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ABSTRACT 

This thesis considers a fluid-structure interaction problem wherein an oscillating airfoil creates 
pressure gradients along the flexible walls in a wind tunnel test celL The walls are constructed of a 
clear acrylic material with relatively low stiffness characteristics, potentially causing adverse effects in 
the flow field and affecting data collection from instrumentation on the walls and in the flow stream. 
The objective is to explore effects of varying pressure distributions along the walls using numerical 
methods for determining the pressure profiles, and to quantify the deflection resulting from this 
pressure loading. A two-dimensional model of the problem reduces computational difficulties, 
although the material properties must be adjusted to maintain structural equivalency in two­
dimensions. Numerical methods for obtaining both static and dynamic data for structural and fluid 
problems are explored, and the results are compared to experimental data for validation. Static CFD 
analyses conducted for fixed airfoil pitch angles are followed by static structural analyses with 
pressure loads from the an solutions. ANSYS® and FLOTRAN® software will be used to pedorm 
finite element analyses. This effort does not seek to provide further understanding of unsteady 
aerodynamic phenomena surrounding an oscillating airfoil, or to study the airfoil's structural 
response to the fluid dynamics. 
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NOMENCLATURE 

VARIABLES 

The following nomenclature applies throughout th.is paper unless otherwise noted locally: 
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St 
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To 
u 
a 
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speed of sound 
denotes absolute value as subscript 
denotes acceleration as subscript 
denotes element as subscript 
energy error 
frequency 
kinetic energy 
number of elements 
denotes node as subscript 
fluid pressure 
denotes pressure as subscript 
denotes reaction as subscript 
unit directions for elemental shape functions, Tables 2 and 5 
time 
nodal displacement in X-direction 
nodal displacement vector 
nodal displacement derivatives (velocity, acceleration} 
nodal displacement in Y-direction or fluid specific volume (usage dictates) 
denotes volume as subscript 
general point displacement 
area 

damping coefficient 
constant pressure specific heat 
constant volume specific heat 
characteristic diameter 
modulus of elasticity 
normaliz.ed energy error 
fon:e 
node identifiers on elements 
stiffness 
length 
mass 

Mach number 
element shape function 
gas-specific constant 
Reyonlds number 
Strouhal number 
fluid temperature 
viscous loss term, i = x, y, z 
total, or stagnation, temperature 
velocity 
pitch angle or transient integration parameter (usage dictates) 
coefficient for maximwn plate deflection 
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8 virtual operator or transient integration parameter (usage dictates) 
& structural strain or fluid dissipation rate (usage dictates) 
y ratio of specific heats 
µ coefficient of viscosity 
� effective viscosity 
J.4 turbulent viscosity 
v kinematic viscosity 
Oz rotation about 2-axis 
p fluid density 
, shear stress 
ro natural.frequency 
i; generic DOF variable 
Y strain energy, or internal work 
c; external work 
'¥ mode shape 

ABBREVIATIONS AND ACRONYMS 

AJ.M 
AH5 
ASCE 
ASME 
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American Institute of Aeronautics and Astronautics 
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PRES 
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TEMP 
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American Society of Gvil Engineers 
American Society of Mechanical Engineers 
Computational Fluid Dynamics 
Degrees of Freedom 
Turbulence dissipation rate output variable for FLUID 141 
Turbulent kinetic energyoutput variable for FLUID141 
Finite Element Mesh 
Fast Fourier Transform 
Fluid-structure Interaction 
Pressure DOF variable, Relative Pressure output variable for FLUIDl 41 
Relaxation Factor 
Rotation variable about the Z-axis 
Temperature output variable for FLUID141 
Displacement variable, X-direction 
Displacement variable, Y-direction 
Velocityvariable, X-direction 
Velocityvariable, Y-direction 
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CHAPTER I 

INTRODUCTION 

C.Omplex engineering problems are now routinely solved using computational finite element 
theories. By discretizing a problem with a Finite Element Mesh (FEM), a computer coded with 
appropriate theoretical formulas and solution algorithms can solve complex problems that in the past 
involved engineering judgment along with large simplification and assumptions. However, finite 
element analysis has not removed all assumptions and judgment from these problems. Engineers 
must now ensure the proper technique, theory, and models are used when perfonning analysis. 
Wrthout caution and care, the results can be �tically different from reality. 

Both structural and fluid problems can be solved using finite element methods. These proble� 
are commonly solved independently. Structures in a flow field are solved as though they were 
contained in a vacuum, free from the damping or other effects of the fluid. Fluid flow proble� are 
solved using C.Omputational Fluid Dynamics (CFO) codes and are often assumed to behave 
independent of the deformations in neighboring structures. Recently, methods have been developed 
to consider these problems in tandem. This development has been driven by the need to gain insight 
into the implications of these assumptions and in other instances by problems that fundamentally 
depend on these interactions. This combined computation is known as a fluid-structure interaction 
(FSI) problem. 

The objective of this work is to explore the effects of varying pressure distributions along the 
walls of a wind tunnel test cell on resulting wall displacement and vibration. The pressure varies 
along the walls as a resuh of a pitching airfoil As the airfoil oscillates, the blockage in the cell is 
altered thereby changing the fluid flow regime's characteristics. The proximity of the test article and 
flow property measurement devices near a tunnel's walls may affect the data collected. If these walls 
are flexible and have significant motion, the effect may become coupled with the adjoining flow field. 
The scope of this work is to compare a numerical method for determining the pressure profile along 
the tunnel walls, and quantify the wall deflection resulting from this pressure loading. The 
experimental set- up includes tunnel walls constructed of a flexible acrylic material The tunnel 
should be modeled in three-dimensions since the airfoil does not travel across the flow field and a 
significant tip effect is present; however, a two-dimensional model of the problem will be developed 
to simplify the CH) problem as a starting point. This simplification introduces difficuhies into the 
structural problem since the walls along the length of the test cell are modeled as beam elements that 
replicate the characteristics of three-dimensional test cell walls. The acrylic properties in the two­
dimensional model must be modified until the beam element results simulate duce-dimensional plate 
deflections, both static and dynamic. Aerodynamic theory defines the fluid conditions, and modal 
analysis defines the vibration characteristics of the test cell walls. ANSYS®, a structural modeling 
software, and FLOTRAN®, a fluid flow solver, will be used to perform the analyses of the 
interaction of an airfoil disturbance flow field on the wall of an acrylic wind tunnel model Methods 
of obtaining both static and dynamic numerical results are explored, and results are compared to 
experimental data 

The purpose of this effort is not to provide further understanding of unsteady aerodynamic 
phenomena surrounding an oscillating airfoil, or to study the airfoil's response to the fluid and the 
deformed walls. Although some insight may be gained during analysis, results from actual 
experimentation and other researcher's work on oscillating airfoils will be used to gauge the validity 
of CFO results in this work. 
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CHAPTER II  
L ITERATURE REVIEW 

FLUID-STRUCTURE INTERACTION 
A review of recent literature from journals like the Journal of Fl11ids and Structures� Computers 

and Structures, Journal of Biomechanics, Nuclear Engineering and Design, and numerous other 
technical journals on finite numerical methods, as well as publications from techrucal societies like 
A5ME, AI.AA, ASCE, .AH5, and ASC Structures, revealed many distinctive methods and applications 
for FSI analysis. 

Two general areas of application are structures in fluid and structures containing fluid. Examples 
of mechanical structures in a fluid include airframes, ships and submarines, breakwaters, buildings, 
bridges, cables, and submerged drive shafts. Structures containing fluid include pipeline systems and 
water hammer, blood vessels and the heart, human's inner ear, nuclear reactors, sloshing in storage 
tanks, and acoustical cavities such as automobiles and aircraft. 

Robert Kroyer has studied aerodynamic control swfaces at high Mach numbers in order to 
determine aeroclastic instability effects in two dimensions [ 1 1]. RJ. Zwaan and B.B. Prananta 
developed a method for fluid-structure application to aircraft in transonic flow, both two- and three­
dimensional [2 1]. Other researchers have developed techniques and for coupling the structure and 
fluid, meshing alternatives, and theoretical approaches. 

Such a wide variety of application has apparently led industry to seek increasingly robust 
methods for achieving realistic resuhs from simulation. Numerous papers swfaced on the theoretical 
approaches and computational techniques . Theoretical formulations including Lagrangian-Eulerian, 
Newtonian, Petrov-Galerkin, Bubnov-Galerkin, and Navier-Stokes methods and equations are 
among those used to solve fluid-structural problems. Multiple software manufacturers offer 
commercially available codes that utilize these methods, including ADINA® and ANSYS® [1]. 

No research directly related to the scope of this thesis swfaced during the literature review; 
however, papers on the following topics are in some ways related to this study. 

WALL INTERFERENCE CORRECTION 
A well-known drawback to the use of wind tunnels for aerodynamic simulation testing is the 

affect of wall boundaries on a flow field. This affect varies based on several parameters including the 
test article blockage ratio and mean fluid velocity [5]. This thesis considers an experiment in which 
an airfoil oscillates in a wind tunnei thereby changing the blockage ratio constantly in time. & a 
result, wall interferences may change in time, too. The scope of the thesis doesn't include making 
corrections for these interlerences, but a literature review was conducted to gain insight from those 
that have attempted to develop correction factors or formulas. 

Joseph Katz and Robert Walters from the San Diego State University studied the effects of large 
blockages in wind tunnel testing to determine estimations of correction factors when the blockage 
ratio was as large as twenty percent. They discovered "the changes in aerodynamic coefficients with 
increasing test-section blockage are gradual and monotonic [9]." Ching-<liyuan I-king and C 
Edward Lan studied this topic at the University of Kansas. By using a thin-layer Navier-Stokes 
theory in place of the conventional attached flow theory, they developed larger correction factors for 
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models with strong vortex flow in low-speed flows, Mach 0.3. Their method "shows consistent 
corrected results for different model sizes," suggesting the results may be applied to models other 
than the deka wing used in their experimentation [ 6 ]. C.F. Lo also investigated tunnel interlerence by 
conducting an analytic assessment of two-dimensional wind-tunnel wall interlerence. Analytic 
formulas were derived from solving the Prandtl-Glauert equation for a flow field along two 
streamwise interfaces in a tunnel [12]. 

FLEXIBLE-WALL WIND TUNNELS 

In order to minimize the effects of tunnel walls on a modei flexible surfaces in the test cell have 
been introduced. The acrylic walls of the test cell studied in this thesis are also flexible, but the 
difference in this tunnel and those discovered in literature review was that deformation in other 
flexible tunnel walls could be controlled. In one such case, P. Kankainen et al. from the University 
of Waterloo renovated an open circuit tunnel with an elongated test cell and interchangeable wall and 
floor surfaces. The flexible wall and floor alter entrance flow quality, and allow models with up to 
thirty percent blockage to be tested. This concept "provides interference-free data without flow 
pattern assumptions after a few iterations of the roof and floor shape" according to the authors [8]. 

ANSYS® AND FLOTRAN® AS A GENERAL PURPOSE SOFTWARE FOR FSI 

The ANSYS® finite element program is capable of evaluating a wide range of fluid-structure 
proble� as shown by P.C. Kohnke and C. Rajakwnar [10]. They explored both the pressure­
displacement and displacement-displacement approach. Neither of these methods involves a fluid 
flow. Examples of the pressure-displacement studied by the authors include acoustic pressure 
distribution in a square room, noise suppression in an automobile cabin, dynamics of a cylindrical 
shell submerged in water, and an eigenf requency analysis of a fluid filled cylindrical shell. Examples 
of the displacement-displacement method include a partially filled spinning tank and an 
eigenfrequency analysis of a circular canal. The authms found pressure-displacement formulations 
lead to smaller, albeit unsymmetrical, system matrices. This approach is "more robust in terms of the 
stability of computed solutions (10)." 

Dongwei Shu et al. [15] investigated an application where the fluid was subject to motion. He 
studied a pipe subjected to axial-symmetric pulse loading, a prelude to ''water hammer." Direct­
coupled elements from ANSYS® were used in verification of simplified theoretical models and found 
ANSYS to have "good agreement'' with other models (1 5]. Other researchers have had similar 
success using ANSYS® as a tool for fluid-structure interaction as well, thereby aff inning the choice of 
this software code for the oscillating airfoil analysis. 

AERODYNAMICS OF OSCILLATING AIRFOILS 

While this thesis includes an oscillating airfoil in two dimensions, the scope does not include an 
in-depth study of the aerodynamic problem. Experimental work has been performed by Favier et al. 
[ 4] in F ranee and by Silcox and Szwarc of the University of Notre Dame [ 16]. Silcox and Szwarc 
demonstrated that an NACA 0012 airfoil boundary layer first experiences transition to turbulence 
and a turbulent -wake is formed when an airfoil approaches its stall angle of attack. At the stall angle 
of attack, a completely turbulent boundary layer fanned by the flow remained attached, "indicating 
that the angle of stall had been affected by [the angular velocity]. This effect was studied at 
difference conditions of [angular velocity] and in no case did the flow separate from the airfoil (16)." 
Among their conclusions, Favier et al. also noted the stalling vortex fonnation on the upper side of a 
NACA 0012 airfoil depended on the angular velocity[4]. This airfoil is of a kind used for helicopter 
lift and is similar to the airfoil modeled in this project. 

4 



CHAPTER I I I  

APPROACH 

A wind twmel test cell containing a pitching airloil will be modeled in a two-dimensional plan 
view. The airloil is located directly in the center of a 42in x 14.Sin x 16in test cell. Inlet velocity is 
2038.4in/soc at 0.15Ma. The airloil may be fixed in six pitched positions: 0, 4, 8, 12, 16, and 20 
degrees from the centerline of the test cell. The airloil also may oscillate at these pitch amplitudes up 
to a maximum frequency,/, of 50Hz. Both static and dynamic analyses will be considered. Structural 
modeling of the tunnel walls will be pertormed in ANSYS® while FLO1RAN® will be used to 
pertorm fluid analyses. These programs work together when pertorming coupled analyses. 

Experimental test data will be collected for all six static airloil pitch angles at approximately 
0.15Ma for use in s�state CFD validation. Data will also be collected for dynamic pitch 
oscillations at 10Hz and 20 degrees amplitude with a free stream velocity of 2038.4in/soc for use in 
validation of dynamic numerical analyses. Static pressure will be recorded at the center of the test 
section adjacent to the airloil from Ps-5 at L -21in, and 4in behind the airloil from Ps- 10 at L -25in, 
using multiple static pressure ports mounted vertically along one of the walls. Figure 1 shows these 
positions annotated on a photograph. Total pressure will be recorded with a probe rake from 
positions immediately behind the airtoil in one-inch increments out to the test cell outlet, L =-42i:n. 

STRUCTURAL PROBLEM SETUP AND AsSUMPTIONS 

Airfoil. The airloil has a 4.Sin chord, and is symmetrical much like airloils used for helicopter 
blades. Although this airloil is constructed from aluminum and has hollow sections fore and aft, the 
airloil will be assumed rigid since airloil structural deformations or stresses are of no concern in this 
thesis. The airloil is anchored to the test cell floor on a pivoting rod directly in the center of the 
chord. In order to model the airloil pitch oscillations during dynamic analysis, forced displacement 
load steps will be input onto the front node of the airloil model at each time step starting with a zero 
pitch angle. 

