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ABSTRACT 

Extensional deformations play a significant role in many processing 

operations which involve a rapid change of shape such as fiber spinning, film 

blowing, blow molding, and nonwoven melt processing. To develop real time, on

line process and quality control analysis in these operations, know ledge of the 

molecular weight (MW) and molecular weight distribution (MWD}, effects. of 

molecular characteristics and processing con9itions on the elongational rheology, 

and orientation of polymeric materials in these operations is essential. 

In this work, shear rheology of six polyethylenes (PE}, one polyisobutylene 

(PIB}, and _five cellulose solutions was measured at different temperatures using a 

rotational rheometer. Effective elongational viscosity of polyethylenes and 

polyisobutylene was also measured at different Hencky strains and temperatures 

using a capillary rheometer by replacing the capillary cylindrical die with a 

hyperbolic converging die. The hyperbolic shape of the dies establishes a purely 

elongational flow field at a constant elongational strain rate throughout the die. 

The effect of molecular .characteristics such as MW, MWD, and long chain 

branches and the processing conditions such as temperature and Hencky strain on the 

elongational rheology �f PE and PIB samples was studied. The results from the 

hyperbolic dies were compared with results from other techniques, namely 

Rheometrics Extensional Rheometer (RER) and Elongational Rheometer for Melts 

(RMB). Good master curv�s were generated for the temperature and Hencky strain 

shifting, and simultaneous shifting with respect to both temperature and Hencky 

vii 



strain. The enthalpy and entropy changes were calculated from the effective 
elongational and shear viscosities to investigate flow induced orientation of the 
polymer melts in hyperbolic dies. The enthalpy and entropy changes increase in 
magnitude with higher elongational strain rate and higher Hencky strain. The storage 
and loss moduli were used to determine and test the three parameters needed to 
predict the MW and MWD. 
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§1.2 ELONGATIONAL FLOW: THEORETICAL 
CONSIDERATION 

§ 1.3 ELONGATIONAL RHEOLOGY OF LDPE AND LLD PE 
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§1.1 RHEOLOGY: SHEAR AND ELONGATION 

Rheology can be defined as the science of the flow and deformation of 
materials as a result of an applied stress. In polymer processing operations, materials 
are subject to different modes of flow, among which shear flow and elongational 
flow (also called extensional flow) are two primary modes. Figure 1 . 1  illustrates the 
difference between shear deformation and elongational deformation. In shear flow, 
material particles on different streamlines are dislocated relative to each other. In 
elongational flow, the deformation of a material occurs along the streamline so that 
the distance between material planes that are perpendicular to the flow direction 
changes with time. In shear flow the velocity gradient is perpendicular to the flow 
direction, whereas in elongational flow the velocity gradient is parallel to the flow 
direction. 

Elongational flow received scant attention until the mid 1960s, when the 
importance of elongational flows in polymer processing operations was realized. For 
example, in the film blowing process it is well established that bubble instability, 
melt extensibility, and film �ickness uniformity are dictated by �e elongational 
rheology behavior of the polymer melt (1). Very often in polymer processing the 
deformation of the melt before solidification is elongational, and this has a 
pronounced influence on the molecular orientation of the final product, in other 
words, the anisotropy of the end-use properties. 
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(a) Simple shear 

D ___ ;-! .  -=-�o 
(b) Uni axial elongational 

Figure 1.1. Comparison of shear and elongational deformation: (a) Simple shear 
deformation; (b) Uni axial elongational deformation. 

Elongational flow is dominant when a rapid change of shape such as 

stretching is involved in the operation. Typical examples of elongational flow are 

fiber spinning, film blowing, extrusion through converging profiles, injection, and 

blow molding (2-4 ). The flow characteristics of such processes cannot be predicted 

on the basis of shear rheology alone. Knowledge of the elongational viscosity of the 

processing material and its variation with the strain rate is necessary. 

Polymer melts show rheological properties such as complex shear viscosity 

behavior, elastic properties, �ormal stress phenomena, and tensile (elongational, or 

extensional) viscosity. Viscosity is the ratio of two quantities : stress and rate of 

strain. The concept of elongational viscosity was first introduced by Trouton (5) in 

1906 in a study of pitch, tar, and similar substances descending under their own 
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weight. Later, Ballman (6) carried out elongational tests for rubbery polystyrene and 
found a constant elongational viscosity. 

There were some problems with elongational experiments for polymer melts, 
i.e. the difficulty of conducting large strain and constant strain rate experiments; 
large gravitational effects on tension; the question of clamping the melt without 
necking. The work of Meissner (3, 7, 8) was pioneering in overcoming tqese 
problems. In his instrument, two pairs of tooth�d wheels used as rotating clamps at a 
constant distance from each other were used to homogeneously elongate the rodlike 
samples. Elongational viscosity has been measured for polymer melts using a variety 
of techniques, including extension, fiber spinning, and converging flow method. 

For the last two decades, uniaxial elongational viscosity has been investigated 
for various homogeneous polymers such as high-density polyethylene (9), low
density polyethylene (10), linear low-density polyethylene (1, 11, 12), polypropylene 
(13, 14), polystyrene (15), and polybutylene-1 (16). In these polymers, the increase 
of the viscosity with time can be divided into two stages. In the first stage, which 
appears at small strain, the viscosity is independent of strain rate and increases 
slowly with time, until a critical time is reached. The viscosity dat� ai various strain 
rates are superposed �� almost coincide with the ljnear viscoelastic curve, i.e. the 
curve shows the elongational viscosity to be three times the shear viscosity at very 
low shear strain rate. In the second state, which appears at large strain, the viscosity 
depends on the strain rate. Beyond the critical time, the viscosity curves deviate from 
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the first state and rapidly increase. This behavior is called the strain hardening 

phenomenon. 

The elongational properties of the resin are affected by a number of factors, 

such as temperature (17), miscibility and blend ratio in the case of polymer blends 

(18, 19), and molecular characteristics. More generally, molecular characteristics 

refer to molecular weight, molecular weight distribution, and degree of branching in 

the resin. A number of studies (1, 9-11, 13-15, 20-�1) on the elongational flow of 

homogeneous polymer melts have been directed toward understanding the effect of 

polymer macromolecular characteristics. These studies have shown that the strain 
. . 

hardening phenomenon of homogeneous polymers is closely related to the long-time 

relaxation caused by the existence of the long chain branching or a small amount of 

extremely high molecular weight chains (32). The elongational viscosity reacts much 

more sensitively to high-molecular-weight components than does the shear viscosity. 

Whereas in the case of shear, correlations between rheological properties and 

molecular characteristics are well-established, only little is known in this aspect in 

the field of stretching flows, where the molecular characteristics of polymers 

influence their elongational properties in a complex way, partially due to _the lack of 

reliable experimental equipm�nt. 

§1.2 ELONGATIONAL FLOW: THEORETICAL CONSIDERATION 

Figure 1.2 shows three different types of elongational flow fields typically 

occurring in polymer processing operations, i.e. uniaxial, biaxial, and planar 
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z 

X 

/ / . 

(a) (b) (c) 

Figure 1.2. Three different types of elongational flow fields shown by the arrows: 
(a) Uniaxial; (b) Biaxial; (c) Planar. 

extension. In the proposed work, attention is focused on the uniaxial elongational 

flow. The velocity field and stress field for these three different types of elongational 

flow are shown in Table 1.1, where t is a constant elongational strain rate, Vx, Vy,. 

and Vz are the velocity compo�ents in x, y, and z directions, ·respectively, 1Je, 1Jeb and 

1Jep are the uniaxial, biaxial, and planar elongational viscosities, respectively. In 

general, the elongational viscosity is a function of the elongational strain rate t ,  just 

as the shear viscosity 1J is a function of shear rate y .  The relationship between the 

uniaxial and biaxial elongational viscosities can be shown as follows (2) 

T/eb (E) = 2TJe (- 26) 
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Table 1.1. Comparison of the three different types of elongational flow fields. 
[Source: H.A.Bames, J.F.Hutton, and K.Walters. An Introduction to 
Rheology. Elsevier Science Publishers B.V., Amsterdam. 1989.] 

Type of 
elongational flow Velocity field Stress field 

Uniaxial 
extension 

Biaxial extension 

Planar extension 

V:c = EX, Vy
= -ty /2, 

V = -ez. / 2  z 

V:c = EX, Vy = Ey, 
V = -2ez. z 

V:c = tx, Vy
= 0, 

V = -El. z 

a xx - a YY = a xx - au = ETJe (t ), 

axy 
= a:cz. 

= ayz = 0  

·au � a.xx = au - ayy = -ETJeb (E� 
a = a = a = 0  xy, :CZ. yz 
a :c:c - au = ETJ ep ( t ), 

a xy = Cf :cz. = a yz = 0 

The uniaxial extension is equivalent to stretching a thin and narrow sheet of 
. . 

material in one direction, with a corresponding contraction in its thickness and in the 

width of the sheet or a fiber in the axial direction with a corresponding, volume 

conserving, reduction in radius. The biaxial extension is equivalent to stretching a 

thin sheet of material in two orthogonal directions simultaneously, with a 

corresponding decrease in the sheet thickness. The two-dimensional planar flow 

. extension is equivalent to stretching a thin �at sheet of material in pne direction only 

(the x direction), with a corresponding contraction in its thickness in the z direction, 

but with no change in the width of the sheet. 

A fluid for which T/e increases with increasing t is said to be tension 

thickening. If T/e decreases with increasing t , it is said to be tension thinning. 

Experimentally, the steady state implied in the velocity field and stress field is often 
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difficult to reach. Therefore, a transient elongational viscosity 1}. (t, t), which is a 

function of t and t ,  is defined. The transient elongational viscosity can still show the 

rheological properties of polymer melts. 

For non-Newtonian fluids, the following limiting relations between 

elongational and shear viscosities are true (33, 34) 

(1 .2) 

This relationship is valid for all values of i and y in the case of Newtonian fluids, 

obtained by Trouton (5) as early as 1906. Accordingly, rheologists have introduced 

the concept of the 'Trouton ratio' TR defined as the ratio of the steady-state uniaxial 

extensional viscosity to the steady-state shear viscosity shown as follows 

T = TJ. (t) 
R TJ(t) (1 .3) 

where y = i or y = ✓3i (2). The Trouton ratio for Newtonian liquids is equal to 3. 

Elastic liquids are noted for having high Trouton ratios. 

§1.3 ELONGATIONAL �OLOGY OF LDPE AND LLDPE 

Polyethylenes are largely crystalline with their chains in a zig-zag 

conformation. They .are produced by different polymerization processes. 

Polyethylenes may be divided into three categories, high-density polyethylene 

(HDPE), low-density polyethylene (LOPE), and linear low-density polyethylene 

(LLDPE), where density represents the level of crystallinity. HDPE possesses largely 

linear chains with little branching or co-monomer while IDPE is long-chain 
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branched. LLDPE is low-density polyethylene with linear chains. In LOPE the 

crystallinity is disrupted by the occurrence of branching during polymerization. In 

LLDPE the crystallinity is disrupted by copolymerization of ethylene with small 

amounts of a second monomer such as butene-I, hexene-1, octene-1, or 4-methyl 

pentene-1. LOPE is generally used in film, molded products, and insulation. HOPE 

is mostly applied for blow-molded bottles, injection-molded products, and pipes 

(35). 

The relationship between molecular characteristics and ·rheological properties 

particularly in elongation is a very complex one in the case of polyethylenes. The 

elongational flow, where elastic deformation is predominant, is more strongly 

influenced by long chain branches (20, 36) than shear deformation. LOPEs exhibit 

unique rheological properties, especially elongational rheology, compared with 

linear polyethylenes, such as HDPEs and LLDPEs, because of the presence of long 

chain branching in LOPE. For example, LOPE shows larger flow activation energy 

(20), and marked stronger strain hardening characteristics in elongational viscosity 

(30, 36-39) than that observed for LLOPE. Strain hardening increased with 

increasing branching. The elongational viscosity function of long · chain branched 

LOPE melts and also of high molecular weight HDPE melts may show a pronounced 

maximum versus strain rate or tensile stress (20). Long chain branching as in LOPE 

is much more effective than molecular weight distribution in producing the 

pronounced maximum (20). The height of the maximum also increases with the 

degree of branching. Milnstedt and Laun (22) found that for LOPEs the maximum of 
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the steady-state elongational viscosity increased if the molecular weight distribution 
was broadened by the addition of high molecular weight components. A variation of 
the weight-average molecular weight did shift the elongation viscosity curve but left 
its shape unchanged. For polystyrenes the molecular weight distribution is the 
determining quantity for the shape of the elongational viscosity curve (15). In the 
case of polyethylenes the degree of branching is an additional molecular parameter 
which can be expected to determine the shape of the elongational viscosity curve. 

The LLDPE generally responds as linear chain polyethylenes and their 
behavior is directly comparable to the HDPE (23). Indeed their rheological 
properties are quite similar to HDPEs of about the same molecular weight 
distribution (23). It is well known that the poor processability of LLD PE in processes 
where elongation prevails over shear can be greatly improved by adding a small 
quantity of LDPE to the LLDPE. The poor performance of LLDPE is thought to be 
related to its lack of shear thinning whereas LDPE exhibits an onset of shear thinning 
at very low shear rates (12). 

§1.4 MOTIVATION FOR THE PRESENTED WORK . 

Extensional deformations play a significant role in many processing 
operations. For example, fiber spinning, thermoforming, film blowing, blow 
molding, nonwoven melt processing, and foam production are all essentially 
extensional defomiations. Flow in converging or diverging regions of dies and molds 
as well as flow at the moving front during mold filling may have large extensional 
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components. Extensional flows strongly orient polymer molecules and asymmetric 

particles, which has significant effects on the melt flow behavior and can be 

measured in terms of elongational viscosity and changes in entropy and enthalpy. 

Because of the orientation development, regions of extensional flow in a particular 

process may have a strong effect on the final product's  mechanical and bulk 

properties such as resistance to stresses, toughness and degree of crystallinity. 

Knowledge of a polymeric material's elongational melt flow behavior is useful 

information in terms of selecting an adequate polymer grade for a particular 

application when expecting desired product properties. Moreover, the ability to 

quantitatively assess the forces that result in the orientation development opens the 

possibility for on-line process control with fast process parameter adjustments. 

The uniqueness of a polymer is most frequently measured and expressed in 

terms of molecular weight, molecular weight distribution, degree of branching, and 

degree of crystallinity. Besides the knowledge of the dependence of the elongational 

behavior on external parameters like strain rate, strain, and temperature, it is 

necessary to get some insight into the relationship between elongational properties 

and molecular characteristics mentioned above if possible. 

There are several diff �rent types of elongational rheometers for obtaining the 

elongational viscosity of polymer melts and solutions. As will be discussed in 

Chapter 2, most of the existing elongational rheometers measure the elongational 

viscosity of polymers just beyond their melting points. In addition, the measurements 

are done at elongational strain rates at least an order of magnitude lower than 
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processing strain rates. Previous research done by Collier and his research group (40-

42) has shown that an essentially pure elongational flow of polymer melts can be 

generated using hyperbolic convergent dies in a capillary rheometer. An 

experimental technique for measuring elongational viscosity was developed (41-43) 

that can measure the elongational viscosity of polymer melts and solutions at 

processing strain rates and temperatures. 

The knowledge of molecular weight �) and molecular weight distribution 

(MWD) is very important in selecting a proper polymer for a specific polymer 

processing operation. Currently, the most widely used method for the direct 

determination of MW and MWD is gel permeation chromatography (GPC). It is 

however, a time consuming and labor intensive method, with the accuracy of the 

results depending strongly on the skills and experience of the operator. It has long 

been realized that the linear viscoelastic rheological properties of polymer melts and 

concentrated solutions are strong functions of molecular weight and its distribution 

(44). It is in principle possible to invert that relationship and determine the MW and 

MWD by measuring the linear viscoelastic rheological properties of polymeric 

materials (45-48). Rheological· measurements are quick, easy, and _ inexpensive thus 

providing an opportuni_ty to develop real time, on-\ine process and quality control 

analysis of polymer properties in industrial equipments. 

In this research, shear rheology of polyethylenes, polyisobutylene, and 

cellulose solutions was measured at different temperatures. Elongational viscosity of 

polyethylenes and polyisobutylene was measured at different Hencky strains and 
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temperatures. The objective is to study the effect of both molecular characteristics 

and processing conditions on the elongational rheology of the mentioned polymers. 

Methods to determine and test the parameters needed to predict the MW and MWD 

of polyethylene and cellulose (in dissolving pulp concentrated solution) samples 

from their shear rheological data are presented. 
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§2.1 TECHNIQUES TO MEASURE ELONGATIONAL RHEOLOGY 

Despite the obvious importance of elongational rheological data as an aid in 

polymer characterization, in production control, and as an excellent indicator for 

processability ( 49), it is shear viscosity to which is paid more attention compared 

with elongational viscosity. The main reason is that it is much easier to measure 

shear viscosity than to measure elongatlonal viscosity. 

