

way, both indicators must be fairly high in order for the site to be deemed healthy. The 

treatments scored as follows: tilled agricultural (.05), sweetgum (.21), switchgrass (.15), 

and sweetgum with fescue cover (.34). The bioenergy treatments scored significantly 

higher than the tilled agricultural treatment, but the site will clearly take many more years 

to approach the health of a forest The other measured values of soil and plant 

characteristics yielded little information or were closely correlated to the chosen 

measurements and were thus not included in the scheme. 
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Chapter 1: Literature Review 

The project detailed in this thesis had dual goals - first to define and validate a measurement 

system that will be useful in rapidly examining soil quality effects due to land use changes, 

and to then use that scheme to determine how conversion of a degraded agricultural field to 

bioenergy production has affected soil quality. The following section reviews the need to 

maintain soil quality and published soil quality measurement schemes. 

Importance of soil conservation 

Examples of civilizations that neglected their soil and faded away because of it are 

numerous (Olson, 1981). Modem researchers and landowners are acutely aware of the 

importance of protecting the world's soil resources as productive land becomes more 

scarce. 

Intensive-tillage based farming practices have produced plentiful harvests of food, but have 

also often degraded soil quality. This problem has generated much interest in the scientific 

community recently, but the decline of soil quality due to conventional farming practices has 

been recognized for many decades. In the early part of the twentieth century, conservatipnists 

such as H.H. _Bennett and William Albrecht warned farmers that high intensity farming could 

lead to the breakdown of organic matter, erosion, and the loss of associated soil nutrition and 

physical health (Albrecht, 1938). The legacy of these early conservationists is carried on by the 

work of the National Resources Conservation Service (NRCS) in land management. 

Warnings about loss of soil quality were sometimes ignored because yields were often 

increasing due to technological advances even as soil quality was being degraded. Crop 

yields per acre have risen steadily since the 1940' s; and this trend is exemplified by the yield of 

com displayed in figure 1. 

Dire predictions of global hunger have been extended ever farther into the future as the 

"green revolution" in agricultural technology has produced greater and greater yie�ds 
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Figure 1: Historic yields of U.S. corn for grain 

Adapted from NASS (2002) 

1950 

Year 
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per unit of land in the industrialized countries. Toy; Foster, and Renard (2002) s'tate that 

overall agricultural yields per acre have tripled since 1935. In many cases, yield increases 

came from mechanizatio� improved crops (Reeves and Cassaday, 2002), chemical pest 

control and fertilizatio� and not from better soil management (Pearse, 1984). Non

conservation farming methods recommend frequent tillage and return little biomass to the 

soil, resulting in erosion and soil organic matter decline. 

With intensive tillage and little crop litter return, a cycle of soil degradation can develop as 

follows. Farmers plow the soil in order to prepare a good seedbed for crops. After plowing, 

the organic matter that was previously protected by soil aggregation and lack of oxygen is 

broken down (Mann, 1986). This quick breakdown results in a flush of nutrients that is very 

helpful to the young crops (Hendrix, 1999; Kristensen et al., 2000). If the nutrients released in 

this way are not returned through fertilization, mineral weathering or atmospheric depositio� 

this process can lead to depletion of soil nutrient reserves (Van Duivenbooden, 1996). 

I I II I I 
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Unfortunately, the intensive plowing results in breakup of soil covering litter and soil 

aggregates, allowing increased erosion Soil nutrients and organic matter are lost in the 

eroded soil and through the metabolism of newly active microorganisms. Virgin soil usually 

loses approximately 20% of its organic matter within a few years of conversion to cropland 

(Mann, 1986). H modem soil conservation principles are not soon followed, the erosion and 

organic matter loss problems will only continue to worsen until a much lower equilibrium 

level of soil quality is reached. Similar scenarios are common, but we will consider only a few 

telling statistics detailing agricultural soil quality degradation in order to display the need for 

wise land management 

Prior to management, virgin land is in a state of relative equilibrium as measured by most soil 

health indicators. Once the land is plowed or otherwise disturbed, this equilibrium is lost and 

changes in the soil will occur until a new equilibrium is reached as a result of the management 

imposed upon it For most soils, the soil will have lost health due to conventional cropping, as 

detailed below. The hypothesis being tested is that converting some of these degraded lands 

to bioenergy production will force the soil through a period of change into a higher 

equilibrium level of soil quality. These concepts are demonstrated in figure 2. 

6 
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Figure 2: Theoretical depiction of soil quality with land use change 
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Measured by erosion 

The soil quality and agricultural productivity of many soils have been harmed through 

careless farming practices that cause erosion. Toy, Foster and Renard (2002) state, 

On the basis of its temporal and spatial ubiquity, erosion qualifies as a major, 

quite possibly, the major, environmental problem worldwide. 

-and-

There are 43.7 million hectares of cropland in the United States where the annual 

soil erosion rate exceeds the soil loss tolerance rate. 

Erosion can degrade soil quality very quickly because it affects the most productive 

portion of the soil, the surface layer. The organic rich surface layer is critical for plant 

growth because plant roots depend on its loose texture, high porosity, and nutrient 

richness. If this layer is removed the soil quality can be severely impaired. The 

disproportionately large effect that the surface layer plays in soil quality was shown by 

Franzleubbers (2002), who derived a simple soil quality index based on stratification of 

organic matter. Erosion also reduces the depth of soil that plants can root in and draw 

. water from. Subsurface layers such as fragipans and claypans that impede root growth 

are brought closer to the surface as erosion proceeds. In water-limited environments, 

this shrinkage of the rooting depth can be detrimental to crop growth and 

environmental health. Rhoton and Lindbo (1997) showed a high degree of correlation 

between effective soil depth and many other soil quality indicators, such as organic 

matter level, soil texture, and nutrient levels. Soybean yields were subsequently proven 

to have a high correlation to effective soil depth. 

Measured by organic matter 

Erosion often causes soil organic matter declines, and these declines are just as troublesome 

for soil quality as erosion Reeves (1997) reviewed results from long-term continuous 

cropping experiments. and found, 

Soil organic carbon (SOC) is the most consistently reported soil attribute from long

term studies and is a keystone soil quality indicator, being inextricably linked to other 

physical chemical, and biological soil quality indicators. Long-term studies have 

shown that continuous cropping results in decline of SOC, although the rate and 



magnitude of the decline is climate and soil dependent and can be ameliorated by 

wise soil management practices. 
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Davidson and Ackerman (1993) reviewed changes in soil carbon storage following tillage of 

virgin soil and found an average decline of approximately 30%. Similar results were found by 

Mann (1986). Guo and Gifford (2002) reviewed the literature pertaining to land use 

change and its effects on soil carbon stocks. Forest-to-crop and pasture-to-crop 

conversion caused marked decreases in soil organic matter levels. Organic matter 

depletion is of concern due to the overriding influence organic matter exerts on soil 

quality through its nutritional, structural, and biological impacts (Reeves, 1997). -

Measured by soil biological parameters 

Many researchers have employed the rapid response of biological indicators to study the 

soil quality effects of differing soil management strategies. These soil microorganisms 

are necessary for the turnover of organic matter and nutrients in the soil and the 

preservation of soil structure. The health of soil microorganisms has also been adversely 

affected on many conventional cropping agricultural lands throughout the world 

(Caravaca et al., 2002; Yao et al., 2000). A number of factors can contribute to soil 

biological health decline, including lack of the organic residue they require as a 

substrate, poisoning by use of pesticides and herbicides, or breakdown of the good soil 

structure microorganisms need for proper aeration and moisture. Savfozzi et al. (2001) 

describes the very marked biological health advantage of forest and grassland soils 

compared with an adjacent conventionally cropped com field in Italy. The measured 

parameters included total carbon, soluble carbon, total nitrogen, light fraction content, 

soluble carbohydrates, respiration, and the activities of six soil enzymes. Every 

parameter measured showed a considerable soil health advantage under the forest and 

grassland soils when compared to the cropped soil. 
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Measured by soil physical parameters 

The declining soil organic matter and microbial biomass levels of many modern 

farmlands often lead to declines in the quality of physical soil parameters because of the 

fluffing and stabilizing effects of these fractions (Tisdall and Oades, 1982). When soils 

are tilled frequently, soil aggregates are dispersed and erosion potential increases 

(Curtin et al., 1994; Drees et al., 1994). Gardner and Clancy (1996) found significant 

decreases in aggregation and increases in bulk density when native North Dakotan 

prairie soils were converted to conventional cropping. Compaction problems caused by 

agricultural practice and machinery have also been reported in Barnes et al. (1971), 

Hakansson (1982), and Soane et al. (1981). The impairment of soil physical properties 

often leads to yield reductions (Raghavan et al., 1978; Eriksson et al., 1974), but slight 

compaction can cause no effect or even increase yields especially during dry years 

(Eriksson et al., 1974). 

Reduced-till and no-till systems often vastly reduce these problems and problems with 

surface crusting and loss of soil organic matter by protecting organic matter from 

decomposition and soil structure from breakdown (Bruce et al., 1990; Karlen et al., 1994; 

Pikul and Zuzel, 1994). However, even no-till systems can be subject to soil compaction, 

reduced infiltration rate and aeration loss due to the compaction of the soil by heavy 

farm machinery (Hill and Meza-Montalvo, 1990; Horn et al., 1995; Soane and van 

Ouwerkerk, 1995).  

Measured by soil chemical parameters 

Finally, the chemical health of many soils has also been degraded by poor agricultural 

practice. Many soils have become nutrient deficient simply due to the export of 

nutrients in harvested food. These nutrient removals do not become troublesome as 

long as mineral weathering and atmospheric deposition of nutrients keep pace with 

removal through harvest. Modern high-yielding cultivars have provided cheap and 

plentiful food, but have also necessitated the use of chemical fertilizers to replace the 

nutrients removed in harvest. Experiments at two of the world's oldest agricultural 

trials serve to illustrate the point. At the Morrow plots in Illinois, trials of unfertilized 
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and manure/lime/P fertilized com plots showed declining yields on the unfertilized 

plots. Addition of inorganic NPK fertilizers to the previously unfertilized plots quickly 

restored their productive capacity, demonstrating that nutrient removal had depleted 

soil reserves (Vance, 2000) . At the Rothamsted plots in England, extractable 

phosphorous and exchangeable potassium levels decreased in the urunanured, 

manured, and chemically fertilized plots over time (Jenkinson et al., 1987) . 

As soil degradation continues, losses of nutrients bound in the soil organic matter (C,N) are 

usually greater than the losses of nutrients that are bound to the mineral fraction (base cations) 

of the soil (Logan, 1990) because of the often rapid decline in soil organic matter that occurs in 

tillage-heavy systems with little residue return (Davidson and Ackerman, 1993). In order to 

maintain the chemical health of the soil, harvested, eroded, and mineralized nutrients must be 

replaced through deposition, weathering, or fertilization Deposition and mineral weathering 

rates cannot be controlled, so for a given land use the nutrient status of the soil is largely 

determined by the amount of fertilizers applied and the availability of nutrients based on pH. 

Nonetheless, 

Some studies, usually on eroded soils, indicate that as sex: decreases it becomes 

increasingly difficult to obtain yields equivalent to those on un-degraded soils by the 

addition of fertilizer alone, albeit yields can be maintained at ca. 90% of potential 

(Loveland and Webb, 2003). 

Nutrients are often applied in excess of crop needs due to the prohibitive cost of applying 

smaller amounts of fertilizer as crop requirements dictate. In cases where the fertility of 

degraded soils is maintained by excess chemical fertilization, nutrient leaching can occur. This 

leaching leads to eutrophication of waterways and is one form of non-point source pollution 

(Carpenter et al., 1998). 

Soil quality measurement schemes rarely account for the forms in which soil nutrients occur 

(e.g., organic vs. inorganic), so the environmental consequences of fertilization strategy must 

be balanced with yield and profitability constraints through the use of nutrient management 

plans. Best management practices in this area include use of organic fertilizers which release 
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bound nutrients more slowly as they are mineralized, crop rotations which include N-fixers, 

or crops which make more efficient use of nutrients (Carpenter et al., 1998). 

Goal of land restoration 

lands degraded through careless agricultural practice, mining, site development and a 

number of other means can often be restored to health. A numbe� of strategies have been 

employed to effect this restoration, including conversion to conservation tillage, mulching, 

cover cropping, green manuring, riparian buffers, and construction of erosion control 

structures (froeh et al, 1999). 

Because economic factors dictate that bioenergy crops will be planted mostly on degraded 

agricultural land (Wright and Tuskan, �997; Mann and Tolbert, 2000), there is great potential 

for their use as soil restorers along with more conventional means of soil conservation 

Researchers have hypothesized that bioenergy crops could make a significant impact in 

restoring such sites to health (Mann, 1986; Tolbert et al., 2000). The basis for such a hypothesis 

lies in the fact that tree crops compared to agricultural crops: 
• tend to allow less erosion than conventional crops (Pimentel and Krummel, 1987; Kort 

et al., 1998); 

• tend to add organic matter to degraded soil (Hansen, 1993; Tolbert et al., 2002; Post 

and Kwon, 2000; Richter et al., 1999); 
• tend to increase the activity of soil microorganisms and fauna Oimenez et al., 2002; 

Schipper and Sparling, 2000; Makeschin, 1994, Ma et al., 2000); 

• tend to promote good soil structure (Tolbert et al., 2002; Devine, 2002; Singh and 

Singh, 1996); 

• tend to recycle nutrients more effectively than conventional crops (Heilman and 

Norby, 1998; Wells and Jorgensen, 1979; Mann et al., 1988; Johnson and Todd, 1998). 

The hypothesis that bioenergy plantations can restore the quality of soil degraded by 

poor agricultural practice will be tested in this thesis. 
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Bioenergy basics 

A short review of bioenergy fundamentals is in order prior to examining the effects of 

bioenergy plantations on the environment Renewed attention has been given to the use of 

biological materials for energy during the past three decades, beginning with the oil shortages 

of the 1970' s. The United States Department of Energy (OOE) has been researching and 

promoting the use of domestically grown bioenergy fuels since 1979. The term "bioenergy'' is 

used to describe heat, electrical, or liquid fuel energy derived from fresh plant material. 

