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ABSTRACT 

In 1889 Arthur Cayley stated his well-known and widely used theorem that there are 
n° - 2 trees on n labeled vertices [6, p. 70]. Since he originally stated it, the theorem 
has received much attention: people have proved it in many different ways. In this 
paper we consider three of these proofs. The first is an algebraic . result using 
Kirchhoff s Matrix Tree theorem. The second proof shows a one-to-one 
correspondence between trees on labeled vertices and sequences known as Prtifer 
codes. The final proof involves degree sequences and multinomial coefficients. In 
addition, we extend each of these three proofs to find a result for the number· of 
spanning trees on the complete bipartite graph, and extend the first two results to count 
the number of spanning trees on the complete tripartite graph. We conclude with a 
brief generalization to the number of spanning trees on the complete k-partite graph. 
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INTRODUCTION 

An obvious graph theoretic question arises when one thinks about trees on n labeled 
vertices. Just how many such trees are there? The answer, n° -2, was first published 
by Arthur Cayley in 1889 [6, p. 70]. Since then, Cayley's theorem has been the 
subject of many beautiful proofs, using both algebra and combinatorics. There are 
nine different proofs in Harary [6, pp. 70- 78] alone, as well as more proofs in Aigner 
and Ziegler [1, pp. 141 - 146]. Here we look at three of these proofs. 
In the first proof we begin with a complete graph, G, on n labeled vertices 
{ 1, 2, ... , n} and then find the adjacency matrix, A, of G . We obtain the matrix M by 
subtracting A from the n x n matrix that has entries di = degree of vertex i down the 
diagonal, for all i E { 1, 2, .. . , n} and zeros everywhere else. We then obtain the 
number of spanning trees of G by using Kirchhoff's Matrix Tree theorem, which states 
that all cofactors of the matrix M are equal and that this common value is the number 
of spanning trees of G. 
For the second proof, we show that there is a one-to-one correspondence between the 
number of trees on n labeled vertices, { 1, 2, ... , n}, and the set of n - 1 tuples of 
integers (a1, a2, .. . , a0 _ 1) with 1 � ai � n for 1 � i � n - 2 and a0 - t = n. Given a tree, 
T, on n vertices, such a tuple, which is known as the Priifer code of T, is easily found 
using the following procedure. Remove the endpoint of smallest label and the edge 
incident to it, and record the label of the adjacent vertex. Continue this process with 
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the remaining tree. The process terminates when only one vertex remains. Given 
such a sequence there also is a procedure for reconstructing the tree. Let 
u1 = min ([n]\{ a1, a2, ... , an -d) and connect u1 to a1. Now let 
u2 = min ([n]\{u1} u {a2, ... , an}), and connect u2 to a2. Then in general let 
ui = min ([n]\{u1, ... , Ui- i} u {ai, ... , an}), and connect Ui to ai. The process 
terminates after n - 1 iterations. 
The remaining proof uses a lemma which states that the number of trees on 
{ 1, 2, .. . , n} with degree sequence (d1, d2, ... , dn) - i.e., vertex i has degree di - is 
( n-2 ) d 1 -l,d2 -1, ... ,dn -1 . Given this lemma, we can then count the number of trees on 
{ 1, 2, . . .  , n} by summing over all possible degree sequences. 
With these three proofs of Cayley' s theorem under our belt, we then extend each of 
them to find the number of spanning trees on the complete bipartite graph. We then 
talce the first two results and extend them to find the number of spanning trees on the 
complete tripartite graph. Finally we conclude with an extension to the number of 
spanning trees on the complete k-partite graph. 
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CHAPTER ONE 

DEFINITIONS AND PRELIMINARY RESULTS 

1.1 Definitions 

The following common definitions were compiled primarily using Johnsonbaugh [7], 

Krishnamurthy [8], Wagner [12], and Wilson [14]. 

For the purposes of our work here let IJl> = { 1, 2, . . .  }, the set of positive integers, and 
let N = {O, 1, 2, ... }, the set of nonnegative integers. For n E N, define 
[n] = { 1, 2, . .. , n} with [O] = 0. 
A graph G = (V, E) consists of a set V of elements called vertices, and a set E of 
edges, which consists of unordered pairs of elements from V. If { u, v} E E, then 
vertices u and v are adjacent and edge { u, v} is incident with both of them. The 
degree of a vertex is the number of edges incident with it. A vertex of degree one is 
an endpoint. A sequence of positive integers (d1, d2, .. . , dn) is a degree sequence on 
the graph G = ([n], E) if vertex i has degree di. 
A path from v0 to v0 is an alternating sequence of adjacent vertices and their shared 
edges beginning with vertex v0 and ending with vertex v0, 

(vo, e1, V1, e2, ... , Vn -1_, en, Vn), with no repeated edges (some sources refer to this as a 
simple path). Not allowing two edges to be associated with the same vertex set 
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{ Vi, Vj,}, we may remove the edges from the sequence denoting the path as 
(v0, v1, .•. , Vn)- A graph G is connected if there exists a path joining each vertex to 
every other. A cycle is a path that joins a _vertex to itself. A graph with no cycles is 
called acyclic. A tree is an acyclic, connected graph. 
A loop is a cycle in which an edge is incident with only one vertex. In other words, 
{ u, v} is a loop if u = v. A graph that has no loops is a simple graph. From this point 
fotward, we consider only simple graphs. 
The complete graph on n vertices, denoted Kn, is a graph in which every pair of 

· distinct vertices is adjacent. The complete bipartite graph on n and m vertices, 

denoted Kn,m, is a graph whose set of vertices is partitioned into two sets, U, which has 
n vertices, and V, which has m vertices, su�h that vertices u and v are adjacent if and 
only if u E U and v EV. For the purpose of this paper, we let U =·[n] and 
V = {n  + 1, ... , n + m}. The complete tripartite graph on p, q and r vertices, denoted 
Kp,q,r, is a simple graph whose set of vertices is partitioned into three sets, U, which 
has p vertices, V, which has q vertices, and W, which has r vertices, such that u and v 
are adjacent if and only if they are not in the same set. For the purposes of this paper, 
we let U =·[p], V = {p + 1, ... , p + q}, and W = {p + q + 1, ... , p + q + r}. Similarly 
the complete k-partite graph on n1, ... , nk vertices, denoted K01 ,02, ... , nk, is a graph 
whose set of vertices is partitioned into k sets, V1, V2, ••• , Vk, such that ve�ex set Vi 
has ni vertices and such· that u is adjacent to v if and only if they are not in the same 
vertex set. 
A subgraph of a graph G = (V, E), is a graph with vertex set V' and edge set E', such 
that V' c V and E' c E. A spanning tree of a graph G is a tree that is a subgraph of G 
containing all vertices of G. 
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The adjacency matrix of a graph on n labeled vertices is an n x n matrix A= (aij) such 

that ai,j = 0 if vertices i and j are not adjacent, and aij = 1 if vertices i and j are 

adjacent. 

As is· well known, the following are equivalent definitions of the multinomial 
coefficient ( n ) , where n, n1, ... , nk E IJl> and n1 + ... + nk = n. 

Il1, Dz, ... , Ilk 

(ii) ( n ) = l{f:[n] ➔ [k] such that If� (DI= nj, j = 1, ... , k}I, where. 
n1,n2, ••• ,Ilk 

f �(j) = {i E [n] I f(i) = j}. 

1.2 Preliminary Results 
Our first lemma.is a well known result of introductory graph theory and can be found 

in Johnsonbaugh [7, p. 323]. 

Lemma 1.2.1 
Let G = ([n], E) be a graph with IEI = m, and degree sequence (di, d2, ... , dn). Then 

Ld i 
=2m. 

i=l 

Proof. 
Summing over the degrees of all vertices we count each edge twice. ■ 

Lemma 1.2.2 
For n � 2, every tree on n vertices has at least two vertices of degree 1 -i.e., every tree 

has at least two endpoints. 
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Proof 

Suppose we have a tree on n labeled vertices. Start at a vertex, say v1, and move along 
one of the edges from v1 to, say, v2. If the degree of v2 is one then we are done. If 
not, there is an edge from v2 different from {vi, v2}, say to V3. If the degree if V3 is 
one, we are done. If not, then there is an edge from V3, different than { v2, V3}. Note 
that this edge also does not connect v3 to v1, since a tree has no cycles. Continue this 
process. At each point we either encounter a vertex of degree one or we continue 
along to a new vertex. Since our tr� is on n points, the process must terminate. 
Therefore there is a vertex of degree one. 
Now suppose that we have a tree on n labeled vertices. From above, we know the tree 
has one endpoint. Start at that endpoint and follow the same procedure as above. We 
will similarly find another vertex of degree one. Hence the tree has two vertices of 
degree one [12]. 

The following theorem is essential to our work and can be seen in Johnsonbaugh 
[7, pp. 387 - 389]. 

Theorem 1.2.1 
Let T be a graph with n vertices. Then the following are equivalent. 

_(i) T is a tree. That is, T is connected and acyclic. 
(ii) T is connected and has n - 1 edges. 
(iii) T is acyclic and has n - 1 edges. 
Proof 

■ 

(i) ⇒ (ii). Suppose that T is connected and acyclic. We need to show that T has n - 1 
edges. This can be proved by induction on n. Let n = 1, then T has one vertex and 
therefore no edges, thus the theorem is true for n = 1. Suppose it is true for an acylic, 
connected graph with n vertices. Let T be a connected, acyclic graph with n + 1 
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vertices. We know that T has an endpoint. Remove the endpoint and the incident 

edge. The remaining is a tree on n vertices. Thus by induction it has n -1 edges. 