Elongational viscosity is very difficult to assess. In order to obtain reliable 

elongational viscosity data, the following problems should be solved. First, pure 

elongational flow should be obtained. Only elongational flow with free boundaries is 

pure elongational flow. But without boundaries it is difficult . to control the 

deformation. The flow in the tubes whose diameter changes or the entrance flow in 

abrupt convergence consists of shear flow and elongational flow because of the 

boundaries. In the meantime, it is difficult to measure the shear effects. Second, it is 

difficult to reach a steady state with a stable gradient of velocity. Another problem 

with elongational viscosity measurement is that large strains are difficult to reach. In 

shear flows, large strains can l?e achieved by going to long ·residence _time since the 

streamlines are parallel. In extensional flows, the streamlines diverge (or converge) 

so that a sample must become very thin in at least one direction to achieve large 

strain. This becomes self-evident when it is realized that the Hencky strain of 7 in 

uniaxial extension' corresponds to stretching the sample to 1100 times its original 

length. 
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Many different methods have been tried to solve these problems and measure 

the extensional viscosity. Extension, fiber spinning, and converging flow are among 

the most successful methods. The following is an informative review discussing the 

mode of operation, advantages, and limitations for each of these methods. 

§2.1.1 Simple Extension 

The simplest way to generate uniaxial extension is to grab a rod of fluid on 

each end and pull on it, as shown in Figure 2.1. The sample cross section is not 

necessarily circular. In order to attain a constant elongational strain rate in the 

sample, the length of the sample or the velocity of the sample end must increase 

exponentially with time (50). 

A number of methods for holding the ends of the sample have been tried. One 

method is to bond the ends of the sample to a metal clip (translating clamp, or 

movable clamp, or end loading). Such instruments were originally applied for creep 

measurements only, as by Cogswell (4). The improvement and further development 

of the apparatus performed by Mtinstedt (51) now allows small samples to be 

extended not only with constant stress but also with constant strain r�te to a 

�◄ C 
Figure 2.1. Schematic , diagram of the simple extension method to generate an 

elongational flow. 
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maximum total Hencky strain of approximately 4. In the Cogswell-Mtinstedt-type 

instrument (5 1 ), cylindrically shaped samples, glued at their ends to metal pieces, are 

immersed in an oil of matched density and are vertically stretched at a constant 

tensile stress. 

The rotating clamp, developed by Meissner (7) and further improved by 

Meissner and co-workers (3, 8, 21), is an alternate method for pulling samples. In 

Meissner' s apparatus, two pairs of toothed wheels used as rotating clamps at a 

constant distance from each other are used to homogeneously elongate the rodlike 

samples. These wheels rotate with constant angular velocity. The molten samples are 

heated to the test temperature by floating on a silicon oil bath when they are 

stretched at a constant strain rate, as indicated in Figure 2.2 (2). The oil bath 

- - -- -- -- -- -- --- -· - - - -- --- - - - - - - -- - - - -- -- --
-==---=--==---- -==- ------=--=---==------ --== -===--- ------- -==-

Figure 2.2. Schematic diagram of the Meissner' s apparatus. 
[Source: H.A.Bames, J .F.Hutton, and K. Walters. An Introduction to 

Rheology. Elsevier Science Publishers B.V., Amsterdam. 1989.] 
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compensates for the inertia of the sample by buoyancy. The stress is measured by the 

deflection of a spring, associated with one pair of rollers. Using this method, 

Meissner (37) was able to reach Hencky strains up to 7 for a low-density 

polyethylene melt, where Hencky strain is the natural logarithm of area reduction 

during the elongation. 

As mentioned above, the sample is pulled by two pairs of rotating clamps in 

Meissner's apparatus. A simpler alternative is to fix one end of the sample while the 

free end is pulled between rotating gears or wrapped around a rotating rod (9, 13, 50, 

52, 53). One of these modified designs was made by Laun and Mi.instedt (53). Figure 

2.3 (53) shows the schematic of the apparatus designed by Laun and Mi.instedt. The 
. . 

sample is stretched by only one pair of toothed wheels acting on one end of the rod. 

The other end of the sample is glued to a metal sheet (M) which is fastened to a hook 

,.,, l 5 ! 

Lo --------i 

Figure 2.3. Schematic_ drawing of the simplified constant stretching apparatus 
designed by Laun and Mi.instedt. 
[Source: H.M.Laun and H.Mi.instedt. Rheologica Acta 17, 415 
(1978).] 
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on the leaf spring (LS). According to the authors, the leaf spring and the use of a 

Linear Voltage Differential Transformer (L VDT) overcame some of the 

experimental difficulties caused by the combination of force measurement and 

drawing in Meissner' s design. And the separation of the force measurement from the 

driving system considerably simplified the whole system and made possible the 

elongational viscosity measurement at strain rates smaller than 10-4 s·1
• It was also 

found that the homogeneity of sample deform�tion was still satisfied compared with 

the results of the experiments using two pairs of rotating clamps. 

Using the Meissner-type device, elongational viscosity measurements have 

been performed on polyethylene (8, 20, 32, 36), blends of LDPE and linear low 

density polyethylene (LLDPE) (54, 55), polypropylene (13, 16), polybutene-I (16), 

thermotropic liquid crystalline polymers (LCP) (56-58), talc-thermoplastic 

compounds (59), polystyrene (PS), and polymethylmethacrylate (PMMA) (60). 

Comparing the rotating clamp with the translating clamp technique, it is 

much easier to achieve a constant extension rate with the rotating clamp than with 

the translating clamp. And the overall apparatus can be shorter for the rotating 

clamp. Toe· polymer melt within the rotating clamps is continuously transported 

outside the basis lengt� Lo so that no necking zone, usually develops in the sample 

near the clamp. On the contrary, necking of the sample occurs at the moving clamps. 

Other advantages of using rotary clamps are that a very homogeneous deformation 

and very large total strain can be obtained. Disadvantages of rotating clamps relative 

to translating clamps are that tests other than constant rate are more difficult and 
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longer samples are required. Another problem with rotating clamps is slip at the 

clamp surf ace. 

The major advantage of the extension method is that the flow is 

homogeneous. There are some limitations with this method, for example, 

temperature gradients, low strain rate, density mismatch with surrounding fluid, 

uptake of buoyancy fluid, surface tension at low strain rate, end effects which 

include necking at the bonded clamp for moving cla,nps or slip for rotating clamps, 

and sample inhomogeneity. In summary, the major problems are buoyancy, 

clamping, and sample preparation (50). The extension method is restricted to high

viscosity materials and _generally near the melting point of the materials. 

§2.1.2 Fiber Spinning 

With lower viscosity liquids, 1J < 103 Pa·s, it is impossible to grab and pull 

such fluids as is done with the melts in the extension method (50). Gravity, surface 

tension, and air drag all work against the desired extensional flow (50). Fiber 

spinning is one of the approximate extensional methods for lower viscosity samples. 

Figure 2.4 (2) shows the basic features of this fiber spinning method. The 

sample is continuously extruded from a reservoir and stretched by a rotating wheel or 

vacuum suction. It is self-evident that fiber spinning involves a significant 

elongational flow component. It is relatively easy to perform, the general kinematics 

can be determined with relative ease, and a suitable stress variable can be obtained 

from force measurement on the reservoir or the take-up device (61-63). The fiber 
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Die swell 

· Wind- up or suction 
device 

Figure 2.4. Schematic diagram of the spin-line rheometer. 
[Source: H.A.Barnes, J.F.Hutton, and K.Walters. An Introduction to 
Rheology. Elsevier Science Publishers B.V., Amsterdam. 1989.] 

diameter is measured as a function of distance along the fiber, either 

photographically or by a video camera. The extension rate can be determined from 

measurements of fiber diameter and flow rate. At the Sa.!lle time, it is extremely 

difficult to interpret the data unambiguously in terms of the elongational viscosity. 

Although the velocity at a fixed distance down the threadline does not vary with 

time, the strain rate experienced by a given fluid element will generally change as it 

moves along the threadline (2). Also, a change of conditions in the spinneret can 

significantly affect,the response along the threadline. 
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The spinning technique can be used for polymer melts (20) and for low 

viscosity fluids (62). The major problem associated with this method is that typically 

the strain rate is not constant. For this reason, the fiber spinning method is not a true 

rheometer, but gives only an apparent uniaxial extensional viscosity. Other 

disadvantages include effect of shear history in feed die, extrudate swell ,  unstable 

flow, solvent evaporation, nonisothermal flow for polymer melts, and uncertainty in 

diameter due to vibration. Strain is not usually con�tant. Gravity can be significant 

for low viscosity fluids. 

§2.1.3 Converging Flow 

As the fluid flows from a large cross section tube into a small cross section 

tube, the streamlines converge, shown in Figure 2.5 (50). The fluid dissipates extra 

energy, which is expressed as the entrance pressure drop, to overcome this reduction 

\\ U J "(' 
)\. 

I 
\ I 
\ r I 
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Figure 2.5. Streamlines showing the entrance flow into an orifice. 
[Source: C.W.Macosko. Rheology: Principles, Measurements, and 
Applications. VCH Publishers, Inc ., New York. 1994.] 
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in the cross-sectional area and continue to flow. The existence of the extensional 

flow is indicated by the converging streamlines. However, a shear component is 

imparted to the flow because of the walls along the contraction. Everage and 

Ballman (52) and Winter et al. (64) attempted to minimize the shear component by 

lubricating the tube walls. Several different analyses have been developed to 

estimate the extensional viscosity from the entrance pressure drop measurements. 

The three major approaches are sink flow �alysis by Metzner and Metzner (65), 

Cogswell's analysis (66, 67), and Binding's  analysis (68). 

In the sink flow analysis, Metzner and Metzner (65) assumed a purely 

extensional flow in which the shear components are negligible. For an axisymmetric 

contraction, the flow into the orifice is analogous to a point sink. For a planar 

contraction flow, the analogy is with a line sink (69). 

Cogswell (66, 67) proposed that the converging flow field could be 

interpreted as an extensional deformation superposed onto a simple shear flow. The 

shearing component and the extensional component can be treated separately and 

added to give the total flow. With the knowledge of shear viscosity data, Cogswell's 

equations result in a very convenient way for quickly ranking fluids by simply 

measuring the pressure ,drop and volume flow rate. 

Binding's  analysis (68) is based on the assumption that the flow field is the 

one of least resistance; it includes both shear .and extension in its formulation. By 

applying variational principles to minimize the overall energy consumption, the 

extensional viscosity is calculated as a function of the entrance pressure drop, the 
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power law parameters of the shear and extensional viscosities, shear rate, and the 

contraction ratio. The result of Binding's analysis is a more comprehensive analysis 

that relates the entry pressure and flow rate to the elongational flow properties for a 

converging flow field. Tremblay (70) compared sink flow analysis, Cogswell' s 

analysis, and Binding's analysis for polyethylene melts. He found that for LLD PE 

the sink flow and Binding predictions were reasonably close, while the Cogswell 

prediction was considerably larger in magnitude. 

The converging flow is an indirect method for ·the measurement of 

elongational viscosity of polymer melts. It can overcome the difficulties and the 

limitations of the direct measurement method such as temperature control and clamp 
. . 

design in the simple extension. The major advantage of the converging flow is that it 

is the easiest extensional flow to generate and measure because it primarily involves 

forcing the fluid through an orifice and measuring the pressure drop. It can be 

especially useful in quickly ranking the extensional effects. It can also cover a wide 

range of viscosity and flow rates. The limitation of this method is that there remains 

the question of interpretation since it is a complex flow. 

§2.1.4 Other Techniques 

Many other techniques have been suggested for studying the elongational 

behavior of polymeric liquids and solutions. These include compression and 

stagnation flow (71-74). The compression method, like extension, can give 

homogeneous, purely extensional deformations. They do not result in the same 
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material functions since the normal stress difference needed to generate uniaxial 
compression is not merely the negative of the stresses needed to generate unaxial 
extension (50). Extension and compression methods have only been used 
successfully with higher viscosity samples since the edges of a sample should be 
held during experiment. The stagnation flow, like fiber spinning and converging 
flow, is used with lower viscosity liquids (50). Impinging two liquid streams can 
generate a stagnation flow, which can create �teady extensional deformations. This 
flow is not homogeneous. A material element near the central part of the flow will 
experience much higher strain than one further out. The opposed-nozzle technique 
(71-73) in which a stagnation flow is created is relatively new and is applicable for 
the measurement of elongational viscosity of low viscosity polymer melts and dilute 
solutions. 

As discussed in Chapter 1 the elongational viscos�ty of polymers is affected 
by the molecular characteristics of the resin and the processing conditions. The 
magnitude of the elongational viscosity strongly affects its processing behavior. As 
concluded from the above literature review, there is a need for a technique to 
characterize the elongational flow behavior of both polymer melts and solutions at 
temperatures and elongational strain rates typically used in industrial polymer 
processing operations. Previous research in this group has resulted in the 
development of a rheometer that can achieve these objectives. The theoretical 
background of this work will be briefly discussed in Chapter 3. The experimental 
details of this technique will be discussed in Chapter 4. One objective of this work is 
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to study the effect of molecular characteristics and processing conditions on the 
elongational rheology of polymer melts measured by hyperbolic convergent dies. A 
set of PE resins and one PIB samples are studied in this work. The experimental 
results of the elongational viscosity measurements of these polymers will be 
discussed in Chapter 5. 

The other objective of this work is to study the feasibility of using the 
rheological method to determine · the molecular ,weight and molecular weight 
distribution. In the next section, methods to determine the molecular weight and 
molecular weight distribution will be reviewed. 

§2.2 METHODS TO DETERMINE MOLECULAR WEIGHT AND 
MOLECULAR WEIGHT DISTRIBUTION 

Molecular weight (MW) is one of the most important properties of a 
molecule. It can be used to distinguish different molecule species. A polymeric 
molecule is a large molecule built up by the repetition of small, simple structural or 
monomeric units. It is also called macromolecule because of its high molecular 
weight. The molecular weights of po�ymers are also characterized by their �olecular 
weight distributions (MWD), since molecular chains of polymers consist of different 
number of monomeric units after polymerization. 

The MW and MWD of polymer materials have a considerable effect on their 
properties, such as melting point, heat capacity, yield stress (75), adherence, 
toughness, brittleness, tensile strength, environmental stress-crack resistance, fatigue 
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resistance, gas permeability, and processibility, etc. The MW and MWD are also 

important for polymer processing (76) such as extrusion, fiber spinning and melt 

blowing. 

It is much more difficult to measure the molecular weights of polymers, as 

compared to low molecular weight compounds because the molecular weights are 

much larger. Furthermore, the distribution of molecular weights must also . be 

considered. Therefore, average molecular w�ights and some other measures of 

distribution should be used to describe the molecular weights of polymers. There are 

a number of ways to define an average molecular weight. The most common two are 

number-average molecular weight, Mn, and weight-average molecular weight, Mw, 
. . 

Assuming that M; and N; are the molecular weight and number of moles of chain 

Polydispersity index ( PI = M w I M  n )  can be conveniently used to describe the 

breadth or dispersion of the molecular weight distribution or the polydispersity of 

polymers. 

There are a number of techniques for experim�ntally determining the 

number-ave�ge molecular weights of polymers, such as end-group· analysis through 

chemical methods, or physical methods such as infrared vibrational spectroscopy, 

and NMR spectroscopy, boiling point elevation (ebulliometry), vapor pressure 

osmometry (VPO), and freezing point depression (cryoscopy), while light scattering 
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(low-angle laser light-scattering LALLS), ultracentrifugation, etc., measure the 

weight-average molecular weight. 

The solution viscosity method is the most simple and convenient method to 

measure MW of polymeric material. But it is not an absolute method. In polydisperse 

systems, the solution viscosity method does not give the simple average molecular 

weight such as Mn and Mw. Instead, it gives a viscosity-average molecular weight. 

Gel permeation chromatography (GPC) or si�e exclusion chromatography, is, 

in fact, a new form of liquid chromatography (77). The polymer solution is injected 

into a continuous stream of solvent that is passing through gel particles in a column. 

Polymer molecules diffuse into the pores, are eluted, and pass out of the column as 

more of the solvent passes through the system. The larger molecules are eluted first 

and the smallest ones last. The advantages of this method are: simple manipulation, 

short time period, reliable data, and good reproducibility (78). So, GPC became a 

breakthrough in determining molecular weight and molecular weight distribution. It 

is one of the most popular techniques for MWD determination. It can be widely used 

in biochemistry, polymer chemistry, and organic chemistry. If appropriate liquid

solid elution columns are used, it is possible to determine molecular weights ranging 

from 2 to 100 million (79). 

GPC is not an absolute method to determine molecular weight because it uses 

a calibration curve to convert experimental data into molecular weight. Each 

chromatography column should be calibrated with monodisperse standards of the 

same composition as that of the polymers under investigation. If the Mark-Houwink 
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parameters for the polymers are known, universal calibration curve can be used. But 
possibly universal calibration will produce erroneous results. However, if a low
angle laser light-scattering detector, which can determine the absolute molecular 
weights, is used together with GPC, absolute molecular weights can be achieved 
without any standards for calibration or Mark-Houwink parameters. Many references 
(80-85) are dealing with the detennination of molecular weight and molecular weight 
distribution using GPC-LALLS technique. 