Humans have been using bioenergy to heat their homes and cook their food for thousands of 

years, but �e use of biofuels became impractical when the industrial revolution began to 

require vast amounts of concentrated energy in order to fuel the production of the creature 

comforts modem humans have come to expect. Society has begun to learn the lesson that the 

earth has finite fossil and environmental resources, however. This realization has lead to 

renewed interest in alternative forms of energy, including bioenergy. 

The feedstocks used for conversion to bioenergy include agricultural residues, forest residues, 

mill waste, urban waste, and finally dedicated crops. These feedstocks are collected and 

converted to electricity and heat by combustion, or to liquid and gaseous fuels by various 

· forms of fermentation and gasification An example of this technology is the use of com to 

produce the ethanol blended into many gasolines. 

The choice of feedstock will be made mostly on the bas� of availability and cost, but 

environmental factors must be quantified so that decision-makers can include this factor when 

deciding whether to use a biofuel or conventional fuels. Ultimately, the environmental 

benefits, if quantified and valued, may be one of the driving forces for adoption of biomass 

resources in energy production (Kuemmel et al., 1998). This thesis specifically examines the 

environmental effects of the two dedicated energy crop types that have been promoted by the 

OOE, short-rotation trees and grasses. These two cropping schemes were chosen for their 

high production rates of economical biomass with consistent combustion characteristics. The 

Biomass Feedstock Development Program (BFDP), the feedstock arm of OOE 's bioenergy 
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production syste� has selected and improved upon one or two model crops for each region 

of the United States. 

The short-rotation tree system em.ploys cultivars that have been selected specifically for 

extremely fast growth during the first decade of life. These trees are planted at close spacings 

and harvested after 4-12 years. This system capitalizes on the fast early growth characteristics 

of trees, without having to wait for the slower long-term growth needed to produce sawlogs. 

The OOE has singled out poplar as having the broadest production potential. Sycamore and 

sweetgum trees are being grown in the Southeastern region due to their wide site tolerances 

(Wright and Tuskan, 1997). The biomass produced on short-rotation plantations can be used 

for fiber as well as fuel. 

The herbaceous system uses fast-growing grasses to produce the biomass used for fuel. The 

advantage of these crops is that they can be incorporated into existing crop rotations quickly, 

without the need of specialized machinery or significant investment of landowner money that 

would be tied up over the much longer rotation time of trees. Nearly any grass crop such as 

fescue or wheat could be used for this purpose, but the DOE has chosen switchgrass due to its 

extremely fast growth, site capture, lack of pests, and potential for soil improvement 

(Mclaughlin and Walsh, 1998). 

Agricultural sector models created at the Oak Ridge National laboratory (ORNL) have 

predicted that most bioenergy crops in the Southeast will be, "grown on abandoned or excess 

bottomland agricultural sites ... " (Wright and Tus� 1997) This land base of approximately 

six million acres is currently unprofitable or idle. Wright and Tuskan report 50,000 acres of 

short-rotation trees growing in the Southeast, with yields averaging three to four dry tons per 

acre per year on non-irrigated sites. Currently, this acreage is used primarily-to provide fiber 

resources, but could also be used for energy production if the economics were competitive. 

F.arly research has indicated that bioenergy crops can benefit the environment through 

increasing soil organic matter, bolstering soil physical structure, providing animal habitat, etc. 



(Mann and Tolbert, 2000). The DOE has been monitoring a number of their dedicated 

feedstock research sites in order to test whether the crops are in fact increasing site health on 

the sites they were established. This thesis will report on the environmental monitoring 

results from the DOE plantation at Hazel Green, Alabama. 

Need to study soil quality changes due to land use change 

1 1  

The BFDP has taken a wide range of soil quality measurements at their cooperative trials of 

agricultural sites converted to bioenergy plantations in order to fully understand the changes 

occuring on site. The work done at these sites is similar to that done at the 24 Long Term 

E.cological Research (LTER) sites scattered around the country (LTER, 2003). These sites, along 

with long term agricultural trials, chronosequence studies, and laboratory research are giving 

scientists new insight into the effects that land use have on soil quality and the environment as 

a whole. This large network of heavily instrumented sites is necessary to understand the 

changes occurring in the soil because of the large number of variables that affect the responses 

of the soil to treatment. For example, 

For each fall of 10° C in annual temperature, the average organic matter content of 

the soil increases two or three times, provided the precipitation-evaporation ratio is 

kept constant. (Albrecht, 1938) 

The sites in the LTER network range from the arctic to the Everglades, but their goal is 

the same; to understand the response of ecosystems to land management. This 

knowledge is necessary so that extension agents, land managers and others can have the 

tools they need to make decisions that will benefit the health of the land under various 

circumstances. Just as the early soil erosion research led to the current trend-toward · 

conservation tillage (CTIC, 2003), the current work in monitoring the effects of land use 

on soil quality can possibly lead to future land managers employing new best 

management practices derived from LTER-type data. 

Soil quality basics 

Land use change researchers have examined many different aspects of environmental health 

including water quality Gones, 2000), air quality (Offenberg and Baker, 1999), biodiversity 

(Pearson and Cassola, 1992), and a number of other areas. One area of interest is in the 
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responses of soil quality to a number of different factors including cultivation (Mann, 1986), 

reforestation (Richter et al., 1999), timber harvest Oohnson and Todd, 1998), amendment with 

charcoal (Glaser et al., 2002), and a number of other factors. Before soil quality can be 

measured, however, it must first be defined. Soil quality can be defined in a number of ways 

depending on the goals for the soil and society as a whole. There is general agreement 

between soil scientists on the basics of soil quality, however. Soil quality fundamentals will be 

reviewed in the following section 

Broad statement of soil quality 

"Poor land makes poor people, " according to Hugh Bennett, the first head of the precursor to 

the Natural Resources Conservation Service (5(21, 2002), but determining what makes land 

]JOOT is not that simple. The task of defining soil quality and spreading good management 

recommendations has been ably undertaken by the Soil Quality Institute (SQI) within NRCS. 

The Institute defines soil quality as the capacity of a soil to "support plants and animals, 

retain and cycle nutrients, filter pollutants, regulate water flow, and support buildings." 

(5(21, 2002) This definition of soil quality will be assumed for the remainder of this 

thesis. The definitions of other research teams are similar, as demonstrated below; 

The capability of soil to produce safe and nutritious crops in a sustained manner 

over the long-term, and to enhance human and animal health, without impairing 

the natural resource base or harming the environment (Parr et al. , 1992). 

The capacity of a soil to function within ecosystem boundaries to sustain 

biological productivity, maintain environmental quality, and promote plant and 

animal health (Doran and Parkin, 1995). 

These definitions of soil quality are too broad to be useful for quantitatively measuring 

soil quality because they speak in unmeasurable terms. Most teams of researchers 

providing a definition for soil quality have also formulated a set of specific indicators for 

measuring soil quality. Table 1 displays the indicators formulated by the Soil Quality 

Institute (5(21, 2002) as an example of these frameworks. Similar lists can be found in 

• ► � t 

... 
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Table 1: Soil quality indicators 

Indicator Relationship to Soil Quality 

Soil organic matter (SOM) Soil fertility, structure, stability, nutrient retention; soil 
erosion. 

PHYSICAL: Soil structure, Depth of Retention and transport of water and nutrients; habitat 
soil, Infiltration and bulk density; for microbes; estimate of crop productivity potential; 
Water holding capacity compaction, plow pan, water movement; porosity; 

workability. 
CHEMICAL: ph; Electrical Biological and chemical activity thresholds; Plant and 
conductivity; extractable N-P-K microbial activity thresholds; Plant available nutrients 

and potential for N and P loss. 
BIOLOGICAL: Microbial biomass C Microbial catalytic potential and repository for C and 
and N; Potentially mineralizable N; N; Soil productivity and N supplying potential; 
Soil respiration. Microbial activity measure 
Adapted from SQI (2002) 

Doran and Parkin (1994), Romig et al. (1996), Mausbach and Seybold (1998), Karlen et al. 

(1994), and many other published articles. 

Soil quality indicators 

Nearly all soil quality frameworks break the chosen indicators down into 3-4 groups, 

including physical, chemical, and biological indicators, and sometimes organic matter as 

a separate category. Erosion is not usually directly considered, but only its effects on 

these categories. This thesis will also consider erosion due to its detrimental effects to 

local waterways and direct linkage to �e other indicator categories. 

State soil scorecards 

Even detailed formulations of these indicator variables are too broad to assess soil 

quality, because local environmental differences and seasonal effects dictate which 

indicators have the most influence on soil quality for each situation. To remedy this, 

twelve states have partnered with SQI to formulate very specific sheets that can be used 

to determine the quality of a given soil (SQI, 2002). Specific soil problems can be 

diagnosed and remedied using the multiple indicators listed on the sheets. To date, 32 

physical indicators, 12 biological indicators, 9 chemical indicators and 15 plant/ residue 

indicators have been included in these state-specific cards. Each indicator typically has a 
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measurement method described and a "healthy" range listed. The Georgia soil quality 

card is shown in figure 3 as an example of similar frameworks from other states. 

These sheets are formulated with input from local farmers, and their ease of use gives 

them the potential to be widely employed. A review of the formulation and usefulness 

of the Wisconsin soil quality card can be found in Romig et al. (1996), which found initial 

farmer response positive. Values for all of the listed indicators are either estimated 

visually by the soil evaluator, or are taken directly from routine soil analysis done by the 

state soils lab. 

Romig et al. (1996) found that the major problem �ith these scoresheets is that, 

Pretests of the scorecard with farmers showed that farmers may be inherently 

biased when grading their own soils .... When judging any property they also 

may be judging the practices carried out on the field. 

Accurate analysis of soil quality will be difficult as long as land-managers subjectively 

evaluate their own soils based on the treatments applied rather than on the actual results 

occurring in the soil. For example, many farmers assume that using cover crops will 

increase organic matter, and this expectation can be reflected when the farmer grades his 

soil, even if soil organic matter levels have not actually increased (Romig et al., 1996) . 

The easy application of state soil scorecards should make them widely employed, but 

their subjective nature can make them hard to interpret and compare between sites. 

"Final score" sheets 

. Several research teams have devised more quantitative measures of soil quality to 

correct subjectivity problems. These systems combine the results from several measured 

indicators into a "final score" for decision-making purposes. The final score format is 

useful for making decisions when management processes have increased soil quality in 

one category, but harmed it in another. 
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Burger and Kelting (1999) proposed such a system. Their method combines multiple 

indicators into an overall score by which land management decisions can be made. The 

sufficiency of each indicator to promote healthy plant growth and site functioning is 

determined using curves with a maximum of 1 and minimum of 0. Each of these 

sufficiency scores is then multiplied by a scaling factor based upon the chosen 

importance of each indicator, with the scaling factors summing to one. In this way, a 

perfectly functioning ecosystem will achieve a score of 1. Karlen et al. (1994) proposed a 

similar method to determine an overall soil quality score. Figure 4 is taken from 

Mausbach and Seybold (1998), which expanded on the work of Karlen et al. (1994) by 

formulating sufficiency curves for the chosen soil quality indicators. Their proposed 

curves are shown. 

Some curves, such as organic matter level, are of the "more is better" type. Some, such 

as bulk density, are of the "less is better" type. Some curves, such as_ nutrient levels, are 

of the "optimum" type. The score is scaled to one at the expected local best value and 

zero at the expected local worst value for each indicator. The indicator scores are made 

much more applicable to real world situations by this scaling, because the land manager 

can then see just where his soil lies in the continuum of soil health given local 

conditions. 

The scaled indicator sufficiency scores _are then multiplied by importance weights based 

on the relative importance of each indicator to overall soil quality. These weightings are 

based on the experience of the framework designer. The multiplied values are then 

summed to give the final score so that a perfect soil will be given an overall score of one 

and a worst-case soil will be given a score of zero. These concepts were applied by 

Mausbach and Seybold (1998) to compare Conservation Reserve Program, conventional 

tillage and no-till lands; the calculations used to determine the overall score for each 

land use are listed in figure 5. 
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The final score method utilizes the objective measurements used by conventional state 

soils lab reports and the soil quality concepts used by farmer scorecards to give an 

accurate picture of soil health. It also removes the bias farmers have for their own soils 

by using objective measures of soil parameters, much like traditional soils lab reports. 

The final score method gives interpretive information about the role and importance of 

each soil attribute, much like the farmer scorecard. It also gives additional insight into 

soil quality by including measurements of soil characteristics typically excluded by soils 

labs such as respiration, aggregation and rooting depth. 

Soil quality test kit 

In order to· bridge the gap between simple qualitative scorecards and intensive 

quantitative soil analysis, Dr. John Doran of NRCS developed the soil quality test kit. 

Ten soil quality indicators are measured with the kit, including soil respiration, 

earthworm number, infiltration rate, bulk density, water content, slaking, aggregate 

stability, pH, electrical conductivity, and nitrate level (SQI, 1999). 

Testing with the kit showed good repeatability and no significant differences between 

kit and laboratory measurement, excepting respiration (Liebig et al., 1996). A study by 

Seybold et al. (2002) detected significant soil quality differences between paired tilled 

and no-till plots. Time required for sampling includes 1-2 hours in the field and 2-3 

hours for drying, slaking tests, and calculation of values (Ditzler and Tugel, 2002). 

SQI personnel conducted more than 20 training sessions for NRCS staff, conservation 

district staff, the Nature Conservancy, local governments, and universities. SQI staff 

found the kit a good tool to promote a broad understanding of soil quality and the 

impacts of management on it (Ditzler and Tugel, 2002). 

Need for a rapid soil quality assessment scheme 

The soil quality test kit is valuable to landowners who wish to improve the quality of their soil 

through conservation management (Liebig et al., 1996), and final score schemes are valuable to 
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researchers who wish to study soil quality issues in depth at experimental sites (Mausbach 

and Seybold, 1998). However, there is a need for a soil quality measurement scheme that can 

be utilized to study the multiple widely scattered sites often necessary for land use studies in a 

time and cost-effective manner. 