Test Cell Walls. Flow-induced deformations in test cell walls are the focus of this study. The 
data collected in this experiment will be used for validation of a fluid-structure interaction simulation 
code and must be free of all test cell disturbances. Deflections in test cell walls may adversely effect 
the flow field or data collection from instrumentation located on or near the walls. The pitched, or 
pitching, airloil creates transient flow field effects on the walls, and these effects need to be 
quantified since the walls are flexible. Specifically, how will the pressure along the swface of the walls 
be altered due to the airloil position? Tunnel walls are constructed of Acrylite® FF, a clear acrylic 
material with relatively low stiffness compared to most metals. Mechanical properties of Acrylite® 
FF are listed in Table 1. The test cell walls act as a plate constrained by heavy flanges on each end of 
the test cell, and the longitudinal edges are adhered to adjacent top and bottom plates along the 
length of the test cell. The walls are assumed fixed on the inlet and outlet due to the heavy flanges. 
Shear deflection is neglected due to the small height-to-length ratio in the beam model Material 
properties and real constants are assumed constant throughout the structural model and thennal 
effects are not considered. 
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Figure 1: Photograph of Test Cell with Airloil at 0-Degree Pitch 

Table 1 : Mechanical Properties of Acrylite® FF 

Property ASTM Method Typical Value 
Specific Gravity D 792 1 .19 
Tensile Strength D 638 10,000psi 

Modulus of Elasticity D 638 400,000psi 
Compressive Yield Strength D 695 17,000psi 

Rockwell Hardness D 785 M-93 
(courtesy of CYRO Industries) 
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The walls will be modeled as beams in a two-dimensional plan view of the test cell, so the 
properties of tlus acrylic must be modified so that the beam deflections simulate plate deflections. 
Either the beam thickness or modulus of elasticity may be adjusted to force the deformation of a 
beam under static loading to match that of the plate, thus creating static equivalency. The section 
titled Deterrri:mtim <f Equmde,t Stiffness contains a static analysis of the acrylic walls under a constant 
distributed pressure loading to predict a modified modulus of elasticity for use in the two­
dimensional model 

Dynamic equivalency is important for ensuring vibration characteristics of the simplified two­
dimensional structural model responds similarly to the test cell walls. This vibration analysis is 
contained in a section titled Stn«:tura/, Dym,ric Equmde,ry later in tlus chapter, and is performed using 
modal analysis. Modal analysis is part of a vibration analysis and is important for diagnosis, design, 
and control [3]. Essentially, mechanical systems have preferred vibration motions, or mode shapes, 
at frequencies known as resonance frequencies. When mechanical systems are excited, they vibrate at 
these resonance frequencies. If the excitation frequency matches a specific resonance, the system will 
assume its mode shape at that frequency, perhaps yielding destructive results. This analysis 
concludes with the selection of a modified density for use in two-dimensional beam model The 
modified density was set so that the first fundamental frequencies of both the plate and beam would 
be equal. This simulation assumes the first mode of vibration will dominate the wall response. If 
later analysis shows an excitation frequency equal to a higher eigenf requency, the density will be 
adjusted to account for tlus higher mode excitation. The same edge constraints were used from the 
static equivalencyanalysis for both plate and beam models. 

Structural Analysis. Test cell walls will be modeled under steady state and dynamic loading in 
two-dimensions. This two-dimensional approach is highly simplified, but provides a good starting 
point. Ideally, the problem would be modeled in three-dimensions since the experimental setup 
contains an airfoil that does not span the entire test cell from floor to ceiling; however, a two­
dimensional approach was selected due to computational difficulties previously experienced with 
FLOTRAN® in a three-dimensional analysis. Distributed differential pressure loading will be applied 
from the steady-state CFD results to each wall in order to determine static deflections under each 
airfoil pitch angle. Dynamic analysis may proceed in one of three ways, each more complicated than 
the previous: single DOF mass-damper-spring system, full dynamic forced response analysis using 
dynamic GD pressure results, and sequentially coupled FSI analysis. 

A simple, single DOF model of the wall would yield deflections for a given mode of vibration at 
a fixed point on the wall, i.e. the centerline. Equivalent spring stiffness may be obtained from a static 
deflection analysis of the two-dimensional wall under a known load. Structural damping will be 
neglected since it is expected to be negligible. Equivalent mass may be obtained from the equivalent 
density as determined in Appendix B. This model will require equivalent loading, which may be 
applied by reducing the fluid dynamic pressure results from a given pitch angle to a resultant point 
load in teml.5 of any force offset, F o, and maximum force, F mrx, as a function of time. 

F(t, m)= F
0 

+ Fmax sin(m · t) (1) 

ANSYS® contains computational methods for performing a full dynamic structural analysis 
when a forcing function is known. This method uses some of the algorithms already discussed in 
the last chapter for transient analysis and discretiz.ation. Again, dynamic pressure results from each 
pitch angle may be used to establish tlus forcing function. This approach still lacks coupling of the 
structural and fluid solutions. 
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Sequentially coupled FSI analysis is superior to the previous two analysis methods for 
quantifying the dynamic structural defonnation because it does not include the assumption that the 
fluid problem is unaffected bythe structural defonnations as discussed in Cliapter II. 

DETERMINATION OF EQUIVALENT STIFFNESS 

FEM Development. The test cell cross-section was modeled full scale in two-dimensions using 
BEAM3 elements in ANSYS® with a uniform pressure applied to the interior of the test cell. 
BEAM3 elements are discussed in Appendix B. The uniform pressure results in a balanced load 
condition, or no reaction forces. Section A-A in Figure 2 depicts the test section as modeled. The 
maximum displacement of this section, at node � should equal the maximum displacement of a two­
dimensional beam model along section B-B in Figure 2 to ensure static equivalency of the plate wall 
with a two-dimensional beam model This approach assumes the center of the plate behaves as a 
transverse beam from nodes A-CB, which will be explored momentarily. Changing the material's 
modulus of elasticity or its thickness will affect the stiffness, and subsequently the displacement. 
Beam theory will be used in determining the appropriate thickness and/ or modulus of elasticity. 

To illustrate the validity of the previous assumption, consider a fixed plate (representing the side 
wall of the test cell) of length a == 42in and height b == 16m. The ratio of length to height, a/b, is 
2.625. A uniformly loaded plate with all edges fixed, or constrained against displacement and 
rotation, with an a/b ratio of oo approaches the behavior of a fixed beam of length b [13). The 
coefficient for maximum plate deflection, p, of a fixed plate approaches 0.0284 as a/b approaches 
infinity, whereas the fixed beam has a p of 0.03125. There is some uncertainty associated with the 
actual behavior of the bonded joints between the walls and the top and bottom plates of the test cell. 
The error is less than ten percent, and produces a more consetvative displacement since it will 
predict greater influence on the contained fluid. Therefore this enor is acceptable for an initial 
approximation as long as the two-dimensional sections considered are at the centerline of the test 
cell. Table 2 shows a comparison of the plate and transverse beam deflection behavior. Figure 3 
shows the variation of P as a/b varies from 1.0 to 3.0. Figure 3 plots the ratio a/b = 2.625 
concurrent with the P CUIVe. 

Two mesh refinements, sixty and ninety nodes per wall, were considered. These nodes were 
concentrated closer to the wall's comers since the bending will be greater in these regions. Figure 4 
shows the ANSYS® plot of the model with a depiction of the pressure loading. In this figure, the 
uniform pressure, lOOpsi applied intemally on each wall, is depicted to indicate node distribution by 
placing an arrow at each node location. The modulus was set at 400,000psi as specified by CRYO's 
material data sheet for Acrylite® FF [2]. 

The test cell cross-section modei Section A-A, is globally constrained against displacement in the 
X- and Y-directions at node A, and against global rotation by constraining displacement in the X­
direction at node B. Figure 4 contains indications of these constraints as well as the uniform 
pressure loading. Section A-A assumes full moment capacity available across all bonded joints at the 
comers of the cross-section. 

Results and Analysis. Table 3 lists results for three nodes of interest. Nodes A and B are the 
comer nodes of wall BB from Figure 1, and node C is the center node on this wall. Figure 5 shows 
the deformed shape. 
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Section A-A 
ode B 

ode A 

Figure 2: Depiction of Test C.ell and Cross Sections for Stiffness Analysis 

Table 2. Comparison of Maximum Deflection in a SimplySupparted Plate and Beam 

Description 

Beam with Fixed 
End Constraints 

Plate with Fixed 
Edge Constraints 

Maximum Deflection Depiction with 
Under Uniform Load Notation 

12 • w • b4 

384 · E · t3 

w · b4 

P ·-
E · t3 

(13 is shovm in Figure 3 based on alb ratio) 

.II\ 

" 

0.03125 ____________ ......,__, 
Beam behavior __..,,, 

• • . 
0.0276 L------�======::=:===!:. ==r 

alb = 2.625 : 
0.02395 ---l-----�

,c__

�------------1 

0.013 -+-----�------------
1.0 15 2.0 

a/b 

2.5 

Figure 3. Fixed Plate Deflection Constant P vs. Ratio a/b 
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B 

C 

A 

Figure 4: Section A-A, Nodes with Uniform Load 

Table 3: Nodal Results, Two Mesh Refinements 
Node Mesh UX(in} UY(in} ROTZ (rad) 

A 
60 0.0000 0.0000 -0.085927 
90 0.0000 0.0000 -0.085927 

B 
60 0.0000 0.032222 0.085927 
90 0.0000 0.032222 0.085927 

C 
60 1 .3551 0.0161 1 1  0.0000 

90 1.3551 0.0161 11  0.0000 
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Figure 5: Section A-A, Deformed and Undeformed Shape 

Refining the mesh beyond ninety nodes is not beneficial since the same solution with both 
meshes indicate convergence. Node C, at the centerline, is displaced by 1.355 lin in the X-direction. 
This was the largest X-direction displacement between nodes A and B. Node B slightly deflected in 
the Y-direction, but since the X-direction displacement is the only direction of interest, Y-direction 
measurements do not affect the resuhing conclusion. 

A beam representation of the 42in length along Section B-B is fixed at both ends. Equation 2 
yields the maximwn displacement of a fixed-fixed beam under a distributed load [13]. 

p�L4 

U = ---------- ; at X  = U2 
X max 

3 84 • E · / z:z 
(2) 

Solving equation 2 for the modulus of elasticity, E, using UX = 1 .3551in, L = 42zn, a constant 
l-z:z based on actual plate thiclmess, and applying an equivalent distributed pressure load p = lOOpsi 
yields E = 17,009 ,64 lpsi 

Another option to ensure static equivalency is to keep E constant and adjust the thiclmess, t, and 
subsequently the moment of inertia, /-z:z. This approach yields a thiclmess of 2.726in and an l-z:z of 
1.688ilt. Increasing the modulus is preferred over altering the geometry since the modulus acts as a 
scaling factor in deformation formulas. Beam thiclmess is raised to the third power when calculating 
the moment of inertia, providing more room for error. Also, altering the beam thickness would 
complicate stress calculations should they be desired in later analyses. The final stresses, however, 
will have to be transformed to the original material properties in either case. 
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Based on these calculations, the appropriate material constants for the two-dimensional model 
are listed in Table 4. The increased modulus seems reasonable since the length of the test cell's wall 
is much greater than its height. Beam length is the driving parameter for the deflections because it is 
raised to the fourth power in equation 2. So, a longer beam will have to be much stiffer than a 
shorter beam if both are to predict the same deflection under equivalent loads. 

STRUCTURAL DYNAMIC E QUIVALENCY 

FEM Development. Two modal analyses will be conducted to investigate the modal shapes, 
'I', and resonance frequencies, ro. The first analysis will be of a test cell wall modeled as a three­
dimensional panel The second analysis will be of the two-dimensional beam used to represent the 
tunnel walls in later analyses. ANSYS® has several options for conducting modal analysis; Block 
Lanczos, Su�Space, Power Dynamics, and Reduced methods. The Block Lanczos method is used 
for linear systems having large symmetric eigenvalue problems [1]. The Block Lanczos method will 
be used to detennine mode shapes for both the plate wall and beam due to its speed and accuracy 
compared with the other methods. 

Modal analysis of an undamped system consists of solving a linear system of equations with two 
primary parameters, the mass matrix and the stiffness matrix [3]. If [M] is the mass matrix and [KJ 
the stiffness matrix, the differential equation for a linear, lumped-mass, undamped system is 
described by equation 3 [1}. 

cJ2x [M]-2 + [K}x = J(t) 
at (3) 

In equation 3, x is the displacement vector and /is the force vector. Because the displacement vectors 
have hannonic motions at specific frequencies, they can be expressed by equation 4: 

x = '¥ cos( m • t) = '¥ • e1·•·1 

(4) 

C.Ombining equations 3 and 4 yields an eigenvalue problem in which only certain nontrivial 
solutions exist for 'I'. Resulting solutions give the natural frequencies, or eigenf requencies, and the 
mode shapes, or eigenvectors. The determinate of the system containing linear homogeneous 
equations must equal zero, giving the characteristic equation as follows: 

detlm2 · [M]- [Kn = 0 

Equation 5 has a root for every OOF; therefore a natural frequency exists for every DOF in the 
system [3]. 

Table 4: Material Properties of Acrylic for PSI Analysis 
C.Onst. Value 

w 1.0 in 
t 0.75 in 
A 0.75 in2 
Izz 0.035156 in• 
E 17,009,641 psi 
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All systems pref er to vibrate one or more of their mode shapes, q,. These corresponding 
frequencies, COn, are referred to as the "natural frequencies." ANSYS® uses equation 6 to solve for 
eigenvectors of mode i [ 1]. 

(6) 

The wall was modeled as a panel using plate elements having six DOF per node. The leading 
and trailing edges were restrained in all six degrees since the test cell attached to the tunnel with rigid 
flanges. The top and bottom edges were constrained in the X, Y, and 2-direction and the Y and 2-
rotation since the roof and floor of test cell restrains the walls in those directions. This restraint 
condition is consistent with the restraints assumed in the two-dimensional beam analysis. The 
modulus was set to 400,000psi and material density was set to 0.04299/b/ id in accordance with 
CYRO's material data sheet for Acrylite® FF during the plate wall analysis. 

The beam was modeled using beam elements with three DOF per node. The leading and 
training points were restrained in both degrees of freedom. The modulus was set to 17,009 ,641psi as 
determined in the previous stiffness analysis. The density will be selected through iterative solutions 
in order to affect the mass matrix, [M], of the approximated beam until the first fundamental 
frequency of the beam, eon, matches that of the plate. Higher frequencies of both models are not 
likely to match. Adjusting the density, and therefore the mass, of the representative material affects 
only the dynamic response since gravitational effects are ignored in later FSI analysis. 

Results and Analysis. Nme mode shapes of the plate wall are listed in Table 5. Figure 6 
depicts exaggerated wall deflections for these modes. Figure 7 depicts exaggerated beam deflections 
for the first three modes. By setting the material density of the beam to 0.13640/b/ id, the first beam 
frequency matches that of the plate, 95.92Hz. 

For the plate modei sinusoidal waves of increasing frequency form in the X-2 plane as is evident 
in Figure 6. Higher modes, beginning with the fifth, exhibit �placement waveforms with a period 
of 21t in the Y-2 direction. During these 21t periods in the Y-direct/ion the centerline is stationary. 
Waveform periods increase by irt, where i equals 1, 2, 3 . . .  n, first in the X-2 plane, then in the Y-2 
plane. When higher periods are reached in the Y-2 plane, the X-2 waveform period returns to 7t and 
the <:)\:le continues. 

Table 5. Plate Modal Analysis Freguencies in Hertz 

Mode F�q. X-Z Waveform Y-Z Waveform 
Shape, 'I' (Hz) Period Period 

1 95.920 7t 7t 
2 140.1 27t 7t 
3 2 1 1 .08 37t 7t 
4 304.43 47t 7t 
5 331 .81  7t 27t 
6 372.27 27t 27t 
7 420.85 57t 7t 
8 438.36 37t 27t 
9 528.97 41t 21t 
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Figure 6: First Nine Fundamental Mode Deflections of Test c.ell Wall 
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Figure 7: First Three Fundamental Mode Deflections of Beam Model 
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The beam model shows similar sinusoidal waves fonning with increasing frequency. Note how 
the beam's ends have no slope in Figure 7. The same zero slopes are evident in Figure 6 on the plate 
walls. The beam mode shapes resemble sinusoids, with the first mode concsponding to waveform 
period 1t, the second mode co�ponding to period 21t, and continuing at ire where i equals 1 ,2,3 . . .  n. 
The same shapes are visible on the centerline of the plate in Figure 6, but this similarity erodes 
beginning with mode shape five when the plate enters its first shape where the centerline is 
stationary. Any plate mode shape with a Y-Z waveform period having an even muhiple of 7t cannot 
be matched at the centerline in two dimensions. 