There are some disadvantages in applying this method. It takes a long time 
and exchanging the columns to use different solvents is difficult. Solvents are used. 
The rheological technique shows many advantages in determining MW and MWD. 

It has been long realized that the viscoelastic rheological properties of 
polymer melts and concentrated solutions are related to molecular motions (86, 87) 
and are very sensitive to molecular weight (44), especially the high end tail of the 
molecular weight distribution. Therefore, rheological data can be used to measure the 
molecular weight and its distribution ( 45-48). 

There has been a considerable amount of work reported on relating the 
rheology of molten polymers to MW and MWD. Recent reviews on the subject have 
been offered by Pearso!l (88), Tuminello (89), Shaw. and Tuminello (90), and Mead 
(91). Zeichner and Macosko (92) succeeded in correlating the polydispersity ratios 
with the crossover point of the dynamic moduli curves for the tenninal relaxation 
zone. The sensitivity of dynamic measurements to changes in polydispersity ratio 
and MW was documented by Mobil (93). Ninomiya and Fujita (94) first attempted to 
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calculate the MWD from rheological data. Then, Menefee and Peticolas (46, 95, 96) 

developed an expression relating the MWD to the stress relaxation modulus, 

assuming that the melt chains obey Rouse dynamics. Bersted (47) derived a method 

to determine MWD from viscosity curves. Wu (97) determined MW and MWD from 

the storage modulus G'( w) using approximations derived from the description of 

chain dynamics by the Doi-Edwards constitutive model (98), which is based on the 

tube and reptation concept of de Gennes (99). Tuminello (100) developed a method 

for determining MWD using the dynamic elastic modulus (G') and plateau modulus 

( G� ). This technique has been successfully used on polystyrene (101), poly 

(tetrafluorethylene) and its copolymers (102-104). Mead (91) inverted des 

Cloizaux' s double reptation mixing rule ( 105-107), which has achieved considerable 

success in modeling polydisperse systems, to obtain the MW and MWD. Braun, 

Eckstein, Fuchs and Friedrich (108) compared different rheological methods using 

different rheological properties related to molecular weight. 

There are many advantages in applying the rheological methods over 

traditional techniques for determining molecular weight. First, "th� sensitivity ·of the 

rheological method is such that materials with ostensibly identical GPC traces can 

show markedly different rheological properties" (91). The' molecular weight scaling 

and sensitivity of various methods of discriminating linear flexible polymers on the 

basis of molecular weight are shown in Table 2.1 (91). Second, the rheological 
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Table 2.1. Molecular weight scaling of various methods of discriminating linear 
flexible polymers on the basis of molecular weight. Sensitivity is 
defined as the derivative of the measurable property with respect to 
molecular weight. 
[Source: D.W.Mead. Journal of Rheology 38, 1797 (1994).] 

Discrimination Sensitivity 
Method scaling scaling Comments 

GPC M l/ 2 
M -11 2 Size exclusion, insensitive to 

high MW 
Intrinsic M o.6 M -o.4 Hydrodynamic size method, 
viscosity insensitive to high MW 

Light M l M o Good sensitivity to high MW 
scattering 
Osmotic M -1 M -2 Good indicator of number-
pressure average MW for low MW 

polymers 
Zero shear M 3.4 M 2.4 Principally a function of the 
viscosity weight-average MW for systems 

with similarly shaped 
distributions 

Recoverable (M, IM w ) -3·5 Indicative of the dispersion in the 
compliance MWD. Insensitive to the absolute 

value of MW 
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method is applicable to insoluble polymers such as fluoropolymers, melt anisotropic 

(rigid-rod) polymers, and polyimides as well as soluble polymers, while traditional 

methods such as light scattering, osmometry, and gel permeation chromatography 

require that the polymer is soluble in a suitable solvent. Third, the rheological 

method is a technique which can be used to develop on-line process and quality 

control analysis in polymer processing operations. Fourth, the rheological method is 

more economical due to a small sample use, and low cost for its simple operation. 

Besides many fundamental contributions in the literature, numerical methods 

have been developed to calculate the MW and MWD from rheological data. Some 

commercial software programs have been developed and applied, such as Polysoft 

(109, 110) by Haake, and Rs1Orchestrator™ by Rheometric Scie�tific™ (now TA 

Instruments) in which two functions are used to calculate MW and MWD: 

"Synthesize Molecular Weight Function" and "Calculate Molecular Weight 

Distribution Function". One advantage of the former over the latter is that it does not 

require a master curve that covers the range of viscoelasticity from the rubbery 

region all the way down into the terminal region (111 ). 

The normal GPC technique 1s not sufficient for a clear characterization of 

cellulose in the N-methyl-moq,holine oxide monohydrate (NMMO·H2O). The flow 

of the NMMO cellulose solution is strongly influenced by the existence of high 

molecular cellulose fractions (112). When heated, the cellulose solutions in 

NMMO·H2O are subject to the same rules as those of the viscoelastic polymer melts 
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(112, 113). The MW and MWD of cellulose from dissolving pulps concentrated 
solutions can be determined by rheological data. 

It can be concluded from the above discussion the linear viscoelastic 
rheological properties of polymer melts and concentrated solutions are strong 
functions of molecular weight and its distribution (44) .  It is in principle possible to 
invert that relationship and determine the MW and MWD by measuring the linear 
viscoelastic rheological properties of pol�eric materials ( 45-48). Rheological 
measurements are quick, easy, friendly, and inexpensive, thus providing an 
opportunity to develop real time, on-line process and quality control analysis in 
polymer processing operations. The determination and test of the parameters needed 
to predict the MW and MWD of polyethylene and cellulose (in dissolving pulp 
concentrated solution) samples from their shear rheological data will be presented in 
Chapter 5. 
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Chapter 3 

Theoretical Background 
for Data Acquisition 

§3.1 PREVIOUS RESEARCH 

§3.2 THEORETICAL BASIS FOR THE EFFECTIVE 
ELONGATIONAL VISCOSITY 
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§3.1 PREVIOUS RESEARCH 

In prior studies accomplished by this research group, a unique technique for 

characterizing the elongational rheology of polymer melts at processing strain rates 

was developed (40, 42). It was demonstrated that use of lubricated skin/core flow 

and a hyperbolic shaped converging die resulted in essentially pure elongational flow 

at a constant elongational strain rate in the core layer. The viscosity ratio of the core 

polymer used was at least 100 times that of the skin and the converging flow channel 

must have a specific hyperbolic shape. The high viscosity ratio (core-to-skin) caused 

the skin layer to act as a lubricating layer. A Dowex low-density polyethylene was 

used as the skin and a Marlex polypropylene was used as the core. A series of 

skin/core layered flows were first modeled: power-law rectangular channel shearing 

flow; Newtonian fluid converging channel elongational flow; and power-law fluid 

converging channel elongational flow. Experimental measurements using tracer 

particles and an image analysis then confirmed the predicted behavior and 

demonstrated the ability to achieve essentially pure elongational flow at a constant 

elongational strain rate in the . core layer. The constant elongational �train rate was 

controlled by the volumetric flow rate and the die geometry. 

One of the limitations of this technique was that appropriate lubricant or skin 

had to be chosen ( 42). In attempting to develop a correction factor for skinless 

measurements, Collier et al. ( 41) showed that the apparent orientation effect of the 

melt dominated the flow so strongly that shearing gradients near the wall were 
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insignificant, eliminating the need for the lubrication to achieve an essentially pure 

elongational flow. Elongational rheology of polymer melts and solutions may be 

measured using a nonlubricated flow through a hyperbolic converging die. 

Elongational strain rates up to 733 s-1 have been achieved using hyperbolic dies 

which have Hencky strains up to 7. This strain rate range includes the processing 

rates encountered in typical industrial processes (41, 114). 

§3.2 THEORETICAL BASIS FOR THE EFFECTIVE ELONGATIONAL 

VISCOSITY 

The theoretical foundation for the hyperbolic die technique to characterize 

the elongational rheology of polymer melts and solutions was established previously . 

in this group (41). In order to provide the reader a better understanding of those 

concepts underlying the data acquisition, the theoretical development is sketched out 

here. 

Hyperbolic convergent dies were designed for the melt or solution to generate 

a constant elongational strain rate throughout the core. This "is accomp_lished by 

· describing the flow channel surface �ea with the equation t2(z) = Al(z+B), where z is 

the axial flow direction, r is the radius of the flow channel, A and B are geometry

defined constants. Four hyperbolic dies used in this research had Hencky strain, e 
H 

, 

of 4, 5, 6, and 7. The Hencky strain is defined as the natural logarithm of the ratio of 

die entrance area to exit area. The flow channel surf aces of these four dies are shown 

in Figure 3.1. A sketch of a die appears in Figure 3.2 (42). 
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Figure 3.1. Flow channel surfaces of four hyperbolic convergent dies with Hencky 
strains of 4, 5, 6, and 7. 

Figure 3.2. Schematic diagram of a hyperbolic convergent die. 
[Source: J.R.Collier. Lubricated Flow Elongational Rheometer. 
[5,357,784] . 1994. U.S. Ref Type: Patent.] 
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When the melt flows through the hyperbolic channel, it assumes the interface 

between the polymer melt or solution and the die wall may be viewed as a set of 

streamlines experiencing the same conditions. These streamlines can be described by 

the stream function, 'P, which is defined to satisfy the continuity equation. The 

potential function, f/J, which is related to velocity components in shear free flows, 

must be orthogonal to 'P and satisfy the irrotationality equation. In shear free flows, 

constant values of the potential function should define constant pressure surf aces. 

For the axisymmetric die geometry cylindrical coordinates s�em most appropriate, 

for which the stream function is defined as 

t 2 '¥ = -- r z 
2 

and the potential function is given as 

- {r 2 z 2) 
<l> - - - -

4 2 

(3. 1) 

(3 .2) 

The pressure, P, is directly proportional to pet> , where t is the elongational strain 

rate, and p is density. The velocity components are 

1 d'P · dci> . 
V = --- = -- = EZ z r dr dz 

·1 d'P d<l> t 
V - -- - -- - --r  

r r dz dr 2 

and the non-zero velocity gradients are 

dv
z 

. 1 d(rv, ) . dv, t 
- = e -------- = -e - = --

dz ' r dr ' dr 2 
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The basic equations describing the flow are the equation of continuity 

(conservation of mass), conservation of momentum, conservation of energy, 

expressed in terms of enthalpy per unit mass, fI , and the irrotationality equation for 

the potential flow. Mass, momentum and energy balances are conserved separately. 

Mass balance 

Momentum balance 

Energy balance 

Irrotationality equation 

Dp = -p1V - v) . 
Dt � - .  

p.!!_v = -1VP)+ rv - -r]+ pb 
Dt - � IY - -

P Dil = -(y - q)+ � : vv)+ DP 
Dt - Dt 

Vxv = O  

(3 .6) 

(3 .7) 

(3.8) 

(3.9) 

where t' is the second-order stress tensor, q is the heat flux, v is the velocity = - . -

vector, and Q is an internal body force term that represents the force necessary for 

orientation development of the polymer melt. 

As mentioned earlier, the hyperbolic shape is one that provides a constant 

elongational strain rate. The flow is therefore at constant acceleration as shown by 

the velocity gradient equations. Because of the constant elongational strain rate and 

strong dominance of the orientation development, the flow through the 
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hyperbolically converging die is expected to be essentially purely elongational. The 

only velocity gradients are in the flow and transverse directions; hence, the only non

zero components of the deformation rate tensor are the normal components. 

Besides what has been mentioned up to this point, the basic assumptions and 

the related implications in the theoretical development are as follows: 

1 .  The strain rate state determines the stress state; i.e. , the flow is homogeneous. 

The die geometry dictates that in the essent�ally shear free flow region the 

only non-zero deformation rate components are the normal components and 

these components are not a function of position; therefore, the only non-zero 

stress components are the normal components, and the stress components are 

. . 

not a function of position. Namely, the axial and transverse normal 

components of the stress tensor, 1iz and t'm are constant. Their values depend 

on the strain rate. Therefore, V · � = 0 . 

2. The fluid is incompressible; therefore, V · !:: = 0 .  

3 .  The system i s  isothermal; therefore, V · q_ = 0 .  

4. The inertial terms are negligible; th�refore, !:'. • V • !:'. = 0 , and �vi) = 0 . 

. · a 
5 .  The flow is  steady; therefore, - = 0 .  at 

Using the above assumptions and implications 1 and 5, the solution to 

momentum balance reveals that the pressure gradient, VP , is equal to the body force 

term. Furthermore, since 
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V = El. % (3 . 10) 

and 

(3. 1 1) 

The energy balance can be integrated from the entrance to exit. Therefore, the stress 
component in cylindrical coordinates is 

2 M'  2 pMJ 2 M'  2 MI  
� =--+--- =-- +--

u 3 E
H 

3 E
H 

3 E
H 

3 E
H 

(3.12) 

where M' is defined as entrance minus exit pressure and Ml is defined as exit 
minus entrance enthalpy per unit volume. The elongational viscosity, TJe , in 
cylindrical coordinates is defined and results in this geometry as follows: 

(3. 13) 

Therefore, the elongational viscosity is 

(3. 14) 

The enthalpy term represents either a real or apparent phase chang� that may be 
induced by the imposed orientation on the polymer melt or solution. Therefore, an 
effective elongational viscosity is defined and is related to TJe as follows: 

and 

M' 
T/ejf =-.EEH 
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t:,H TJe = TJeff +-.EEH 
(3 .16) 

This definition of effective elongational viscosity assumes that any enthalpy change 

is included in this. The elongational strain rate is defined as 

(3 .17) 

where EH is the Hencky strain as defined previously, L is the centerline length of the 

die, and v0 is the initial velocity. 

The enthalpy change associated with the orientation development in the melt 

can be estimated as follows. Making the assumption that the non-Newtonian 

character of the melt in excess of that reflected in the shear viscosity, TJ s , at an equal 

value of shear rate is due to the resistance towards orientation, the actual Trouton 

ratio would be TJe I TJs = 3 .  Hence, 

tJ.H = -EE H (TJ eff -3T} s ) (3 .18) 

The entropy change, � , is an indicator as to what extent orientation develops. It 

can be determined using tl.G = tJ.H - T� , where tl.G is the Gibbs free energy and T 

is the absolute temperature. Assuming that !iG is due to · the flow-induced 

orientation and the flow reaches a quasi or transient steady state equilibrium, 

!iG = 0 and � = tJ.H /T . Therefore, 

� = -EEH (TJeff -3TJs )I T (3.19) 
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§4.1 MATERIALS 

Four metallocene polyethylenes (PE), one conventional low-density 

polyethylene (LOPE), one conventional linear low-density polyethylene (LLDPE), 

one polyisobutylene (PIB), and five cellulose solutions (lyocell) are studied in this 

research. The PIB sample was provided by Dr. Hudson of the University of . 

Strathclyde and has been ch�acterized by a number of European rheologists. The 

polyethylene samples have different molecular characteristics. Details of 

polyethylenes and cellulose solutions are given in the following two sub-sections. 

§4.1.1 Polyethylene Samples 

The sample source, melt index (MI), density, weight-average molecular 

weight, polydispersity index (Pl), and long chain branches (LCB) of the PE samples 

are given in Table 4. 1 .  These PE samples and their molecular characteristics were 

supplied to us by Dr. Donald Baird of Virginia Polytechnic Institute (VPI) in order to 

measure elongational viscosity and compare our results with theirs. PE samples PE-

1 ,  PE-2, PE-3, and PE-4 are metallocene-catalyzed resins and have narrow molecular 

weight distributions (Pl == 2). PE-5 is a conventional LDPE resin, whereas, PE-6 is a 

conventional LLDPE. PE- 1 ,  PE-2, PE-3, PE-4, and PE-6 have similar melt flow 

indexes. PE-1 ,  PE-2, and PE-4 are branched copolymers of ethylene and octene-1 

with controlled sparse long chain branches (LCB). PE-3 and PE-6 are copolymers of 

ethylene and hexene with no LCB. All of these six PE samples are blown film 

grades . 
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Table 4.1. Molecular characteristics of PE samples. 

Sample Sample MI Density LCB* 
ID source (g/10 min) (g/cm3

) Mw PI Mz (1/104C) 

PE-1 Dow 1.0 0.909 87,400 2.43 160200 0.57 
Affinity PL 

1840 

PE-2 Exxon 1.1 0.902 88,700 2.14 158900 0.79 
Exact 0201 

PE-3 Exxon 1.2 0.900 111,000 2.04 180400 NIA** 
Exact 3132 

PE-4 Dow 1.0 ·o.902 115,809 2.12 183700 0.18 
Affinity PL 

1880 

PE-5 Equistar 2.0 0.919 116,000 9.1 *** *** 
NA 952 

PE-6 Mobil NTX 0.9 0.917 122,700 3.44 319700 NIA** 
10 1  

* :  long chain branches 
**: not applicable (PE-3 and PE-6 are linear PE resins with no long chain branches.) 
***: not available 

§4.1.2 Cellulose Solution Samples 

. . 