Although existing schemes are very adept at measuring soil quality when properly scaled to 

local conditions and administered by competent evaluators, their use may be hindered by 

three concerns. First, the measurement of multiple soil parameters that they require is too 

time-consuming and expensive to be used for researchers who study multiple widely 

scattered sites and who cannot use the SQI test kit because many funding agencies and 

publications frown on non-laboratory �ethods of soil analysis. Second, the measurement of 

some soil quality indicators is redundant due to the highly correlated nature of many 

indicators. Third, many of the included indicators cannot be interpreted in the same way for 

every site. Finally, many indicators, though contributors to soil quality, do not measurably 

respond to land use differences over the appropriate time scale. These concerns are detailed 

below. 

Ease and speed of measurement 

Desirable attributes for soil quality measurement schemes are the speed and ease of 

measurement These attributes are even more critical when studying land use effects on soil 

quality because these studies are often prohibitively expensive due to travel and manpower 

costs even before the time and money for soil sampling and analysis is considered. Such 

studies are often not intended to fully explain the complex and dynamic nature of ecosystems, 

but to give a snapshot of differences in a much smaller set of attributes (e.g. SOM) over a wide 

range of treatments and locations (Mann, 1986; LTER, 2003, Glaser et al., 2002, Khaleel et al., 

1981). Land use studies merely detect environmental changes due to land use differences, 

more detailed studies are then necessary to understand the dynamic processes leading from 

land use differences to environmental quality differences. These concepts were encapsulated 

succinctly by Schoenholtz et al. (2002), 
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Adding complexity to soil quality models to improve their accuracy and forecasting 

ability must be balanced with the ability of practitioners to apply them to their 

management systems. To help the practitioner meet his or her goals, the best model 

would be conceptually simple, cheap to develop, and easy to apply. Soil quality 

assessment is a process of applying existing knowledge to achieve land management 

aims, namely sustainable forests and agro-ecosystems. This process should not be 

confused with the goals of forest science, a process of developing new knowledge for a 

deeper understanding of nature. 

This thesis will attempt to produce a soil quality measurement scheme that can detect soil 

quality changes with a minimum of indicators. 

Redundant indicators 

The number of indicators can sometimes be safely reduced because of a high degree of 

correlation between many of the measured values. This correlation often makes it redundant 

to measure multiple values that are closely related to one another. For example, aggregation 

and soil organic matter are often correlated very strongly (~ .8) (Gurney and Swift, 1984; 

Tisdall and Oades, 1982). Soil scientists have taken advantage of the observed relationships 

between soil attributes to produce several empirical equations used to estimate unknown soil 

properties based on known soil properties (Bell, 1995; Rajkai, 1996). The use of these 

pedotransfer functions can lessen the sampling and analysis required to determine soil 

quality. Where appropriate, indicators that are estimable using pedotransfer functions could 

be removed from existing soil quality measurement schemes. This thesis will attempt to 

choose the indicators that have the most influence over a range of soil quality attributes, and 

thus reduce the measurement of redundant indicators. 

Difficult to interpret indicators 

Regarding the difficulties of interpreting results, this thesis will attempt to select only 

indicators that can be interpreted the same way universally. For example, high soil respiration 

rates normally indicate a healthy microbial community, but could also indicate only that the 

soil has been recently tilled (Hendrix, 1999). A study by Sparling et al. (2000) demonstrated 

that different site conditions can lead to very different responses to land-use change. The 
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study examined three soils that had been subjected to various land uses. The land uses 

examined were mature broadleaf-podocarp forest (50+ years), radiata pine plantation (20+ 

years), pasture (25+ years) and arable cropping (20+ years). A large number of physical, 

chemical and biological indicators were compared at each site whose soils differed only in 

land use, the soil series being the same at the closely spaced treatments. Cores were taken to 

7.5 cm and the soils analyzed. 

The pertinent result to note is that most indicators varied significantly within each soil type, 

but did not vary significantly when compared over all three soil types. Such results include 

bulk density, pore space, available water, hydrauli� conductivity, pH, total C, total N, Olsen P; 

CEC, base saturatio� and Ca. Responses to management for these indicators were site-

speci.fic, and thus use of these indicators would require additional expertise or testing to fully 

describe the change occurring at each location Studies by Brejda et al (2000a, 2000b) further 

confirm that many soil quality indicators cannot be used in the same way at different 

locations. Their studies, conducted over four different Major Land Resource Areas (MLRAs) 

evaluated hundreds of soil samples taken from each region for 20 soil quality attributes. Their 

factor and discriminant analysis showed that land use differences were effectively detected by 

a different suite of indicators for each area. Of all factors, only soil organic matter (SOM) level 

was sensitive to land use differences over all of the areas studied. 

Indicators whose responses to land use differences are site. specific should be used With care so 

that responses are correctly interpreted. 1bis study will attempt to choose only the indicators 

that will be uniformly applicable and interpretable under nearly all soils and land uses. 

Indicators that respond over the wrong time-scale 

Finally, many indicators that have been used in.published site health measurement schemes 

were rejected for this study because of their demonstrated lack of sensitivity to treatment 

changes over useful time scales. This study focused on medium-term (5-50 year) changes in 

site health, and many published site health indicators measure either shorter-term or longer

term changes. Medium-term changes in soil quality are the most useful to examine in land 

use studies, as detailed below. 
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Short-term changes often reflect not the trend of soil quality, but management and weather 

effects such as rainfall, fertiliz.ation, or residue removal Short-term indicators are useful for 

gauging the effects of these operations, but provide little insight into whether the soil is 

gaining or losing quality. Biological indicators are usually of this extremely sensitive variety. 

For example, Franzluebbers (1999) dried and rewetted Piedmont soils and found soil 

respiration rate increases ranging from 70% to 250% over the equilibrium respiration 

rate. In order to fully understand the site with these parameters, many readings must be 

taken over time, an expensive and time-consuming proposition If seasonal effects provide no 

real differentiation of soil quality, they simply become noise on the longer-term signal. 

Long-term indicators are less sensitive to management changes, and can describe the trend of 

soil quality. Unfortunately, differences may not register between treatments for hundreds of 

years. For example, approximately thirty to one hundred years is required to produce 

one inch of productive topsoil from subsoil. · This formation rate equals 11 metric tons 

ha-1 yr-1 (Morgan, 1986) . Decision-makers, however, do not have hundreds of years to 

determine how they are affecting the environment. Indicators that are relatively unaffected by 

seasonal variations and yet sensitive enough to discern medium-term trends were chosen so 

as to avoid the time-scale pitfalls mentioned above. Moreover, the chosen indicators cover soil 

responses over the entire range of ti.me scales; i.e., the sensitive period of one indicator covers 

the insensitive period _of another. 
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Chapter 2: Methods 

The usefulness of the soil quality indicators was tested in the field and using published 

literature. The field research was carried out at a BFDP site where the land use had been 

converted from conventional agriculture use to bioenergy production. The effects of the 

bioenergy crops on the soil were then evaluated ,based on the chosen indicators. The 

study site was one of four agricultural research facilities converted to bioenergy trials by 

· the BFDP in the early/mid 1990's. These plantations were located in the Southeast and 

meant to test the viability of the program's model Southeastern bioenergy crops and 

their effects on the environment. 

Site description 

The plantation studied in this thesis was established in 1995 on heavily eroded 

agricultural land at Hazel Green, Alabama. The Winfred Thomas Agricultural Research 

Station sits on land that has been farmed for over 100 years, with at least the last ten 

years in a com/ wheat/ soybean rotation. The soil is comprised of Decatur and 

Cumberland silty clays, in the severely eroded and eroded/ undulating phases. These 

series are deep (>6 ft.) soils formed from limestone residuum and are fine, kaolinitic, 

thermic Rhodie Paleudults (NCSS, 2003). 

Where the A layer still exists it is a dark reddish brown (5YR 3/ 2) silt loam and is 

moderately acid. Where the Btl layer exists, it can begin at 0 to 20 cm in depth and is a 

dark reddish brown with subangular blocky structure, shifting to a dusky red (10R 3/ 4) 

past 50 cm. In most places on site (>80% based on classification by soil scientist Don 

Todd), erosion has removed these layers and the Bt2 layer remains on the surface. The 

Bt2 layer is clay, sticky, plastic, and very strongly acidic. Chert fragments up to 10% can 

be found throughout. The top 50 inches contain less than 10% weatherable minerals in 

the 20 to 200 micron size (NCSS, 2003). For the full NCSS description of the soil please 

see the appendix. 



This extremely poor (weathered, eroded, and acid) soil made it a perfect candidate to 

study the possibility of restoring soil quality with bioenergy crops in a side-by-side 

comparison with a tilled agricultural crop rotation. The study site is -located within the 

circle of figure 6. 

Treatment description 
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Five treatments were established: a conventional com (2.ea mays)-soybean (Glyd.ne max) -

wheat (Triticum aestivum) rotation (AG), no-till com (NI), sweetgum trees (Liquidambar 

styracifiua) maintained with no cover (5), sweetgum trees with a fescue (Festuca spp.) cover 

crop (SC), and switchgrass (Panicum virgatum) (SW). These treatments were replicated twice, 

as displayed in the topographical map of figure 7. Replications were situated so as to remove 

the influence of slope and soil differences as much as possible by clustering the two 

replications along two areas of similar slope and soil characteristics. Average slope values are 

given in table 2. Site preparation included tillage for all plots. Trees were hand planted, and 

then fescue seeded between rows in the SC treatment. The S treatment was kept free of 

undergrowth through the use of glyphosate for the first two years. The agricultural plot was 
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Figure 7: Site layout 

Table 2: Average slope values by replication 

Average slope for each replication (%) 

Large (.5 ha) plots Small (.25 ha) plots 

AG 2.8 6.0 

NT 2.2 6.3 

s 3.5 6.0 

SC 3.6 6.5 

SW 26 4.8 

-

L l J 



managed roughly according to the state extension office recommendations for com and 

soybeans (Mask and Mitchell, 2003; Monks and Delaney, 1998). 
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The trees received 84 kg ha-1 yr-1 of N in years 2 and 3 and 100 kg ha-1 of P in 1996. The 

switchgrass and agricultural plots received 134 kg ha-1 �1 of N and 67 kg ha-1 yr-1 of P yearly. 

The fertilization rate was determined based on soil samples taken at the time of establishment 

and the expected nutrient requirements of the specific crops. Llme was applied to the 

agricultural plots in April, 1999 at the rate of 2 tons ac-1 in order to keep the pH within the 

Alabama recommendations for com and soybeans (Mask and Mitchell, 2003; Monks and 

Delaney, 1998). 

All collected data were analyzed using the analysis of variance procedures within the SAS® 

statistical package. Crop and slope position were treated as fixed effects, while replication and 

subsamples were treated as random effects. Depth was included as a covariate for the soil 

analyses. Mean separation was performed at the a = 0.05 level using the least significant 

difference procedure. 

Sampling and analyses 

At establishment, each plot was tilled and bermed in order to prevent any runoff 

interferences. Flumes and Isco® water samplers were installed at the outlet of each plot to 

monitor the runoff volumes, suspended solids, Nf-4+, NOr, P, K, Ca, Mg, and pH. Event

based runoff samples were taken and analyzed until 1998. Suction lysimeters were also 

installed at each site and sampled after significant rainfall events. These samples were also 

analyzed for Na+, NOr, P, I<, Ca, Mg, and pH until 1998. Rainfall measurements were also 

taken on-site until 1998. The water monitoring and modelling efforts are reported in Thornton 

et al. (1998). Because of the high variability in the runoff data from the smaller plots, the EPIC 

model was unable to adequately predict runoff differences that would be expected for the 

different experimental crop treatments. 
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Each plot was divided into five sub-plots in order to account for the gradient of soil properties 

along the slope, based on the assumption that erosion had caused differences in SOM levels 

and soil quality along the slope (Wan and El-Swaify, 1997) . Five soil samples were taken for 

each treatment/ slope position combination within both replications. 

These cores were split into depths of 0-5 cm, 5-15 cm, 15-30 cm, 30-45 cm, 45-60 cm, 60-75 cm, 

75-90 cm, and 90-120 cm. These plugs were then dried and sent to the University of Georgia 

Agricultural and Environmental Services Laboratories for analysis of carbon by combustion, 

total nitrogen, pH, K, Ca, Mg, and many rnicronutrients by the Mehlich I procedure. 

Phosphorous was �eterrnine� using the Bray procedure (AFSL, 2002). The rnicronutrient 

portion of the sampling showed no growth-limiting factors and will not be discussed here. 

The soil was sampled in the year 2000 for saturated hydraulic conductivity, pH, dry bulk 

density, penetration resistance, and sand-silt-clay fractions according to standard methods 

(SSSA, 1994a). Twenty-five trees from each plot were measured at least once a year for height 

and diameter. The annual yields from the switchgrass and agricultural plots were recorded. 

Intensive sampling of the tree plots occurred in the spring of 2002, prior to leaf-out One tree 

was randomly selected from ea� of the five elevation locations within each 

treatment/ replication combination The chosen trees were cut down and measured for height 

and diameter at breast height ( dbh). The wood of the trees was split into two fractions, bole 

and branch, roughly based on a diameter of 2.5 cm. These two fractions were weighed in the 

field and these wood samples were taken to the lab for moisture content determination After 

drying and determination of moisture content, these wood samples were then ground and 

analyz.ed for carbon and nitrogen by combustion and P, K, Ca, and Mg using the Georgia 

Agricultural and Environmental Services Laboratory plant analysis procedure (AFSL, 2002). 

The dry weight of the wood from each tree was determined using the sampled moisture 

contents and green weights. These weights were then regressed against many combinations 

of the height and dbh measurements. The best fitting regression line was used to p�dict the 



total yield of the tree stands based on height and dbh measurements taken from one tree out 

of every row within the plantation. 
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Three random leaf litter samples were taken at each location where a tree was removed. The 

litter was sampled by placing a 0.5m2 ring randomly within the area occupied by the 

corresponding tree and collecting the leaf litter within the ring down to the mineral soil. These 

leaf litter samples were then weighed and analyzed for carbon and nitrogen by combustion. 