Hence T has n edges. 

(ii) ⇒ (iii). Suppose that T is connected with n -1 edges. We need to show that T is 

acyclic. Suppose not. Then T contains at least one cycle. Remove edges (but not 

vertices) fro� the cycles of T until the resulting graph, T*, is acylic. Note that 

removing an edge from a cycle does not disconnect a graph. Thus T* is also 

connected .. Hence T* has n -1 edges. However, we removed edges from T. Thus T 

has at least n edges, which is a contradiction. Hence T is acyclic. 

(iii) ⇒ (i). Suppose that T is acylic with n -1 edges. We need to show that T is a 

tree. T does not contain any loops and T cannot contain distinct edges e1 and e2 

incident to the same set of vertices, as that would create a cycle. · So T is a simple 

graph. Suppose that T is not connected. Let T 1, T 2, ... , T k be the components of T. 

As T is not connected, k > 1. Sµppose further that Ti has ni vertices. Each Ti is 

connected and acyclic, so Ti has ni - 1 edges. However, this is impossible, as we 

would then have the following: The number of edges of T = n -1 = The sum of the 

edges of each 

Ti= (n1 -1) + (n2-l) + ... + (nk-1) < (n1 + n2 + ... + nt)-1 (ask> 1) = n-1. 

Thus T is connected. Hence T is a tree. ■ 

Corollary 1.2.1 
D 

Given a tree T = ([n], E) with degree sequence (d1, d2, ... , dn), then L,di = 2n -2. 
i=l  

Proof 
D 

By Theorem 1.2.1, T has n-1 edges. Then by Lemma 1.2.1, L,di = 2n-2. ■ 

i=l 
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Corollary 1.2.2 
Given a spanning tree T. of Kn,m with degree sequence 

n+m (d1, d2, ... , do ; do+ 1, dn+2, ... , dn+m.), then Ld
i = 2(n + m - 1) = 2n + 2m - 2. 

i=l 

Proof 

By Theorem 1.2.1, as T is a tree, T has n + m - 1 edges. Then by Lemma 1.2.1, 
n+m 

Ld i = 2(n + m - 1) = 2n + 2m - 2. 
i=l 

Lemma 1.2.3 
Given a spanning tree T of Kn,m with vertex sets U and V and degree sequence 

n n+m (d1, d2, ... , do; do+ 1, do+2, ... , dn+ m.), then Ld
i = Ld i = m + n - 1. 

Proof 

i=l i=n+l 

Every edge of T connects an element from U to an element of V. 

■ 

■ 

The last two results involving multinomial coefficients can be found in Krishnamurthy 
[8, p. 69]. 

Lemma 1.2.4 

L ( n ) =kn. 
n1 + ... +Dt=D ll1,···,n t 
n1 nonnegative 

Proof 

By definition (ii) of the multinomial coefficient, ( n ) counts the number of 
ll1,Il 2,•••, Il k 

functions f:[n] ➔ [k] such that If� G)I = Dj, j = 1, ... , k. Then summing over all 
n 1 + ... + nt = n we get all functions f:[n] ➔ [k]. Thus •••-�•=Jn.,.�.n

J = k". ■ 
n1 nooncgativc 
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Lemma 1.2.S (Multinomial Recurrence) 

For all n, k E IP, and n1, ... , nk E � with n1 + ... + nk = n, then 
( n ) ( n-1 ) ( n-1 ) ( n-1 ) . = + + ... + . 

. Il1,···,Il1c Il1 -1, ... ,n
)c Il1,Il2 -1, ... ,n )c Ili,···,n

)c
.pil

)c -1 

·Proof 

· Count the number of functions f:[n] ➔ [k] such that If +-G)I = nj, j = 1, ... , k according 
to the values of f(n). For instance, if f(n) = 1, there are ( n - l ) ways to map the 

n1 -1, ... ,Ilk 

remaining n - 1 elements. Then summing over the other possible values of f(n), we 
( n-1 ) get the formula. If any nj = 0, then . 1 = 0, as is appropriate since 

n1, ... ,Ilj - , ... ,Ilk 

there are then no functions of the type being counted for which n is mapped to j. ■ 
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CHAPTER TWO 

TREES ON n LABELED VERTICES 

In this chapter we will be proving Cayley' s Theorem using the three proofs outlined in 
the introduction. 
Theorem 2.1 - Cayley's Theorem 

Let n E IJl>. There are n° -2 trees on n labeled vertices. 

Proof 1 of Theorem 2.1. 

For our first proof of Cayley' s theorem we consider an approach used by Gustav 
Kirchhoff. To proceed, we use without proof the following theorem attributed to 
Kirchhoff, which is in many sources, one of which is Chartrand and Lesniak, [5]. 
Theorem 2.2 - Kirchoff's Matrix Tree Theorem 

Given the adjacency matrix, A, of a connected graph G on n labeled vertices, and 
d1 0 0 

M=-A+ 
0 d2 0 

: 

0 0 dn 

where di = degree of vertex i, then all cofactors of M are equal, and their common 
value is the number of spanning trees of Q-. 
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Now, as the set of all trees on n labeled vertices is the same as the set of spanning trees 
of the complete graph Kn, we may use Kirchhoff's result to find the number of such 
trees. 
We have 

0 I 1 1 I 

I 0 1 1 I 

A= 1 1 0 I I and therefore 
: 

1 1 1 0 1 
1 I 1 1 0 

n-1 0 0 n-1 -1 -1 0 n-1 0 -1 n-1 -1 M=-A+ = 

0 0 n-1 -1 -1 n-1 

By Kirchhoff's theorem, the number of trees on n labeled vertices is simply a cofactor 
of M. Using the cofactor associated with the first row and column of M we get that 

n-1 -1 -1 -1 n 0 0 -n 
-1 n-1 -1 -1 0 n 0 -n 

Mu= (-1)
1 + 1 det =

1 det 
-1 -1 n-1 -1 0 0 ... n -n 
-1 -1 -1 n-1 -1 -1 -1 n-1 

n 0 0 -n 
0 n 0 -n 

=
2 det . 

= nn -2_ 

0 0 . . .  n -n 
0 0 0 1 

Thus the number of trees on n labeled vertices is n°- 2
• ■ 

1 
Subtract the last row from each of the first n -2 rows. 

2 
Add (1/n) times each of the first n -2 rows to the last row. 
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This next proof of Cayley' s theorem uses the Prtifer code of a tree, defined by Heinz 
Priifer. Many versions of this proof have been published, one of which is Lovasz 
[9, pp. 34 and 348 - 249]. 

Proof 2 of Theorem 2.1. 

It suffices to show there is a one-to-one correspondence between the set of trees on n 
labeled vertices, say [n], and the set of ordered n - 1 tuples of integers (a1, a2, ... , an-1) 
with 1 � ai � n for 1 � i � n - 2 and an-1 = n. 
First, we need to show that associated with each tree is such an n - 1 tuple. Let T be a 
tree on the vertices [n]. Remove the endpoint of smallest label and the edge incident 
to it and record the label of the adjacent vertex. Repeat this process with the 
remaining tree. The process terminates when only one vertex remains. Since there are 
always at least two endpoints, the final vertex remaining is n, so an _ 1 = n. This 
procedure creates a sequence of n - 1 numbers associated with the tree we began with. 
This sequence is known as the Priifer code of T. More fonnally, we are doing the 
following. 
Let T = ([n], E) be a tree. Let E(T) = {endpoints of T}. Define u1 = min E(T). Then 
there is a unique a1 such that {u1, at} E E. Define V 1 = [n]\{ui}, E1 = E\{ {u1, at}}, 
and let T1 = (V 1, E1). Clearly T1 is also a tree. Now let u2 = min E(T1). Then there 
exists a unique a2 such that {u2, a2} E E1. Define V2 = [n]\ {u1, u2}, 
E2 = E\{ { u1, at}, { u2, a2}} = E1\{ {u2, a2}}, and T2 = (V2, E2). Again, T2 is clearly a 
tree. Continue repeating the procedure. In general, we have that 
Vi-1 = [n]\{ u1, . . .  , Ui-tl,&-1 = E\{ {uj, aj} 1 1  � j  � i - 1}. Then Ti-1 = (Vi- 1,&-1) 
and Ui = min E(Ti - 1). At the final step the tree T n _ 2 = (V n _ 2, En-2) has two vertices 
joined by an edge {Un _ 1, an _ 1}, where Un _ 1 is the smaller of the two vertices in V n _ 2. 
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We have produced a sequence, (u1 , u2, ... , u0 _ 1) which we will call the minimum 
endpoint sequence of T. We have also produced the sequence (a1, a2, ... , an - 1) which 
is the Pliifer code ·of T. Note that T = ([n], { { Ui, ai} 11 � i � n - 1} ). By construction, 
the Ui are all distinct. Further, since every tree has at least two endpoints and each Ui is 
the smallest endpoint of a tree, no Ui = n. Thus the minimum endpoint sequence is a 
permutation of [n - 1] and a0 _ 1 = n. 
Now we need to show that the Pliifer code is unique - i.e., given two trees on n 
vertices with the same Priifer code, the trees are identical. Using the notation from 
above, assume that S = ([n], E) with minimum endpoint sequence (s1, s2, ... , s0 _ 1), 
that T = ([n], F) with minimum endpoint sequence (t1, t2, ... , t0 _ 1), and that S and T 
have the same Priifer code (a1, ... , a0 _ 1). 
Lemma 2.1 
The endpoints of S are the elements of [n] which do not appear in { a1, ... , an _ 2}. 
Hence E(S) = [n]\ {a1, ... , ao -2}. 
Proof. 