The cellulose sources studied include softwood Southern pine dissolving 

pulps of weight-average degree of polymerization (DP w) of 670 and 1720. The DP 

932, 1195," and 1457 samples were prepared by blending appropriate amounts of DP 

670 and 1720 dissolving pulps. The 50% N-methyl-morpholine oxide aqueous 

solution was distilled under continuous mixing and vacuum in a water bath, using a 

Deluxe Model VE 50 GD rotary vacuum evaporator (Rinco Instrument Company, 

Inc.), until the monohydrate (NMMO·H2O) was obtained. The dissolving pulps were 

dissolved in the NM:M:O monohydrate and n-propyl gallate (at 1 % of dissolving 

pulps) was added as an antioxidant into the cellulose solutions. Fourteen percent 
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cellulose solutions for dissolving pulps of DP 670, 932, 1195, 1457 and 1720 were 
prepared at high shear mixing in a C. W. Brabender Type-6 mixer (C. W. Brabender 
Instruments, Inc.) and optically observed for solution using an Olympus Optical 
Microscope between crossed polarizers. 

§4.2 INSTRUMENTS AND DATA ACQUISITION 

Elongational viscosity measurements were done using the Advanced 
Capillary Extrusion Rheometer (ACER) (TA Instruments). Measurements of shear 
rheology were done using the Advanced Rheometric Expansion System (ARES) 
rheometer (TA Instruments). 

§4.2.1 Advanced Capillary Extrusion Rheometer (ACER) 

A schematic of the ACER is shown in Figure 4. 1. The capillary cylindrical 
die was replaced with a hyperbolic converging axisymmetric die (42). In this 
research four hyperbolic convergent dies of Hencky stains of 4, 5, 6, and 7 were 
used. The PE samples were tested at temperatures of 135, 150, 165, and 180°C. 
These temperatures were chosen because the research group at VPI has done the 
extensional measurements using a Rheometrics Extensional Rheometer (RER 9000) 
at temperatures of 135. - and 150°C. The PIB sample was tested at temperatures of 
210, 220, 230, and 240°C. 

The experimental procedure is as follows. The hyperbolic die was attached to 
the barrel. The pellets of the polymer sample were loaded into the preheated barrel 
and allowed to melt and attain the desired steady state temperature. When the barrel 
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Figure 4.1. Schematic diagram of the Advanced Capillary Extrusion Rheometer 
(ACER). 
[Source: John R.Colli�r, Ovidiu Romanoschi, and Simioan �etrovan. 
Journal of Applied Polymer Science 69, 2357 (1998).] 
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temperature reached the set testing temperature and remained stable within ±1 °C, the 
force transducer and pressure transducer were calibrated, where the pressure 
transducer is positioned right above the die entrance. The measurement was then 
performed by pushing the ram, at a constant speed corresponding to a constant 
chosen elongational strain rate, through the barrel that was filled with the sample 
under test. From the barrel, the sample was further forced through the die of known 
Hencky strain. From the knowledge of the elongational strain rate, Hencky strain, 
and measured steady state pressure, the effective elongational viscosity was then 
calculated as ( 41) 

M' 
TJejf =-.

EEH 

(4.1) 

By sweeping the chosen elongational strain rates until a steady state of pressure (or 
stress) for each strain rate was accomplished, a flow curve of effective elongational 
viscosity versus elongational strain rate was constructed. 

§4.2.2 Advanced Rheometric Expansion System (ARES) 

A simplified schematic of the ARES rheometer with parallel plate geometry 
is shown in Figure 4.2. Circular disks of polyethylene specimens were prepared by 
compression molding ai 200°C. Flat sheets of PIB 'samples were also prepared by 
compression molding at 50°C. The geometry used was parallel plates with diameter 
25 mm. The gap was set at 1 mm. The experimental temperatures were the same as 
those in the elongational measurements for the PE and PIB samples. The PE samples 
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� 

Sample --

Driven plate / 

Figure 4.2. Simplified sch�matic of the Advanced Rheometric Expansion System 
(ARES). 

were tested at 175°C as well so that data of two conventional LDPE samples in prior 

studies accomplished by this research group (1 15) could be incorporated into the 

MW and MWD calculation. For the cellulose solutions, the experimental 

temperature was 90°C. 

The lower plate of the ARES rheometer is attached to a motor that can rotate 

in both steady and oscillatory modes. The upper plate is attache� to the torque and 

force transducers. There are two transducers with different torque ranges (but same 

normal force range). During a test, the lower range transducer can be switched to the 

higher range transducer automatically, if needed. The plates of the rheometer are 

enclosed in a forced air convection oven to heat the sample. Two resistive heaters are 

mounted in the oven to �ontrol the temperature of the heating gas. Compressed air 
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was used during all tests . The temperature of the lower plate is also controlled by a 

platinum resistive thermometer (PRT). 

The procedure of the rheological measurement using the ARES is as follows: 

a. Dynamic strain sweep. Under a constant dynamic frequency of 1 rad/s, 

storage modulus G', loss modulus G", and complex viscosity TJ* as a function of 

strain were measured over the strain range of 0.1 to 100%. This was done to 

determine the range of strain for linear viscoelasticity. 

b. Dynamic frequency sweep. Under a constant strain of 1 % which was in the 

linear viscoelastic range, G', G", and TJ* were measured by the small _ amplitude 

oscillatory testing mode over angular frequency range of 0. 1 to 100 rad/s. 

c. Step rate test. By choosing a shear rate, the shear viscosity and first normal 

stress difference were measured as a function of time. 
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§5.1 EFFECT OF MOLECULAR CHARACTERISTICS ON THE 

ELONGATIONAL RHEOLOGY OF POLYMER :MELTS 

The molecular characteristics of the polyethylene samples studied in this 
work were introduced in Chapter 4. This section will discuss how these molecular 
parameters affect the elongational rheology measured using hyperbolic converging 
dies. The effect of the processing conditions on the elongational rheology will be 
discussed in the next section. 

The effect of molecular characteristics on the elongational rheology needs to 
be studied using a series of samples with different molecular characteristics. The six 
PE samples studied in this work pretty well fit this. As mentioned in Chapter 4, PE 
samples PE-1, PE-2, PE-3, and PE-4 are metallocene-catalyzed resins and have 
narrow molecular weight distributions (Pl == 2). PE-5 is a conventional LDPE resin, 
whereas, PE-6 is a conventional LLDPE. PE-1, PE-2, PE-3, PE-4, and PE-6 have 
similar melt flow indexes. PE-1, PE-2, and PE-4 are branched copolymers of 
ethylene and octene-1 with controlled sparse long chain branches (LCB). PE-3 and 
PE-6 are copolymers of ethylene and hexene with no LCB. 

The effect of weight-average molecular weight, molecular weight 
distribution, and long chain branches on the elongational viscosity of PE samples 
measured at 135°C and four Hencky strains is shown in Figure 5. 1. The effective 
elongational viscosity of different samples at the same Hencky strain converge at 
high strain rate except PE-5. The effective elongational viscosity of different 
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samples flatten out differently at low strain rates. Compared with other figures in 

Figure 5.1, Figure 5 . l (a) has lower starting strain rate and obviously shows that the 

elongational viscosity curves of all samples cross over each other at different low 

strain rates. It can be deduced that the onset of strain rate thinning has the order of 

PE-5 < PE-2 < PE-1 < PE-6 < PE-3. The strain rate thinning might be caused by the 

MWD and / or LCB. Comparison of PE-3 and PE-6 having no LCB shows that the 

broader MWD promotes the strain rate thinning since the onset of strain rate thinning 

is at a lower elongational strain rate for PE-6 which has higher PI. Keeping this in 

mind, comparison of PE-1 and PE-2, or PE-2 and PE-6, or PE-1 and PE-6 �hows that 

the LCB also promotes the strain rate thinning. 

The above explains that the onset of strain rate thinning is at a lower strain rate 

for PE-5, which is a conventional LOPE with higher PI and LCB. Hence, PE-5 

shows a different shape of elongational viscosity curve and lower elongational 

viscosity when the elongational strain rate is higher than 0.02 s·1
• Comparison of PE-

3 and PE-6 having no LCB at strain rate higher than 0.07 s·1 shows that broadening 

the molecular weight distribution seems to decrease the elongational viscosity, 
. . 

because despite the fact that PE-3 has a lower MW, its viscosity is higher than that of 

PE-6 at the same strain. rate. PE-2 has higher MW and LCB but lower PI than PE-1. 

PE-1 and PE-2 have almost the same elongational viscosity at strain rate higher than 

0.04 f 1
• Hence, the effect of LCB is to decrease the elongational viscosity. Figures 

5.2 through 5.4 show similar observations at different Hencky strains and 

temperatures. 
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Using our data, the effect of molecular characteristics on the strain hardening 

(described in Chapter 1) of PE samples can be discussed here. However, one should 

keep in mind that the strain hardening reported in the literature is a transient 

phenomenon observed in Meissner type devices. The strain hardening reported here 

is for the steady state behavior of polymer molecules in a converging elongational 

flow. The elongational flow in our technique is in a Eulerian steady state but not �n a 

Lagrangian steady state, whereas, the elonga�onal flow in Meissner type devices 

exhibits neither steady states. The data in Figures 5.1 through 5.4 is replotted as 

�ffective elongational viscosity at 0.1 and 1 s·1 vs. Hencky strain in Figures 5.5 and 

5.6 for different PE samples. These two figures show that all PE samples show 

similar patterns of strain hardening. The effect of temperature on the patterns of 

strain hardening of these samples is not considerable. This is also illustrated by the 

strain hardening of PIB sample at strain rates of 0.1 and 1 s·1 , shown in Figures 

5.7(a) and 5.7(b), respectively. 

Using a Rheometrics Extensional Rheometer (RER 9000), constant extension 

rate uniaxial elongational tests �ere performed on these PE samples at 150°C by Dr. 

Donald Baird's group at Virginia Polytechnic Institute. From the�e measurements, 

elongational viscosity �t Hencky strains of 1, 2, an<;l 3 was obtained and plotted in 

Figures 5.5(b) and 5.6(b) along with our data measured by using the hyperbolic 

converging dies. Both figures show good agreement for the conventional low-density 

polyethylene (PE-5). But for other PE samples there is not good agreement. The data 

measured with RER show that the LDPE (PE-5), which is highly branched, exhibits 
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a significant degree of strain hardening. Linear PEs (PE-3 and PE-6) do not show 

any strain hardening while other metallocene PEs (PE-1, PE-2, and PE-4), with some 

long chain branches, exhibit some degree of strain hardening. 

The residence time of the fluid particles in the region of constant elongational 

strain rate can be defined as Hencky strain over strain rate. Figures 5.8 through 5.13 

show the effective elongational viscosity measured using the hyperbolic dies and :the 

shear viscosity as a function of the residence time for PE samples. All PE samples 

show similar patterns to each other, from which the strain hardening effect is evident, 

according to the relationship between shear viscosity and elongational viscosity 

measured from Meissner-type extensional rheometer. Figure 5.12(b) shows very 

good agreement between the RER and hyperbolic die techniques. It also shows strain 

hardening. The factorized Rivlin-Sawyers constitutive equation (116) has been used 

to calculate the elongational viscosity of some other PE samples by Dr. Brian 

Edwards' research group at the University of Tennessee, Knoxville. Good agreement 

is found between the calculated values and the experimental data. The calculated 

results also show the relationship between shear and elongational viscosities 

measured by using the Meissner-type extensional rheometer (1 17). It is concluded 

that the measured effective elongational viscosity is a good approximation to the 

material's true elongational viscosity. 

Figure 5. 14 illustrates the effective elongational viscosity as a function of the 

transient time for PIB sample. It is obvious that PIB and PE samples have different 

69 



Cl) 
ca a. 
0 
Q) 1 07 

:;::::i 
u; 
0 0 
Cl) ·s: 
ft3 

1 0• Q) .s:: 
Cl) 

(') 
"O 

Rate (i1
) IT = 135°C � 

-•- 0.1 

I -•- 0.4 

;I -•- 1 
-•- 4 
-+- 10 ., 
-+- 40 t'' 

I ... . C: ca 
ai 1 05 
C: 
0 
1ii 
Cl C: 

/� 0.1 
0.4 

0 
0 
w 1 01 

Time, s 

(a) 135°C 

Cl) 
ca a. Rate (i1) 

� 1 07 - -•- 0.1 

! � [
11 ,1/ I :8 10• 

al Cl C: 
.2 
Q) � I 
! 1 05 

w ......... ..__ .......................... __._ ................ ...._.....__. .................. __._. 
1 0° 1 01 

Time, s 

(c) 165°C 

Cl) 
ca a. 
,,; 
Q) 

:i::i 
·u; 
0 
i 
> 
ft3 
Q) .s:: 
Cl) 

(') 
"O C: ca 
ai 
a 

:;::::i ca 
Cl C: 
0 
jjj 

Cl) 
ca 
a. 

1 07 

1 08 

105 

10• 

� 1 07 

§ 
Cl) ·s:: 
ai C: 
8 1 0• ca 
Cl 
5 

Q) 

i 1 05 

= 
w 

. 

r 

Rate (i1
) 

-•- 0.1 
IT = 1so0c I 

f 
-•- 0.4 

/I __._ 1 
-.- 4 
-+- 10 lj -+- 40 

I . 
I Shear rate (i1

) 

1 0·1 10° 1 01 

Time, s 

(b) 1 50°C 

Rate (i1) 
-•- 0.1 
-•- 0.4 
-A- 1 
-.- 4 
-+- 10 

fl -+- 40 

1! 
I 

10° 

-

1 01 

Time, s 

(d) 1 80°C 

0.4 

1 <>2  

I 

IT = 1so0cl 

Figure 5.8. Effective elongational viscosity vs. time for PE-1 .  

70 

0. 

-



fl) 

r 

:B 1 07 
= 
·u; 
8 
fl) 

·s; 
101 

� 
fl) 

(") 
"0 
C: as 1 05 

ca 
a = as 
0 
C: 1 04 0 

jjj 

fl) 

as 

� 1 07 

> 
cii 
C: 

1 01 

0 
C: 

CD 

1 o' 

Aate (i1
) I T = 135°c � 

-•- 0.1 

f -•- 0.4 

JI -•- 1 
-·- 4 
_._ 10  

,I -+- 40 

? Shear rate (i1) 0.1 

0.4 

I:,; 

1 0·1 1 0° 1 01 102 
Time, s 

(a) 135°C 

Aate (i1
) 

- -•- 0.1 

• 

--- 0.4 
_._ 1 
-·- 4 
_.,_ 10 JI -+- 40 

11 
I 

1 0° 10' 
Time, s 

(c) 165°C 

J 

IT - 1e5oe� 

fl) 

i 107 = 
'in 
8 
fl) 

«j 101 

CD � 
fl) 

M 

j : 105 

cii 
C: 
0 
i 
0 104 
C: 
0 
jjj 

a) 

t 1 07 

> 

1 101 � 
0 

105 

IT • 150"CI 

I JI 
ll 

* 
I Shear rate (i1

) 0.1 
0.4 

10·1 1 0° 1 01 1 02 

Time, s 

(b) 150°c 

Rate (a') 
-•- 0.1 
--- 0.4 
-A- 1 
-Y- 4  
-1'- 10 

fl -+- 40  

JI 
I 

10·1 

-

. 1 0° 1 01 

Time, s· 

(d) 180°C 

l 

1 T:s ,ao0c 1 

Figure 5.9. Effective elongational viscosity vs. time for PE-2. 

71 



a, 
ca n. 
0 

1 07 
Q) .:: 
·u; 
8 a, ·s: 
«i 1 01 

Q) .c a, 
M 
"C 
C: 

1 05 ca 
'ii 
C: 
0 :p ca 
0 
C: 
0 
jjj 

a, 
ca n. 
� 1 07 

·u; 
8 a, 
> 
'ii 
C: 
0 1 08 

:; 
0 
C: 
0 
G) 
Q> > 
ti 1 05 

� 
w 

Rate (s"') IT = 135°C� 

r -•- 0.1 

;l -•- 0.4 
-•- 1 
-y- 4 
_,._ 1 0 ti -+- 40 

I . 
I Shear rate (s·') 

/a 

., 
10° 

Time, s 

(a) 135°C 

Rate (s·1) 
-•- 0.1 
-•- 0.4 
-A- 1 
-y- 4 
_,.._ 10 
-+- 40 I 

I 
I 

1 0° 

JI 

101 

Time, s 

(c) 165°C 

1 0.4 

I 

IT =  165"Ci 

a, 
ca n. 
0 

1 07 
Q) 

':.= 1n 
0 
0 a, ·s: 
«i 108 
Q> .c a, 
M 
"C 
C: 

105 ca 
ti 
C: 
0 .:, ca 
0 

104 C: 
0 
iii 

a, 
as n. 
� 1 07 

·a; 
8 
UJ ·s: 
ti 
C: 
0 101 � as 
0 
C: 
.2 
Q) 

Cl) > a 1 05 

Q> = 
w 

Rate (91) IT = 1so0c1 

I 
-•- 0.1 

JI -•- 0.4 
-•- 1 
-·- 4 1 , _,.._ 10  

;./ -+- 40 
r . 

' I 
Shear rate (s·1) 

0.4 ! /  1 

10° 

Time, s 

(b) 150°C 

Rate (i1) 
r -•- 0.1 

-•- 0.4 

I 
-•- 1 

;I -.- 4 
_,.._ 10 _._ .. 