The dynamic response of a plate cannot be perfectly modeled with a beam. With this beam 
approximation, only some mode shapes are similar, and have different frequencies beyond the first. 
Only one frequency can be matched, and since the plate and beam will pref er to vibrate in the first 
mode shape due to the pressure distribution, the first eigenfrequency was chosen. The material 
density of the beam should be 0.13640/h/ bi, or a mass density of 3.53E-4/Jf�/iff, so that the 
primary natural frequency of the beam co�ponds with the primary natural frequency of the plate. 
If two-dimensional dynamic analysis is required for excitation at any fundamental frequency other 
than the first, the beam density should be revised in order to ensure dynamic equivalency at that 
frequency. The beam calculation will not adequately capture the amplitude of the deflections if a 
forcing frequency couples with another eigenfrequency from the plate analysis. 

FLUID PROBLEM SETUP AND AsSUMPTIONS 

Appendix C contains an input file for the 4-degree pitch angle steady-state (H) analysis, and is 
typical of the options used for all six steady-state pitch angles. All options, controls, properties, and 
operating conditions are listed. English units will be used in modeling and analysis, with length in 
inches, pressure expressed in ps� density expressed in /Jf�/iff, and viscosity expressed in /Jf-sdiri. 

Problem Domain and Boundary Conditions. The problem domain is limited to a two­
dimensional 42in x 14.Sin plan view of the test cell as depictccl by Section B-B in Figure 2. Limiting 
the fluid domain to Section B-B assumes the airfoil's tip has no influence in this plane. Inlet and exit 
conditions of the test cell are known, and limiting the domain to two dimensions reduces 
computational complexity, time, and resources. The analysis assumes free stream pressure conditions 
at the outlet by applying a z.ero relative pressure constraint at the outlet. The reference pressure for 
the FEM will be set to the static pressure inside the airflow, 13.9796psi. Using this condition ensures 
relative pressures calculated by FLOTRAN® are deviations from the free stream static pressure. The 
inlet flow profile will be assumed fully formed in order to apply boundary conditions. The inlet 
velocity is set to 2038.4inlsa- for 0.15Ma analyses. These boundary conditions and assumptions are 
annotated in Figure D. 1 of Appendix D. 

Flow Regime. The CFD flow regime is modeled as twbulent, adiabatic, and compressible with 
air modeled as an ideal gas at 73.71°F and 14.2ps� consistent with the experimental test conditions 
listed in Table F .1  of Appendix F. Specific heat and conductivity will be ignored. These 
assumptions are consistent with the aerodynamic theories discmsed in <liapter II. 

Finite Element Mesh. In order to ensure the structured mesh was sufficiently dense along the 
walls and airfoil, the shear boundary layer thickness was calculated for flow along a flat plate using 
equation B18 of Appendix B. Reynolds number was calculated based on airflow at 0.3Ma, the 
highest Mach number experienced inside this tunnel The resulting thickness came to 0.1 16in for the 
airfoil chord (x -4.Sin), and 0.693in for the test cell walls (x =-42�. The airfoil is approximated as a 
flat plate 4.Sin long and the determination of the airfoil shear boundary layer thickness neglects 
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acceleration around the airfoil. The airfoil's shear boundary layer thickness, 0.1 16in, is shown in 
Figure D.2 of Appendix D. The wall's shear boundary layer thickness, 0.693in, is shown in Figure 
D.3 of Appendix D. For the airloil, the shear boundary layer has twenty element with the first node 
located 4.01E-3in from the swface. For the test cell walls, the shear boundary layer has twelve 
elements with the first node is located 3.14E-2in from the wall. Nodes in both shear boundary layers 
are compacted toward the wall. These shear layers are annotated in Figure D.1 of Appendix D. 

By constructing the entire mesh of quadrilateral elements verses triangular elements, the most 
accurate results will be obtained for two-dimensional compressible analyses [1]. Mapped meshing is 
used wherever possible, but especially around the walls in order to capture wall effects consistently. 
A tighter mesh was generated in areas where large gradients are expected (around and behind the 
airloil). Figure D.1 in Appendix D shows a representative mesh for the problem domain with a 4-
degree airloil pitch angle. 

Analysis Parameters. Relaxation and stabilization parameters will be used as needed to reach a 
converged solution. Their use will be limited and on a selective basis as suggested in the ANSYS® 
documentation [1]. All parameters will be removed before the final solution iterations since the 
presence of some parameters would otherwise affect the final results. 

CFO Algorithm C.Ontrols. SIMPLEN will be used for fluid OOF coupling to increase the 
convergence rate. All equations will be solved with semi-direct solvers until prescribed convergence 
criterion is met, or until a predetennincd number of global iterations occur. Preconditioned 
C.Onjugate Residual (Pa:::R) method will be used to solve the pressure equation because of its balance 
in capability and memoty requirements. Preconditioned BiffiStab method (PBffiM) will be used 
to solve momentum, energy, and turbulence equations since it is recommended by ANSYS® for 
SIMPLEN coupling. Default settings for each DOF will be used in this problem where possible for 
relaxation and stabilization parameters. 

The standard k-e turbulence model is chosen over the zero equation model because it is slightly 
more robust. Default values from ANSYS were used, as defined by [17). Other turbulence models 
are extensions of the standard modet and their use requires specific knowledge about various 
turbulence parameters. 

Discretization Options. In transient analyses, the Newmark integration method was chosen 
over forward difference integration for solving equation Al of Appendix A because it is more 
accurate. For advection tenns, the compressible pressure and turbulence equations will be solved 
using the monotone streamline upwind (MSU) approach. Momentum and energy equations will be 
solved using the SUPG approach for its second order accuracy. These are the SIMPLEN defaults. 
Weighting functions that drive the diffusion and source term contributions were listed in Table B.5 
of Appendix B for FLUID141 elements. No options are available for altering these functions. 

The full solution method will be utilized to solve equation A6 of Appendix A since the more 
restrictive assumptions from both the reduced and mode superposition methods are not desired. A 
static load step will be solved in this analysis either as a part of the final solution, or to determine 
initial conditions for the transient analysis. 

FSI SETUP AND AsSUMPTIONS 

Either physics environment may be solved first in a sequentially coupled analysis. For this 
problem, the fluid physics environment will be .analyzed first since the transient fluid analysis must 
start with conditions determined by a steady-state fluid solution. The procedure then follows Figure 
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A 1 from Appendix A Time stepping will initially be chosen to allow the aid oil to move one degree 
between each iteration. The frequency will then be adjusted in subsequent trials Wltil the time step 
size no longer has a significant effect on the solution. 

ANSYS® docwnentation is not clear on how fluid constraints along a moving boWldary are 
considered. Initially, the velocity will be set to zero along the walls. Once a solution is obtained, 
fluid velocities along the tip or tail of the foil should nearly equal the velocity of the structural airfoil, 
which equals 247.Sinlsoc for f ==50Hz. This calculation asswnes pitch angles match equation 7, and 
that the tip velocity will equal half the chord length multiplied by the maximwn angular velocity from 
equation 8. C.orrections to the boWldary conditions will be made if this condition is not met. 

a = amax sin(m • t) 

a =  m · amax cos(w · t) 
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CHAPTER IV 

RESULTS & DISCUSSION 

Table 6 contains a list of attempted analyses and the resulting success or failure of each analysis. 
Steady-state CFD analysis using FLOTRAN® was successful However, steady-state experimental 
resuhs were not obtained. As a result, steady-state CFD results were not validated with experimental 
data as planned. A1so, dynamic results were not obtained since ANSYS® mesh updating would not 
function. ANSYS7.0® would not run the published example problem titled "Example Fluid­
Structural Analysis Using Physics Environments [1)." The DAMORPH command, which sets 
morphing or remeshing options for specific areas or volumes, would not function within ANSYS® 
versions 7.0 or 7. 1, the latest ANSYS® versions. This problem prevents dynamic analysis from 
continuing as described in Cliapter Ill, and is attributed to software licensing issues. An alternative 
approach was taken where necessary. 

STEADY STATE CFD ANALYSIS 

Numerical analysis continued for steady-state conditions as described in Cliapter III. The fluid 
problem was solved at steady-state conditions for airfoil angles at 0, 4, 8, 12, 16, and 20 degrees. 
Each steady-state CFD solution was evaluated for convergence using the convergence monitors on 
velocity in the X and Y-directions, relative pressure (PRES), twbulent kinetic energy (ENKE), and 
twbulent energy dissipation rate (ENDS). In some cases, these monitors oscillated initially and 
settled to a value lower than preset convergence criterion. Other models required substantially more 
global iterations to reach a satisfactory solution when the monitors began to oscillate without 
reaching convergence criterion tolerance values, likely due to turbulent effects. Eventually, all 
solutions converged, albeit sometimes with the assistance the artificial viscosity stability parameter. 
All stability parameters were removed before final solution iterations. Convergence monitor values 
for all monitored variables were compared to the absolute value of the smallest solution value for 
that variable. If the absolute value of the smallest result was large compared to the monitor's 
magnitude, and mass was conserved, the solution was considered converged regardless of monitor 
value oscillations. This comparison is contained in Tables D.1 through D.6 of Appendix D. When 
the smallest solution value was zero, as in the case of VX in Tables D.1 and D.2, the magnitude of 
the monitor was compared to the absolute value of the average solution result for that variable. Mass 
balance was reviewed for all solutions to ensure mass was conserved. Once the mass flows in and 
out of the problem domain were essentially equal, the problem was considered converged. The 
largest difference in mass balance was 3.E-7/Jfwin compared to a mass flow rate of 3. 14E-3/Jf-str/in 
in the 8-degree solution; reference Table D.3 of Appendix D. 

Table 6. Sum.maryof Analysis Success 
Attempted Analysis Success? 

Steady State CFO Analysis bl] 
Steady State Experimental Analysis IX] 

Transient GD Analysis IX] 
Transient Experimental Analysis 6ZJ 
Steady State Structural Analysis 6Z) 

Transient Structural Analysis IX] 
Structural Experimental Resuhs IX] 

19 



When a satisfactorily converged fluid solution was obtained for each static angle of attack, 
relative pressure values were recorded along each wall. C.ontour plots of the average velocity and 
relative pressure were recorded while maintaining constant contour gradients to ease comparison 
between plots. Steady-state an results are contained in Appendix D. Figure D.5 through Figure 
D.10 show a gradual progression as the velocity accelerates around the airfoil. The overall maximum 
velocity is 4334in/soc, significantly higher than the free stream velocity at 2038.4in/soc, and occurs 
near the nose of the airfoil at 20 degrees pitch. The most extreme pressures were also calculated at 
20 degrees pitch, as evident in Figure D.17 on the airfoil's leading edge. 

STEADY STATE STRUCTURAL ANALYSIS 

Relative pressure an results were transformed into differential pressures by adding numerically 
determined relative pressure results to the tunnel static pressure, 13.9796ps� which yields an absolute 
pressure as described prior to equation B 10 in Appendix B. The gauge pressure, or differential 
pressure across the test cell walls, may then be obtained from th.is calculated absolute pressure and 
the atmospheric pressure, 14202ps� by subtracting the atmospheric pressure from the absolute 
pressure. In this manner, the cliff erential pressure at zero relative pressure equa1s -0222psi. The 
d.iff erential pressure was then transferred as distributed surf ace pressures on an equivalent beam 
model in ANSYS® in order to solve for the steady-state structural deflection at each pitch angle. 

The wall modeled from position (0, 0) to (42, 0) is referred to as wall BB in these results, and the 
wall modeled from position (0, 14.5) to (42, 14.5) is referred to as wall AA Figure E.1 includes th.is 
nomenclature, as well as a depiction of the distributed pressure loading and resulting exaggerated 
deformations along the walls for the 4-degree pitch angle. Other deformation solutions appeared 
essentially the same as shown in Figure E.1. The airfoil oscillates symmetrically about a longitudinal 
centerline through the plan view; therefore, solutions were only obtained for positive airfoil pitch 
angles as shown in Figure E.1. Calculating solutions for negative pitch angles would merely produce 
min-pr images. Reaction solutions are tabulated for UX, UY, nd R01Z at both ends of each beam. 
These results are contained in Appendix E, Tables E.1 through E.6. 

Figures E2 through E.13 plot both the differentkl pressure profile and resulting wall deflection 
together. Deflections are plotted in blue with diamond-shaped markers whereas cliff erential 
pressures are plotted in red with square-shaped markers. Note the two vertical axes used in these 
figures, one on the left for deflection in inches and another on the right for pressure in pounds per 
square inch. The scale of each axis is constant in these figures to facilitate comparison between the 
results. Differential pressures were applied to face 1 of the BEAM 3 elements as depicted in Figure 
B.3 of Appendix B. Air flows as from location O.Oin to 42.0in. Positive differential pressure would 
indicate a bulging wall effect, or outward force, but all pressures were negative. So, more negative 
differential pressures indicate greater suction, or inward force. Differential pressure values in each 
case approach the difference in absolute and atmospheric pressure, -0222ps� at the test cell outlet 
where a zero relative pressure boundary condition was applied In Figures E2 through E.7 for wall 
AA, negative deflections are toward the airfoil. Wall BB responses in the opposite manner in Figures 
E.8 through E.13. Refer to Figure E.1 as these conventions follow that figure's layout. 

For a zero angle of attack, where the airfoil was aligned with the airflow, symmetric pressures on 
both sides of the airfoil resulted in a symmetric suction effect on the walls. As the airfoil's angle of 
attack increased, suction on the wall above the airfoil increased while suction decreased the wall 
below the airloil. The largest wall deflections were approximately 0.003in, calculated for the zero­
degree angle of attack, even though the largest local differential pressure magnitude, -0268ps� was 
calculated for the twenty-degree angle of attack on wall AA, which had a maximum deflection of 
0.00275in. This discrepancy demonstrates how the pressure distribution profile is more important 
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than local pressure magnitude. Intuitively, a beam would deflect more when a greater load is 
distributed across the beam, as was the case with the ze�degree case. 

The approach described in <liapter III sought to draw conclusions regarding structural 
deflections resulting from a dynamically pitching oscillation of the airfoil, but such conclusions are 
not possib1e without the ability to conduct dynamic numerical computations. The complexity 
required to couple data between FLOTRAN® and ANSYS® reduced portions of the scope in this 
analysis to a comparison of steacfy-state CFD results with dynamic experimental results, and a FFf 
analysis of experimental static pressure results obtained from two static pressure ports mounted on 
the wall A comparison of steady-state CFD results to dynamic experimental results must be 
preceded with a realization that these results should not theoretically match, especially in the region 
surrounding the airfoil. A dynamic system contains inertial effects that will not be included in steacfy­
state analyses. The only conditions where this comparison would be valid are in cases of quasi-
equilibrium. 

C.onsider the Strouhal number, or reduced frequency, in order to determine what conditions this 
system must be under for a quasi-equilibrium assumption to be valid. The Strouhal number, St, is an 
important indicator of the dynamic nature of turbulent flow as it is an indication of the vortex 
shedding frequency. The Strouhal number, calculated using equation 9, is a function of Re for a wide 
range of characteristic diameters D, and is essentially 02 for 300 <Re < 300,000. At Re-760,000, St 
is approximately 022. For high values of Reynolds number, greater than 400, vortices themselves 
become turbulent and lose their otherwise regular shape. 

f · D  
St = --

U (9) 

The Strouhal number is calculated at two extremes based on experimental test conditions. The 
minimum extreme is based on the airfoil thickness of 0.9in at 2038in/soc with f-10Hz, where 
St-0.0044. The maximum extreme is based on the airloil chord length of 4.5in at the same velocity 
with f-50Hz, where St-0.022. Even in the highly conseivative maximum extreme case, the Strouhal 
number is merely half of the predicted value 022. A St lower than the predicted value suggests a 
shedding frequency less than what is naturally prefenccl, which is not realistic. For 0.15Ma with 
St-022, vortices will shed at 291Hz </ < 498Hz for 1.54in > D > 0.9in. These frequencies are 
much higher than the airloil oscillation frequencies, suggesting the shedding frequency will nominally 
follow equation 9 at St-0.22 regardless of the pitching frequency in the experimental range from 
10Hz <f < 50Hz. So, the time history of airloil oscillation should not be evident at a given moment 
in time within the fluid due to an overwhelming influence from the turbulent flow. A quasi­
equilibrium comparison of steady-state numerical data to experimentally recorded dynamic data 
should therefore be valid. 