First we need to show that for all c E {a1, ... , a0 _ 2}, .c is not an endpoint of S. 
Suppose c E {a1, ... , an _  2} with c =t- n. Then we have that for some i, c = ai and 
therefore { Ui, c} E E. Also, c = Uj for some j, so { c, aj} E E. Then at the ith iteration, 
Ui and { Ui, c} are re�oved, in which case c is a part of the resulting tree. Therefore, c 
could not have been removed prior to this iteration. Hence c -:t= Uj for j < i. Thus c = Uj 

. for some j > i, so it must be that { Ui, c} =t- { c, Uj}, and c is not an endpoint. 
Now we need to show that c E [n]\ {a1, ... , ao- 2} is an endpoint of S. For some i, we 
have that c = Uj. Thus { c, �} E E. Now suppose that { c, x} E E for some x =t- ai. 
Then { c, x} must have been removed during an earlier iteration as otherwise c =t- Uj. 
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Thus { c, x } = { Uj, aj }  for some j < i, which is a contradiction, since neither c nor x can 

be removed at an earlier iteration. Hence c is an endpoint, and the proof of the lemma 

is complete. 

Therefore E(S) = [n]\{ a1 , . . .  , an _ 2 }  = E(T). Thus by definition of the minimum 

endpoint sequence s1 = min E(S) = min E(T) = t1 . Then S1  = ([n]\{ sd, E\{ { s 1 , at } }  and 

T1 = ([n]\{td , F\{ { ti ,  ad } . From above we see that E(S 1) = [n]\{ s1 ,  a2, . . .  , ao - 2 } = 

= [n]\{t1 , a2, . . .  , a0 _ 2 }  = E(T1), and therefore s2 = min E(S1) = min E(T1) = t2. In 

general, Si - t  = ([n]\{ s1 , . . .  , Si - d, E\{ { sj, aj }  1 1 :::;; j :::;; i - 1 }), and 

Ti _  1 = ([n]\{t1 , . . .  , ti _  d ,  E\{ {tj , aj }  I 1 :::;; j :::;; i - 1 }). Then as in Lemma 2.1, the 

endpoints of Si are the elements of [n]\{ s 1 , . . .  , Si _ d which do not appear in the 

remainder of the Priifer code, { ai, . . .  , an - 2 } ,  and again similarly for T. Thus 

E(Si - t) = [n]\{ s 1 , . . .  , Si, ai + t , . . .  , an - 2 }  = [n]\{ t1 , . .  .', ti, ai + t , . . .  , an - 2 }  = E(Ti - t) and 

hence Si = min E(Si - 1) = E(Ti - 1) = ti for all 1 :::;; i :::;;  n - 2. Then (s1 , s2, . . . , Sn - 1) = 

= (t1 , t2, . . .  , tn - 1), and therefore S = T. Note that in general 

Ui = min ([n]\{u1 ,  . . . , ui-t , ai, . . .  , ao - d). (1) 

This constructively defines the tree from (a1 , . . .  , an - 1), so if we know the Priifer code 
we know T. 

We have shown how to find the Priifer code of a tree and that trees with the same 
Priifer code are equal. Now we need to show that given an n-1 tuple of integers 

(a1 , a2, . . .  , ao-1) with 1 :::;; ai :::;; n for 1 :::;; i :::;; n - 2 and an- 1 = n there is a tree (which is 

unique from above) with this sequence as its Priifer code. Let (a1 , . . .  , an- 1) be such a 

sequence. Define Ui recursively by 

Ut = min ([n]\{ a1 , a2, . . .  , an - d}, and Ui = min ([n]\{u1 ,  . . .  , Ui-t , ai, . . .  , an - d) 

for i = 2, . . .  , n - 1 
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(note that [n]\{u1, . . .  , Ui-t, ai, . . .  , an _ d is never empty as there are n elements in [n], 
and at most n-1 elements in {u1, � - -, Ui-t, ai, . . .  , an _ t}). Once again, this definition 
compels (u1, . . .  , Ui -1) to be a permutation of [n - 1]. Define a graph T = ([n],E) where 
E = { {ui, ai}l l  � i � n}. Also, for 1 � i � n, let Vi = [n]\{ u1, . . .  , ui -d, 
& = E\ { {uj, aj}l l  � j  < i} and Ti = (Vi, &). We claim that the resulting graph T is a 
tree with Prtifer code (a1, a2, . . .  , a0 _ 1). We need only to show that Ui is an endpoint of 
the graph Ti and that no vertex with smaller label is an endpoint. Since Ui is adjacent 
to ai in Ti and ai = Uj for some j > i (that is, ai is an endpoint of a later Tj), we can trace 
a path from each Ui to an -1 = n, showing connectedness of T and each Ti. 
Note that { Ui, ai} is an edge of Ti. Therefore Ui has a neighbor in Ti, namely ai. Also, 
Ui cannot be adjacent to any other vertex of Ti, since if it were, then for some j, { aj·, Uj} 
is also an edge of Ti that -includes Ui. Then j > i as Uj is a vertex of Ti. Also, we have 
that either Ui = Uj or Ui = aj. However, ui =t. Uj since Ui e Tj, and Ui =t. aj by definition of 
Ui. Thus Ui is an endpoint of Ti. Hence we have T and all Ti's are trees. Thus as T is a 
tree, it has a Prtifer code. Note that we have just defined each Ui exactly as it was 
defined in (1). Therefore Ui is the vertex of smallest label in Ti. So (u1, . . .  , Un -1) is 
the minimum endpoint sequence of T and (a1, . . .  , an -1) is the Prtifer code of T. 
We have now shown a one-to-one correspondence between the set of trees on n 
labeled vertices, and the set of ordered n - 1 tuples (a1 , a2, . . .  , an -1) with 1 � ai � n for 
1 � i � n - 2 and an -t = n. As the number of such sequences is n° -2, we have that the 
number of trees on n labeled vertices is nn -2

• 

1 5  
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Interesting properties of the Priifer code. 

Given a tree, T, with Prilfer code (a1, a2, . . .  , an -1) with 1 � ai � n for 1 � i � n - 2 and 
an- t = n, the following properties are true. The number of times i E [n] occurs in the 
Priifer code tells us the degree of i. For i E [n - l], the degree of i is one more than 
the number of times it occurs in the Priifer code. The degree of n is the number of 
times it occurs in (a1, . . .  , an -1). With that in mind, we can see that the endpoints of T 
are [n]\{ a1, a2, . . .  , an _ 2} since each ai E { a1, a2, . . .  , an _ 2} has at least degree two. 
The above proof also gives us a mechanical way to generate all trees on [n] using ( 1). 
For the final proof of Cayley' s theorem, we first need the following lemma, which can 
be found in Wilf [13, p. 163]. 

Lemma 2.2 

For n � 2, given a sequence of positive integers (d1, . . .  , dn) with L,di = 2n - 2, the 
i=l 

number of trees on [n] with degree sequence (d1, . . .  , dn), denoted T(d1, . . .  , dn), is 
( n - 2 ) 
d1 - l, d2 - 1 , ... , dn - 1  · 

Proof 

This can be shown by induction on n. 
For n = 2, we need positive integers d1 and d2 with d1 + d2 = 2. Thus d1 = d2 = 1 and 
therefore ( O ) = ( O ) = 1. The theorem holds in this case since the only 

d1 - l , d2 - l  0, 0 

tree on [2] is ([2], { { 1,2} }). 

Suppose the theorem is true for n - 1. We need to show it is true for n � 3. Note that 
some di = 1. If {d1, . . .  , dn} = {e1, . . .  , en} as multisets then T(d1, . . .  , dn) = T(e1, . . .  , en), 
since the same number of trees would occur, one tree being just a relabeling of the 
other tree. Thus we can say that without loss of generality dn = 1. Then 
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T(d1, . . .  , dn -t, 1)  = T(d1 - 1, d2, . . .  , dn -1) + T(d1, d2 - 1, . . .  , dn -1) + 

+ . . . + T(d1, d2, .. .  , dn -1 --- 1). (1) 

Equation (1) follows from categorizing the trees enumerated by T(d1, . . .  , dn _ 1, 1)  
according to the vertex adjacent to n (note that if some di = 1, the term on the RHS of 
(1) containing di - 1 is zero, as is appropriate, since two vertices, each of degree 1 ,  
cannot be adjacent in a tree with 3 or more vertices). 
Now applying the induction hypothesis to the RHS of (1)  and invoking the 
multinomial recurrence yields 

( n - 3 ) ( n - 3  ) T(d1, . . .  , dn -t, 1) = + 
d 1 - 2, d2 - 1 ,  . .. , dn - l  - 1  d 1 - l , d2 - 2, ... _, dn - 1 - 1  

( n - 3 ) 
+ . . . + 

d1 - l , d2 - 1 , ... , dn - l  - 2  

( n -:. 2 . ) 
- d 1 - l , d2 - 1 , ... , dn _ l - 1  

( n - 2 ) 
- d 1 - l , d2 - 1 ; ... , dn - i  - 1 , 0  

( n - 2  ) 
- d1 - l , d2 - 1, ... , dn - l  - 1, dn - 1  · 

Proof 3 of Theorem 2. 1.  

We can now count all trees on [n] by summing over all possible degree sequences: 
( n - 2  ) 

d1 - l , d2 - 1 , ... , dD - 1  

= the sum of all n-nomial coefficients of order n - 2 
n -2 

= n. 