I 
I 

I - IT = 180°C i 
10° 101 

Time, s 

(d) 180°C 

Figure 5.10. Effective elongational viscosity vs. time for PE-3. 

72 

" 



U) 

as a. 
0 

107 CD 
:;::I 

-� 
U) 

ca 1 01 

CD .c 
U) 

C: 
1 01 as 

:;::I as 
0 

104 

LU 

U) 

as a. 
� 1 07 

"! > 

0 1 01 � 
C: 
0 

CD 

� = 1 01 

L1J 

Rate (i1) �= 135°c l 
-•- 0.1 

11 I -•- 0.4 
-.A.- 1 
-T- 4 

,I _,.._ 10 
-+- 40 

* Shear rate (a1) 
✓ 

�··· lJi. 

1 0° 1 01 

Time, s 

(a) 135°C 

Rate (s1) 
-•- 0.1 
--- 0.4 
_.,_ 1 
-.- 4 
_.,_ 10 
-+- 40 

;I 
I 

1 0° 

fl 

1 01 

Time, s 

(c) 165°C 

I 

lh 165°Cl 

0.1 

� 

U) 

� 
0 

107 

� 
U) 
> 
i 1 01 

.c 

'C 
C: · 10' as 
1ii 
5 : 
0 

104 C: 

LU 

U) 

a. 
� 1 07 

-� 
U) 
·5= 

:8 1 01 

CD 

� 1 05 

= 
L1J 

Rate (i1) IT = 1soocl 
-•- 0.1 I -•- 0.4 

,r -•- 1 
-•- 4 
_._ 10 

,I -+- 40 

* 
/ Shear rate (s1) 

0.1 
0.4 

1 0·1 1 0° 1 01 1 ct  
Time, s 

(b) 150°C 

Rate (i1) 
-•- 0.1 
-•- 0.4 
-.A.- 1 

I --T- 4 

JI _,.._ 10 
-+- 40 

1! 
I - IT - 180°Cl -

_1 0° 101 

Time, s 

(d) 180°C 

Figure 5.11. Effective elongational viscosity vs. time for PE-4. 

73 



UJ 
CG 
D.. 
U) 

107 Q) 
:;:: 
·u; 
8 
UJ 
·5 

101 
cii 
Q) .c. 
UJ . 

(") 
-0 105 

C: 
CG 
ai 
C: 
� 
CG 10• 
C: 
0 
uJ 

UJ 
CG 
D.. 

ii- 1 07 

·u; 
UJ ·s: 
C: 

1 01 "' 
C, 
C: 
.2 

� 

i 1 05 

w 

Rate (s"1) IT = 1 35•c l 
-•- 0.1 
-•- 0.4 t -•- 1 ;I -y- 4 
_.,_ 10 

1 /  -+- 40 

ii' Shear rate (s"') 0.1 

ll. 

10·1 10° 101 

Time, s 

(a) 135°C 

Rate (s"1) 
-•- 0.1 
-•- 0.4 
-A- 1 
-...- 4 
_,,_ 10 
-+- 40 

11 
;I 

I 
1 0° 101 

Time, s 

(c) 165°C 

0.4 

1 <>2  

J 

Ir = 1ss·c� 

UJ 
CG 

D.. 
U) 
Q) 
:;:: 
·u; 107 

8 
UJ '> 
cii 101 
(l) .c. 
UJ . 
(") 
-0 105 C: 
CG 
ai 
C: 
0 

104 

C, 
C: 
.2 w 

UJ 
CG 
D.. 

ii- 107 

'§ 
ai 
C: 
0 1 01 

CG 
C, 
C: 
0 

� 

� 109 

w 

Hyper Rate (s"') 
-•- 0.1 
-•- 0.4 
-•- 1 

I T =  1so•c1 REA Rate (S01) 
-•- 0.1 
-+- 1 

i -Y- 4 
_.,_ 10 // -+- 40 

I *;Ii 

ll. 

10·1 10° 101 

Time, s 

(b) 1so0c 

Rate (s"') 
-•- 0.1 
-•- 0.4 
-•- 1 -...- .. 
_,,_ 10 
-+- 40 

JI 
;I � 

/ 
10° 101 

Time, s 

(d) 180°C 

1 02 

I 
IT = 180°C� 

Figure 5.12. Effective elongational viscosity vs. time for PE-5 . 

74 

-



u, 
as a. 
0 

"cjj 
0 
u, 
·s; 
ni 

.0 

C") 

as 

0 

C: 
0 

u, 

� 
·u; 
u, 
·s; 
C: 
0 

C: 
0 

� 

w 

., ., 

1 07 

10• 

Rate (s1) I T = 135•c� 
-•- 0.1 

JI I -•- 0.4 
-•- 1 
-.- 4 
_._ 10 
-+- 40 .j 

1 0' 

• 
Shear rate (s1) 

1 8.2  

� 

1 0° 

Time, s 

(a) 1 35°C 

Rate <•'> 
1 07 .- -•- 0.1 

1 0• 

1 0' -

-•- 0.4 
-A- 1  
-·- 4 
--- 10 
-+- 40 

;I 
I 

fl 

101 

Time, s 

(c) 165°C 

I 

IT = 165°C � 

0.1 

u, 

a. 
t 1 07 

> 
i 101 

u, 
C") 

C: 
1 0' as 

<ii 
a ,  

1 04 

0 

u, 
as a. 
� 107 

"cjj 

> 
<ii 
C: 
0 101 .. 

� 
1 0' 

w 

Rate (s') IT = 1so·c � 
-•- 0.1 

I -•- 0.4 

JI -•- 1 
-·- 4 
_,._ 10 ,/ -+- 40 , 

I 
? 

Shear rate (a� 

�
-Bl 1 o.io.1 

1 0° 

Time, s 

(b) 150°C 

Rate <•'> 
-•- 0.1 
-•- 0.4 
_._ 1 
-.- 4 
_._ 10 

fl -+- 40 

;I 
I -

_1 0° 101 

lime, s · 

(d) 1 80°C 

� 

I 

IT = 180°C � 

Figure 5.13. Effective elongational viscosity vs. time for PE-6. 

75 



f/J 
as a. 
;£. 1 07 

f/J 

cu 
C: 
0 1 01 

0) 

1 05 

w 

f/J 
as a. 
;£. 1 07 

·u; 
f/J 
·5 
cu 
C: 
0 1 01 

as 
0) 
C: 
0 

� 1 05 

= w 

Rate (s1) 
-•- 0.1 
-•- 0.4 
-•- 1 
-·- 4 
-+- 10 
-+- 40 

.,I 
/ 

... 
1 0° 

I
I 

101 

Time, s 

(a) 210°c 

Rate (s') 
-•- 0.1 
-•- 0.4 
-•- 1 
-.- 4 
--- 10 
-+- 40 

.,l 
/ 

... 
1 0° 

// 

101 

Time, s 

(c) 230°C 

I 

IT = 210"Ci 

I 

jT = 230°CI . 

f/J 
as a. 
;£. 1 07 

·u; 
f/J ·s: 

0 1 01 

as 
0) 

0 

� 1 05 

= w 

f/J 
as a. 
;£. 107 

·;;; 

·s: 
cu 
C: 
0 1 01 

as 
0) 

� 105 

= w 

Rate (s·1) 

I -•- 0.1 
-•- 0.4 
-•- 1 

I
I -.- 4 

-+- 10 
-+- 40 

I 

... 
// 

' 
1 0° 1 01 

Time, s 

(b) 220°C 

Rate (91) 
-•- 0.1 
--- 0.4 
-•- 1 

// 
-.- 4 
-+- 10 
-+- 40 

:,I., .,, 
/ * 

... 
10° 

-

. 
1 01 

Time, s 

, (d) 240°C 

IT = 220"CI 

I 

IT = 240°C I 

Figure 5.14. Effective elongational viscosity vs. time for PIB sample. 

76 



patterns. Figure 5.15 gives the comparison between the elongational viscosity 

measured by the hyperbolic die technique at 210°C and the Elongational Rheometer 

for Melts (RME) at 100°C or 120°C. The data from RME were performed by 

Meissner on his prototype RME seven years ago. It is seen that the data from two 

techniques show similar patterns. The values obtained in our work are close to those 

from RME. Considering the very small effect of temperature on the elongational 

viscosity which will be discussed in the next section, the result shown in Figure 5.15 

again indicates that the measured effective elongational viscosity is a good 

approximation to the material's true elongational viscosity. 
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§5.2 EFFECT OF PROCESSING CONDITIONS ON THE ELON GA TIONAL 

RHEOLOGY OF POLYMER :MELTS 

Besides the molecular parameters discussed above, rheological properties can 

be affected by the processing conditions as well. The most important processing 

parameters that affect elongational viscosity of a polymer include temperature, 

strain, and strain rate. The effective elongational viscosity of polymer melts increases 

by decreasing the temperature and increasing Hencky strain. In the riext two sub

sections, quantitative relations are developed to shift the effective elongational 

viscosity curves at any temperature or Hencky strain to a reference curve _at a 

reference temperature or Hencky strain. 

§5.2.1 Temperature Shifting of Effective Elongational Viscosity 

§5.2.1.1 Theoretical Background 

The method of reduced variables predicts that a single master curve for the 

shear viscosity curves taken at different temperatures of a sample_ can be obtained by 

plotting reduced complex viscosity 11; vs. reduced angular frequ�ncy wr by using a 

shift factor ( 118). In the following, equations for the temperature shifting of shear 

viscosity are presented. It will be shown that these equations can also be applied for 

the temperature shifting of elongational viscosity curves. 

In this work, two .temperature shift factors are defined by 

( ) 
_ 170 (T) 

aT 1 -
1lo (To ) 

(5. 1 )  
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and 

( ) _ 1Jo (T)To 

aT 2 - 1Jo (To )T (5.2) 

where 1]0 (T) and 1]0 (T0
) are zero-shear-rate viscosities of the melts at temperature T 

and reference temperature To, respectively. Thus, the method of reduced variables 
predicts that a single master curve can be obtained by plotting reduced comp,ex 
viscosity 1]; vs. reduced angular frequency 

OJ
, )Vhere they are defined by 

• _ • ( T) 1Jo (To )  1], - 1] 
OJ

, 1Jo (T) (5.3) 

OJ, = OXlr (5.4) 

Assuming that the Cox-Merz rule applies to PE and PIB samples, viscosity models 
are used to predict the zero-shear-rate viscosity of polymer melts from the complex 
viscosity data. Two such models are considered in this work: the three-parameter 
Cross model and the three-parameter Carreau model. The three-parameter Cross 
viscosity model is given by 

1/o 1J � 1 + (..-ty) l-n 

and the three-parameter Carreau viscosity model given by 
[ { . )2 

J
n-1�2 1J = 1Jo Ll + Jy 

(5.5) 

(5 .6) 

where A is a time constant and n is the power-law exponent. In general, the three
parameter Cross model tends to overpredict the zero-shear-rate viscosity, whereas 
the three-parameter Carreau model tends to slightly underpredict the zero-shear-rate 
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viscosity (119). A scouting study reveals that Eq. (5.1) is appropriate to generate a 

master curve for the complex viscosity when the three-parameter Cross model is 

used to predict the zero-shear-rate viscosity, whereas Eq. (5.2) is appropriate when 

the three-parameter Carreau model is used. 

The temperature dependence of ar is often found to be an "Arrhenius 

dependence" of the following form ( 118) 

(5.7) 

where LlEa is the activation energy of flow and R is the universal constant. 

The relaxation time is a unique characteristic for a polymer at a given 
. . 

temperature and does not depend on the type of deformation. Hence, the dependence 

of relaxation time on temperature should be the same for both shear flow and 

elongational flow. The temperature shift factor is the ratio of relaxation times of 

polymers at two temperatures (120). Thus, the same temperature shift factors can be 

used to shift both shear and elongational viscosities (120). This could also be 

supported by Milnstedt' s finding (28). Milnstedt calculated the activation energies 

for both shear and elongational flow from the zero-shear-rate viscosity and the 

elongational viscosity at very)ow strain rates, respectively� He found that the values 

were identical. Data on the temperature shifting of effective elongational viscosity of 

the PE and PIB samples are presented in the next two sub-sections. 
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§5.2.1.2 Results on Polyethylene Samples 

The complex viscosity of PE-1 at four different temperatures is shown in 
Figure 5.16(a). Data from this figure show that changing the temperature does not 
affect very much the functional dependence of TJ• on w ;  it merely alters the zero
shear-rate viscosity and the angular frequency at which the transition from constant 
complex viscosity to power-law behavior occurs. This similarity provides the basis 
for the method of reduced variables. 

The three-parameter Cross model mentioned above was used to fit the 
complex viscosity curves of PE-1 at each temperature. The fitted complex viscosity 
data are given as the solid lines in Figure 5. 16(a). The parameters in the Cross model 
are also obtained and shown in the legend of Figure 5.16(a), together with the shift 
factors calculated using Eq. (5. 1) by choosing 150°C as the reference temperature. A 
master curve of the complex viscosity of PE-1 was created and is shown in Figure 
5.16(b). Similarly, master curves of dynamic moduli of PE-1 were also created and 
shown in Figure 5 .16(c) using the same shift factors. The f\rrhenius plot of ln(ar) vs. 
1/T is shown in Figure 5.16(d). From the slope of the linear _fit, the actiyation energy 
of PE-1 was calculated. 

The three-parameter Carreau model mentioned above was also used to fit the 
complex viscosity curves of PE-1 at each temperature. The shift factors were 
calculated using Eq. (5.2). The fitted results are presented in Figure 5. 17 in the same 
way as the results from the Cross model. 
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Figure 5.18 shows the effect of temperature on the effective elongational 

viscosity of PE-1 measured at different Hencky strains. The temperature master 

curves generated using the shift factors derived from the Cross and Carreau models 

are shown in Figures 5.19 and 5.20 for PE-1, respectively. Shifting results for the 

remaining PE samples are shown in Figures 5.21 through 5.45. 

It can be seen that elongational viscosity decreases with increasing 

temperature. This is because increasing the tempe�ature increases the mobility of 

molecular chains. With increasing strain rate, the viscosity differences at different 

temperatures appear to diminish since the lines converge at higher strain rate. 

It can be observed that both Cross and Carreau models yield good master 
. . 

curves for the complex viscosity, dynamic moduli, and effective elongational 

viscosity. This can also be shown by the high coefficient of determination (If) 

values (higher than 0.988) for the polynomial fits of complex viscosity and 

temperature master curves, given in Tables 5.1 and 5.2, respectively. The 

elongational viscosity data measured at very low strain rates fell nicely on the master 

curves, indicating these data are probably accurate although the . resulting pressure 

drop values in the measurements are somewhat low. The elongational viscosity of 

PE-6 does not show consiste!}t convergence at high strain rates when measured at 

135°C and Hencky strains of 6 and 7. This explains some obvious data points away 

from the corresponding master curves shown in Figures 5.44 and 5 .45. Considering 

the much better master curve of complex viscosity for PE-5 using the Cross model, 
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Figure 5.43. Effect of temperature on effective elongational viscosity of PE-6 at 
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Table 5.1. Coefficient of determination, R2, values for the polynomial fits of complex viscosity master curves of PE samples. 

Model PE-1 PE-2 PE-3 PE-4 PE-5 PE-6 

Cross 0.9975 0. 9968 0.9883 0.9976 0.9994 0. 9985 
Carreau 0.9983 0. 9978 0.9897 0.9969 0. 9952 0.9970 

Table 5.2. Coefficient of determination, R2, values for the polynomial fits of temperature master curves of PE samples. 
Coefficient of determination, R2, at Hencky strain 

H4 HS H6 H7 

Sample Cross Carreau Cross Carreau Cross Carreau Cross Carreau 

PE-1 0.9980 0.9976 0.9976 0.9983 0.9965 0.9983 0.9971 0.9983 

PE-2 0.9986 0.9981 0.9992 0.9995 0.9972 0.9988 0.9967 0.9977 

PE-3 0.9958 0.9951 0.9959 0.9957 0.9947 0.9954 0.9940 0.9944 

PE-4 0.9962 0.9957 0.9991 0.9978 0.998 1 0.9989 0.9968 0.9980 

PE-5 0.9989 0.9968 0.9990 0.9987 0.9989 0.9995 0.9968 0.9989 

PE-6 0.9968 0.9948 0.9964 0.9949 0.9955 0.9949 0.9928 0.99 10 

the Cross model is chosen for the simultaneous temperature and Hencky strain 
shifting, and the calculation of enthalpy and entropy changes. 

The shift factors show good Arrhenius dependence. ·  From the slope of the 
Arrhenius plots, the activation energy of flow was ·calculated for each PE sample. 
The results are summarized in Table 5. 3. Both Cross and Carreau models show that 
there are no discernable differences between activation energies of PE-1 and PE-4, 
which is in good agreement with the results shown in the literature ( 1 2). In addition, 
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Table 5.3. Molecular data and activation energies of flow for PE samples. 