The Georgia Agricultural and Environmental Services laboratory plant analysis procedure 

was used to determine P, K, Ca, and Mg levels (AFSL, 2002). 

After the litter was removed, a 2.5 cm diameter soil core was taken to a depth of 60 cm at each 

sampling location These cores were then split using the same layers as in the initial sampling 

_ of 1995, namely; 0-5 cm, 5-15 Cil\ 15-30 cm, 30-45 cm, and 45-60 cm. The soils were 

refrigerated and one gram samples analyzed for �glucosidase levels using the procedure of 

Eivazi and Tabatabai, which is based on the �glucosidase catalyzed transonnation of p

nitrophenyl-�D-glucoside to p-nitrophenol (SSSA, 1994b). 

The remaining soil was dried and the moisture content determined. The dry soil was then 

crushed using a rubber mallet Roots and rocks larger than 2 mm were removed and the 

remaining soil ground to pass a 60 mesh screen. The ground soil was then subsampled and 

analyzed for carbon and nitrogen using the combustion technique on the Leco Corporation 

LEC0-2000C:NS elemental analyzer. Five gram subsamples were also taken for N, P, K Ca, 

and Mg analysis by the Mehlich I procedure (AESL, 2002). 

The final sampling on the site occurred during late September, 2002. This was done on a 

mixed hardwood stand of approximately 60 years of age and also on the most eroded portions 

of a nearby soybean field. These areas were within 500 yards of the replicated study and on 

similar soils. The litter of the forested site was sampled, and 15 soil samples were taken using 

the same procedure as for the intensive study site. Seven soil samples were also taken from 
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the degraded areas of the soybean field. All of these samples were analyzed for C and N by 

combustion as well as N, P, K, Ca, and Mg by the Mehlich I procedure (AFSL, 2002). 

Yearly erosion rate was modeled using the Revised Universal Soil Loss Equation (RUSLE). 

The RUSLE predicts erosion rate as follows, with values used in this study given in 

parentheses: 

Soil loss = R*K*L -.g*C'P 

R = rainfall erosion index factor = (value for Hamilton county, AL) 

K = soil erodibility factor = (.27) based on advice from county NRCS office and Dr. Dan Yoder 

L = slope length factor = (150 feet) based on consultations with Dr. Dan Yoder 

S = slope pitch factor = (based on measured slopes of table 5) 

C = cover and management factor = (as given below) 

P = cropping practice factor =. (as given below) 

The erosion model was initialized based on .the following observations of the tilled 

agricultural (AG) plot 
• Summer 2002: Disked twice, soybeans 
• Winter 2001 : Disked twice, winter wheat 
• Summer 2001: Disked �ce, fallow 
• Winter 2000: Fallow 
• Summer 2000: Disked twice, soybeans 

• Winter 1999: Fallow 
• Summer 1999: Disked twice, com 
• Winter 1998: ·Moldboard plow 
• This pattern was considered to repeat itself indefinitely into the past 

The model was initialized for the other plots as follows: 
• all treatments started out in the "agricultural" condition at the beginrung of the 

study; 
• the sweetgum with no cover (S) had very little if any weed growth, but was not 

disturbed by plowing following the initial year. The canopy closed in year three; 
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• the sweetgum with cover (SC) had poor-fair grass cover until year three, when it 

was shaded out. The canopy closed in year three; 

• switchgrass (SW) had poor cover in the first year but was fully established at the 

end of the second growing season and did not have lush growth. 

Indicator selection criteria 

All of the measurements described above were taken so that they could be analyzed and 

the most useful ones for rapidly detecting soil quality changes chosen. Following is a 

list of the criteria used to choose indicators. 

1. Must be highly correlated to site health as defined in the broad statement, so that 

they will be measuring soil quality 

2. Must be easily and cheaply measurable, as well as widely-accepted so that 

multiple sites and treatments can be monitored effectively over time 

3. Must be sensitive over the correct time/management scales, so that short-term 

noise is ignored, and so that longer-term trends are.detected. 

4. Must have a baseline value for comparison with future measurements, so that 

the progress soil quality indicators can be tracked 

5. Must not be highly correlated to an already measured value, so that monitoring 

effort is not waste� on repetitive measurement 
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Chapter 3: Results and Discussion 

Effect of blocking on slope position 

The first analysis done was to test whether blocking on slope position achieved its goal of 

reducing the overall variability of the data. The hypothesis that position on the slope would 

affect soil properties was proven valid by many soil parameters, as displayed in table 3. Thus, 

use of slope position as a blocking term was justified. The soil carbon contents were enriched 

at the foot of the slope, most likely due to the movement of carbon-rich topsoil carried by 

erosion (Wan and El-Swaify, 1997). Preferential deposition of the larger silt particles may have 

also caused the .. relative silt enriclunent at the foot of the slope. The higher carbon contents 

and silt fractions at the foot of the slope combined to form a more productive soil as evidenced 

by the wood yields. No other variables showed a consistent pattern across slope. 

Crop yields 

The wood yield calculations were based on the biomass regression that best fit the data 

for the harvested trees. The equation used was: 

Yield (Mg/ha) = 0.0068 * Diameter (in.) * �iamete� (in.) * Height (ft.) + .49. 

The fit of the yield measurements was good, with an R2 value of .89. The regression can 

be seen graphically in figure 8. Yields did not differ significantly between the plots with 

and without a _fescue cover crop, as displayed in figure 9. The total calculated yield of 

wood was 41 .1 Mg ha-1, or 5.9 Mg ha-1 yr-1• The trees only produced approximately half 

Table 3: Effect of slope position 

Position Carbon content (%) Silt (%) Clay (%) Wood yield (Mg/ha) 

Top .60 (a) 63.8(1 .9)a 33.8(1 .9)a 25.7(3.2)a 
Upper .61 (a) 36.0(3.3)ab 
Middle .66 (ab) 70.6(1.6)b 27.3(1.6)b 43.8(3.7)ab 
Lower .70 (b) 46.4(5.6)ab 
Bottom .76 (c) 77.9(1 .l)c 19.9(1.l)c 53.7(13.4)b 

Values within each column followed by the same letter do not differ at a = .05. Wood yield is the 
average of S and SC treatments. Mean standard errors in parentheses. 
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the biomass stated for typical short-rotation plantation in the Southeast as stated by 

Wright and Tuskan (1997), and were outperformed by both the agricultural and 

switchgrass crops, as displayed in table 4. The poor performance of the sweetgum can 

be attributed to the low quality of tree seedlings used, poor soil quality, and to the long 

establishment phase typical of sweetgum trees, after which they typically catch up to 

other high yielding species (Steinbeck, 1994). 

Given that the goal of the Biomass Feedstock Development Program is to create biomass, 

the poor yields of the trees are disappointing. Their slow growth points to the need for 

careful matching of high quality tree seedlings to each site. With good soil and trees a 

similar DOE site in Mississippi produced yields over 5 times as great as the site under 

consideration. 

Choice of indicators 

Next, the indicators listed by the SQI were evaluated based on the results from the site and 

published literature according to the indicator selection criteria listed in the methods section 

The results for each indicator are reviewed below, along with the reasons for rejection or 

acceptance. Naturally, the explanation for the rejected indicators is shorter than for the 

accepted indicators because only one failed evaluation criteria r�ted in rejectio� but 

acceptance as an indicator required that all five criteria be met The failing/ passing criteria 

number is listed in parentheses where appropriate. 

Soil structure rejected 

Detailed soil structural analysis was not done at the study site, because detectable 

differences in soil structure were not foreseen to occur on the sticky and plastic soils on 

site. This prediction was borne out by examination of the soil as samples were taken. A 

AG s SC SW 
9200 900 a 5900 900 b 5700 600 b 9600 1400 a 

Mean standard errors in parentheses. Within each depth, values with the same letter do not 
differ at a = .05. 

Table 4: Crop yields 

I 
Crop 
Yield (kg ha-t yrt) ( ) ( ) ( ) ( ) 
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very distinct interface between the O horizon and the underlying Bt2 horizon soil was 

found in the tree plots, indicating that the coarse organic matter had not been 

incorporated into the mineral soil, and thus could not have affected soil structure as 

described in Tisdall and Oades (1982) . The sticky and plastic consistence of the soil was 

unchanged. A longer time period will likely be necessary for soil structural changes to 

become evident on site. 

Soil aggregation has been used as an indicator in many soil quality studies (Devine, 

2002), but evaluation and interpretation of soil aggregation values is difficult. 

Evaluation of aggregation level involves hand shaking of the soil through a series of 

stacked sieves under water. The results are dependent upon the shaking intensity and 

subject to human errors. 

Moreover, the high degree of correlation between soil structure and soil organic matter 

levels makes it possible to approximate soil aggregation changes with soil organic 

matter changes (Tisdall and Oades, 1982) . This approximation is useful because the 

other major influence upon aggregation is soil particle size, a parameter that cannot be 

easily altered through land management. Changes in tillage and residue return 

practices will affect aggregation, but the aggregation change will be mirrored by an 

organic matter change. For these reasons ( criteria 2, 5) soil aggregation does not make a 

suitable indicator. 

Penetration resistance rejected 

The difficulty in measuring soil aggregation has sometimes been sidestepped by the use 

of penetration resistance as an inclicator of soil structure and compactness. Penetration 

resistance measurements were taken on the test site in order to test for changes in soil 

structure. Unfortunately, the measurements were plagued with difficulty. Rocks and 

dense root systems often gave falsely high measurements of penetration resistance that 

do not reflect the actual difficulty roots would encounter in penetrating the soil. Table 5 

displays that the switchgrass treatment gave significantly higher penetration resistance 
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Table 5:  Penetration resistance 

Depth/Crop AG s SC SW 
15 cm 6.59 (.57)b 4.07 (.39)c 4.39 (.45)c 10.69 (.65)a 
30 cm 5.57 (.37)b 4.41 (.S0)b 4.94 (.33)b 8.90 (.70)a 
45 cm 4.54 (.31)b 4.49 (.42)b 4.89 (.30)b 6.74 (.69)a 
60 cm 4.04 (.34)b 4.69 (.44)ab 4.32 (.24)b 5.83 (.73)a 
75 cm 4.40 (.32)a 5.18 (.34)a 4.51 (.S0)a 5.ll (.47)a 
90 cm 4.64 (.48)b 6.70 (.43)a 4.57 (.61)b 5.97 (.74)ab 
Total 4.96 (.18)b 4.91 (.19)b 4.60 (.17)b 7.31 (.34)a 
Values reported in KN/ m2 Mean standard errors in parentheses. Within each depth, values with 

the same letter do not differ at a = .05. 

than the other treatments. This result was attributed to the density of the switchgrass 

root mass that stabilized the soil, yielding a high penetration resistance. 

Stabilizing roots are not the only thing that may yield high penetration values, however. 

Plowpans, rocks, fragipans, soil crusts and a number of other heterogeneities of soil tend 

to add variability to averaged data, which makes finding significant differences between 

treatments sometimes difficult (Utset and Cid, 2001). Some researchers report 

penetration resistance functions with depth in order to give a fuller picture of the state of 

soil hardness. Statistical analysis and reporting of these functions is difficult, however, 

and the means can sometimes yield much different conclusions than the functions 

(Schrey, 1991). In the_ case of soil with zones of hardness (of whatever type), penetration 

resistance readings- indicate that root growth will be difficult, when the roots may 

actually grow around the hard zones (Bingham and Bengough, 2003). Due to difficulties 

in measurement and interpretation, penetration resistance was rejected (criteria 2). 

Despite the difficulties in measuring and interpreting penetration resistance, studies 

done after planting formerly agricultural land to cottonwood in Mississippi and to sycamore 

in Tennessee showed decreases in penetration resistance after the conversion (Tolbert et al, 

2002; Devine, 2002). These two sites also showed increases in aggregation and decreases in 

bulk density after conversion Based on these results penetration resistance could be included 
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as an indicator when examining sites where soil physical quality could be expected to change 

(e.g., sites with less sticky and clayey soils than the study site in this thesis). 

Soil depth rejected 

In many cases, healthy plant growth is not dependent on the existence of an impeding 

layer ( e.g., fragipan), but more on its depth. Averaged penetration resistance readings 

will indicate the existence of an impeding layer, but if the layer is deep enough root 

growth will not be hindered. Rhoton and Lindbo (1997) proposed soil depth as an 

indicator of soil quality along with the SQI (2002) . Deep soil is indeed important to the 

roots of plants and plant water relations. However, soil depth changes are difficult to 

detect due to the slow rate of addition or subtraction of depth. For this reason, soil 

depth does not make a suitable indicator as echoed by Schoenholtz et al. (2000), 

Soil texture and depth are properties that would change little through time for 

a given soil, and so they would not be very useful for assessing management 

effects (criteria 3) . 

So soil depth makes a good indicator of processes that have already occurred on a site, 

but does not make a good indicator f?r tracking the soil quality of a site because it 

changes too slowly. 

Bulle density rejected 

One of the easiest soil physical measurements. is bulk density. · Bulk density is an indirect · 

measure of soil porosity, which controls soil water and air relations. The measured bulk 

density values showed very little response to management (Table 6), and bulk density 

was rejected as an indicator because it is not very sensitive to management differences 

and not very predictive of site health. 

Table 6: Bulk density 

Depth/Crop AG s SC SW 

15 1.67 (.02)b 1.62 (.03)ab 1.60 (.03)a 1.67 (.02)ab 
1.59 (.04)a 1.59 (.03)a 1.51 (.03)a 1.54 (.04)a 

Total 1.63(.02)b 1.60(.02)ab 1.55(.02)a 1.60(.02)ab 
Values reported in g/cm3

• Mean standard errors in paren_theses. Within each depth, values with 
the same letter do not differ at a = .05. 
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As an example, Mckyes (1989) states that the optimum bulk density for silage corn 

growth depends on whether it is a wet or dry year. A similar observation was made by 

Bicki and Siemens (1991) . The effect of compaction depends on the soil, crop, water 

content, weather, etc. 