■ 

(as d1 + . . .  + dn = 2n - 2, we have d1 -1 + . . .  + dn -1 = 2n - 2 - n = n - 2) [12]. ■ 
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CHAPTER THREE 

TREES ON THE COMPLETE BIPARTITE GRAPH 

Given the results from chapter two, we are now ready to talce the three proofs of 
Cayley' s theorem and extend them to results on the number of trees on the complete 
bipartite graph. 

Theorem 3.1 
Let n, m E IP. There are mn - 1nm - 1 spanning trees on the complete bipartite graph, 
Kn,m• 

Proof 1 of Theorem 3.1. 
For our first proof of the number of spanning trees on the complete bipartite graph we 
appeal to Theorem 2.2. Let A be the adjacency matrix of Kn.m- Then 
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0 0 0 0 1 1 1 1 

0 0 0 0 1 1 1 1 

0 0 0 0 1 1 1 1 

0 0 
A =  

0 0 1 1 1 1 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 
. . 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

n columns mcolumns 

and therefore 

m 0 0 0 0 0 0 0 

0 m 0 0 0 0 0 0 

0 0 m 0 0 0 0 0 

0 0 
M = -A +  

0 m 0 0 0 0 

0 0 0 0 n 0 0 0 

0 0 0 0 0 n 0 0 

. 
0 0 0 0 0 0 . . .  n 0 

0 0 0 0 0 0 0 n 

n coluoms m coluoms 
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m 0 0 0 - 1  - 1  - 1  - 1  

0 m 0 0 - 1  - 1  - 1  - 1  

0 0 m 0 - 1  - 1  - 1  - 1  

0 0 0 m - 1  - 1  - 1  - 1  

- 1  - 1  - 1" � 1  n 0 0 0 
- 1  - 1  - 1  - 1  0 n . . .  0 0 
-1  - 1  - 1  - 1  0 0 . . .  n 0 
- 1  - 1  - 1  - 1  0 0 0 n 

n columns mcolumns 

Then by using the cofactor associated with the first row and column of M we get that 
m 0 0 0 - 1  - 1  - 1  - 1  

0 m 0 0 - 1  - 1  - 1  - 1  

0 0 m 0 - 1  - 1  - 1  - 1  

M 1 1  = (-1) 1 + 1 <let 0 0 0 m - 1  - 1  - 1  - 1  

- 1  - 1  - 1  - 1  n 0 0 0 
- 1  - 1  - 1  - 1  0 n - . . .  0 0 
- 1  - 1  - 1  - 1  0 0 . . .  n 0 
- 1  - 1  - 1  - 1  0 0 0 n 

n - l colunms mcolaoms 
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m 0 0 0 - 1  - 1  - 1  - 1  
0 m 0 0 - 1  - 1  - 1  - 1  

0 0 m 0 - 1  - 1  - 1  - 1  

=1 det 0 0 0 m - 1  - 1  - 1  -1  

0 0 0 0 n 0 0 - n  
0 0 0 0 0 n 0 - n  

0 0 0 0 0 0 n - n  
- 1  - 1  - 1  - 1  0 0 0 n 

n - l columns m colunms 

m 0 0 0 - 1  - 1  - 1  -1 
0 m 0 0 -1  -1  - 1  - 1  

0 0 m 0 - 1  - 1  - 1  - 1  

=2 det 0 0 0 m - 1  - 1  - 1  - 1  
= mn - 1 nm - 1_ 0 0 0 0 n 0 0 - n  

0 0 0 0 0 n 0 - n  

0 0 0 0 0 0 n - n  
0 0 0 0 0 0 0 1 

n - l colunms mcolunms 

Thus the number of spanning trees of Kn,m is m0
-

1 nm - I _  ■ 

1 
Subtract the last row from each of the rows n through n + m - 2. 

2 
Add (1/m)(row l + . . .  + row (n - 1)) + ((n - 1)/(mn))(rown n + . . .  + row (n + m- 2)) to the last row. 
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Proo/2 of Theorem 3. 1. 

The next proof of theorem 3. 1 is an adaptation of proof 2 of Theorem 2.1 using a 
bipartite Prtifer code. Although it was extended using only Proof 2 of Theorem 2. 1, 
another statement of the process used in finding the bipartite Priifer code can be found 
in Bodendiek and Henn [4, pp. 341- 342]. 
It suffices to show there is a one-to-one correspondence between the set of spanning 
trees of Kn,m and the set of ordered pairs of sequences of integers (a, b ), with 
a = (a1, a2, • • •  , an) where n+l � ai � n + m for all 1 � i � n - 1 and an = n + m, and 
b = (b1, b2, • • •  , bm -1) where 1 � bj � n for all l � j  � m - 1, we call (a, b) the bipartite 
Pri.ifer code of the bipartite tree. 
First we need to show that associated with each tree is such an ordered pair of 
sequences of integers. Let Kn,m be the complete bipartite graph. Let T be a spanning 
tree of Kn,m• Find the bipartite Priifer code in the following way. Remove the endpoint 
having the least label. If the removed endpoint is a left vertex, record to a the label of 
the adjacent vertex. If the endpoint is a right vertex, record to b the label of the 
adjacent vertex. Continue this process until a tree with only one vertex remains. 
Clearly 1 � bj � n for all bj E b. Also n +  1 � ai � n + m for all ai E a and an = n + m 
(since, prior to the last step, every tree has at least two endpoints, the smallest of 
which will never be n + m). These two sequences associated with T are the bipartite 
Pri.ifer code of T. Notice that b has m-1 terms and a has n terms, and the last element 
of a will always be n + m. In a more formal mathematical way, we are doing the 
following. 
Let T = (U u V, E) be a spanning tree (note that U = [n] and V = {n  + 1, . . .  , n + m}). 
Let E(T) = { endpoints of T}. Define u 1 = min E(T). Then there exists a unique c1 such 
that {u1, ct} E E. Define U1 = U\{ui}, V 1 = V\{ut}, E1 = E\{ {u 1, ct}}, and let 
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T1 = (U1 u V1, E1). Clearly T1 is also a tree. Now let u2 = min E(T1). Then there exits 
a unique c2 such that {u2, c2} E E1. Define U2 = U\{u1, u2}, V2 = V\{u1, u2}, 
E2 = E\{ {u1, ci}, { u2, c2}} = E1\ { {u2, c2} }, and let T2 = (U2 u V2, E2). Again, T�· is 
clearly a tree. Continue repeating the process. In general, we have 
ui -1 = U\{u1, . . .  , Ui -d, vi -1 = V\{u1, . . .  , Ui -d, and & -1 = E\ { {Uj, aj} 1 1 � j  � i - 1 }. 
Then Ti -I = (Ui-1 u Vi -I, & -1) an� Ui = min e(Ti -1). At the final step, the tree 
Tn+m-2 = (Un + m-2  U Vn+m-2, En+m-2) has two vertices joined by an edge 
{Un+ m-1, Cn + m-1 } where Un+ m-1 is the smaller of the two vertices in 
Un+m-2 U Vn+m-2 and Cn+m-1 = n + ffi is the larger. 
We have produced a sequence (u1, . . .  , Un + m _ 1) which we will call the minimum 
endpoint sequence of T. We have also produced the sequence ( c 1, . . .  , Cn + m _ 1), which 
is the Priifer code for T. Define the elements of a and b according to the following. 
Let a1 = c1 if u1 E [n], and let b1 = c1 if u1 > n. Let L(O) = R(O) = 1 ,  and let 
L(l ) = . 1 and R(l) = . 1 

• Then m general we have {2 if u E [ n] { 1 if u E [ n] . 1 1f u 1 > n 2 1f u 1 > n 

(. ) {L(i - 1) -:+-l if u i E [n] d R(') { R(i-1) if u i E [n] . h .f L 1 = , an 1 = w1 t aL(i) = Ci + 1 1 L(i - 1) if u i > n  R(i-1) + 1 if u i > n  
Ui+t E [n] and �ci) = Ci+t if ui+t > n. 
At each step, the indices only increase by at most one so we are systematically 
assigning each Ci to either a or b as appropriate. Each Ci is used only once, thus there 
are n + m - 1 steps involved and n + m - 1 elements in (a, b). Thus we have produced 
the two sequences a = (a1, . . .  , au) and b = (b1, . . .  , bm _ 1) which form the bipartite 
Priifer code of T. Note that T = (U u V, { { ui, Ci} I 1 � i � n + m - 1 }. By 
construction, the· ui are all distinct. Further, since every tree has at least two endpoints 
and each ui is the smallest endpoint of a tree, no Ui = n + m. Thus the minimum 
endpoint sequence is a permutation of [n + m - 1], and an = n + m. 
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Now we need to show that the bipartite Prilfer code is unique - i.e ., given two bipartite 
spanning trees on U and V with the same bipartite Priifer code, the trees are identical. 
Using the notation from above, assume that S = (U u V, E) with minimum endpoint 
sequence (s1 , . . .  , Sn + m - 1), that T = (U u V, F) with minimum endpoint sequence 
(t1 , . . .  , t0 + m _ 1), and that S and T have the same bipartite Prilfer code ( a, b) with 
a =  (a1 , . . .  , an) and b = (b1 ,  . . .  , bm- 1). Then as in Lemma 2. 1 ,  
E(S) = (U U V)\( { a1 , . . .  , an - d  U { b1 , . . . , bm- d) = (U U V)\({ a 1 , . . .  , an } U · 
{ b1, . . .  , bm - 1 }) = E(f). Thus by definition, s1 = min E(S) = min E(T) = t1 . Then 
S 1 = ((U u V)\{ sd, E\{ { s1 , ct } ) and T1 = (U u V\{ td ,  F\{ { ti , ci } } ,  where 
Ct = {a 1 �f 81 = ti > n  . Then letting L(O) = R(O) = 1, L( l) = {2 �f 81 = t i E n and 

b1 1f s1 = t 1 E [n] 1 1f s 1 = t 1 > n 
{1 if s 1 = t 1 E [n] R(l) = . we have E(S 1 ) = (U u V)\({ sd u { aL(l), . . . , an - d u 