TRANSIENT E XPERIMENTAL ANALYSIS 

Appendix F contains a comparison of the steady-state absolute pressure magnitudes to those 
recorded in a FSI experiment. Table F .1 contains experimental test conditions that were 
subsequently used to determine reference conditions and boundary constraints in the FEM Table 
F 2 contains both experimental and numerical results. Experimental static pressures were recorded at 
two locations on the walls: Ps-5 located adjacent to the airloil at L -2 lin and Ps- 10 located 4in further 
downstream as shown in Figure 1. C.omparisons are graphed at both positions on each wall: Ps-5 on 
wall AA and BB, and Ps- 10 on wall AA and BB in Figure F. 1 through Figure F.4. Dynamic 
experimental data was reduced to samples concsponding with five airfoil positions: 0, 4, 8, 12, and 16 
degrees. Error was estimated from the scattered sample values at a 0.95 confidence level and plotted 
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above and below each experimental value. The largest standard deviation of all experimental data 
points, 0.00943ps� was for 16 degrees at Ps- 10 on wall BB, as shown in Figure F.4 of Appendix F. 
Standard deviation values at other locations were typically around 0.006psi. As an aside, a phase shift, 
or off set, may exist in the pressures recorded at the wall and the angle of the airfoil. This offset � 
not calculated; however, the relative pressure magnitudes along the wall do not fluctuate greatly from 
peak-to-peak. For that reason, any error introduced by this crude assumption should be negligible, 
especially compared to the difference in experimental and numerical results. At, each pressure port 
for the airfoil in all six angles of attack, the experimental static pressures are consistently lower than 
the predicted steady-state values. The results essentially trend in the same manner, but numerical 
results were consistently larger than their experimental countetparts. This offset may be attributed to 
the difference in steady-state numerical assumptions and transient flow conditions in the experiment. 

Since the experimental data � recorded at 9766Hz, sufficient data was available to conduct a 
Fast Fourier Transform (FFI) in order to reveal dominate frequency components in the pressure 
loading with approximately 0.SHz resolution. Figure F.5 and Figure F.6 in Appendix F contain peak­
to-peak FFf plots of static pressure measured in inches of water (i:nH2q verses frequency (/}. Inches 
of water may be converted to pounds per square inch by multiplying by 0.03613psi/inH2Q Figure 
F.5 is a FFT of data collected at static pressure port Ps-5, while Figure F.6 contains data collected at 
static pressure port Ps- 10. At, Ps-5, pressures impact the wall in scalar multiples of the airfoil 
oscillation frequency, 10Hz. The 10Hz oscillation frequency is dominant at a magnitude of 
approximately 0.64i:nH2O or 0.023ps� and the vibration amplitude drops exponentially through higher 
frequencies. This peak-to-peak pressure magnitude is small compared to 13.98ps� the absolute 
pressure, or -0.26ps� the average gauge pressure. Recall how the peak-to-peak values represent the 
oscillation amplitude about the average gauge pressure, so small values indicate a relatively small 
influence at the wall. In this experiment, the gauge pressure fluctuated by roughly fourteen percent. 
Ps- 10 shows a different result. The magnitude experienced at the first and third frequencies are 
significantly lower than at Ps-5, while the magnitude of the second frequency is roughly the same as 
at Ps-5. 

These FFf plots indicate that the walls will not be excited at their first fundamental frequency 
since the pressure dynamics follow the oscillation frequency of the airfoil. This frequency is 
substantially lower than the first fundamental frequency determined with modal analysis. The walls 
should, however, vibrate in a mode shape similar to what was predicted as the first mode shape 
during modal analysis because the differential pressure on the wall creates constant suction along the 
length of the walls. 
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CHAPTER V 

CONCLUSION 

CONCLUSIONS 

This thesis considered a problem wherein a flow field and surrounding structure are interactively 
coupled. The problem consists of a pitched airfoil mounted inside an open-circuit wind tunnel The 
objective was to explore effects of varying pressure distributions along the walls of a test cell, and 
subsequently quantify test section wall deflections resulting from this loading. Steady-state numerical 
results were obtained with ANSYS® and FLOTRAN®, the chosen numerical codes, the airfoil at six 
fixed angles of attack. An experiment was conducted with an oscillating airfoil inside the test cell, 
and provided dynamic data that allowed for limited comparison with the six steady state aD 
solutions. Increasing angles of attack resulted in increasing velocities local to the airfoil's leading 
edge. The difference between pressure extremes also grew with increasing angle of attack. These 
results indicate increased wall pressures with increasing angle of attack through twenty degrees, 
which was anticipated with the NACA 0012 airfoil used in the FSI experiment. Unfortunately, these 
results could not be validated with experimental data for fixed angles of attack. Collecting 
experimental data at the same steady-state angles of attack would have verified the numerical 
approach was correct. 

Steady-state differential pressure profiles were and applied on an equivalent beam model as 
distributed surf ace pressw-es in ANSYS®. The beam model was statically equivalent to the acrylic 
walls. The analysis demonstrated how the pressure distribution profile on the walls is more 
important than local pressure magnitude since the beam model predicted greater deflection when a 
greater load is distributed across the beam. 

Dynamic experimental data showed that the pressure profile on the walls primarily oscillates at 
the frequency of airfoil oscillation. C.alculations of the Strouhal number indicate that vortices would 
shed from this airfoil between thirty to fifty times faster than the airfoil is oscillating; however, the 
oscillation frequency dominates the frequency spectrum in FFf plots. These plots in Appendix F, 
Figures F.5 and F.6, were constructed from peak-to-peak static pressures; therefore, the oscillation 
frequency domination may be contributed to larger peak-to-peak pressure values at that frequency 
regardless of the absolute pressure magnitudes. In other words, while the airfoil is shedding vortices 
at higher frequencies, the largest pressure differentials are seen at the oscillation frequency. 

The tunnel walls should vibrate in their first mode shape as predicted during modal analysis 
because the differential pressure on the wall creates constant suction along their entire length. 
Importantly, the determination of the wall's first fundamental frequency, 95.92Hz, yielded a 
frequency almost ten times higher than the oscillation frequency in the experimental test scenario 
considered herein, and almost five times higher than the maximum airfoil oscillation frequency, 
20Hz. For this reason, the wall vibration magnitude should not be amplified at the first fundamental 
frequency. 

In Cliapter IV, a quasi-equilibrium comparison of steady state numerical data to experimentally 
recorded dynamic data was drawn based on the prediction that the dynamic ·oscillations of the airfoil 
would be at quasi-equilibrium in this flow field. The transient experimental data and steady-state 
numerical solutions did not show agreement as expected following an evaluation of the Strouhal 
number. The disagreement may be attributed to the difference in steady-state numerical assumptions 
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and transient flow conditions in this experiment. Experimentation conducted at fixed angles of 
attack, or transient numerical analysis, would give further insight. 

The predicted displacements from this simplified analysis are significantly small compared to 
magnitudes that would likely cause concern with experimental data collection. Wall vibrations 
experienced during FSI tests also support this conclusion. Further detailed analysis is not necessary 
for airllow at this Mach number since the improved accuracy would not produce deflections that 
would cause concern; however, the following recommendations are suggested for improving the 
accuracy of this analysis or continuing a more detailed analysis at higher Mach numbers. 

RECOMME NDATIONS 

Several activities planned for this effort were not successfully completed. First, steady state 
experimental resuhs should be collected in order to validate the steady-state OD resuhs. 
Unavoidable proble� with priority scheduling in a commercial facility prevented such data 
collection during this effort. This initial validation would provide assurance that FLOTRAN® has 
been implemented correctly. Mistakes would surely be repeated in dynamic analysis if not caught in 
steady-state analysis since the former builds on the latter. 

Secondly, dynamic analysis of the fluid regime should be conducted in FLOTRAN® to ensure 
the airfoil will in fact oscillate in the computer modei and to discover how best to perform mesh 
updating. OD resuhs obtained from this dynamic analysis could be used to formulate forcing 
functions for a single OOF mass-spring-damper model or full dynamic structural analysis as 
described in Cliapter III. The single OOF model should have the same static and dynamic response 
as the wall's first fundamental frequency mode, thereby providing basic frequency response data to 
compare with experimental FFf data. The full dynamic structural analysis would provide deflections 
all along the length of the wall instead of at a single point, and would be more desirable since the 
distributed pressure loading in this problem is highly nonlinear. 

Once ANSYS® and FLOTRAN® can be run independently in order to obtain satisfactory 
solutions, they may be coupled and run together. The final step to complete an original goal of this 
effort would be to sequentially couple the fluid and structural problem in a FSI analysis. Resuhs 
from such an analysis could be compared directly with experimental data in order to validate the 
code. The primary remaining discrepancy between the two-dimensional model and experimental 
data would be the assumption that the airfoil tip does not influence the flow near the test cell's 
vertical centerline. 

Finally, in order to eliminate error from the previously mentioned assumption of the two­
dimensional modei a three-dimensional analysis ·of the dynamically pitching airfoil should be 
perlonned. Three-dimensional modeling in FLOTRAN® is significantly more complicated than two­
dimensional, so some of the steps leading up to sequential coupling may need to be repeated for 
validation again. If significant differences persist in experimental and numerical data, choosing a 
different turbulence model or cliff erent solution algorithms may lead to a more accurate numerical 
solution. Greater detail must be gathered regarding twbulence in order to utilize one of the more 
complex k-e models. 
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APPENDIX A: COUPLED FIELD ANALYSIS AND TRANSIENT THEORY 

COUPLED- FIELD ANALYSIS 

C.oupled-field analysis refers to the interaction of multiple engineering disciplines where each 
discipline contains an individually distinct problem. C.oupled-field analyses include structural­

magneto, thermal-magneto, thennal-stress, thennal-e.lcctric, and fluid-structure interactions. Any 
time the results from one problem provide input to another, the two may be considered "coupled." 
ANSYS® contains several methodologies for solving coupled problems. Sequential methods solve 
each discipline separately, transferring needed information between each problem [1]. Direct 
methods work for problems when the finite elements are coded with all necessary degrees of 
freedom (DOF). Direct methods are useful for highly nonlinear problems like piezoelectric, 
conjugate heat transfer with fluid flow, and circuit-electromagnetic analyses [1]. ANSYS contains 
special elements for these types of problems. 

Two types of sequentially coupled methods are available in ANSYS®: sequentially coupled 
physics and sequential weak coupling. For FSI, ANSYS® codes solve the structural problem while 
FLOTRAN® codes solve the CH) problem. Sequentially coupled physics methods solve individual 
problems one at a time, requiring a relatively large degree of user control and judgment during 
analysis. Sequential weak coupling is a more automated method that allows for transfer across 
dissimilar mesh boundaries. Weak coupling requires a great deal preparation before computational 
routines solve the problem since these decisions are implemented automatically during analysis. In 
sequentially coupled physics problems, the separate disciplines shall be ref erred to as distinct physical 
environments, i.e. a structural physics environment and a fluid physics environment. This physics 
method is explained further since it is used in this project. 

ANSYS® requires five steps to complete a FSI coupled-field analysis [1]. 
• Setup Fluid and Solid Analysis 
• Specify C.oupled Solution Options 
• Write Physics Environments 
• Obtain the Solution 
• Post-Processing Results 

Setup Fluid and Solid Analysis. For all sequential problems, both physical problems are 
defined within ANSYS®. Structural environments use ANSYS elements, and fluid environment use 
FLOTRAN® elements in a FSI analysis. Decisions regarding the problem's dimensionality, physical 
constants and material properties, and loading and boundary conditions are made during this step. 
More specific considerations for formulating both of these problems are contained later in this 
chapter. 

Specify C.Oupled Solution Options. Each physical problem has specific options that must be 
set prior to defining a physics environment. Some of these options are coupled like the problem 
itself, i.e. a transient analysis will require transient solutions to physical problems. A detailed 
description of pertinent options is contained in the structural and fluid analysis discussions later. 

Write the Physics Environment. Each problem's physics environment contains the following 
information [1]: 

• Finite element types and their settings 
• Physical, or real, constants (area, moment of inertia, thickness, etc.) 

31  



• Material properties (modulus of elasticity, density, etc.) 
• Element coordinate systems (global v. local, Cartesian v. polar, etc.) 
• Solution analys is and loading options 
• C.onstraint equations 
• C.oupled node sets at FSI interlaces 
• Boundary conditions 

Some of these parameters and options are described in more detail later in this chapter as needed. 

Obtain the Solution. During sequentially coupled analyses, the results from one physical 
solution alter parameters in the other solution. Once one problem is satisfactorily solved, 
information is transferred across physical environments as required. Information is transferred again 
once the subsequent physical problem is solved. The user must decide which physics problem to 
solve first. For FSI problems, total pressure is transferred from a FL01RAN® analysis to become a 
load in the structural analysis [1]. Structural deformation may be significant enough to require the 
fluid FEM to be updated. 

Mesh updating must occur for coupled-field analysis when significant structural deflections occur 
in an analysis involving a field domain [1]. Recursive solutions must be obtained until the user is 
satisfied the overall results have reached convergence. ANSYS® allows for mesh updating of the 
field domain (fluid, magnetic, or electrostatic) using "morphing,, and "remeshing,,. Morphing moves 
nodes to coincide with the deformed structure. For morphing, the original nodes and elements are 
conserved, but their location or shape changes . Nodes are neither created nor removed. Remeshing 
removes the previous mesh and replaces it with new nodes and elements that conf onn to the 
structural mesh, which is not affected. The solid modeL including all geometric entities defining the 
modeL is not affected by either morphing or remeshing [1]. Either option may be selected in 
ANSYS®, or the program may be allowed to determine which is most appropriate. 

Figure A 1 depicts how a sequentially coupled physics analysis generally procee� in a flow­
driven FSI problem [1]. 

Post-Processing Results. Even though ANSYS® completes a solution, a sanity check is 
required to ensw-e the solution has converged on a realistic resuh. Not every problem will reach a 
converged solution. ANSYS® documentation recommends, "Use your engineering judgment when 
examining the results to evaluate the plausibility and consistency of the overall analysis approach, 
how specific properties are used, and the conditions imposed [1] ." Information gained from 
theoretical sources, previous experiments and modal analysis of the specific problem yield insight 
into what is realistic in the result. Further discussion on post-processing structural and fluid results is 
contained in later sections of this chapter. 

TRANSIENT THEORY AND ANALYSIS 

Problems that are dynamic, or change in time, are known as transient. Transient analysis 
solution methods employed in ANSYS® and FL01RAN® for linear second order systems assume 
initial conditions are known, and that no gyroscopic or C.oriolis effects are included. Equation Al is 
a dynamic equilibrium equation governing such systems [1]. 
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Figure A 1: Sequentially-Coupled Physics Analysis Procedure for FSI Analysis 

[M] .  {ii}+  [c] - {u} + [K] • {u} = {J} 

END 

(Al} 

In equation Al, [M] is the mass matrix, [ q is the damping matrix, [K] is the stiffness matrix, and { u} 
is the nodal displacement vector with appropriate derivatives. 

ANSYS® contains two methods for solving this equation: forward difference time integration for 
explicit analyses and Newmark time integration for implicit analyses [ 1 ]. The more accurate method 
is known as the Newmark time integration method. The Newmark method employs finite difference 
expansions on a time interval flt until equations A2 and A3 are satisfied. 