Additionally, Franzleubbers (2002) showed the high correlation between organic matter 

and bulk density (r2 = 0.82) . Based on this fact, bulk density can be roughly 

approximated through organic matter measurements, all else being equal. 

Infiltration rate rejected 

Difficulties in measuring infiltration rate exclude .it as a soil quality indicator (criteria 2) . 

Once again, roots were the culprit. The sweetgum tree treatments showed much higher 

infiltration rates than the agricultural and switchgrass treatments (Table 7), but this 

effect occured because the ring infiltrometers could not be properly seated into the soil 

full of woody tree roots (see Figure 12) . Infiltration rate may make a good soil quality 

indicator for comparisons between annual crops without dense roots, but not for tree 

crops with their hard roots. Soil crusts can also lead to false and/ or highly variable readings 

for soil water movement parameters (Hussen and Warrick, 1993; Logsdon and Jaynes, 1993). 

The high variability of infiltration rate measurements (see the mean std. errors of Table 7) also 

makes.the number of sample� required to detect differences prohibitively high. The high 

variability of field infiltration rate measurements is mirrored by more controlled laboratory 

readings of hydraulic conductivity (2). In comparing widely different land uses, Schipper and 

Sparling (2000) state that, 

Unsaturated hydraulic conductivity had a CV of 48% and, on average, would need 

147 samples from each site to be confident of detecting a 10% change in the mean . 

Table 7: Infiltration rate 

Cro AG S SC SW 
Infiltration rate (emfs) 0.45 (.07) a 1.24 0.37 b 1.11 0.25) b 0.45 0.10) a 
Mean standard errors in parentheses. Within each depth, values with the same letter do not 
differ at a = .05. 

p 
( ) ( ( 
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Available water content rejected 

A soil's water storage capacity is just as important to soil quality as the speed at which 

water can flow through a soil. Available water content could make a good indicator for 

this reason, were it not for the difficulty in measuring this value. Days are required to 

carefully set up and monitor the draining of a soil as increasing tension is applied (SSSA, 

1994a) . The labor-intensive nature of this measurement makes it unattractive for 

extensive land use studies examining soil quality (criteria 2) . 

Extractable nutrients rejected 

Many farmers make good use of soil nutrient analyses, and these analyses are useful in 

scheduling fertilization and liming to maintain healthy soil. Unfortunately, extractable 

nutrient levels do not make good indicators in most agricultural situations because they 

reflect the previous year's fertilization more than the true health of the soil (criteria 1). 

The persistence of fertilizer nutrients in soil has been studied through the use of 

radioactively labeled fertilizers. Table 8 displays the percentage of applied nitrogen 

remaining in the soil one year after fertilization for a number of labeled-fertilizer studies. 

Table 8: Fertilizer persistence in soil 

Crop % nutrient Fertilizer and rate Reference 

remaining 

after one year 

Ryegrass 40 Nitrogen-various Cooksori et al. (2001) 

Corn 16-40 Nitrogen-180 kg ha-1 Sen Tran and Giroux (1998) 

Barley 30 Nitrogen-various Glendining et al. (1997) 

Winter Wheat 24 Nitrogen-various MacDonald et al. (1997) 

Oilseed rape 29 Nitrogen-various MacDonald et al. (1997) 

Sugarbeet 25 Nitrogen-various Mac Donald et al. (1997) 

Potatoes 21 Nitrogen-various MacDonald et al. (1997) 

Spring Beans 49 Nitrogen-various MacDonald et al. (1997) 

Wheat 55 % after four years Nitrogen-various Hart et al. (1993) 
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Stecker and Brown (2001) found that year-old phosphorous fertilizer bands contained 35 

times more extractable phosphorous than the bulk soil, and that after seven years 

phosphorous bands were still detectable in the soil. The persistence of fertilizers make 

the use of extractable nutrients as an indicator difficult. 

The linkage between fertilization and nutrient levels was observed in the land use study 

as evidenced by tables 9-11. The higher �evels of lime (2 t ac-1 vs. 0) and K added to the 

agricultural plot are evidenced by its more positive change in Ca, Mg and K levels. 

Nitrogen and phosphorous levels are not reported because different analysis methods 

were used in 1995 and 2002, making comparisons impossible. 

Fertilization had no significant impact on tree growth, based on measurement of fertilized 

trees within the bermed plots and unfertilized trees around the perimeter of the plots. 

These data are shown in figure 1 0. The lack of response to fertilization indicates that 

fertilization of the trees was unnecessary and perhaps only added to off-site nutrient 

movement. The fertilizer may �ave been needed had the trees grown at the rate expected 

of them when the plantation was established. 

Table 9: Calcium changes 

AG s SC SW 

1995 2002 � 1995 2002 � 1995 2002 � 1995 2002 � 

5 cm 510 1300 790 610 510 -100 630 470 -160 650 450 -200 

(80) (140) (40) (60) (60) (70) (40) (70) 

15 cm 580 810 230 710 640 -70 570 580 10 700 650 -50 

(70) (80) (30) (40) (80) (30) (20) (50) 

30 cm 670 580 -90 690 580 -110 590 580 -10 720 700 -20 

(60) (50) (50) (30) (70) (20) (40) (40) 

Total 590 900 310 670 580 -90 600 560 -40 690 600 -90 

MSE (40) (100) (20) (30) (40) (20) (20) (40) 

LSD 
a a ab b a b b b 

Values reported in ppm. Mean standard errors in parentheses. Within each year, values with the 
same letter do not differ at a = .05. 
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Table 10: Potassium changes 

AG s SC SW 

1995 2002 .6. 1995 2002 .6. 1995 2002 .6. 1995 2002 .6. 

5 cm 125 135 10 110 78 -32 77 93 16 166 40 -126 

(23) (8) (15) (8) (19) (3) (27) (4) 

15 cm 75 98 23 63 48 -15 43 71 28 57 36 -21 
,· 

(20) (12) (14) (4) (8) (16) (4) (3) 

30 cm 37 72 35 45 38 -7 37 43 6 31 36 5 

(5) (10) (13) (3) (8) (3) (2) (2) 

Total 79 101 22 73 55 -18 53 64 11 85 38 -47 

MSE (12) (9) (9) (4) (8) (7) (14) (2) 

LSD ab a ab b b b a C 

Values reported in ppm. Mean standard errors in parentheses. Within each year, values with the 
same letter do not differ at a = .05. 

Table 11: Magnesium changes 

AG s SC SW 

1995 2002 .6. 1995 2002 .6. 1995 2002 .6. 1995 2002 .6. 

5 cm 93 123 30 111 95 -16 107 106 -1 109 .. 62 -47 

(5) (8) (7) (10) (5) (7) (6) (5) 

15 cm 101 98 -3 115 86 -29 107 87 -20 104 67 -37 

(8) (7) (10) (8) (8) (5) (3) (4) 

30 cm 121 111 -10 131 88 -43 114 100 -14 116 82 -44 

(13) (11) (10) (7) (8) (6) (5) (4) 

Total 105(6) 111 6 119 90 -29 109 % -13 110 70 -40 

LSD a (6) (5) (5) (4) (4) (3) (3) 

MSE a b b ab b ab C 

Values reported in ppm. Mean standard errors in parentheses. Within each year, values wjth the 
same letter do not differ at a = .05. 
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Figure 10: Effect of fertilization on tree growth 

Bars represent mean standard error. No differences significant at a = .05. 

pH rejected 

The results from soil pH measurements taken at plantation establishment and in 2002 are 

summarized in table 12. The 2 t ac-1 of lime applied to the agricultural plot in 1999 did not 

increase the pH of the AG treatment above that of the bioenergy crops. Due to the unequal 

liming applied to the plots, little can be inferred from the data, other than that pH levels 

dropped for all treatments, and that the agricultural treatment pH decline would likely have 

been more severe than the bioenergy crop pH decline had the liming not occurred. 

Soil pH level has been proposed as a soil quality indicator but, once again, soil pH is more 

indicative of liming history than of soil quality trends and is therefore rejected ( criteria 1 ). The 

effects of liming upon pH can persist for decades as shown by Peters et al. (1996). However, 

in cases where liming history is identical or pH differences due to liming can be accurately 

accounted for, the use of soil pH might be a more useful indicator. 

5 

3-I----- -

-+-Fert. 
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Table 12: pH changes 

Crop AG s SC SW 

1995 2002 a 1995 2002 a 1995 2002 a 1995 2002 A 

15 5.62 5.18 -.44 5.69 5.15 -.54 5.68 4.96 -.72 5.64 5.m -.61 

(.13) (.10) (.07) (.08) (.09) (.05) (.08) (.04) 

30 5.83 5.22 -.61 5.86 5.19 -.67 5.55 5.08 -.47 5.81 5.05 -.76 

(.11) (.12) (.10) (.09) (.11) (.08) (.09) (.08) 

Total 5.70 5.20 -.50 5.76 5.17 -.59 5.62 5.02 -.60 5.71 5.04 -.67 
(.CY7) (.08) a LSD (.05) (.06) a (.06) (.05) a (.05) (.04) a 

a 
group a a a a a a a 

Mean standard errors in parentheses. Within each year, values with the same letter do not differ 
at a = .05. 

Biological indicators rejected 

Biological indicators are very sensitive barometers of soil quality, as described by Rice et al 

(1996), who state, 

Because of its rapid turnover, microbial biomass is a sensitive indicator of changes in 

climate, tillage systems, crop rotations and pollutant toxicity. 

Studies examining land-use change have shown increased populations and activities of soil 

microorganisms after agricultural land is converted to forestry or pasture use. Indicators 

affected include respiration rate, microbial biomass and a suite of measured soil enzymes 

Gimenez et al, 2002; Schipper and Sparling, 2000). Sparling et al. (2000) showed that microbial 

carbon levels and respiration rate also differed significantly across three different soils in the 

order forest>pasture>plantation>arable. These results indicate the larger and more active 

microbial populations under land uses similar to herbaceous and woody bioenergy crops. 

Indicators can be too sensitive, however. Most biological measures of soil health are also 

affected by rail\. recent plowing, and other factors not of interest when studying the longer

term effects of differing land uses. Some examples of factors that strongly influence soil 

biological properties are temperature (Yang et al, 2002; Bekku et al., 2003), moisture (Yang et 

al., 2002), and fertilization (Fisk and Fahey, 2001; Priess and Foister, 2001 ). Besides varying 

temporally, biological indicators have very high spatial variability (Parkin, 1 �93). This 

often makes it necessary to take a large number of samples in order to precisely 
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determine values for biological indicators. These complicating circumstances make the use 

of biological indicators very difficult for soil quality monitoring purposes ( criteria 1 ). 

Moreoever, soil biological characteristics are often closely linked to organic matter levels. For 

example, in an old-field succession study, Zak et al. (1990) found a strong relationship 

between soil organic matter and microbial biomass (r= .87). Management changes such as 

conversion to no-till agriculture or addition of manure can cause measurable �erences in 

soil organic matter within three to four years, and the biological activity of soil is often closely 

linked to this organic matter, so organic matter level should be able to roughly approximate 

these biological indicators in the longer term (criteria 5). 

Nonetheless, the soil enzyme activities measured at the study site showed good separation 

between the treabnents, though the data are puzzling. As expected, the AG treabnent had the 

lowest activity at the 5 cm depth, as seen in table 13. But at the 15 cm depth, the AG treabnent 

outperformed lx>th tree treabnents, possibly due to SOM incorporation from tillage that did 

not occur to the trees whose SOM profile was more stratified. Also, the switch.grass treabnent 

had the highest activity at the 15 cm depth, but the lowest at 30 cm, where switch.grass would 

be expected to promote glucosidase activity through the turnover of its large and labile root 

mass. Further sampling for enzyme activity will obviously be necessary in order to fully 

understand the SOM turnover processes occurring under each treatment 

Two of the Soil Quality Institute (2002) indicators, erosion rate and organic matter level, 

explain a large proportion of a soil's quality (Toy Foster and Renard, 2002; Swift, 2001) . 

Table 13: Soil Beta-glucosidase activity 

Depth AG s SC SW 

5 cm 43.5(3.l)a 54.1 (2.0)ab 64.4(3.9)c 63.2(4.2)bc 
· 15 cm 30.7(1.2)b 26.6(0.7)a 29.8(1 .2)b 40.3(1 .S)c 
30 cm 17.2(0.S)ab 20.3(1.4)bc 21 .4(0.S)c 14.3(1 .3)a 
Measured in µg p-nitrophenol produced g soil·1 hr1

· Mean standard errors in parentheses. 
Within each depth, values with the same letter do not differ at a = .05. 

I I I I 
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The following section details the reasons that these two indicators were chosen as most 

app�cable. Each of the specific criteria-passing statements are followed by the number 

of the selection criteria met in parentheses. 

Erosion accepted 

The RUSLE-modelled erosion rates showed very high sensitivity to treatment 

differences and can be seen in table 14. As expected, the rates for the eroded and forest 

reference soils effectively bracketed the values for the bioenergy and agricultural plots. 

The values for the __ agricultural plot (AG) varied on a four year cycle because of the four 

year cropping sequence utilized. The values for the tree plots were high in the initial 

year when soil cover was minimal, but declined roughly exponentially until they 

approached the value found for the forest plot as the trees captured the site. The trees 

with fescue cover (SC) reached this value more quickly than the trees without (S) due to 

the soil covering and stabilizing effects of the cover crop. The switchgrass (SW) 

followed a similar pattern to the trees as time progressed, but did not match the low 

erosion rate of the trees in the later years because of the modelled assumption that it did 

not establish a vigorous stand. 