LCB* LIBa (kCal/mol) 

Sample Mw PI (1/104C) Cross Carreau 

PE-1 87,400 2.43 0.57 8.60 8 .85 
PE-2 88,700 2.14 0.79 9.21 9.10 
PE-3 111,000 2.04 NIA** 7.46 8.06 
PE-4 115 ,800 2.12 0.18 8.62 8 .74 
PE-5 116,000 9.1 *** 10.50 9.80 
PE-6 122,700 3 .44 NIA** 6.48 7.06 

*: long chain branches 
** :  not applicable (PE-3 and PE-6 are linear PE resins with no long chain branches.) 
***: not available 

both models give the same order of activation energies which is PE-6 < PE-3 < PE-1 

~ PE-4 < PE-2 < PE-5 . Conventional LDPE (PE-5) has larger activation energy, 

whereas linear PEs (PE-3 and PE-6) have smaller activation energies. Hence, the 

presence of long chain branches increases the flow activation energy of PE, which is 

also in agreement with data from literature (12, 12 1- 123). 

§5.2.1.3 Results on Polyisobutylene Samples 

The complex viscosity, storage and loss moduli, �d effective elongational . -

viscosity of polyisobutylene were measured at four temperatures, namely 210, 220, 

230, and 240°C. The reference temperature was taken as 220°C. These results are 
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analyzed and presented in Figures 5.46 through 5.50, similar to the PE results. 

It is interesting to see that the temperature has a weak effect on the 

elongational viscosity of the PIB sample (Figure 5.48). Increasing the temperature 

brings about a slight increase of the mobility of molecular chains. This might be 

because PIB is a rubber. The dynamic moduli data show that the storage modulus is 

much higher than the loss modulus on almost the entire range of experimental 

angular frequency. Hence, the elasticity dominates for PIB sample, as compared with 

PE samples, where the viscidity dominates. 

It can be observed that both Cross and Carreau models yield good master 

curves for the complex viscosity, dynamic moduli, and effective elongational 

viscosity of PIB sample. The coefficient of determination (R2) values for the 

polynomial fits of complex viscosity and temperature master curves are all larger 

than 0.9970. 

§5.2.2 Hencky Strain Shifting of Effective Elongational Viscosity 

§5.2.2.1 Theoretical Background 

The dependence of the effective elongational viscosity on the Hencky strain, 

is a result of the orientation developing in the polymeric fluid as it is being 

attenuated. Two methods ( 124) have been developed to calculate the Hencky strain 

shift factors and thus reduced effective elongational viscosity and reduced 

elongational strain rate. Method 1 is based upon an orientation ratio being equal to 

the relaxation ratio. The shift factor, reduced effective elongational viscosity, and 
115 



"' 
as 
CL 

as 
CL 

b 
as 

C, 

E 
u ·e 
as 

1 05 

1 04 

■ 210"C 
• 220"C 
• 230°C 
• 240°C 

Crou model fitting 

T"C 210 220 230 240 

"- 1 .1552116 9.2683e5 7.822395 8.907185 
A 8.2964 7.0323 5.9931 4.8370 
n 0.1 1 55  0.1223 0.1273 0.1300 
a,. 1 .2487 1 .0000 0.8442 0.7454 

1 0° 1 01 1 02 

Angular frequency ro, rad/s 

Cl) 101 

as 
CL 

J: 
� 105 
·c;; 
8 
·s: 

104 E 
8 
u 

103 a: 

"' 
■ 210"C 
• 220°C 
• 230°C 

��� 
• 240°C 

� 
-,.. 

: I To
=220

°C I -,.. 

10° 101 

Reduced angular frequency a,.ro. rad/s 

(a) Original curves (b) Master curve for 11 • 

I To
=220

°C I 1-....... � ... v"' 

... -· --· 
• �"° .. "°"'°"°"'°"° .0 

' � G' G" T("C) 
210 �a .. C • 0 220 V • � 230 4 

0 • V 240 C 

-

0.4 Slope ::s 4253.98 K 
aE = 8.45 Kcallmol 

? 0.0 :s 

-0.4 

� 

1 0·1 10° 101 1 a2  0.0020 
1/T, 1('1 

· 0.0021 
Reduced angular frequency a,.w, rad/s 

(c) Master curves for G' & G" (d) ln(ar) vs. 1/T 

Figure 5.46. Temperature shifting of shear rheology data of PIB using Cross model. 

1 16 



as 

as 1 01 

C, 

.2 
as 

1 0' 

Canuu model lllllng  

re 210 220 230 240 

'lo 8. 703085 5.563785 4.847985 4.459 
� 5.7009 5.1227 4.811!8 4.0155 
n 0.1554 0.111M 0.1757 0.18311 
8r 1 .2297 1 .0000 0.8540 0.7703 

■ 21 0°C 
• 220°c 
• 230°C 
.,,, 240°C 

10·1 10° 1 01 1<>2 
Angular frequency w, rad/s 

.. 

-

... , • 210°C ''- • 220°C 

'-'- • 230°C 

,, 
.,,, 240°C 

', � ·� 
I T0=220°c 1  .'\. 

.'\. ... ... 

1� 1� 1� 1if 

Reduced angular frequency 8roo: rad/s 

(a) Original curves (b) Master curve for 11 • 

I T0=220°C I ...... .... .,,w 
... ... ... .;ao•lioio&a&o&., 

�"' 
G' G" T('C) ' 

A ■ 0 210 6i»D • • 0 220 V • A 230 6 
0 

.,,, V 240 a 

1 0·1 1 o0 101 • 102 

Reduced angular frequency 8roo, rad/s 

(c) Master curves for G' & G" 

0.4 Slope • 3879.89 K 
.i:1E'. • 7.71 KcaVmol 

'2- 0.0 
:s 

-0.4 

0.0020 

1/T, K' 

· (d) ln( ar) vs. 1/T 

0.0021 

Figure 5.47. Temperature shifting of shear rheology data of PIB using Carreau 
model. 

1 17 



II) 

� 
1 07 

� 
·s: 
iii 
C: 
0 = as 1011 

CJ> 
C: 

(I) 
(I) 

105 

II) 

� 
1 01 

� 107 

> 
iii 
C: 

j 
101 

& 
C: 
0 

: 105 

W 10' 

I 

-

1 0-2 

• • 

1 0-2 

• • 210°c • 220
°
c 

* t  
• 230°C 

• 240
°
c 

I 
I 

• • * •  • 
10° 

Elongational strain rate, s·1 

(a) Hencky 4 

• 210°C • 220°C • 230°C • • • 240
°
c • • • • • • • • • 

. .  , 
10·1 10° 101 1a2 . 

Elongational strain rate, s·1 

(c) Hencky 6 . ·  

' 

II) 
as 

� 107 
"iii 
� 

r 

iii 101 
C: 
0 = as 
CJ> 

101 -a; 

104 w � 

• • 

: 

• • 

• 210°C • 220°c • 230
°
c I • 'If 240

°
c 

I • • • 
• ,  

• • 
1 �  1� 1� 1 a2 
Elongational strain rate, s·1 

(b) Hencky 5 

• 210°C • 220°C • 230°C • • 240°C • 
• • • • 

t 
- . ,  I ,, ' 

., 
10·1 10° 101 1 ()2 , 103 

Elongational strain rate, s·1 

, ( d) Hencky 7 

Figure 5.48. Effect of temperature on effective elongational viscosity of PIB at 
different Hencky strains. 

1 1 8 



OJ 

ca 

101 

iii 107 C 
0 
ca 
C 

1 01 0 

105 

10• 

.... 
■ 21 0°C 

' • 220°C ... • 230°C ' T 240°C •"'• ·., .,.. ,, I T0
=220°C I • 

. .... _ -.... 
10-a 1� 1d 1� 

. 

Reduced elongational strain rate, 1·1 

(a) Hencky 4 

... 
■ 210°C 

... ..._ • 220°C • 230°C 

-, T 240°C 

.... , 
.... I r,a22o·c I --.._ 

.... ---� 
1 0-a 1 0·1 10° 10 1

• 1 02 

Reduced elongational strain rate, a' 

(c) Hencky 6 

r \. • 21 0°C 

" • 220°C 

�� 
• 230°C 
T 240°C .... 

•a � 
... 

I To=220°C I ·, ... 
--... . 

10-a 1 0° 101 

Reduced elongational strain rate, s·1 

(b) Hencky 5 

- • 210°C • .. �. • 220°C " • 230°C 

T 240°C 

. 
. a, 

I T,=220°C I ... ... ' - '� .... 
,. 

1 0·1 10° 1 01 
• 101 103 

Reduced elongational strain rate, s·' 

(d) Hencky 7 
Figure 5.49. Temperature master curves of effective elongational viscosity of PIB at 

different Hencky strains using Cross model. 

119 



!/) 
as a.
_ 1 01 

� 
·c;; 
8 
!/) ·s: 
iii 107 

C: 
0 
� 
0) 
C: 

� 
1 01 

Q) > 
13 
i 1 05 

"C 
Q) u ::::, 
i a: 

!/) 
as a. 

� !/) 

8 
(IJ ·s: 
iii 
C: 
.2 cu 
0) 
C: 
0 
Q) 
� 
13 
Q) 

Q) 

"O 
Q) u ::::, "C 
a: 

101 

1 07 

101 

105 

1 04 

..... • 210°C • 220°C ' • 230°C ·-
... • 240°C .... . ., 

.. , ., 
I To=220"C I 

• ... • 
.. \I. -

·1-•• 

Reduced elongational strain rate, s·1 

(a) Hencky 4 

• 210°C 

... • 220DC .... • 230°C ' • 240°C 
... 

... 
I r,a220Dc I 

,.._ 
.... 

10° 1 01 1 02 

Reduced elongational strain rate, s·1 

(c) Hencky 6 . ·  

: 

!/) 
as a. 

� 1 01 

Cl) 

8 
!/) 
> 
iii 
C: 
.2 cu 
0 
C: 
0 
G> 
Q) > u 
"C 
8 ::::, 
,:, 
Q) a: 

!/) 

as a. 
� 
·c;; 

107 

101 

1 05 

1 04 

� 107 

> 
iii 
C: 
.2 
& 10• 
C: 
.2 
Q) 

-� t5 105 

i 
"C 
8 104 

::::, "C 
Q) a: 

� 

'--,_ 

• 21QDC • 220DC 

"� • 230"C • 240°C 

·� ·-, .... 
lro=220"C I "', 

■-: 
......... . 

1 0° 

Reduced elongational strain rate, s·1 

(b) Hencky 5 

., 

.... • 210°C '"'· • 220°C 

.'a 
• 230°C 

'· • 240DC 

... 
-. 

lro=220�I 
"' 
' 

■---
'·� .... 

... , .. , ... , ' 
10·1 10° 101 102 

• 103 

Reduced elongational strain rate, s·1 

,(d) Hencky 7 

Figure 5.50. Temperature master curves of effective elongational viscosity of PIB at 
different Hencky strains using Carreau model. 

120 



reduced elongational strain rate are defined by (124) 
[TR - 3]EH (aH ) 1 = [TR - 3lo/ (5.8) 

(5.9) 

(5. 10) 

where (aH)t is a Hencky strain shift factor defined by Method 1, TR is the effective 
Trouton ratio, TJet/1/s, 1/eff and 1/s are the effective elongational viscosity and shear 
viscosity, respectively, EH is Hencky strain, and t is the elongational strain rate. The 
subscript "O" indicates the value of the variable at the reference state, e.g. the 
Hencky strain to which the data is being shifted, and the reference shear rate and 
reference elongational strain rate (for example 1 s-1) .  Method 2 is based upon an 
"orientational viscosity ratio". The shift factor, reduced effective elongational 
viscosity, and reduced elongational strain rate are defined by (124) 

(5. 1 1 ) 

(5. 12) 

(5. 13) 
Data on the Hencky strain shifting of effective elongational viscosity of the PE and 
PIB samples are presented in the next two sub-sections. 
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§5.2.2.2 Results on Polyethylene Samples 

The effective elongational viscosity of PE samples was measured at four 

different temperatures, 135, 150, 165, and 180°C; and at four Hencky strains, 4, 5, 6, 

and 7 for each temperature. The effect of Hencky strain on the elongational viscosity 

of PE-1 measured at four different termperatures is shown in Figure 5.51. By 

increasing the Hencky strain, a higher degree of orientation is imparted to the 

molecular chains, which results in a higher elongational stress leading to a higher 

elongational viscosity. The elongational viscosity curves have similar shapes at the 

different Hencky strains. This similarity provides the basis for the "meth� of 

reduced variables", for combining data taken at different Hencky strains into one 

master curve for the sample. 

In order to calculate the shift factors for Hencky strain shifting, the reference 

Hencky strain was taken as 5. The Cox-Merz rule was assumed to apply to the PE 

and PIB samples so that the shear viscosity at the shear rate of 1 s·1 is equal to the 

complex viscosity at the angular frequency of 1 rad/s. The reference shear rate 

(angular frequency) and elongational strain rate were taken as 1 s· 1 • At each 

temperature, the effective elongational viscosity curves of PE-1 were shifted to a 

master curve. These master curves are shown in Figure 5 .52 and 5.53 using Method 

1 and 2 of Hencky strain shifting mentioned above, respectively. Figures 5.54 

through 5 .68 show the results of Hencky strain shifting of the remaining PE samples. 

Both methods seem to fit the data very well for all PE samples except PE-3 at 135°C 

using Method 1 and PE-5 using Method 1. This is also shown by the coefficient of 
122 
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Figure 5.51. Effect of Hencky strain on effective elongational viscosity of PE- 1 at 
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determination (R 2) values for the second order polynomial fits of Hencky strain 

master curves, given in Table 5 .4. Except for PE-3 , for which Method 1 gave poorer 

If value of 0.9812 at 135°C, If values for all PE samples are higher than 0.99 for 

both methods, indicating that good master curves can be created using these methods 

for PE samples. But, generally speaking, both visual inspection and the coefficient of 

determination (If) values show that Method 2 gives slightly better results than 

Method 1. This was also found in prior studie� for Nylon samples accomplished by 

this research group (115). 

§5.2.2.3 Results on Polyisobutylene Samples 

Effective elongational viscosity of PIB was measured at four different 

temperatures, 210, 220, 230, and 240°C; and at four Hencky strains, 4, 5 ,  6, and 7 for 

each temperature. The reference Hencky was taken as 5 .  The Hencky strain shifting 

Table 5.4. Coefficient of determination, If, values for the polynomial fits of 
Hencky strain master curves of PE samples. 

Coefficient of determination, Ir, at t��perature 

13s
0
c 1s0

°
c 165°C : 180°C 

Sample Ml M2 Ml M2 Ml M2 ·Mt M2 

PE-1 0.9935 0.9975 0.9940 0.9973 0.9973 0.9988 0.9979 0.9983 

PE-2 0.9979 0.9976 0.9965 0.9968 0.9989 0.9980 0.9988 0.9982 

PE-3 0.9812 0.99 15 0.9924 0.9922 0.9950 0.9956 0.9928 0.9963 

PE-4 0.9930 0.9979 0.9949 0.9979 0.9945 0.9983 0.9984 0.9983 

PE-5 0.9919 0.9984 0.9918 0.9987 0.9917 0.9989 0.9959 0.9990 

PE-6 0.9927 0.9944 0.9949 0.9949 0.9955 0.9963 0.9964 0.997 1 
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master curves of the effective elongational viscosity of this sample using both 

methods described earlier are shown in Figures 5 .69 through 5.7 1 .  The results also 

show that Method 2 gives slightly better results than Method 1 .  

§5.2.3 Simultaneous Temperature and Hencky Strain Shifting of Effective 

Elongational Viscosity 

According to the results shown above, the elongational viscosity curves taken 

at different temperatures can be generated into a single master curve. The 

elongational viscosity curves taken at different Hencky strains can be generated into 

a single master curve as well. Therefore, by combining these two shifting operations, 

i .e. shifting with respect to temperature, and shifting with respect to. Hencky strain, 

and using the appropriate shift factors, a generalized master curve could be obtained 

and the elongational strain rate range of the experimental geometry extended. One of 

the long-term objectives of this research group is to design an on-line elongational 

rheology sensor for polymer processing processes involving elongational flow. A 

generalized master curve and the shift factors associated would be very useful tool in 

developing such a sensor. 

The reduced variables are defined by 

(5. 14) 

(5 . 15) 

for Method 1 and 
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(5. 16) 

(5. 17) 

for Method 2, respectively. 

The resulting general master curves for PE samples using both methods are 

presented in Figures 5 .  72 to 5 . 77. The reference temperature is 150°C and the 

reference Hencky strain is 5. Figure 5.78 gives the, ·general master curves for PIB 

sample using both methods, for which the reference temperature is 220°C and the 

reference Hencky strain is 5. The coefficient of determination (R2) values are shown 

in Table 5.5 for all samples. Except for PE-3 and PE-5 for which Method 1 gave 

poorer R2 values of 0.9882 and 0.9897, respectively, at ·135°C, R2 values for all PE 

samples and PIB are higher than 0.99 for both method, indicating that good master 

curves can be created using these methods. But, generally speaking, both visual 

inspection and the coefficient of determination (R2) values show that Method 2 gives 

slightly better results than Method 1 .  