{u,+1 } = {u, }+  [(1 - oXu, } +o  • {ii,+1 }]M 

{u,+1 } = {u, }+ {u, } · At +  [(0.5 - a }{ii, }+ a ·  {ii,+1 }]ru 2 

(Al} 

(A3) 

In equations B22 and B23, a. and 8 are Newmark integration parameters, flt equals 4+1 - 4, and { Ui} 
tenns indicate nodal displacement, velocity, or acceleration at time 4. Zienkiewicz states that the 
Newmark solution is unconditionally stable for 8 � 0.5, a. � 025(0.5+ 8)2, and 0.5+ 6 + a. >O. 
ANSYS® defaults to values of a. = 025 and 8 = 0.5 with a small level of numerical damping, as 
suggested by Zienkiewicz for proble� without other sources of damping, by setting an amplitude 
decay factor to 0.005 [20]. 

The transient time step flt is crucial to convergence. ANSYS® will set this time step to the lesser 
of an advent limit or a pressure wave limit. This option provides the most conservative time step 
since neither a fluid particle nor pressure waves will propagate through an element in one time step. 
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In each time step, iterations continue until either the user-defined maximum global iterations, or 
preset convergence limits are reached. 

The initial aim of transient computation is to solve for the displacement { Ui+1} in governing 
equation Al. To obtain this solution at time t;+1, the previous equation pair A2 and A3 is rearranged 
into equation pair A4 and A5. 

{ii;+1 } = ao ({u;+1 } - {u; }) - a2 · {u; } - a3 · {ii; } 

{u;+t } = {u; }+ Q6 • {ii; } + a7 
• {iii+I

} 
Then these equations are combined with equation Al at time t;+1 to obtain equation A6: 

(a0 · [M]+ a1 · [C]+ [KD{u;+1 } =  {F0 }+ 
[MXao + a2 · {u; } + a3 · {ii; }) + [cXa1 + a4 · {u; } + as · {ii; }) 

In equation A6, {Fa} is the applied load vector and ax are constants given by equation set Al. 
1 8 

ao = 
a · ll.!2 a1 = --

a •  ll.t 

1 1 a2 = -- a
3 

= -- - 1 
a • ll.t 2 - a  

8 
a

5 
= �(!-2) a

4 
= - -1 

a 

a
6 

= M(l -8) a
1 

= 8 · /l.t  

(A4) 

(A5) 

(A6) 

(A1) 

ANSYS® contains three transient solution methods: full, reduced, and mode supetposition [1]. 
The full solution method solves equation A6 directly using the Newton-Raphson procedure and 
Newmark assumptions for a nonlinear analysis, making no additional assumptions. The inversion of 
equation A6 is perlormed using Gaussian elimination with the frontal, or wavefront, solver available 
for solving structural equations. Reduced solution method assumes constant [M], [CJ, and [K] 
matrices, constant time steps, no pressure or thermal strains, and limits zero-displacement DOF 
restrictions. Elemental loads, like pressure, cannot be applied [1]. The mode supeiposition also 
makes asswnptions in addition to the Newmark asswnptions, and uses natural frequencies and mode 
shapes to predict response to the transient forcing function. Equation A6 requires initial values for 
the displacement vector and its derivatives, so prior to the transient analysis, either a static load step 
is solved, conditions are specified, or zero conditions are assumed in the program. Regardless of the 
approach, the initial transient acceleration is zero. Once a solution for the displacement vector { Ui+t} 
is obtained, the velocities and accelerations are updated using equations A4 and A5. 
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APPE NDIX B:  STRUCT URAL AND FLUID PHYSI CS 

CFO FUNDAMENTALS 

FLOTRAN® solves flow proble� by a CH) modeling approach based on the laws of 
conservation of mass, momentum, and energy. Each conservation law is a partial differential 
equation that FLOTRAN® solves on a discrete basis using finite element techniques. The fluid must 
be single phase and all gases are considered to be ideal gases. 

C.Ontinuity Equation. The law of conservation of mass yields the continuity equation, 
expressed by equation Bl in vector form [18], [1]. 

op ( - ) 1 aP ( - ) 
- + V • pU = -- + V •  pU = 0  
ot R · T

abs 
ot 

{Bl) 

In equation Bl, p is the density, U is the velocity vector, R is the gas constant, Tah is the absolute 
temperature, and P is the pressure. Note that the time derivative of density can be rewritten in temis 
of the gas constant, absolute temperature, and pressure for ideal gases under isothennal conditions. 
When density is constant, this equation reduces to the divergence of the velocity vector equal to z.ero 
[18]. 

Momentum Equation. The momentum equation for Newtonian fluids is known as the 
Navier-Stokes equation, expressed by equation B2 in vector form [18]. 

{B2) 

Equation B2 ignores gravitational forces, includes viscous loss temlS, and excludes temis from a 
FLOTRAN® option called "distributed resistances" such as flow through a screen. In this equation, 
� is the effective viscosity and T; is a viscous loss term. Effective viscosity is defined in the 
discussion of turbulence, and the pressure gradient is addressed later in this chapter as well. The 
viscous loss term, relevant only in compressible flows, is defined by equation B3 in two dimensions 
[1]. 
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�

(µ aux )
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(µ auy
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{B3) 

Energy Equation. The conservation of energy, equation B4, is in tenilS of total stagnation 
temperature in compressible flows and static temperature in incompressible flows [18]. 

a I - ) ( - )  ( ) r k 
0Pabs 

ot 
\P '  C p • T

0 
+ Pa

1,s V · U = V · K · VT
0 

+ W + E + Qr + <I> +  a, {B4) 

Equation B4 is valid for compressible flows, with To is the total, or stagnation, temperature, K is the 
thennal conductivity, U?Y' is a viscous work term, Q., is a volumetric heat source, <1> is a viscous heat 
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generation term, and Ek is the kinetic energy. For adiabatic proble� in FL01RAN®, the static 
temperature, T, is calculated from the total temperature using equation BS [1]. 

u2 1 r - 1 2 )  T = T
0

- -- =  1 + --Ma 
2 · C  2 

p 

(BS) 

Turbulence. In turbulent flow, the instantaneous velocity fluctuates at all points in the flow 
field. The velocity can be expressed by equation B6 in tenns of a mean value and a dynamic value 
[1]. 

(B6) 

In equation B6, U; is the mean component of velocity in the i direction, and U; is the dynamic 

component. Substituting this value for velocity into the Navier-Stokes equation B2 and time 
averaging the equation, extra tenns result in the momentum equation. These extra tenns are known 
as turbulent stresses, and are defined in equation B7 [1]: 

a-
R 

= -�G,-u· -u· )-�(p-u· .u· )-�&,-u· .u· )  
X OX X X oy X y OZ X Z 

(Bl) 

The effective viscosity is defined by the sum of the laminar viscosity µ and the turbulent 
viscosity }It, which depends on the turbulence model chosen. Since this term has the same form as 
the viscous force tenns in equation B2, the effective viscosity term is defined equation B8 in two­
dimensional Cartesian coordinates [1]: 

µ,v 20 =  ![/3� -(p-u: -uJ]+  ![µ a� -G,-u: -uJ] (Bs) 

FLOTRAN® contains six turbulence models [1]: 
• 
• 
. 

• 
• 
• 

Standard k-E Model 
Zero Equation Model 
Re-Nonnaliz.ed Group Modei or RNG 
New k-E Model due to Shih, or NKE 
Model due to Girimaj� or GIR 
Shi, Zhu, Lumley Modei or SZL 

In the Zero Equation Modei the }It calculation depends heavily on the mesh density near walls, and 
is the simplest model in FLOTRAN® [1]. In all other models, }It is a function of turbulent kinetic 
energy k and turbulent dissipation rate E. The standard k -E model requires the solution of two 
additional equations, one for the transport of kinetic energy and one for the transport of dissipation. 
Equation B9 relates turbulent kinetic energy and the turbulent dissipation rate (19]. Spalding and 
Launder have composed a detailed discussion on this modei and their default values for k and E are 
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used in ANSYSe [17]. The remaining four turbulence models are extensions of the standard k -&  
model with changes in viscosity temlS or in the sow-ce term of the dissipation equation. 

k
2 

A = 0.09 - p-
e 

(B9) 

Pressure. FL0TRAN algorithms solve for relative pressure rather than absolute pressure in 
order to improve numerical accuracy. Neglecting gravitational effects, the absolute pressure Paa is the 
sum of the reference pressure /),(and relative pressure fJrri. in a stationary coordinate system [1]. /),(is 
defined globally for the problem, and usually equals the atmospheric pressure such that fJrri. equals the 
gauge pressure. If N is set to the free stream static pressure, �, then fJrri. is the deviation from�­
Gauge pressure, or differential pressure, is calculated by subtracting Paa from the atmospheric 
pressure in such cases . The momentum equation can be rewritten as equation B 10 in vector form 
for a stationary coordinate system. 

DU 2 -

p- = -Vprel - µV U  + T;  
Dt 

(B lO) 

FLOTRAN calculates the total, or stagnation, pressure based on equation B 1 1  for compressible 
problems [ 1 ]. 

, _ { r - 1  2 )  ;_1 
Ptotal = \Prel + Pref \1 + -

2
- · Ma - Pref 

FLOTRANe 

ANALYSIS 

Typically, FL0TRAN analysis consists of seven steps [1]. 

• Detennine the problem domain 
• Detennine the flow regime 
• Oeate the finite element mesh 
• Apply boundary conditions 
• Set FL0TRAN analysis parameters 
• Execute solution algorithms 
• Post-Processing Results 

(B l l) 

Determine the Problem Domain. When detennining the problem's domain, choosing 
boundaries where conditions are known is an important consideration. Locating the boundaries near 
regions of steep gradients in solution variables should be avoided [1]. If the results show steep 
gradients in solution variables, the domain boundaries must be moved and the problem should be 
reanalyzed. These domain boundaries are defined by boundary conditions applied as load 
constraints. 

Determine the Flow Regime. Fluid properties, physical geometry, and the velocity and 
pressure fields characterize the flow regime [1]. FLOTRAN can analyze several types of flow 
regimes, and they are not llllltually exclusive (ie. a turbulent analysis can be compressible or 
incompressible). Each of these analyses types must be considered in order to define the flow regime. 
A FL0TRAN analyses can be [1]: 

• 
• 
• 
• 

Laminar or turbulent 
Thennal or adiabatic 
Compressible or in-compressible 
Newtonian or non-Newtonian 
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• Include multiple species transport 

Larrinar or Turbulent. When considering the viscous behavior of Newtonian fluids, the primary 
parameter of consideration is the dimensionless Reynolds number defined by equation B 12. 

Re = p · U · D = U · D  

µ V 
(B12) 

In equation B 12, p is the fluid density, µ is the coefficient of viscosity, vis the kinematic viscosity, 
and U and D are characteristic velocity and length, respectively [18]. Re was named after Osborne 
Reynolds, a British engineer who proposed it in 1883 [18]. Table BJ shows viscosity, density, 
kinematic viscosity at standard temperature (68°F) and pressure (14.7psz) for several fluids for 
companson. 

Recall turbulent flow occurs in a flow with high Reynolds number. "Low" and "high" are relative 
terms and vary depending on flow geometry. White suggests representative ranges for approximating 
turbulent transitions as listed in Table B.4 [18]. The ranges listed in the table are for flow in ducts, 
and vary somewhat with geometry, surface roughness, and inlet stream conditions. For example, 
airflow at standard temperature and pressure moving at 0.15Ma through a 14.Sin duct has a Reynolds 
number equal to 1 .26E6, well beyond the transition region. 

Table B.1 .  Properties of Three Fluids at 14.7psi and 68°F 

Fluid p, lb/inJ µ, (lbf·s)/inl v, inl/s 

Hydrogen 3.03E-6 1.28E-9 1 .63E- 1 

Air 4.34E-5 2.61E-9 2.34E-2 

Water 3 .61E-2 1 .45E-7 1 .57E-3 

Table B.2. Approximate Turbulence Regions 
Region Description 

0 <Re < 1 highly viscous laminar "creeping" motion 

1 <Re < 100 

100 <Re < 103 

103 <Re < 104 

104 <Re < 106 

106 <Re <oo 

laminar, strong Re dependence 

laminar, boundary-la�r theory used 

transition to turbulence 

turbulent, moderate Re dependence 

turbulent, slight Re dependence 
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Thermd or A diafutic. FLOTRAN® restricts analysis of gases to only ideal gases which obey 
equation (27). 

p · V = R · T  {B13) 

In equation B 13, p is the fluid pressure, v is the fluid specific volwne, R is the gas-specific constant, 
and Tis the fluid temperature [14]. Air's gas-specific constant equals 0.287kj/(kKI<.), or 
18544.2(/lf �/ (lbrd·0R). If the temperature is asswned to be constant, a special case of equation 
B13 known as Boyle's Law, equation B14, relates pressure and specific volume [14]. 

P1 · V1 = P2 · V2 = p • v = constant {B14) 

Corrpressihle orln-rorrpressible. C.Ompressibility of fluid flow is primarily a function of the Mach 
number Ma. This number is named after Austrian physicist Ernst Mach [18]. Ma is a ratio of a 
flow's velocity U to the speed of sound a in that fluid, as expressed in equation B 15. 

u 
Ma = - (B15) 

a 

In FLOTRAN®, Ma for an ideal gas is calculated with equation B16 as a function of the velocity 
magnitude, the ratio of specific heats y, the ideal gas constant R, and the absolute temperature Tabs [ 1 ]. 

Ma = IUI 
(r .  R . Tabs )°'s 

{B16) 

Neutoni,an ar rm-Neutoni,an In 1687, Sir Isaac Newton postulated a linear resistance law for 
fluids in shear. Fluids that follow his law are now known as Newtonian fluids. C.Ommon fluids such 
as air, water, and light oils behave as Newtonian fluids. When a Newtonian fluid is sheared, the shear 
stress, ,, is linearly proportional to the coefficient of wcosity, µ. Equation B 17 defines Newtonian 
fluids [ 18]. 

d(} du , = µ- = µ-
dt dy 

{B17) 

Mul,#p/e Species Transport. Multiple species transport is useful for calculating dispersion of 
dilute contaminates or pollutants in fluid flow. It can also be used in applications like heat 
exchangers where two or more fluids are involved. 

Create the Finite Element Mesh. Before any finite element geometry is meshed, an element 
must be chosen. FLOTRAN® has two types of elements compatible across physics environments: a 
two-dimensional element called FLUID141, and a three-dimensional element called FLUID142 [1]. 
FLUID141 can be a four-node quadrilateral or three-node triangle [1]. FLUID142 can be a four­
node tetrahedral or an eight-node hexahedral [1]. These elements are depicted in the Figure B.1. 

Both FLOTRAN® elements have six DOF per node. These OOF include fluid velocity, 
pressure, temperature, twbulent kinetic energy, twbulent energy dissipation, and multiple species 
mass fractions for up to six fluids [1]. 
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ANSYS® will mesh geometries with automated mesh routines. Resulting meshes may be 
structured or freely mapped. Free meshing allows the program to generate nodes that grow to fill a 
space; however, the mesh must be sufficiently refined along regions of steep gradients [1]. These 
regions are near strucnmtl swf aces and behind obstructions such as an airfoil. If the mesh is too 
course in these regions, it will likely not capture significant affects like turbulent vortices. Along 
structural swfaces like an airfoil, FLOTRAN® is tolerant of large aspect ratios with the elongated 
side along directions of very low gradients; therefore, the structured meshing option is more 
appropriate than an unstructured approach. The boundary la�r region of the airloil require densely 
packed nodes normal to the swface, but does not require as many nodes parallel to the surf ace. A 
structured mesh has regular node intervals defined by the program's user, so they may be more 
densely packed in one direction over another. Unlike strucnmtl elements, large aspect ratios in fluid 
elements do not adversely affect the solution if the elongated side of the element is in a direction 
with low gradients [1). 

Apply Boundary Conditions. Along solid swfaces, such as walls, viscous fluid velocities are 
characteristically set to zero relative to the wall, known as the no-slip condition. A boundary la�r, or 
shear la�r, forms between the wall and regions of nearly inviscid flow. A highly refined FEM should 
be created to capture these shear la�rs in order to resolve the resulting velocity profiles [1]. 
Equation B 18 expresses an experimental boundary la�r thickness function for 8 at a length x along a 
flat plate [18]. 