The modelled erosion rates for agricultural soils were compared to the USDA T value, which 

is defined as, "the maximum level of soil erosion that will permit a high level of crop 

productivity to be sustained economically and indefinitely." (Wischmeier and Smith, 1978) 

These values were set at a series of workshops in the early 1960's. T values range from 2 

Table 14: Modelled erosion rates 

1996 1997 1998 1999 2000 2001 2002 Average 
ER 68.44 68.44 68.44 68.44 68.44 68.44 68.44 68.44 
AG 36.42 15.43 23.19 9.72 36.42 15.43 23.19 22.83 
s 56.74 27.78 10.86 6.02 3.74 0.58 0.13 15.12 
SC 17.79 5.80 1.77 0.31 0.09 0.04 0.04 3.69 
SW 22.66 6.88 4.19 4.19 4.19 4.19 4.19 7.21 
FOR 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
Values reported in tons ac-1 yr1. 
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ton ac-1 yr-1 for fragile soils to 5 ton ac-1 yr-1 for soils not readily damaged by erosion 

(McCormack et al., 1982). The value for the site soils is 5 ton ac-1 yr-1 (Nyakatawa et al., 

1999) . The reference sites were markedly above and below T, as expected. The 

agricultural site allowed more than quadruple T, indicating that if agricultural 

production continues, it should be carried out using more conservation-oriented 

practices. 

Of the bioenergy treatments, only the SC treatment allowed an erosion rate lower 

than T when averaged over the entire life of the plantation. The average erosion rates 

for the other two treatments were above T, due to the very high amount of erosion 

allowed during the initial two years of plantation establishment. If the plantation is 

allowed to continue growing, the average erosion rate on the switchgrass treatment will 

fall below T 26 years after establishment, and the sweetgum w / o cover will fall below T 

16 years after establishment, assuming that the future rate is equal to the last modelled 

rate reported in table 15. 

Erosion was chosen as an indicator because of its dominating influence on soil quality 

and its sensitivity to land use differences as shown through this study (table lS) (criteria 

1). Toy, Foster, and Renard _(2002) state in their overview of soil erosion that, 

According to the USDA, NRCS, soil erosion continues to threaten the 

productive capacity of nearly one-third of the cropland and at least one-fifth of 

all rangeland in the United States. Soil erosion reduces crop yields by reducing 

soil organic matter, water-holding capacity, rooting depth, and the availability of 

plant nutrients, as well as degrading soil structure and altering the soil texture. 

The loss of soil quality after topsoil removal was succinctly shown through a study by 

Hart et al. (1999) which showed marked decreases in all soil quality indicators after 

removal of the top 30 cm of a pasture soil to replicate erosion. 

American agronomists have taken a keen interest in the prevention of erosion because of 

its destructive effect on the land. Researchers and extension agents understand the 

.. .. , 



47 

harm that comes from soil erosion, and will readily subscribe to its use in the 

measurement of soil quality due to the ease of its estimation through models such as the 

Revised Universal Soil Loss Equation (RUSLE) (criteria 2) . In a study by Romig et al. 

(1995), farmers were asked to rank soil and plant properties according to their 

importance to healthy land. Erosion was ranked third, behind only organic matter and 

crop appearance. 

Researchers and land managers can compare these modeled erosion rates for different 

management practices with their current practice serving as an effective baseline value 

for future management decisions (criteria 4) . 

The measurement or prediction of soil erosion rate changes due to land use will not be a 

redundant exercise, because even though erosion is highly correlated to other soil 

indicators, it is generally the cause of change and not the effect (criteria 5) . Humphreys 

and Groth (1999) studied a severely eroded site in Australia and looked at a 

chronosequence of soils. Erosion had a detrimental impact on a multitude of other 

possible soil quality indicators including organic matter, total nitrogen, total 

phosphorous, available potassium, available calcium, and-cation exchange capacity. 

Eroded soil is also less able to support healthy microbial communities (Garcia and 

Hernandez, 1997) . 

Soil organic matter levels are strongly depleted by erosion because it removes the top 

layer of soil that is richest in organic matter. Light organic matter is preferentially 

removed by erosion (Wan and El-Swaify, 1997) . For this reason, soil organic matter 

levels cannot be built up unless erosion is first controlled. Organic matter le:vels will not 

necessarily increase once erosion is stopped, however. Addition of biomass to the soil 

and protection of the biomass from fast breakdown by soil fauna and microbes is also 

necessary for organic matter buildup. For this reason, organic matter levels must also be 

measured in order to more fully understand the health of a soil, so these will be used as 

the second indicator in this study. 
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Organic matter accepted 

The site soil carbon levels are displayed in table 15. Carbon is used as a surrogate for organic 

matter because most organic matter has approximately the same percentage of its weight 

made up of carbon, 56% (Nelson and Sommers, 1982). There were significant differences 

between the carbon contents measured under the various treabnents. The bioenergy 

treabnents all increased soil organic matter levels when compared with the treatment that 

remained in the agricultural treabnent. Most of the SOM increase occurred in the top 5 cm of 

the soil, through the incorporation of residue from the crops. 

Soil organic matter (SOM) levels were chosen as an indicator for the rapid soil quality 

assessment scheme due to the strong response of SOM to treabnent differences and the 

overriding control it has over many other soil quality indicators (crit�ria 1) . Swift (2001) 

states, 

Soil organic matter plays a crucial role in the development and maintenance of 

fertility , principally through the cycling, retention, and supply of plant nutrients and 

in the creation and maintenance of soil structure. 

Studies by Brejda et _al. (2000a, 2000b) chose SOM as the most important soil quality attribute 

in a study of hundreds of soil samples taken in the Northern Mississippi valley, Palouse.and 

Nez Perce prairies, Central High Plains, and Southern High Plains. The samples were 

analyzed for a suite of 20 soil quality attributes using factor and discriminant analyses to find 

the indicators most sensitive to land use. Between four and six indicators were chosen for 

each area, but the only soil quality indicator that displayed significant sensitivity to land use in 

every area was SOM. 
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Table 15: 2002 Soil carbon levels 

Depth ER 
5 cm 0.71(.03)a 
15 cm 0.54(.03)a 
30 cm 0.27(.02)a 

Depth AG 
5 cm 0.76 (.03)a 
15 cm 0.65(.0l)a 
30 cm 0.33(.02)ab 

s 

Depth Top Upper Middle Lower Bottom Total 
5 cm 0.94 (.07) 1.10 (.04) 1 .02 (.07) 0.97 (.07) 1 .08 (.06) 1 .02(.03)b 
15 cm 0.58 (.02) 0.65 (.02) 0.71 (.02) 0.68 (.02) 0.72 (.02) 0.67(.0l)a 
30 cm 0.34 (.04) 0.35 (.02) 0.35 (.03) 0.48 (.04) 0.47 (.06) 0.40(.02)b 

SC 

Depth Top Upper Middle Lower Bottom Total 
5 cm 1 .18 (.13) 1.14 (.10) 1 .05 (.05) 1 .24 (.05) 1 .20 (.10) 1.16(.04)b 
15 cm 0.66 (.04) 0.68 (.02) 0.73 (.02) 0.75 (.02) 0.77 (.04) 0.72(.0l)a 
30 cm 0.32 (.05) 0.35 (.04) 0.61 (.06) 0.63 (.04) 0.50 (.06) 0.48(.03)c 

SW 
Depth Top Upper Middle Lower Bottom Total 
5 cm 1.17 (.10) 1.13 (.06) 1 .06 (.10) 1.32 (.07) 1 .09 (.06) 1 .15(.0S)b 
15 cm 0.71 (.01) 0.70 (.02) 0.70 (.03) 0.69 (.01) 0.67 (.04) 0.69(.0l)a 
30 cm 0.37 (.02) 0.38 (.04) 0.36 (.04) 0.29 (.03) 0.42 (.03) 0.36(.02)ab 

- Depth FOR 
5 cm 2.57(.22)c 
15 cm 1 .38(.19)b 
30 cm 0.92(.07)d 
Values reported in % carbon by mass. Mean standard errors in parentheses. Within each depth, 
values with the same letter do not differ at a = .05. 

I I 

I I 
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SOM levels are an attractive indicator choice for land use researchers because of the 

large amount of SOM data from experiments done under many different land uses, 

climates, and soil types (criteria 2) . Reeves (1997) states that, "Soil organic carbon (SOC) is 

the most consistently reported soil attribute from long-term studies." The usefulness of SOM 

data is being utilized by scientists in the LTER network who made the study of, "patterns and 

control of organic accumulation in surface layers and substrate in relation to time or natural 

and induced stresses or disturbances." one of their five core research areas (LTER, 2003). The 

relative ease of measuring soil organic matter levels also makes their inclusion in soil quality 

frameworks desirable (criteria 2). 

Soil organic matter responds to management changes over the medium/long-term, and 

will thus be useful for determining the effects of land use change over this time frame 

(criteria 3) . Management changes such as switching to no-till or addition of organic 

amendments like manure will not produce measurable gains � soil organic matter for 

the first few years, and hence are not overly sensitive to short-term changes. If the 

management change is made permanent, however, the soil organic matter level is likely 

to respond and differences will be apparent after a period of five to twenty years if the 

soil organic matter equilibrium has indeed been changed. (Hansen, 1993; Bruce et al., 

1990, Vance, 2000) 

A change in organic matter level will oniy be noticed by a �esearchers and landowners if 

a baseline value is recorded before a change in management. As noted previously, SOM 

levels are the most common soil quality measurement and baseline information will be 

widely available (Reeves, 1997; LTER, 2003) (criteria 4) . 

Many soil testing labs measure and report organic matter level because, though it is 

correlated to many other measured soil indicators, it is usually the cause of changes and 

not the result (criteria 5). Guerra (1994) took samples from eroded and uneroded fields 

in Sussex, UK, and subjected them to 50-100 year rainfall events on a rainfall simulator. 

After the treatments, the soils were tested for many parameters, and the relationships 

• 
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between them were indicated by a correlation coefficient. With the exception of erosion, 

none of the soil indicators could have affected the organic matter level in an appreciable 

way; rather, the organic matter level drove the relationships between the parameters 

measured. 

Once it was decided to use SOM levels as ·an indicator, ·more careful thought concerning 

exactly how to measure SOM was needed because, 

Attempting to hoard as much organic matter as possible in the soil, like a miser 

hoarding gold, is not the correct answer. Organic matter functions mainly as it is 

decayed and destroyed. Its value lies in its d�c nature. A soil is more productive 

as more organic matter is regularly destroyed and its simpler constituents made 

usable during the growing season. Its mere presence in the soil is of value during 

certain stages of decay, when it influences soil structure and water relations and when 

it functions in holding plant food in readily available form much more effectively than 

does any mineral fraction of the soil. The objective should be to have a steady supply 

of organic matter undergoing these processes for the benefit of the growing crop. 

(Albrecht, 1938) 

A healthy soil should therefore not just have a high organic matter level, but also have a fairly 

high input and turnover rate of fresh organic matter in order to supply nutrition to the soil 

microorganisms and growing plants. Albrecht (1938) recognized the function of two different 

fractions, and more recent research such as Garten and Wullschleger (2000) have linked these 

functions to physically separable components. Other research teams have separated the 

"active" SOM from the "inert" SOM by water dissolution (Martens and Frankenberger, 1992) 

or dissolution by weak oxidants (Bell et al., 1999). Some researchers have divided soil organic 

matter into five or more fractions; but the two-fraction model provides the clearest 

classification of organic matter pools because of its simplicity, and is the most commonly used 

(Tisdall and Oades, 1982; Carter and Stewart, 1996) (fable 16). 

The more active pool of organic matter responds much more rapidly to environmental factors 

than the recalcitrant pool, and makes a sensitive indicator of soil quality (Ma et al., 2000; 
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Table 16: Soil organic matter fractions 

Active Inert 

Alternative names labile recalcitrant, inactive 

Function nutrient cycling, food source for soil structure, cation exchange, 

microorganisms carbon sequestration 

Form organic debris, �bohydrates, exudates, humic substances, carbonates, 

soil microorganisms strongly sorbed to clay particles 

Turnover time �S years 50+ years 

Guggenberger and 2.ech, 1999). However, many soil studies remove the most "active" 

portion of the soil 1:x:fore sampling. These studies scraped away th� 0 laye� �fqre sampling 

the mineral soil (Wang et al., 2003). By doing so, the layer most responsible for adding 

nutrients, increasing organic matter, and building soil structure is not included in the analysis 

of the soil. In a study of a re-establishing forest, Richter et al., (1999) found that the trees 

accounted for 80% of the site carbon accumulation, the litter 20%, and the mineral soil <1 %. 

SOM changes would not be detected at this site if the O layer was scraped away. 

In land use studies, the reasoning behind exclusion of the O layer is that if the soil is removed 

from a use which promotes O layer buildup (e.g., forest or prairie) and put in a tilled syste� 

the O layer will quickly disappear (Mann, 1986). In order to take advantage of the importance 

of " active" organic matter, this thesis will include the O layer carbon with the mineral SOM. 

Formulation of scheme 

Erosion rate and soil organic matter level were the chosen indicators based on their high 

degree of control over soil quality and ease of measurement. A low erosion rate and 

high soil organic matter level are both necessary for a soil to be truly healthy. 

Different climates and soil types can have vastly different potentials for erosion and soil 

organic matter storage. Thus, the soil quality framework must be scaled to particular 

locations in order to make the framework uniformly applicable everywhere. This 

concept was utilized by Mausbach and Seybold (1998) as shown by figure 3. 
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This thesis takes the sufficiency curve concept one step further by analyzing the worst 

and best soils that can be found in an area to set the upper and lower bounds of erosion · 

rate and soil organic matter level, rather than assuming these bounds. All possible land 

use treatments will then score somewhere between these two extremes, valued between 

one and zero. In so doing, local effects upon soil quality are automatically factored into 

the final score. Rather than try to model why different sites respond differently to 

similar land use changes using soil texture, climate, rainfall, and other measurements, 

the proposed method factors out all of these differences by local scaling. This method is 

appropriate where soil quality results due to land use change are being studied rather 

than the processes forcing the change. 

The choice of reference values will obviously greatly affect the results obtained when 

land uses are scaled between them. The reference values should be chosen so as to 

reflect the goals for the land. If the goal is for the land to closely approximate the state of 

a virgin forest, a virgin forest should be chosen for the upper bound. If a more realistic 

goal, such as the restoration of degraded soil to match that of an older no-till plot or 

pasture is chosen, one of these areas should be chosen as the upper bound. Similar 

considerations apply to the choice of the lower bound. 