§5.3 ENTHALPY AND ENTROPY CHANGES 

The good results from Hencky strain shifting show the orientational viscosity, 

rJeJJ - 3 rJs, is reasonable. This further verified that enthalpy and entropy changes can 

be calculated based on the Eqs. (3. 1 8) and (3 . 19), presented in Chapter 3 ,  assuming 

the Cox-Merz rule applies to PE and PIB samples. The enthalpy and entropy changes 

for all PE samples and PIB at four die geometries and different temperatures are 
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Table 5.5. Coefficient of determination, R2, values for the polynomial fits of 
simultaneous temperature and Hencky strain master curves. 

Sample Method 1 Method 2 

PE-1 0.9939 0.9963 
PE-2 0.9972 0.9966 
PE-3 0.9882 0.9929 
PE-4 0.9928 0.9971 
PE-5 0.9897 0.9982 
PE-6 0.9930 0.9945 
PIB 0.9942 0.9974 

shown in Figures 5.79 to 5.92. From these figures we can see that the measured 

enthalpy and entropy changes increase in magnitude (become more negative) as the 

elongational strain rate increases for these four die geometries. Namely, the melt is 

increasingly transformed to a more ordered state corresponding to a lower entropy 

and greater magnitude latent heat of transformation with increasing elongational 

strain rate. Moreover, at comparable elongational strain rate, extruded melts exhibit 

larger enthalpy and entropy in magnitude for hyp.erbolic die with higher Hencky 
. , 

strain. These observations suggest that flow induced orientation occurs in the 

hyperbolic flow with the ext�nt being dependent upon the elongational strain rate 

and die geometry. 

It is also observed that conventional LDPE (PE-5), metallocene PE (PE-1, 

PE-2, PE-3, and PE-4) or conventional LLDPE (PE-6), and PIB have different 

shapes of enthalpy and entropy changes curves, indicating that the molecular 
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Figure 5.82. Entropy changes calculated from shear and elongational viscosities of 
PE-2 at different temperatures. 
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characteristics such as MWD and LCB affect the enthalpy and entropy changes 

curves. For PE-3 and PE-6, enthalpy and entropy changes curves show flat stages 

when the elongational strain rate is around 0.7 s-1 to 10 s-1
• According to the 

decrease-and-increase pattern shown in the measured pressure profile for each rate, 

these flat stages could be related to the slippage that may occur in the hyperbolic 

dies. The slippage may be confirmed by the experimental observations of . the 

extrudates which had alternate smooth and rou_gh surfaces. At elongational strain rate 

lower than 100 s- 1 , extruded PE melts exhibit much larger enthalpy and entropy 

changes in magnitude than the PIB sample. 

The effect of molecular characteristics on the enthalpy and entropy changes 

could also be studied using the shear and elongational data of the six PE samples. 

The results are shown in Figures 5.93 to 5.100. The molecular characteristics have 

similar effects on the effective elongational viscosity (discussed in the first section of 

this chapter) and the enthalpy and entropy changes. As shown in Figures 5.93(a) and 

5 .94(a), PE-5, which has larger PI and LCB, shows smaller enthalpy and entropy 

changes in magnitude when s�n rate is larger than 0.07 s-1
• Comparison of PE-3 

and PE-6 having no LCB at strain rate between 0.2 s- 1 and � s- 1 shows that 

broadening the MWD_. seems to decrease the enthalpy and entropy changes in 

magnitude, because despite the fact that PE-3 has a lower MW, its enthalpy and 

entropy changes in magnitude are higher than those of PE-6 at the same elongational 

strain rate. PE-2 has higher MW and LCB but lower PI than PE-1. PE-I and PE-2 

have almost the same enthalpy and entropy changes in magnitude. Hence, the 
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effect of LCB seems to decrease the enthalpy and entropy changes in magnitude. All 

the rest figures show similar observations at different Hencky strains and 

temperatures. 

The enthalpy change occurring in the hyperbolic flow can be compared with 

the heat of fusion from differential scanning calorimetry (DSC) measurement, which 

enables a comparison to the degree of orientation of a possible meta stable liquid 

form and of a solid crystalline state. A Mettler Tolydo DSC 821c was used for the 

DSC measurements where the heating was done followed by cooling. The heating 

was accomplished at a rate of 10°C/min for a temperature range of 20°C to 200°C. 

Then the temperature was held constant for 2 minutes. The cooling was done at a 
. . 

rate of 10°C/min from 200°C to 20°C. Table 5 .6 shows the heats of fusion from DSC 

measurements and the maximum enthalpy changes in magnitude from the shear and 

elongational measurements at the rate of 400 s-1 for each sample. It can be seen that 

values are very comparable, indicating that the degrees of orientation of a possible 

meta stable liquid form and of a solid crystalline state are similar . 

. §5.4 DETERMINATION OF PARAMETERS NEEDED TO PREDICT MW 

AND MWD OF POLYMERS 

§5.4.1 Theoretical Background 

The behavior of storage modulus, G' , vs. frequency, ro, for a typical linear 

amorphous polymer is illustrated in Figure 5. 101 (86). There are two relaxation 

processes: the glass to rubber transition and the terminal cone relaxation. At low 
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Table 5.6. Heats of fusion from DSC and maximum enthalpy changes in magnitude 

Sample 

PE-1 

PE-2 

PE-3 

PE-4 

PE-5 

PE-6 

from shear and elongational measurements of PE samples. 

DSC heat of fusion 

Density (J/g) 

0.909 87.53 

0.902 80.33 

0.900 8 1 .69 

0.902 83. 12 

0.9 19 90.9 1 

0.917 1 15 .25 

10 

I 

z I 
- 6 Plateau 

(J/m3) 

7.96E+07 

7.25E+07 

7.35E+07 

7.50E+07 

8.35E+07 

l .06E+08 

o . G2 c......! ModulUI) 
Oc:, 

- - - - -=-=----� 
TemlilMll 

.J 4 

2 

Maximum enthalpy change 
in magnitude (J/m3) 

7.44E+07 

7.43E+07 

6. 19E+07 

6.97E+07 

7.33E+07 

9.92E+07 

-2 0 . 2  4 6 8 10 
LOG FREQUENCY ( RAD/�C) 

Figure 5.101. G' master curve for a typical linear amorphous polymer. 
[Source: J.D.Ferry. Viscoelastic Properties of Polymers. Wiley, New 
York. 1980.] 
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frequencies, a plateau region is observed due to the presence of the transient 

entanglement network. The plateau modulus GN can be defined as the constant G' 

value in the plateau region. 

A mixing rule is a quantitative relationship relating the observed mechanical 

properties of a polydisperse melt and the underlying polymer structure. It is a 

relatively simple mathematical approximation to a more complex molecular theory 

of polydispersity. The double reptation model of, des Cloizeaux (105-107) has 

achieved considerable success in modeling polydisperse systems (44, 125, 126). 

Mead (91) used the double-reptation mixing rule with a single exponential relaxation 

function to relate the relaxation modulus to the MWD. 

This work uses Mead' s appr�ach (91) with the Rs10rchestrator™ software to 

estimate the MW and MWD of PE and cellulose from dissolving pulp concentrated 

solution. The double-reptation mixing rule, used in the calculations here, is given as 

G(t) = G
N (r W(M}�F(M , t)dM)2 (5. 1 8) 

where G(t) is the relaxation modulus, which can be determined from various linear 

· viscoelastic experiments, GN is the_ plateau modulus, W(M) is .the wei�t based 

MWD, and W(M)dM represents the weight fraction of material with molecular 

weights between M and M+dM. The function F(M , t) is the monodisperse relaxation 

function. It represents the time dependent fractional stress relaxation of 

monodisperse polymer following a small step strain. A single exponential form of 

this function (9 1) is 
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where, 

--- - t  ,JF(M , t) = exp(--) 2A(M) (5.19) 

(5.20) 

where A(M )is the characteristic relaxation time for the monodisperse system and K;, 

is a coefficient that depends on the precise chemical structure of the polymer and 

temperature. The relaxation time exponent a:indicates how strongly the relaxation 

time of a polymer is related to its molecular weight. 

The relaxation spectrum H (A) can be obtained from linear vjscoelastic 

rheological data G'(w) and G"(w), using the following equations (116) 

£ 
= 
r A(H(A))dA 

{JJ2 0 l + (AW) 2 

G" H(A)dA 

7i = r 1 + (Aw) 

The relaxation modulus G(t) can be calculated from the following equation 

Eq. (5.18) to Eq. (5.23) can be used to calculate the MW and MWD� 

(5.21) 

(5.22) 

(5.23) 

The "Synthesize Molecular Weight" function used by the Rs10rchestrator™ 

software is designed to calculate the MW and MWD of a material with given 

dynamic frequency sweep data (G '(w) and G"(w)) by synthesizing a distribution 

based on material properties and an estimate for Mw and Pl. Dynamic rheological 
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data are then calculated from this distribution and overlaid with the experimental 

data to determine how closely the two sets of data agree with each other. The Mw and 

PI parameters are then optimized to match the dynamic data. Figure 5 . 102 describes 

in a nutshell the procedure mentioned above. 

§5.4.2 Results on Polyethylene Samples 

§5.4.2.1 Material Parameters Determination 

A close examination of Figure 5 . 102 reveals that three parameters are needed 

to convert the linear viscoelastic rheological data into MW and MWD curves, 

namely, the plateau modulus (GN), the front factor (K;), and the relaxation time 

exponent ( a). These parameters are dependent on the precise chemical structure and 

molecular architecture of the polymer. They are a function of the chemistry of the 

material and temperature, but generally do not vary with the MW or MWD of the 

polymer. 

It can be assumed that PEs manufactured by the sam� _ process will have 

. similar molecular architecture (i.e. type and degree of side chain branching), and 

hence, the same values of the mentioned parameters. However, PEs manufactured by 

different processes should in general have different values of the parameters. 

Keeping this in mind, the six PE samples mentioned in Table 4. 1 are divided into 

three groups for data ana�ysis: four metallocene catalyzed PEs (PE- 1 ,  PE-2, PE-3, 

and PE-4), two LLDPEs (PE-3 and PE-6), and one conventional LDPE (PE-5). Since 
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,JF(M , t) = exp( - t  ) 

2A(M) 

l 

Figure 5.102. Summary of the calculation procedure to predict MW and MWD. 
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there is only one conventional LOPE in the PE sample set, two other conventional 

LDPEs (LDPE-D and E) are incorporated into analysis. These two LDPEs and their 

shear rheology data are from Dr. Parag Patil's dissertation ( 1 15). In each group, one 

sample is selected as a reference sample. The curve-fitting of the linear viscoelastic 

rheological data of this reference sample yields the required parameters for that 

particular group. Using these parameters, Mw and PI of the remaining samples in the 

group are then computed using the algorithm outlined in Figure 5. 102 and are 

compared with the GPC measured Mw and Pl. The procedure is repeated with each 

sample in the group and the sample that gives the best prediction results should be 

selected as the reference sample for that group. 
. . 

Figures 5 .103(a) and 5. 103(b) show the plots of storage and loss moduli (G ' 

and G") vs. angular frequency (w) at 175°C for metallocene PE and conventional 

LDPE samples, respectively. To accurately estimate the three unknown parameters 

( GN, Ki, and a), the dynamic moduli vs. frequency plot must satisfy three unique 

conditions. A scouting study reveals that the accuracy in fitting the moduli vs. 

frequency plot depends only on the value of GN, and not on K;. and a, i.e. a unique 

value of GN exists for each sample that gives the minimum error in fitting -the moduli 

vs. frequency curve. Once, the value of GN is determined, K;. and a can be estimated 

by equating the calculated Mw and PI with the GPC measured Mw and PI of the 

sample. Another scouti1:1,g study reveals that the calculated Mw is much more 

sensitive to changes in K;. than to changes in a; whereas, the calculated PI is much 
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more sensitive to changes in a than to changes in Kl. Therefore, a best-fit value of a 

was first determined by comparing the calculated PI to the GPC measured PI 

followed by the determination of Kl by comparing the calculated Mw to the GPC 

measured Mw . A log-normal distribution was assumed in these calculations to be 

consistent with the GPC measurements. 

Figure 5. 104 shows the excellent accuracy in fitting the moduli vs. frequency 

curves of PE-1 .  Similar analysis was performed on all PE samples and estimated 

values of parameters for each sample were obtained. Figure 5. 105 shows the 

predicted MWD curves for PE- 1 and PE-4. The values of parameters dete�ned 

using each sample in the group were then used to calculate the Mw and PI of the 

remaining samples in the corresponding group, which were then compared with the 

Mw and PI measured by GPC. The average relative errors were calculated. Note that, 

only Kl and a values are constant for the entire group of samples, whereas GN value 

should be determined solely by minimizing the error in fitting the moduli vs. 

frequency curve for each sample. The prediction results were then compared to 

determine the best reference sample for each group. 

Table 5 .7 summarizes the accuracy in the estimation of Mw and PI of the PE 

samples at 175°C. However, this table shows that the predictions of MW and MWD 

of PE samples are not accurate. A good reference sample for the corresponding 

group cannot be found. To see whether this is due to the relatively short range of 

frequencies for the dynamic moduli data, master curves of dynamic moduli were 
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Table 5.7. Accuracy of predictions of Mw and PI for PE samples at 175°C. 

Sample Mw Mw 
type Reference Prediction (exp) (cal) % error PI (exp) PI (cal) % error 

Metallocene PE-1 PE-2 88700 87600 1 .24 2.14 2.36 10.40 

PE PE-3 1 1 1000 143900 29.64 2.04 1 . 17 42.50 

PE-4 1 15800 79680 3 1 . 19 2. 12 2.44 14.99 

Average 20.69 22.63 

PE-2 PE-1 87400 88500 1 .26 2.43 2.19 9.95 

PE-3 1 1 1000 144300 30.00 2.04 1 . 15 43 .55 

PE-4 1 15800 81 140 1 29.93 2. 12 2.20 3.54 

Average 20.40 19.01 

PE-3 PE-1 87400 9 1640 4.85 2.43 54.63 2 148.27 

PE-2 88700 88960 0.29 2. 14 47.78 2132.57 

PE-4 1 15800 75520 34.78 2. 12 55.23 2505 .00 

Average 13.31 .2261.95 

PE-4 PE- 1  87400 126100 44.28 2.43 2. 1 1  13.02 

PE-2 88700 126400 42.50 2. 14 2.07 3.49 

PE-3 1 1 1000 204800 84.50 2.04 1 . 14 43.92 

Average 57.10 20..14 

LLDPE PE-3 PE-6 122700 1 14200 6.93 3.44 5.33 55.06 

PE-6 PE-3 1 1 1000 126900 14.32 2.04 1 .69 16.92 

Conventional PE-5 LDPE-D 86650 99740 15. 1 1  6.85 9.32 36.09 

LOPE LDPE-E 80350 120100 49.47 5 . 15 4. 10 20.43 

Average 32.29 28.26 

LDPE-D PE-5 1 16000 99890 13.89 9 . 1  6.7 1 26.26 

LDPE-E 80350 105800 3 1 .67 5 . 15 3.38 34.32 

Average 22.78 30.29 

LDPE-E PE-5 1 16000 80180 30.88 9 . 1  12.89 41 .59 

LDPE-D 86650 68 1 10 21 .40 6.85 13 .25 93.46 

Average 26.14 67.53 
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obtained so that MW and MWD could be predicted in a wider frequency range. 

Dynamic moduli data at 135, 150, 165, and 180°C were shifted to the reference 

temperature of 150°C. These master curves are shown in Section 5.2. For 

comparison, dynamic moduli data at 150°C were also directly used to predict the 

MW and MWD. 

Figures 5.106(a) and 5.106(b) show the resulted average relative errors from 

Mw and PI predictions for the metallocene P�s at 150°C, respectively. The x axis 

stands for the reference sample, where 1, 2, 3, and 4 are corresponding to PE-1, 2, 3, 

and 4, respectively. The relative errors from PI predictions using PE-3 as reference 

are not shown in Figure 5.106(b) since the errors are larger than 1000, too large 

compared with the others. Both Figures 5.106(a) and 5.106(b) show that the 

predictions of MW and MWD of metallocene PE samples are not accurate. By using 

master curves the relative errors from the Mw predictions decrease except for PE-3 

while the relative errors from PI predictions increase. Therefore, the master curves 

do not increase the accuracy for the MW and MWD predictions for the metallocene 

PE samples. 

A good reference sample for each group cannot be found using either the 

experimental dynamic rµoduli data or the master curves of these moduli data. This is 

probably due to the differences in the long chain branching or side chain branching 

of the PE samples. In the next sub-section, estimated values of parameters for each 

sample are compared at different temperatures. 
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§5.4.2.2 Material Parameters Comparison 

Table 5. 8 gives the estimated values of parameters for each PE sample except 
PE-3 at the temperatures of 135, 150, 165, 175, and 180°C. These parameters are 
also shown in Figures 5. 107, 5.108, and 5.109. With the increase of temperature, the 
values of a and GN decrease while the values of K;. increase for all PE samples 
except for PE-6. For PE-6, the values of a and GN increase while the values of K;. 

decrease. The PE samples can be divided into two groups: the metallocene PE 
samples and conventional LOPE and LLDPE. The samples in each group have 
similar values of parameters. It is also observed that the metallocene samples have 
larger a and GN values but much smaller K;. values than the conventional LOPE or 
conventional LLDPE. 