(B18) 
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Any known DOF quantity may be specified at a FEM boundary. A z.ero gradient normal to the 
boundary is applied for every unspecified DOF [1]. For subsonic flow, Ma less than 1.0, the inlet 
boundary condition should be specified using velocity or pressure, and the outlet boundary condition 
should be specified using pressure [ 1 ]. 

Set FLOfRAN® Analysis Parameters. Reference conditions within FLOT.RAN® include the 
reference pressure, bulk modulus, specific heat ratio, reference temperatures, and gravity [1]. Fluid 
properties may be set for density, viscosity, conductivity, and specific heat, all of which may vary 
during the analysis. Other important analysis options may be considered, including relaxation and 
stabilization para.meters and transient analysis parameters [ 1 ]. 

Re/axatiaz and Stabilization, Relaxation and stabilization parameters may be adjusted, and 
DOF properties may be capped during the solution process in order to more quickly reach 
convergence in complex problems. ANSYS® documentation contains recommendations for 
adjusting these parameters to bring complicated problems to convergence [ 1 ]. 

Relaxation factors adjust how much of the newly calculated solution is considered when 
adjusting the previous iteration solution. These factors affect advection algorithm schemes as part of 
equation discretiz.ation discussed later in this chapter. Equation B 19 demonstrates how the 
relaxation factor RE. LX is applied to a solution variable, �- The relaxation factors for every 
component must be between 0.0 and 1.0 [1]. 

t; new = ( 1 - RELX); previous + RELX · t; calculated (B19) 

Stability controls increase diagonal dominance of an equation during inertial relaxation, thus 
making the matrix equation easier to solve; however, more iterations are required to reach 
convergence when inertial relaxation is used [1]. Inertial relaxation may be applied to the 
momentum, temperature, pressure, and twbulence equations [ 1 ]. One important stabilization 
parameter is artificial viscosity, which is added to the main diagonal and forcing function of the 
momentum equations [1]. C.Ompressible fluid problems with high velocity gradients are more easily 
solved with artificial viscosity, but it must be gradually removed since its presence will affect the final 
solution. C.Onvergence also takes longer to achieve with stability controls activated, although in some 
problems convergence may never be achieved without these controls. 

By capping the maximum or minimum value for a troub�ome variable, the variable will not be 
allowed to reach values that otherwise lead to stalling, divergence, or unrealistic properties like 
negative density. The velocity, pressure, and temperature DOF may be capped [1]. 

� M<»#tors, C.Onvergence monitors provide a normalized measure of a solution's rate 
of change between iterations. Clianges of each monitored DOF variable are calculated from the 
absolute difference of the results between the current iteration i and the previous iteration (i- 1), 
divided by the sum of the current values. The summation is performed over all n nodes. Velocity, 
pressure, kinetic energy, and kinetic energy dissipation rate may be monitored [ 1]. Equation B20 
shows the formulation that takes place during every iteration for each monitored DOF variable. 

tit;! -t;t-•> 1 
ConvergenceMonitor = ------•---n __ _ 

Llt;� I  
(B20) 

m=l 
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The fluid solution may have converged once these norma.laed monitors have settled to a 
constant value, but convergence is not guaranteed since fluid problems are nonlinear [1]. The 
magnitudes of converged monitor values depend on the geometry, FEM, turbulence severity, and 
flow development near the outlet boundaries [1]. C.Omparison of the average, maximum, and 
minimwn values for each monitored DOF with the magnitude of the convergence monitor provides 
more meaning to the resulting monitor magnitudes. For example, monitor magnitudes on the same 
order of magnitude as the minimum OOF result indicate changes in the solution variables are 
substantial compared to the results. 

Execute Solution Algorithms. The laws of conservation of mass, momentum, and energy 
define fluid problems. These laws are expressed in tenilS of partial differential equations, and 
discretized using finite elements. For these equations to be valid, the fluid must be Newtonian, 
consist of a single phase, and the problem domain must be constant [1]. C.Onservation equations are 
used for viscous fluid flow and energy in fluid regions. Velocities are obtained from the conservation 
of momentum while pressures are obtained from the conservation of mass principle. Temperature is 
obtained from the law of conservation of energy. 

CF D Sdutian A lgi,t}»n. When FLO1RAN® executes a global iteration, approximate 
solutions are obtained from the momentum equation and used as forcing functions to solve the 
pressure equation while conserving mass. These pressures are used in turn to update velocities until 
the velocity field conserves mass. Temperature and temperature-dependent variables are then 
updated if desired. Once these fundamental equations are solved, turbulence equations are addressed 
and the effective viscosity and thetmal conductivity are calculated from the turbulent kinetic energy 
and dissipation rate. These revised properties replace laminar viscosity and thermal conductivity in 
the model to impart turbulence on the flow. All of these calculations occur in each global iteration in 
a process summarized below [ 1 ]. 

1. Formulate and solve the nodal velocities in the X-direction approximately 

2. Formulate and solve the nodal velocities in the Y-direction approximately 

3. Formulate and solve the nodal velocities in the 2-direction approximately 

4. Formulate the pressure equation using these approximate velocities 

5. Solve the pressure equation 
6. Update velocities based on conservation of mass 

7. Formulate and solve the energy equation for temperature 
8. Solve species transport equations 

9. Update temperature-dependent properties 

10. Solve turbulence equations 

11 .  Update effective viscosity based on the turbulent solution 

12. Calculate convergence monitors 

13. End of global iteration 

CFD solver algorithms for solving fundamental GD equations may be adjusted for each OOF. 
Options include the Tri-Diagonal Matrix Algorithm (IDMA), C.Onjugate Residual (CR) method, 
Preconditioned C.Onjugate Residual {PCXR) method, Preconditioned Generalized Minimum Residual 
{PGMR) method, Preconditioned BiCGStab {PBCGM} method, and a Sparse Direct solver [1]. 
IDMA, a special case of the standard Gauss-Seidel iterative method, is preferred for approximate 
solutions to the momentwn and turbulence equations when exact solutions are not required [1]. CR, 
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PCXR, PGMR, and PBffiM methods are semi-direct solvers that iterate to a specified convergence 
criterion based on search directions. These semi-direct algorithms may conclude when convergence 
is achieved, the maximum number of iterations has been reached without convergence, or the 
solution has stalled. CR requires the least memoiy, but is insufficient for ill-conditioned thennal 
problems [1]. PCXR requires more memoiythan rn, and is better suited for solving ill-conditioned 
conjugate heat trans£ er problems [ 1 ]. PG1\.1R is the most memo.ty intensive method because of its 
tighter convergence capability, and is the solver recommended by ANSYS11 for extremely ill 
conditioned heat transfer (1 ]. PBffiM is similar to PG1\.1R in ability to solve extremely ill 
conditioned heat transfer problems, but is requires less memoiy[l]. The Sparse Direct solver factors 
the matrix and then uses backward/forward substitution to solve for unknovvns [1]. A separate 
solver may be chosen for each DOF. 

Individual DOF solutions are coupled in FLO'fRANII using a nonlinear segregated fashion with 
a Semi-Implicit Method for Pressure Linked Equations (SIMPLE) . A more robust algorithm ­
known as SIMPLEN - has been added to the SIMPLEF algorithm in order to improve the 
convergence rate. These coupling algorithms directly affect steps one through seven of the global 
iteration process outlined previously. ANSYS• documentation contains references explaining these 
algorithm's backgrounds [1]. 

Discretization </ E <Juations. In order for a finite element code to conduct these calculations, 
element matrices are derived separately for each variable by a discretization of the fluid flow 
equations in a process known as a segregated sequential solver algorithm [1]. This process takes 
different forms depending on the terms within the equation. Momentwn, energy, and turbulence 
equations have four types of terms: transient, advection, diffusion, and source. Galerkin's method of 
weighted residuals yields a weighting function, or shape function. This function is used to form 
element integrals used in deriving element matrices for formulation of the matrix equations [1]. 
More detail on shape functions used for specific matrices or vectors is included at the end of this 
chapter. 

The transient term is solved first, using the Newmark integration method or the forward 
difference time integration methods. Refer to the discussion on transient analysis earlier in this 
chapter for infonnation on these methods. 

The advection term may be solved in one of three ways within FLOTRAN : monotone 
streamline upwind (MSU) is first order accurate, streamline upwind / Petro-Galerkin (SUPG) and 
collocated Galerkin (CDLG) are both second order accurate, with a tendency to produce oscillato.ty 
results [1]. MSU assumes no advection occurs across characteristic lines, or streamlines; thus the 
advection term is constant throughout an element. SUPG consists of a Galerkin discretization and 
perturbation term acting in the advection direction. 1his pertwbation term yields more stability than 
in pure Galerkin discretization. In the CDLG approach, element-based velocities are introduced to 
the SUPG scheme. These velocities must satisfythe continuity equation, while traditional velocities 
satisfy the momentum equations. The CDLG approach is useful for coarsely meshed steady-state 
incompressible flows. STh1PLEN uses SUPG to solve momentum and energy equations and MSU 
for turbulence and pressure. 

The diffusion contribution results from an integration over the problem's domain of the 
diffusion term nrultiplied by a weighting function [ 1 ]. Source term contribution results from 
multipl�g the source terms by the weighting function and integrating over the domain [ 1 ]. These 
weighting functions, or shape functions, are described in the Figure B.2 and Table B.5 for 
FLUID141 elements [1]. 
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Figure B.2: 2-D, 4-Node Quadrilateral FLUID141 Element 

Table B.3: Shape Functions for FLUID141 OOF 
Matrix or Vector Shape Function 

Advection-Diffusion Matrices for 
Momentum Equations (i = X, Y or Z) 

Advection-Dif fusion Matrix for Pressure 

Advection-Diffusion Matrix for Energy 
(Temperature) 

Advection-Dif fusion Matrices for 
Turbulent Kinetic Energy (ENKE) and 

Dissipation Rate (ENDS) 

Momentum Equation Source Vector 

Pressure Equation Source Vector 

Turbulent Kinetic Energy and Dissipation 
Rate Source Term Vectors 

ENKE = _!__[:t ENKEm (1 - s XI - t )] ; 
4 m=I 

ENDS = ¼[tENDS
m 

(I - s  XI - t  )] 
Same as momentum equation matrix 

Same as pressure matrix 

Same as kinetic energy and dissipation rate matrices 
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Post-Processing Results. FLOTRAN® will plot velocity vectors for each node. These vectors 
indicate magnitude with either color or length, or both. Contour plots of velocity and pressure use a 
color spectrum to visualize gradients in the property's values. Paths can be defined along lines of 
interest in order to plot two variables against one another, or to plot a specific variable along the line 
on the model itself. All results may be listed. Convergence monitors along with average, maximwn, 
and minimum DOF values yield insight into the solution's convergence, and mass flow calculations 
ensure conservation of mass has been achieved. 

STRUCTURAL FUNDAMENTALS 

ANSYS® uses the principle of virtual work to derive structural matrices [ 1 l Under this principle, 
virtual changes, denoted by the virtual operator o, in the internal strain energy Y are identically offset 
by a change in the external work c; due to applied loads. 

(B21) 

Therefore, virtual work may be expressed by equation B22 without thermal affects assuming linear 
deformations so that Hooke's law remains valid. 

bY = J{{&J[D He}�(vol) (B22) 
vol 

In equation B22, [D] is the elastic stiffness matrix, or stress-strain matrix. Equation B22 may be 
revised into equation B23 by relating the strain vector { £} to virtual changes in the nodal 
disp1accment vector { ou} as a multiple of the strain-disp1accment matrix [B]. 

bY = {&}T J({B}T [DHB}�(voIXu} (B23) 
vol 

The strain-displacement matrix is based on the element shape functions, which are described in the 
A NSYS Struaural A nd)Sis section later in this Appendix. 

External work is expressed as the swn of inertial, pressure, and nodal temJS. The inertial term is 
a function of general point displacements { 'rt¾ and the D' Alembert's acceleration force vector {F•} . 

(B24) 

Newton's second law, written in similar nomenclature, suggests that this acceleration force vector 
equals the material density multiplied by the second derivative of the displacement vector { �. 
These general displacements, 'Ul, are internal element displacements that are related to the nodal 
displacement vector as a multiple of the shape function matrix [N]. Equation B24 may be rewritten 
as equation B25 if density, p, is constant over the volwne. 

&;, • .,,., = -{a,V p J�NY [N]�(vol) 8:\u} 
vol 

(B25) 

Work due to external pressure, equation B26, is expressed in temJS of an applied pressure vector {p} 
acts on a swface or area. 
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(B26) 
area 

Work due to externally applied nodal forces on elements {Fr'} is expressed by equation B27. 

(B27) 

C.Ombining equations B23, B25, B26, and B27 into equation B21 yields one expression for virtual 
work. 

(B28) 

In equation B28, [1'] is the element stiffness matrix, [Me] is the element mass matrix, {ii} is the 
acceleration vector, and { F ?} is the element pressure vector. 

The mass matrix formulation is element dependant within ANSYS®. A lumped mass 
formulation is a1so coded in ANSYS® to reduce the load vector by removing rotational DOF [1]. 
For a static analysis, the mass matrix formulation you use does not significantly affect the solution 
accuracy. The choice of mass matrix formulation is primarily important in dynamic analyses where 
the structure contains initial stresses [ 1 ]. 

ANSYS STRUCTURAL ANALYSIS 

Structural finite element analysis in ANSYS® consists primarily of calculating nodal 
displacements, then using these resuhs to derive other quantities such as stresses or reaction forces 
[1]. These calculations apply to static analysis when the loading is constant, or to transient dynamic 
analysis when the loads vary in time. Both linear and nonlinear (i.e. plasticity or stress hardening) 
solution capabilities, as well as modal, harmonic, spectrum and buckling analyses, are all available in 
ANSYS®. Refer to the ANSYS® Structural Analysis Guide for a discussion of these options. 

ANSYS® contains two solution methods for structural analyses: the h-method and the p-method 
[1]. The h-method - useful for any analysis type - is the system default. The p-method, o� 
polynomial method, is only useful for static analyses, and has several advantages. The p-method 
allows the user to define a desired level of accuracy by adjusting the polynomial level By doing so, 
the structural FEM may not have to be as fine. 

A static structural analysis ignores dampening and inertial loads, with the exception of gravity 
and rotational inertial loads [1]. Problems with time-varied loads that may be considered statically 
equivalent may be solved with th.is technique also. Typical loading scenarios include external forces, 
steady-state inertial forces, imposed displacements, temperatures, and fluences. A typical analysis 
consists of six steps [ 1]. 

• Modeling 
• Solution C.Ontro1s 
• Solution Options 
• Apply Loads and DOF C.Onstraints 
• Execute Solution Algorithms 
• Post-Processing Results 
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Modeling. Element types, real constants, material models, and model geometry definitions 
constitute the modeling phase. Multiple finites element categories are provided within ANSYS® for 
solving structural problems, each containing multiple element types. These categories include spars, 
beams, pipes, two and three-dimensional solids, shells, and specialized element types [1] . ANSYS® 
contains a two-dimensional beam element with tension, compression, and bending capabilities 
known as BEAM3 [1] . The element has three DOF for each of its two nodes: displacement in the X­
direction (UX), displacement in the Y-direction (UY), and rotation about the Z-axis (ROTZ). 

This element is depicted in Figure B.3. Real constants define geometric attributes specific to 
each element type. For example, a two-dimensional beam element BEAM3 has real constants 
defining area, area moment of inertia, beam height, shear deflection, initial strain, and added mass per 
unit length [1] . Each element type chosen must have an associated material model. These models 
can be defined by the user, or selected from an internal library [1] .  The user must implement 
consistent units during modeling, material selection, and post processing results. 