2 1f s1 = t1 > Il 

{ bitcn, . . .  , bm - d) and E(T1) = (U U V)\({ tt }  U { aL(l), . . .  , an - d  U { bR(l), . . .  , bm - d), 
so E(S1) = E(T1), and therefore s2 = min E(S 1) = min E(T1) = t2. In general we get 
L(i - l) =  {L(i -.1) +1 �f s i _ 1 = ti _ 1 E n , R(i - l) = { �(i -1) i� s i _1 = ti _ 1 E [n] , L(1 - l) 1f s i -t = t i - I > n  R(1-l) + l  1f s i - t  = ti - I  > n 

) 

with Si - t  = ((U u V)\{ s1 , . . .  , Si - d , E\{ { sj, Cj }  1 1  � j  � i - 1 } )  and 
Ti - t  = ((U u V)\{ t1 , . . .  , ti - d , E\{ {tj , Cj } 1 1  � j  � i - 1 }), where 

{a Lf 2> if s - 1 = t .  1 > n Cj = b 1
• 'f • - • - [ ] . Then again as in Lemma 2. 1 , R(i - 2) 1 s i - t = t i - 1 E n 

E(Si _ i ) = ((U U V)\{ s1 ,  . . .  , Si - d  U {aL(i - 1 ), . . .  , cln - d  U {bR(i - 1), . . .  , bm- d) = 
= ((U U V)\{ t1 , . . .  , ti - t }  U { aL(i - 1), . . .  , cln - d U {bR(i - 1), • . • , bm - t }) = E(fi - 1). 
Therefore Si = min E(Si - t ) = min E(fi - t ) = ti for all 1 � i � n + m - 1 . Then 
(s1 , . . .  , Sn + m- 1) = (ti ,  . . .  , tn + m- t) and therefore S = T. 

Note that Si = ti = min ( (U u V)\( { s 1 = t 1 , . . .  , Si _  1 = ti _  d u 
{aL(i - t>, . . .  , an, hR<i - t>, . . .  , bm- d)). 
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This constructively defines the tree from {a, b ), so if we know the bipartite Prtifer 
code, we know T. 
We have shown how to find the bipartite Prtifer code of a tree and that trees with the 
same bipartite Prtifer code are equal. Now we need to show that given an ordered pair 
of sequences of integers (a, b), with a =  (a1, a2, . . .  , an) where n + 1 � ai � n + m for all 
1 � i � n - 1 and an = n + m, and b = (b1, bi, . . .  , bm -1) where 1 � bj � n for all 
1 � j � m - 1, there is a bipartite tree (which is unique from above) with (a, b) as its 
bipartite Prtifer code. Let (a, b) be such an ordered pair. Define Ui recursively by the 
following. 
Let u1 = min ([n + m]\{ a1, . . . , au, b1, . . . , bm -d ). Define L(O) = R(O) = 1, and 
L(l ) -{2 if u 1 e [n] D f' R(l) _ {1 if u 1 e [n] Th . al - . e me - . en m gener , 1 if u 1 > n  2 if u 1 > n  

Ui = min ([n + m]\( { u1, . . .  , Ui -d U { aL(i -I), . . .  , an, ba(i -1), . . .  , bm -d )) for 
i = 2, . . .  , n + m - 1, with L(i) = l {u1, . . . , ui} n [n]I + 1 and 
R(i) = l { u1, . . . , ui} n { n  + 1, . . . , n + m}I + 1. We could equivalently define L(i) and 
R(i) as follows: 
L(i) = {L(i - 1) + 1 if me [n] and R(i) = { R(i - 1) 

L(i - 1) if m > n  R(i -- 1) + 1  
if Ui E  [n] if Ui > n  

Note that L(i) + R(i) = i + 2 .  This is clearly true for i = 1 .  Then assuming 
L(i - 1) + R(i - 1) = (i - 1) + 2 = i + 1, we have that 
L(i) + R(i) = L(i - 1) + R(i - 1) + 1 = i + 1 + 1 = i + 2. Then 
[n + m]\({u1, . . . , Ui -d u { aL(i - I), . . .  , an, bR(i - I), . . .  , bm -d) is never empty as there 
are at most n + m - 1 elements in { u1, . . .  , Ui - d u { aL(i - I), . . . , an, bR(i - I), . . . , bm -d 
(by counting indices, we have at most 
(i - 1) + n + (m - 1) - [L(i - 1) - 1] - [R(i - 1) - 1] 
= (i - 1) + n + m - 1 + 2 - (L(i - 1) + R(i - 1)) 
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= (i - 1) + n + m + 1 � ((i - 1) + 2) 
= i - l + n + m - i  
= n + m - 1 elements in the union) 
and n + m elements in U u V = [n + m]. Once again, this definition compels 
(u1, . . .  , Un +  m - 1) to be a permutation of [n + m - 1] . Define a graph T = (U u V, E) 

. . {aL(i- I) if u i  > [n] · where E= { {ui, ci } l l � 1 � n + m} w1th ci= b ·r . Also, for 
R(i -t) 1 ui E n 

1 � i � n + m, let ui = U\{u1, . . .  , Ui - d , vi= V\{u1, ... , Ui - d , 
& = E\{ { ui, Ci } 1 1  �j < i }  and Ti= (Ui u Vi, �). We claim that the resulting graphs T 
and Ti are trees. We need only to show that Ui is an endpoint of the graph Ti and that 
no other vertex with smaller label is an endpoint. Since ui is adjacent to Ci in Ti and 
Ci= Uj for some j > i (that is, Ci is an endpoint of a later Tj), we can trace a path from 
each Ui to an = n + m, showing connectedness of T and each Ti. 

Note that { ui, Ci } E �- Therefore Ui has a neighbor in Ti, namely Ci. Also Ui cannot be 
adjacent to any other vertex of Ti, since if it were, then for some j, { Cj, Uj } is also an 
edge of Ti that includes Ui. Then j > i as Uj is a vertex of Ti. Also, we have that either 
Ui = Uj or Ui = Cj. But Ui -:;:. Uj since Ui e Tj, and Ui -:;:. Cj since Cj is equal to a later aL( j - 1) 
or bR(j _ 1) and thus in { aL(i _ t), . . .  , au., bR(i -1), . . .  , bm _ 1 } .  Thus Ui is an endpoint of Ti. 
Hence we have that T and all Ti ' s  are trees. Since T is a tree, it has a bipartite Prtifer 
code. Note that we have just defined each Ui as it was defined in (1 ). Therefore Ui is 
the endpoint of smallest label in Ti. 

We have shown that there is a one-to-one correspondence between the set of spanning 
trees on Kn,m and the set of ordered sequences of integers a = ( a 1, a2, • • •  , 8n) where 
n + 1 � ai � n + m for all 1 � i � n - 1 and an = n + m, and b = {b1, bi, . . .  , bm- 1) where 
1 � bj � n for all 1 � j � m - 1. Hence, as the total number of such sequences is 
mn - 1nm- 1, we have that the total number of spanning trees of Kn,m is mn - 1nm - 1. ■ 
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For the last proof of theorem 3 .1, we need the following lemma, which can be found in 
Pak [11] . 

Lemma 3.1 

Given a sequence of positive integers (d1, d2, ... , d0; dn + t, dn + 2, ... , d0 + m) with 
n n+m 

L d i = Ldi = m + n - 1, the number of spanning trees of Kn,msuch that vertex i has 
i=l i=n + l  

degree di, denoted T(d1, d2, ... , do; do + 1, do+ 2, ... , dn + m), is 
( m - 1 ) (  n - 1 ) · d 1 - l , d 2 - l , . . .  , d 0 - 1  d n+l - l , dn+2 - 1 , . . .  , d n+m - 1  · 

Proof. 
This proof can be shown by induction on n + m. 
For n + m = 2, we have that n = m = 1. So we need positive integers d1 and d2 such 
that d1 + d2 = 2. Thus d1 = d2 = 1 and therefore ( l - l ) ( l - l ) = (0) (0) = 1 if d 1 - l  d2 - l  0 0 
d1 = d2 = 1. The theorem holds in this case since there is only one spanning tree on 
Kt,l • 
Let n + m � 3. Suppose the theorem holds for all sequences of positive integers 

� 
p +q (di, d2, ... , dp; dp + 1, dp + 2, ... , dp + q) with 2..,d i = L di = p + q :-- 1 for p ::; n and 

i=l i=p+ l  

q � m, with at least one of the inequalities strict. Suppose we have a sequence of 
n+m positive integers (d1, d2, ... , dn; do + 1, do + 2, ... , dn + m) with Ld i = 2(n + m - 1). 
i=l 

Using the same argument that appears in the proof of Lemma 2.1, we may assume that 
d1 � ... � dn = 1 .  Then 
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T(d1 , d2, . . . , 1 ;  dn + 1 ,  dn + 2, . . .  , dn + m) = (1) 