In order to make overall comparisons between land uses these two scaled indicator 

scores must be combined into a final soil quality score. Previous "final score" 

frameworks have utilized a summation to compute this value. The system formulated 

in this research improves upon this by using a multiplication function instead. A 

multiplication function is necessary to capture this relationship, because if either 

indicator proved to be very poor, a low soil quality score would occur. Soil that is 

gaining organic matter but quickly eroding is not truly healthy. This truth is reflected in 

a multiplication function, but not an addition function. The scaling and multiplication 

steps are exemplified in the theoretical sites of table 17. 
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Table 17: Example of scaled soil quality framework 

Land use Erosion prevention score Soil organic matter score Overall score 

Most degraded 0 0 0 
Possible treatment A .23 .41 .094 
Possible treatment B .45 .34 .154 
Mature forest/ prairie 1 1 1 

The utility of this multiplication function is enhanced by the time-scale differences 

between soil organic matter and erosion rate changes due to land conversion. Soon after 

degraded land is converted to more environmentally friendly use, such as a pasture or a 

bioenergy plantation, erosion will be decreased, yielding a higher soil q�ality score. 

Later, erosion rate becomes insufficient to detect soil quality differences between 

treatments that have essentially halted erosion. At this time, soil organic matter level 

differences will begin to be seen between treatments (Hansen, 1993), because soil organic 

matter levels respond more slowly to treatment than do erosion rates. In this way, 

erosion differences control most of the soil quality score differences early in the land 

conversion process, but soil organic matter level differences control most of the score 

differences later in the process. The entire soil quality measurement process used in this 

project is detailed in figure 11. The broad statement of soil quality was refined until a 

simple measure that would quickly and easily quantify soil quality was found. 

Comparison of treatments at site based on scheme 

The soil quality model formulated in the previous chapter was applied to the data from 

the Alabama A&M field bioenergy trial. This study was done to determine whether 

bioenergy crops can be used to restore degraded agricultural lands. 

Erosion modelling results 

Erosion was visibly reduced in the bioenergy plots compared to the agricultural plot, 

where rills were often visible. A litter layer formed under the trees after the third year 

and remained in place throughout the remainder of the study. The switchgrass was 

slow to capture the site, but reached capacity by the end of the second year. The 

extensive rooting system of the grass was visible to a depth of 0.5 m when exposed with 
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a backhoe. The erosion-reducing root system of a sweetgum at the edge of one of the 

plots can be seen in figure 12. 

The values for the RUSLE-modelled erosion rates are given by table 18, along with the values 

for the best and worst case scenario sites. A score of one represents the worst possible erosion 

and a score of zero represents negligible erosion The best and worst case scenario C factor 

values were assigned scores of one and zero, respectively, and the other scores scaled in 

between according to the equation: 

Erosion prevention score = (ER - x)/ (ER - FOR). 

Figure 12: Sweetgum holding back erosion 

Table 18: Modelled erosion rates and scores 

Average erosion rate Score 
ER 68.4 0.00 
AG 22.8 0.67 
s 15.1 0.78 
SC 3.6 0.95 
SW 7.2 0.89 
FOR 0.03 1.00 
RUSLE modelled rates given in t ha-1 yrt 
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The erosion values modelled for this site are higher than previously published data. Pimentel 

and Krummel (1987) estimated that erosion under bioenergy crops would be approximately 2 

Mg ha-1 
yr-

1 on a 5% slope, compared to com production with an erosion rate of 21.8 Mg ha-

1
yr-

1 on a 4 % slope. Ranney and Mann (1994) pointed out that this rate for bioenergy crops 

will likely only occur during the two year establishment phase of a short-rotation plantation 

and decrease after the trees establish their root systems and close canopy. The data from this 

study showed an establishment phase of five years for the trees without cover, and three years 

for the trees with cover. 

Soil organic matt�r results 

The initial soil sampling in 1995 showed negligible difference between the soil organic 

matter levels at each plot location, so all differences between treatments in 2002 were 

considered to be due to treatment effects. The soil organic matter ( as represented by soil 

carbon) and litter carbon values for the treatments and best/worst case scenario sites are 

depicted in table 1 9. 

The measured soil carbon levels were converted to weights by combining them with the 

measured bulk density values to generate total soil carbon storage to 30 centimeters of 

soil depth, for both 1995 and 2002 according to the equation: 

Soil carbon mass = B.D. * column length * 100,000,000* 1/1,000,000 * C%/100 
Mg/ha = g/cm3 * cm * cm2/ha * Mg/ g * percent/100. 

The carbon storage in the leaf litter of the tree plots and forest plot was also calculated 

according to the equation: 

Litter carbon mass = dry weight in ring * 40,000 *C%/100 

Mg/ha = kg/ .25m2 * 10,000m2/ha *percent/100. 

By comparing-the 1995 and 2002 total soil carbon storage values, a change in soil carbon 

storage was computed. 
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Table 19: Site carbon changes 

Crop ER AG SW 

Year 2002 1995 2002 a 1995 2002 a 

5 cm soil 5.0(.4) 6.0(.4) 5.0(.4) -.6 5.9(.2) 8.1 (.3) 2.2 

15 cm soil 7.0(.4) 8.6(.4) 7.0(.4) -.1 8.8(.3) 9.0(.1) .2 

30 cm soil 5.2(.7) 8.4(.7) 5.2(.7) -2.0 8.4(.6) 7.1 (.3) -1.3 

Litter 0 0 0 0 0 0 0 

Total 17.2 23.0 17.2 -2.7 23.1 24.2 1 .1 

Crop s SC FOR 

Year 1995 2002 a 1995 2002 a 2002 

5 cm soil 5.4(.2) 7.2(.2) 1 .8 6.2(.4) 8.1 (.3) 1 .9 18.0(6.9) 

15 cm soil 8.9(.3) 8.7(.2) -.2 9.6(.4) 9.3(.2) -.3 18.0(8.5) 

30 cm soil 9.2(.7) 7.8(.4) -1 .4 8.8(.6) 9.3(.6) .5 18.0(5.6) 

Litter 0 4.6(.1) 4.6 0 4.9(.2) 4.9 3.1 (.7) 

Total 23.5 28.3 4.8 24.6 31 .6 7.0 57.1 
All measurements in Mg ha-1. Mean standard errors in parentheses. 
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The total soil/litter carbon storage on the severely degraded site was set to a score of 

zero, and the carbon storage on the forest site was set to a score of one. The treatment 

plots were then scaled in between these two extremes in a manner similar to the scaling 

for the erosion plots. Values of this score are displayed in table 20. 

The hypothesis that bioenergy crops would increase equilibrium soil carbon stocks when 

planted on formerly agricultural lands was tested by Hansen (1993) in the upper Midwest. 

The study sampled soils under hybrid poplar plantations spanning a range of ages and 

adjacent soils still in agricultural use. Results indicated that hybrid poplar plantations in the 

region �dded soil carbon at the rate of 1.6 Mg ha-1yr-
1. This finding was based on 

measurements taken from 10-20 year old plantations that contained approximately 25 Mg ha-1 

more soil carbon to 1 m than nearby agricultural land. Evidence of soil carbon increase after 

cropland conversion to switchgrass was found by Garten and Wullschleger (2000). Total soil 

carbon stocks had increased approximately 12% after a decade of switchgrass production 

The bioenergy crops in this study also increased organic matter stocks, but at a slower rate 

than that found by Hansen (1993) and Garten and Wullschleger (2000). Yearly accumulation 

rates were 0.7Mg ha-1 for sweetgum, and 1.0 Mg ha-1 for sweetgum with fescue cover. The 

increase of SOM under switchgrass was approximately 4 % after seven years. 

Overall score 

The scaled er?sion· and soil organic matter -scores w�re then multiplied to produce the 

overall site h�alth score. The degraded site scored zero and the forest site scored one, by 

definition. The overall site health scores are depicted in table 21. 

Table 20: Soil carbon scores 

Totals Overall Carbon Mp/ha Sufficiency 
ER 17.2 0.00 
AG 20.3 0.08 
s 28.3 0.27 
SW 24.2 0.17 
SC 31.6 0.36 
FOR 57.1 1.00 
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Table 21 : Overall score calculation 

Erosion score SOM score Total score 
ER 0.00 0.00 0.00 

AG 0.67 0.08 0.05 

s 0.78 0.27 0.21 

SC 0.95 0.36 0.34 

SW 0.89 0.17 0.15 

" FOR 1.00 1.00 1 .00 

The bioenergy treatments increased site health based on the soil organic matter-erosion 

measurement scheme, as expected. All of the bioenergy treatments scored at least twice 

as high as the agricultural treatment. The sweetgum with cover (SC) treatment scored 

significantly higher than the other two treatments. The scores show that although 

conversion to· bioenergy crops has improved the health of the soil, the site remains far 

from its po_tential, as exemplified by the forest site. 
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Chapter 4: Conclusions 

The project detailed by this thesis had two goals, and both were met. The first was to 

create a rapid soil quality measurement scheme that is easy to use, sensitive to land use 

change, and applicable over a wide range of -conditions. The second goal was to use the 

scheme to measure soil quality changes after a degraded agricultural plantation was 

converted to bioenergy production. Testing of the .experimental scheme will be 

reviewed first, followed by the results obtained at the Alabama A&M bioenergy 

plantation. 

Robustness of soil quality scheme 

A wide range of indicators were evaluated in order to select only the most valuable for use in 

the soil quality framework. Many indicators published in previous soil quality frameworks 

were rejected because, though they affect soil quality, they present difficulties in measurement 

and interpretation when multiple widely scattered sites are sampled in the same study. 

A few examples will show the type of indicators that are often included despite these 

difficulties. Some indicators, such as available water content, 'require a large invesbnent of 

time and/ or money to measure and are unlikely to see widespread use in land use studies. 

Other indicators, such as bulk density, rarely show a response to management differences and 

provide little information regarding soil quality, as shown by this study (Fig. 6). Yet other 

indicators, such as respiration rate, respond too quickly to factors such as rainfall and 

temperahrre, making their implementation dependent upon circumstantial factors (Parkin, 

1993). Finally, some indicators are so closely related to already measured indicators that their 

inclusion in soil quality schemes is redundant. Soil aggregation closely follows organic matter 

· level in this way (fisdall and Oades, 1982). The results from the field site reinforced the 

decision to reject such indicators in every case. See the results section for a full description of 

the results for rejected indicators. 

The two chosen indicators were scaled between the values measured at two adjacent plots 

representing the practical maximum and minimum soil quality to be encountered locally. 
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This scaling alleviates many of the interpretation difficulties typically encountered when 

attempting to draw broad conclusions about land use effects on soil quality from studies done 

under widely varying site conditions. Rather than modelling the effects of temperature, 

rainfall and soil texture, these factors are automatically included in the framework. The 

concept of scaling based on measured local maximum and minimum values builds upon the 

work of Mausbach and Seybold (1998). 

The new scheme calculated a final score for each treatment by multiplying the scaled scores 

rather than adding them. This scoring system is an improvement over addition-based 

systems because it takes account of the fact that _soils �th only one attribute out of balance can 

be seriously degraded. For example, a soil scoring high in all categories but with zero 

hydraulic conductivity could score highly in an addition system, but not in a multi.plication 

system. 

Most importantly, soil organic matter and erosion rate were the only indicators included in the 

final framework because of the overriding control they exert upon soil quality. These two 

factors directly influence the majority of other possible indicators and are the most useful for 

determining soil quality changes due to land use change. See the results section for a more 

detailed account of the roles that erosion prevention and organic matter addition play in soil 

quality. They interact constructively because erosion rate tracks soil quality advancement 

through the ·early stages of. site restorati� and organic matter level tracks soil quality through 

the latter stages of site restoration 

Erosion changes 

Erosion modelling results show that bioenergy crops and agricultural crops controlled erosion 

to a similar extent during the two establishment years while the trees were small and no litter 

layer was present, and while switchgrass had yet to capture the site (Table 17). From year 

three forward, however, all of the bioenergy crops controlled erosion �uch more effectively 

than did the conventional agriculture. The sweetgum trees with fescue cover (SC) essentially 

allowed zero erosion from year six forward, mimicking the function of the natural forest 



ecosystem The switchgrass reached an equilibrium erosion rate of 4.2 t ac-1 yr1 . These 

reductions in erosion rate are significant and would make a large contribution to reducing 

stream loadings if bioenergy plantations become widespread. 

63 

The ecological benefits of bioenergy crops need not only be confined to large field plantations. 

Smaller plantings can have a substantial impact in soil quality restoration and protection if 

used strategically. The erosion prevention capabilities of short-rotation trees such as hybrid 

pop� have been recognized for over a decade (Kort et al., 1998). Many agricultural 

extension offices advocate the use of tree and grass crops as riparian buffers and erosion 
. . 

control strips. Use of narrow (~15m) riparian strips has been shown to greatly reduce non-

point sediment and nutrient pollution from farms (Lee et al., 2000). 

Agroforestry operations, where woody and conventional crops are planted together, can also 

often take advantage of synergistic environmental relationships between the two crops 

(Young, 1989; Schultz et al., 1995). In these systems, small rows or individual trees are used to 

provide shade, stability and organic matter to a much larger area of crops or pasture. Perhaps 

the slow introduction of farmers to bioenergy crops in this form could be used to give them 

the know-how and confidence to invest in the larger bioenergy plantations necessary to fuel 

dedicated energy facilities. Research into methods of mechanizing such systems has met 

some success and is ongoing. 

The landscape-scale impact of large bioenergy plantations must be carefully considered before 

use. Erosion is much decreased through the use of these crops, and some of this erosion 

prevention is due to the evapotranspiration of water by the high-yielding trees. Local water 

tables have been drawn down by a meter or more by hybrid poplar trees, and this 

consideration should not be dismissed in water-poor areas (Perry et al., 2001). Where water 

availability is not a problem however, bioenergy plantations can make a significant 

contribution to erosion prevention while providing a source of income from marginal land. 
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Organic matter changes 

Bioenergy crops increased the soil organic matter level on the degraded land where they were 

planted. Because only two points in time were sampled for soil organic matter, little can be 

said about the rate of change of this indicator over time at the Alabama A&M site. However, 

starting from similar organic matter levels in 1995, the bioenergy crops added up to 7.0 Mg ha-
1 carbon, while the agricultural plot lost 27 Mg ha-1 carbon The buildup of soil organic matter 

levels accomplished by the bioenergy crops represents a significant increase in the quality of 

the soil, and if allowed to progress could lead to yield improvements in the impoverished soil 

on site and throughout degraded soils of the Southeast However, under the tree crops much 

of the carbon was added in the O layer, and if the site is returned to tilled agricultural 

production, this layer will be quickly mineralized instead of incorporated into the mineral soil 

as humus. 