BEAM3 elements may be considered to have four faces for the purpose of surface loading. Face 
one lays between nodes I and J with a negative Y normal direction. Face two also lays between 
nodes I and J, but with a positive X normal direction. Faces three and four are at nodes I and J, 
respectively. The cross-section of this element is not limited, but stresses are derived as though the 
neutral axis is half of the beam's height. The height is only used in deriving bending stresses. These 
elements must lie in the X-Y plane and have a non-zero length and area [1] .  

Solution Controls. While adjusting solution controls, decisions must be  made regarding the 
analysis type, load stepping, and solution output [1] .  Considerations for the analysis type include 
large or small displacements, static or transient loading, or restarting a previous analysis. Load 
stepping refers to the application of loads during the solution process. Different loading scenarios 
occur in load steps that are associated with a "time." This time is merely a counter for static analyses 
[1] .  In a transient analysis, loads may be stepped or ramped across as a load step increment of time. 
Also, dampening coefficients and integration parameters may be adjusted [1] .  

height 
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Figure B.3: BEAM3 Element 
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Solution Options. Solution options include selection of equation solvers and restarts controls. 
ANSYS® will select an equation solver based on the physical problem, or the user may specify one of 
the available solution options: sparse direct, Jacobi conjugate gradient QCG), incomplete Cholesky 
conjugate gradient (ICCG), preconditioned conjugate gradient (PCG), and frontal direct or 
wavefront [1] .  Table B.6 contains brief descriptions of applications for these solvers, which are 
discussed later in this chapter. 

Apply Loads and DOF Constraints. Loads may be applied to a structure as displacements, 
forces, moments, pressures, temperatures, or fluences [1] .  The model may be constrained by setting 
a DOF to a constant value [1] . Structural pressure loads are applied as surface loads in ANSYS®, 
meaning they are applied as distributed loads over a surface to selected elements and corresponding 
nodes [1] . 

Execute Solution Algorithms. Steady-state structural finite element modeling produces a 
system of simultaneous linear equations that may be solved directly by Gaussian elimination or by an 
iterative method. 1bis system of equations consists of a stiffness matrix [.K], displacement vector 
{ u} , and force vector { F} [1] . 

(B29) 

Gaussian, or direct, elimination involves decomposition of the stiffness matrix to compute the 
solution matrix. Both the frontal (wavefront) solver and the sparse direct solver use this method. 
Iterative solvers start with an initial guess for the unknown displacement vector and successively 
steps through solutions until a tolerance level has been achieved [1] . 

In a static analysis, ignoring inertial and damping effects, the overall equilibrium equation B29 
can be expanded to equation B30. 

(B30) 

Table B.4. ANSYS® Structural Solvers and Applications 
Solver 

Frontal Solver 
( direct elimination solver) 

Sparse Direct Solver 
( direct elimination solver) 

JCG Solver 
(iterative solver) 

ICCG Solver 
(iterative solver) 

PCG Solver 
(iterative solver) 

Typical Applications 
When robustness is required (nonlinear analysis) or when memory is 

limited. 
When robustness and solution speed are required (nonlinear analysis); 

for linear analysis where iterative solvers are slow to converge ( especially 
for ill-conditioned matrices, such as poorly shaped elements). 

When solution speed is crucial in "single-field" problems (thermal, 
magnetic, acoustics, and multiphysics) 

When solution speed is crucial in multiphysics applications. Handles 
models that are harder to converge in other iterative solvers (nearly 

indefinite matrices). 
When solution speed is crucial (linear analysis of large models). 

Especially well suited for large models with solid elements. 
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In equation B30, n is the number of elements, e denotes an element, nd denotes applied loads, ac 
denotes acceleration loads, th denotes thermal loads, pr denotes pressure loads, and r denotes a 
reaction load [1]. For a transient analysis, a mass matrix [At] and damping matrix [q, joined with 
appropriate nodal acceleration vectors and velocity vectors, appear on the left hand side of equation 
A9. Transient solutions proceed in the same manner described for transient fluid analyses discussed 
later in this Appendix in the Set FLOTRAN® Ana/ysis Parameters section. 

Element and mass stiffness matrices, in the element coordinates, are shown in Chapter 14.3 of 
the ANSYS® Theory Reverence for BEAM3 elements (ANSYS). The element pressure load vector, 
in the element coordinate system, for BEAM3 elements in ANSYS® is given by equation B31 
assuming uniform lateral pressure (ANSYS, Theory Reference, 14.3) :  

pl 
2 

pl2 

12  
0 pl 

2 
pl2

}
I 

12  
(B31) 

Weighting functions, or shape functions, are described in Figure B.4 and Table B.7 for BEAM3 
elements [1]. 

Post-Processing Results. Results may be evaluated once a solution is obtained by listing 
reaction forces for each constrained DOF at constrained nodes. The total force and total moment 
on any node may be listed. This total load should swn to zero for equilibrium on all nodes except 
where applied loads or reactions exist [1]. The deformed shape may be plotted against the 
undeformed structure. For small deflections, deformations may be exaggerated so that the maximum 
deflection is five percent of the maximum model length [1]. 

x, u 

y 
I 

Figure B.4: 2-D, 2-node BEAM3 Element 
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Table B.5. Shape Functions for BEAM3 DOF 

Matrix or Vector 

Stiffness and Mass Matrices; 
Thennal and Pressure Load Vectors 

Stress Stiffness Matrix 

Shape Functions 

Same as v from Stiffness and Mass Matrices Above 
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APPENDIX C: TYPI CAL FLOTRAN® I NPUT FILE 

ANSYS Release : 7 . 0  Release Date : 2002 / 1 0 / 1 0  

Job Name : 1 6deg 

A N S Y S / F L O T R A N 

20 XV ADIABATIC COMPRESSIBLE TURBULENT FLOW 

Writing results to 1 6deg . rfl file . 

Writing the following degrees of f reedom : 

VX VY PRES TEMP ENKE ENDS DENS VISC EVIS ECON 

File : airfoil 

Analysis Settings 1 0 / 08 / 2003 09 : 08 : 1 9  

Analysis Options Output Control 

Flow Solution T Max . Global Iterations 

Turbulent T Summary Frequency 

Compressible T Overwrite Frequency 

Thermal F Append Frequency 

Transient F 

Swirl F 

Species Transport F 

Free Surface F 

Incomp . Vise . Heat F 

ALE formulation F 

Radiosity Solution F 

Algorithm Control 

SIMPLEN algorithm is used in this analysis 
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1 000 

1 0  

1 000 

500 



Variable Termination Criterion 

VX 1 . 00E - 02 

VY 1 . 00E - 02 

VZ 1 . 00E - 02 

PRES 1 . 00E - 08 

ENKE 1 . 00E - 02 

ENDS 1 . 00E - 02 

TEMP 1 . 00E - 08 

Fluid P roperties 
- - - - - - - - - - - - - - - -

Density : AIR - IN 

Nominal : 1 . 0909E - 07 

Va riable : T 

Viscosity : AIR - IN 

Nominal : 2 . 6420E - 09 

Variable : T 

Update F requency 1 

P roperty Calculations 

Property 

Density 

Viscosity 

Form 

1 1  

1 2  

Bulk modulus O .  1 OOOOE+1 6  

Initial O . OOOOOE+OO 

Viscosity 

Conductivity : 

Nominal : 

Variable : 

Specific Heat : 

Nominal : 

Variable : 

Coefficients 

2 . 47327E+05 

1 . 57850E - 1 0 

1 . 99000E+02 
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CONSTANT 

- 1 . 0000E+OO 

F 

CONSTANT 

- 1 . 0000E+OO 

F 



Operating Conditions 

Bulk Temp for H Cale 

Reference P ressure 

Total Temperatu re 

Nominal Temperatu re 

73 . 71 1 3 

1 . 39796E+01 

73 . 71 1 3 

73 . 71 1 3 

Acceleration 

X component 

Y component 

Z component 

Rotational Terms 

Rotational Speed 

X O . OOOOE+OO 

Y O . OOOOE+OO 

Z O . OOOOE+OO 

Relaxation 

Variable Schmidt # 
- - - - - - - - - - - - - - - - -

vx 1 . 00 

VY 1 . 00 

vz 1 . 00 

PRES 0 . 00 

ENKE 1 . 00 

ENDS 1 . 30 

TEMP 1 . 00 

DENS 0 . 00 

VISC 0 . 00 

COND 0 . 00 

EVIS 0 . 00 

ECON 0 . 00 

TTOT 1 . 00 

SPHT 0 . 00 

SFTS 0 . 00 

ROFL 0 . 00 

O . OOOOE+OO 

O . OOOOE+OO 

O . OOOOE+OO 

Rotational Axis 

Offset 

X O . OOOOE+OO 

Y O . OOOOE+OO 

Z O . OOOOE+OO 

Quad ratu re 

Under Inertial 
- - - - - - - -

0 . 800 1 . 00E+ 1 5 

0 . 800 1 . 00E+ 1 5 

0 . 800 1 . 00E+ 1 5 

0 . 500 1 . 00E+ 1 5  

0 . 500 1 . 00E+ 1 5  

0 . 500 1 . 00E+ 1 5  

0 . 800 1 . 00E+ 1 5  

1 . 000 O . OOE+ 1 5  

0 . 500 O . OOE+ 1 5  

0 . 500 O . OOE+ 1 5  

0 . 500 O . OOE+1 5 

0 . 500 O . OOE+ 1 5 

0 . 800 1 . 00E+1 5 

1 . 000 O . OOE+ 1 5  

1 . 000 O . OOE+OO 

0 . 000 O . OOE+OO 
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Temperature Offset 460 . 00 

Gas Constant 2 . 4733E+05 

Ratio CP /CV 1 . 4000E+OO 

Diff Src Adv 

0 0 2 

0 0 2 

0 0 2 

1 1 2 

0 2 2 

0 2 2 

0 2 2 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 2 2 

0 0 0 

0 0 0 

0 0 0 



Artificial Viscosity O . OOOOE+OO 

Variable Advection MIR  Stablization 

Formulation Factor 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

vx SUPG O . OOOOOE+OO 

VY SUPG O . OOOOOE+OO 

vz SUPG O . OOOOOE+OO 

PRES MSU O . OOOOOE+OO 

ENKE MSU O . OOOOOE+OO 

ENDS MSU O . OOOOOE+OO 

TEMP SUPG O . OOOOOE+OO 

Maximum Convergence Search Minimum 

Variable Solver Iterations Criterion 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

vx PBCGM 1 00 1 . 00E - 05 

VY PBCGM 1 00 1 . 00E - 05 

vz PBCGM 1 00 1 . 00E - 05 

PRES PCCR 1 000 1 .  OOE - 1 2  

ENKE PBCGM 1 00 1 . 00E - 05 

ENDS PBCGM 1 00 1 . 00E - 05 

TEMP PBCGM 1 000 1 .  OOE - 1 2  

The PBCGM Fill - I n parameter is set to 

Debug Output 

Print Residuals F 

Solution Error Est . o 

Tu rbulence Model used 

Standard K - E Model 

Turbulence Inlet Pa rameters 

Turbulence Intensity 1 . 0000E - 02 
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Vectors Delta 
- - - - - - - - -

2 1 .  OOE - 1 0  

2 1 . OOE - 1 0  

2 1 .  OOE - 1 0  

2 1 .  OOE - 1 0  

2 1 .  OOE - 1 0  

2 1 . 00E - 1 0  

2 1 .  OOE - 1 0  

0 

Debug Print Level 1 

Length Scale Factor 1 . 0000E - 02 



Base Turbulence Model Constants 
- - - - - - - - - - - - - - - - - - - - - - - - - - -

CMu 0 . 090 C1  1 . 440 

Kappa 

E 

A 

0 . 400 C2 1 . 920 

9 . 000 C3 1 . 000 

26 . 000 C4 0 . 000 

Transition Point for Y Plus Cale : 1 1 . 500 

Coefficient of Thermal Expansion : 0 . 00E+00 

Wall Cond uctivity Model : Van Driest 

Effective Viscosity Initialization 

Ratio to Lamina r 1 . 0000E+03 

Model Has 1 5538 Nodes and 1 5259 Elements 
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V1 
........ 

No-slip boundary condition applied to walls and aidoil {Velocity = 0) 

C.Onstant velocity bowidary condition 
at inlet (Velocity = 2038.4in/stt) 

0.693in thick sbear la�r 
with twelve elements 

0.1 16in thick shear la�r 
with twenty elements 

Zero relative pressure boundary 

Figure D.1: FLUID141 FEM Arowid Aiifoil at 4 Degrees Pitch 
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Figure D.2: FLUID141 FEM Detail Around Airloil Nose, 4-Degree Pitch 

i 

Figure D.3: 4-Degree, Average VelocityC.Ontours Around Airloil Nose 
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Figure D.4: FLUID141 FEM Detail Near Wall 

Figure D.5: 4-Degree, Average VelocityC.Ontours Near Wall 
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.!>JI/S YS 7 .  0 
NOV 1 2  2 0 0 3  
1 4 : 3 8 : 5 3 
NOD,\L SOLUT ION 
STEP=7 
SUB =1 
VSUM ( AVG ) 
RSYS=0 
PowerGraph ics 
EFACET=l 
.!>SRES =Mat 
SMX =2461  

Z\l 

D IST= 
XF 
YF 

Z-BUF 

c::: 
CJ 
CJ 
CJ 
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3 . 1  
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Figure D.6: 0-Degree, Average VelocityC.Ontours, Max = 2461 in/soc 
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Figure D.7: 4-Degree, Average VelocityC.Ontours, Max = 2574 in/soc 
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Figure D.8: 8-Degree, Average Velocity C.Ontours, Max = 2997 inlstr 

Figure D.9: 12-Degree, Average Velocity Contours, Max = 3572 inlstr 
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."..NS YS 7 .  0 
NOV 1 2  2003  
1 4 : 1 1 : 0 0 
NODAL SOLUTION 
S TEP=1 8 
SUB =1 
VSUM (AVG ) 
PSYS=0 
PowerGraph i cs 
EFACET=l 
AVRES=Mat 
SMX =4087 

zv 
D IST= 3 . 1  
XF 1 
YF . 2 5 
Z-BUF ER 
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CJ 
CJ 
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CJ 

Figure D.10: 16-Degree, Average Velocity C.Ontours, Max =  4087 in/soc 
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Figure D.1 1: 20-Degree, Average Velocity C.Ontours, Max =  4334 in/soc 
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PRESSURE CONTOUR PLOTS 

..1'JITS YS 7 .  0 
NO'/ 1 :2 '.;JCl3  
1 4 : 37 : 4 0 
NC1[1 2...L SC1LUT I1.::1N 
S TEP=7 
SUB =1 
PPES (AVG ) 
PSY::;=O 
PowerGraph ics 
EFi·.CET=l 
A'lPES=Mat 
SMN =- . 1 1 4  
::; n:-c = . ::: 4 4 2 s s 

Z'l =1 
[1 I S T=23 . 1  

)ff ='.;1  
7F ==7  • .='. 5  
--BUFFEP 

- . 3 

. 1] 73333  

Figure D.12: 0-Degree, Relative Pressure, Max =  0244 ps� Min =  -0.114 psi 

Figure D.13: 4-Degree, Relative Pressure, Max =  0245 ps� Min =  -0.172 psi 
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." .. NSYS 7 . 0  
NOV 1 2  2 0 0 3  
1 4 : 22 : 28 
NODAL SOLUTION 
STEP=6 
SUB =1 
PRES ( AVG) 
PSYS=0 
PowerGraph 1cs 
EFACET=l 
AVRES=Mat 
SMN =- . 4 1 :2 3 5  
:'3M}[ = . 2 4 087  

zv =1  
D IST�23 . 1  
J{F =21 
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Z-BUFFER 
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Figure D.14: 8-Degree, Relative Pressure, Max =  0241 ps� Min =  -0.413 psi 
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Figure D.15: 12-Degree, Relative Pressure, Max =  0.239 ps� Min =  -0.746 psi 
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Figure D.16: 16-Dcgree, Relative Pressure, Max = 0241 ps� Min = - 1.08 psi 