= T(d1 , d2, . . .  , 1 ;  dn + 1 - 1 ,  dn + 2, . . .  , dn + m) + T(d1 , d2, . . .  , 1 ;  dn + 1 ,  dn + 2  - 1 ,  . . .  , dn + m) 
+ . . .  + T(d1, d2, . . .  , 1 ;  do +  1 ,  dn + 2, . . .  , dn + m - 1 ), 
by categorizing the trees enumerated by T(d1 , d2, . . .  , 1 ;  dn + 1 , dn + 2, . . . , dn + m) according to the vertex adjacent to n. 
Applying the induction hypothesis to the RHS of (1 )  and invoking the multinomial 
recurrence gives us 
T(d1 , d2, . . .  , 1 ;  dn + 1 ,  dn + 2, . . .  , dn + m) = 

( m -1 ) ( n - 2 ) = 
d 1 -l, d 2 -l, ... , d0_1 - 1 dn+I - 2, d 0+2 - 1, . . .  , dn+m -1 + 

( m - 1 ) ( n - 2 ) d1 - l, d2 - l, . .. , d0_1 -1 dn+I -l,d0+2 - 2, . .. , dn+m - 1 
( m - 1 ) ( n- 2  ) d1 - l, d 2 -l, .. . , d0_1 - 1 dn+l -1, dn+l - 1, ... , dn+m - 2  

+ . . .  + 

= ( ID - 1 ) f ( Il - 2 ) d i - 1, ... , dn-1 - 1 k=I dn+I - 1, ... , dn+lc - 2, ... , d n+m - 1 
= ( m - 1 J f ( . n - 2 J d 1 - 1 ,  . . .  , d 0_1 - 1, 0 k = l  dn + l  - 1 ,  . .. , dn + k  - 2, . . .  , dn+ m - 1  
= ( ID - 1 J f ( Il - 2 ) d i - 1 ,  ... , d n - 1  k =I dn + I  - 1, . . .  , dn + lc  - 2, ... , dn +m - 1 

( m -1 X n- 1 ) - d 1 -l, d 2 -l, . . .  , d
0 - 1 dn+ l - 1, d n +l - 1, ... , d n + m - 1 • 

28 

■ 



Proof 3 of theorem 3.1. 
We can now count . all spanning trees of Kn,m, by summing over all possible degree 
sequences. Note that in the complete bipartite graph, as all edges begin on one side 
and end on the other, the sum of the degrees of the vertices on the left side equals the 
sum of the degrees of the vertices on the right side. 

L T(dl , . . . , d n ; dn +l ' . . .  , d n + m ) 
all possible 
degree sequences 

= 
all possible 
degree sequences 

( m-1 ) ( n-1 ) d 1 -1, ... , d n -1 d n +l -1, . . .  , d n + m  -1 
= 

� � l 
( m-1 ) ( n-1 ) d1 -1, . .. , d

0 
-1 d n +l -1, ... , dn + m  -1 

d1 + ... + d8 = m +n -1 
da+ I  + ... +da+m =m+ n- 1  

= ( m-1 ) 
d; � l  L di -1, ... ,d. -1 
d1 + ... + d

8 
= m + n - 1  

d1 � 1  
( n-1 ) 

dn + i  - 1 , . . .  , dn + m - 1  
d••l + ... + da+m = m + n - 1  

= (the sum of all n-nomial coefficients of order m - 1) • (the sum of all m-nomial 
coefficients of order n - 1) 

m - 1 n - 1 . = n m 

(as d1 + . . .  + dn = m + n - 1, we have that d1 - 1  + . . .  + dn - 1 = m + n - 1 - n  = m - 1 
and as dn + 1 + . . .  + dn + m = m + n - 1,  we have that 
dn + 1 -1 + . . .  + dn + m -1 = m + n - 1 - m = n - 1 ). ■ 
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CHAPTER FOUR 

TREES ON THE COMPLETE TRIPARTITE GRAPH 

Now that we have the results for the number of trees on [n] and the number of 

spanning trees on the complete bipartite graph, we are ready to take the first two 

proofs and extend them to a result on the number of spanning trees on the complete 

tripartite graph. 

Theorem 4.1 

Let p, q, r, E (P>, and let n = p + q + r. There are n(n - p)P - 1(n - q)4 -
1(n - rt - 1 

spanning trees on the complete tripartite graph, Kp,q.r· 

Proof 1 of Theorem 4.1. 

For our first proof, which was aided by Pak [11], of the number of spanning trees on 
complete tripartite graph, we once again appeal to Theorem 2.2. Let A be the 
adjacency matrix of Kp,q.r• Then 
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0 0 0 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 
: : : : : 

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 
A= 1 1 1 0 0 0 1 1 1 

: : : 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 

: : : : : : 1 1 1 1 1 1 0 0 0 

p columos q cohmms r colunms 

and therefore 
q + r 0 0 0 0 0 0 0 0 

0 q + r 0 0 0 0 0 0 0 

0 0 q + r 0 0 0 0 0 0 

0 0 0 p + r 0 0 0 0 0 

M= -A+ 0 0 0 0 p + r 0 0 0 0 

0 0 0 0 0 p +r 0 0 0 

0 0 0 0 0 0 p + q 0 0 

0 () 0 0 0 0 0 p + q 0 

0 0 0 0 0 0 0 0 p + q 

pcolunms q columns r colunms 
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q + r 0 0 - 1  - 1  - 1  - 1  - 1  - 1  

0 q + r 0 - 1  - 1  - 1  - 1  - 1  - 1  

0 0 q + r - 1  - 1  - 1  - 1  - 1  - 1  

- 1  - 1  - 1  p + r 0 0 - 1  - 1  - 1  

- 1  - 1  - 1  0 p + r 0 - 1  - 1  - 1  -

- 1  - 1  - 1  0 0 p + r - 1  - 1  - 1  

- 1  - 1  - 1  - 1  - 1  - 1  p + q 0 0 

- 1  - 1  - 1  - 1  - 1  - 1  0 p + q 0 

- 1  - 1  - 1  - 1  - 1  - 1  0 0 p + q 

pcolumns q columns rcolumns 

Then by using the cofactor associated with the last row and last column of M we get 
that 
Mn,n = (-1)2° • det 
q + r 0 

0 q + r 

0 0 

- 1  - 1  

- 1  - 1  

- 1  - 1  

- 1  - 1  

- 1  - 1  

- 1  - 1  

p columos 

0 - 1  - 1  

0 - 1  - 1  

q + r - 1  -1 
- 1  p + r 0 

- 1  0 p + r 

- 1  0 0 

- 1  - 1  - 1  

- 1  - 1  - 1  

- 1  - 1  - 1  

q columns 

- 1  - 1  - 1  - 1  

- 1  - 1  - 1  - 1  

- 1  - 1  - 1  - 1  

0 - 1  - 1  - 1  

0 - 1  - 1  - 1  

p + r - 1  - 1  - 1  

- 1  p + q 0 0 

- 1  0 p +q 0 

- 1  0 0 p + q 

r -lcolamm 
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1 1 1 1 1 . .  ·. 1 0 0 0 

0 q + r 0 - 1  - 1  - 1  - 1  - 1  - 1  

0 0 q +r  - 1  - 1  - 1  - 1  - 1  - 1  
- 1  - 1  - 1  p + r  0 0 - 1  - 1  - 1  

=1 det - 1  - 1  - 1  0 p + r 0 - 1  - 1  - 1  

- 1  - 1  - 1  0 0 p + r - 1  - 1  - 1  

- 1  - 1  - 1  - 1  - 1  - 1  . p + q 0 0 

- 1  - 1  - 1  - 1  - 1  - 1  0 p + q 0 

- 1  - 1  - 1  - 1  - 1  - 1  0 0 p + q  

pcolunms qcoluoms r - l colunms 

=2 det 
1 1 1 1 1 1 0 0 0 

0 q + r 0 - 1  - 1  - 1  - 1  - 1  - 1  

0 0 q + r - 1  - 1  - 1  - 1  - 1  - 1  

0 0 0 p + r + l  1 1 - 1  - 1  - 1  

0 0 0 1 p + r + l 1 - 1  - 1  - 1  

0 0 0 1 1 p + r + l  - 1  - 1  - 1  

0 0 0 0 0 0 p + q 0 0 

0 0 0 0 0 0 0 p + q 0 

0 0 0 0 0 0 0 0 p + q  

p colwnns q coluoms r- lcolumm 

1 Replace row 1 in the previous matrix by itself plus rows 2 through p + q + r - I. 
2 Replace each of the rows p + I through p + q + r - I in the previous matrix by itself plus row I. 
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= 
1 1 1 1 1 1 0 0 0 

0 q + r 0 - 1  - 1  - 1  - 1  - 1  - 1  

0 0 q + r - 1  - 1  - 1  - 1  - 1  - 1  

0 0 0 p + r +q  p + r + q  p + r + q  - q - q - q 

det 
0 0 0 1 p + r + l 1 - 1  - 1  - 1  

0 0 0 1 1 p + r + l - 1  - 1  - 1  

0 0 0 0 0 0 p + q  0 0 

0 0 0 0 0 0 0 p + q  0 

0 0 0 0 0 0 0 0 p + q 

p columns q colunms r - l columns 

=
2 

det 

1 1 1 1 1 1 0 0 

0 q + r 0 - 1  - 1  - 1  - 1  - 1  

: 

0 0 q + r - 1  - 1  - 1  - 1  - 1  

0 0 0 p + r + q  p + r + q  p + r+ q  - q - q 
0 0 0 0 p + r 0 C C 

0 0 0 0 0 p + r C C 

0 0 0 0 0 0 p + q 0 

0 0 0 0 0 0 0 p + q  

0 0 0 0 0 0 0 0 

pcolumos q columos r - l colwnos 

= (p + q + r)(q + r)P - 1(p + r)q- 1(p + qt- 1
, where c = (-p - r)/(p + q + r). 