The sweetgum trees without cover (S) treatment predictably stored less carbon than the trees 

with a fescue cover crop, due to the suppression of understory growth and exposure of bare 

soil. Early weed suppression allowed increased erosion and organic matter breakdown due to 

increased temperature. Lack of biomass input to the soil and erosion during the establishment 

phase did not allow significant organic matter buildup. As recommended by Tolbert et al 

(2000), such systems should only be considered in areas with fierce weed competition that will 

significantly hinder tree growth (}tlalik et al., 2000). Proper site preparation, use of 

noncompetitive cover crops and good timing of planting �an be used to help to augment 

chemical weed control in more environmentally friendly ways (Buhler et al, 1998) . .  

The switchgrass added 1 Mg ha-1 of carbon, mostly in the top 5 cm of soil. It is significant to 

note that soil organic matter was actually lost at the 15-30 cm depth under the switchgrass, 

contradicting the notion that the extensive rooting system of switchgrass is the primary 

contributor to soil organic matter buildup. This effect could also have been caused by surface 

organic matter deposited in the deeper soil layers by tillage in the 1995 samples, and the slow 

establishment of the switchgrass plot Plantations with shorter establishment times have 

shown more rapid accumulations of organic matter (Garten and Wullschleger, 2000) 
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The equilibrium level of organic matter is dictated by this turnover rate. Wet and cool areas 

such as the Northcentral region have much higher soil organic matter levels than the 

Southeast because the tu.mover rate is slower in the North. There exists much degraded land 

in the Southeast due to the speed of soil organic matter decomposition and high erosion 

potential from the region's high rainfall. This degraded soil represents an opportunity for 

reclamation using bioenergy crops, but the upper bound of soil carbon equilibrium level is 

fairly low in comparison to cooler portions of the country. The best areas for soil organic 

matter and soil quality improvement will likely be where the soil is farthest from the natural 

equilibrium level, and this fact was built into the soil quality management system by scaling it 

between the most degraded and healthiest sites nearby. 

As the soil under a land-restoring crop such as switchgrass or trees approaches the natural 

equilibrium value, the soil quality will plateau. Such a point would be a logical time to 

consider returning the land to conventional crop production to utilize the newly healthy and 

profitable soil. In this type of rotation, bioenergy crops would be used as a restorative crop, 

much like cover crops are used in modem farm rotations. Research into the use of sycamores 

as restorative crops was done by Devine . (2002) who found no problems planting into stumps. 

The potential for bioenergy crops to benefit soil quality and the broader environment in this 

way could be very large if and when the biofuels market develops more considerably. 

Implications 

The poor showing of the indicators other than organic matter and erosion rate in the Alabama 

A&M study lends credibility to the concept that a two-indicator soil quality measurement 

scheme can reliably be used to evaluate soil quality and make recommendations for specific 

sites. The scheme presented in this thesis should be applicable when making soil quality 

decisions between different land uses over the medium-term. 

The overall soil quality scores for bioenergy were at least double that of the agricultural 

control treatment, indicating that soil quality at the Alabama A&M site was much improved 

over the seven-year life of the plantation (Fig. 19). The scores for the bioenergy treatments 

were much less than that of the second growth forest, however, indicating that many more 
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years would be necessary in order to restore the site to a completely healthy state. Because the 

beneficial aspects of bioenergy crop production often do not begin until the second to third 

year and improve from there, the longest economically viable rotations should be used so as to 

make best use of the soil quality restoring aspects of these crops. Crops more well-suited to 

site conditions should increase the potential for organic matter additions. 

This scheme only measures soil quality, however. Other environmental considerations, such 

as emissions of COi, nutrient leaching, and wildlife habitat are not included. Previous 

research has shown the advantages of bioenergy crops over conv�tional crops as measured 

by these additional environmental indicators riot included in this.study (Bransby et al., 1998; 

Tolbert et al., 2000; Makeschin, 1994). Measurement of these parameters could be added to 

this model to enable it to more fully depict changes in site health. These considerations were 

not included because the focus of the project was on soil quality as a starting point toward 

overall ecosystem health. 

In order to be truly useful, any environmental model must be employed by the people who 

make policy decisions, in this case regarding land use and energy. Until environmental effects 

are taken into consideratio� bioenergy will have a difficult time penetrating the energy 

market due to econo�c constraints. Simply because electricity generated from coal is cheaper 

than electricity generated from biomass does not make it the better alternative. Only once the 

external environmental costs of fossil fuels and the environmental benefits of bioenergy 

plantations are factored into the decision making process will the truly best decisions be made. 

Research recommendations 

Additional research is necessary in order to determine whether the results fo�d at the 

Alabama A&M site are typical. Most importantly, the scheme formulated in this study must 

be used on other land use studies in order to gauge its effectiveness and refine it. This study 

has shown that rather than instrumenting one site heavily, as was done at the Alabama A&M 

site, future experiments could take more limited measurements (ie., erosion and organic 

matter) at a large number of sites in order to determine the effects of climate, site, and crop on 
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the restorative potential of bioenergy crops. This would allow for more efficient collection of 

useful information 

In order to make the scheme more sensitive, sites more representative of realistic upper and 

lower bounds could be found near the study site and used to recalibrate the system 

Alternatively, the lower bound for erosion rate could be replaced by the RUSLE Tvalue as a 

lower bound for erosion prevention 

Research also must be done in order to determine how long the soil quality improvements 

brought about by the bioenergy crops � last The practical aspects of incorporating such 

crops into conventional agricultural rotations need to be explored before landowners will 

consider incorporating them into the crop rotation Finally, no large scale plantings will ever 

be commercially successful until a profitable method of growing, harvesting, and converting 

the crops to energy is found. The bulk of bioenergy research should be directed to this end. 
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Decatur Series 

The Decatur series consists of very deep, well drained, moderately permeable soils that 
formed in residuum derived from limestone. These soils are on level to strongly sloping 
uplands in valleys. Slopes are dominantly 1 to 10  percent but range up to 25 percent. 
Near the type location the mean annual temperature is 62 degrees F ., and the mean annual 
precipitation is more than 49 inches. 

TAXONOMIC CLASS: Fine, kaolinitic, thermic Rhodie Paleudults 

TYPICAL PEDON: Decatur silt loam, 2 to 6 percent slope, cultivated. (Colors are for 
moist soil unless otherwise noted.) 

Ap--0 to 7 inches; dark reddish brown (5YR 3/2) silt loam, dark reddish gray (5YR 4/2) 
dry; moderate fine granular structur�;friable; few red-coated spherical .. chert fragments; 
few fine roots; moderately acid; gradual wavy boundary. (3 to 9 inches thick) 

Btl--7 to 12  inches; dark reddish brown {2.5YR 3/4) silty clay loam, dark reddish brown 
(2.5YR 4/4) dry; moderate medium and fine subangular blocky structure parting to very 
fine blocky; friable; thin patchy clay films on faces of most medium-sized peds; few soft 
dark concretions; few fine weathered fragments of chert; moderately acid; gradual wavy 
boundary. 

Bt2-- 12  to 20 inches; dark reddish brown (2.5YR 3/4) silty clay loam, dark red (2.5YR 
3/6) crushed; dry soil less than one-half unit of value higher; moderate very coarse 
subangular blocky structure parting to strong very fine blocky; firm; thin continuous 
dusky red ( 1  OR 3/3) clay films on faces of most peds; common fine pores lined with clay; 
few small soft dark concretions; few fine fragments of chert; very strongly acid; diffuse 
wavy boundary. 

Bt3--20 to 45 inches; dusky red (1 OR 3/4) clay, dark red ( lOR 3/6) crushed; dry soil less 
than one-half unit of value higher; moderate very coarse subangular blocky structure 
parting to strong very fine blocky; firm, sticky, plastic; thin continuous dusky red ( l OR 
3/3) clay films on faces of most peds; few small dark concretions; few fine chert 
fragments; very strongly acid; diffuse wavy boundary. 

Bt4--45 to 72 inches; dusky red { lOR 3/4) clay; dark red (1  OR 3/6) crushed; dry soil is 
less than one-half unit of value higher; moderate very coarse subangular blocky structure 
parting to strong very fine blocky; firm, sticky, plastic; thin continuous dusky red (1 OR 
3/3) clay films on faces of most peds; common small dark concretions; few fine 
fragments of chert; very strongly acid; diffuse wavy boundary. 

Bt5--72 to 120 inches; dusky red (1  OR 3/4) clay, dark red (1  OR 3/6) crushed; dry soil less 
than one-half unit of value higher; moderate very fine blocky structure; firm, sticky, 
plastic; thin patchy dusky red { lOR 3/3) clay films on faces of most peds; few small 
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manganese concretions; few fragments of chert; very strongly acid. (Combined thickness 
of the Bt horizon is more than 60 inches thick) 

TYPE LOCATION: Limestone County, Alabama; 0.5 mile west of crossroads at 
Greenbrier and 200 feet north of county paved road in SW1/4SW1/4 sec. 2 1 ,  T. 4 S., R. 3 
w. 

RANGE IN CHARACTERISTICS: Solum thickness is more than 72 inches. The upper 
50 inches of the soil contains less than 10  percent weatherable minerals in the 20 to 200 
micron size. The solum ranges from medium to very strongly acid. Any horizon may 
contain up to 1 0  percent fragments of chert and quartzite pebbles 2 mm to 3 inches in size 
and up to 3 percent fragments over 3 inches. Dark brown to black concretions range from 
few to many in each horizon. 

The A horizon has hue of 5YR or 2.5YR, value of 2 or 3 and chroma of 2 through 4. 
Texture is loam, silt loam, or silty clay loam. Severely eroded pedons have Ap horizons 
of silty clay or clay. 

Some pedons have BA or AB horizons less than 6 inches thick with the same hue, value, 
chroma, and texture range as the A horizon. 

The Bt horizon has hue of 2.5YR or 1 OR, value of 3, and chroma of 4 or 6. Color value of 
the dry soil is less than 1 unit higher than that of the moist soil. Texture in the upper 20 
inches is silty clay loam, silty clay, or clay that contains 35 to 60 percent clay and less 
than 20 percent sand. The lower part of the Bt horizon commonly contains 45 to 60 
percent clay; however, the range includes clay loam below a depth of 60 inches. Structure 
grade is usually moderate but ranges from weak to strong, subangular blocky to blocky. 
In some pedons cherty limestone bedrock is at depths of greater than 6 feet. 

COMPETING SERIES: These are the Anniston and Beckham series in the same 
family, and the Davidson, Greenville, Gwinnett and Lloyd series in closely related 
families. Anniston, Beckham and Greenville soils have more sand in the control section. 
Davidson soils have less clay in the lower Bt horizon. Gwinnett soils have sola less than 
40 inches thick and are deep to paralithic contact. Lloyd soils formed in residuum from 
mafic igneous or high-grade metamorphic rocks and have few to common mica flakes. 
Additionally, Davidson, Greenville, Gwinnett and Lloyd S<Jils have kandic horizons. 

GEOGRAPHIC SETTING: Smooth level to strongly sloping uplands in limestone 
valleys at elevations ranging from about 430 to 1400 feet. Slope ranges from 1 to 25 
percent, but is more commonly 1 to 1 0  percent. The soil formed in old valley fill material 
and residuum weathered from limestone. Limestone bedrock is at depths greater than 6 
feet. The climate is warm and humid. Near the type location the average daily 
temperature is 44 degrees F., for January, and 75 degrees F., for July, the mean annual 
temperature is 62 degrees F. The average freeze-free season is 225 days. The mean 
annual precipitation is more than 49 inches. 
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_GEOGRAPHICALLY ASSOCIATED SOILS: These are the Cumberland, Dewey, 
Fullerton, Minvale, and Talbott series. Cumberland and Talbott soils have base saturation 
greater than 35 percent. Dewey and Fullerton soils have color values of 4 or more in their 
argillic horizons. Minvale soils have less clay and 1 5  to 35 percent fragments throughout 
the solum. 

DRAINAGE AND PERMEABILITY: Well drained. Runoff is medium, and 
permeability is moderate. 

USE AND VEGETATION: Most of the soil is cleared and cropped to soybeans, cotton, 
hay, com, small grain, and tobacco. Some is in pasture and a small amount in pine 
plantations. 

DISTRIBUTION AND EXTENT: Alabama, Georgia, Kentucky, Tennessee, and 
possibly Arkansas. The series is of large extent. 

MLRA OFFICE RESPONSIBLE: Lexington, Kentucky 

- SERIES ESTABLISHED: Greenville Area, Tennessee, 1904. 

REMARKS: The 5/99 revision updates particle size class to fine. Competing series were 
also updated. Laboratory data indicates that kandic horizons commonly occur in areas 
mapped as Decatur and a separate series may need to be developed for these situations. 
The Geographic Setting section allows old alluvium for parent material, but this is not 
considered the main concept for this soil. 

Diagnostic horizons and features recognized in this pedon are: 

Ochric epipedon - the zone from the surface to a depth of 7 inches (A horizon). 

Argillic horizon - the zone from a depth of i inches to a depth of at least 1 20 inches (Bt 
horizons). 

Paleudults great group - do not have a decrease in clay of 20 percent of the maximum 
within 60 inches of the surface. 

Rhodie subgroup - have within the upper 30 inches of the argillic horizon a hue of2.5YR 
or redder, moist value of 3 or less, and dry value no more than 1 unit higher than moist 
value. 

MLRAs: 1 22, 128 

Revised: 1 2/88-CDB,GWH; 5/99-RLL,DHK 
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National Cooperative Soil Survey 
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