Figure D.17: 20-Degrec, Relative Pressure, Max = 0244 ps� Min =  - 126 psi 
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Figure D.18: 4-Degree, Relative Pressure Contours Around Airfoil Nose 
(GreyC.Ontour indicates pressure outside standardized contour plot range) 
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TABULATED CFD RESULTS SUMMARY 

Table D.1: 0-Degree CH) Resuhs Summary 
Fluid C.Onvergence Monitors 

Vx Vy PRES ENKE ENDS lEMP 
4.84E-07 1 .86E-07 6.26E-06 1 .  79E-06 1 .  73E-06 3.61 E-09 

Variable 
Vx 
Vy 

PRES 
ENKE 
ENDS 
TEMP 

Fluid Results Summary 
Average Minimum 
1.90E +03 0.00E +00 
2.60E +00 - 1.08E +03 
- 1.61E-02 - 1. 14E-01 
1.73E +04 4.77E +02 
7.08E +07 5.91E +03 
7.14E +01 7.02E +01 

Mass Flow Rate Summary 

Total Mass Flow In = 0.31254E-02 

Total Mass Flow Out = -0.31253E-02 
I L'.Wass I = 1.E-07 

Maximum 
2.46E +03 
1.08E +03 
2.44E-01 
2.44E +05 
2.97E +09 
7.37E +01 

Table D.2: 4-Degree CH) Resuhs S
ummary 

Fluid Conwrgence Monitors 
Vx Vy PRES ENKE ENDS 1EMP 

4.71E-08 2.54E-08 4.78E-07 1.73E-07 1.93E-07 3.03E- 10 

Fluid Results Smrnnary 
Variable Average Minimum 

Vx 1 .90£ +03 O.OOE +OO 
Vy -8.32E +OO -726E +02 

PRES - 1.85E-02 - 1.72E-01 
ENKE 1 .95E +04 4.74E +02 
ENDS 7.78E+07 5.79E +03 
TEMP 7.14E+01 6.99E +01 

Mass Flow Rate Summary 

Total Mass Flow In = 0.31393E-02 
Total Mass Flow Out = -0.31393E-02 
I M1ass I - 0.E-07 
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Maximwn 
2.57£ +03 
1.66E+03 
2.45E-01 
3.0SE +OS 
4.16E +09 
7.37E +01 



Table DJ: 8-Degree CFD Results Summary 
Fluid C.Onvergence Monitors 

Vx Vy PRES ENKE ENDS TEMP 
3.98E-07 1.42E-07 8.56E-08 6.67£-07 8.04E-07 2.81E-09 

Variable 
Vx 
Vy 

PRES 
ENKE 
ENDS 
TEMP 

Average Minimum 
1.87E +03 -2.37E +02 

- 1 .94E +01 -5.86E +02 
-2.07E-02 -4.13E-01 
2.43E +04 4.72E +02 
9 .62E +07 5.89E +03 
7. 15E +01 6.85E +01 

Total Mass Flow In = 0.31395E-02 
Total Mass Flow Out = -0.3 1392E-02 
l�s l  - 3.E-o7 

Maximum 
2.84E +03 
2.32E +03 
2.41E-01 
4.32E +05 
6.98E +09 
7.37E +01 

Table D.4: 12-Degree CFD Results Summary 
Fluid C.Onvergence Monitors 

Vx Vy PRES ENKE ENDS TEMP 
9.41E- 10 4.42E- 10 9.96E-09 5.79E-09 5.98E-09 6.30E- 12 

Variable Average 
Vx 1.83E +03 
Vy -2.00E +Ol 

PRES -3.06E-02 
ENKE 3.60E +04 4.79E +02 
ENDS 1.4 1E +08 5.89E +03 
TEMP 7.15E +01 6.63E +01 

Mass Flow Rate Smnmaey 
Total Mass Flow In = 0.3 1400E-02 
Total Mass Flow Out = -0.3 1400E-02 
I �s j - 0.E-07 

68 

Maximum 
3.21E +03 
2.96E +03 
2.39E-01 
6.55E +05 
1.25E +10 
7.37E +01 



Table D.5: 16-Degn;e CFD Results Summary 
Fluid C.Onvergence Monitors 

Vx Vy PRES ENKE ENDS TEMP 
7.55E-07 3.08E-07 1.04E-06 3.54E-06 1.06E-05 4.45E-09 

Variable 
Vx 
Vy 

PRES 

ENKE 
ENDS 
TE:MP 

Fluid Results Summary 
Average Minimum 

1.74E +03 -6.65E +02 
-2.55E +01 -628E +02 
-3.73E-02 - 1 .08E +00 
4.96E +04 4.85E +02 
1.96E +08 6.03E +03 
7.15E +01 6.41E +01  

Mass Flow Swnrnaey 

Total Mass Flow In = 0.31409E-02 

Total Mass Flow Out =  -0.31409E-02 
IAMa,sl - o.E-7 

Maximum 
3.55E +03 
3.59E +03 
2.41E-01 
8.83E +05 
1.87E +10 
7.37E +01 

Table D.6: 20-Degree CFD Results Summary 
Fluid C.Onvergeoce Monitors 

Vx Vy PRES ENKE ENDS TE:MP 
4.1 1E-05 1.83E-05 3.17£-04 1.86E-04 2.02E-04 225E-07 

Variable 
Vx 
Vy 

PRES 

ENKE 
ENDS 
TE:MP 

Fluid Results Summary 
Average 

1 .68E +03 
-2.03E +01 
-4.32E-02 
5.77E +04 
227E +08 
7. 16E +01 

Minimum 
-7.16E +02 
-7.1 1E +02 
- 126E +OO 
4.94E +02 
623£ +03 
629E +01 

Mass Flow Swnrnaey 
Total Mass Flow In = 0.31419E-02 
Total Mass Flow Out =  -0.31419E-02 
I LiMass I =- 0.E-7 
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Maximum 
3.71£ +03 
3.85E +03 
2.44E-01 
1.00E +06 
221E +10 
7.37E +01 



APPENDIX E :  STRUCTURAL RE SULTS 

REACTION SOLUTIONS 

Table E.1: 0-Degree Reaction Solution 

Location (in) FX (]bf) FY (]bf) MZ (lbf-in) 
(0, 0} 0.00000 -4.6036 -32.505 
(42, O} 0.00000 -4.6696 32.744 

(0, 14.5} 0.00000 4.7193 32.746 
(42, 14.5) 0.00000 4.6494 -32.489 

Table E2: 4-Degree Reaction Solution 

Location (in) FX (]bf) FY (]bf) MZ (lbf-in} 
(0, 0} 0.00000 -4.5218 -3 1.834 
(42, 0} 0.00000 -4.6183 32206 

(0, 14.5} 0.00000 4.6428 31 .990 
(42, 14.5} 0.00000 4.5749 -3 1.769 

Table E.3: 8-Degree Reaction Solution 

Location (in} FX (]bf) FY (]bf) MZ (lbf-in) 
(0, 0} 0.00000 -4.4381 -31 .136 
(42, 0} 0.00000 -4.5603 31 .629 

(0, 14.5} 0.00000 4.5803 31 .367 
(42, 14.5} 0.00000 4.5137 -31 .169 

Table E.4: 12-Degree Reaction Solution 

Location (in) FX (]bf) FY (]bf) MZ (lbf-in) 
(0, 0} 0.00000 -4.3513 -30.473 
(42, 0} 0.00000 -4.5126 31 .141 

(0, 14.5} 0.00000 4.5399 30.881 
(42, 14.5) 0.00000 4.4579 -30.632 
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Table E.5: 16-Degree Reaction Solution 
Location (in) FX (lbf) FY (lbf) MZ (lbf.in) 

{0, 0) 0.00000 -42715 -29.967 
{42, 0) 0.00000 -4.4928 30.901 

{0, 14.5) 0.00000 4.5428 30.693 
(42, 14.5) 0.00000 4.4187 -30278 

Table E.6: 20-Degree Reaction Solution 
Location (in} FX (lbf) FY (lbf) MZ (lbf.in} 

{0, 0) 0.00000 -42210 -29.819 
{42, 0) 0.00000 -4.5241 31.124 

{0, 14.5) 0.00000 4.6025 30.925 
(42, 14.5) 0.00000 4.3979 -30.148 
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DISPLACEMENT PLOTS 

Figure E.1: C.ombination Predicted Pressure and Displacement 
{compilation of muhipJe images, both pre- and post-processing) 
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Figure E.5: 12-Degrec, Wall AA, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement =- -2.78E-03 in, Min Pressure = -0260 p,) 
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Figure E.6: 16-Degree, Wall AA, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement == -2.75E-03 in, Min Pressure = -0.266 pz) 
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Figure E.7: 20-Degree, Wall AA, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement "" -2.75E-03 in, Min Pressure = -0.268 pz) 
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Figure E.8: 0-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement - 3.02E-03 in, Max Pressure - -0112 pi) 
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Figure E.9: 4-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement ... 2.95E-03 in, Max Pressure = -0209 pi) 
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Figure E.10: 8-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement = 2.89E-03 in, Max Pressure = -0.206 ?') 

Figure E.11: 12-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacement =- 2.83E-03 in, Max Pressure - -0.199 ?') 
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Figure E.12: 16-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Implacemem =- 2.79E-03 in, Max Pressure '"" -0.194 pi) 
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Figure E.13: 20-Degree, Wall BB, Predicted Displacement and Pressure vs. Wall Length 
(Max Displacemem =- 2.S0E-03 in, Max Pressure = -0.191 pi) 
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APPENDIX F: EXPE RIMENTAL RE SULTS 

Table F .1: Experimental Test Conditions 
Property Value 

Free Stream Velocity, U 0.15Ma, 2038.4Ws« 
Atmospheric Pressure,/),( 14.20164psi 

Reference Temperature, T,( 73.71130F 
Oscillation Frc�ncy,/ 10Hz 

Oscillation Magnitude 20 degrees 

Table F .2: Experimental and Numerical Absolute Pressure Comparison 
Pitch Experimental Numerical 
Angle Pressure with Press� 

(degrees) Enor(pSJ) (pa.,) 

4 
8 
12 
16 

0 

4 
8 
12 
16 

0 

4 
8 

12 
16 

0 

4 
8 
12 
16 

Ps-5, Wall AA 
13.9371 ± 0.0052 
13.9419 ± 0.0045 
13.9386 ± 0.0053 
13.9359 ± 0.0065 
13.9177 ± 0.0062 

Ps-10, Wall AA 
13.93�9 ± 0.0044 
13.9379 ± 0.0052 
13.9344 ± 0.0027 
13.9341 ± 0.0039 
13.9254 ± 0.0053 

Ps-5, Wall BB 
13.9371 ± 0.0052 
13.9498 ± 0.0057 
1 3.9368 ± 0.0061 
1 3.9595 ± 0.0045 
1 3.9590 ± 0.0023 

Ps-10, Wall BB 
13.9339 ± 0.0044 
13.9340 ± 0.0066 
13.9315 ± 0.0047 
13.9328 ± 0.0074 
13.9307 ± 0.0053 
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13.9717 
13.9608 
13.951 1  
13.9419 
13.9355 

13.9755 
13.9689 
13.9635 
13.9580 
13.9531 

13.9718 
13.9808 
13.9893 
13.9962 
13.9997 

13.9756 
13.9805 
13.9852 
13.9887 
13.9886 



,.;-
a. 
.....,. 
en 

.0 
� 
� 

i 
rn 

� 
� 

.a 
0 
en 

< 

,.;-
a. 
.....,. 
en 

� 
� 

�
--

en 
rn 
� 

� 

£ 
.a 
0 

.0 
< 

14.00 

13.99 

13.98 

13.97 

13.96 

13.95 

13.94 

13.93 

■ Steady-State Numerical Data 

• Dynamic Experimental Data 

13.92 --------------

13.91 

ODeg 4Deg 8Deg 12Deg 16Deg 

Figure F.1: Wall AA, Ps-S,pa1,s vs. Pitch Angle 

■ Steady-State Numerical Data 

• Dynamic Experimental Data 

14.00 

13.99 

13.98 

13.97 
• 

13.96 • 
• 

13.95 

13.94 

13.93 

13 .92 

13.9 1 -+------r-------.---�--

ODeg 4Deg 8Deg 12Deg 16Deg 

Figure F2: Wall AA, Ps- 10,pa1,s vs. Pitch Angle 

82 



■ Steady-State Numerical Data 
♦ Dynamic Experimental Data 

14.00 ....------------------. 
• 

13.99 -+------------
·a 13.98 +-------------I 

� 13.97 -=·------------l 
� 

� 13.96 
� 13.95 -+--------------­

� 

j 13.94 

� 13.93 

r..-

a. 

qJ' 

� 

13.92 +---------------j 

13.91 +---,.----,---.-----.-------l 

ODeg 4Deg 8Deg 12Deg 16Deg 

Figure F.3: Wall BB, Ps-5,p. vs. Pitch Angle 

■ Steady-State Numerical Data 
• Dynamic Experimental Data 

14.00 

13.99 
• 

13.98 
• 

13.97 
13.96 
13.95 
13.94 
13.93 

13.92 

13. 91 +-----.-----.---,-----,..------i 

ODeg 4 D.eg 8Deg 12Deg 16Deg 
Figure F.4: Wall BB, Ps- 10,p. vs. Pitch Angle 

83 



'° 
� 

II 

0.9 
--·- -- - -+ 

0.8 - - - - · - -

0.7 

0.6 

o.s 

0.4 

0.3 

0.2 

0. 1 

- -·-7-·· -

10  

·- - -·- I . .  - -- : - - - · ·-+ --- - _;__ ---L-- __ l - -�- - __ _i ___ -·-
1 

i I I 
I I . I 

- -�- - - -.. - ·- ----+ -- - - . __ _ --+---· -- ·---r------ -- --+-- --- -- -+ -- -·-- -
i . I i I I 

r ! i I 

------+--- - --- -;-· - ·------ ---- ..__ --·+- ·-· -; 
i 

I I 

20 30 

�---+-- --+----+_ - ---+----·- �--

40 so 

Freq 

60 70 80 90 

Figure F.5: Spectral Plot of Static Pressure at Ps-5 

0.2 ----�--- - ' -· ---·· -+----- ·- i -·- ·- ' _ _  

1 00  

0.1 S  -�-+- ------f ---· ---+- - ----- .-- -· -·- ·-r-- - ---- --4 - -- --

______ _
! 

- -· ···--t--·-····- --- ···-- -· . --------,-· __ i -·· . ·---

0.0S ·-- --; ----·-- .... - --- ' -- ·-- j - --� - . 

80 90 100 

Freq 

Figure F.6: Spectral Plot of Static Pressure at Ps- 10 

84 



VITA 

Nicholas Martin Holland was born on 9 May 1978 in Birmingham, Alabama. He attended public 
schools in Jeffe�on and Shelby C.Ount.ies. He was active in band, wrestling, and Boy Scouting. 
Nicholas earned the rank of Eagle Scout in 1994. He graduated Pelham High School in the spring of 
1996 with an advanced diploma. 

Nicholas studied Mechanical Engineering at Mississippi State Unive�ity where he was active in 
the Reserve Officer Training C.Otps, various professional societies including ASME, and the 
University Christian Student Center. He graduated summa cum laude with a Bachelor's of Science 
Degree in the spring of 2001. Nicholas married the former Kristi Dianne Shearer in May 2000. 

After commissioning in the United States Air Force, Nicholas served at the Arnold Engineering 
Development C.enter, Arnold Air Force Base, and studied Aerospace Engineering at the Unive�ity 
of Tennessee Space Institute. He and his wife live in Tullahoma, Tennessee. Since moving to 
Tennessee, Nicholas has been involved with the C.Ompany Grade Office� C.Ouncil, Special 
Olympics, and his local church congregation. 

85 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2003

	Numerical investigation of a pitching airfoil and resulting flow field effects on a flexible test cell wall
	Nicholas Martin Holland
	Recommended Citation


	tmp.1550583367.pdf._EP29