= n(n - p)P - 1(n - q)q - 1(n - rt- 1 

0 
- 1  

- 1  

- q 
C 

C 

0 
0 

p + q 

Thus the number of spanning trees on Kp,q.r is n(n - p)P- 1(n - q)q - 1 (n - rt- 1
• ■ 

1 
Replace row p + 1 in the previous matrix by itself plus each of the rows p + 2 through p + q. 

2 
Replace each of rows p + 2 through p + q in the previous matrix by itself plus (-1 )/(p + r + q) times row p + 1 .  
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Proof 2 of Theorem 4.1. 

The next proof of Theorem 4. 1 is an adaptation of proof 2 of Theorem 2.1 using a 
tripartite Prilfer code. 
It suffices to show there is a one-to-one correspondence between the set of trees on the 
complete tripartite graph Kp,cµ, and the set of quadruples of sequences of integers 
(a1, a2, a3, a), with a1 = (au, a12 , . . . , a1(p-1)) where p + 1 � ali � n for all 
1 � i � p - 1, a2 = (a21, a22, ... , a2(q-t)) where 1 � a2j � p or (p + q + 1) � bj � n for all 
1 � j  � q - 1, a3 = (a31, a32, . .. , a3(r - n) where 1 � a3k � p + q for all 1 � k � r - 1, and 
a = (a1, a2) where 1 � a1 � n and a2 = n. We call (a1, a2, a3, a) the tripartite Prilfer 
code. 

First we need to show that associated with each spanning tree there is such a quadruple 
of ordered sequences of integers. Let Kp,q.r be the complete tripartite graph. Let T be 
a spanning tree of Kp,q.r• Find the tripartite Prilfer code in the following way. Remove 
the endpoint having the least label. If the endpoint is the sole remaining vertex in its 
vertex set, record to a the label of the adjacent vertex. Otherwise, if the removed 
endpoint is a left vertex, record to a1 the label of the adjacent vertex. If the endpoint is 
a middle vertex, record to a2 the label of the adjacent vertex. If the endpoint is a right 
vertex, record to a3 the label of the adjacent vertex. Continue this process until a tree 
with only one vertex remains. Clearly p + 1 ::;  ali � n for all ai E a1, 1 � a2j ::; p or 
(p + q + 1) � a2j � n for all a2j E a2, 1 ::; a3k � p + q for all a3k E a3, 1 � a1 � n and a2 = n 
as by the procedure n will be the last vertex remaining, since after each removal we 
still have a tree which has at least two endpoints, the smaller of which will never be n. 
These four sequences associated with T define the tripartite Prilfer code. More 
formally, we are doing the following. 
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Let T = (V 1 u V2 u V3, E) be a spanning tree, where V1 = [p] ,  V2 = {p + 1,  . . .  , p + q } ,  

and V3 = {p + q + 1 ,  . . .  , n }). Let E(T) = { endpoints of T} . Define u 1 = min E(T). 

Then there exists a unique k1 such that { u1 , kd E E. Define V1 ,1 = V1\{ui } ,  V2,1 = 

V2\{ui } ,  V3,1 = V3\{u1), E1 = E\{ {u1 , ki }  } ,  and let T1 = (V1 ,1 u V2,1 u V3,1 , E1). 

Clearly T 1 is also a tree. Now let u2 = min E(T 1). Then there exits a unique k2 such 

that {u2, k2 } E E1 . Define V1 ,2 = V1\{u1 , u2 } ,  V2.2 = V2\{u1 , u2 } ,  V3,2 = V3\{ u 1 , u2 } ,  

E2 = E\{ { u1 , ki } , { u2, k2 } }  = E1\{ {u2, k2 } } , and let T2 = (V1 ,2 u V2,2 u V3,2, E2). 

Again, T2 is clearly a tree. Continue repeating the process. In general, 

Vj,i - 1 = V1\{u1 , . . .  , Ui _ i }for j E [3] ,  and & - 1 = E\{ { uj , kj } 1 1  � j � i - 1 } .  Then 
Ti - 1 = (V 1 ,i - 1 u V 2,i - 1 u V 3,i -1 , & - 1), and ui = min E(Ti - 1). At the final step, the tree 
Tn-2  = (V1 ,n - 2  u V2,n - 2  u V3,n -2, En - 2) has two vertices joined by an edge 

{un -2, kn - 2 }  where Un - 2 is the smaller of the two vertices in V1 ,n - 2  u V2,n - 2  u V3,n - 2, 

and kn -2 = n is the larger. 

We have produced a sequence (u1 , . . .  , Un - 1) which we will call the minimum endpoint 

sequence of T. We have also produced the sequence (k1 , . . .  , kn _ 1), which is the 

Priifer code. Define the elements of a1 , a2, a3, and a according to the following. 

First, u1 E Vh for some h, then a1 = k1 if Vh\{ ui }  = 0 and ah1 = k1 otherwise. Then for 

{
2 if j = h 

{
1 if Vh \{u1

} -:t- 0 j E [3] ,  let fj( l) = . and f4(1) = . . Next, u2 E Vh for 
1 otheiw1se 2 otherwise 

some h, then ar4 O> = k2 if Vh\{u1 , u2 }  = 0 and ahfh co = k2 otherwise. Then for j E [3], 
{

fj ( l) + 1 if j = h 
{

1 if vb \{ui , U2 } * 0 let fj(2) = 
f (l) h 

. , and f4(2) = 
j ot erw1se 2 otherwise 
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Then in general for Ui E V h, let fj(i - 1) = J {f . (i - 2) + 1 
fj (l - 2) 

and aiir h 
(i - t) = ki othetwise. 

if j = h 
h . for j E [3], and ot eiw1se 

Note that at each step, the indices only increase by at most one so we are assigning 
each � to a1, a2, a3, or a as required. Therefore as each ki is used only once, there are 
n - 1 steps involved and n - 1 elements in (a1 , a2, a3, a). Thus we have produced the 
four sequences a1 = (au, a12 , . . .  , a1(p - o), a2 = (a21, a22, . . .  , a2cq - 1)), 
a3 = (a3 1, a32, . . .  , a3cr - 1 )), and a ::::  (a1, a2) which form tripartite Pri.ifer code of T. Note 
that T = (V1 u V2 u V3, { {ui, �} I 1 � i � n - 1 }. By construction, the Ui are all 
distinct. Further, since every tree has at least two endpoints and each Ui is the smallest 
of a tree, no ui = n. Thus the minimum endpoint sequence is a permutation of [n - l], 
and a2 = n. Notice that V3\{u1, . . .  , ui} is never empty since Ui -:I- n for all i. Therefore a 
needs only two terms. 
Now we need to show that the bipartite Pri.ifer code is unique - i.e., given two trees on 
Vi, V2, and V3 with the same bipartite Pri.ifer code, the trees are identical. Using the 
notation from above, assume that S = (V 1 u V 2 u V 3, E) with minimum endpoint 
sequence (s1, . . .  , Sn - 1), that T = (V1 u V2 u V3, F) with minimum endpoint sequence 
(ti, . . .  , tn _ 1), and that S and T have the same tripartite Pri.ifer code 
a1 = (au, a12 , . . .  , a1(p - t)), a2 = (a21 , a22, . . .  , a2(q - 1)), a3 = (a31, a32, . . .  , a3cr - 1 )), and 
a =  (a1, a2). Then by using the same reasoning as in Lemma 2.1, 
E(S) = (V1 u V2 u V3)\({a11, a12 , . . .  , a1cp - t), a21, a22, . . .  , a2cq - t), a31, a32, . . .  , 
a3cr - 1 > ,  a1}) = E(T). Thus by definition, s1 = min E(S) = min E(T) = t1. Then 
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{ a l 
St = t1 E vb, where k1 = 

ahl 

if V. \{u } = 0 h 1 . . Then for j E [3] , letting otherwise 
{2 if j = h { 1 if vb \{ u1 } -:;:. 0 fj(l) = . , and f4(1) = . we have 1 otherwise 2 otherwise 

E(S1) = (V 1 u V 2 u V 3)\( { s1 }  u { au 1 (t), a12 ,  . . .  , a1(p- t), a2r 2 (t), a22, . . .  , a2(q- 1), 
a3r 3 (t), a32, . . .  , a3(r - 1 > ,  at } ) = E(T 1). Thus E(S1) = E(T 1), and therefore t2 = s2. 

{f(i - 2) + 1 if j = h Continuing we get fj(i - 1) = . . for j E [3], and f(i - 2) otherwise 
. {1  if Vb \{ Up . . .  , Ui - 1 }  -:/:. 0 f 4 (1 - 1) = . . Then 2 otherwise 

Si _ 1 = ( (V 1 u V 2 u V 3), E\{ { Sj, lcj }  1 1  � j � i - 1 } ) and 
Ti _ 1 = ((V 1 u V 2 u V 3), E\{ { tj, kj} 1 1 � j � i - 1 } ). Therefore E(Si - 1) = (V 1 u V 2 u 

a3r 3 (i - t), a32, . - . , a3(r - 1 > ,  a1 } ) = E(Ti - 1) and hence Si = min E(Si - 1) = min E(Ti - 1) = ti 
for all 1 � i � n - 1 .  Then (s1 ,  . . .  , Sn - t) = (ti , . . .  , tn - 1) and therefore S = T. Note that 

This constructively defines the tree from (81, 82, 83, a), so if we know the tripartite 
Prtifer code, we know T. 