§5.4.3 Results on Cellulose Solution Samples 

§5.4.3.1 Linear Viscoelasticity 

The complex viscosity (TJ*) data of 14% cellulose solutions from dissolving 
pulps of different DPw as a f�nction of strain are shown in Figure 5_. 110. It shows 
that the chosen strain of 1 % for dynamic frequency sweep tests belongs to the linear 
viscoelastic range where TJ* does not change with the strain. The TJ* increases with 
the increase of DPw at the same strain. 

Figure 5. 11 1 shows dynamic moduli curves for the cellulose solutions. Both 
G'  and G" increase with the increase of DP w• In the range of experimental 
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Table 5.8. Results of curve-fitting of rheological data for parameter estimation. 

Mw Curve-fitting 
Sample T (°C) a GN (Pa) Kl (cal) PI (cal) error 

PE-1 135 6.2030 8.00E+06 4.26E-35 87340 2.43 0. 1 139 

150 5.9000 7.00E+06 1 .55E-33 87410 2.43 0.0865 

165 5.4675 4.60E+06 4.00E-3 1 87350 2.43 0.0730 

175 5. 108 1 3.22E+06 4.56E-29 87400 2.43 0.0849 

180 5.0223 3.00E+06 1 .27E-28 87330 2.43 0.0750 

PE-2 135 6.2012 5.00E+06 l .08E-34 · 88700 2.14 0. 1259 

150 5.9955 4.50E+06 9.75E-34 88690 2. 14 0.0966 

165 5.7050 3.86E+06 3.03E-32 88730 2.14 0.0759 

175 5.4303 3. 10E+06 9.56E-3 1 887 10 2. 14 0.0786 

180 5.2804 2.80E+06 6.28E-30 88670 2. 14 0.0799 

PE-4 135 6.0680 5 .90E+06 9.40E-35 1 15800 2.12 0.2022 

150 5.8870 5 .60E+06 6.60E-34 1 15800 2. 12 0. 1462 

165 5 .7 181 5.20E+06 4.20E-33 1 15800 2. 12 0. 1 105 

175 5.5610 4.85E+06 2.86E-32 1 15800 2.12 0.1023 

180 5.3654 3.80E+06 3 .82E-3 1 1 15800 2. 12 0. 1028 

PE-5 135 3.3870 3.20E+05 8.88E-19 1 16200 9.09 0.0184 

150 3 .101 1 2.50E+05 2.49E- 17 1 16000 9.09 0.0389 

165 2.98 17 2.28E+05 7.22E-17 1 15900 9. 10 0.0248 

175 2.8955 2.15E+05 l .62E- 16 1 16 100 9. 10 0.0342 

180 2.8850 2.00E+05 l .92E-16 1 16000 9.09 0.0327 

PE-6 135 2.8000 l .OOE+06 l .7 1E- 16 122800 3.44 0.0880 

150 2.8016 1 . 12E+06 1 . 17E- 16 122800 3 .44 · 0.0700 

165 2.8330 1 . 18E+06 5 .85E-17 122600 3.44 0.0880 

180 2.8830 l .20E+06 2. 13E- 17 122800 3 .44 0.0764 
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frequencies, G' and G" obviously increase with frequency. In the lower range of 

experimental frequencies, G" are larger than G', showing the viscidity of cellulose 

solutions is relatively stronger than its elasticity. In the higher frequency region, G' > 

G", indicating the elasticity is relatively strong. 

The complex viscosity data of cellulose solutions as a function of frequency 

are shown in Figure 5. 1 12. For all the five solutions the complex viscosity data 

obviously decrease with the frequency. This is tile shear thinning behavior of 

pseudoplastic fluids. At the same frequency, the viscosity increases with the increase 

of DPw, But the differences between the complex viscosity data of five samples 

become smaller as the frequency increases. 
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§5.4.3.2 Material Parameters Determination 

Since all the five cellulose solutions have the same concentration of 14% and 

were prepared from dissolving pulps, it is assumed that material parameters ( GN, K;., 

and a ) to predict MW and MWD remain constant for these five pulps in the 

cellulose solutions. 

For the dissolving pulps, the Mw can be �alculated by multiplying the degree 

of polymerization by 162, the molecular weight of the monomer. However, PI data 

are not available unlike the PE samples. Therefore, a different calculation procedure 

was used to estimate the parameters required for the prediction of MW and MWD 

for the cellulose from these samples. Figure 5.111 shows the storage and loss moduli 

curves at 90°C for all samples. From these curves the frequency at which G '  and G" 

curves cross each other was calculated for each sample. If a Maxwell viscoelastic 

model is used, the reciprocal of the crossover frequency is the average relaxation 

time of the sample and therefore proportional to the weight-average MW for the 

cellulose from the solution. It is assumed that this is the characteristic relaxation time 

of the monodisperse system. The crossover frequencies an� the aver�ge relaxation 

time for the cellulose solutions are given in Table 5.9. The average relaxation time 

increases with DPw, showing that the molecular weight and interaction force between 

molecular chains increase with DP w• 

According io Eq. (5.20) the plot of ln(A) vs. ln(Mw) should be a straight line 

with slope of a and intercept of ln(K;.). The plot of ln(A) vs. ln(Mw) and its linear fit 
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Table 5.9. Crossover frequencies and average relaxation time of 14% cellulose 
solutions. 

Crossover Average relaxation 
DPw Mw frequency (s-1) time (s) 

670 108540 19.4640 0.05 14 

932 150984 5.8324 0. 1715 

1 195 193590 3.5635 0.2806 

1457 236034 2.5869 0.3866 

1720 278640 2.0541 0.4868 

are shown in Figure 5 . 1 13, from which K;. and a were calculated as 1 .00 x 10-13  and 

2.3429, respectively. The value of GN was estimated by minimizing the error in the 

fitting of moduli vs. frequency curves just as in the case of PE · samples. A plot of 

predicted molecular weight distribution curves of the dissolving pulps is shown in 

Figure 5 . 1 14. 

The comparison of the predicted and actual weight-average molecular 

weights of dissolving pulps is presented in Table 5. 10, which shows good accuracy 

in the prediction of Mw. The predicted PI increases in the order of DP670 < DP 1720 

< DP932 < DP! 195 < DP1457 . The predicted PI data of blends are higher than those 

of neat materials, which is to be expected. Therefore, matepal properties K;., a ,  and 
, ·  

GN are determined as 1 .00 x 10-13,  2.3429, and 4.90 x 104 Pa. These material 

properties can be used to predict MW of cellulose from 14% dissolving pulps 

concentrated solutions by rheological method using the RS1Orchestrator™ software. 
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Table 5.10. Accuracy of prediction of Mw for dissolving pulps (GN = 4.90 x 104 

Pa, a= 2.3429, K;. = 1 .00 x 10-13
). 

Curve-fitting 
DP Mw (exp) Mw (cal) % error Pl (cal) error 

670 108540 101000 7.04 6.4692 0. 1789 

932 1 50984 164000 8.82 8 .7323 0.007 1 

1 195 193590 193000 0.25 9.8832 0.0050 

1457 236034 227000 3 .74 1 1 .7750 0.0240 

1720 278640 287000 2.86 8 .0605 0.2020 

Average: 4.54 Average: 0.0834 
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Conclusions and 
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§6. 1 CONCLUSIONS 
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§6.1 CONCLUSIONS 

In this work, shear rheology of polyethylenes, polyisobutylene, and cellulose 

solutions was measured at different temperatures using a rotational rheometer 

(ARES). Elongational viscosity of polyethylenes and polyisobutylene was also 

measured at different Hencky strains and temperatures using a capillary rheometer 

(ACER) by replacing the capillary cylindrical die with a hyperbolic converging 

axisymmetric die. The hyperbolic shape of the dies enables a constant elongational 

strain rate throughout the die. The effects of both molecular characteristics and 

processing conditions on the elongational viscosity of polyethylenes and 

polyisobutylene were studied. The results from the hyperbolic dies were compared 

with results from other techniques, namely Rheometrics Extensional Rheometer 

(RER) and Elongational Rheometer for Melts (RME). Master curves from 

temperature and Hencky strain shifting, and general master curves by simultaneously 

shifting with respect to both temperature and Hencky strain were developed. The 

enthalpy and entropy changes were calculated from the shear and elongational 

viscosities and compared with .the heats of fusion from DSC measurements. Methods 

to determine the parameters needed to predict the MW and MWD of polyethylene 

and cellulose (in dissolving pulp concentrated solution) samples from their shear 

rheological data were also presented. 

The effective elongational viscosity of polymer melts is considerably affected 

by their molecular characteristics. The effective elongational viscosity of different 
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samples flattened out differently at low elongational strain rates. Both MWD and 

LCB seemed to promote the strain rate thinning. The onset of strain rate thinning 

occurred at a lower strain rate for the conventional LOPE so that the conventional 

LOPE showed a different shape of the viscosity curve and lower elongational 

viscosity. Moreover, both the PI and LCB seemed to decrease the elongational 

viscosity. All PE samples showed similar patterns of strain hardening, on which the 

temperature did not have considerable effect. AU PE samples showed similar 

patterns when the effective elongational viscosity was plotted as a function-··of the 

residence time (defined as Hencky strain over strain rate) and compared with the 

shear viscosity. Strain hardening could be accessed from these plots according to the 
. . 

relationship between shear and elongational viscosities measured from Meissner-

type extensional rheometer. PIB and PE samples had different patterns for the 

effective elongational viscosity as a function of the transient time. PE samples 

showed strain hardening, whereas PIB sample did not show strain hardening. 

The elongational viscosity measured by using two techniques (the 

Rheometrics Extensional Rheometer . and the hyperbolic converging die) showed 

good agreement for the conventional LOPE but not as good for other PE samples. 

The elongational viscosity _of PIB measured by the hyperbolic dies and the 

Elongational Rheometer for Melts (RME) showed similar patterns to each other. The 

values obtained in our work are close to those from RME. The factorized Rivlin

Sawyers constitutive equation (1 16) had been used to calculate the elongational 

viscosity of some other PE samples by Dr. Brian Edwards' research group at The 
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University of Tennessee, Knoxville. Good agreement was found between the 

calculated values and the experimental data. The calculated results also showed the 

relationship between shear and elongational viscosities measured from Meissner

type extensional rheometer ( 1 17). Hence, the comparison of the measured 

elongational viscosity by different techniques and theory predictions indicates that 

the measured effective elongational viscosity is a good approximation to .the 

material ' s  true elongational viscosity. 

Besides the molecular characteristics discussed above, rheological properties 

are considerably affected by the processing conditions such as temperature, Hencky 

strain, and strain rate. All samples showed strain rate thinning for the effective 

elongational viscosity. Furthermore, effective elongational viscosity of polymer 

melts increased with decreasing temperature and increasing Hencky strain. Both 

Cross and Carreau models yielded good master curves for the temperature shifting of 

effective elongational viscosity. The shift factors showed good Arrhenius 

dependence. Conventional LDPE have larger activation energy, whereas linear PEs 

have smaller activation energies. Hence, the presence of long chain branches 

increases the flow activation energy of PE. 

Good master c�rves for the Hencky strain shifting of effective elongational 

viscosity were created using two methods to calculate the Hencky strain shift factors 

(124). But generally speaking, Method 2 gave slightly better results than Method 1 , 

where Method 1 was based upon an orientation ratio being equal to the relaxation 

ratio while Method 2 was based upon an "orientational viscosity ratio". By 
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combining the shift factors from temperature and Hencky strain shifting, good 

general master curves were also generated for the simultaneous temperature and 

Hencky strain shifting. Hence, the elongational strain rate range of the experimental 

geometry extended. One of the long-term objectives of this research group is to 

design an on-line elongational rheology sensor for polymer processing processes 

involving elongational flow. Generalized master curves and the shift factors would 

be very useful in the development of such a sensor. 

In an effort to investigate flow induced orientation of the polymer melts in 

hyperbolic dies, the enthalpy and entropy changes were calculated from the effective 

elongational and shear viscosities. The enthalpy and entropy changes increased in 

magnitude as the elongational strain rate increased. Namely, the melt was 

transformed to a more ordered state corresponding to a lower entropy and greater 

magnitude latent heat of transformation with increasing strain rate. Furthermore, 

extruded melts exhibited larger enthalpy and entropy changes in magnitude for 

hyperbolic die with higher Hencky strain. Thus, flow induced orientation occurred in 

the hyperbolic flow with the extent being dependent upon the elongational strain rate 

and die geometry. The molecular characteristics have similar effects on the effective 

elongational viscosity and t�e enthalpy and entropy changes. The conventional 

LDPE shows smaller enthalpy and entropy changes in magnitude. Both the PI and 

LCB seem to decrease the enthalpy and entropy changes. The heats of fusion from 

DSC measurements and the maximum enthalpy changes from the shear and 
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elongational measurements are comparable, indicating that the degrees of orientation 

of a possible meta stable liquid form and of a solid crystalline state are similar. 

A new method was proposed to estimate the parameters required (the plateau 

modulus GN, the front factor K;,, and the relaxation time exponent a) for the rheology 

to MW and MWD conversions using Mead's approach based on the double-reptation 

model. These three parameters were determined by forcing the storage and loss 

moduli curves of PE samples to satisfy! three unique conditions, namely, 

minimization of curve-fitting error, convergence of the calculated PI to the GPC 

measured PI, and convergence of the calculated Mw to the GPC measured k!w• 

Assuming that PEs manufactured by the same process had similar molecular 

architecture, and hence, the same values of parameters, the PE samples were divided 

into three groups for data analysis: metallocene catalyzed PEs, LLDPEs, and 

conventional LDPEs. In each group, one sample was selected as a reference sample 

whose best-fit parameters (except GN) were used for that particular group to calculate 

MW and MWD. A good reference sample for each group could not be found using 

either the experimental dynamic moduli data or the master curves of these moduli 

data. This is probably due to the differences in the long chain branching or side chain 

branching of the PE samples. With the increase of temperature, the values of a and 

GN decrease while the values of K;. increase for all PE samples except for the 

conventional LLDPE. The metallocene PE samples have similar values of 

parameters. So do the conventional LOPE and LLDPE. The metallocene samples 
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have larger a and GN values but much smaller KA values than the conventional 

LDPE or conventional LLDPE. 

For the dissolving pulps, PI data were not available through GPC. Hence, the 

parameters KA and a were determined from the plot of average relaxation time (the 

reciprocal of crossover frequency) vs. weight-average molecular weight. The value 

of GN was estimated by minimizing the error in the fitting of moduli vs. frequency 

curves just as in the case of PE samples. This method predicted the MW very well. 

However, no experimental PI data were available to compare with the predicted 

values. 

§6.2 FUTURE WORK 

With the knowledge of the molecular characteristics of MW, MWD, and 

LCB, the six polyethylene samples studied in this work were very suitable to study 

the effects of molecular characteristics on the effective elongational viscosity, 

enthalpy and entropy changes associated with the orientation development in the 

melt in the hyperbolic dies. But this set of polyethylene samples · could not give good 

general parameters for each PE group to predict the MW and MWD of polyethylene 

samples from their shear rheological data. Some other metallocene PEs and 

conventional LDPEs were previously studied in this research group. But only MW 

and PI are known for these samples. If the long chain branches are measured and 

obtained for these samples, and the MWD curves are obtained for all PE samples, the 

study of the effects of molecular characteristics on the effective elongational 
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viscosity, enthalpy and entropy changes could be complete and accurate. General 

parameters or methods to determine general parameters for each PE group might be 

found to predict the MW and MWD of polyethylene samples from their shear 

rheological data. 

The comparison of the measured elongational viscosity by different 

techniques and theory predictions indicates that the measured effective elongational 

viscosity is an excellent approximation to the ,material's  true elongational viscosity. 

If elongational viscosity of more PE samples would be measured and compared by 

different techniques, theoretically predicted and compared with the experimental 

data from the hyperbolic dies, then the relationship between the measured effective 

elongational viscosity from the hyperbolic dies and the material's true elongational 

viscosity would be better determined. 

Good master curves were generated for the temperature and Hencky strain 

shifting, and simultaneous shifting with respect to both temperature and Hencky 

strain. Generalized master curves and the shift factors would be very useful in the 

modeling of an on-line elongational rheology sensor for polymer processing 

processes involving elongatiorial flow. Work in this on-line sensor �as been initiated 

in this group to measu� either shear or elongational ,rheology by changing the shape 

of the die so that both shear and elongational rheology could be controlled 

simultaneously. Rheological measurements are quick, easy, and inexpensive. 

Knowing the parameters to predict the MW and MWD and incorporating the results 

of the effect of molecular characteristics on the shear and elongational rheology, and 
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incorporating the results of master curves, the on-line sensor would provide an 

opportunity to develop real time, on-line process and quality control analysis of 

polymer properties in industrial equipments. 

Although the enthalpy and entropy changes were calculated from the 

effective elongational and shear viscosities, other methods need to be developed to 

quantitatively measure the flow induced orientation of the polymer melts in 

hyperbolic dies. Hence, the converging flow proces� in the hyperbolic die could be 

better understood. 
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