We have shown how to find the tripartite Prtifer code of a tree and that trees with the 
same tripartite Prtifer code are equal. Now we to show that given a quadruple of 
sequences of integers (ai, a2, a3, a), with with a1 = (au, a12 , . . .  , a1(p - t)) where 
p + 1 � ali � n for all 1 � i � p - 1 ,  a2 = (a21 ,  a22, . . .  , a2(q- 1)) where 1 � a2j � p or 
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(p + q + 1) � bj � n for all 1 � j  � q - 1, 33 = (a3 1, a32, . .. , a3cr - 1 >) where 1 � a3k � p + q · 
for all 1 � k � r - 1, and a =  (a1, a2) where 1 � a1 � n and a2 = n, there is a tree (which 
is unique from above) with (a1, 32, 83, 3) as its tripartite Priifer code. Let 
(a1 ,  82, 83, a), be such a quadruple. 
Define Ui recursively by the following. 
Let u1 = min ([n]\{a1 1, a12 ,  . . .  , a1(p- t), a21 , a22, . . .  , a2cq - t), a31, a32, . . . , a3cr - 1 > ,  a1, a2}). 

{2 if j = h Then u1 E Vh for some h. For j E [3], define fj(O) = 1, fj(l) = 1 , and otherwise 
f4(1) = h 1 . • Then in general, define { 1 if V. \ { u } -:t 0 

2 otherwise 
Ui = min ([n]\( { u 1 , . . . , Ui - t} u { au 1 (i - 1), a12 , . .. , a1(p- t), a2r2 (i - 1), a22, . . .  , a2(q - t), 

. . . {f/i - 2) + 1 if j = h a3r 3 (i - 1), a32, . .. ' a3(r - 1 > ,  ar 4 (i -1), a2}) ), with fj(1 - 1) = f j (i - 2) otherwise for 

{1 if Vh \{ Up ...  , Ui - 1 } -:f; 0 j E [3], and f 4 (i - 1) = 2 otherwise 

Note that f1 (i) + f2(i) + fJ(i) + f4(i) = i + 4. From above we see this is true for i = 1. 
Then assuming f 1(i - 1) + f2(i - 1) + h(i - 1) + f4(i - 1) = (i - 1) + 4 = i + 3,  we have 
that ft (i) + f2(i) + h(i) + f4(i) = f1(i - 1) + f2(i - 1) + h(i - 1) + f4(i - 1) + 1 = i + 3 + 1 = 

i + 4. Then [n]\({u1, . . .  , Ui - d  u {au 1 (i - 1),  a12 , • • •  , a1(p - I), a2f 2 (i - 1), a22, • • •  , a2(q - I), 

a3r3 ci - l), a32, . .. , a3(r - n,  a1, a2}) is never empty as there are at most n - 1 elements in 

a32, .. . , a3(r - 1 ) ,  a1 , a2} (by counting indices, we have at most 
(i - 1) + (p - 1) + (q - 1) + (r - 1) - [f1(i - 1) - 1] - [f2(i - 1) - 1] - [f2(i - 1) - 1] -

[h(i - 1) - 1] - [f4(i - 1) - 1] + 2 
= (i -1) + (p - 1) + (q - 1) + (r - 1) + 4 - [f1(i - 1) + f2(i - 1) + f3(i - 1) + f4(i - 1)] - 2 
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= i - 1 + p + q + r - 3 + 4 - (i + 4) - 2 
= n - 6  
� n - 1 elements in the union) 
and n elements in V 1 u V2 u V3 = (n]. Once again, this definition compels 
(u1, . . .  , u0 _ 1) to be a permutation of (n - 1]. Define T = (V1 u V2 u V3, E) where 

if Vh \ {U1 , • • •  , Ui} = 0 , where otherwise 
Ui E Vh. Also, for 1 � i � n, let V1 ,i = V1\ {u1, . . .  , Ui -d, V2,i = V2\{u1, . . .  , Ui -d, 
VJ,i = V3\{u1, . . .  , ui -d, and � = E\{ {ui, ki} 1 1  � j  < i} and Ti = (V1,i u V2,i u V3,i, �). 
We claim that the resulting graph T is a tree with tripartite Prilfer code 
a1 = (a1 1 , a12 ,  . . .  , a1(p-1)), a2 = (a21, a22, . . .  , a2cq -1)), a3 = (a31 , a32, . . .  , a3(r - n), and 
a =  (a1, a2). We need only to show that Ui is an endpoint if the graph Ti and that no 
other vertex with smaller label is an endpoint. Since Ui is adjacent to ki in Ti and ki = 
Uj for some j > i ( that is, ki is an endpoint of a later Tj}, we can trace a path each Ui to 
an, showing connectedness of T and each Ti. 
Note that {ui, kt} E �- Therefore Ui has a neighbor in Ti, namely kt. Also Ui cannot be 
adjacent to any other vertex of Ti, since if it were, then for some j, {kj, Uj} is also an 
edge of Ti that includes Ui. Then j > i as Uj is a vertex of Ti , Also, we have that either 
Ui = Uj or ui = kj . But Ui =I- Uj as Ui e Tj, and Ui =I- kj since kj will equal some later axy• 
Thus Ui is an endpoint of Ti. Hence we have that T and all Ti's are trees. Thus as T is 
a tree, it has a tripartite Prilfer c;;ode. Note that we have just defined each Ui as it was 
defined in (1). Therefore Ui is the vertex of smallest label in Ti. 
We have shown that there is a one-to-one correspondence between the set of spanning 
trees on Kp,q.r, and the set of quadruples of ordered sequences of integers (a1, a2, a3, a), 
with a1 = (a1 1 , a12 , . . .  , a1(p-1 )) where p + 1 � al i � n for all 1 � i � p - 1, 
a2 = (a21, a22, . . .  , a2cq -1)) where 1 � a2j � p or (p + q + 1) � bj � n for all 1 �j  � q - 1, 
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a3 = (a31, a32, .. . , a3(r - 1 )) where 1 � a3k � p + q for all 1 � k � r - 1, and a =  (a1, a2) 
where 1 � a 1 � n and a2 = n. Hence, as the total number of such sequences is 
n(n - p)P - 1(n - q)q -1(n - rY -1, we have that the total number of spanning trees of 

■ 
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CONCLUSION 

We have now proved Cayley' s theorem using three different proofs. We first proved 

it using a little bit of algebra and Kirchhoff s matrix tree theorem. We then showed 

there is a one-to-one correspondence between trees on [n] and Prtifer codes. Finally 

we counted the number of trees by using degree sequences and properties of 

multinomial coefficients. 

Once we showed all of those results we turned to the number of spanning trees on the 

complete bipartite graph, and extended each of the three proofs. Finally we extended 

the first two results to count the number of spanning trees on the complete tripartite 

graph. The reader will note that we did not extend the degree sequence argument for 

the tripartite case. The problem that arises is knowing what acceptable degree 

sequences look like to ensure that we obtain a tripartite tree. 

One might hope for an extension_ to the number of spanning trees on the complete 
k - partite graph on n = n1 + n2 + . . .  + Dt vertices, Kn 1 ,n 2 • . . .  , n t , and it turns out that 

such an extension exists [ 4, p. 338]. It is obvious how one might prove this results 

algebraically using Kirchhoff s Theorem, but the mechanics involved appear 

formidable. A combinatorial proof using a k - partite Prilfer code looks practicable. 
The k - partite Prilfer code will take the form of a k + 1 tuple of sequences of integers 
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(a1, a2 , ... , ak, a) in which a1 = (a1 1, a12, ... , a1cn 1 - 1)) with a1j E [n]\V1, 
a2 = (a21, a22, ... , a2cn 2 -1)) with a2j E [n]\V2, ... , ak = (ak1, ak2, ... , ak(n1c -1)) with 
akj E [n]\Vk, and a =  (a1, a2, ... , ak-1) with ai E [n] for 1 � i � k - 2 and ak-l = n. 
Given a k - partite tree, one can form the code in the usual way: Find the endpoint of 
smallest label and call it u1. If u1 E Vj, record to aj the label of its adjacent vertex. 
Then remove u 1 and its incident edge from the tree. Then repeat the process. 
Whenever ui is the sole remaining vertex of Vj, for ui E Vj, record to a the label of its 
adjacent vertex. This process will result in the k - partite Pri.ifer code 
(a1, a2 , . . .  , ak, a). 

Using similar tactics to the ones already used, one can rigorously prove that this is 
indeed a one-to-one correspondence. Therefore as there are n - n1 possible elements 
that a1j can take on, there are (n -·ni)0 1 -

l ways to complete a1 . Similarly, there are 
(n - n2)0 2 -

.
1 possibilities for a2. In general, for aij there are n - ni possible values, and 

therefore (n - ni)0 
i -

1 ways to complete ai. Completing a can be done in nk -: 2 ways as 
there are k - 2 elements which can take on any value in [n], with the last element 
predetermined. Hence, putting it all together, we have that there are 
nk-2(n - n1)0

• -
1 (n - n2)0 2 -

l ... (n - nt)0
k -

l such k + 1 tuples. Therefore, there are 
nk-2(n - n1)

0
• -

1(n - n2)
0 2 - l  . • .  (n - nt)0

Ic -
l spanning trees on Kn 1 .n 2 • . . .  , n 1c . 
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